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Abstract

Conventional approaches to speaker diarization use short-term

features such as Mel Frequency Cepstral Co-efficients (MFCC).

Features such as i-vectors have been used on longer segments

(minimum 2.5 seconds of speech). Using i-vectors for speaker

diarization has been shown to be beneficial as it models speaker

information explicitly. In this paper, the i-vector modelling

technique is adapted to be used as short term features for

diarization by estimating i-vectors over a short window of

MFCCs. The Information Bottleneck (IB) approach provides

a convenient platform to integrate multiple features together for

fast and accurate diarization of speech. Speaker models are es-

timated over a window of 10 frames of speech and used as fea-

tures in the IB system. Experiments on the NIST RT datasets

show absolute improvements of 3.9% in the best case when i-

vectors are used as auxiliary features to MFCC. Further, dis-

criminative training algorithms such as LDA and PLDA are ap-

plied on the i-vectors. A best case performance improvement of

5% in absolute terms is obtained on the RT datasets.

Index Terms: speaker diarization, online i-vectors, Information

Bottleneck

1. Introduction

Speaker diarization addresses the problem of identifying who

spoke when in a speech recording [1]. Speaker diarization sys-

tems based on the Hidden Markov Model/Gaussian Mixture

Model (HMM/GMM) [2, 3] technique and the Information Bot-

tleneck (IB) method [4] have been successfully applied on meet-

ing data. On broadcast news recordings and telephone conver-

sational recordings i-vector based approaches have been applied

for the same task [5, 6]. The i-vector based approach has also

been adapted to the meeting data in [7].

The IB approach to speaker diarization has been success-

fully employed in different conditions such as meetings, tele-

phone conversations, etc. It provides a fast and convenient

framework to combine multiple features by fusing posteriors

from individual feature streams. Diarization systems typically

operate at the short term feature level using features such as Mel

Frequency Cepstral Co-efficients (MFCC). It is important that

the features used and models obtained thereof represent speak-

ers accurately.

In speaker recognition systems, the i-vector representation

of a speaker has been shown to be successful [8]. An i-vector

is a fixed-dimensional representation of a recording of speech

from a single speaker, which can be further projected to a dis-

criminative speaker space using techniques such as Linear Dis-

criminant Analysis (LDA), Within Class Covariance Normal-

ization (WCCN) and Probabilistic Linear Discriminant Analy-

sis (PLDA) [9]. The success of i-vector systems has lead to

its adoption to other problems where speaker analysis is re-

quired. In speaker diarization systems i-vectors have been used

to analyse telephone conversation recordings. Subsequently,

these methods have also been adapted to meeting conversations.

I-vectors are usually estimated on significantly long utter-

ances. For instance, in speaker recognition datasets such as the

NIST SRE datasets the average contribution of each speaker in

a telephone conversation is 2.5 minutes. Diarization systems

however perform analysis on short segments. Thus i-vector

based approaches to speaker diarization have traditionally used

a long context of speech. In one such approach ,the i-vectors are

then clustered using the K-means algorithm [5]. Recent work

from the authors have also demonstrated the use of SGMM

(Subspace Gaussian Model) system based speaker vectors that

are similar to the i-vectors in a similar framework [7]. Since

the i-vectors are estimated over a long duration a realignment

procedure is necessary to adjust the boundaries.

The diarization performance when using i-vectors suggest

that they contain useful speaker information. Recent studies

in Automatic Speech Recognition (ASR) have successfully ex-

plored adapting the i-vectors as short term feature representa-

tions. The i-vectors are appended to the short term MFCCs to

train Deep Neural Network (DNN) based phone recognizers and

decode the audio subsequently [10, 11]. In this paper, we study

this method of a frame-level i-vector extraction when adapted as

features to speaker diarization systems. As i-vectors are trained

to represent speakers exclusively, we hypothesize that the fea-

ture representation will be useful for speaker diarization sys-

tems. It should be noted that in ASR the i-vectors are appended

to MFCCs to train speaker-independent DNNs. In this work, the

i-vectors are used in combination with MFCCs to discriminate

speakers better. Discriminative algorithms such as LDA and

PLDA are further applied to improve diarization performance.

The rest of the paper is organized as follows: Section 2

introduces the IB based diarization system briefly. In Section 4,

the proposed system is described. The experimental results are

presented in Section 5. Finally, the results are summarized in

Section 6.

2. Information Bottleneck

The Information Bottleneck (IB) method diarizes an audio by

optimizing the clusters with respect to a set of relevance vari-

ables [4]. The optimization criterion is given as follows:

F = I(Y ;C)−
1

β
I(C;X) (1)

where X is the feature set, Y is the set of relevance vari-

ables and C is the set of clusters. β is the Lagrangian multiplier

that controls the trade-off between information preserved in the



clusters and the cluster size. The term I refers to mutual infor-

mation between two random variables.

The IB system is used to present our results throughout this

work. The conventional IB system uses MFCC based features.

Additionally, it may also use time domain information from

the Time Delay Of Arrival (TDOA) features ([12]) for multiple

distant microphone (MDM) recordings. Features such as Fre-

quency Domain Linear Prediction (FDLP), Modulation Spec-

trum (MS) [13], Filterbank slope based features [14] have also

shown to add complementary information. The IB framework

for speaker diarization provides a fast and simple approach to

combine multiple features without compromising on the per-

formance. To combine multiple features the frame-level pos-

teriors across the different feature streams are fused before IB

clustering. Whereas in the HMM/GMM framework, which is

a commonly used technique for speaker diarization, a common

way to combine information from different features is to fuse

the individual likelihood scores prior to Viterbi decoding [15].

This requires model re-estimation at every iteration and is thus

computationally intensive.

In the IB framework, an audio recording is split into short

segments of 2.5s. Each segment is parameterized by a multi-

variate Gaussian distribution estimated from the features with

respect to the segment. The mean is computed from the seg-

ment and the covariance is computed from the entire utterance

and shared across the mixtures. The mixtures are given weights

based on the segment lengths. The parameters of the Gaussians

are used to compute the posterior of each segment. The pos-

teriors form the relevance variables Y in Equation 1. The ag-

glomerative information bottleneck (aIB) clustering algorithm

is applied to these segments [16, 17]. This is equivalent to the

greedy optimization of Eq 1. The cost function simplifies to be-

come the Jensen Shannon (JS) divergence between two clusters.

As the clustering is performed on fixed length segments, a

final resegmentation step is applied using the Kullback-Leibler

Hidden Markov Model (KL-HMM) segmentation algorithm.

The posteriors for the KL-HMM algorithm are extracted with

respect to the Gaussians estimated previously. For each seg-

ment, a mean posterior vector is extracted. The posterior of

every frame is compared to these means using the KL diver-

gence measure. Viterbi decoding on the sequence of posteriors

is performed to get a new alignment of the speech frames. The

overall KL divergence is minimized for Viterbi decoding. A

minimum segment length constraint of 250 frames (for a frame

rate at 100 frames per second) is applied while realigning.

3. Online i-vector extraction

The online i-vector extraction algorithm, as shown in Figure

1, extracts frame-level i-vectors from a stream of MFCC fea-

ture vectors. The i-vector extractor represents supervectors in

a low-dimensional subspace. State-of-the-art speaker recogni-

tion systems use i-vectors to model speakers. For ASR, the i-

vector technique have been recently employed for speaker adap-

tation using deep neural network. The speaker-specific infor-

mation can be learned by stacking the i-vectors with acoustic

features. This approach is shown to provide additional gains

when used as an input to the DNN [18]. Another recent ap-

proach for speaker adaptation of DNN incorporates speaker i-

vectors to project the speech features into a speaker-normalized

space [19].

The i-vector framework follows the Total Variability Space

(TVS) model, which is given by

Figure 1: Block diagram representing the online i-vector extrac-

tion algorithm

s = m+Tw (2)

where s is the supervector adapted with respect to a Univer-

sal Background Model (UBM) from an utterance. The vector m

is the mean of the supervectors, T is the matrix representing the

subspace and w is the low-dimensional i-vector representation.

Given a sequence of MFCC feature vectors

{x1,x2, . . . ,xt}, the first order statistics (f ) are esti-

mated to get the i-vector representation. The subvector fc of f

is given by

fc = Σ
−

1

2
c

(

∑

γt,cxt − µc

)

(3)

where f = [f t1f
t
2 . . . f

t
C ]

t, C is the number of mixtures in

the UBM, µc and Σc are the mean and covariance matrix of the

cth mixture of the UBM. The posterior γt,c for the tth frame of

speech with respect to the cth mixture is given by

γt,c = P (xt|µc,Σx) (4)

The speech vectors are assumed to follow a Normal distribution.

Given the first order statistics, the i-vector is estimated as

follows

w =

(

I+

C
∑

c=1

NcT
t
cΣ

−

1

2
c Tc

)

−1

T
t
Σ

−1
f (5)

where Tc is the submatrix of T for the cth mixture, Σ is

the block diagonal matrix with Σc as blocks along the diagonal

and

Nc =
∑

t

γt,c

It is assumed that T has been whitened appropriately.

The online i-vector extraction algorithm uses the i-vector

extraction procedure on a short window of MFCC features. As

shown in Fig 1, a window of 10 frames is used (i.e. t = 10). For

every set of 10 MFCC feature vectors, an i-vector is produced.

This algorithm is called an online i-vector extractiona algorithm

as the full audio is not required to extract an i-vector.

I-vectors obtained from a very short window of MFCC

frames produce a feature stream similar to that of MFCCs and

thus can be used as any other short term representation. It

should be noted that the i-vector extractor is trained on simi-

lar short segments.

As i-vectors have been consistently shown to be good repre-

sentations of speakers, using short term i-vectors can be useful

in tasks that require speaker discrimination while operating on

short segments. Speaker diarization system, thus, can benefit

from these representations.



Figure 2: Block diagram representing proposed system

4. Proposed system

In this paper, the short term i-vector features are proposed to

be used as a feature representation in the IB diarization system.

The IB diarization system, as explained earlier, splits the audio

into short segments (typically 2.5s). Each segment is a sequence

of i-vectors. As the number of i-vectors is less than the number

of short term feature (such as MFCC) due to the windowing of

speech frames to extract i-vectors, the i-vectors are upsampled

to match the speech features. The upsampling procedure simply

involves replication of the i-vectors.

The upsample i-vectors are now used as a feature represen-

tation and each segment is represented by a Gaussian. Poste-

riors are extracted with respect to the estimated Gaussians for

every i-vector. The mean of posteriors for each segment act as

the reference variables for IB clustering. Next, the IB clusters

are used to initialize the KL-HMM realignment algorithm.

4.1. Discriminative projection

Often in speaker recognition systems the i-vectors are passed

through discriminative training algorithms as the i-vectors are

only representation of the utterances and not speakers. Thus,

discriminative training algorithms such as LDA and PLDA are

used to further improve the representativeness of the speakers

in the i-vector space. Multiple examples of short term i-vectors

per speaker are used to train the LDA and PLDA parameters.

The i-vectors used in the diarization system are then projected

with these parameters. The projected i-vectors are used in the

diarization system.

If W is the LDA projection matrix, ||.|| represent the Eu-

clidean norm of a vector, F and E are the PLDA parameters

corresponding to the interclass and intraclass variances, the pro-

jection (ŵ) is obtained as follows

ŵ =
(

I+ F
t
E

−1
F
)

−1

F
t
E

−1 Ww

||Ww||
(6)

As multiple examples of i-vectors are required to train the

LDA and PLDA parameters, the training data is reused. The

short-term i-vectors are used here as opposed to using i-vectors

from the entire speech as often done in speaker recognition sys-

tems.

4.2. Feature fusion

The IB system provides a simple framework to fuse multiple

features. Feature fusion involves estimating posteriors for each

feature stream individually and fusing the resulting posteriors.

It has been observed that fusing features is much more benefi-

cial in the IB framework than in the HMM/GMM framework.

In this paper, the fusion of i-vectors to the conventional MFCC

feature streams is proposed. Even though the i-vectors are es-

timated from MFCCs, the two features provide different rep-

resentations on the same data. While, the i-vector is estimated

over a short window, the MFCCs represent single speech frames

that are even shorter. Thus, the features are expected to be com-

plementary. The architecture of the fused system is shown in

Figure 2.

5. Experiments

Speaker diarization experiments are performed on the NIST RT

05, 06, 07 and 09 benchmark datasets. The NIST RT05 is used

as a development dataset to tune PLDA parameters and fusion

weights. The parameters are tuned to obtain the best Diariza-

tion Error Rate (DER). Multiple Distant Microphone (MDM)

recordings are used for the experiments after their enhance-

ment using Beamformit [20]. The proposed diarization system

is compared with the IB based diarization system that uses only

MFCC feature vectors. The i-vector PLDA system is the state-

of-the-art technique in speaker recognition to model speakers.

The open source Kaldi toolkit is used to train the online i-vector

system and the parameters of LDA and PLDA. Speaker diariza-

tion is done using the IB diarization toolkit [21].

To compare the performance of the proposed system with

the systems that use i-vectors in a longer context (eg: 2.5s),

we include the results from [7] in which i-vectors are shown to

perform better than the IB system. The i-vectors are clustered

using K-means for every 2.5s of speech. The i-vector extractor

is trained on the AMI dataset with MFCC features. The clus-

tered segments are used as an initialization step to the KL-HMM

segmentation algorithm. The posteriors for KL-HMM segmen-

tation are obtained from the Gaussians estimated for every 2.5s

long segments of the audio.

5.1. Feature extraction

MFCC features are extracted from the audio at 10ms frame rate

with a window size of 25ms. A Gaussian is modelled for every

250 frames. The covariance matrix is shared across the Gaus-

sians. The posteriors are estimated for every frame with respect

to all the Gaussians.

5.2. Online i-vector system parameters

The open-source Kaldi speech recognition toolkit was used to

train the online i-vector system [22]. The AMI and ICSI meet-

ing data was used for training the TVS matrix. This dataset

contains approximately 140 hours of segmented speech. During

training, clean speech recordings captured by individual head

microphone (IHM) with reference segmentation are used [23].

For the baseline system, the GMM/HMM system was

trained on 39-dimensional MFCC features including delta

and acceleration parameters. The acoustic models for the

HMM/GMM systems have roughly 2.5K tied-states and a total

of 100K Gaussians. The state alignments to train the DNN was

obtained from the HMM/GMM system. The i-vector extrac-

tor used 13-dimensional MFCCs as the features with the frame

length of 25 ms and shift of 10 ms. A 100-dimensional i-vector

was generated for each utterance.

The i-vectors are upsampled to match the number of MFCC

feature vectors for the speech segments in the audio. The silence

segments are ignored for diarization.



Table 1: Results of experiments conducted on the NIST RT 05, 06, 07 and 09 datasets comparing presented. SER: Speaker Error Rate

.

Dev. set Test set

System/Dataset RT05 RT06 (SER) RT07 (SER) RT09 (SER)

MFCC 18.7 18.5 13.6 22.9

MFCC+ivec 16.1 20.7 9.7 21.2

MFCC+ivecPLDA 16.5 20.4 8.6 21.3

5.3. LDA and PLDA parameters

Speaker recognition systems apply discriminative algorithms on

the i-vector to obtain better speaker representations. Usually,

the i-vectors are projected on to a more discriminative space

using LDA and PLDA. The LDA and PLDA models are trained

on the short term i-vectors obtained from the training data used

to train the i-vector extractor. We do not reduce the i-vector

dimension after LDA or PLDA. It was observed (through the

system performance on NIST RT 05 dataset) that reducing the

dimensions hurt performance.

5.4. Results

The results on the NIST RT datasets are presented in Table

1. Three systems are compared: the baseline IB system using

MFCC features only, IB system that uses MFCC and i-vectors

and IB system that uses MFCC and i-vectors after PLDA pro-

jection as given in Equation 6. The results on the system us-

ing only i-vectors are not presented in the table as they are ex-

tremely poor. A diarization error rate (DER) of approximately

75% was obtained. The primary cause for this performance is

the low frame rate for i-vectors (10 vectors per second as com-

pared to 100 vectors in case of features such as MFCC). Even

though the i-vectors are upsampled there is no new information

gained.

The baseline system is obtained with MFCC features only.

Based on the performance on NIST RT05 dataest it is clear that

the i-vectors provide complementary information. The fusion

weights are tuned on this dataset. Weights of 0.9 for MFCC

and 0.1 for i-vector (or i-vector PLDA as the case may be) are

observed to be optimal based on the diarization performance.

For the system using i-vector and MFCCs, a best case im-

provement of 3.9% in absolute terms is obtained on the RT07

dataset. Improvements are obtained on all datasets except RT06.

The application of LDA and PLDA to i-vectors improves the

performance only for RT06 and RT07. The performance gains

obtained are only significant on the RT07 dataset. The mini-

mal gains obtained with PLDA as compared to that obtained

in speaker recognition systems can be attributed to the severe

mismatch in data across meetings in the RT datasets.

In Table 2, the results of the proposed systems are com-

pared to the system that uses i-vectors estimated over longer

segments. In particular, the system presented in [7] using i-

vectors in the IB framework is used for comparison. The sys-

tem uses RT07 and RT05 for development of parameters and

hence are removed from comparisons. The comparison clearly

shows that using online i-vectors is useful as compared to us-

ing i-vectors conventionally. On the RT09 dataset, an absolute

improvement of 1.7% is observed on the MFCC+i-vec system.

Using MFCC+i-vec-PLDA also provides improvements on the

RT06 dataset, but the gains obtained are not significant enough

to warrant the use of PLDA in diarization system, which are

often required in real-time processing of speech signals.

Table 2: Results of experiments conducted on the NIST RT 06

and 09 datasets comparing the IB clustering and speaker vec-

tor (before and after PLDA) clustering methods SER: Speaker

Error Rate, +PLDA: vectors projected in the PLDA space.
System/Dataset RT06 (SER) RT09 (SER)

Baseline (IB) 18.5 22.9

i-vector + PLDA ([7]) 25.9 21.3

MFCC + Online i-vector 20.7 21.2

MFCC + Online i-vector + PLDA 20.4 21.3

6. Conclusion

Speaker diarization using short term features such as MFCC can

further benefit from the short term i-vectors estimated using an

online i-vector extraction algorithm. A best case improvement

of 3.9% on the NIST RT 07 dataset corroborates our hypothesis.

When compared to using i-vectors estimated over long speech

segments in diarization systems, short term i-vector represen-

tations are observed to be more beneficial in the IB bottleneck

framework.
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