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Abstract
Objective assessment of synthetic speech intelligibility can be
a useful tool for the development of text-to-speech (TTS) sys-
tems, as it provides a reproducible and inexpensive alternative
to subjective listening tests. In a recent work, it was shown that
the intelligibility of synthetic speech could be assessed objec-
tively by comparing two sequences of phoneme class conditional
probabilities, corresponding to instances of synthetic and human
reference speech, respectively. In this paper, we build on those
findings to propose a novel approach that formulates objective
intelligibility assessment as an utterance verification problem
using hidden Markov models, thereby alleviating the need for
human reference speech. Specifically, given each text input to
the TTS system, the proposed approach automatically verifies
the words in the output synthetic speech signal and estimates an
intelligibility score based on word recall statistics. We evaluate
the proposed approach on the 2011 Blizzard Challenge data, and
show that the estimated scores and the subjective intelligibility
scores are highly correlated (Pearson’s |R| = 0.94).
Index Terms: Speech intelligibility, objective measures, text-
to-speech synthesis, utterance verification, KL-divergence, KL-
HMM

1. Introduction
Intelligibility is a crucial aspect in many applications that use
Text-To-Speech (TTS) synthesis, for example screen readers and
public address (PA) systems. More recently, synthetic speech
has also been used in speech coding to achieve very low bit
rates [1]. Intelligibility is most reliably assessed through sub-
jective listening tests, but such tests are expensive and time-
consuming to conduct. It is therefore desirable to have an objec-
tive measure that can predict subjective intelligibility scores. An
objective measure also yields repeatable evaluations, making it
useful for the design and optimization of TTS systems.

Most objective measures of intelligibility were designed to
assess distorted human speech, e.g., due to background noise
or reverberations. These measures typically compare acoustic
properties of the test signal to those of the undistorted origi-
nal signal [e.g., 2, 3]. The comparison of acoustic properties
requires that both signals be from the same speaker. This ap-
proach is not suitable to assess the intelligibility of clean (undis-
torted) synthetic speech, since a more intelligible version of the
recording from the same speaker may not exist.
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Motivated by this, an approach was proposed in [4] based on
the comparison of phoneme posterior probability features of syn-
thetic speech and human reference speech. The use of features in
the phonetic domain makes it possible to compare speech from
different speakers. Specifically, the Kullback-Leibler divergence
was used to compare posterior features of human and synthetic
speech recordings of the same sentences. It was shown that
this method could predict significant differences in subjective
intelligibility scores between TTS systems [4].

In this paper, we improve on the previous work in [4] to
propose a novel approach for intelligibility assessment. We
cast intelligibility assessment as an utterance verification task,
where TTS test utterances are verified against an automatically
generated reference phoneme posterior probability sequence.
More specifically, the reference sequence is obtained through a
Kullback-Leibler divergence based HMM (KL-HMM), remov-
ing the need for a reference human speech recording of the same
sentence. A measure of uncertainty is estimated for each word
based on the average KL-divergence between the phoneme prob-
ability sequence of the synthetic speech signal and the KL-HMM
reference. The word recall for the synthetic speech utterance is
then computed by thresholding the uncertainty measures. Our
evaluations on the 2011 Blizzard Challenge data [5] show that
the computed word recall statistics directly correlate with the
word accuracy scores from subjective intelligibility tests.

This paper is organized as follows: We review existing ap-
proaches to objective intelligibility assessment in Section 2.
Section 3 explains the proposed utterance verification approach,
and the experimental setup is described in Section 4. We eval-
uate our approach in Section 5, where we demonstrate the re-
lationship between word recall and subjective word accuracy
scores. We further discuss the results and conclude in Section 6.

2. Relevant Literature
The traditional approach to objective intelligibility assessment
consists in measuring specific features of the speech signal that
are known to be relevant to intelligibility. For example, when
speech is degraded by additive noise, it is possible to predict its
intelligibility by analyzing the relative intensity of speech and
noise within different frequency bands [6] and over time [7]. Ob-
jective measures that assess further signal degradations, includ-
ing reverberation, speech coding or time-frequency masking,
use per-band envelope intensities or spectro-temporal represen-
tations as features, and compare them to the features extracted
from the original, undistorted signal [e.g., 2, 3, 8, 9]. However,
in the case of synthetic speech the “degradations” are imper-
fections of the TTS system, and there is no “original signal” to
which these acoustic features can be compared.



A possible solution is to verify whether the phone- or word-
level content of the TTS signal is consistent with a reference
transcription or a human speech recording of the same words.
Wang et al. [10] used the decoder of an ASR system to an-
alyze the phone graph in synthetic speech, and compared it
to multiple templates of individual phones with different con-
text. Their system requires a reference phonetic transcription for
the comparison, and achieved high correlation with subjective
TTS intelligibility scores. In [4], phoneme posterior probabil-
ity sequences from synthetic and human speech instances of the
same sentences were extracted with an Artificial Neural Net-
work (ANN). The sequences were compared using dynamic
time warping (DTW), with the Kullback-Leibler (KL) diver-
gence of probabilities as the local score. The average DTW
score was then shown to predict significant differences in sub-
jective TTS intelligibility scores.

Finally, approaches that use Automatic Speech Recogni-
tion (ASR) in order to perform a comparison to a reference
word-level transcription have been proposed to assess the intel-
ligibility of degraded and pathological human speech [11, 12].

3. Proposed Objective Intelligibility
Measure

It can be argued that listeners assess speech intelligibility
based on their prior linguistic knowledge, specifically acoustic-
phonetic and lexical knowledge. To avoid the influence of
further factors such as sentence context, subjective tests are con-
ducted with special test utterances, e.g., rhyming words [13] or
semantically unpredictable sentences [14]. Unintelligible words
can thus be seen as cases of mismatch between the observed
synthetic speech signal and listener’s linguistic knowledge.

In this paper, we build on this line of thought to show that
this kind of mismatch can be measured through an automatic
method. Specifically, we can formulate objective TTS intelligi-
bility assessment as an utterance verification problem, since the
utterance that the TTS system should produce is known a priori.
An automatic measure of how many words can be recalled from
the TTS signal can then be linked to subjective intelligibility.

Our proposed approach estimates the recall for each word
by comparing the sequence of phoneme posterior probabili-
ties in the TTS signal to a reference. Specifically, we use a
Kullback-Leibler divergence-based Hidden Markov Model (KL-
HMM) [15, 16] to generate the reference sequence of phoneme
posterior probabilities for a given TTS input text. The two se-
quences are aligned and the mismatch between the TTS signal
and the linguistic knowledge modeled by the KL-HMM is eval-
uated for each word.

The proposed approach improves on the previous work
in [4], where a human speech recording of the TTS input text
was used as a reference. The KL-HMM alleviates the need for
human speech recordings of each tested TTS utterance, and
provides the word-level segmentation. Moreover, the KL-HMM
can be trained on data from multiple recordings and speakers to
provide a more general reference than a single human speech
recording.

The architecture of the proposed objective measure is de-
picted in Figure 1 and consists of the following parts:

Synthetic speech A TTS system takes as input a sequence of
words W = {w1, . . . , wm, . . . , wM} and converts them
to speech.

Spectral feature extraction Given a synthetic speech ut-
terance, a sequence of acoustic feature observations
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Figure 1: Architecture of the proposed objective TTS intelligi-
bility assessment system

X = {x1, . . . ,xn, . . . ,xN} is estimated where N de-
notes the number of frames in the TTS speech signal. The
features can be e.g., cepstral coefficients of a short-time
mel-frequency or auditory spectrum (MFCC, PLP).

Posterior feature extraction The acoustic feature observation
sequence X is converted into a sequence of phoneme pos-
terior probabilities Z = {z1, . . . , zn, . . . , zN} using an
Artificial Neural Network (ANN) where

zn = [z1n, . . . , z
k
n, . . . , z

K
n ]> (1)

= [P (c1|xn), . . . , P (ck|xn), . . . , P (cK |xn)]
>,

with ck the kth phoneme class of K phonemes.
Alignment In a KL-HMM, each HMM state i is parameterized

by a categorical distribution yi = [y1i , . . . , y
k
i , . . . , y

K
i ]>.

The phoneme posterior probabilities estimated by an ANN
are directly used as feature observations to train the KL-
HMM.
Word level and subword state level time alignments are ob-
tained for the input sequence of phoneme posterior prob-
abilities Z and its word level transcription W through
Viterbi alignment using a trained KL-HMM system and
a phonetic lexicon. The local score KL(yi, zn) at each
HMM state i is the KL-divergence between the state dis-
tribution yi and the posterior feature zn, i.e.,

KL(yi, zn) =

K∑
k=1

zkn log

(
zkn
yki

)
(2)

Utterance verification An uncertainty measure C(wm) for
each word wm is computed based on the average KL-
divergence between the sequence of phoneme posteriors
of the synthetic speech signal and the KL-HMM subword
states,

C(wm) =
1

Rm

Rm∑
r=1

1

erm − brm

erm∑
n=brm

KL(ysrm , zn)

(3)



with srm the rth subword state in word wm, brm and
erm the begin and end indices of the frames aligned with
subword state srm, and Rm the number of subword states
for word wm, respectively. The uncertainty measure
C(wm) takes into account the number of frames in each
subword state and the number of subword states in each
word, similar to the double normalization approach for
hybrid HMM/ANN systems [17].

Finally, we calculate word recall by comparing the uncer-
tainty measure C(wm) of each word to a decision threshold τ .
The value τ may be chosen such that the calculated word re-
call correlates best with intelligibility scores, e.g., using a small
development set of subjectively scored TTS speech recordings.

Alternatively, we can follow the utterance verification for-
mulation to select the threshold τ without subjectively scored
data. Specifically, we take a hypothesis testing approach where
we wish to select the threshold τ that best separates two dis-
tributions H0 and H1 of uncertainty scores. The H0 hypothesis
means that the target word is present in the signal, whereas H1

means that the TTS system synthesized a signal that does not
agree with our lexical and phonetic knowledge for the word.

We obtain uncertainty scores for the H0 distribution from
speech signals with known high intelligibility, e.g., undistorted
human speech. Uncertainty scores for the H1 distribution can
be obtained by distorting the signal, or — more simply — by
using wrong transcriptions for utterance verification. The wrong
transcription can be a word that rhymes with the true word or a
completely different word, depending on the intelligibility test
type (i.e., rhyme test or sentence test) that we wish to model.

We compare both approaches to selecting τ in Section 5.1.

4. Experimental Setup
We evaluate the proposed objective intelligibility assessment
method on the 2011 Blizzard Challenge data [5]. The data com-
prises speech recordings from 12 different text-to-speech (TTS)
systems, referred to as systems “B” to “M”. We use a set of
26 semantically unpredictable sentences (SUS) in English, for
which subjective intelligibility scores are available as word er-
ror rates (WER). Each sentence contains 6–8 words. For the
following evaluations, we convert WER scores to word accu-
racy (WA), defined as WA = 1−WER. The data also includes
human speech recordings of the sentences spoken by a profes-
sional speaker, referred to as system “A”.

The extraction of phoneme posterior probabilities from the
TTS recordings is performed with the same single hidden layer
multilayer perceptron (MLP) used in [4]. The MLP is trained on
232 hours of conversational telephone speech to classify 44 En-
glish phonemes and silence, i.e., K = 45 output units. Training
with conversational speech brings in acoustic variability that
can help make the MLP more robust. The MLP inputs are 39-
dimensional perceptual linear predictive cepstral features [18]
with a nine frame temporal context (i.e., four frames preced-
ing and four frames following). The MLP was trained with the
QuickNet toolkit1 by minimizing the frame-level cross entropy.

The KL-HMM system is trained on the “system A” human
speech recordings and models crossword context-dependent
phonemes. Each crossword context-dependent phoneme is
modeled as a 3-state HMM. The phonetic lexicon required
for the KL-HMM system training is obtained from the CMU
pronunciation dictionary2.

1http://www.icsi.berkeley.edu/Speech/qn.html
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

5. Evaluation and Results
5.1. Threshold Selection

For each TTS system, we compute uncertainty scores for the
words in the SUS recordings, using the steps described in Sec-
tion 3. The word recall per sentence is obtained by comparing
these scores to a decision threshold τ . Our notion is that the
word recall is directly related to listener’s word accuracy (WA).
Since recall describes the verification of expected words and
WA describes the recognition of unknown words by listeners,
we expect recall to be in a higher numerical range than WA.

5.1.1. Selection with a Development Set

The relationship between objective recall and subjective word
accuracy (WA) is shown in Figure 2. Lines show the linear fit
between recall and WA for different values of τ . We use the
first 5 of the 26 SUS recordings generated with each TTS sys-
tem as development set. At low threshold values (bright lines in
Figure 2), the word recall is unrealistically low, and the correla-
tion to subjective word accuracy is also poor. As the threshold is
increased to yield recall values in more realistic, higher ranges,
the correlation improves too (dark lines in Figure 2). The maxi-
mum correlation on the development set is obtained at τ = 1.22,
with recall values between 92 and 100%.
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Figure 2: Relationship between word recall and word accuracy
for different uncertainty thresholds τ on a development set of
5 SUS recordings per TTS system. Lines indicate the linear
fit at different values of τ (for clarity, data points for the TTS
systems “B” to “M” are shown for one threshold value only).

5.1.2. Selection Through a Hypothesis Testing Approach

Figure 3 shows the selection of τ from two distributions. We
compute the H0 distribution (i.e., correct word) of uncertainty
scores using all human speech recordings (system “A”), which
were pronounced by a professional speaker and are highly in-
telligible. Scores for the H1 distribution (i.e., different word)
are obtained from the same recordings of human speech, by
substituting the words in the corresponding transcriptions with
different words. We select the threshold value that separates H0

from H1 at the intersection of the fitted Beta distributions for
each hypothesis. The resulting threshold τ = 1.05 is close to
the value obtained in the previous development set approach,
but required no subjectively scored data.
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Figure 3: Selection of the decision threshold through a hypothe-
sis testing approach. We use the objective intelligibility measure
to compute word uncertainty scores for recordings of human
speech (system “A”) with correct and incorrect transcriptions,
yielding scores for the H0 and H1 distribution, respectively.

5.2. Results

Table 1 shows the prediction performance of our measure (“Word
Recall”) for the two threshold values derived in Section 5.1.
The prediction performance of the approach in [4] (“Average
Distance”) is also shown for comparison. The proposed measure
follows a highly linear relationship to subjective intelligibility
scores, as measured by the Pearson correlation coefficient R.

We evaluate the accuracy of the objective measure with the
root-mean-square prediction error rmse, defined as

rmse =

√√√√ 1

T − 1

T∑
i=1

(si − o′i)
2 (4)

with si and o′i the subjective and linearly mapped objective score
for TTS system i, and T the number of TTS systems, respec-
tively. Both the correlation and accuracy metrics only degrade
slightly when the threshold τ is selected through the hypothesis
testing approach, indicating that the threshold could indeed be
decided using data without subjective ratings.

Figure 4 depicts the relationship between subjective intelli-
gibility scores and word recall for the first row in Table 1. Each
data point “B” to “M” represents the average of 26 SUS record-
ings for the corresponding TTS system. The predicted intelligi-
bility of TTS systems deviates very little from the ideal linear
fit, but we see that our measure results in an outlier for human
speech (system “A”). We speculate that the natural prosody of
the professional speaker may have helped listeners understand
some sentences (e.g., questions), resulting in an offset to syn-
thetic speech that our measure does not account for.

Measure Correlation (R) Error (rmse)

Word Recall (τ = 1.22) 0.94 0.69

Word Recall (τ = 1.05) 0.90 0.89

Average Distance [4] 0.90 0.88

Table 1: Prediction performance of the proposed measure of
synthetic speech intelligibility, evaluated by the correlation co-
efficient (R) and root-mean-square prediction error (rmse).
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Figure 4: Prediction of subjective intelligibility from word re-
call. Letters indicate average scores per TTS system (system “A”
is human speech). R denotes Pearson’s correlation coefficient.

Conversely, we can also see in Figure 4 that subjects had
slightly more difficulty understanding the output of systems H,
L and E than predicted by our measure. Informal listening sug-
gests that this may be due to irregular fluctuations in pitch and/or
duration in recordings from these systems. Since our measure
only uses phoneme posterior probabilities for prediction, it cur-
rently does not consider the influence of these other factors.

6. Discussion and Conclusion
We have proposed a novel formulation of objective TTS speech
intelligibility assessment as an utterance verification problem
using hidden Markov models. Our study shows that this method
can predict subjective TTS intelligibility scores with high ac-
curacy, while being considerably simpler than the use of a full-
fledged automatic speech recognition (ASR) system. The utter-
ance verification formulation is consistent with the way subjec-
tive intelligibility tests are conducted, in that it evaluates the mis-
match between the synthetic speech signal and listener’s mod-
eled acoustic-phonetic and lexical knowledge. While subjec-
tive intelligibility tests require specially designed test utterances
(e.g., nonsense words or semantically unpredictable sentences)
to avoid biases due to sentence context, our objective utterance
verification approach has no such requirement.

On the 2011 Blizzard Challenge data, our evaluation shows
that the calculated word recall highly correlates with subjective
intelligibility scores. In the objective evaluation of TTS systems,
the interest lies not only in the accurate prediction of subjective
scores, but also in assessing significant differences between sys-
tems. Our future work will focus on this aspect, including data
from other Blizzard Challenge editions. This additional data
as well as data from other domains could also be used to fur-
ther train the KL-HMM system. Finally, the proposed approach
could be expanded to assess other types of speech degradations,
e.g., human speech distorted by low bit-rate codecs. These re-
search directions will also be part of our future work.
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