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Abstract

Sparse representation has been shown to be a powerful mod-
eling framework for classification and detection tasks. In this
paper, we propose a new keyword detection algorithm based on
sparse representation of the posterior exemplars. The posterior
exemplars are phone conditional probabilities obtained from a
deep neural network. This method relies on the concept that
a keyword exemplar lies in a low-dimensional subspace which
can be represented as a sparse linear combination of the training
exemplars. The training exemplars are used to learn a dictio-
nary for sparse representation of the keywords and background
classes. Given this dictionary, the sparse representation of a
test exemplar is used to detect the keywords. The experimental
results demonstrate the potential of the proposed sparse model-
ing approach and it compares favorably with the state-of-the-art
HMM-based framework on Numbers’95 database.

Index Terms: Keyword Detection, Deep neural network poste-
rior features, Compressive sensing, Sparse word posterior prob-
abilities, Dictionary learning, Sparse modeling

1. Introduction

Keyword detection deals with identification of selected words
in speech utterances. The field received added attention due
to the ever increasing volume of speech data being stored or
shared through the internet. These are primarily raw data, with-
out any transcription. Keyword detection provides a way for
content based indexing of the data. In this context, exemplar-
based keyword detection plays a key role to enable the detection
procedure without any requirement for transcription.

1.1. Prior Works

The keyword detection methods can be broadly classified
into two approaches namely, supervised and unsupervised [1].
Among different supervised approaches, acoustic keyword
spotting and large vocabulary continuous speech recognition
(LVCSR) based system are most popular.

In acoustic keyword detection system [2], parallel network
of keywords and background filler model are generated. The
filler model, also called garbage model, is constructed using
phone loops which are modeled using a HMM/GMM system.
Log-likelihood scores are computed using Viterbi decoding to
take the decision. In LVCSR based system [3], N-best answers
along with their Viterbi alignments are generated, which is used
to calculate normalized likelihood score for the keywords. Al-
though, automatic speech recognition (ASR) has been a pop-
ular method for keyword detection (spotting), it finds limita-
tion in this task due to its dependency on corresponding lan-
guage model, training data (which can be very limited in under-
resourced languages) and relatively lower accuracy. On the
other hand, keyword detection does not necessarily need tran-

scribed speech and its performance can be much better than a
ASR system. Hence, unsupervised keyword detection methods
are studied particularly in the context of exemplar-based spoken
term detection.

The most famous technique in unsupervised keyword detec-
tion is template matching using dynamic time warping (DTW).
In this method, the sequence of keyword exemplars (templates)
are aligned with test utterances to find the degree of similar-
ity. Both spectral and posterior based features has been used for
this purpose [4]. Although, exemplar-based matching is very
effective, the computational cost of this method is prohibitive;
so extensive research has been conducted to propose variants
of DTW that can be applied at lower cost with improved accu-
racy [5].

1.2. Our Contributions

This paper proposes a novel exemplar-based approach for key-
word detection. Motivated by the success of exemplar-based
sparse representation in classification and detection tasks [6, 7],
our goal is to use the sparse representation of the test exemplars
for keyword detection. Exemplar-based sparse representation
has been recently applied in speech recognition and demon-
strated great potential for speech classification [8, 9, 10]. To
the extent of our knowledge, this idea has not been studied in
the context of spoken term detection.

The intuition behind this work is that a speech utterance
can be decomposed as a combination of the keyword and back-
ground words. Considering a dictionary of the training ex-
emplars for the keyword and background speech, a test exem-
plar has a sparse representation using this dictionary where the
values of the sparse representation coefficients determine the
weights of the training exemplars in our compositional model.
Sparse representation leads to an inherent capability of discrim-
inating different classes [7, 11] corresponding to the keyword
or background speech.

We cast the keyword detection problem as the problem of
subspace classification via sparse representation. To that end,
a dictionary for characterizing the space of keyword and back-
ground exemplars is learned from the training data. The dictio-
nary learning for sparse representation models the space of key-
word and background exemplars as union of subspaces where
any realization of the test exemplar lies on a low-dimensional
subspace. The sparse recovery process implicitly leads to a
competition between the two subspaces of keyword and back-
ground exemplars. Therefore, the recovered sparse represen-
tation is naturally discriminative and in this high-dimensional
space, the keyword and background subspaces become separa-
ble. One of the advantages of our proposed approach is that
there is no explicit assumption on the statistical distribution of
the observed data as in the previous keyword detection (spot-
ting) algorithms [3, 2, 12].



2. Keyword Detection using Sparse
Representation

We cast the keyword detection problem as classification of the
subspace of test exemplars. The subspaces correspond either to
the keyword or to the background.

2.1. Sparse Modeling of Posterior Exemplars

To formalize the problem, let z; denote the acoustic features ex-
tracted from the speech utterance at frame ¢. The Mel-frequency
cepstral coefficients (MFCC) or perceptual linear prediction
(PLP) features are typical acoustic features used for classifica-
tion of speech data. In our posterior-based framework, these
acoustic features are used as the inputs to the deep neural net-
work (DNN) to extract the phonetic conditional posterior prob-
abilities p(gx|x¢). The set of all posterior probabilities are de-
noted by y: = [p(q1|z¢) p(galz:) . .. p(gx|z:)] " and used as
the posterior exemplar. Our goal is to detect a keyword using a
sequence of posterior exemplars Y = [y1 ... yr] directly with-
out performing speech recognition.

We assume that the posterior exemplars lie on a low-
dimensional (non-linear) manifold which can be characterized
using a union of subspaces (UoS) model. This relation is for-
malized as
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where w; is a linguistically driven unit associated to each sub-
space. For simplicity and without loss of generality, we assume
that w; indicates a word. Of course, any sup/sub-word sub-
space can be considered and (1) holds due to the marginalization
rule of probabilities. It may be noted that the phonetic posterior
probabilities and the acoustic features x; become independent
given the underlying word class, i.e. p(gx|wi, z¢) = p(qr|wi).
Following the UoS model, the space of pho-
netic representation for a word w; denoted by
di = [p(q1)w) p(ga|wi) ... p(gr|w;)] " can be expressed as
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where sw;* stands for the sth sub-word unit of the word wy,

and S, represents the total number of (over-complete) bases
to model the sub-space of word w;. Based on (1) and (2), o =
[, P(w1]T¢) . . . @, p(wi|ze)]

The number of words is typically far more than the num-
ber of phonetic classes, L > K hence, (1) is a an under-
determined linear system. On the other hand, only one word
is associated to any posterior exemplar and the activation of the
representative coefficients are grouped as a.,,. Hence, o has a

Algorithm 1 Class-specific online dictionary learning

Require: : Y, A (regularization parameter), Dowl (initialization)
1: fort =1 to T do
2: Sparse coding of y; to determine a¢:

. 1 —1) 2
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3: Updating Dg,f,) with Dgl_l) as warm restart:
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t .
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4: end for T
5: return Dgul)

group sparsity structure. This prior knowledge on the structure
of a; enables us to recover the subspace dependent probabilities
for an acoustic observation p(w;|z;) given the UoS dictionary
for sparse representation. In the following sections, we explain
the dictionary learning procedure for modeling the space of pos-
terior exemplars in Section 2.2. Given this dictionary learned
from the training exemplars, we explain the keyword detection
using sparse representation of the test exemplars in Section 2.3.

2.2. Class-specific Dictionary Learning

The phonetic components of each word are a small subset of the
whole phonetic space. Hence, the manifold of word posterior
representation is intuitively low-dimensional. We rely on dictio-
nary learning to characterize the word manifolds D.,, individ-
ually. Sparse representation using the dictionaries for the key-
word and background speech (all the other words) enables us
to identify the low-dimensional subspace of the test exemplars
and its correspondence to the keyword or background classes.

Given a training set of features Y = [y1, ..., yr] € RE*T,
a dictionary D € R¥*M and sparse representation A =
[a1, ..., ar] for Y; the objective function for classical dictio-
nary learning techniques is defined as

T
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where A is the regularization parameter. The first term in
this expression, quantifies the energy-based reconstruction er-
ror. The second term denotes the ¢1-norm of « defined as
lalli = 3, || which controls the sparsity of «;. The joint
optimization of this objective function with respect to both D,
and «; simultaneously is non-convex, it can be solved as a con-
vex objective by optimizing for one while keeping the other
fixed.

In this paper, we consider the fast online optimization pro-
posed by Mairal et at. [13] for learning the dictionaries word-
wise based on stochastic approximations. The algorithm basi-
cally alternates between a step of sparse decoding for the cur-
rent training feature y; and then optimizes the previous estimate
of dictionary Dgf D to determine the new estimate DS} us-
ing stochastic gradient descent. The algorithm has been shortly
summarized in Algorithm 1.

Given the dictionaries for sparse representation of the key-
word and background words, in Section 2.3 we explain our key-
word detection algorithm using sparse representation.



2.3. Keyword-Background Sparse Representation

The union of subspaces approach as exploited for sparse mod-
eling of posterior exemplars through (1)-(2) is applicable for
general classification of the linguistic events. As the dictionar-
ies are learned class-wise to model the generative process un-
derlying the training exemplars of (1), the reconstruction error
obtained from sparse representation has been shown very effec-
tive for classification and detection tasks [6, 7].

In this paper, our goal is binary classification of the pos-
terior exemplars as keyword or background. We assume that
keyword is w1 and the background consists of {w;}~,. Ac-
cordingly, we define

D" =D,,, D’=[Dy,...Dy,] “
The class-specific dictionaries constructed in this manner, in
principle, should be able to span the whole space of the key-
word and background posteriors. More specifically, the test ex-
emplars corresponding to a keyword can be approximated as a
linear combination of training exemplars from the keyword ex-
emplars. Similarly, if the background dictionary consists of all
representative background words', the features corresponding
to background can be sparsely represented as a linear combina-
tion of training background exemplars.

Our proposed keyword detection algorithm is based on
sparse representation using the keyword and background dic-
tionaries. The sparse representation enables projection of the
features from low-dimensional space of phonetic posteriors to
a much higher dimensional space where the classification be-
comes easier since the new representation space is more dis-
criminative [11]. The support of the sparse components are as-
sociated to the independent subspaces of the dictionary required
for characterization of the low-dimensional subspace of the ob-
servations [11].

The sparse vectors corresponding to the dictionaries D"
and D? are denoted by af and o?. Therefore, by combining the
two dictionaries, the test exemplar can be written as a sparse lin-
ear combination of training exemplars from both keyword and
background as

Yt = Dkaf + Dbaf
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The sparse vector, oy is obtained by projecting the posterior
feature vector y: onto a higher dimensional space using the dic-
tionary, D. The sparse recovery process inherently introduces
a competition between the two subspaces. Thus, the recovered
sparse representation is naturally discriminative. In Section 2.4,
we explain how keyword detection can be achieved from the
sparse representations.

2.4. Keyword Detection

Given the sparse representation of a test exemplar at time frame
t using the keyword and background dictionaries, the class of
y¢ is obtained by comparing the reconstruction error for the re-
spective classes. The errors are calculated as follows

er(ye) = [lye — D af |l (6)

IRecall that for simplicity we refer to w; as a word. In general, w;
can represent any sub-word unit.

ev(ye) = [lyr — D’} |2 ©)

where, ex(y:) and e,(y;) are the error terms corresponding to
the keyword and background classes. These error terms are fed
to the detector to take a frame level decision. The output of the
detector is calculated by,

Aly:) = en(yt) —exly) 2 0 ®)

where, J is a predefined threshold. If A(y,) > 4, then y;
is labeled as a keyword-frame, otherwise y; is marked as a
background-frame.

Once the frame level decision is made, the next step is to
take an utterance level decision, i.e. whether the keyword exists
in the utterance under consideration or not. In order to achieve
this, the frame level decisions are accumulated by counting the
number of continuous frames corresponding to a particular key-
word. This provides the length of a keyword in a test utterance
in terms of the number of frames. Now, to take the final deci-
sion, this length is compared with a predefined threshold [12].
The lengths of different keywords can be extracted from the de-
velopment data and different statistical measures (e.g. mean,
variance) can be used as threshold. We have used the minimum
length of a keyword as the corresponding threshold.

3. Experimental Analysis

The keyword detection experiments are conducted to evalu-
ate the performance of the proposed sparse modelling frame-
work. We have used Numbers’95 database for our experiments.
Overall there are 31 words in form of continuous speech out
of which 11 words are used for our keyword detection experi-
ments. These keywords are ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’,
‘five’, ‘six’, ‘seven’, ‘eight’, ‘nine’ and ‘fifteen’. In total, there
are around 17k sentences, among which 60% are used for train-
ing, 20% for development and the rest for testing.

To perform the keyword detection, first the word-specific
dictionaries are learned as discussed in Section 2.2 using
the online dictionary learning algorithm presented in Algo-
rithm 1 [13]. There are two sets of words in the database, one
having large number of exemplars and other having very small
number of exemplars. While learning the word-specific dictio-
naries, for the first set we have used 50 exemplars to initialize
the dictionary whereas, for the other set, we have used 60%
of the exemplars for initialization. Rest of the data is used to
train the dictionaries. The number of exemplars to initialize
dictionaries is restricted to a predefined size in order to keep
the size of the dictionary lower. We have also added a dictio-
nary for silence which is learned in a similar way by extracting
the silences from the training data. This task is straightforward
since a silence state is already trained at the output of the DNN
extracting the posterior exemplars. The DNN setup to extract
posterior exemplars is similar to [14].

In order to integrate the temporal information inherent in
the speech signal, context appending of the posterior exemplar
for a frame with neighbouring frames is implemented. For a
context size c, the new feature vector, y, corresponding to a
frame y; is constructed by stacking c left and right frames onto
1t such that y; = [y(Tt,@ TR y(THC)]T.

Once the word-specific dictionaries are learned, the key-
word and background dictionary for a keyword is constructed
as discussed in Section 2.3 through concatenation of the key-
word and background dictionaries as shown in Equation (5).
This dictionary is then used to obtain the sparse representation
of a test utterance on a frame-by-frame basis. Afterwards, the
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Figure 1: ROC curves for different keywords

reconstruction errors are calculated and a frame level decision is
made using a predefined threshold ¢ as explained in Section 2.4.
Final decision is made by comparing the length of detected key-
word with its minimum length learned from the training data.

The ROC curves are plotted by varying the frame level
threshold J in a given range. These curves are generated for
three different context sizes. The resulting curves are shown in
Figure 1 for four different keywords. The curves clearly show
the dependency of keyword detection performance on the con-
text size. Although in most cases a context of 5 gives better
results, some of them are better for a context of 8. This be-
haviour can be explained as dependency of the optimal context
size on the length of a keyword. For smaller-duration words
(e.g. two) lower context size and for larger-duration words (e.g.
fifteen) higher context size works better. But, very small context
size (e.g. 2) may affect the performance due to its incapability
to capture sufficient temporal information. On the other hand,
larger context size may also affect the performance by captur-
ing temporal information from neighbouring words. Thus to
achieve an optimal operating point, we need to tune ¢ as well as
the context size.

Additionally, we compare our results with an HMM-based
approach proposed in [12]. Hence, we extract the results for
a specific operating point on the ROC curves of the keywords
that corresponds to [12] as listed in Table 1. A context size
of 8 was chosen for these experiments. We have varied our
frame level threshold ¢ in a range to obtain a set of probabili-
ties of detection and false alarm. The false alarm correspond-
ing to the words presented in [12] is chosen to be as close as
possible and shown with the corresponding probability of de-
tection. For other words, we have chosen similar false alarm
values and displayed them with corresponding detection proba-
bility. A comparison between the two results indicate that our
system has comparable or better performance.

4. Extension to Subword Models

The background dictionary defined in (4) can be constructed us-
ing any subword dictionaries such as phones. The concatenation

Table 1: Probability of Detection and False Alarm for different
Keywords for a Predefined Threshold

Prob. of Detection | Prob. of Detection
Keyword and False Alarm and False Alarm
(our approach) (HMM based [12])
Zero 0.9813/0.0149 0.9400/0.0150
one 0.9160/ 0.0686 0.9800 / 0.0950
two 0.8208 / 0.0150 -
three 0.9373/0.0132 -
four 0.8284/0.1028 0.9270/0.1370
five 0.8414/0.0028 0.8270/0.0016
six 0.8165/0.0173 -
seven 0.8123/0.0424 -
eight 0.8194/0.0673 -
nine 0.8280/0.0501 -
fifteen 0.7692/0.3592 0.6730/0.3310

of these subword dictionaries yield the background dictionary.
Then, the dictionary corresponding to the keyword is learned
from the available examples. Although the phones of the key-
word already exist in the background dictionary, their tempo-
ral information is only modeled in the target dictionary through
context appending that captures the trajectory or transition be-
tween subword units. Hence, sparse representation of the key-
word discriminates between the target and background dictio-
naries in favor of the more representative “bases*. On the other
hand, the non-keyword speech can be better represented us-
ing background dictionary due to the mismatch in background
and target temporal trajectories. This approach eliminates the
need of transcriptions for the keyword (spoken term) and the
background dictionary can be learned from the (well resourced)
speech database independent of the keyword. Our experiments
on Numbers’95 using phone dictionaries yield comparable re-
sults to word modeling presented in Figure 1.

5. Conclusions

In this paper, we proposed a novel keyword detection algorithm
based on sparse representation of the posterior exemplars. In
contrast to the conventional exemplar-based methods, we used
dictionary learning to model the manifolds of keyword and
background exemplars as union of subspaces where the pos-
terior exemplars admit sparse representations. This approach
enables us to classify the subspace of the test exemplars using
the reconstruction error of sparse representation.

The sparse recovery process implicitly leads to a compe-
tition between the two subspaces of keyword and background
exemplars. Hence, the recovered sparse representation leads
to better discrimination and enables detection of a keyword at
the frame level. The frame level decisions are accumulated to
make an utterance level decision through consecutive counting.
This approach makes the decoding very simple and the decision
threshold has an intuitive relationship with the keyword length.
The proposed idea is successfully implemented and compared
with the HMM-based approach.
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