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Mesoscopic self-assembly:
a shift to complexity
Massimo Mastrangeli*

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

By focusing on the construction of thermodynamically stable structures, the self-assembly
of mesoscopic systems has proven capable of formidable achievements in the bottom-
up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in
supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more
ahead, within reach of a shift toward fully three-dimensional architectures, collective
interactions of building blocks and kinetic control. All over these challenging fronts,
complexity holds the key.
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Self-Assembly Everywhere, Particularly in the Middle

Self-assembly is a powerful constructional heuristic rooted in concepts and methods of supramolec-
ular chemistry (Whitesides et al., 1991; Mattia and Otto, 2015), and ultimately inspired by living
matter (Nicolis and Prigogine, 1977) and unsupervised pattern formation (Ball, 2011). Over the
last three decades, the synthesis of artificial systems by self-assembly has witnessed growing success
and expanding technological reach (Groß and Dorigo, 2008; Grzybowski et al., 2009; Mastrangeli
et al., 2009; Tørring et al., 2011; Mattia and Otto, 2015). Self-assembly has become synonymous
of bottom-up systems engineering, complementing, or competing with more established top-
down strategies. Under proper conditions, self-assembly may, in principle, be adapted to work
at arbitrary physical scales (Whitesides and Grzybowski, 2002). Each scale nonetheless requires
specifically tailored implementations of the general heuristic. Scale selectivity is dictated by the scale-
dependent hierarchy of forces that provide the interactions among building blocks, and by the size-
dependent options available to efficiently fabricate the blocks themselves (from chemical synthesis
to 3D printing, frommicro/nanofabrication to numerically controlledmachining). The conjuncture
of fundamental laws and manufacturing opportunities does provide constraints on the types of
embodiments associated with each physical domain (Whitesides and Grzybowski, 2002). However,
it does not univocally prescribe possibilities, as documented by the mounting variety of ingenious
implementations reported in literature (Grzybowski et al., 2009; Mastrangeli et al., 2009; Tørring
et al., 2011; Crane et al., 2013). In between such continuumof physical scales and building block sizes
lies a peculiar domain, whereby the objects to be assembled are too small to be efficiently handled by
robotic effectors, and at the same time, too big to be addressed through supramolecular chemistry
and DNA-based self-assembly (Tørring et al., 2011). This mesoscopic domain has fuzzy boundaries,
which shrink with technological development, and currently concerns pre-existing building blocks
of a few to a few hundreds micron in characteristic size (Mastrangeli et al., 2009; Leong et al.,
2010; Crane et al., 2013). Several non-covalent interactions (e.g., capillary, electric, magnetic,
hydrodynamic, hydrophobic, steric, depletive) (Bishop et al., 2009; Israelachvili, 2011) available in
this domain can be tuned to a certain extent, and are not overwritten by gravity. Still, inertial effects
overshadow the Brownian motion of mesoscopic building blocks – with the remarkable exception
of active or self-propelling particles (Vicsek and Zafeiris, 2012; Marchetti et al., 2013). These traits
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render the mesoscopic domain singularly challenging for the
implementation and fundamental understanding of self-assembly.
Its fascinating features provide opportunities that continue to
draw significant and multidisciplinary research efforts (White-
sides and Boncheva, 2002). Conversely, originally dedicated
solutions have been exported to collateral fields (Whitesides
and Grzybowski, 2002). The mesoscopic domain is ultimately
expected to witness the methodological, technological, and func-
tional convergence of micro/nanosystems engineering with dis-
tributed robotic systems (Mastrangeli et al., 2011). Self-assembly
in the mesoscopic domain is the object of this perspective.

Mesoscopic Self-Assembly: Past and
Present

Self-assembly so far has been adoptedmostly to construct artificial
systems. Construction aims to build systems that are structurally
stable after assembly, as well as throughout their functional oper-
ations. This objective inherently prompts to the thermodynamic
control of self-assembly, prototypically represented by crystal-
lization processes. The thermodynamic (i.e., static) framework
has indeed been underlying the vast majority of implementations
of self-assembly to date (Grzybowski et al., 2009; Mastrangeli
et al., 2009; Tørring et al., 2011). Under thermodynamic control,
the target structure is designed to univocally coincide with the
global minimum of the free energy landscape associated with its
building blocks. In absence of local minima, each step toward
the target corresponds to a decrease of the system’s free energy.
Given the negligible mobility of typical mesoscopic building
blocks, kinetic energy is injected from an external source to stir
the system along its thermodynamic trajectory. The purposeful
provision of surrogate high temperature and Brownian motion
is temporary, and the final structure withstands its extinction
unaffected. The self-assembling system needs to be posed under
the effect of potential or force gradients only as long as it takes
to be correctly locked into its most stable state. The latter state
is path-independent, and can be reached from a variety of initial
conditions. The minimal energy state may be degenerate, which
improves self-assembly yield. A structure of high designability
can be equivalently assembled out of multiple or redundant sets
of building blocks (Hogg, 1999). Static self-assembly has been
successfully used in pioneering proofs of concepts and applied to
the fabrication of mesoscopic systems of technological relevance
(Mastrangeli et al., 2009; Leong et al., 2010). Purely stochastic self-
assembly approaches, deliberately inspired by chemical reactions
and modeled through reaction network formalisms (Mastrangeli
et al., 2011; Mermoud et al., 2012; Miyashita et al., 2013), have
been fruitfully modulated with varying degrees of determinism,
as well. This requires the introduction of programmable force
fields, biasing (Chung et al., 2008), predefined templates (Mas-
trangeli et al., 2009), and conformational constraints (Leong et al.,
2010).

More recently, and after an initial sprawl of directions of investi-
gation, research inmesoscopic self-assembly has beenmanifesting
the tendency to converge to a scenario whereby a subset of mature
methods, tailored to driving applications, is surroundedby a fertile
cloud of explorative forays. Accordingly, the core of mesoscopic

static self-assembly eminently includes (1) the fabrication of two-
and three-dimensional colloidal crystalline structures with low-
defect densities and long-range order, suitable for, e.g., photonic,
sensing, storage, and catalytic purposes (Rycenga et al., 2009;
Grzelczak et al., 2010); (2) the self-folding of three-dimensional
voxels out of two-dimensional nets, elicited for the fabrication of
large sets of homogeneous, specifically functionalized polyhedra
embodying chemical vectors, untethered grippers and the smallest
patterned artificial particles to date (Leong et al., 2010; Shenoy
and Gracias, 2012); and particularly, (3) the electro-mechanical
integration of active devices onto pre-processed substrates for the
packaging of standalone functional systems (Mastrangeli et al.,
2009). As for the latter, fluidic self-assembly (Crane et al., 2013) of
chiplets onto carriers templatedwith trapping sites of complemen-
tary geometry possibly represented the first application of self-
assembly in industrial manufacturing; and it presently retains a
very competitive edge for large-scale electronic packaging thanks
to a recent reel-to-reel embodiment with unprecedented through-
put (Park et al., 2014). The convergence to the aforementioned
scenario arguably results from a selection among the available
options – a selection based upon performance and, where appli-
cable, upon the challenges facing the development of laboratory
demonstrations into potential staples of industrial practice. The
cost-effectiveness of this translation is also undermined by the
competing performance improvement and extension of reach of
robotic assembly techniques (Gauthier and Régnier, 2011). Capil-
lary self-alignment (Arutinov et al., 2014) represents conversely
the exceptional instance of an originally mesoscopic technique,
which complements the robotic integration of solid-state devices
(of sizes spanning from hundreds of microns to millimeters) onto
patterned carrier substrates, thereby enhancing both throughput
and accuracy of pick-and-place (Fukushima et al., 2012; Zhou
et al., 2014).

The Need for a Shift

Is the current situation in mesoscopic self-assembly here to stay,
or should it rather be considered a trend susceptible of further
developments? In arguing in favor of the latter option, we remind
that, besides notable exceptions (Fialkowski et al., 2006; Warren
et al., 2012), and in spite of the peculiar features of the mesoscopic
domain, past and present instances have merely been skimming
the surface of the full potential of self-assembly (Lehn, 2002;
Warren et al., 2012). Most of the achievements of mesoscopic self-
assembly thus far have indeed involved only a limited number of
types of homogeneous building blocks (mostly, a single one), a
subset of the possible interactions, and exogenous ways to bring
the blocks together, typically in close packing or direct contact.
Moreover, most synthesized systems are two-dimensional (self-
assembled either on planar templates or at fluid/fluid interfaces),
are organized into highly ordered lattice-like patterns, and do not
really exploit collective interactions other than through redundant
number of blocks relative to available target sites, sheer collisions,
and other density-related effects. Therefore, even before turning
to technological outputs, there is still a lot more to demonstrate,
achieve, and fundamentally learn about self-assembly – particu-
larly at the mesoscale, and both inside and outside its static realm.
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On all these fronts, the actualization of self-assembly’s foreseeable
potential starts by tackling complexity.

Static Complexity: Three-Dimensional
Systems

Steps toward higher complexity may be pursued by shifting
the focus of research toward the static self-assembly of three-
dimensional structures. Protein folding (Dill and MacCallum,
2012) and DNA origami (Tørring et al., 2011) are inspiring exam-
ples for this. At mesoscale, three-dimensional building blocks
are successfully and deterministically self-assembled through the
folding of two-dimensional nets of panels, whose determinis-
tic wrapping, mediated by flexible hinges, extrinsic stresses, or
elastocapillary effects, is algorithmically preset by conformational
constraints (Shenoy and Gracias, 2012). The resulting structures
are nonetheless essentially hollow shells, whose core is more easily
occupied by a fluid than by a solid payload. Alternative to con-
strained folding is the puzzle approach (Cademartiri and Bishop,
2015), whereby the target structure results from the coordination
of building blocks upon close contact (Gracias et al., 2000; Zheng
et al., 2006; Macias et al., 2013). Here, the elements informing
the potential landscape toward the target structure are mainly
represented by the building blocks’ design – including shape
(Cademartiri et al., 2012; Sacanna et al., 2013), surface functional-
ization, and relative sophistication and functionality with respect
to the target structure (Whitesides and Grzybowski, 2002) – and
by the parameters ruling their interactions (anisotropy, range,
selectivity), both mutual and with the environment. The puzzle
approach is, however, liable to the curse of dimensionality, i.e.,
the combinatorial increase in the number of structures reachable
from a single set of initial building blocks versus the number of
possible interactions (Cademartiri and Bishop, 2015). Keeping at
bay the surge of configurations accessible to a self-assembling
system in its potential landscape represents a major, standing
reason of caution along this self-assembly strategy. This issue
can nonetheless be normalized and faced in several ways. Sys-
tems with higher levels of structural and functional sophisti-
cation can be produced, for instance, through programmability
and reconfigurability. Programmability amount to partitioning
the progression of the construction into stages by presetting the
sequence of allowed assembly steps. This approach can be prac-
ticed by the controlled enablement and selective structural coding
of binding events, and subsumes hierarchical self-assembly tech-
niques (Cademartiri and Bishop, 2015). DNA origami are rapidly
affirming as the programmable building blocks of choice for self-
assembling nanoscopic 2D and 3D functional structures, although
still suffering from slow kinetics and limited homogeneity at larger
scales (Tørring et al., 2011). Reconfigurability consists instead
in resetting the morphology of the system (Mattia and Otto,
2015). In static self-assembly, this is only possible by perturbing
the potential landscape through changes in boundary conditions
(Mao et al., 2002; Mermoud et al., 2012; Mastrangeli et al., 2014).

Dynamic Complexity: Self-Organization

A much wider realm of possibilities may, furthermore, be
approached by shifting from a strictly static self-assembly

TABLE 1 | Representative instances of mesoscopic self-assembly in their
static versus dynamic manifestations.

Type Static Dynamic

Prototype Crystals Dissipative structures
Cells

Micrometric Colloidal crystals
Templated ordering of
non-Brownian particles

Multistable reconfigurable
colloidal arrays and clusters
Autophoretic and tactic
particles

Millimetric Fluidic self-assembly Magnetohydrodynamic
self-assembly1D: railed

2D: flotation and immersion
forces, capillary self-alignment

Self-propelled particles

3D: self-folding, origami

framework to a dynamic one (Table 1) (Warren et al., 2012).
Dynamic self-assembly stems from the kinetic control of systems
that are thermodynamically metastable or far from equilibrium
(Lehn, 2002; Fialkowski et al., 2006; Mattia and Otto, 2015).
Metastable systems are kinetically trapped within local minima of
the free energy landscape (Mattia and Otto, 2015). The specific
self-assembly pathway traversed does select the actual morphol-
ogy of these systems (Whitelam and Jack, 2015). Seeds (Saitou,
1999) and catalysts (Miyashita et al., 2015) can be devised to
displace kinetic barriers and trigger consequent changes in these
systems’ state. Out of equilibrium or self-organizing systems are
instead posed in steady-state by the balance of opposing inter-
actions, such as global attraction and local repulsion or other
instances of, respectively, synthetic and dissipative reactions (Mat-
tia and Otto, 2015). A constant energy input, sustaining constant
energy dissipation and entropy production, is required to preserve
the transient order of such systems, which gets lost upon inter-
ruption of the exogenous input. The steady-state actually has a
system involved in constant jumps across configurations, which
are responsible for the system’s collective and emergent properties.
Foreshadowed by early demonstrations (Fialkowski et al., 2006;
Warren et al., 2012), the hinted shift toward a dynamic framework
in mesoscopic self-assembly would once again follow in the steps
of supramolecular chemistry, whose evolution of interest is indeed
witnessing a drift toward the dynamical paradigmof self-assembly
(Mattia and Otto, 2015). In the specific mesoscale case, though,
such conceivable move may entail a more radical revision: should
the foremost role of self-assembly remain building thermodynam-
ically stable structures, or rather become fostering programmable
matter (Warren et al., 2012) through multistable systems? The
allure of “going kinetic” further stems from the possibility of ideat-
ing structures with self-healing, adaptive, or even emergent prop-
erties (Fialkowski et al., 2006; Mattia and Otto, 2015). Analogies
with systems chemistry, and elucidation through artificial replica-
tion of mechanisms possibly at the origin of life (Nicolis and Pri-
gogine, 1977; Schneider and Kay, 1994; Pross, 2011), are also driv-
ingmotives. Itmay be inspiring also to remind that energy dissipa-
tion does play a fundamental role in the physics of computation
(Bennett, 2003); and, more pragmatically, that all active devices
of daily use absolve their functions only when transiently posed
out of thermodynamic equilibrium through an external supply of
energy, ultimately dissipated into heat. A standing key challenge
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remains devising efficient ways to implement and tune energy
input and dissipation in mesoscopic self-organizing systems. In
this respect, progress is nevertheless being made. Colloidal sys-
tems are witnessing a rapid increase of demonstrations of self-
organization and dynamic self-assembly (Snezhko, 2011; Kokot
et al., 2015); and the upper end of the mesoscopic domain is
starting to sport a collection of remarkable instances, such as
those staged through variations of a magnetohydrodynamic setup
(Fialkowski et al., 2006), by variably coordinating sets of self-
propelled particles of diverse nature (Ismagilov et al., 2002; Soh
et al., 2008, 2011), and even through mechanical vibration of
inert granulates (Marchetti et al., 2013). Even by constraining self-
assembling systems to one- or two-dimensional playgrounds –
like microfluidic channels and fluid/fluid or fluid/solid interfaces,
respectively – the conjunct effect of multiple, superposed, exoge-
nous potential or force gradients and of autonomous locomotion
of autophoretic particles may usher into unprecedented systems

with innovative properties. Along the way, this may provide
important additional hints toward a comprehensive theory of
dissipative systems (Nicolis and Prigogine, 1977; Tretiakov et al.,
2009a,b, 2013) and, eventually, of living systems (Schneider and
Kay, 1994; Mann, 2008).

Complexity is the Key

While not dismissing the persistent development of alternative
approaches able to leverage or complement current manufactur-
ing practices, self-assembly should ultimately concentrate on its
unicity and target achievements that are exclusively accessible to
itself. This will let self-assembly thrive securely guarded from
applicative competition. Complexity – declined through collective
interactions of large sets of heterogeneous components, struc-
tures with fully three-dimensional architectures, and kinetically
controlled systems – holds the promise to light up the road ahead.
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