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Abstract

This thesis is concerned with a number of novel uses of spatial coupling, applied to a class of

probabilistic graphical models. These models include error correcting codes, random constraint

satisfaction problems (CSPs) and statistical physics models called diluted spin systems. Spatial

coupling is a technique initially developed for channel coding, which provides a recipe to

transform a class of sparse linear codes into codes that are longer but more robust at high

noise level. In fact it was observed that for coupled codes there are efficient algorithms

whose decoding threshold is the optimal one, a phenomenon called threshold saturation. The

main aim of this thesis is to explore alternative applications of spatial coupling. The goal is

to study properties of uncoupled probabilistic models (not just coding) through the use of

the corresponding spatially coupled models. The methods employed are ranging from the

mathematically rigorous to the purely experimental.

We first explore spatial coupling as a proof technique in the realm of LDPC codes. The

Maxwell conjecture states that for arbitrary BMS channels the optimal (MAP) threshold of

the standard (uncoupled) LDPC codes is given by the Maxwell construction. We are able to

prove the Maxwell Conjecture for any smooth family of BMS channels by using (i) the fact

that coupled codes perform optimally (which was already proved) and (ii) that the optimal

thresholds of the coupled and uncoupled LDPC codes coincide. The latter statement is proved

using the interpolation method, by gradually transforming the coupled code distribution into

(a) a distribution of large standard codes and (b) a distribution of L independent standard

codes, where L is the chain length of the coupled code. By monotonicity along the gradual

transformation it follows that the free energy of (a) and (b) provide lower and upper bounds

for the free energy of the coupled code. This with the fact that the free energy of (a) and (b) are

asymptotically equal implies (ii). The method is used to derive two more results, namely the

equality of GEXIT curves above the MAP threshold and the exactness of the averaged Bethe

free energy formula derived under the RS cavity method from statistical physics.

As a second application of spatial coupling, we show how to derive novel bounds on the

phase transitions in random constraint satisfaction problems, and possibly a general class

of diluted spin systems. In the case of coloring, we investigate what happens to the dynamic

and freezing thresholds. The phenomenon of threshold saturation is present also in this case,

with the dynamic threshold moving to the condensation threshold, and the freezing moving to

colorability. These claims are supported by experimental evidence, but in some cases, such as
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the saturation of the freezing threshold it is possible to make part of this claim more rigorous.

This allows in principle for the computation of thresholds by use of spatial coupling. The

proof is in the spirit of the potential method introduced by Kumar, Young, Macris and Pfister

[KYMP14] for LDPC codes.

Finally, we explore how to find solutions in (uncoupled) probabilistic models. To test this, we

start with a typical instance of random K -SAT (the base problem), and we build a spatially

coupled structure that locally inherits the structure of the base problem. The goal is to run

an algorithm for finding a suitable solution in the coupled structure and then “project” this

solution to obtain a solution for the base problem. Experimental evidence points to the fact

it is indeed possible to use a form of unit-clause propagation (UCP), a simple algorithm, to

achieve this goal. This approach works also in regimes where the standard UCP fails on the

base problem.

Keywords: spatial coupling, probabilistic models, LDPC codes, interpolation method, Maxwell

conjecture, threshold saturation, sparse graph coloring, random formula satisfiability, freezing,

unit clause propagation
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Résumé

Cette thèse concerne un certain nombre de nouvelles utilisations du couplage spatial (spatial

coupling), appliquées à une classe de modèles graphiques probabilistes. Parmi ces modèles

on compte les codes correcteurs d’erreurs, les problèmes de satisfaction de contraintes (CSP)

aléatoires et des modèles de physique statistique réunis sous le nom de systèmes de spins

dilués . Le couplage spatial est une technique initialement développée pour le codage de

canal, qui fournit un procédé pour transformer une classe de codes linéaires creux dans des

codes plus longs mais aussi plus robustes en cas de bruit élevé. En fait, il a été observé que

pour les codes couplés, il existe des algorithms efficaces dont le seuil de décodage devient

optimal, un phénomène appelé saturation de seuil. Le thème principal de la thèse aborde le

couplage spatial d’un autre point de vue. L’objectif est d’étudier les propriétés de modèles

probabilistes non couplées (pas seulement de codage) en utilisant des modèles spatialement

couplés correspondants. Les méthodes employées varient entre méthodes mathématiquement

rigoureuses et méthodes fondées sur des expériments numériques.

En premier, nous explorons le couplage spatial comme technique de démonstration dans

le domaine de codes de contrôle de parité de faible densité (LDPC). La Conjecture Maxwell

indique que pour des canaux à entrées binaires sans mémoire et symé triques (BMS) arbitraires

le seuil optimal (MAP) des codes LDPC standard (non couplés) est donné par la construction

Maxwell. Nous sommes en mesure de prouver la Conjecture Maxwell pour toute famille lisse

de canaux BMS en utilisant (i) le fait que les codes couplés fonctionnent de manière optimale

(qui a été déjà accompli) et (ii) que les seuils optimaux des codes LDPC couplés et non couplés

coïncident. Ce dernier fait est établi en utilisant la méthode d’interpolation, en transformant

progressivement la distribution probabiliste du code couplé en (a) une distribution d’un

code standard plus long et (b) une distribution de L codes standard indépendants, où L est

la longueur de la chaîne du code couplé. Par monotonie tout au long de la transformation

progressive il résulte que les énergie libre de (a) et (b) fournissent des bornes inférieures et

supérieures pour l’énergie libre du code couplé. Le fait que les énergies libres de (a) et de

(b) sont asymptotiquement égales implique (ii). La méthode est utilisée pour obtenir deux

résultats additionnels : l’égalité des courbes GEXIT au-dessus du seuil MAP et l’exactitude de

la formule de énergie libre de Bethe moyenne dérivée selon la méthode de cavité en symmetrie

des repliques (RS) de physique statistique.

Comme une deuxième application du couplage spatial, nous montrons comment obtenir des

v



Acknowledgements

nouvelles bornes sur les transitions de phase dans des problèmes aléatoires de satisfaction de

contraintes, et, éventuellement, une classe générale de systèmes de spins dilués. Dans le cas

de la coloration, on étudie ce qui se passe avec les seuils dynamiques et de rigidité (freezing

or rigidity threshold). Le phénomène de saturation de seuil est présent également dans ces

cas, avec le seuil dynamique se déplaçant vers le seuil de condensation, et celui de rigidité

vers le seuil de coloration. Ces affirmations sont étayées par des preuves expérimentales, mais

dans certains cas, tels que la saturation du seuil de rigidité, il est possible de justifier cette

affirmation d’une manière plus rigoureuse. Ceci permet en principe le calcul des seuils par

utilisation de couplage spatial. La preuve est dans l’esprit de la méthode du potentiel présenté

par Kumar, Young, Macris et Pfister [KYMP14] pour les codes LDPC.

Enfin, on explore comment trouver des solutions dans des modèles probabilistes non couplés.

Pour tester cela, nous commençons par un échantillon typique de K -SAT aléatoire (le problème

de base), et nous construisons une structure spatialement couplée qui hérite localement

la structure du problème de base. Le but est d’exécuter un algorithme pour trouver une

solution de la structure couplée, puis “projeter” cette solution pour obtenir une solution du

problème de base. Des expériences numériques soulignent le fait qu’il est possible d’utiliser

un algorithme simple (de type unit clause propagation, UCP) sur la structure couplée pour

atteindre cet objectif. Cette approche fonctionne aussi dans des régimes où l’UCP échoue sur

le problème de base.

Mots-clés : Couplage spatial, modèles probabilistes, codes LDPC, méthode d’interpolation,

conjecture Maxwell, seuil de saturation, coloration des graphes creux, satisfaction des for-

mules aléatoires, rigidité, unit clause propagation
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1 Introduction

The running theme of this thesis is spatial coupling, a technique that was originally developed

to obtain better error-correcting codes. To convey the basic idea of spatial coupling, let us

illustrate it with the following scenario.

Take a linear chain of finite length and place at each link (or “position”) a large number of bits.

This chain is the “spatial dimension”. The game is as follows. We only get partial information

about the values (for example some of them we see and some we don’t, but more complicated

scenarios are possible). We also know that certain configurations of bits are not allowed. This

latter fact is expressed through the existence of constraints, each of which is telling us that a

certain set of bits cannot take certain values. Each constraint has the property that the bits

involved in it are situated close to one another on the spatial chain. The goal is to use this

information in order to uncover the hidden bits, a process we call decoding.

At the two ends of the chain, it so happens that we have more information available and thus

the decoding is easier to perform. As we decode the bits at the boundaries, the constraints

that they participate in enable us to infer values of bits further inside the chain. Consequently,

a wave of decoding is produced which leads to the eventual discovery of all hidden bits. This is

the mechanism underlying spatial coupling, and it has proved successful in situations where

the standard way of coding (without spatial coupling) has failed.

The technique of spatial coupling was developed first for a class of codes called LDPC codes,

but soon found other applications, notably in compressed sensing. More generally, it can be

thought of as a paradigm that applies to graphical models of all sorts. Then whenever we deal

with a task where it is up to us to design the constraints (and coding is the best example for

this), spatial coupling offers us a recipe to alter the design and obtain some potential benefits.

However, here we will be more interested in a different line of thought. This arises from the

phenomenon of threshold saturation, which we briefly illustrate here by recurring to our earlier

game with hidden bits. The number of hidden bits quantifies the amount of information

withheld from us. Naturally, the more information is hidden, the less likely it is that we are
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Chapter 1. Introduction

able to decode. As we increase the amount of withheld information, it turns out that there is a

“fundamental” threshold, beyond which it is impossible to decode even theoretically, since

there is more than one solution to the problem. Apart from this theoretical threshold, there is

another limitation that sets in much earlier. Let us call it the algorithmic threshold: it is the

point up to which we can decode “reasonably fast”. In between the two thresholds there still

exists a unique solution to the problem, but no fast enough algorithm is known that is capable

of finding it. It turns out that the “fundamental” threshold is the same no matter whether we

use spatial coupling or not. However, with spatial coupling, the algorithmic threshold moves

up to the theoretical threshold. Thus, using simple algorithms we are able to decode optimally.

The key fact now is that the algorithmic threshold “saturates”, i.e. it moves exactly to the place

of the hard threshold. In particular, if we did not know the value of the hard threshold a priori,

spatial coupling would offer a way to compute it by seeing what the algorithmic one is.

This thesis does not focus on the engineering task of building better codes or compressed

sensing schemes, which has been the main direction of research in spatial coupling, but rather

considers the theoretical question of what can be learned about basic problems from their

spatially coupled versions. We have first done this in the case of error-correcting codes, in

order to prove rigorously a conjecture regarding the location of the theoretical threshold of

standard LDPC codes. But in fact this approach has a much wider scope of application, since

we are not limited to design problems, where the goal is to come up with a smart placement

of constraints, for example. We can now examine models which were already of interest in

statistical physics community, such as random graph coloring or logical formula satisfiability.

For these problems it might not make sense a priori to consider spatially coupled instances

in themselves as the focus of research. But if there are cases where for example threshold

saturation holds, we can gain insight into the original problem from the spatially coupled

version.

Another thread that we explore is the possibility of algorithms that run on special spatially

coupled instances of a problem, in such a way that from their output we can construct solu-

tions for an original instance of non-coupled version. This could potentially have implications

for a wide scope of more practical problems. However, research in this direction so far is in its

infancy.

The work is both theoretical and experimental, in the sense that rigorous results were sought

and sometimes found, sometimes only part of the overall picture could be made rigorous, and

sometimes the picture itself needed to be discovered and the phenomena were not so well

understood in order to be turned into mathematical proofs.

1.1 Outline of the thesis

Apart from this introduction, the thesis is divided into three parts, which correspond to

three broad applications of spatial coupling as a tool. They are ordered by the degree of

mathematical rigor which supports the facts, from fully rigorous to almost fully experimental.

2



1.2. Optimization and factor graphs

• In the rest of this chapter, we review the basics of constraint satisfaction problems and

channel coding, with a focus on LDPC codes. We introduce spatial coupling in the wider

context of sparse graphical models. These problems have traditionally been studied by

different communities from different perspectives, most notably by statistical physicists,

computer scientists and information theorists and we will need to work with specific

methods coming from all those different worlds. The parts of the introduction that

introduce the bulk of notation are those on random CSPs (Sections 1.3 and 1.5), Section

1.6 on statistical physics and the cavity method and Section 1.8 on basics of information

theory and LDPC codes. The chapter ends on the same theme as it started, with spatial

coupling in action.

• In the second chapter we make use of spatial coupling as a proof technique. We prove

that in the context of LDPC codes a spatially coupled and a corresponding standard code

have the same theoretical (“MAP”) threshold. This also proves the location of the MAP

threshold for standard LDPC codes, which was previously conjectured to be given by

the Area threshold formula. It proves also the correctness of the replica symmetric (RS)

approximation inspired from statistical physics. To do this we employ the interpolation

method, a proof technique to show inequalities of thermodynamic potentials between

different types of random structures. A novelty in our proof is the application of the

interpolation method to factor graphs with arbitrary bit degree distributions.

• In the third chapter we analyze spatial coupling in the context of constraint satisfaction

problems, with a focus on random graph coloring. We briefly explain the replica symme-

try breaking (RSB) formalism, which allows us to determine the position of the dynamic,

condensation, freezing and coloring thresholds. We are able to show that by spatially

coupling the survey-propagation equations one obtains that the SP threshold saturates

to the coloring threshold. We also obtain numerical evidence that for spatially coupled

random graphs the dynamic threshold saturates to the condensation threshold and that

there is no phase where clusters of colorings contain frozen nodes.

• In the fourth chapter we investigate the possibility of finding solutions to uncoupled

random logical formulas by transforming standard instances of K -SAT into coupled

ones and then running unit clause propagation (UCP), a simple greedy algorithm, on the

coupled formulas. The idea is to project the solution obtained on the coupled formula

onto a solution for the original formula. We describe a mechanism which drives UCP

towards a solution which can be projected. This results in a modified form of UCP, which

finds satisfying assignments in a regime where the original UCP fails.

1.2 Optimization and factor graphs

All problems that will concern us, including graph coloring, formula satisfiability and LDPC

coding can ultimately be cast in the following form. We have a number of variables σ1, . . . ,σN ,

each of which can take values from a finite set Ω. The goal is to find an assignment, i.e. a tuple
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Chapter 1. Introduction

(σ1, . . . ,σN ) that maximizes some real-valued targetΨ(σ1, . . . ,σN ). We require this functionΨ

to have a decomposition into factors that depend on a small number of variables:

Ψ(σ1, . . . ,σN ) =ψ1(σi 1
1
, . . . ,σi 1

K1
) · · ·ψM (σi M

1
, . . . ,σi M

K M
). (1.1)

In order to avoid this clumsy notation, we adopt the following conventions, which are quite

common in the literature. We index the factors by a, b, etc. and the variables by i , j , etc. Keep-

ing things simple requires a fair degree of notation abuse: we will simply know by the choice of

letter whether we mean to index variables or factors. Also, it may be that these appear alone as

summation indices, in which case it is implied that they range over all variables/factors. By ∂a

we denote the set of variable indices on which the factorψa depends functionally. Also, by σ∂a

we mean the values of the said variables, so that we can write things like ψa(σ∂a) compactly.

But we can also think of ∂a as a set, so we can write i ∈ ∂a if factor ψa depends on variable σi .

Likewise, by ∂i we mean the set of factor indices that depend on i . Moreover, we will write

∂i \ a as a shorthand for ∂i \ {a} and likewise for ∂a \ i . Then (1.1) can be written succinctly as

Ψ(σ) =∏
a
ψa(σ∂a), (1.2)

where the underline is used to emphasize that the quantity is a vector.

The structure of the decomposition (1.1) can be described by a factor graph [KFL01]. By this

we mean the bipartite graph constructed in the following way. There are N nodes, one for

each variable, and M nodes, one for each of the factor functions ψ1, . . . ,ψm . The former we

call variable nodes and the latter function nodes. We put an edge between a function node ψa

and a variable node σi if i ∈ ∂a (or equivalently, a ∈ ∂i ). In figures we will usually represent

variable nodes by circles and factor nodes by squares.

1.3 Constraint satisfaction problems

In constraint satisfaction problems (CSPs) we are interested in finding or counting assignments

that fulfill certain constraints. A constraint is a logical predicate that depends on a subset of

the variables. If an assignment makes the predicate true, we say that the assignment satisfies

the constraint, otherwise we say that the assignment violates the constraint. The assignment

is a solution to the problem if it satisfies all the constraints in the problem. The nature of these

constraints differs from problem to problem, and the terminology used to refer to constraints,

assignments, etc. may also be problem-specific. We associate to each constraint a a binary cost

Ha(σ∂a), which is 0 when the constraint is satisfied and 1 otherwise. The goal is to minimize

the total cost H(σ) =∑
a Ha(σ∂a). Note that this has the same structure as (1.2), but we prefer

to keep it in summation form for reasons that will become apparent soon.

Here is a collection of common CSPs:
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1.3. Constraint satisfaction problems

• Maximum Independent Set. In this case the variables take values in {0,1}. All constraints

involve exactly two variables and are violated when both variables are 1. The structure

of this problem is thus a graph on the variables, with the edges corresponding to the

constraints. A valid assignment is one for which no edge connects variables that are

1. Equivalently, a valid assignment corresponds to a subset of the set variables (those

that have value 1) on which the induced graph has no edges. We call such a subset

an independent set. One can immediately see that the all-zeros assignment is a valid

one (i.e. the empty set is independent), and that independent sets are closed under

inclusion. The questions that can arise are what is the maximum size of an independent

set, finding such an independent set, counting them, etc. The problem of deciding

whether a graph has an independent set of a certain size is NP-complete (we refer the

reader to [Pap03] for NP-completeness reductions).

• Graph Q-Coloring (Q-COL). We are given a number of colors Q and the variables take

values (“colors”) in [Q] = {1, . . . ,Q}. In this context, assignments will be referred to as

(Q-)colorings. As in the case of Independent Set, the constraints involve two variables

and for this reason we will continue to use graph terminology. Each constraint ensures

that its two variables do not take the same color. In other words, for each edge a

with ∂a = {i , j }, we have Ha(σi ,σ j ) = 1[σi = σ j ]. Questions of interest here are the

existence of colorings, finding colorings, etc. For Q < 3 the problem is easy, in particular

2-colorings exist if and only if the graph is bipartite, whereas Graph 3-Coloring is already

NP-complete [Pap03].

• K -Satisfiability (K -SAT). In this case the variables are again binary and it helps to think

of them as the logical values true and false. Each constraint (in SAT terminology: clause)

involves K variables. Out of the 2K possible configurations of these variables, the clause

is violated on exactly one, and this violating configuration is clause-dependent.1 A

clause is determined by the indices of variables that take part (note that the order of

those matters) and the violating configuration. The latter is not encoded by the usual

factor graph.2 Finding satisfying assignments in formulas is one of the most famous

problems in complexity theory. For K < 3, the problem is again easy, but for K ≥ 3, it is

proven to be NP-complete [Coo71a].

• K -XOR-Satisfiability (K -XORSAT). The structure of this problem is similar to that of

K -SAT, in that clauses involve K literals, but this time a clause is satisfied when the

exclusive disjunction of the literals is true. Equivalently, if we consider the values of

variables to be in {0,1}, the clause is satisfied when the sum modulo 2 is equal to either 0

or 1, a value different for each clause, representing the parity of the number of negated

1In logical terms, a clause is a disjunction of literals, where a literal is either a variable or a negation of a variable.
The sign of a literal is the information of it being negated or not. For example, a 3-clause ∂a = {i , j ,k} that is violated
on the K -tuple (σi ,σ j ,σk ) = (1,0,1) could be written as σi ∨σ j ∨σk . Then σi , σ j , σk are literals, of which the
second has a positive sign and other a negative one. Rather than using this logical language common in computer
science, we will mostly express the formula algebraically, with sums and products. The condition of satisfiability of
an assignment is expressed as a conjunction of clauses, which we call a formula.

2This can be changed by making use of two types of edges, continuous and dashed, for example.
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literals present in the clause. For this reason this type of clause is called a parity check.

This leads to a formulation of K -XORSAT as a linear system of equations in GF (2), which

is solvable in polynomial time by Gaussian elimination. Even though it is not hard,

XORSAT is still interesting because certain phenomena that occur in the random version

of K -SAT, such as clustering, are also present in random XORSAT. In random XORSAT,

their presence is much easier to prove. Furthermore, by the nature of its clauses XORSAT

has a similar structure to parity check codes, and some proof methods work equally well

on both.

1.4 Adversarial hardness

The above problems have been the main subject of scrutiny in the early days of complexity

theory. The type of results that one typically obtains within the framework of complexity

theory give worst-case guarantees. For example, XOR-SAT above is clear to be in the class P

of polynomial time algorithms because every single instance in this class can be solved in

polynomial time (the time needed to solve a linear system of equations). This is, however, not

true when one considers K -SAT for K ≥ 3, unless P is equal to NP3, where NP is the class of

problems whose solution is checkable in polynomial time.

Much of the fame of these problems stems from their status as benchmarks of hardness. In fact

3-SAT was the first class of problems to be proved NP-complete [Coo71b], i.e. at least as hard

as any other problem in NP. This follows from the nature of SAT: the ability of logical formulas

to encode instances of other problems. It is not clear, however, how many or what proportion

of all the instances of K -SAT is actually hard. Complexity theory has not yet answered that

question (that is, not even modulo P 6= NP), so it could still be that in fact most problems that

one could think of are actually easy and the hard ones are concentrated in some small and

hard to reach cluster of strange formulas.

The latter is one reason why random instances are interesting to study. It is believed that

genuinely hard instances can be obtained by just sampling an instance of Q-COL or K -SAT

at random. Methods of statistical physics can and have been used extensively to assess the

hardness of random instances, but so far no relation to the adversarial hardness in the sense

of complexity theory has been established rigorously.

As a historical side note, the (non-random) coloring problem is the oldest of the group. The

initial focus was on the minimum number of colors needed to color countries on any map (i.e.

coloring of a planar graph), which turns out to be four. A first attempt at proving this was made

in 1876 by Kempe [Kem79], but his proof was flawed. Nonetheless, some of his constructions

have found use much later [Mol12]. It was only a century later that a (computer-aided) proof

3It is one of the most famous conjectures in all of mathematics that this is not the case. This question withstood
the efforts of generations of researchers by now, and it does not look like we are any closer to proving it. Yet the
consequences of the conjecture being false are so mind-boggling that very few people would actually not believe
in it.
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1.5. Random instances

was found for the Four Color Theorem by Appel and Haken [AH89].

1.5 Random instances

Two of the first (and most popular) models of random graphs were introduced by Erdős and

Rényi and by Gilbert in the 1950s [ER59, Gil59], and a significant body of tools and techniques

to deal with them has been developed in the meanwhile [Bol01, JLR11]. Following established

terminology, we will subsequently refer to the random graph model where potential edges

appear independently with probability p as the Erdős-Rényi model, even though this is in fact

the version introduced by Gilbert.4

The way in which we sample the instances is just a generalization of the aforementioned

model [GM75, Łuc91]. We need to first draw the factor graph at random, and also draw at

random any additional information (like the signs of the literals for each clause in case of

K -SAT). We assume here a model in which all function nodes have the same degree, let us call

it K (in case of coloring, K = 2). The factor graph is sampled as follows. For each function node

in the graph, independently choose K variable nodes uniformly at random and link them to

the function node.5 In the case of boolean satisfiability, the sign of the K literals is chosen by

independently flipping fair coins. For coloring, after the generation, we purge the resulting

graph of checks that connect to the same node, since those make the graph uncolorable. This

will affect us little, since the number of such checks is O(1) w.h.p. and we are interested in the

large-N behaviour.

In order to generate instances, we need to specify the number of variables N and the number

of function factors M . We will be exclusively interested in the case where the ratio of M

and N is fixed and N tends to infinity, since for coloring and formula satisfiability this is the

scaling where interesting phenomena are observed. Note that this scaling means we consider

sparse factor graphs, i.e. those where the node degrees are O(1) w.h.p.6 In the case of graph

coloring, the main parameter will be the average node degree, α= 2M
N . In the case of K -SAT

it is just the ratio of the number of clauses to the number of variables, α= M
N . We maintain

this inconsistent notation since important thresholds are usually quoted for each problem in

terms of these parameters.

By varying this parameter, we can find ourselves in regimes which are qualitatively very

different. Thus for α small enough, the typical instance that we sample is algorithmically easy:

even greedy algorithms can find solutions with high probability. As α increases, we pass to

4The original Erdős-Rényi model prescribes apriori the number M of edges, and the set is chosen uniformly at

random from the
((N

2

)
M

)
possibilities.

5The question might arise whether the K variable nodes should be chosen with repetition or not. For the
problems we are considering will not make a difference, so in order to simplify matters, let us assume it is chosen
with repetition.

6When we say that an event En indexed on n happens with high probability we mean that Pr[En ] = 1−o(1) as
n →∞.
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a regime where the solutions are fewer and they are more likely to concentrate into hard to

reach clusters. Roughly said, this latter phenomenon is what makes the problem hard. Beyond

yet another critical value of α, the instance becomes unsolvable with high probability. We call

such values of α where the structure of the solution space has a certain property w.h.p. below

and another one w.h.p. above sharp thresholds, or simply thresholds.7

The latter threshold, which we denote by αs , is the one that characterizes the existence of

solutions. We call this the coloring threshold in the case of Q-COL or satisfiability threshold

in the case of K -SAT. In the most general setting, its existence (i.e. the fact that for α<αs the

CSP is solvable w.h.p., whereas for α > αs it is unsolvable w.h.p.) is not completely settled

mathematically. However, a result of Friedgut [FB99] comes very close to this ideal: it proves

the existence of a threshold sequence8.

In the case of K -SAT, it was shown very recently by Ding, Sly and Sun that there is in fact a sharp

satisfiability threshold for large enough K , and moreover its location is given by the Survey

Propagation equations [DSS14]. It is conjectured, however, that the SP equations predict the

threshold for any K ≥ 3 and also in the case of Q-COL for any Q ≥ 3.

Bounds were obtained for the location of the solvability thresholds for most common CSPs.

The upper and lower bounds are typically derived by different flavors of the first moment

method and the second moment method, respectively [AM97, AF99, ANP05, AP04, COV13,

COE14].

Certainly one application of random instances is to provide a testbed for general methods

developed by statistical physicists, such as the cavity method, more of which we will see

later. Also, as mentioned earlier, we have strong evidence so far that for many NP-complete

problems, the typical random instances can still be very hard to solve. This has applications in

bench-marking algorithms for solving the hard problem in question, since it is very hard to

invent nonrandom instances that are consistently hard for all algorithms.

1.6 Statistical physics

Tools inspired from statistical physics have been successfully used to study random graphical

models. We focus on the cavity method, which we introduce below and which is used to

predict relevant thresholds in both random CSPs and random codes. We first concentrate on

random CSPs and leave out the application to coding for the next section.

7The qualifier sharp is used in opposition to coarse thresholds, where the said properties do not hold w.h.p.
above and below, i.e. the transition is smoother. See [FB99] for more details.

8It proves the existence of a sequenceα(N )
s so that for any ε> 0 the CSP is solvable w.h.p. if we take the parameter

α(N ) to depend on N itself and to be less than α(N )
s −ε. It is, however, not shown that α(N )

s converges.
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1.6. Statistical physics

1.6.1 The setting

Problems that are represented as factor graphs have a long tradition in statistical physics. We

are looking at probability measure over a large number of variables σi , also called spins. The

mass at each spin configuration is influenced by factors of the type ψa(σ∂a), each of which

depend on a restricted number of spins. The probability measure, called Gibbs measure, is

given by

µ(σ) = 1

Z

∏
a
ψa(σ∂a), Z =∑

σ

∏
a
ψa(σ∂a). (1.3)

Usually the factors ψ are are given by energy penalties of the form Ha(σ∂a) that are incurred

when the spins take certain values, by the relation

ψa(σ∂a) = e−βH(σ∂a ), (1.4)

where β is a parameter called inverse temperature. The connection with CSPs is obtained by

interpreting Ha as the cost and sending β→∞ (“the zero-temperature regime”). Then the

Gibbs measure concentrates on the spin configurations of least energy. Note that (1.3) has the

product form of (1.2). The normalization factor Z , called partition function9, ensures that µ is

a probability measure.

Note that for random instances there are now two levels of randomness. The “inner” one is

given by the Gibbs distribution for any fixed instance, while the “outer” one is the probability

distribution of instances. We will tend to avoid terminology like probability, distribution,

expectation for the “inner” randomness, and rather use terms such as mass, measure, aver-

age, etc. The former, together with the usual notation Pr, E, will be reserved for the “outer”

randomness.

Spin systems were introduced in the 1920s by Ising with his model of ferromagnetism. This

model assumes a fixed graph, the integer lattice [Isi25]. In time, numerous other models

were put forward: we mention the Sherrington-Kirkpatrick model [SK75] and the diluted spin

glasses [EA75]. In the former, the model is on the complete graph, and there is an energy

penalty for each pair of spins of the form Ji jσiσ j , with Ji j being independent Gaussians.

In the diluted spin glass model, there are M energy penalty contributions, each connected

randomly to K spins. This is exactly the Erdős-Rényi model of random CSPs that we have

introduced before, and this is the one we will focus on. In the case of Q-COL, there are Q

possible spin values: such models are called Potts models in the physics literature [Wu82].

One of the pursuits of statistical physics is the study of phase transitions. Intuitively, it can

happen that when we vary continuously parameters of the model, such as temperature, we

9Sometimes the partition function is written Z (β), making the dependence on temperature explicit (which also
explains the term function). This dependence is not so important for us, as we will almost always work in the limit
β→∞
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obtain drastic changes of the Gibbs measure as we cross these values. These phenomena are

called phase transitions. One common example is the transition of water from say, solid phase

to liquid phase at 273K, or closer to our focus, the transition from the ferromagnetic phase to

the paramagnetic phase in a piece of iron as temperature crosses 1043K.

Thus, the phase transitions are intimately connected with the thresholds introduced earlier.

Phase transitions are actually defined as the values of parameters where the thermodynamic

potentials are not analytic. The fact that these correspond to thresholds of appearance of

certain properties is not fully understood in all generality, and lies very much at the heart of

the problem.

The thermodynamic potential which applies to our case is the free entropy density [MM07],

which is defined as the logarithm of the partition function:

Φ= 1

N
log Z (β). (1.5)

We will compute these quantities in the limit N →∞, also called the thermodynamic limit,

and in the low temperature regime β→∞. In the physics literature it is more common to work

with the free energy density, − 1
βΦ, where the 1/β factor ensures that the quantity has indeed

units of energy. Intuitively, the free entropy density is the exponential order of the number of

spin configurations of energy 0 (assuming energies are non-negative), while the free energy

density is related to the typical value of the energy penalty incurred (i.e. the ratio of unsatisfied

clauses for CSPs). We will be more interested in the former than the latter.

1.6.2 Message passing and the cavity method (the replica-symmetric case)

The free entropy is in general hard to compute. However, in the cases where the factor

graph is a tree, there is a way to obtain an exact answer by using message passing. In certain

circumstances, the equations that we derive for trees will work also when the factor graph

is only locally tree-like, i.e. where the finite-depth neighborhood around a random vertex is

w.h.p. a tree. To write down the message passing equations, it is enough to pretend the graph

is a tree and then message computation is equivalent to dynamic programming.

Let (i) µa→i and (ii) µi→a be the marginals on the spin i when (i) all the function nodes in ∂i \a

are deleted and (ii) the function node a is deleted, respectively. Note that these objects belong

to ∆(Ω), the set of probability measures onΩ, or the |Ω|−1-dimensional simplex. Using the

tree-like assumption, we can write the following relations between the marginals:

µi→a(σi ) = 1

Z i→a

∏
b∈∂i \a

µb→i (σi ), Z i→a =∑
σi

∏
b∈∂i \a

µb→i (σi ), (1.6)

µa→i (σi ) = 1

Z a→i

∑
σ∂a\i

ψa(σ∂a)
∏

j∈a\i
µ j→a(σ j ), Z a→i = ∑

σ∂a

ψa(σ∂a)
∏

j∈a\i
µ j→a(σ j )

10



1.6. Statistical physics

The messages enable us to compute the marginals of the Gibbs distribution at each spin as

µi (σi ) = 1

Z i

∏
b∈∂i

µb→i (σi ), Z i =∑
σi

∏
b∈∂i

µb→i (σi ). (1.7)

The free entropy is then (see Appendix A)

NΦ=∑
i

log

[∑
σi

∏
b∈∂i

µb→i (σi )

]
+ (1.8)

+∑
a

log

[∑
σ∂a

ψa(σ∂a)
∏

j∈∂a
µ j→a(σ j )

]
− (1.9)

− ∑
i∼a

log

[∑
σi

µa→i (σi )µi→a(σi )

]
. (1.10)

In the case of coloring, since each constraint involves only two vertices, then messages µi→a

and µa→ j can be both expressed using messages µi→ j , so we would only keep one type of

message. We will derive the simplified equations for coloring in more detail in Chapter 3.

For the case where the factor graph contains cycles, we can still iterate Equations (1.6) and

hope that we obtain good approximations to the true marginals and free entropy. In general,

the form (1.8), viewed as a function of the messages is called the Bethe functional. Such means

of estimating the free energy were already employed in the 1930s by Bethe [Bet35], Onsager

[Ons36] and Peierls [Pei36].

This method is referred to as the cavity method since at least on a tree, the messages can be

described by true marginals when nodes are removed from the graph (creating cavities). On a

tree, the incoming messages in a particular node represent probabilities that are independent.

If cycles exist, but the graph is still locally tree-like, the method still yields good approximations

when there is little correlation (under the Gibbs measure) between spins that are far away from

each other in the graph. In that case, the independence of incoming messages (also called

“cavity fields” in the physics jargon) is replaced by the weaker assumption of low correlation.

Formalizing the previous statement is in fact a challenging task, which is not yet mathemat-

ically settled. When there are no long-range correlations, there is just one solution to the

system of message passing equations, and it can be reached by iterating (1.6). After the point

where long-range correlations appear, there will be many such solutions, in fact exponentially

many. That point is denoted by αd , the dynamic threshold. There are attempts to characterize

this threshold using reconstruction on random trees [MM06, Sly09]. Beyond the point αd the

long correlations prevent this approach from working. The cavity method can still be used (see

below), albeit on a more complicated model. We will refer to the message-passing equations

and the free energy approximation that we have seen so far as the replica-symmetric approach.

11



Chapter 1. Introduction

1.6.3 Replica symmetry breaking

The reason why the Replica Symmetric approach fails after the dynamic threshold is that the

solutions tend to form clusters. In the case of low temperature (β→∞), a cluster corresponds

to a set of satisfying spins configurations (i.e. configurations of minimal energy) that are all

close to each other and are well separated from the other clusters. We present here just a very

broad overview of the method. We will show the derivation in much more detail in Chapter 3,

where it will be specialized to coloring.

The ansatz on which the RSB cavity method relies is the fact that these clusters correspond

to solutions of the system of message passing equations. Instead of using message passing

to study the space of solutions (the RS approach), we can employ message passing to study

the distribution of clusters. This happens because the distribution on clusters can be written

down also as a tree-like graphical model on which the cavity method can be used. It turns out

that this meta-model exhibits decay of long-range correlations beyond the dynamic threshold.

The RSB approach allows us to compute the number of clusters of each size (in the large N

limit both the number and the size are characterized by their exponential order). There will

typically exist a particular size, and clusters of that size will be dominating, in the sense that

one valid configuration picked at random will be part of a cluster of that size. To sample such

a cluster at random, clusters are weighted by their size in the RSB distribution on clusters that

we mentioned earlier.

The above scheme manages to sample clusters of the right size, in the case where their number

is exponential. As the parameter α increases, there will be a threshold where this number

ceases to be exponential. In that case, the scheme outline above fails to sample a dominating

cluster. The reason why this happens is the following. The model is random, and our way

of sampling assumes that the factor graph is chosen randomly. In the sampling method the

two types of randomness, the one in the choice of the factor graph, and the one in choosing

the cluster at random are in fact mixed together. What we would like to obtain is the size

of the dominating cluster in a typical random instance; what we actually do is equivalent to

computing the expected value of the cluster size when instances are picked at random. The

latter approach is prone to be influenced by rare events: exponentially rarely it happens that

an abnormally sized cluster appears, and its size compensates for the rarity. This is not what

we want to get, but this defect is built in the method itself: we do not afford to sample a huge

typical instance first and then do the computations, rather the quantities we compute are

already averaged over the randomness in the instance.

The point αc where the dominating clusters become sub-exponential in number is called

condensation threshold or Kauzmann transition [Kau48]. At this point, the complexity, defined

as the exponential order of the number of dominating clusters is 0. For higher values of α, the

vanilla RSB cavity method predicts a negative complexity, which is physically impossible, due

to the reasons outlined above.

12



1.6. Statistical physics

There is, however, a way to overcome this deficiency. This is done by reweighing the clusters

in the distribution over clusters. Instead of weighing each cluster by its size, we weigh it by its

size to a power m (the Parisi parameter). The vanilla method corresponds to choosing m = 1.

By varying m, we are able to artificially make clusters of other sizes dominant, sample from

among them, and so compute their numbers. Beyond the condensation threshold, while the

instances are still solvable, it turns out that the “right” value m? is something in between 1

and 0.

The value m = 0 is also an interesting case. It allows us to weigh all the clusters in the same way,

regardless of their size. If the complexity in this case is positive, it means that there are still

clusters of solutions. If it is negative, it means clusters of any sort appear only exponentially

rarely, so we must be already in the unsolvable region. Thus running the RSB cavity method at

m = 0 enables us to compute the solvability threshold αs (further referred to as the colorability

threshold or satisfiability threshold as the case may be). Calculations to determine the values

of free energy and complexity simplify greatly for the two values m = 1 and m = 0.

The formalism at m = 0 is usually referred to as survey propagation (SP). The simplified

message passing can be actually run on real instances in order to estimate marginals. This

gives rise to a very effective algorithm, called SP with guided decimation. This algorithm works

by repeatedly running SP on the graph, selecting the nodes with the highest bias, assigning

them the corresponding spin values and then removing from the graph.

Another notion that plays a role in the RSB formalism is freezing. We say that a cluster is frozen

if a nonzero fraction of variables take the same value under all configurations of spins in that

cluster. The freezing threshold α f is defined as the point where freezing starts to occur in all

dominating clusters. Freezing is important for multiple reasons: (i) it is believed that freezing

represents an algorithmic barrier in search algorithms and (ii) certain proofs only work in a

regime where freezing occurs (for example the proof of the condensation transition in Q-COL

[BCOH+14]). The location of α f can be determined directly from the RSB cavity method, and

it can occur both below and above αc [Sem08].

The RSB formalism was developed in the context of the Sherrington-Kirkpatrick (SK) model

[Par80, MPV87]. The first application of the RSB cavity method to diluted spin glass models

(i.e. models with a sparse and locally tree-like factor graph) was done for the Bethe lattice

spin glass [MP01, MP03] and the SAT problem [MPZ02, MZ02]. Similar results were obtained

then for coloring [MPWZ02, VMS02, BMP+03, KPW04]. The organization of solutions into

clusters and their “geometry” was studied in [MMZ05, MPR05]. The question of stability of

the replica symmetric solution was investigated in [MPRT04]. The formalism at m = 0, i.e.

the SP equations, was developed in [MPZ02, MZ02], and SP-guided decimation was studied

in [BZ04, BMZ05, MMW07, ZK07]. There are other algorithms based on guided decimation

algorithms using belief propagation (BP). These are typically easier to analyze but perform

less well when compared to SP-guided decimation [MRTS07].

In principle, nothing prevents us from hypothesizing the existence of clusters of clusters.
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Q αd α f αc αs

3 4.00 4.66 4.00 4.69

4 8.35 8.83 8.46 8.90

5 12.84 13.55 13.23 13.67

6 17.64 18.68 18.44 18.88

7 22.70 24.16 24.01 24.45

8 27.95 29.93 29.90 30.33

9 33.45 35.66 36.08 36.49

10 39.01 41.51 42.50 42.93

Table 1.1 – Threshold values for Q-COL [ZK07]. Note that for Q ≤ 8 we have that α f >αc .

These would be analyzed by a meta-meta-model. In diluted spin glasses this is conjectured to

be unnecessary, since self-consistency checks indicate that one level of RSB is enough. In the

case of the Sherrington-Kirkpatrick model, however, it turns out there is an infinite hierarchy

of clusters, and a formalism named full replica-symmetry-breaking is necessary. Because

of the inherent symmetry of the problem (the factor graph is the complete graph), this was

historically the first use of the RSB method and also the only case where the full RSB formalism

was carried out [Par80]. The approach was made mathematically rigorous in a breakthrough

result by Talagrand [Tal03].

As mentioned earlier, the RSB formalism is not (yet) fully rigorous. In many situations, however,

proofs were obtained which confirm the location of thresholds. XORSAT is a problem that is

not genuinely hard, since solutions can always be found by linear algebra. However, it exhibits

clustering [AM13], with the clusters forming linear spaces that are isomorphic to each other.

This allows the rigorous determination of the dynamic and satisfiability thresholds10. As we

will soon see, this was also achieved in the case of LDPC codes by means of spatial coupling.

Significant progress has been made on two open questions very recently. First, the location of

the condensation threshold was determined to coincide with the one predicted by statistical

physics in the case of Q-COL with Q large enough [BCOH+14]. Secondly, the location of the

satisfiability threshold was fixed for K -SAT for K large enough [DSS14], thereby also closing

the theoretical gap left open by Friedgut [FB99] in that regime. Similar results were obtained

for the condensation threshold in the case of K -hypergraph-2-coloring [COZ12]. The location

of α f was proved rigorously for large K and Q in the case of Q-COL [Mol12] and NAE-SAT and

K -hypergraph 2-coloring [MR13].

10The condensation and satisfiability thresholds are the same in this case. This is because all clusters have the
same size, so the formalism at any value of m will yield the same results.
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K αd αc αs α f

3 3.86 3.86 4.267 *

4 9.38 9.55 9.931 9.88

5 19.16 20.80 21.117 *

6 36.53 43.08 43.37 39.87

Table 1.2 – Threshold values for K -SAT [MRTS08]. Note that for K ≤ 5, the freezing threshold
occurs after the condensation threshold. For the evaluation of α f one must then use the right
value of m?. This has been done only for K = 4.

1.7 Planted models

Studying the clusters of a random instance of a CSP is usually a non-trivial task. We can

adopt the following strategy to modify a random model of CSP. Draw uniformly at random

a configuration of spins and fix it; we will call this the planted solution. Then we sample the

constraints independently at random as in the original CSP model, but conditioned on the

fixed configuration being a solution. This is called a planted model. In general, the planted

model and the original one are not equivalent, in the following sense: picking an instance

from the original CSP model and then a random solution is different from picking a solution

at random and then an instance of the planted model that satisfies that solution.

In the case of Q-COL, it was proved that the planted model is equivalent to the original for

α < αc [BCOH+14]. For α > αc , the two start to differ. In particular for α > αs , the planted

model is still always solvable, by construction, while the original model is not. The planted

model presents interest also on its own, of a cryptographic flavor, in that one can hide the

planted solution and see if there are phases where the solution is unique but hard to find

[KZ09].

1.8 Error correcting codes

1.8.1 Channels

We are sending a bit vector X of length N over a noisy channel. The output of the channel

is a vector Y of the same length, a corrupted form of X . Even though in general a channel is

described by any conditional probability distribution pY |X (y |x), the channels we consider

have the following properties:

• binary-input: the entries of X come from a binary alphabet; purely for notational

convenience we assume this alphabet is {+1,−1};

• memoryless: conditioned on the vector X , the random entries of the output Y are i.i.d.;
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for this reason the channel is described by its action pY |X (y |x) on a single symbol. We

make the convention that whenever X ,Y , x, y appear without a bar we refer to a single

use of the channel.

• symmetric: in the case where the output alphabet consists of real numbers, symmetry

means that for all y, x, pY |X (y |x) = pY |X (−y |− x). However, we will work with a more

general characterization for symmetry, in terms of log-likelihoods, which we introduce

soon.

Note that we leave open the nature of the output alphabet and of the distribution p(y |x),

which might not be necessarily discrete. We call such channels BMS channels. The three most

common examples of BMS channels are the following.

• The binary erasure channel BEC(ε). In this case, the output alphabet is {+1,−1,0}. The

channel has a parameter ε, the erasure probability. With probability ε it outputs the

erasure symbol 0, otherwise it simply copies the input to the output.

• The binary symmetric channel BSC(p). Here the output alphabet is {+1,−1}. The channel

has a parameter p, the flipping probability. It either does nothing to the input (Y = X )

or flips it Y =−X , with probabilities 1−p and p, respectively.

• The binary additive white gaussian noise channel BAWGNC(σ). Here the output alphabet

is R. The channel samples a random value Z from a normal distribution N (0,σ2), where

standard deviation σ is the channel parameter. It then outputs Y = X +Z .

1.8.2 Codes and capacity

We want to maximize the information contained in the input X , while still being able to recon-

struct it from the output Y . To account for the transmission errors, we will use error-correcting

codes. A code is simply a set C of input vectors, whose elements are called codewords. We

will restrict our transmission to codewords, thereby introducing redundancy in the input and

transmitting less information. This redundancy will then help us reconstruct the input from

the corrupted output.

We assume that X has a uniform distribution over the code C .11 Retrieving X from Y is

a process called decoding, and it is prone to errors, since in general an output vector can

correspond to multiple inputs, and the decoder will just choose one of them. Eliminating

errors completely is for most channels impossible. However, we can ask that the probability

of having errors tend to 0 as N → ∞. In a celebrated result that lies at the foundation of

11Here X is already encoded. Of course, in real systems there is also the task of converting the useful information
(the source bits) into codewords, with which we will not be concerned here. This task is much easier when the
code is structured (for example, when it is a linear space). The fact that we require X to be uniformly distributed is
easily accomplished using lossless compression on the source
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information theory, Shannon [Sha48] showed that not only such schemes exist, but he also

characterized exactly the amount of information one can send through a channel.

We will measure the information contained in a random variable by its Shannon entropy12,

H(X ) =−∑
x

pX (x) log pX (x), (1.11)

and the information shared by two random variables X and Y by the mutual information

I (X ;Y ) =∑
x

∑
y

pX ,Y (x, y) log
pX ,Y (x, y)

pX (x)pY (y)
. (1.12)

The entropy simply measures how many bits of useful information are transmitted. In the

case of the uniform distribution on C , this is just log |C |. The rate of the code is defined as the

ratio between useful information and the codeword length, 1
N log |C |.

Shannon’s Theorem of Channel Coding states that (i) the maximum amount of information

we can hope to pack into the input is upper-bounded by the channel capacity

C = sup
pX

I (X ;Y ), (1.13)

a quantity that only depends on the channel, and (ii) the capacity is also achievable, in

the sense that there exist coding schemes with the rate arbitrarily close to C and with error

probability tending to 0 as N →∞.

The codes that achieve capacity in Shannon’s proof are random codes. That is, the codewords

are chosen independently and uniformly at random. This makes random codes impractical,

since one would need to store in memory all codewords, and these are exponentially many.

This inconvenience can be alleviated by using random codes with a structure, for example

ones where the codewords form a linear space. These are still capacity achieving, but for many

years is was not clear how to find an efficient algorithm for decoding up to capacity. Moreover,

a linear space of codewords in general needs memory space on the order of N 2 just for storage.

But all the good properties still hold if we would restrict ourselves to linear codes that are

sparse. This is the case for LDPC codes. These have the advantage that they can be stored in

linear space and have efficient algorithms for decoding. Moreover, for the spatially coupled

variant there are efficient algorithms that decode up to capacity.

In what follows we will only consider LDPC codes, because their structure is similar to that of

random CSPs and diluted spin systems. There are, however, other efficient codes that provably

achieve capacity, a notable example being polar codes [Ari09].

12We use the convention 0log0 = 0 everywhere.
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1.8.3 LDPC codes

Low-density parity check (LDPC) codes were first introduced by Gallager [Gal63], but they

were not so popular in the beginning, as the computation needed for decoding was considered

too high at that time.

The codewords are defined by parity check constraints. These are relations of the form

xi1 xi2 · · ·xiK = 1, where i1, . . . , iK are specific to each parity check constraint. It is easy to see

that the totality of all parity checks forms a homogeneous system of linear equations over

the field with two elements. As such, the codewords (the solutions of this system) form a

linear subspace, whose dimension is given by N minus the number of independent check

constraints. This dimension equals N R, where R is the rate of the code.

The structure of the code can be represented easily by what is called the Tanner graph. As

we will see soon, we will identify this graph with part of the factor graph of the aposteriori

distribution used when decoding. This graph is bipartite, with the two types of nodes called

variable and check nodes. The variable nodes correspond to the bits, while the check nodes

correspond to the check constraints. We have an edge between a variable and a check node if

the corresponding bit takes part in the check constraint.

This structure is sampled at random, in order to obtain a random code, much in the same

way as we are choosing the factor graph of CSPs at random. The distribution of the Tanner

graph is usually called in the literature an ensemble. There is one major difference to the

Erdős-Rényi model that we considered for CSPs. There the links of the constraints were chosen

independently, so the degree distribution on the variable node side was Poisson. Such a

distribution is not usually good for LDPC codes. The rule of thumb is that the more constraints

a variable is connected to, the more that it is guarded against errors. If the degree distribution

were Poisson, a nonzero fraction of these nodes would participate in no check whatsoever,

and any error that were to occur on such a variable node would not be fixed. For this reason,

LDPC codes are usually sampled in such a way that the degrees of both variables and checks

are fixed; in other words, the ensemble is regular. For regular ensembles we need to give up

the useful property of the independent sampling of check nodes, which tends to somewhat

complicate the picture in our proofs.

In a general setting, we fix two target degree distributions, one for the variable nodes and one

for the check nodes. Unless otherwise noted, we assume that these two distributions are

concentrated on two values for the degrees, K for the check nodes, and d for the variable

nodes. If M is the number of check nodes, we have the relation MK = d N .

The actual sampling for the regular ensemble is done by using the configuration model method,

as follows. For each variable node we create d variable node sockets, and for each check node

K check node sockets. We then connect each variable node socket to a check node socket by

a random permutation (note that the two types of sockets are equal in number). Note that

this does not correspond to picking a Tanner graph with the prescribed degrees uniformly at
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random. The latter is a slightly different ensemble, from which it is harder to sample.

1.8.4 MAP Decoding and the Gibbs measure

The probabilistic model of channel transmission allows us to compute the aposteriori proba-

bility of each codeword being sent. This is obtained by using Bayes’ rule:

pX |Y (x|y) = 1

pY (y)
pY |X (y |x)pX (x). (1.14)

MAP (maximum a posteriori) decoding is simply picking the codeword X with the highest

pX |Y (x|y). This is computationally hard in general, but

We will treat the expression above as a Gibbs measure. It already factorizes nicely, but we will

transform it slightly so that the dependence on x becomes more explicit. For this we introduce

the half-log-likelihood-ratios (HLLR) h(y), defined as

h(y) = 1

2
log

pY |X (y |+1)

pY |X (y |−1)
, (1.15)

with the possibility of it taking infinite values. From h(y) one can recover the posterior

probability that the bit x was sent. The latter is easily seen to be proportional to eh(y)x . In fact

we have

pY |X (y |x)

pY |X (y |1)
= eh(y)(x−1). (1.16)

For symmetric channels, the HLLR are a sufficient statistic, meaning that any reasoning we do

based on the posterior probability can actually be done by knowing just h(Y ) and not Y itself.

This can be easily seen when we rewrite (1.14) as (1.18) below. We get the prior on X using the

graph description:

pX (x) = 1

|C (G)|1(x ∈C (G)) = 1

|C (G)|
∏

a∈G

1

2

(
1+ ∏

i∈∂a
xi

)
. (1.17)

One can easily check that the product
∏

a∈G (1+∏
i∈∂a xi )/2 is 1 when σ is any codeword, and

0 otherwise. Putting everything together we obtain

pX |Y (x|y) = 1

pY (y)|C (G)|e
∑

i h(yi )(xi−1)pY |X (y |1)
∏

a∈G

1

2

(
1+ ∏

i∈∂a
xi

)
. (1.18)

The plan is to get rid of Y completely in (1.18) and use just the HLLR. We use this opportunity

to also change notation to the one used by physicists. The posterior will be given by the Gibbs

measure µ depending on the vector of HLLR h. For conformity, bits will from now on use spin
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notation σ instead of x (and still take values ±1). Furthermore, we introduce the shorthand

σa = ∏
i∈∂aσi , as such products (arising from the parity checks) will be very common. We

have

µ(σ) = eh·(σ−1) ∏
a∈G (1+σa)/2

Z
, (1.19)

where · signifies the scalar product between vectors and the partition function Z is given by

Z = ∑
σ∈X V

eh·(σ−1)
∏

a∈G

1+σa

2
.

Note that the scaling provided by shifting σ by 1 downward helps to keep the weights involved

finite in the case h = +∞. We will see shortly that the case h = −∞ will never occur in our

calculations, since by symmetry we can assume the codeword sent is the all-+1 codeword.

We have denoted the above probability measure by µ in order to distinguish it from other

randomized parameters that appear, notably the channel and the randomness in the graph

G . Note that µ depends on both G and the HLLRs h, and when this is not clear we will make

it explicit by adding G or h as a subscript: µG ,h , Z (G ,h). Note that the Gibbs measure is a

random quantity, as it depends on the channel and the random code.

The average with respect to the measure µ will appear quite often in the rest of the paper, and

we use the Gibbs brackets 〈·〉 to indicate it. In other words,〈
f (σ)

〉= ∑
σ∈X V

f (σ)µ(σ).

Regarding notation, the same subscript conventions, as for µ, apply for the bracket.

There are three types of randomness that are involved in our construction: (i) the random

graph which is picked from an LDPC ensemble; (ii) the randomness induced by the channel

and (iii) the Gibbs measure. The expectation in the first case is denoted byEG :G [ · ], where G de-

notes the ensemble. The expectation with respect to the channel is written asEh[ · ] = ∫ ·dc(h).

As seen before, the average with respect to the Gibbs measure is denoted by angular brackets.

The symbolsEG :G andEh commute, since the graph and the channel are independent. The

angular bracket, however, depends on both h and the graph G and thus does not commute

with theE symbols. In the language of Statistical Physics, the graph and the channel are said

to be quenched.

Because of symmetry, the channel is fully characterized by the distribution c(h) of the HLLR

computed from the output of the channel by (1.15) assuming the input of the channel is set

to +1. We will view this distribution as a measure c on R= R∪ {+∞}, which due to channel

symmetry has the property

dc(−h) = dc(h)e−2h ,
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i.e., a HLLR h is e2h times more likely to occur than its negative. For this reason we call this

property symmetry of measures, we denote all symmetric measures on R by X and we identify

X with the set of BMS channels. As a side note, observe that the mass sitting at −∞ in any

symmetric c must be 0. Because the HLLR is a sufficient statistic, all channels that share the

same HLLR distribution are all equivalent, in the sense that the statistics of the posterior are

the same. For this reason we can and will assume without loss of generality that the HLLR

itself is the output of the channel.

A fundamental role will be played by the conditional entropy H (X |Y ), defined as−EX ,Y log p(X |Y ).

This measures the uncertainty in the input given the observation of the channel output, and

thus it characterizes the ability to decode. In our notation inspired from statistical physics, the

conditional entropy is in fact equal to the partition function, as expressed by the following

lemma. We will still use the notation H(X ,Y ) to convey information-theoretic intuition when

needed.

Lemma 1. For a linear binary code of block length N represented by a graph G, we have

H(X |Y ) =Eh log Z (G ,h).

Proof. We use successively: (a) the definition of entropy, (b) the fact that a priori all codewords

are equally likely to be sent and the symmetry of the channel, which ensures that all terms in

the sum are identical, (c) the fact that the log-likelihood is a sufficient statistic, so p(σ|y) =
p(σ|h), and the latter is nothing else than the probability measure µG ,h , and the fact that the

distribution of the HLLR is given by the distribution c and (d) the fact that µ(1) = Z−1:

H(X |Y )
(a)= − ∑

σ∈C (G)
p(σ)

∫
dy

∏
i

pY |X (yi |σi ) log pX |Y (σ|y)

(b)= −
∫ ∫

dy
∏

i
pY |X (yi |1)log pX |Y (1|y)

(c)= −
∫ ∫ ∏

i
dc(hi ) logµG ,h(1)

(d)= Eh log Z (G ,h),

where C (G) is the set of codewords.

1.8.5 Smooth families of channels and thresholds

There is a partial ordering, called degradation, defined on X which expresses the fact that one

channel is better or worse with respect to another one. We say that a channel c1 is degraded

w.r.t. a channel c2 and write c1 Â c2 if there exists a third channel that can transform the output

of c2 (the better channel) into the output of c1 (the worse channel).

In the case of random CSPs the parameter of the problem is the clause-to-spin ratio α, and
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with respect to this we investigate the occurrence of phase transitions. In the case of LDPC

codes, the equivalent quantity is the rate of the code, but unlike random CSPs, we keep this

quantity fixed (through the values of d and K ). The parameter that we vary in the coding

case is given by the channel HLLR distribution c. In contrast to CSPs, this parameter is not

one-dimensional, but infinitely dimensional, since it lives in the space X . In this context, it

is not a priori clear how one should define thresholds. One could think of them as surfaces

in X that separate easy regions from hard regions. This view is not so easy to formalize. The

view we take here is to fix a path in the space X that fulfills certain properties, one of which

being degradation along the path, and investigate where (and if) thresholds occur on that

path. Thus the parameter of the problem is again one-dimensional, and a good choice for

this parameter is the entropy of the channel H(c) (which for BMS channels is just 1 minus the

capacity) as we will see below.

If we turn around the hard upper bound on the rate coming from Shannon’s theorem of

channel coding, we get that for all channels with capacity lower than the fixed rate, decoding

is hopeless. Thus the rate itself is a theoretic threshold of hardness (let us call it Shannon

threshold), regardless of the choice of code and the exact type of channel under consideration.

This means that by choosing as parameter of the path a quantity directly related to the capacity

of the channel, not only we use a “universal” parameterization, but also the Shannon threshold

occurs at the same place. For this reason we choose to parameterize the channel by the linear

functional

H(c) =
∫

log2(1+e−2h)dc(h), (1.20)

which has the property that it is monotone with respect to degradation, i.e. H(c) > H(c′) for

c Â c′. It can be easily checked that this is actually the conditional entropy H(X |Y ) for any

symmetric channel characterized by the HLLR distribution c. The capacity of any of those

channels is given by 1−H(c). We illustrate this picture with an example.

Example 2. A common LDPC code is the (3,6)-code, i.e. the one where d = 3 and K = 6. The

rate of this code is 1−d/K = 1/2, and the best possible codes with this rate will be able to work

on any channels with capacity as low as 1/2, or, equivalently, channel entropy at most 1/2. Now

the (3,6)-code in particular will not perform that well. If we use the optimal decoder (which

is still computationally expensive), we find out we can only decode up to a lower value of the

channel entropy, the MAP threshold, and this value is channel-dependent. For example, on the

BEC, this value is around 0.488, while for BSC and BAWGNC it is slightly smaller. However, as

it will follow from the results of Chapter 2, it is true that as the degrees d ,K increase, the MAP

threshold approaches the Shannon threshold of 1/2.

We denote the parameterization by h, so a path through the space X is expressed by a family

of channels {ch} with h ∈ [h,h] with the property that H(ch) = h. The families of channels

considered will can have the following properties:
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1.8. Error correcting codes

• smoothness: for all continuously differentiable functions f :R→R such that f (h)eh is

bounded, the expectation
∫

f (h)dch(h) exists and is continuously differentiable with

respect to h in [h,h].

• ordering by degradation: ch Â ch′ whenever h < h′.

• completeness: the family is defined for all h ∈ [0,1].

Note that since we are concerned only with binary channels, we have 0 ≤ h ≤ 1 and furthermore

h = 0 and h = 1 occur only for the perfect channel, hereafter denoted by ∆∞, which places

all mass at h =∞, and for the useless channel, denoted by ∆0, which places all mass at h = 0.

The author apologizes for the notation clash between the channel parameter, denoted by an

upright h, and the HLLR, denoted by a slanted h.

Example 3. The BEC(ε), BSC(p) and BAWGNC(σ) are all examples of smooth complete families

of channels ordered by degradation. The relations between the usual parameters ε, p and σ and

the natural parameter h are given by

h(ε) = ε, for ε ∈ [0,1],

h(p) =−p log2 p − (1−p) log2(1−p), for p ∈ [0,1/2],

h(σ) =
∫ 1

−1

σp
2π(1− y2)

e−
(1−σ2 tanh−1(y))2

2σ2 log2(1+ y), for σ ∈ [0,+∞].

At this point we are able to define the location of the MAP threshold as follows. Given a smooth

family of channels ordered by degradation and parameterized by h in the whole interval [0,1],

there exists a value hMAP (called the MAP threshold) such that for channel parameters below

this value, the scaled average conditional entropy (in other words 1
NEG ,h log Z (G ,h)) converges

to zero in the infinite block length limit, while above this value it is positive. Formally,

hMAP = inf

{
h : lim

N→∞
1

N
EG :LDPC(N ,Λ,K )H(X |Y ) > 0

}
.

1.8.6 Belief Propagation and the Bethe Approximation

Belief propagation is the name given to the message passing equations (1.6) that we presented

for the RS approach, when used to approximate the posterior distribution (1.19). This name

stems from the interpretation of messages µa→i and µi→a as describing beliefs about the

true value of σi . In (1.19) there are two types of factors: the ones arising from the channel

observations, of the form ehi (σi−1) and those arising from the parity check constraints, of the

form 1+∏
i∈∂aσi . This would imply that one would in principle have to deal with two types of

function nodes (observation nodes and check nodes), and more types of messages. However,

simplifications can be made: the messages from the channel observation nodes to the variable

nodes are constant (in the sense that they do not depend on other messages), while those that

travel from variable nodes to the observation nodes are irrelevant.
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σ1 σ2 σ3 σ4

eh1(σ1−1) eh2(σ2−1) eh3(σ3−1) eh4(σ4−1)

σ1σ2σ3 = 1 σ2σ3σ4 = 1

Figure 1.1 – Example of a factor graph of an LDPC code. The observation nodes are depicted
green and the check nodes blue.

Also, since the messages represent distributions on a set of cardinality two, they can be

characterized by one number. Thus, instead of µi→a(+1) and µi→a(−1) we will use νi→a =
1
2 log µi→a (+1)

µi→a (−1)
and likewise νi→a . Thus the messages take the form of HLLRs, which will enable

us to write the equations in a compact form. We have (see Appendix B.1)

νi→a = hi +
∑

b∈∂i \a
νb→i ,

νa→i = tanh−1

( ∏
j∈∂a\i

ν j→a

)
. (1.21)

The Bethe functional (1.8) corresponds to

NΦBP =∑
i

log
(
1+e−2(hi+∑

a∈∂i ν
a→i )

)
−∑

a
log

(
1+e−2tanh−1 ∏

j∈∂a tanhν j→a
)
+ (1.22)

+ ∑
i∼a

log(1+e−2νi→a
)+ ∑

i∼a
log(1+e−2(νi→a+νa→i )).

While there are many possible ways (“schedules”) to update the messages, the way in which

equations (1.21) are most often used in practice is to initialize all messages νa→i
0 = νi→a

0 = 0

and at each time step t use the messages ν·→·
t−1 to compute the messages ν·→·

t .

In the case of the BEC, everything becomes simple: the messages can only take one of two

values: either 0 (not yet determined) or +∞ (determined). The processing at the variable

nodes becomes a logical disjunction while at the check node it becomes a disjunction. The

schedule becomes unimportant in the case of the BEC and belief propagation reduces to the

peeling decoder.

For any degraded family of BMS channels, we define the BP threshold (informally) as the

channel parameter hBP up to which running the BP equations will result in decoding, i.e. all

messages will take value +∞ asymptotically almost surely (in the large N limit, for random

factor graph and channel realization). Typically the BP threshold is much lower than the MAP

threshold. The main feature of spatially coupled codes, as we will see soon in more detail, is
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1.8. Error correcting codes

that the BP threshold moves to the value of the MAP threshold, thereby enabling us to decode

in an efficient manner using just BP.

1.8.7 Density evolution

Density evolution is used to analyze the belief propagation equations (1.21) in the large N

limit and on a code chosen at random. Then we can assume that a message picked at random

at time t , going from variable nodes to check nodes comes from a distribution x, while one

going from check nodes to variable nodes comes from a distribution y. It can be easily seen

that both x and y are symmetric distributions, so x,y ∈X . In this context, we will refer to the

objects from X as densities.

To reflect the types of operations seen in the belief propagation equations (1.21), we introduce

two operations on X denoted by ~ and �, defined as follows. The measure z1 ~ z2 is the

distribution of the sum of two independent random variables h1 +h2 with laws h1 ∼ z1 and

h2 ∼ z2, respectively; in fact it is just the usual convolution

(z1 ~z2)(B) =
∫

dz1(h1)dz2(h2)1[h1 +h2 ∈ B ],

for any measurable set B . Likewise, we define the measure z1 � z2 as the distribution of

tanh−1(tanhh1 tanhh2), where h1 ∼ z1 and h2 ∼ z2 are independent random variables, i.e.

(z1 �z2)(B) =
∫

dz1(h1)dz2(h2)1[tanh−1(tanhh1 tanhh2) ∈ B ].

It can be easily seen that both z1~z2 and z1�z2 are symmetric measures. In fact, the operations

can be generalized straightforwardly to apply to any symmetric finite signed measures, not

just probability measures.

These two operations are, each taken separately, commutative and associative. Moreover,

when combined with the addition of measures (in the finite signed measure setting) each of

them turns the space of symmetric finite measures into a unital algebra over the reals. The

distribution ∆0 serves as a unit for ~, while ∆∞ is a unit for �. However, the two operations ~
and � do not “mix” well among themselves, so the two quantities z1~(z2�z3) and (z1~z2)�z3

are in principle different.

Using these two operations, and assuming incoming messages for a random node are inde-

pendent, the two BP equations become

x= c~y~ · · ·~y︸ ︷︷ ︸
d times

, (1.23)

y= x� · · ·�x︸ ︷︷ ︸
K times

. (1.24)
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To express products as above in a more compact form, we introduce the notation z~n ≡
z~ · · ·~z where z appears n times. More generally, given a polynomial λ(u) =∑degλ

n=0 λnun , we

define λ~(z) as
∑degλ

n=0 λnz
~n . Note that if z ∈X and λ has positive coefficients with λ(1) = 1

then also λ~(z) ∈X . The definitions of z�n and λ�(z) are similar.

By replacing averaging over nodes and edges with averaging over the distributions x and y, the

Bethe functional 1.22 becomes

ΦBP(c,x,y) = H(c~y~d )− d

K
H(x�K )+d H(x)−d H(x~y). (1.25)

Using the duality formula (B.3) (see Appendix B.2 for the derivation), and (1.24), we can express

the Bethe functional as

ΦBP(c,x) = H(c~ (x�(K−1))~d )+ (d + d

K
)H(x�K )−d H((x)�(K−1)). (1.26)

Iterating the density evolution equations (1.23) and (1.24) starting from x=∆0 (no information

about bits) will lead to a fixpoint x= c~ (x�(K−1))�(d−1). The fixpoint corresponds to a local

minimum ofΦBP(c,x). Decoding using BP is successful if the fixpoint reached is x=∆∞.

In Chapter 2, one of the main results is to show that for standard LDPC codes in the regime

h ∈ [0,hBP]∪ [hMAP,1], the actual free entropy E[Φ] matchesΦBP(c,x)

1.9 Spatial coupling

Spatially coupled LDPC codes have the property that BP decoding works all the way up to

the MAP threshold, which is the same as for standard LDPC codes. This phenomenon, the

BP threshold moving to the MAP threshold, goes under the name of threshold saturation.

One characteristic of threshold saturation in the coding case (and compressed sensing, for

instance) is that the BP threshold is algorithmic in nature. In other types of models, such as in

random CSPs, threshold saturation occurs for quantities that are not obviously algorithmic in

nature, as we will see in Chapter 3.

In this section we will review the spatial coupling paradigm in general, and then briefly

illustrate the occurrence of threshold saturation in the case of coding over the binary erasure

channel.

1.9.1 The spatial coupling paradigm

We present first the general picture, in terms of factor graphs. Coupling introduces an extra

“spatial” dimension, whereby the nodes of the factor graph are assigned a position, which is
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1.9. Spatial coupling

typically an integer. Edges are allowed between two nodes if their positions are spatially close

to each other. An example is presented in Figure 1.2.

z = 4z = 3z = 2z = 1 z = 5 z = 6

Figure 1.2 – An example of a factor graph whose structure is “spatially” constrained. Note that
function nodes are only connected to variable nodes lying at either the same position or one
position to the left or to the right. Positions are indexed from 1 to 6.

The whole construction has two parameters, which we call L and W . L is the length of the

chain, i.e. the number of positions, which are typically indexed from 1 to L. The parameter W

is the window size, which characterizes the allowed offset between the positions of neighboring

nodes. In the example of Figure 1.2, the allowed edges were from a function node at position z

to variable nodes at positions z −1, z, and z +1, which corresponds to a window size of W = 3.

In what follows, we will assume without loss of generality that an edge links a function node at

z with a variable node at a position in {z, z +1, . . . , z +w −1}.

The random generation of a spatially coupled graph proceeds in a similar fashion as for the

standard version. For convenience, we distinguish here two cases:

• Poisson-distributed degrees for the variable nodes. Assuming the average variable-node

degree is α, we allot for each position a number N of variable nodes and Nα/K func-

tion nodes. For each function node at position z, we sample the links to the variable

nodes independently, choosing uniformly at random among the NW variable nodes at

positions z, . . . , z +W −1.

• Arbitrary degree distributions for the variable nodes, including regular graphs. These

can be obtained using the configuration method mentioned in the previous section on

coding. There is not a single obvious way in which this can be achieved, and the exact

details in the coding case will be presented in the next chapter. The main idea is that we

associate a number of sockets for each variable and function node, which corresponds

to a target degree. Then we pick a random matching between variable-node sockets

and function-node sockets, in such a way that the spatial (windowing) constraints are

not violated. While choosing this matching sometimes we may tolerate a number of

unmatched sockets as long as this number is sub-linear in N .

We left open the question of what happens at the ends of the chain, since this warrants
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additional discussion. The power of spatially coupled structures comes from phenomena that

happen at the boundaries. If we were to consider an infinite chain, the neighborhood of a

node would not differ at all from the neighborhood of nodes in the uncoupled structure. If

we choose to terminate the chain, we will typically obtain modified degree distributions at

the boundaries, in a fashion that will be exemplified below for LDPC codes. These modified

degree distributions will typically make the problem much easier at the boundaries, allowing

for the computation of good marginals, i.e. stronger beliefs, which in turn propagate towards

the center of the chain.

The way in which the problem is made easier at the boundary may depend on the model.

However, the general recipe is the following. We start by sampling an infinite-length chain,

with positions ranging over all the integers. We keep only the variables at positions 1, . . . ,L,

together with the function nodes that link to them, regardless of their positions. This means

that function nodes will exist also at negative positions, or positions beyond L. These may, in

turn, link to variables that are outside positions 1, . . . ,L, let us call them pseudo-variables. In

the case of LDPC codes, we set the pseudo-variables to +1. In the case of coloring or K -SAT,

we should set the pseudo-variables to some “special” value which satisfies automatically each

constraint that it takes part in; this is equivalent to deleting outright the constraints that

involve pseudo-variables.

1 2 3 4 5 6 7 80−1−2

Figure 1.3 – A schematic illustration of the construction of a spatially coupled random model
with L = 5 and W = 3. Possible edge locations are shown with dashed lines, and the pseudo-
nodes are shown with light colors.

Of course, message passing takes the same form (1.6) on coupled and uncoupled structures,

since coupling only affects the random model that generates the structures. However, if we are

interested in a density-evolution/population-dynamics type of analysis, we need to keep track

of densities at each position. This is because the shapes of the typical neighborhoods depend

on the distance to the chain boundary. An example of this is shown below for LDPC codes.

1.9.2 Threshold saturation for LDPC codes

To convey the feeling of how spatial coupling enhances belief propagation, we first write the

density evolution equations in the spatially-coupled scenario and then illustrate the operation

of the decoder in the case of transmission over the BEC. At each position z we will keep track

of densities x(t )
z and y(t )

z at each time step t . We set all the pseudo-variables to +1, so x(t )
z =∆∞

for all z ≤ 0 or z > L.
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The density evolution equations then take the form

x(t+1)
z = c~

(
W −1∑
w=0

yz−w

)~d

, for z ∈ {1, . . . ,L}, (1.27)

y(t+1)
z =

(
W −1∑
w=0

xz+w

)�K

, for all z. (1.28)

Check nodes close to the boundary provide more information to their neighbors than do check

nodes in the interior of the chain. This is because the pseudo-variables that appear are fixed

to +1 and so the check constraints are effectively smaller. This extra information provides an

extra edge that allows for the determination of variables close to the boundary. These values in

turn help decode bits further inside the chain, creating a “decoding wave”. This phenomenon

is illustrated for the BEC in Figure 1.4, where the first 120 iterations of density evolution are

shown for three different values of the channel parameter.

Note that in the coupled scenario, the rate of the code is smaller than in the uncoupled

case. This happens because instead of a d/K check-to-variable ratio, coupled LDPC codes

have around L+W −1
L

d
K checks per variable. The extra amount of check nodes that lies at the

boundary is crucial in providing the seed that gets the decoding wave started. Because of the

rate penalty, however, LDPC codes become effective in the limit where L/W →∞.

1.9.3 Historical note

The first example of spatially coupled codes was introduced by Felstrom and Zigangirov [FZ99]

under the name of convolutional LDPC codes. However, the threshold saturation property

was not obvious, since the chain considered was circular and so had no boundary. Only later it

was observed that terminating the chain dramatically improves the performance [SLCJZ04].

For the BEC, threshold saturation was observed and proved in [KRU11]. Independently, the BP

threshold for the coupled codes was computed in [LSCJZ10]; the observation that this in fact

coincides with the MAP threshold was subsequently presented in [LF10], where the authors

give credit for the observation to G. Liva. The generalized result applicable not just for the

BEC, but for any smooth family of BMS channels was presented in [KRU12].

More generally, spatial coupling can be used as a paradigm to build graphical models on which

belief-propagation algorithms perform essentially optimally. As such, it has found application

not just in coding, but also in the field of compressed sensing [DJM13], where the underlying

factor graph is complete, and the algorithm used is Approximate Message Passing (AMP).
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Figure 1.4 – We present here the results of density evolution on a spatially coupled LDPC code
with d = 3, K = 6, L = 64 and W = 4. DE is run for three values of the erasure probability, for
which qualitatively different behaviour of DE is observed. The plots on the left correspond to
the coupled ensemble. The value of H (xz ), i.e. the probability that a message leaving a variable
node encodes uncertainty is shown for each position z. The plots on the right correspond to
same quantity for the standard (uncoupled). DE was iterated 120 times, with time encoded as
color, progressing from blue to red.
(i) The top corresponds to the regime ε< εBP . Here both the standard and the coupled codes
are able to decode fast.
(ii) The middle corresponds to εBP < ε < εMAP . Here the standard code gets stuck, but the
coupled code manages to decode using the information at the boundary. Note the decoding
wave propagating towards the interior of the chain.
(iii) The bottom corresponds to εMAP < ε. In this regime neither of the two codes can decode.
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2 LDPC codes achieve capacity: Spatial
coupling as a proof technique

The main use of spatial coupling so far was to produce better codes. We will show here how

spatial coupling can also become useful in a different way: as a theoretical tool that improves

understanding of uncoupled systems. More specifically, sometimes it is easier to prove that (i)

a property of a graphical model holds under spatial coupling than for the uncoupled version.

If that is the case, and if (ii) the coupled and the uncoupled scenarios are equivalent with

respect to that property, then we obtain a proof that the uncoupled graphical system has the

said property.

In this chapter we prove a statement of type (ii) in the case of LDPC codes. 1 Namely, we prove

Theorem 4 below which states that the conditional entropy in the infinite blocklength limit

is the same for the coupled and uncoupled versions of the code. This enables us to derive

the equality of the MAP thresholds for coupled and uncoupled codes (Corollary 5). We then

present three applications of this result. The first one - Equation 2.2 - is a proof of the Maxwell

construction (see [RU08] Chap 4, Sec. 4.12, p. 257): we already know that this conjecture holds

for coupled ensembles [KRU12] (a result of type (i)) and here we deduce that it also holds

for the uncoupled systems. Then, using the freshly-proven Maxwell construction conjecture,

we derive two more results, namely Theorems 7 and 9. The first one states the equality of

the BP and MAP GEXIT curves above the MAP threshold (see conjecture 1 in [MMRU09]

and Sec III.B [Mac07] for a related discussion) and the second implies the exactness of the

replica-symmetric formula for the conditional entropy (see conjecture 1 in [Mon05] and Sec

III.B in [Mac07]). Our treatment is general enough to provide a potential recipe for similar

results for many types of graphical models.

1 The content of this chapter has been submitted for publication in [GMU15], and an arXiv preprint can be
obtained. A proof of concept was presented at ISIT 2012 [GMU12] for ensembles with Poisson-distributed degrees,
whose range of applicability in coding is limited. This is due to the occurrence of nodes of very small degrees in
significant proportions, which limits the performance. Subsequently, this technical barrier was removed, which
allowed for a wide choice of degree distributions, including regular graphs. However, the restrictions (see [GMU12])
that the check node degrees have to be even and that the channel must be symmetric are still necessary. The core
of the proof rests on the interplay of symmetry and evenness. A summary of the proof of the main theorem 4 and
the application to the proof of the Maxwell construction appeared in ISIT 2013 [GMU13].
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Note that the replica-symmetric formula for error correcting codes on general channels was

first derived by non-rigorous methods in the statistical mechanics literature [KMS00, MKSV00,

Mon01, FLMRT02]. The Maxwell construction and equality of BP and MAP GEXIT curves can

also be informally derived from this formula, which in the statistical physics literature plays

the role of a “more primitive” object. Progress towards a proof of this formula (for general

channels) was then achieved in the form of a lower bound [Mon05, Mac07, KM09] and proofs

were found that work in low/high noise regimes [KM01] or for the special case of the binary

erasure channel [MMU08, KKM07].

Our proof uses the interpolation method, which was introduced in statistical physics by Guerra

and Toninelli for the Sherrington-Kirkpatrick spin glasses [GT04] and gradually found its way to

constraint satisfaction problems [FL03, FLT03, BGT10] and coding theory [Mon05, KM09]. The

version we use here employs a discrete interpolation between the coupled and two versions

of the uncoupled scenarios. An error-tolerating version of the superadditivity lemma is also

borrowed from Bayati et al. [BGT10] to show that the conditional entropy has a limit for large

blocklengths (the equivalent of thermodynamic limit in physics terminology).

The rest of this chapter is organized as follows: In section 2.1 we revisit the coupled ensembles

and introduce circular coupling. Section 2.2 states the main results and their implications.

Next, in Section 2.3 we introduce some prior results, one of which being the Nishimori identity.

The main core of the argument resides in Sections 2.4 and 2.5: there we introduce a configu-

ration model that approximates the standard LDPC ensemble and on which we can cleanly

perform the interpolation technique. Sections 2.6 and 2.7 are fairly technical. The former

describes how to transfer the result from the configuration model to the LDPC ensemble,

while in the latter we need to deal with the limit N →∞.

2.1 Preliminaries

2.1.1 Simple ensembles

We start by describing the simple (i.e. uncoupled) ensemble of codes, which we denote by

LDPC(N ,Λ,K ), where N is the number of variable nodes, Λ(x) =∑
d≥0Λd xd is the probability

generating function (PGF) of the variable-node degree distribution, and the integer K is the

fixed check-node degree. This is essentially the code ensemble introduced in Section 1.8.3,

but generalized to accept a large class of variable-side degree distributionsΛ. Previously we

considered only the regular case, whereΛ is concentrated on one integer d . The distribution

Λmust be supported on a finite subset of the positive integers. The average with respect to

this distribution will be denoted by d̄ . For each of the N variable nodes, the target degree is

drawn i.i.d. fromΛ, and each variable node is labeled with that many sockets. The purpose of

a socket is to receive at most one edge from a check node, and all edges must be connected to

sockets on the variable-node side. The number of sockets D will thus be a random variable

which concentrates around N d̄ .
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The check nodes and the connections are placed in the following way: As long as there are at

least K free sockets (initially all sockets are free), add one new check node connected to K free

sockets chosen uniformly at random, without replacement. The chosen sockets then become

occupied. The final number of check nodes that are added is exactly bD/K c. Note that there

could be at most K −1 unconnected sockets at the end of this process, so the resulting variable

node degrees will not in general match the target degrees. However, we will be interested in

the limit N →∞, where the distribution of the resulting degrees matchesΛ.

2.1.2 Coupled ensembles

Intuitively, a coupled ensemble LDPC(N ,L,W,Λ,K ) consists of a number L of copies of a

simple ensemble, with interaction between copies allowed, in the sense that a check node can

be connected to nodes in neighboring copies. In this chapter it will be more convenient to use

a circular chain of positions, as illustrated in Figure 2.1. More precisely, the variable nodes are

distributed into L groups, which lie on a closed circular chain. The positions are indexed by

integers modulo L, and we employ the set of representatives {1, . . . ,L}. Later we will also refer

to open-ended chains (i.e. those introduced in Section 1.8.3, and which are actually useful in

practice).

Figure 2.1 – Schematic illustration of the construction of a circular spatially coupled random
model with L = 8 and W = 3. Possible edge locations are shown with dashed lines.

Just as for simple ensembles, each node is assigned a number of sockets drawn i.i.d. from the

distributionΛ. The check nodes, however, are restricted in the following way: they are only

allowed to connect to sockets whose positions lie inside an interval - called window - of length

W somewhere on the chain, i.e. there exists a position z such that all edges are connected to

nodes at positions z, z +1, . . . , z +W −1. As before, check nodes have degree K , and they are

sampled as follows: first choose a window uniformly at random, then for each edge, choose a

position uniformly and i.i.d. inside that window, and then choose uniformly a free socket at

that position. In case there are no free sockets in the chosen position, the process stops. Note

that it is possible to stop with a lot of empty sockets in the chain: for example in a very unlucky

case, the same position might be picked all the time. However, with high probability, only a

small number of sockets will be free at the end of the process, and it is easy to see that in the

limit where N →∞ the rate of the code only depends on d̄ and K . The steps in this process

will be described in more detail in Section 2.4.
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Note that the ensembles described so far are built in two stages: first the vertices are allotted a

number of empty sockets, which is determined by sampling from the distributionΛ, thereby

establishing the configuration pattern; in the second stage, the edges of the graph are con-

nected to free sockets in the configuration pattern. It will be sometimes helpful to separate

the two stages and start at the place where the configuration pattern is already given.

This is a good place to observe that the cases where W = 1 and W = L yield instances of the

single ensemble in the following ways: for W = 1, there are L different, non-interacting copies

of LDPC(N ,Λ,K ), whereas for W = L, the whole ensemble is equivalent to LDPC(N L,Λ,K ),

up to O(
p

N ) missing check nodes.

The reader will notice that the ensemble we have just constructed is circular and thus the

coupling chain has no boundaries. It is a boundary that is responsible for all the useful

properties of LDPC codes like threshold saturation. We simply find it easier to work with the

circular ensemble and we shall see later that we can add a boundary condition with little cost.

2.1.3 Graphical notation

Traditionally, the Tanner graph is pictured as a bipartite graph, with edges linking the variable

nodes to the check nodes. Here we will consider an equivalent rendering, namely as a hyper-

graph, where the variable nodes are the only nodes, and check nodes correspond to K -ary

hyperedges, i.e., K -tuples of variable nodes.

The check constraints have fixed even degree K , and for each check constraint a we denote

by a1, . . . , aK the variables involved in the constraint (the ordering is not important, since we

are using this notation to describe a single graph). Notation that captures more details will be

introduced in Section 2.4 in order to specify exactly the ensemble of codes. For the moment, it

suffices to describe a code by listing all of its check constraints, which in turn encode which

variables they bind. Thus, abusing a bit the standard terminology, we will say that a graph G

is just a K -tuple of check constraints of the kind a = {a1, . . . , aK }. Note that this notation now

allows for repetitions of variables inside check constraints. In general we will use the letters a,

b, c, . . . to describe check constraints, u, v , . . . to describe variable nodes, and G , G̃ G ′, . . . to

describe graphs.

2.2 Outline of the results

2.2.1 Comparison of entropies for coupled and simple ensembles

We will set up the machinery of the interpolation method and direct it at proving the follow-

ing theorem (for the proof, see Section 2.7), which states that the entropies of the simple

LDPC(N ,Λ,K ) and coupled LDPC(N ,L,W,Λ,K ) ensembles are asymptotically the same in

the large N limit.
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Theorem 4. Let L, W , K be integers such that L ≥ W ≥ 1 and K is even and let Λ be a degree

distribution with finite support. Then for a fixed BMS channel we have

lim
N→∞

1

N
EG :LDPC(N ,Λ,K )H(X |Y ) = lim

N→∞
1

LN
EG :LDPC(N ,L,W,Λ,K )H(X |Y ), (2.1)

and in particular the two limits exist.

Given a smooth family of channels ordered by degradation and parameterized by h in the

whole interval [0,1], there exists a value hMAP (called the MAP threshold) such that for channel

parameters below this value, the scaled average conditional entropy (quantities of the kind

appearing on both sides of (2.1)) converges to zero in the infinite block length limit, while

above this value it is positive.

More formally, for the two kinds of LDPC ensembles, we define the MAP threshold in the

following manner:

hMAP = inf

{
h : lim

N→∞
1

N
EG :LDPC(N ,Λ,K )H(X |Y ) > 0

}
,

hL,W
MAP = inf

{
h : lim

N→∞
1

N L
E

G : LDPC
(N ,L,W,Λ,K )

H(X |Y ) > 0

}
.

These definitions usually employ liminf and are meaningful even when the existence of limits

is not guaranteed. However, in our case, the existence of limits is part of the result of Theorem

4. The theorem further implies that these two thresholds are equal.

Corollary 5. With the same assumptions as in Theorem 4, we have hMAP = hL,W
MAP.

2.2.2 Proof of the Maxwell construction

As our first application of the equality of MAP thresholds for the coupled and uncoupled

ensembles, we will prove the Maxwell conjecture for a large class of degree distributions in the

uncoupled case.

Let us recall the statement of the conjecture. The BP-GEXIT function characterizes asymptoti-

cally in the large N limit an ensemble of codes over a smooth and degraded family of channels

and thus is a function of the channel parameter h (see (2.6) for a definition). Supposing now

that h varies from 0 to 1, we define the area threshold hArea as that value where the integral of

the BP-GEXIT curve over the interval [hArea,1] equals the design rate 1− d̄/K . The Maxwell

construction conjectures that

hArea = hMAP. (2.2)

For more details see [RU08] (Chap 4, Sec. 4.12, pp. 257).

The following was recently proved in [KRU12]. For a large class of LDPC ensembles, if we
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consider the corresponding coupled ensemble, then the BP threshold (and hence, by threshold

saturation, the MAP threshold) is very well approximated by hArea (of the simple ensemble) in

the following sense:

hArea −O(
1

W 1/2
) ≤ hL,W,open

BP ≤ hL,W,open
MAP ≤ hArea +O(

W

L
). (2.3)

The threshold hL,W,open
MAP is the one of an open coupled chain, which is constructed such that

the positions on the chain are from {1, . . . ,L}, but the windows do not “wrap around”. Instead

we add pseudo-variable nodes at positions −W +2, . . . ,−1,0 and L +1, . . . ,L +W −1, whose

input bits will always be fixed to +1. The windows are of the form {z, . . . , z +W −1}, where

z =−W +2, . . . ,L.

The only difference in the average conditional entropy of the open and closed chains comes

from the check nodes that lie at the boundary of the chain. The proportion of these check-

nodes is O(W /L). We will later prove in Lemma 12 that the contribution of a single check

constraint to the conditional entropy is O(1), and so by a repeated application, the difference

of the entropies obtained by removing all check constraints on the boundary is O(W /L), which

goes to 0 as L →∞. As a consequence,

lim
L→∞

hL,W,open
MAP = lim

L→∞
hL,W

MAP.

Thus by (2.3) and Corollary 5, we deduce that in fact hMAP equals hArea, by first taking the limit

L →∞ and then W →∞. This completes the proof that the Maxwell construction is indeed

correct for all those LDPC ensembles for which (2.3) is known.

2.2.3 Proof of the equality of the MAP- and the BP-GEXIT curves above the MAP
threshold

Using the equality of the MAP and area thresholds for uncoupled ensembles, we can derive

more properties of uncoupled codes. The ensemble over which we average in the rest of this

section will be exclusively LDPC(N ,Λ,K ). We first prove the following lemma establishing

continuity in the channel parameter for the average per-bit conditional entropy as N →∞.

Also, in order to make clear that the channel output depends on the channel entropy parameter

h, we will write the former as Y (h).

Lemma 6. Given an ensemble LDPC(N ,Λ,K ) as in Theorem 4 and a smooth family of BMS

channels ordered by degradation and parameterized by h, the quantity limN→∞ 1
NEG

[
H(X |Y (h))

]
is a convex function of h and is Lipschitz continuous with Lipschitz constant 1.

Proof. That the limit exists and the function is well defined is a consequence of Theorem 4.

We use the fact that for any binary linear code the function 1
N H(X |Y (h)) is differentiable and
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its derivative is increasing with values between 0 and 1 [M0́6, Theorem 5.2, Corollary 5.1], so it

is convex and Lipschitz continuous with Lipschitz constant 1. Taking the average over the code

ensemble preserves these two properties. Passing to the limit N →∞, Lipschitz continuity

and convexity are also preserved, because they are both defined by non-strict inequalities,

which are maintained under the pointwise limit.

The MAP-GEXIT function g MAP is defined [MMRU09, Definitions 3 and 6] as

g MAP(h) = limsup
N→∞

1

N
EG

[
d

dh
H(X |Y (h))

]
. (2.4)

We lower bound the area below g MAP above the MAP threshold as follows:∫ 1

hMAP

g MAP(h)dh =

=
∫ 1

hMAP

(
limsup

N→∞
1

N
EG

[
d

dh
H(X |Y (h))

])
dh

(a)≥ limsup
N→∞

∫ 1

hMAP

1

N
EG

[
d

dh
H(X |Y (h))

]
dh

(b)= lim
N→∞

(
1

N
EG H(X |Y (1))− 1

N
EG H(X |Y (hMAP))

)
(c)= R −0 = R, (2.5)

where in step (a) we use the Fatou Lemma (note that the integrand on the r.h.s. is bounded),

in step (b) we integrate and then use the existence of limits provided by Theorem 4 to replace

limsup with lim, and in step (c) we observe the following. For the first term, since at h = 1

the channel is completely useless, we have that H(X |Y (1)) = H(X ), which when scaled by N

is nothing else than the rate of the code; in the large blocklength limit, the average of this

over the ensemble coincides with the design rate R = 1− d̄/K . For the second term, note that

limN→∞ 1
N EG

[
H(X |Y (h))

]= 0 which follows from the of continuity in h obtained in Lemma

6.

The BP-GEXIT curve is defined [MMRU09, Definition 6] by

g BP(h) = lim
`→∞

limsup
N→∞

1

N
EG

[∑
v

g BP
G ,v (h)

]
, (2.6)

g BP
G ,v (h) = ∂H(Xv |Yv (hv ),Φ`v (h))

∂hv

∣∣∣
hv=h

, (2.7)

whereΦ`v (h) is the BP estimate of Xv based on a computation tree of depth `. An equivalent

form is given by Equation (C.4) in Appendix C.2.

37



Chapter 2. LDPC codes achieve capacity: Spatial coupling as a proof technique

It is known that (see Lemma 9 in [MMRU09])

g MAP(h) ≤ g BP(h), for all h ∈ [0,1]. (2.8)

The area threshold mentioned before is defined as the solution harea to the equation∫ 1

harea

g BP(h)dh = R. (2.9)

Using then the equality of the MAP and area thresholds established in the previous subsection

for the above-mentioned class of LDPC codes and using (2.5) and (2.9) we obtain

∫ 1

hMAP

(g BP(h)− g MAP(h))dh ≤ R −R = 0. (2.10)

The positivity of the integrand (cf. (2.8)) entails the following result.

Theorem 7. Given an LDPC(N ,Λ,K ) ensemble and a smooth family of channels indexed by

the entropy parameter h, the two curves g MAP and g BP are equal almost everywhere above the

MAP threshold, as long as the MAP threshold is at least h̄ defined in Lemma 10 below.2

The discussion of (2.5) also entails the following result, which will be useful subsequently.

Among others, this allows us to exchange the liminf with lim in the expression for the MAP

threshold.

Proposition 8. The limit limN→∞ 1
NELDPC(N ,Λ,K )H(X |Y (h)) exists for all values of h, and fur-

thermore∫ 1

h0

g MAP(h)dh = R − lim
N→∞

1

N
ELDPC(N ,Λ,K )H(X |Y (h0)),

where R = 1−Λ′(1)/K is the rate of the code.

2.2.4 Exactness of the replica-symmetric formula

The previous result, namely the equality of the BP and MAP GEXIT curves, allows us to settle

another conjecture. We can prove that under certain conditions (above the MAP threshold)

the potential functional [KYMP12], [KYMP14], also called replica-symmetric functional, is in

fact equal to the conditional entropy H(X |Y ). Note that while the former is a quantity derived

by message passing, the latter is related to combinatorial optima. Also, unlike GEXIT curves,

these quantities make sense already without considering the channel as part of a smooth

family and thus in a sense appear to be more natural.

2The value h̄ will always be under the MAP threshold as long as degree are large enough.
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In order to define the potential functional (or replica-symmetric functional), we need to

introduce the density evolution operations. The beliefs that are transmitted during BP have

distributions that are symmetric measures.

We restrict ourselves now to regular LDPC ensembles with left and right degrees dl and dr ,

respectively. However, since the derivation holds more generally, we will work with the poly-

nomialsΛ,P and λ,ρ as left and right degrees from the node and from the edge perspective,

respectively. For us, they take the simple forms λ(u) = udl−1, ρ(u) = udr −1, Λ(u) = udl and

P (u) = udr .

The density evolution (DE) equation can then be written as x`+1 = c~λ~(ρ�(x`)). The fixed

point that can be reached by starting with x0 =∆0 will be called forward DE fixed point and

will be denoted by xc.

We are now ready to define the replica-symmetric functional, which depends on the channel c

and the message density x as

Φ(x,c) =− L′(1)

R ′(1)
H(R�(x))−L′(1)H(ρ�(x))

+L′(1)H(x�ρ�(x))+H(c~L~(ρ�(x))). (2.11)

For a more complete exposition of this formalism, the identity of the potential functional and

the replica symmetric functional properties, and various properties of the two operations ~
and �, please refer to [KYMP14] (note that Φ(x,c) is equal to minus the function U (x,c) of

reference [KYMP14]).

The replica-symmetric formula conjectures that

lim
N→+∞

1

N
ELDPC(N ,dl ,dr )H(X |Y (c)) = sup

x∈X
Φ(x,c). (2.12)

We prove this conjecture for standard regular LDPC codes with large enough, but fixed, dl , dr

and also require even dr . The proof of this conjecture is a consequence of Theorem 9 below.

This theorem states that in a region of channels above the MAP threshold characterized by a

regularity condition, this functional evaluated at the right fixed point (which is algorithmic

in nature as it comes from message passing) is equal to the conditional entropy, which is

combinatorial in nature.

To express the regularity constraint, we first define the region of channels above the MAP

threshold:

C0 = {c ∈X : lim
N→∞

1

N
ELDPC(N ,dl ,dr )H(X |Y (c)) > 0}.

Ideally, we would like our result to hold in the whole of this region, but, unfortunately, we need
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to add a Lipschitz type of restriction. Let

C1 =
{
c0 ∈X : there is δ> 0 s.t. for all c,c′ ∈ [c0,∆0]

we have that

∣∣∣∣B(xc−xc′)

B(c−c′)

∣∣∣∣≤ 1

δ

}
, (2.13)

where B(·) is the Bhattacharyya functional defined by (C.5), and

[c0,∆0] = {c : c= pc0 + (1−p)∆0, for some p ∈ [0,1]}.

Note that the regions C0 and C1 depend on the parameters of the code.

Theorem 9. Given the regular ensemble LDPC(N ,dl ,dr ) with even dr , for any channel c ∈
C0 ∩C1 we have that

Φ(xc,c) = lim
N→∞

1

N
ELDPC(N ,dl ,dr )H(X ,Y (c)).

As the proof is fairly technical, we defer it to Appendix C.2.

We show now that for large degree pairs, C0 ⊆C1, i.e. the theorem holds everywhere above the

MAP threshold. This is made precise by Lemma 18 from [KRU12], reproduced below, which

states that all channels with entropy above a value that goes to 0 as the right degree increases

are in C1.

Lemma 10. Let dl and dr be fixed numbers. There is a constant3 h̄ depending only on the

degrees dl and dr satisfying

h̄ < e1/4
p

2

d 1/4
r

(2.14)

such that {c ∈X : H(c) > h̄} ⊆C1.

We can readily see that for large degrees the right hand side of condition (2.14) approaches 0.

Also, for large degrees, the MAP threshold approaches capacity and is bounded away from 0

uniformly for all channel families. This implies that C0 ⊆C1 and hence C0 ∩C1 =C0.

We believe that the theorem remains true without this technical condition. Proving that this is

indeed the case is an interesting open problem.

Let us conclude this paragraph by remarking that the above considerations imply the replica-

symmetric formula (2.12) for large enough dl ,dr and where dr is an even number. From

3An expression for h̄ can be found in Lemma 18 of [KRU12].
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[Mon05] we know that (for any BMS channel and dr even)

lim
N→∞

1

N
ELDPC(N ,dl ,dr )H(X |Y (c)) ≥ sup

x∈X
Φ(x,c). (2.15)

Note first that for c ∉C0 we have by definition limN→∞ 1
NELDPC(N ,dl ,dr )H(X |Y (c)) = 0. Thus

0 ≥ sup
x∈X

Φ(x,c) ≥Φ(∆∞,c) = 0, (2.16)

so (2.12) is satisfied for c ∉C0. Now consider c ∈C0. Whenever C0 ∩C1 =C0 (e.g when dl ,dr

are large enough) Theorem 9 implies

Φ(xc ,c) = lim
N→∞

1

N
ELDPC(N ,dl ,dr )H(X |Y (c)) ≥ sup

x∈X
Φ(x,c) ≥Φ(xc ,c) (2.17)

and hence again (2.12) holds for c ∈C0.

2.3 Some useful lemmas

We present in this section two results that are quite general in nature, meaning that they are

true for any linear code. They already appear in [Mon05, Mac07], but we reproduce short

proofs here in order to make the exposition self-contained. The symmetry of the channel is a

property that seems indispensable for the proofs in the rest of this paper, and we will need it

in the form of the Nishimori Identity. The channel used for transmission needs to be BMS,

symmetry being the crucial ingredient.

Lemma 11 (Nishimori Identity). Fix a graph G (no constraints on the check node degrees needed

here) and a channel c ∈X . For any odd positive integer m we have

Eh
[〈σb〉m]= Eh

[〈σb〉m+1] , (2.18)

where b = (b1, . . . ,b J ) is a vector of variable nodes (which need not belong a check constraint) of

arbitrary length, and σb =σb1 · · ·σb J .

Proof. We will assume here that the measure c does not contain mass at infinity. Extending to

the general case can easily be done by considering the point mass at +∞ separately. Because of

channel symmetry, the measure defined by ds(h) = e−hdc(h) has the property ds(h) = ds(−h).

Using the memoryless property of the channel, the l.h.s. of (2.18) can be written as

Eh
[〈σb〉m]= ∫

〈σb〉m
∏

v∈V
ehv ds(hv ). (2.19)

We now observe that due to channel symmetry the above quantity is preserved under the
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transformation hv 7→ hvτv , σv 7→σvτv , if τ is a codeword. As a matter of fact, the transformed

HLLRs hvτv are those received when the codeword τ was transmitted, instead of the all-+1

codeword.

We now perform an average over all codewords τ, obtaining

Eh
[〈σb〉m]= 1

|C (G)|
∑

τ∈C (G)

∫
〈σbτb〉m

∏
v∈V

ehvτv ds(hv ),

where C (G) is the set of all codewords.

Note that the Gibbs bracket above averages over σ, and thus we can safely take τb out of the

bracket. Since m is odd, τm
b = τb . Next we use the definition of Gibbs measure (equation

(1.19)) to replace
∑
τ∈C (G) eh·(τ−1)τb with Z (G)〈τb〉. We obtain

Eh
[〈σb〉m]= 1

|C (G)|
∫

Z (G)〈σb〉m+1
∏

v∈V
ds(hv ). (2.20)

Expanding Z (G) into
∑
λ∈C (G) eh·λ we get

Eh
[〈σb〉m]= 1

|C (G)|
∑

λ∈C (G)

∫
〈σb〉m+1

∏
v∈V

ehvλv ds(hv ).

A second gauge transformation hv 7→ hvλv , σv 7→σvλv allows us to cancel all λ factors, since

λ2
v = 1. All |C (G)| terms in the sum are equal, so the expression simplifies to

Eh
[〈σb〉m]= ∫

〈σb〉m+1
∏

v∈V
ehv ds(hv ), (2.21)

and thus the claim follows.

The next result quantifies the effect on log Z of one extra check node added to some general

linear code. This is the main reason why we chose to work with log Z instead of the conditional

entropy.

Lemma 12. Given any graph G and an additional check constraint b, we have that

Eh
[
log Z (G ∪b)− log Z (G)

]=− log2+ ∑
r∈2Z+

Eh
[〈σb〉r

G

]
r 2 − r

.

In particular, − log2 ≤ log Z (G ∪b)− log Z (G) ≤ 0.

The second part of the statement shows that the contribution of one extra check node gives

only a finite variation in log Z , and it turns out to be very useful for the cases where we need to
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show that two similar ensembles have log-partition functions that are asymptotically identical.

Proof. Using the definition of the partition function Z (G ∪b), we are able to write

Z (G ∪b)= ∑
σ∈X V

eh·(σ−1) 1+σb

2

∏
a∈G

1+σa

2
= Z (G)

〈
1+σb

2

〉
G

.

Then log Z (G ∪b)− log Z (G) = − log2+ log(1+〈σb〉). Expanding the logarithm into power

series, we obtain

log(1+〈σb〉) =
∑
j≥1

(−1) j+1

j
〈σb〉 j . (2.22)

We now use the Nishimori Identities (Lemma 11) with Eh
[〈σb〉 j−1

]= Eh
[〈σb〉 j

]
, for even j .

This allows us to merge each odd-index term with the following term, proving the claim.

Let us now analyze the terms of the form 〈σb〉r
G that appear in the last lemma. For this

purpose, we will work with the product measure µ⊗r . The measure space here is the one of

r -tuples (σ(1), . . . ,σ(r )), where σ( j ) ∈X V . Because the product measure is just the measure of

r independent copies of the measure (henceforth called replicas), it is easy to check that

〈σb〉r
G =

〈
σ(1)

b · · ·σ(r )
b

〉⊗r

G
.

The ⊗r sign at the top right of the bracket is just to remind us that we deal with the product

measure µ⊗r . Since this is evident from context, we will drop this sign in the future. We are

then able to restate the last lemma as follows.

Corollary 13. Given any graph G and an additional check constraint b, we have that

Eh
[
log Z (G ∪b)− log Z (G)

]=− log2+Eh

∑
r∈2Z+

〈
σ(1)

b · · ·σ(r )
b

〉
G

r 2 − r
. (2.23)

2.4 The configuration model

In this section we introduce the language needed to describe and dissect all the kinds of

ensembles that we need.

We assume that the configuration pattern introduced in Section 2.1.2 is already fixed, i.e.,

it has been properly sampled at an earlier stage, and there are at least N d̄(1−N−η) and at

most N d̄(1+N−η) sockets at every position of the chain. By a straightforward application of a

Azuma-Hoeffding type of inequality and the union bound for all positions, this happens with
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high probability4 in the first stage, as long as 0 < η< 1
2 . The fixed underlying configuration

pattern is always of the coupled kind, i.e., there are L groups of N variable nodes each; the

simple kind will arise from the conditions W = 1 and W = L.

Given the fixed configuration pattern, each variable node v has a target degree d(v), and

exactly d(v) sockets numbered from 1 to d(v). Given a socket s, let var(s) denote the variable

node that it is part of; by σs we understand σvar(s). Let pos(v) denote the position of the

variable v , with the notation extending to sockets in the obvious manner: pos(s) = pos(var(s)).

We also set S to be the set of all sockets and put Sz = {s ∈ S : pos(s) = z}, i.e. the set of sockets at

a particular position.

Check nodes will connect to sockets, so a check node a will have the form of a K -tuple

(a1, . . . , aK ), where the components a j are sockets. Note that the ordering of the edges leaving

the check-node matters, so the check also “stores” this information. We say that a check node

a has type α= (α1, . . . ,αK ) if α j = pos(a j ), for all 1 ≤ j ≤ K . In other words, the type records

the positions of the variable nodes to which the check node a connects.

We now consider random types, of which there are three kinds that are important to us:

• The connected random type. This random type is uniformly distributed over the set of

all LK possible types. We denote this distribution by conn.

• The disconnected random type. This type is uniformly distributed over the set of all

types whose entries are all equal, i.e., types of the form (z, z, . . . , z). We denote this

distribution by disc.

• The coupled random type. We choose a position z uniformly at random and the result

is a type uniformly distributed over the set of all types whose entries lie in the set

{z, . . . z +W −1}. We denote this distribution by coup.

We now define the positional occupation vector occα of a type α to be a vector whose z entry

counts the number of occurrences of position z in type α. As an example, if K = 6 and

α= (1,3,2,5,1,3) and assuming there are L = 5 positions, then occα = (2,1,2,0,1).

Given a multiset of types Γ (a set of types where duplicates can appear), we extend the

definition of the positional occupation vector to occΓ =∑
α∈Γoccα.

We call a multiset of types m-admissible if occΓ(z) ≤ |Sz |−m, for all positions z. In other words,

an m-admissible set of types Γ ensures that there exists a graph G whose check constraints

match one-to-one the types in Γ (we say that G is compatible with Γ), and in addition, there

are at least m sockets at each position that remain free. We will also use the word admissible to

mean 0-admissible. One should think about the multiset of types as being a kind of “pre-graph”,

where only the positions of the edges are decided, but not yet the actual sockets.

4By with high probability we mean that the event in question happens with probability 1−o(1/poly(N )). The
parameters L and W are considered constant for this purpose.
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The random graph generated by an admissible multiset of types Γ is simply given by the

uniform measure over all graphs that are compatible with Γ. To sample this random graph,

the algorithm is as follows: start with the empty graph; for each type α= (α1, . . . ,αK ) in the

multiset Γ (the order is immaterial), pick distinct ai uniformly at random from the free sockets

at position αi , and add check constraint (a1, . . . , aK ) to the graph. We will use this check-

generating procedure often, so we will say that check constraint a is chosen according to

distribution ν(α,G) that depends on the type α, and the part G of the graph that is already in

place. Let Bα be the set of check constraints that are compatible with α and are connected to

free sockets (sockets that do not appear in G). Note that a socket must never be used twice, so

they are chosen without replacement. Then ν(α,G) is the uniform measure on Bα.

We also trivially extend this definition to the case of a random graph generated by a random

multiset of types. This latter random object will be typically a list of independent random

types of one of the three kinds connected, disconnected and coupled. For the sake of precision,

in case the multiset of types is not admissible (by this we mean m-admissible, where m will be

fixed later), we define the generated random graph to be the empty one.

We now introduce a quantity inspired from statistical physics that plays an important role

in what comes next, namely the positional overlap functions. Fix a configuration graph G ,

a channel realization h, and the number r of replicas of the measure µG ,h . Let Fz ⊆ Sz be

the set of free sockets at position z (free sockets being those that do not appear in any check

constraint of G). The positional overlap functions Qz , indexed by a position z, are defined by

Qz (σ(1), . . . ,σ(r )) = 1

|Fz |
∑

s∈Fz

σ(1)
s · · ·σ(r )

s . (2.24)

The next statement describes the link between the overlap functions and the replica averages

introduced by Lemma 12.

Lemma 14. Given a number m > K 2, a fixed channel realization, a fixed graph G whose

associated type set is m-admissible and fixed type α, we have

Ea:ν(α,G)
〈
σ(1)

a · · ·σ(r )
a

〉
G =

〈
K∏

j=1
Qα j(σ

(1), . . . ,σ(r ))

〉
+O

(
1

m

)
. (2.25)

Proof. The left hand side is nothing else than the average over all possible a that are compatible

with the type α and connect to free sockets. In other words,

1

|Bα|
∑

a∈Bα

〈
σ(1)

a · · ·σ(r )
a

〉
. (2.26)

The goal is to somehow factorize the sum, but the fact that sockets are not replaced makes

it a bit harder. Suppose that, contrary to our current model, free sockets are allowed to be
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chosen with replacement, that is, it is possible to have ai = a j for i 6= j . Let B ′
α be the set of

all (pseudo-)check constraints that are compatible with α, and where sockets are allowed to

appear multiple times. Then B ′
α can be written as a product:

B ′
α = Fα1 × . . .×FαK ,

where the set Fz is the set of free sockets at position z. The idea is now that we can replace Bα

with B ′
α in the average (2.26) without losing too much, while gaining the ability to factorize

the sum.

The relation between the two, which is proven in Appendix C.1, is

1

|Bα|
∑

a∈Bα

〈
σ(1)

a · · ·σ(r )
a

〉= 1

|B ′
α|

∑
a∈B ′

α

〈
σ(1)

a · · ·σ(r )
a

〉+O

(
1

m

)
. (2.27)

Now we are in a better position, since on the r.h.s. any entry ai is chosen independently of the

others. We rewrite the sum over B ′
α in the following way:

1

|Fα1 |
∑

a1∈Fα1

· · · 1

|FαK |
∑

aK ∈FαK

〈
σ(1)

a1
· · ·σ(1)

aK
· · ·σ(r )

a1
· · ·σ(r )

aK

〉
.

Taking the bracket outside and factorizing, we obtain〈(
1

|Fα1 |
∑

a1∈Fα1

σ(1)
a1

· · ·σ(r )
a1

)
· · ·

(
1

|FαK |
∑

aK ∈FαK

σ(1)
aK

· · ·σ(r )
aK

)〉
,

which we can identify as the bracketed product of positional overlap functions on the right

hand side of (2.25).

Lemma 15. Let G be a graph whose type multiset is m-admissible, and fix the channel realiza-

tion h. Then the following inequalities hold:

E α:conn
a:ν(α,G)

〈
σ(1)

a · · ·σ(r )
a

〉
G ≤E α:coup

a:ν(α,G)

〈
σ(1)

a · · ·σ(r )
a

〉
G +O(1/m), (2.28)

E α:coup
a:ν(α,G)

〈
σ(1)

a · · ·σ(r )
a

〉
G ≤E α:disc

a:ν(α,G)

〈
σ(1)

a · · ·σ(r )
a

〉
G +O(1/m). (2.29)

Proof. The claim follows by Lemma 14 if we manage to show the following two inequalities:

Eα:conn
〈
Qα1 · · ·QαK

〉≤Eα:coup
〈
Qα1 · · ·QαK

〉
, (2.30)

Eα:coup
〈
Qα1 · · ·QαK

〉≤Eα:disc
〈
Qα1 · · ·QαK

〉
, (2.31)

where the dependence of the positional overlap functions on the spin systems σ( j ) has been

dropped in order to lighten notation.
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We rewrite the quantities above as follows:

Eα:conn
〈
Qα1 · · ·QαK

〉= 1

LK

∑
(α1,...,αK )

∈[L]K

〈
Qα1 · · ·QαK

〉=〈(
1

L

∑
z∈[L]

Qz

)K 〉
, (2.32)

Eα:coup
〈
Qα1 · · ·QαK

〉= 1

L

∑
z ′∈[L]

1

W K

∑
(α1,...,αK )

∈{z ′,...,z ′+W −1}K

〈
Qα1 · · ·QαK

〉

=
〈

1

L

∑
z ′∈[L]

(
1

W

z ′+W −1∑
z=z ′

Qz

)K 〉
, (2.33)

Eα:disc
〈
Qα1 · · ·QαK

〉= 1

L

∑
z∈[L]

〈Qz · · ·Qz〉=
〈

1

L

∑
z∈[L]

QK
z

〉
. (2.34)

In the above expressions we assume Qz is defined for all integer z using the relation Qz ′ =Qz ′′

whenever z ′ ≡ z ′′( mod L). Both inequalities (2.30) and (2.31) are proved by an application of

Jensen’s Inequality using the convexity of the function x 7→ xK , for even K .

2.5 The interpolation

We now move a bit further and consider random ensembles of graphs. These are obtained

in the following way: first we prescribe the numbers of random types of each kind that we

want, i.e. how many types should be connected, disconnected and coupled. Afterwards, the

random types are sampled according to the distributions prescribed. Finally the graph is

chosen uniformly to match the multiset of types, in the spirit of the previous section.

We use the notation G :
{

t1×coup
t2×disc

}
to say that G is sampled in the way outlined above, where t1

and t2 are the number of random types of the coupled kind and disconnected kind, respectively.

Of course, we could specify any combination of the three kinds, conn included.

Now we need to set the number of check nodes in the ensemble. There are two conflicting

constraints we would like to satisfy: first, the set of types needs to be admissible with high

probability — so that the sampled graph exists in the form we want; second, the number of

free sockets that remain should be small, in the sense that the proportion of free sockets needs

to vanish in the limit.

The average amount of check nodes needed to use all available sockets is (ideally) N Ld̄/K .

However, there is a fluctuation (±N 1−ηd̄ at each position) of the amount of available sockets

and it might not be possible to connect actual check nodes to all sockets (for example, because

of window constraints). As a consequence, we choose the actual size of the graph (by this we

mean the number of multi-edges, i.e. check nodes) to be T = N Ld̄(1−N−γ)/K , so in case the

graph is admissible there will be O(N 1−γ) free sockets left at each position. The exponent γ

is arbitrary, as long as 0 < γ< η. The next lemma confirms that by using this value for T , the

resulting set of types is admissible with high probability.
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Lemma 16. Let α1, . . . ,αT be random types, each drawn from a distribution that is either conn,

disc or coup (could be different for each type). Then with high probability (more precisely

1−O(exp(−κN 1−2γ)), for some positive constant κ the resulting multiset of types is d̄ N 1−γ/2-

admissible.

Proof. The plan is the following: fix a position z, and show that the number of appearances

of z as entries of α1, . . . ,αT exceeds T K /L + d̄ N 1−γ/2 with a very small probability. Next, by

the union bound over all positions z, we upper bound the probability that the graph is not

d̄ N 1−γ/2-admissible and the lemma is proved.

We concentrate on the above claim, and define X t to be the number of entries in αt equal to z,

for 1 ≤ t ≤ T . Clearly the X t are independent, bounded and their expectation equals K /L (the

choice of distribution of αt is immaterial as long as it is one of conn, disc or coup). Then by

Hoeffding’s Inequality, the probability that
∑

X t deviates from its expectation T K /L decays

very fast. More exactly,

P

[
T∑

t=1
X t ≥ T K

L
+ 1

2
d̄ N 1−γ

]
≤ exp

(
− d̄ 2N 2−2γ

2K 2T

)
, (2.35)

which proves the claim.

The previous lemma essentially allows us to take the expectation over an ensemble of graphs

without caring too much about non-admissibility. This enables us to prove a the following key

lemma.

Lemma 17. The following two inequalities hold:

Eh,G :{T×conn}log Z (G) ≤Eh,G :{T×coup}log Z (G)+O
(
Nγ

)
, (2.36)

Eh,G :{T×coup}log Z (G) ≤Eh,G :{T×disc}log Z (G)+O
(
Nγ

)
. (2.37)

Proof. We only discuss the first of the two inequalities, since the proof of the other is identical.

We will set up a chain of inequalities, at the ends of which sit the two quantities that we need

to compare. This is the main idea of the interpolation method: finding a sequence of objects

that transition “smoothly” between two objects that can differ significantly. In our case, it is

easily seen that the claim follows if we are able to show that

E
h,G :

{
(t+1)×conn

(T−t−1)×coup

}log Z (G) ≤E
h,G :

{
t×conn

(T−t )×coup

}log Z (G)+O
(
Nγ−1) . (2.38)

The two ensembles involved in inequality (2.36) lie at the endpoints of a chain of T inequalities

of the form above, with t moving from 0 to T −1. The crucial observation here is that the two

ensembles
{

(t+1)×conn
(T−t−1)×coup

}
and

{ t×conn
(T−t )×coup

}
can both be obtained by sampling a graph G̃ from

their common part,
{ t×conn

(T−t−1)×coup
}

and in case G is not null, adding an extra random check
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constraint sampled according to conn and coup, respectively. The plan is to show that the

inequality (2.38) holds also when G̃ is fixed, and then to average over G̃ .

Let us fix m = d̄ N 1−γ/2, and let us first deal with the case when the realization of the ensemble{ t×conn
(T−t−1)×coup

}
is not m-admissible. This event occurs with a very small probability, sub-

exponential according to Lemma 16. Since log Z (G) = O(N ) (according to Lemma 12), the

error obtained by not considering this case is extremely small and fits in the tolerated term

O
( 1

N 1−γ
)
.

Otherwise, G̃ is such that there are at least m free sockets at every position, and we need to

show that

EhE α:conn
a:ν(α,G̃)

log Z (G̃ ∪a) ≤EhE α:coup
a:ν(α,G̃)

log Z (G̃ ∪a).

We subtract log Z (G̃) on both sides and then use Lemma 12 to write the difference of log

partition functions as a linear combination of brackets of the form
〈
σ(1) · · ·σ(r )

〉
G̃ , after which

we can readily apply Lemma 15 and the claim follows.

2.6 Retrieving the original LDPC ensembles

We will now investigate further the connection between the ensembles {T ×conn} and {T ×disc}.

In fact, they are both variants of the uncoupled ensembles introduced in the beginning of

Section 2.1. The first one is very similar to LDPC(N L,Λ,K ), and the second one is similar to L

copies of LDPC(N ,Λ,K ). The only differences that occur are related to the case where there is

a large deviation in the number of sockets generated in the first stage, or when the multisets of

types generated by {T ×conn} and {T ×disc} are not admissible. Also since the first stage of

the ensemble generation, where we obtain the configuration pattern, is the same in all cases,

we condition on the event that the configuration pattern is known and that it satisfies the

condition stated at the beginning of Section 2.4, namely that the number of sockets at each

position is N d̄/K ±O(Nη).

We can easily see that the ensemble {T ×disc}, conditioned on the fact that its realization is

admissible, can be extended to L copies of the simple (i.e. uncoupled) ensemble on N variable

nodes by adding O(N 1−γ) extra check constraints. Thus the scaled log partition function is the

same up to a sub-linear term.

Can we say the same about the ensemble {T ×conn} and the simple ensemble on N L variable

nodes? Yes, but it requires a lengthier argument. Let us look closer at the latter. This ensemble

is not generated using types (since positions play no role here), but we can still count the

occurrences of various types that appear in it. There are exactly LK different types, and the

next proposition estimates the probability that a particular random check constraint in the

simple ensemble LDPC(N L,Λ,K ) has a certain type. To see the crux of the problem, in the
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{T ×conn} ensemble, the types are generated uniformly. Whereas in the simple ensemble, a

position with considerably more occupied sockets than other positions has a lesser chance to

be picked.

We will proceed by transforming the ensemble LDPC(N L,Λ,K ) (the simple ensemble) into

{T ×conn} (the connected ensemble) through only a small amount of check additions and

deletions. Let Xα be the number of check nodes of type α that occur in a realization of

the simple ensemble. For every type α, let Yα be a random variable sampled according to

Bin(T,L−K ). If Xα > Yα, then exactly Xα−Yα check nodes of type α selected uniformly at

random from the existing ones are deleted from the simple ensemble. Otherwise, exactly

Yα−Xα check nodes of typeα are chosen uniformly at random from all possible combinations

of compatible free sockets and inserted in the graph without replacement. All insertions of

check nodes must occur after all deletions have been performed (the order of the types is

important). If at any stage there are no free sockets at a particular position to choose from, it

just means the underlying multiset of types (which here is given by the numbers Yα) is not

T-admissible, and we produce the trivial code.

In order to bound the number of check node insertions and deletions, we compute the

first and second moments of Xα−Yα. The total number of check nodes M in the simple

ensemble is fixed for our purposes (depends only on the configuration pattern), so we can

write Xα =∑
a Ra

α, where Ra
α is the indicator random variable of the event that check node a

has type α, and the sum ranges over all M check nodes.

Proposition 18. The expectation and variance of Xα−Yα are given by

E[Xα−Yα] =O(N 1−γ), (2.39)

Var[Xα−Yα] =O(N 2−η). (2.40)

Proof. We determine first the probability ERa
α that a check node a has type α. This event

happens if and only if all sockets ai to which a is connected are placed at positions αi . For

this, we need to evaluate the proportion of free sockets at each position (all sockets are free

initially, because w.l.o.g. we can say that a is the first check node to be allocated). The number

of sockets at any position is between N d̄(1−N−η) and N d̄(1+N−η); the number of occupied

sockets is at most K − 1 (from previous edges). Thus, the probability that pos(ai ) = αi is

lower-bounded by

N d̄(1−N−η)−K

N Ld̄(1+N−η)
= 1

L
−O(N−η),

and, likewise, upper-bounded by

N d̄(1+N−η)

N Ld̄(1−N−η)
= 1

L
+O(N−η).
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2.6. Retrieving the original LDPC ensembles

It then follows that

ERa
α =

(
1

L
+O(N−η)

)K

= 1

LK
+O(N−η). (2.41)

For the second moments we need E
[

Ra
αRb

β

]
, i.e. the probability that a and b have types α and

β at the same time. The reasoning is essentially similar to the previous case, only now there

are 2K edges to connect and at most 2K −1 occupied sockets (by symmetry we can arrange

that a and b are the first two check nodes to be allocated). Then we have

E
[

Ra
αRb

β

]
=

(
1

L
+O(N−η)

)2K

= 1

L2K
+O(N−η). (2.42)

By summing over all check nodes, we getEXα = M
LK +O(N 1−η) and after elementary calcula-

tions, VarXα =O(N 2−η). Since Yα is binomially distributed, and using T = M +O(N 1−γ), we

have

EYα = T

LK
= M

LK
+O(N 1−γ),

and also

VarYα = T
1

LK

(
1− 1

LK

)
=O(N ),

which is much smaller than VarXα.

To show that the amount of inserted and deleted check nodes is small, we employ now the

Chebyshev Inequality, which, for some value of the parameter ζ to be fixed shortly, reads

P
[∣∣Xα−Yα−O

(
N 1−γ)∣∣≥ NζO

(
N 1− η

2

)]
≤ 1

N 2ζ
.

We fix the values ζ= η
4 and γ= η

2 (these choices are somewhat arbitrary), and simplifying we

obtain

P
[
|Xα−Yα| ≥O

(
N 1− η

4

)]
≤ N− η

2 .

Using the union bound over all LK possible types, the bound on the probability that the

number of insertions and deletions is sub-linear in the way depicted above remains O
(
N−η/2

)
.

In case the the number of insertions and deletions is too large, we use the O(N ) we use the

fact that log Z (G) is always O(N ) (see Lemma 12). This proves the following lemma.
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Lemma 19. Transmitting over a BMS channel, we have

Eh,G :LDPC(N L,Λ,K )log Z (G) ≥Eh,G :{T×conn}log Z (G)+O
(
N 1− η

4

)
.

2.7 The large N limit

This section wraps up the proof of Theorem 4. The main ingredient is the content of Lemma

17, which can be written as

Eh,G :{T×conn}log Z (G)−O
(
N 1−γ)

≤Eh,G :{T×coup}log Z (G)

≤Eh,G :{T×disc}log Z (G)+O
(
N 1−γ) . (2.43)

Using the results from the previous section on the comparison with the simple ensembles and

scaling everything by N L, we obtain

1

N L
Eh,G :LDPC(N L,Λ,K )log Z (G)−O

(
N−γ)

≤ 1

N L
Eh,G :{T×coup}log Z (G)

≤ 1

N
Eh,G :LDPC(N ,Λ,K )log Z (G)+O

(
N−γ) . (2.44)

The next step is to take the N →∞ limit, and in case it exists for the outer terms, which we are

about to show, we can apply the “sandwich rule” to obtain Theorem 4. Note that the ensemble

appearing in the middle is what we call LDPC(N ,L,W,Λ,K ) — we are of course not obliged to

pick it as such: we could do another level of processing in the style of the previous section;

however the current form is known to fulfill the Maxwell conjecture, so we need not go any

further.

To show that the limit

lim
N→∞

1

N
Eh,G :LDPC(N ,Λ,K )log Z (G)

exists, we use the following result, whose proof can be found in the Appendix of [BGT10].

Lemma 20 (The modified superadditivity theorem). Given α ∈ (0,1), suppose a non-negative

sequence {aN ,N≥1} satisfies

aN1+N2 ≥ aN1 +aN2 −O((N1 +N2)α) (2.45)

for every N1, N2 ≥ 1. Then the limit limN→∞ aN
N exists (it may be +∞).

The claim then follows by setting the sequence aN to be the negative of the sequence we study
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(since log Z (G) are negative). It remains to be shown that superadditivity indeed holds.

Since this part is a somewhat simpler variation of the interpolation we have already seen,

we only present the proof sketch. We consider a coupled ensemble consisting of only two

positions(L = 2) and interpolate between the cases W = 1 (disconnected case) and W = 2

(connected case). The novelty is that the number of variables at the first and second positions

differ, they are N1 and N2, respectively. For the connected case, when edges from check

nodes are connected, we do not pick the position at random, but rather weigh the choice by

ν1 = N1
N1+N2

and ν2 = N2
N1+N2

, respectively.

The only difference appears in the reasoning of Lemma 15, where the types are not uniformly

distributed anymore. The types are now binary strings of length K , with the two symbols

appearing denoting the position, one having weight ν1, the other ν2. The weight of the type is

the product of the weights of the symbols it contains. If α is a type, let ν(α) be the weight of

that type. Then Equations (2.32) and (2.34) become

Eα:conn
〈
Qα1 · · ·QαK

〉= ∑
α∈{1,2}K

ν(α)
〈
Qα1 · · ·QαK

〉= 〈
(ν1Q1 +ν2Q2)K 〉

,

Eα:disc
〈
Qα1 · · ·QαK

〉= ∑
z∈{1,2}

νz
〈
Qα1 · · ·QαK

〉= 〈
ν1QK

1 +ν2QK
2

〉
,

and clearly the lemma remains true in this case as well.

2.8 Final remarks

The present analysis can be extended with almost no change to arbitrary check-node degree

distributions whose generating polynomial P (x) =∑
K≤0ρK xK is convex for x ∈ [−1,1]. Experi-

mental evidence suggests that even this condition can be relaxed, but new ideas seem to be

required to extend the proofs. A possible route would be to show self-averaging properties for

overlap functions, which would allow to use the convexity of x 7→ P (x) for x ≥ 0, which holds

for any degree distributions (see [KM09] for a related approach).
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3 Threshold saturation in the coloring
of random graphs

The purpose of this chapter is to investigate threshold saturation for random CSPs. We will

concentrate on random Q-COL for various reasons: it is well studied, it exhibits a rich set of

thresholds and it exhibits a phase where the problem is believed to be hard (unlike XOR-SAT

for example). These traits are shared with random K -SAT, and much of what we present can

be readily applied for that and other random CSPs. However, there are a number of differences

between coloring and formula satisfiability which we will mention along the way.

We proceed by deriving the location of the dynamic, condensation, freezing and colorability

thresholds using the 1-RSB cavity method. The values of the thresholds are typically computed

using population dynamics to represent random samples of messages. This approach can be

generalized to spatially coupled coloring, working in a similar manner to density evolution in

the case of LDPC codes. We observe the following:

• The dynamic threshold αd of coupled random coloring moves to the condensation

threshold αc . This can be interpreted as the disappearance of clustering for α<αc .

• The freezing phenomenon does not occur for α<αs in coupled random coloring. For

coupled planted coloring, the freezing threshold moves up, based on a one-dimensional

coupled recursion.

• The freezing threshold in fact coincides with the coloring threshold for coupled random

coloring. This is suggested also by a proof that the coupled version of the RSB equations

at m = 0 (i.e. the survey propagation equations) do not have non-trivial fixed points for

α<αs , whereas they do for α>αs .

This chapter is organized as follows: Sections 3.1, 3.2 are introductory in nature and serve to

set up the general 1-RSB framework of the cavity method. The equations for the special cases

m = 0 and m = 1 are presented in Sections 3.3 and 3.5. Up to here everything is part of the

well-established picture that emerged in statistical physics. We use the occasion to also write

the equations for coupled systems. The main contributions are located in Sections 3.4, 3.6 and

55
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3.7. Section 3.4 presents the lower bound on the freezing threshold of the coupled planted

graph. Section 3.6 shows how for the SP threshold (freezing at m = 0) saturates to the coloring

threshold for the coupled 1-RSB equations. Finally, Section 3.7 presents numerical evidence of

the placement of thresholds at general values of the Parisi parameter m. Section 3.8 presents

the conclusions and some open problems.

3.1 Preliminaries and the replica-symmetric approximation

Since we will only be concerned with coloring in this chapter, we simplify the notation in

that we identify the binary constraints with the edges of the graph G ; moreover the vertices of

this graph will be denoted by u, v ,. . . , rather than i , j , . . . . Colors will be identified with the

integers in [Q] = {1, . . . ,Q}. We will typically denote individual colors with q , q ′, etc.

A constraint (u, v) is characterized by the factor ψu,v = 1− (1− e−β)1(σu =σv ). Note that in

the zero temperature limit β→∞ the constraints become “hard” and the partition function Z

simply counts the number of valid colorings.

We will work with the expected free entropyE 1
N log Z . In this context, using hard constraints

may result in expected free entropy equal to −∞ because of rare events. It is customary in

the physics literature to first take N →∞ and then β→∞. In simulations one can safely set

β =∞; in some places we find it more convenient to work at β =∞, but the results can be

easily extended to arbitrary β. To make things clear, we will make β explicit as a parameter

whenever we work at nonzero temperature.

Methods of statistical physics have revealed that for this problem there are a number of distinct

phases, for different values of α. Some of these predictions have been further substantiated

by rigorous mathematical proofs, as mentioned in the introduction. We summarize here the

picture that has emerged from the cavity method of statistical physics applied to coloring.

• The RS phase. For α<αd there is an exponential number of valid colorings, which are

distributed in the whole space [Q]N with no clear structure underneath. In this phase an

MCMC process wandering in the space of valid colorings by flipping a constant number

of colors at each time step would mix very fast (in time polynomial in N ).

• The dynamic-RSB phase. For αd <α<αc , the number of valid colorings is still expo-

nential, and moreover the exponential order can be obtained by analytic continuation

in α from the RS phase. However the valid colorings are clustered, in the sense that

an MCMC process will get stuck in a set of valid colorings that we call a cluster. Note

that this is a very informal definition of clusters. In fact the clusters are likely to not be

completely separated form each other, but rather they are connected by thin bridges

that slow the dynamics. Both the number of clusters and the number of valid colorings

in a cluster are exponential (in N ), and a coloring chosen uniformly at random is with

high probability likely to be found in one of the exponentially many clusters of size of
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3.1. Preliminaries and the replica-symmetric approximation

the highest exponential order.

• The static-RSB phase. For αc <α<αs , there are indications that the number of solu-

tions is still exponential, however the clusters of maximal size are sub-exponential in

number, and they contain almost all valid colorings. The exponential order of the overall

number of solutions is no longer given by the analytic continuation from the RS phase.

• The uncolorable phase. For αs <α, the graph has with high probability no valid color-

ing.

The values αd , αc , αs are the dynamic, condensation and sat/unsat phase transitions, respec-

tively. We first give now a rough overview of how they emerge.

The regime where the computation of Z is easiest is when 0 < α< 1. In this case the graph

is w.h.p. a forest and the computation is straightforward: we have that Z = QN (1− (1−
e−β)/Q)αN /2. Thus in this regime, the free entropy density is given by

Φ= logQ + α

2
log(1− 1−e−β

Q
), (3.1)

which is analytic in α. In fact, the free entropy continues to have this expression well beyond

α= 1; using the cavity method it is apparent that the first point of non-analiticity is αc , the

condensation phase transition. In particular this formula remains true in the dynamic RSB

phase, which exhibits clustering. Recently, this fact has been established in a mathematically

rigorous manner [BCOH+14].

We now describe the RS equation of the cavity method for coloring. In the case of a tree, a

message µu→v is a Q-tuple {µu→v (q)}q∈[Q], whose meaning is the following. Remove node v

from the graph and consider the remaining subtree containing u. Then µu→v (q) represents

the proportion of colorings of that subtree in which u is colored with q . The messages are

thus elements of the Q −1-dimensional simplex, which we denote by ∆Q . We will refer to

elements of∆Q as marginals, and we will use bold face font for them throughout this chapter.

We denote the vertices of ∆Q by η1, . . . ,ηQ , so that ηq (q ′) = δqq ′ . The uniform marginal η=
is the one that assigns equal proportions to all colors, i.e. η=(q) = 1/Q. The recursive rule to

compute the messages on a tree is given by

µu→v (q) =
∏

v ′∈∂u\v (1− (1−e−β)µv ′→u(q)

z({µv ′→u}v ′∈∂u\v )
), z({µi }i ) = ∑

q∈[Q]

∏
i

(1− (1−e−β)µi (q)).

(3.2)

From these messages one obtains the approximation to the local marginals of the Gibbs

measure as

µu(q) =
∏

v ′∈∂u(1− (1−e−β)µv ′→u(q)

z({µv ′→u}v ′∈∂u)
). (3.3)
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Because colors can be permuted, the solution space exhibits color symmetry, so at least in

the case of trees, all messages will be the equal to η=. We term this set of messages the RS

solution. 1 Even when the graph is not a tree, the RS solution is still a valid one for the message

passing equations in (3.2), though it might not be unique. The existence of other solutions sets

in at the dynamic threshold αd . Insight into this phenomenon is obtained using the one-step

replica symmetry breaking method (1-RSB).

The Bethe formula gives the RS approximation of the free entropy

ΦRS(β) = 1

N

{∑
u

log z({µv ′→u}v ′∈∂u)− ∑
u∼v

log ze (µv→u ,µu→v )

}
, (3.4)

with ze (µ,µ′) = 1− (1−e−β)
∑

q∈[Q]
µ(q)µ′(q), (3.5)

where z(·) is given in (3.2). Here
∑

u∼v is the sum over edges {u, v} of the graph.

One can easily check that by plugging the RS fixed point in the above formula we retrieve

(3.1).2 Even though we did not really need them here, the two types of partition function

components z and ze will be useful when we introduce the 1-RSB approach.

3.2 The 1-RSB approach

Experimental evidence points to the fact that for α>αd , valid colorings form clusters. There

are at least two ways to think about these, and it is not yet rigorously shown that they corre-

spond to the same structures.

• Consider the graph of valid colorings, and connect two colorings if they differ in o(N )

vertices. In this interpretation, clusters correspond to the connected components of this

graph, or at least are internally highly connected subsets which are poorly connected

between themselves. This way to picture clusters is the easier to formalize of the two,

and parts of the picture have been made rigorous.

• Clusters correspond to fixed points of the message-passing equations (3.2). The size

of each cluster would be given by the Bethe free entropy at that particular fixed point,

which we call internal free entropy of the cluster. It is still helpful to think of the clusters

as disjoint sets of valid colorings, in which case the internal free entropy would be just

the logarithm of the number of colorings in the cluster. This picture is much harder to

establish mathematically, but in practice it allows us to obtain numerical estimates for

the number and size of clusters.

1The fact that the RS solution consists of all messages equal to the uniform marginal is not true in other types of
random CSPs, such as k-SAT where each clause has a sign for every literal it contains.

2For problems that do not exhibit this type of spin symmetry such a closed form may not exist, and then the RS
solution is estimated by population dynamics and plugged into (3.4).
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3.2. The 1-RSB approach

To derive the 1-RSB equations, we will work with the second “picture” in mind. As N grows

large and for fixed φ> 0, the number of clusters with internal free entropy density around φ

will typically be exponential, so let Σ(φ) be its exponential order, which we will call complexity.

That Σ(φ) concentrates will naturally also be part of the assumptions.

3.2.1 Sampling clusters of the right size

Let us first describe the relationship between the total free entropyΦRSB and the complexity

function. In our “picture” the number of clusters is an integer; so in case Σ(φ) is negative we

consider that there are in fact no clusters at all with internal free entropy φ. One could think

that in this case, the real value of Σ(φ) is −∞, and let us assume that it is indeed so, in other

words the Σ(φ) is either non-negative or −∞. In this case we are able to write at finite N

eNΦRSB .= ∑
clusters C

eNφC .=
∫ ∞

φ=0
eN (φ+Σ(φ)) dφ. (3.6)

By taking the limit N →∞ we see that

ΦRSB = sup
φ∈[0,∞)

(
φ+Σ(φ)

)
. (3.7)

If we sampled from a distribution on clusters where each cluster, call it C , is weighed by its

size i.e. by eNφC , then we would asymptotically almost surely sample a cluster of internal

energy φ?, where φ? is the value of φ that maximizes the supremum, and which we assume

to be unique. Let us call such clusters typical. This distribution would be written down as a

graphical model (here called the 1-RSB model). Assuming that there are no large correlations
3, we would use message passing to compute the total and internal free energies. Let us call

the messages of the 1-RSB model meta-messages, lest confusion arise between these and the

much less complex RS-messages.

In practice, the situation is more complicated for the following reason. Because of the “picture”

that we keep to the back of our minds, this distribution on clusters corresponds to a distribu-

tion on fixed points of the RS message passing equations. However, we are required to make a

simplification of the way we do the meta-message passing, which we now briefly describe. It

is computationally very expensive to simulate message passing on actual graphs in the 1-RSB

model, because we would need graphs of very large size and because the meta-messages will

be in themselves distributions on the Q −1-simplex. We are thus forced to choose a different

approach, where we do not keep track of the messages going in and out of every node in the

graph, but rather use the fact that the graph is random and so the neighborhood of a random

node of the graph is asymptotically a tree. We then compute the distribution of meta-messages

sent to a typical node whose neighborhood is chosen at random from the actual distribution

of neighborhoods in a large graph. We have managed then to trade keeping meta-messages

3experimentally it was verified that on the meta-model such correlations do not happen for the values of α we
are interested in
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Chapter 3. Threshold saturation in the coloring of random graphs

on a graph with keeping a distribution of meta-messages, i.e. working with distributions of

distributions. In practice this will be dealt with using population dynamics.

However, this simplification comes at a price. When sampling the random graph, it might be

the case that very rarely (exponentially rarely) clusters appear, which have a really high internal

free energy. Then these high internal free energies, to which we would in the previous setting

have assigned a complexity of −∞, get a now a finite negative complexity. This unwanted

negative complexity is able to change the supremum in (3.7) and the value of φ?. What we

want is to treat the case of negative Σ(φ) as if Σ(φ) were −∞. To do this, we limit the scope

of φ in (3.6) and (3.7) to the subset where Σ(φ) is non-negative, getting (3.7). Assuming the

function Σ is convex, three cases arise:

• There exists φ? with Σ(φ?) > 0 such that the supremum is attained at φ?. In case the

function Σ is differentiable, this means that dΣ
dφ |φ? = −1; If we used the weighing of

clustering by their size, as described before, we would sample clusters of internal energy

φ?. This case corresponds to the dynamic RSB phase, i.e. for α<αc .

• There is no φ as above, but there are still φ for which Σ(φ) is positive. By running the

population dynamics in the 1-RSB model we will effectively sample meta-messages that

correspond to an internal energy φ with Σ(φ) < 0, i.e. clusters that appear extremely

rarely. In this case the real supremum φ? is attained at the value φ? for which Σ(φ?) = 0,

which we will need to find. This case corresponds to the static (condensed) RSB phase,

i.e. for αc <α<αs .

• For all φ, Σ(φ) is negative. Then the graph is uncolorable w.h.p., which happens for

α > αs . It may still be the case that clusters of solutions appear rarely, in a fashion

governed by the now negative complexity function Σ.

There is in fact a method to compute the whole complexity curve, which proves especially

useful in the static RSB phase. We have assumed so far a distribution of clusters in which all

were weighted by their size. Looking at the exponential orders, all clusters of internal energy

φ counted as φ+Σ(φ), and we were seeking those that count most. Let us now imagine an

experiment where clusters would count as mφ+Σ(φ), where m is a parameter that we tune as

we wish. Then the typical clusters that we sample from such a distribution would be those

whose internal free entropy φ maximizes mφ+Σ(φ). Changing the parameter m, which we

will call the Parisi parameter, enables us to sample clusters of various sizes and compute the

complexity for various values of φ.

• In the dynamic RSB phase (αd < α < αc ), using m? = 1 will ensure that we sample

clusters of size φ?.

• In the static RSB phase (αc <α<αs), however, using m = 1 would sample clusters that

appear very rarely; the correct value m? ∈ (0,1) is such that those clusters of internal

entropy φ? are sampled.
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• Choosing m = 0 allows us to not take the size of clusters into consideration when

sampling. The clusters will be sampled uniformly, but there is a value of the internal

entropy for which the clusters are the most numerous, so asymptotically almost surely

we will sample clusters with exactly that internal entropy. Thus choosing m = 0 enables

us to compute to the highest value of Σ. If this value is positive, the graph is w.h.p.

colorable, while if it is negative, it is w.h.p. uncolorable. Thus the value of α for which

the maximum value of Σ(φ) is 0 marks the colorability threshold αs .

3.2.2 Meta-message passing equations

We now exhibit the general way in which to sample clusters for different values of parameter

m. The right distribution on clusters C is given by

�(m)(C ) = eN mφC

Z (m)
RSB

, (3.8)

where Z (m)
RSB is a normalization factor. It can be easily checked that for m? this is related to

the total free entropy: Z (m?)
RSB = eN m?ΦRSB . For this reason we introduce the notation Φ(m)

RSB =
1

N m Z (m)
RSB.

We use our asserted equivalence of clusters with fixed points of message-passing (the “picture”).

We begin first by deriving the meta-message-passing equations on a fixed graph. The clusters

are characterized by the set of fixed point messages {µu→v } and the internal entropy φC is in

fact given by the Bethe formula, i.e. (3.4). Writing down explicitly the internal entropy and the

fixed point constraints, (3.8) becomes

�(m)({µu→v }) = 1

Z (m)
RSB

∏
u

z({µv→u}v∈∂u)m

∏
u∼v

ze (µv→u ,µu→v )m

∏
u→v

δ(µu→v = f({µv ′→u}v ′∈∂u\v )), (3.9)

where f :∆∗
Q →∆Q is the message processing rule of (3.2).

There are three type of factors in (3.9), which involve sets of variables of the form {µv→u}v∈∂u ,

{µv ′→u}v ′∈∂u\v ∪ {µu→v } and {µv→u ,µu→v }, respectively. In the first phase, let us first write

down meta-message passing rules that use joint marginals on pairs of messages that travel

on the same edge in opposite direction. The meta-message passing rules will be derived in

such a way that they are exact when the underlying graph is a tree, so let us assume for now

that the graph is indeed a tree. Thus, �u→v (µu→v ,µv→u) is the meta-message from u to v ,

representing the marginal on the pair (µu→v ,µv→u) when all the fixed point constraints at v

and the z factor of incoming messages into v are removed.

61



Chapter 3. Threshold saturation in the coloring of random graphs

We thus have

�u→v (µu→v ,µv→u) '
∫

{µv ′→u }v ′∈∂u\v

∫
{µu→v ′ }v ′∈∂u\v

∏
v ′∈∂u\v

d�v ′→u(µv ′→u ,µu→v ′
)·

· z({µw→u}w∈∂u)m ze (µu→v ,µv→u)−m
∏

w∈∂u
δ(µu→w = f({µw ′→u}w ′∈∂u\w )), (3.10)

where the sign ' is used to denote the equality of the two measures on the two sides, up to a

normalization constant which is chosen so that the left side is a probability measure.

It is possible to simplify these meta-messages by marginalizing further over the messages

running in opposite directions, i.e. �u→v (µu→v ) = ∫
dµv→u�u→v (µu→v ,µv→u). This is because

we can get rid of µv→u in the formula above by observing that

z({µw→u}w∈∂u) z−1
e (µu→v ,µv→u)δ(µu→v = f({µv ′→u}v ′∈∂u\v )) =

=
∑

q∈[Q]
∏

w∈∂u\v (1−µw→u(q))(1−µv→u(q))

1−∑
q∈[Q]µ

u→v (q)µv→u(q)
δ(µu→v = f({µv ′→u}v ′∈∂u\v ))

= z({µv ′→u}v ′∈∂u\v )δ(µu→v = f({µv ′→u}v ′∈∂u\v )). (3.11)

The other deltas that appear are neutralized by integration over the outgoing messages other

than µu→v , so that we obtain the much simpler form

�u→v (µu→v ) '
∫ ∏

v ′∈∂u\v
d�v ′→u(µv ′→u)z({µv ′→u}v ′∈∂u\v )mδ(µu→v = f({µv ′→u}v ′∈∂u\v )).

(3.12)

The total free entropy densityΦRSB can be computed using the Bethe functional of the meta-

messages where the Parisi parameter takes the value m?. More generally, the formula forΦ(m)
RSB

is

Φ(m)
RSB = 1

N m

∑
u

log
∫ ∏

v∈∂u
d�v→u(µv→u)z({µv→u}v∈∂u)m−

− 1

N m

∑
u∼v

log
∫

d�u→v (µu→v )d�v→u(µv→u)ze (µu→v ,µv→u)m . (3.13)

The internal entropy φ can be obtained in principle in two ways. If we had the possibility, we

could sample a cluster/message-passing-fixed point at random from the distribution (3.9),

and then compute the Bethe functional of that fixed point. This being beyond our means, we

resort to something slightly different, namely compute the Bethe entropy using local pieces of

typical fixed points: take each node, sample incoming messages using our graphical meta-

model and compute the expected log z of those messages; similarly, sample messages that
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travel in opposite directions on an edge and compute the expected log ze . We would obtain

φ(m) = 1

N m

∑
u

∫ ∏
v∈∂u d�v→u(µv→u)z({µv→u}v∈∂u)m log z({µv→u}v∈∂u)m∫ ∏

v∈∂u d�v→u(µv→u)z({µv→u}v∈∂u)m
−

− 1

N m

∑
u∼v

∫
d�u→v (µu→v )d�v→u(µv→u)ze (µu→v ,µv→u)m log ze (µu→v ,µv→u)m∫

d�u→v (µu→v )d�v→u(µv→u)ze (µu→v ,µv→u)m
.

(3.14)

There is an alternative way to obtain the formula above. Let us viewΦ(m)
RSB andφ(m) as functions

of m. Then taking the derivative of mΦ(m)
RSB = mφ(m) +Σ(φ(m)) we get

d

dm

(
mΦ(m)

RSB

)
=φ(m) +m

dφ(m)

dm
+ dΣ

dφ

∣∣∣
φ(m)

dφm

dm
=φ(m),

where in the last step used that dΣ
dφ

∣∣∣
φ(m)

=−m. We can then check (3.14) by taking the derivative

w.r.t. m in (3.13).

Values for the complexity function can then be obtained using the relation

Σ(φ(m)) = m(Φ(m)
RSB −φ(m)).

All the meta-messages are elements ofM(∆Q ), the set of probability measures on∆Q , usually

shortened toM. We will typically denote the elements ofM by blackboard-type fonts.

3.2.3 The mean-field form

We analyze equations such as (3.12) by considering meta-messages as random variables drawn

from a distribution that we need to find.

To be able to write the distributional equation in a compact form, let F(m) :Md →M be the

1-RSB message passing rule with Parisi parameter m defined by

F(m)(�1, . . . ,�d )(B) =
∫
∆d

Q

(∏d
i=1 d�i (µi )

)
1{f(µ1, . . . ,µd ) ∈ B}z(µ1, . . . ,µd )m∫

∆d
Q

(∏d
i=1 d�i (µi )

)
z(µ1, . . . ,µd )m

, (3.15)

for any measurable subset B of∆Q .

We are seeking distributional fixed points that are invariant under the 1RSB message passing

rule, i.e., probability measures P onM that satisfy

P =Ed

∫
dP (�1) · · ·dP (�d )δF(m)(�1,...,�d ). (3.16)

In the case of general m, this fixed point equation is investigated using a two-level population
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dynamics approach, in which we approximate the meta-messages by a large pool of sample

marginals, themselves being collections of samples from∆Q . The fixed point equation (3.16)

can be significantly simplified in the cases m = 1 and m = 0, in which case one level of

population dynamics will suffice. We will treat these cases separately.

The averaged total RSB free energy density and the averaged free energy density per cluster

can be computed using4

Φ(m)
RSB = 1

m
Ed

∫ d∏
i=1

dP (�i ) log
∫ d∏

i=1
d�i (µi )z(µ1, . . . ,µd )m−

− α

2m

∫
dP (�1)dP (�2) log

∫
d�1(µ1)d�2(µ2)ze (µ1,µ2)m . (3.17)

φ(m) = 1

m
Ed

∫ d∏
i=1

dP (�i )

∫ ∏d
i=1 d�i (µi )z(µ1, . . . ,µd )m log z(µ1, . . . ,µd )m∫ ∏d

i=1 d�i (µi )z(µ1, . . . ,µd )m
−

− α

2m

∫
dP (�1)dP (�2)

∫
d�1(µ1)d�2(µ2)ze (µ1,µ2)m log ze (µ1,µ2)m∫

d�1(µ1)d�2(µ2)ze (µ1,µ2)m
. (3.18)

In the case of spatially coupled graphs, there will be a distribution Pz at each position along

the chain. The fixed point equation becomes

Pz =Ed

∫
dQz (�1) · · ·dQz (�d )δF(m)(�1,...,�d ), where Qz = 1

W 2

W −1∑
w=0

W −1∑
w ′=0

Pz+w−w ′ , (3.19)

and where for z outside {1, . . . ,L} we set Pz to be concentrated on the meta-marginal with

all mass on η=. This latter condition arises at the boundary, where some edges are missing.

These are precisely the ones connecting to positions outside {1, . . . ,L}. The meta-marginal �=
with all mass on η= serves as a neutral element for F(m), in the sense that F(m)(�1, . . . ,�d ,�=) =
F(m)(�1, . . . ,�d ). It then makes sense to ascribe the value �= to all meta-messages coming in

from positions outside {1, . . . ,L}, justifying the value of Pz at these positions. This enables us

to write a formula valid at all positions z ∈ {1, . . . ,L}.

3.2.4 Freezing

Let M̊ be the subset ofM that consists of all probability measures on∆Q that assign nonzero

mass to the set {η1, . . . ,ηQ } . In other words, M̊ contains all possible meta-marginals that assign

a nonzero probability to the vertices of the simplex. We say that freezing occurs if there is a

fixed point P of (3.16) such that P (M̊) > 0. Note that we can only talk about freezing in the

zero temperature case (β=+∞), for positive temperature freezing cannot occur. The freezing

threshold α(m)
f is defined as the point at which freezing sets in. Note that in the RS phase there

is no freezing since the only fixed point of (3.16) is the one concentrated on the meta-marginal

that has all its mass on η=.

4By an abuse of notation we shall be calling these averages alsoΦ(m)
RSB and φ(m).
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3.3. The special case m = 1

As we defined it, freezing is a property of Equation (3.16), and so one can have a freezing

threshold for each value of the Parisi parameter m. Naturally, there is a “real” value of the

freezing threshold, and it is given by α satisfying α=α(m?(α))
f .

According to the clustering “picture”, freezing means that for each cluster there is a number of

vertices that always keep the same color in all colorings of that cluster. In fact, the more usual

way to define freezing is geometrical, in the sense that under a valid coloring a variable is said

to be frozen if it cannot be changed by altering the coloring a small number (o(N )) of vertices

at a time, repeatedly. This definition has the advantage that it makes no reference to clusters

and so is used in proofs. The prediction of α(1)
f can be verified rigorously under the planted

model. However, no rigorous results are known for different values of m.

3.3 The special case m = 1

In order to simplify equation (3.12) we need some way to neutralize the z(·) that is integrated

over. This disappears naturally if instead of meta-messages � we use Q meta-messages �q ,

defined by

�u→v
q (µu→v ) = qµu→v (q)�u→v (µ).

Because of color symmetry, �u→v is a probability distribution. To simplify notation, we

introduce the quantity π(q ′|q) = 1−(1−e−β)δqq′
Q−(1−e−β)

. We have

z(µ1, . . . ,µn)f(µ1, . . . ,µn)(q) = (Q −1+e−β)
∏

i

∑
q ′
π(q ′|q)µi (q ′).

Then the meta-message equations become

�u→v
q (µu→v ) '

∫ ∏
v ′∈∂u\v

d�u→v (µu→v )µu→v (q)z({µv ′→u}v ′∈∂u\v )δ(µu→v = f({µv ′→u}v ′∈∂u\v ))

'
∫ ∏

v ′∈∂u\v
d�u→v (µu→v )

∑
q ′
π(q ′|q)µi (q ′)δ(µu→v = f({µv ′→u}v ′∈∂u\v ))

'
∫ ( ∏

v ′∈∂u\v

∑
q ′
π(q ′|q)d�u→v

q ′ (µu→v )

)
δ(µu→v = f({µv ′→u}v ′∈∂u\v ))

Note that there is no need for a normalization factor, because the final result is already

a probability distribution. We write now the mean-field form for the above, assuming a

distribution Pq (�q ) on the meta-messages �q . However, because of the simple form taken

by the equations, it is enough to work with the averages pq (µ) = ∫
dPq (�q )�q (µ). Then we

obtain

pq (µ) =Ed

∫ (
d∏

i=1

∑
q ′
π(q ′|q)dpq ′(µi )

)
δ(µ= f(µ1, . . . ,µd )). (3.20)
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Chapter 3. Threshold saturation in the coloring of random graphs

Because of the inherent symmetry, allpq for q = 1, . . . ,Q are in fact the same up to permutation

of colors in the following sense: if π̃ is a permutation on [Q], then pπ̃(q) =pq ◦ π̃−1.

3.3.1 Reconstruction on trees

A model for which equations (3.20) are known to be exact is that of reconstruction on trees.

Suppose we are given a rooted tree T of depth D, with all vertices on level D being already

assigned a fixed color. Let µ(T ) be the marginal over the root of the Gibbs measure over

colorings of T . Now we randomize the tree, in that we start a Poisson-Galton-Watson process

of parameterα at the root and stop the generation when it reaches depth D . Then we color the

root with a fixed color q0, and color all nodes recursively, so that if a parent is colored q then

its children will be independently colored with colors q ′ drawn from π(q ′|q).We subsequently

erase all colors except the ones on level D. We now ask what is the distribution of µ(T ) as

D →∞ and T is sampled according to the model above. The answer turns out to be exactly

pq0 [MM06].

The reconstruction model can be easily extended to the spatially coupled scenario. Each node

has an additional label, besides the color. This is a number between 1 and L, corresponding

to the position. The root is assigned a fixed position z0, and the positions z ′ of children are

sampled independently once the parent position z is known by setting z ′ = z +w −w ′, with

w, w ′ drawn i.i.d. uniformly from {0, . . . ,W −1}. Nodes with positions outside {1, . . . ,L} are

deleted from the graph. Then the equivalent of (3.20) is

pq ;z (µ) =Ed

∫ (
d∏

i=1

∑
q ′
π(q ′|q)dqq ′;z (µi )

)
δ(µ= f(µ1, . . . ,µd )), (3.21)

with qq ′;z =
W −1∑

w,w ′=0
pq ′;z+w−w ′ . (3.22)

and pq ;z =η= for all z outside {1, . . . ,L}.

3.3.2 Free entropies and complexity

Because of color symmetry
∫

d�(µ)µ(q) = 1/Q for any q . Hence from (3.17) we obtain

∫
d�1(µ1) · · ·d�d (µd )z(µ1, . . . ,µd ) =Q(1− 1−e−β

Q
)d

∫
d�1(µ1)d�2(µ2)ze (µ1,µ2) = 1− 1−e−β

Q
.
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3.3. The special case m = 1

Using this we immediately see that the total RSB free entropy at m = 1 is equal to the RS free

entropy:

Φ(1)
RSB = logQ + α

2
log(1− 1−e−β

Q
).

The free entropy per cluster is obtained from (3.18) by expanding z(·) and ze (·) and then

replacing P (�)�(µ)µ(q) with pq (µ):

φ(1) =Ed
1

Q

∑
q

∫ d∏
i=1

(∑
q ′
π(q ′|q)dpq ′(µi )

)
log z(µ1, . . . ,µd )−

− α

2Q

∑
q,q ′

π(q|q ′)
∫

dpq (µ1)dpq ′(µ2) log ze (µ1,µ2).

3.3.3 Freezing phenomenon

For m = 1, freezing can be characterized by a particularly simple equation. We need only keep

track of the mass of pq sitting at ηq , since by construction of the measure � there will be no

mass at any of the vertices of∆Q except ηq . Because of color symmetry, this mass will be in

fact independent of q , so we denote it by a number x.

To derive the equation in terms of x, let us perform a random experiment. Given d , q1, . . . , qd ,

sample d independent random variables A1, . . . , Ad as follows: set Ai = qi with probability

x and Ai = ∗ with probability 1− x. Now we draw d from Poisson(α), and draw q1, . . . , qd

independently and uniformly from {1, . . . ,Q} \ {q0}, where q0 is some color fixed apriori. Then

from (3.21) we deduce

x =EdEq1,...,qd Pr
[
all in {1, . . . ,Q} \ {q} are represented among A1, . . . , Ad |q1, . . . , qd

]
.

This can be simplified as follows. The same distribution on d , q1, . . . , qd can be obtained in

a different way. We assume for simplicity that q0 = Q. For each q ∈ {1, . . . ,Q −1}, we draw

dq ∼ Poisson( d
Q−1 ) independently. Set d = d1 + . . .dQ−1 and let q1, . . . , qd be a random shuffle

of d1 times color 1, d2 times color 2 and so on. In this setting, the probability event that all

colors {1, . . . ,Q −1} are represented splits into independent factors, one for each color. Each

factor is in fact the probability that A1, . . . , Adi are not all stars, so it is equal to 1− (1− x)d
i .

Averaging this with respect to the Poisson distribution of di , we obtain 1−eαx/(Q−1), so finally

we conclude that

x = (
1−eαx/(Q−1))Q−1

. (3.23)

The freezing threshold α(m=1)
f is then the infimum over values of α for which the above

equation has a solution in (0,1). As we will see next, the freezing equation at m = 1 has a

rigorous interpretation in case we are studying coloring on a planted random graph. The
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Chapter 3. Threshold saturation in the coloring of random graphs

equivalent equation for spatially coupled coloring is also treated in the next section.

3.4 Freezing on the planted graph

There are alternative ways to introduce freezing on a graph, and in fact these correspond to

what was originally called freezing in the literature. The freezing phenomenon we discussed up

to now is sometimes called rigidity [ZK07]. There is no consensus yet on the formal definition

of freezing, which depends on the notion of “cluster of solutions” employed.

In [Mol12], the author takes the following approach: consider the auxiliary graph whose

vertices are valid colorings and two valid colorings are connected if and only if they lie at

Hamming distance at most `, which is an arbitrary function of N . A vertex u is said to be `-

frozen with respect to some valid coloringσ if τu =σu for all valid colorings τ in the connected

component containing σ of the auxiliary graph. For sufficiently large Q, it is shown that w.h.p.,

when picking a valid coloring uniformly at random (i) if α<α(m=1)
f then at most o(N ) vertices

are ω(N ) frozen, and (ii) if α>α(m=1)
f then a fixed proportion of vertices isΘ(n)-frozen, while

also a fixed proportion of vertices if not ω(N )-frozen. Here ω(N ) is a function tending to

infinity arbitrarily slowly. The fixed proportion of vertices mentioned is related to a solution of

(3.23). Thus, a property on the graph was found that has a threshold exactly at αm=1
f .

The property was first proved in a different setting, that of a planted graph. Based on a result

of [ACO08], under certain conditions the planted graph model is “equivalent” to the original

Erdős-Rényi model; thus certain properties valid for the planted model also hold for the

original one. In [BCOH+14] it was shown that for Q-COL (where Q is large enough) this

equivalence is valid up to the condensation threshold αc .

While the much of the argument provided in [Mol12] is quite technical, the lower bound on

α(m=1)
f (given by point (i) above) for the planted model is in fact quite easy to understand. We

first present the planted model, show why α(m=1)
f is indeed a lower bound on the real freezing

threshold on planted graphs, and then generalize the argument to the coupled version of

planted graphs.

The idea of the planted model is to generate a random graph that contains a specific assign-

ment σ as a valid coloring, and otherwise looks similar to a random graph.

The planted graph G(σ) is the random graph generated in the following manner. Let E be the

set of potential edges, defined as all pairs (u, v) such that σu 6=σv . Add each potential edge to

the graph independently with probability αQ
N (Q−1) . This ensures that σ remains a valid coloring.

If the assignment σ has the property that the number of vertices of each color is roughly

the same, then the number of neighbors of a vertex u picked at random is asymptotically

Poisson(α). There are Q −1 possible colors that each of these neighbors of u can have, and so

the number of neighbors of u of each color is asymptotically Poisson( α
Q−1 ).
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3.4. Freezing on the planted graph

Let T (N ) be a function of N that tends to infinity arbitrarily slowly. We say that a vertex v is

T (N )-free if there is an assignment τwhich differs from σ only on a neighborhood of size T (N )

around v . We show the following lemma.

Lemma 21. If α<α(m=1)
f then with high probability a fraction of 1−o(N ) of all vertices in the

graph G(σ) are T (N )-free.

Note that this is equivalent to the lower bound result in [Mol12], but we present a proof that

can be generalized to the coupled version of planted graphs.

Proof. The neighborhood Nv (G(N ,α;σ); t) is the subgraph induced by nodes at distance

at most t from v . When t is a constant, this neighborhood will be w.h.p. a tree, accord-

ing to Lemma 58 in the Appendix D.1. Moreover, from the same lemma we obtain that

Nv (G(N ,α;σ); t) converges weakly to the Poisson Galton-Watson process T (α, t) defined

below.

The random T (α, t) is obtained in the following manner. We color the root uniformly at

random. For each leaf u colored q , we expand the tree by adding a number of children. For

each color q ′ ∈ [Q] \ {q} we draw a number du,q ′ from Poisson(α/(Q −1)) and create du,q ′ new

children of u and color them using color q ′.

Let xt be the probability of the event Et that there exists no coloring σ′ that coincides with

σ on the set of nodes at distance t from the root, but on the root v itself, they differ. Clearly

x0 = 1, since in that case the color of the root is fixed. To compute recursively xt+1 from xt we

observe the following. The event E t+1 happens if and only if there is a coloring σ′ such that all

neighbors u of the root v colored σ′ can change color in the subtree rooted at u subject to the

condition that nodes situated at distance t from u keep their colors. Note, however, that the

subtree rooted at any node of the tree is distributed as the entire tree. The probability that a

child of the root be able to change color in the subtree with itself as root is then given by 1−xt .

We say that a color q shifts if the root has the property that all its children colored q can change

color in the manner described above. The probability that q shifts is given by

∑
d≥0

1

d !
e−

α
Q−1 (

α

Q −1
)d (1−xt )d = e−

α
Q−1 xt . (3.24)

Since there are Q −1 possible colors that can shift and they are independent, the probability

that there exists none that shifts is given by

xt+1 =
(
1−e−

α
Q−1 xt

)Q−1
. (3.25)

Since α < α(m=1)
f , there are no fixed points of the equation above except 0. Thus, one can

obtain an arbitrarily small xt by increasing t . Since in the graph setting xt (1+o(1)) translates
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Chapter 3. Threshold saturation in the coloring of random graphs

to the ratio of t-frozen vertices, it follows that there is no linear proportion of T (N )-frozen

vertices.

3.4.1 Freezing on the planted coupled graph

The planted coupled graph is defined as follows. There is a number L of positions, indexed

from 1 to L, and N nodes are located at each position. As in the uncoupled case, we are given

a planted coloring σ. It is useful to think of the position of a vertex along the chain as also

“planted”. Thus, each vertex has two labels, a color and a position.

Edges are allowed only between nodes colored differently under σ and which additionally

satisfy the condition that their positions satisfy the window constraint. Each such edge will

appear in the graph independently with probability αQ(W −|w |)
NW 2(Q−1) , where w is the distance in

positions between the nodes. We call a coloring balanced if at each position z ∈ [L] and the

number of nodes colored with each color is N /Q +o(N 2/3).

We define the Galton-Watson tree T
coup

z (α,L,W ; t) in the following way. Create a root and

label it with position z and a random color. At each generation, a leaf u labeled q ′ and z ′

generates for each q ′′ 6= q ′ and z ′′ ∈ {z ′−W +1, . . . , z ′+W −1}∩ {1, . . . ,L} a number of children

drawn from Poisson(α(W −|z−z ′′|)
W 2(Q−10 ).

Because of Lemma 59 in Appendix D.1, we only need examine the tree and not the random

graph. We now maintain a separate probability xt ,z at each position, which represents the

probability that the root of T
coup

z (α,L,W ; t ) will shift when the nodes at distance d have their

color fixed. We obtain the coupled recursion

xt+1,z =
(
1−e−

α
Q−1

1
W 2

∑W −1
w,w ′=0

xt ,z+w−w ′
)Q−1

(3.26)

where we fixed xt ,z to 0 for z outside {1, . . . ,L}.

This is a type of scalar coupled recursion, and it can be analyzed with the tools developed

in [YJNP12]. One can immediately check that the uncoupled recursion (3.25) is a scalar

admissible system is the sense of Definition 1 of [YJNP12], with g (x) = x and f (x,α) given by

the right-hand-side of the recursion.5 The potential, according to Definition 2 of [YJNP12], is

given by U (x) = x2

2 −x +∫ x
0 f (x,α)dx, which can also be written as

U (α)(x) = x2

2
−x + Q −1

α

Q−1∑
q=1

1

q

(
1−e−

αx
Q−1

)q
. (3.27)

We define the coupled freezing threshold αc(m=1)
f as sup{α : U (α)(x) > 0 for all x ∈ (0,1]}. Then

we use Theorem 1 of [YJNP12], which states that for α<αc(m=1)
f and W >O( 1

∆E ) there is no

5This definition seems to require α ∈ [0,1]; however this is not crucial since we can always rescale.

70



3.4. Freezing on the planted graph

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

8.5

9.0

9.5

10.0

10.5

9.267

10.278

Q = 4

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12
40.0

43.0

46.0

49.0

52.0

41.508

50.247

Q = 10

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
9.50e+03

1.05e+04

1.15e+04

1.25e+04

1.35e+04

1.45e+04

1.55e+04

1.0163e+04

1.4953e+04

Q = 1000

Figure 3.1 – The potential U (x) for various values of Q.

fixed point of (3.26) except the trivial one. Here

∆E = min
x∈[u(α),1]

U (x,α), u(α) = sup{x ∈ [0,1] : x > f (x,α)}.

We can then phrase our final result concerning freezing at m = 1.

Theorem 22. Forα<αc(m=1)
f and W >O( 1

∆E ), in the coupled Erdős-Rényi graph G(N ,α,L,W ;σ)

with high probability a fraction of 1−o(N ) of all vertices in the graph G(σ) are T (N )-free. Here

it is enough that T (N ) =ω(1).

See Figure 3.1 for the shape of the function U (x) and the determination of thresholds and

Figure 3.2 to get an intuition why there is not fixed point and no freezing below the coupled

freezing threshold.

The asymptotic analysis of the freezing threshold for the coupled scenario can be found in

Appendix D.2. We obtain

α(m=1)c
f = 2Q logQ +2γQ −2logQ −1−2γ−2e−2γ+o(1),

where γ= 0.5772. . . is the Euler-Mascheroni constant. For comparison, the asymptotic be-

haviour of the other thresholds is (see [ZK07]):

α(m=1)
f =Q logQ +Q loglogQ +1+o(1),

αs = 2Q logQ − logQ −1+o(1),

αc = 2Q logQ − logQ −2log2+o(1).
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Figure 3.2 – We plot the xt ,z for Q = 4, α = 9.1, α = 9.7 and α = 10.3, with L = 64 and W = 4.
The thresholds are located at α(m=1)

f = 9.267 and αc(m=1)
f = 10.279.

(i) The top corresponds to the regime α<α(m=1)
f . Here neither the uncoupled graph or the

coupled graph exhibits freezing.
(ii) The middle corresponds to α(m=1)

f <α<αc(m=1)
f . Here only the uncoupled graph contains

a proportion of frozen vertices.
(iii) The bottom corresponds to αc(m=1)

f <α. In this regime both the coupled and uncoupled
graphs exhibit freezing.
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3.5 The special case m = 0

For the case m = 0, the 1RSB equations can be simplified considerably. We use the convention

00 = 0,which we can justify by thinking of the limit m → 0. Then the term z(µ1, . . . ,µd )m that

appears in (3.15) reduces to 1{z(µ1, . . . ,µd ) > 0}. The meta-message passing equation can

then be expressed using

F(m=0)(�1, . . . ,�d )(B) = Pr{µi∼�i }i∈[d ]

[
f(µ1, . . . ,µd ) ∈ B ∧ z(µ1, . . . ,µd ) > 0

]
Pr{µi∼�i }i∈[d ]

[
z(µ1, . . . ,µd ) > 0

]
= Pr{µi∼�i }i∈[d ]

[
f(µ1, . . . ,µd ) ∈ B |z(µ1, . . . ,µd ) > 0

]
. (3.28)

It is easy to check that all values of µ1, . . . ,µd which are not corners of the simplex ∆Q are

treated in the same way. In other words, it only matters whether the messages µ indicate

frozen variables or not. As for the freezing setting, it only makes sense to consider β =∞.

All this means that instead of working with the meta-marginals � we only need to keep track

of the mass of � resident at the Q corners of the simplex. Moreover, because of symmetry

under color permutations, the masses that sit at each corner are all equal. Let x be the mass

supported at any one corner.

The goal is to find a simplified version of (3.28). We project the quantities µ to variables

ζ ∈ {1, . . . ,Q,∗}, by sending the corners of the simplex to 1, . . . ,Q and the rest to ∗.

The (RS) message passing rule f(µ1, . . . ,µd ) projects down nicely in this alphabet, because it

can be written as

f(ζ1, . . . ,ζd ) =
q ∈ [Q], if for all q ′ ∈ [Q] \ {q} there is i ∈ [d ] such that ζi = q ′,

∗, otherwise.
(3.29)

Also, the event that z(µ1, . . . ,µd ) > 0 can be expressed in terms of ζ1, . . . ,ζd :

1{z(µ1, . . . ,µd ) > 0} =
0, if for all q ∈ [Q] there is i ∈ [d ] such that ζi = q ,

1 otherwise.
(3.30)

We are now able to express F(m=0) in terms of the probabilities x1, . . . , xd that µ1, . . . ,µd are

situated on one particular vertex of the simplex under �1, . . . ,�d , respectively. The goal is to

express the probabilities that arise in (3.28). We let the measurable set B consist of the corner

corresponding to color 1. Then the denominator of (3.28) can be rewritten as

Pr
[
there is q ∈ [Q] such that for all i ∈ [d ], ζi 6= q

]
,

where ζi is uniform on the colors with probability Qxi and equal to ∗ with probability 1−Qxi .
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Chapter 3. Threshold saturation in the coloring of random graphs

For l = 0, . . . ,Q −1, the probability that elements from a fixed set of colors of size l +1 does not

appear among ζ1, . . . ,ζd is
∏d

i=1(1− (l +1)xi ). Using the inclusion-exclusion principle and the

fact that there are
( Q

l+1

)
such sets, we have that the denominator of (3.28) is

g (x1, . . . , xd ) =
Q−1∑
l=0

(−1)l

(
Q

l +1

)
d∏

i=1
(1− (l +1)xi ). (3.31)

The numerator is computed similarly. It is the probability that one fixed color q does not

appear among ζ1, . . . ,ζd , while all the other colors appear. The calculation is performed as

before, except that now the sets of colors consist of one color that is fixed (q) and l others,

which are chosen from the [Q] \ {q} remaining colors. The numerator of (3.28) is then

f (x1, . . . , xd ) =
Q−1∑
l=0

(−1)l

(
Q −1

l

)
d∏

i=1
(1− (l +1)xi ). (3.32)

All this motivates us to define the function φ : [0,1/Q]∗ → [0,1/Q],

φ(x1, . . . , xd ) =
∑Q−1

l=0 (−1)l
(Q−1

l

)∏d
i=1(1− (l +1)xi )∑Q−1

l=0 (−1)l
( Q

l+1

)∏d
i=1(1− (l +1)xi )

, (3.33)

which enables us to simplify the 1-RSB equation (3.16) by tracking only the probability mass

situated in the vertices of∆Q . Just as a side remark, the meta-message passing equations take

the simple form

xu→v =φ
(
{xv ′→u}v ′∈∂u\v

)
, (3.34)

which go in the literature under the name of survey propagation (SP) equations.

The object that corresponds to P (a measure on the space of measures on ∆Q ) is now a

mere probability measure supported on the interval [0,1/Q]. In other words, we are seeking

solutions p ∈M([0,1/Q]) to the equation

p =Ed

∫
[0,1/Q]d

dp(x1) · · ·dp(xd )δφd (x1,...,xd ). (3.35)

Note that the function φ takes any number of parameters. Sometimes it will be convenient

to denote the parameters in a vectorized form, and then we will mention d as a subscript, so

φ(x1, . . . , xd ) could be written as φd (x). The same observation applies for the functions f and

g above.

Regarding the total free entropy and the free entropy per cluster, we can quickly see that the

quantity mφ(m)|m=0 from (3.18) is 0 (using the convention 0log0 = 0). This is consistent with

the intuition gained from the clustering picture, where all clusters are weighted by their size

raised to the Parisi parameter. We can then compute the complexity Σ, which is now equal to
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3.6. Proof of threshold saturation of the SP threshold to the colorability threshold

mΦ(m)
RSB|m=0. Making the dependence of Σ on p explicit, we obtain the functional

Σ(p) =Ed

∫
[0,1/Q]d

dp(x1) · · ·dp(xd ) log g (x1, . . . , xd )

− α

2

∫
[0,1/Q]2

dp(x1)dp(x2) log(1−Qx1x2), (3.36)

which is derived from (3.17) using the fact that Pr[z(µ1, . . . ,µd ) > 0] = g (x1, . . . , xd ) and that

Pr[ze (µ1,µ2) > 0] = 1−Qx1x2.

The freezing condition can then be succinctly described in the case m = 0 as the existence of

distributions p satisfying (3.35), which do not have all mass concentrated at x = 0, i.e. there

exist non-trivial fixed points of (3.35). The point at which non-trivial fixed points appear is in

fact α(m=0)
f . In the literature it is also known as the survey propagation threshold αSP.

3.5.1 Monotonicity properties of the functions f , g and φ

We present here a number of properties ofφd that will be useful in our quest, but whose proofs

we relegate to Appendix E.2.

Lemma 23. The function gd : [0,1/Q]d →R is decreasing in all parameters. Thus it attains the

minimum at gd ( 1
Q , . . . , 1

Q ). There is a constant K such that gd (x) ≥ K
(
1− 1

Q

)d
for all d ≥ 1 and

x ∈ [0,1/Q]d .

Lemma 24. The function φ(x1, . . . , xd ) is increasing in each of its parameters for Q = 3.

We conjecture that the previous lemma in fact holds for all Q ≥ 3 but so far it was not possible

to find a proof for this assertion. However, the rest of this exposition remains true under

the assumption that the previous lemma holds in general. To show this, we will call this

assumption the “increasing φ hypothesis”. All the numerical evidence obtained so far support

this hypothesis for Q > 3.

Lemma 25. Under the increasing φ hypothesis we have that

0 ≤ ∂

∂x1
φ(x1, . . . , xd ) ≤ 2Q

(Q −1)2 and − Q −1

Q
≤ log g (x) ≤ 0,

for (x1, . . . , xd ) ∈ [0,1/Q]d .

3.6 Proof of threshold saturation of the SP threshold to the colorabil-

ity threshold

In this part we present a proof of threshold saturation. The way we define the thresholds them-

selves is not on actual Erdős-Rényi graphs; providing a rigorous proof that these thresholds
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relate in some way to the graphs is still an open problem. We define the threshold positions in

terms of equations (3.35) and the complexity functional (3.36). In this sense, our proofs are

about fixed points of the type (3.35), the potentials that govern them and the relation to their

spatially coupled versions. The technique of the proof is inspired by the potential method

developed in [KYMP14] for LDPC codes.

The proof that we present holds for the case Q = 3. For larger Q, it holds under the increasing

φ hypothesis. Experimentally, this hypothesis seems to be true for arbitrary Q as well, but its

validity remains an open question.

3.6.1 Preliminaries

Let us denote by M the space of probability measures on [0,1/Q]. We call such measures

densities, and let δ0 and δ1/Q be the densities that have all mass on 0 and on 1/Q, respectively.

Then clearly for all p ∈ M it is true that δ0 ¹ p ¹ δ1/Q. We turn M into a metric space by

defining a distance dC : M×M→ R+. Moreover, a partial ordering (called degradation) is

defined on M, satisfying δ0 ¹ p ¹δ1/Q for all p ∈M. The definition of the metric, the ordering

and a number of topological properties of M are described in Appendix E.1.

We introduce the operator F :M→M, F (p) =Ed
∫

[0,1/Q]d dp(x1) · · ·dp(xd )δφ(x1,...,xd ), so that

the solutions of (3.35) are the fixed points of F . It is easy to see that δ0 is always a fixed point

of F , which we call trivial fixed point.

To be able to state the theorem, we need to introduce the coupled recurrence. In the coupled

setting, we will have a distribution pz (hereafter called local density) for each position z on

the coupled chain. There are different ways in which spatial coupling can be done, and

here we assume a model which turns out to simplify the exposition. As usual, the system is

parameterized by two integers, L and W . In this model, both the vertices and the edges are

assigned a position along a chain, in such a way that an edge at position z is connected only

to vertices at positions z −W +1, . . . , z. The vertices are assigned positions between 1 and

2L−W +1.6 Let us place also dummy vertices at positions ≤ 0 and > 2L−W +1. We will allow

edges to connect to such dummy variables, in which case the constraints on these edges will

be thought to be always satisfied. These dummy edges are of course removable, but they are

part of scheme that simplifies the exposition. We add edges in the following way: any edge

at position z (which can be any integer for now) connects uniformly at random to vertices at

positions z −W +1, . . . , z. Note that all edges at positions outside {1, . . . ,2L} will necessarily be

dummy. Furthermore, some ratio of the edges at positions in {1, . . . ,W −1,2L−W +1, . . . ,2L}

will also be dummy, while all edges at the remaining positions are real (i.e. they connect two

vertices). Also part of the scheme will be to work with edge-based local densities, so pz is in

fact associated to the edge position z. The objects of interest will thus be vectors of densities,

denoted by p ∈M{1,...,2L} and called coupled densities or profiles.

6These numbers are chosen purely by convenience, to keep the exposition as uncluttered as possible.
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3.6. Proof of threshold saturation of the SP threshold to the colorability threshold

We extend the notions of distance and ordering to profiles in M{1,...,2L} in a straightforward

manner: we say that p ¹ p′ if for all indices z ∈ {1, . . . ,2L} we have pz ¹ p′
z ; we set dC (p,p′) =∑2L

z=1 dC (pz ,p′
z ). Also, let δ0 and δ1/Q be profiles consisting of 2L copies of δ0 and δ1/Q, respec-

tively. It will be helpful (and consistent with the previous discussion) to think of pz as set to δ0

whenever the index z is outside {1, . . . ,2L}.

The coupled version of the SP operator F is given by is Fc :M{1,...,2L} →M{1,...,2L},

[
Fc(p)

]
z
= 1

W

W −1∑
w ′=0

F
( 1

W

∑W −1
w=0 pz−w ′+w

)
, if z −w ′ ∈ {1, . . . ,2L−W +1}

δ0, otherwise.
(3.37)

To obtain an intuition of why the averaging over the window occurs twice, once before applying

F and once afterwards, we should remember that pz is a density of “messages” along edges

situated at position z. The operation F is vertex-based, so in its inputs, the densities at

index z need to be averages over edge-based densities coming from W positions, namely

z−W +1, . . . , z. Also, the operation F is not performed at dummy vertices, which always “send”

δ0. The output itself needs to be converted back from vertex-based densities to edge-based

densities, so the edge-based density at z is formed as the average of the vertex-based densities

at z, . . . , z +W −1.

We say that a profile p is a fixed point of Fc if Fc(p) = p. The fixed point is said to be nontrivial

if p 6=δ0.

We define the coloring threshold αs by

αs = inf{α ∈ [0,+∞) : inf
p∈M

Σ(α)(p) < 0}.

Note that all quantities that we work with depend on α. When we choose to make this

dependence explicit, we will use a bracketed superscript.

It is now possible to state the main result regarding threshold saturation.

Theorem 26. Under the increasing φ hypothesis, we have the following.

• For α<αs , for a coupled system with sufficiently high length L and window size W , there

is no nontrivial fixed point of the operator Fc. Moreover, F (∞)
c (δ1/Q) =δ0.

• For α>αs , for a coupled system with sufficiently high length L, there exists a nontrivial

fixed point of Fc. Moreover, F (∞)
c (δ1/Q) 6=δ0.

The length and the window size of the coupled chain needed so that the theorem works are

dependent on the complexity gap, defined below. Let T be the subset of M containing those p

for which F (∞)(p) defined as limn→∞ F (n)(p) exists and is equal to δ0.
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We define the complexity gap ∆Σ(α) as

∆Σ(α) = inf
p∈M\T(α)

Σ(α)(p).

Note that this is only defined for the values of α for which T(α) 6=M. We will see soon that

T(α) =M is equivalent to F not having nontrivial fixed points.

Lemma 27. Under the increasing φ hypothesis, for α<αs we have that ∆Σ(α) > 0.

Proof. Since M \T(α) is compact (Lemma 64 in Appendix E.4), there is p ∈ M \T so that

Σ(α)(p) =∆Σα. Suppose, for the purpose of contradiction, ∆Σ(α) ≤ 0, using Lemma 36 which

gives us d
dαΣ

(α)(p) < 0, we conclude that for some α′ ∈ (α,αs) we have Σ(α′)(p) < Σ(α)(p) ≤ 0.

But this contradicts the definition of αs .

Proof of Theorem (26). The two claims of the theorem follow independently from Lemmas 45

and 49. These can be applied once we verify that ∆Σ > 0 in the case α < αs and ∆Σ < 0 for

α>αs , which follow from Lemmas 27 and 37, respectively.

3.6.2 Properties of the operator F

We state here some properties regarding monotonicity and continuity of F and then the

existence of fixed points under some conditions. Proofs are provided in Appendix E.3.

Lemma 28. Under the increasing φ hypothesis, if p ¹ p′, then F (p) ¹F (p′).

Lemma 29. If α≤α′ then Fα(p) ºFα′(p).

Lemma 30. Under the increasing φ hypothesis, the operator F is continuous.

Suppose a density p has the property that p ¹ F (p). Then due to the monotonicity of F ,

the sequence of densities p,F (p),F (2)(p), . . . is itself monotone and thus convergent. It then

makes sense to speak of F (∞)(p) as its limit. The same holds when p ºF (p).

Lemma 31. Let p be such that p and F (p) are degraded one with respect to the other. Then

under the increasing φ hypothesis, F (∞)(p) is a fixed point of F .

It can also be seen immediately that F (∞)(δ1/Q) =δ0 is equivalent to the existence of a non-

trivial fixed point. If equality does not hold, a nontrivial fixed point is supplied by F (∞)(δ1/Q).

If it does hold, then by monotonicity of F we find that δ1/Q º p implies δ0 º F (∞)(p); this

leaves no space for a nontrivial fixed point.
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3.6.3 Properties of the complexity functional

We present here the reason why the complexity functional serves as potential for the recursions

given by the operator F . This will be apparent once we compute the directional derivative of

Σ(p).

We start with some technical prerequisites.

Lemma 32. The complexity functional Σ is continuous.

The proof is presented in Appendix E.5.1.

The next step will be to show that fixed points of F correspond to stationary points of the

complexity functional. The space M is infinitely dimensional and even though one could

in principle characterize stationarity using the Fréchet derivative, it is already enough for

us to use simpler to express directional derivatives. These are defined as follows. Given two

densities p,p′ ∈M, the directional derivative of Σ at p in the direction δp = p′−p is given by

δΣ(p)[δp] = lim
t↘0

Σ(p+ tδp)−Σ(p)

t
. (3.38)

Note that this is not defined for any signed measure δp, but for only those which have the

property that p+δp ∈M. These signed measures will be referred to as directions.

A stationary point is then a density p for which δΣ(p)[δp] = 0 for all directions δp.

One potential problem that we might have in computing the derivative could be that the

underlying sum over d in Ed is infinite and the limit in the sum might commute with the

derivation. The following lemma ensures that Σ on an interpolation path between p and p′ is

an absolutely convergent power series and so we can differentiate the sum it contains term by

term.

Lemma 33. Fix p,p′ ∈M. Then Σ(p+ t (p′−p)) as a real function of t ∈R is analytic.

The proof is presented in Appendix E.5.2. This lemma allows us to read the value of the

directional derivative as the coefficient of t in the expansion as a power of t of Σ(p+ tδp).

Explicitly, we obtain

δΣ(p)[δp] =Ed d
∫

[0,1/Q]d
dδp(x1)dp(x2) · · ·dp(xd ) log g (x1, . . . , xd )−

−α
∫

[0,1/Q]2
dδp(x1)dp(x2) log(1−Qx1x2).
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Since the first variable x1 is “special”, we separate it inside the logarithm, obtaining

log g (x1, . . . , xd ) =

= log

(
Q−1∑
l=0

(−1)l

(
Q

l +1

)
d∏

i=1
(1− (l +1)xi )

)
=

= log

(
Q−1∑
l=0

(−1)l

(
Q

l +1

)
d∏

i=2
(1− (l +1)xi )−x1

Q−1∑
l=0

(−1)l (l +1)

(
Q

l +1

)
d∏

i=2
(1− (l +1)xi )

)

= log

(
Q−1∑
l=0

(−1)l

(
Q

l +1

)
d∏

i=2
(1− (l +1)xi )−Qx1

Q−1∑
l=0

(−1)l

(
Q −1

l

)
d∏

i=2
(1− (l +1)xi )

)
= log

(
g (x2, . . . , xd )−Qx1 f (x2, . . . , xd )

)
= log

(
1−Qx1φ(x2, . . . , xd )

)+ log g (x2, . . . , xd ), (3.39)

where f (·) and g (·) are the numerator and the denominator of φ(·). Note now that the second

term does not depend on x1, and the variable x1 is integrated with respect to the measure

difference δp. This causes the integral of the second term to be zero.

Also observe thatEd dF (d) can be rewritten as αEd F (d +1). This happens because the two

are equal to the two quantities at the extremities in

∑
d≥0

d
αd e−α

d !
F (d) =α ∑

d≥1

αd−1e−α

(d −1)!
F (d) =α ∑

d≥0

αd e−α

d !
F (d +1). (3.40)

Taking into account the two previous observations, we deduce that

δΣ(p)[δp] =
=αEd

∫
[0,1/Q]d+1

dδp(x1)dp(x2) · · ·dp(xd+1) log
(
1−Qx1φ(x2, . . . , xd+1)

)−
−α

∫
[0,1/Q]2

dδp(x1)dp(x) log(1−Qx1x)

=α
∫

[0,1/Q]
dδp(x1)

{
Ed

∫
[0,1/Q]d

dp(x2) · · ·dp(xd+1) log
(
1−Qx1φ(x2, . . . , xd+1)

)−
−

∫
[0,1/Q]

dp(x) log(1−Qx1x)
}

. (3.41)

Then the directional derivative becomes

δΣ(p)[δp] =
=α

∫
[0,1/Q]

dδp(x1)
{∫

[0,1/Q]
d(F (p))(x) log(1−Qx1x)−

∫
[0,1/Q]

dp(x) log(1−Qx1x)
}

=α
∫

[0,1/Q]
dδp(x1)

∫
[0,1/Q]

d(F (p)−p)(x) log(1−Qx1x) . (3.42)
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Looking at this form of the directional derivative, we immediately see that a fixed point of F

makes the directional derivative 0, a fact summarized in the following lemma.

Lemma 34. Any density p ∈M which satisfies F (p) = p is a stationary point of Σ.

Some of the intermediary results are also worthy to be accounted separately, as they will be of

use later.

Lemma 35. Given p1,p′
1,p2, . . . ,pd ∈M and setting δp1 = p′

1 −p1, we have that∫
[0,1/Q]d

dδp1(x1)dp2(x2) · · ·dpd (xd ) log g (x1, . . . , xd ) =

=
∫

[0,1/Q]2
dδp1(x1)d(F (d−1)(p2, . . . ,pd ))(x) log(1−Qx1x) .

If d is Poisson(α)-distributed, then given p1,p′
1,p ∈M and δp1 as above, we have

Ed

∫
[0,1/Q]d+1

dδp1(x1)dp(x2) · · ·dp(xd+1) log g (x1, . . . , xd ) =∫
[0,1/Q]2

dδp(x1)d(F (p))(x) log(1−Qx1x) .

We show two more technical results, needed to ensure the existence of the threshold and of a

nonzero complexity gap in the main theorem. The proofs are presented in the Appendix in

Sections E.5.3 and E.5.4.

Lemma 36. Let p be a fixed point of F . Then

d

dα
Σ(α)(p) =Ed

∫
[0,1/Q]d

dp(x1) · · ·dp(xd ) log g (x1, . . . , xd )

+ 1

2

∫
[0,1/Q]2

dp(x1)dp(x2) log(1−Qx1x2).

In particular, the derivative is strictly negative when p is a nontrivial fixed point.

Lemma 37. Suppose that infp∈MΣ(p) ≤ 0 and suppose there is p∗ ∈ M \ {δ0} such that the

infimum is achieved at p∗. 7 Then p∗ is a fixed point of F and, moreover, ∆Σ= infp∈MΣ(p).

3.6.4 The coupled potential

All lemmas relating the ordering and the topology of M naturally extend to M2L . In particular,

a monotonous (with respect to degradation) sequence of profiles always converges.

The properties given by Lemmas 28, 29 and 30 are straightforward generalizations to the

7The existence of a p∗ is guaranteed in the case where the infimum is strictly negative, because M is compact
and Σ(δ0) = 0.
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spatially coupled scenario, as summarized by the following statements. For this reason, the

proofs are omitted.

Lemma 38. Under the increasing φ hypothesis, if p ¹ p′ then Fc(p) ¹Fc(p′).

Lemma 39. If α≤α′ then Fc(α)(p) ºFc(α′)(p).

Lemma 40. Under the increasing φ hypothesis, for p º p′, we have that dC (Fc(p),F (p′) =
O(dC (p,p′)) as dC (p,p′) → 0.

Note that in the previous lemma, the constant inside the O-notation absorbs quantities that

depend on L and W .

Lemma 41. Let p be such that p and Fc(p) are degraded one with respect to the other. Then

under the increasing φ hypothesis, F (∞)
c (p) is a fixed point of Fc.

It will be desirable to work with coupled densities exhibiting an ordering between the local

densities at each position, for example increasing until position L and decreasing afterwards.

By just examining the transformation Fc it is not clear that it maintains such a property,

especially around the middle of the chain, at position L. For this reason we will apply the

following trick. We will work with one-sided profiles. These are profiles for which the local

densities at positions L,L+1, . . . ,2L are all equal. To enforce this constraint, we add a coupled

operator which simply replicates the local density at L to all positions to the right, that is

[Gc(p)]z =
pz , if z ≤ L

pL , if z > L.
(3.43)

We call a profile p position-monotone if pz ¹ pz+1 for all z = 1, . . . ,2L−1. Clearlyδ0 andδ1/Q are

both position-monotone. The purpose of introducing the operator Gc is that even though Fc

might not preserve position-monotonicity, Gc ◦Fc does. This fact, formalized by the following

lemma, motivates us to consider the repeated application of Gc ◦Fc, which we will name the

one-sided recursion.

Lemma 42. If p is position-monotone, then Gc ◦Fc(p) is as well, under the increasing φ hy-

pothesis.

Proof. It is enough to show that
[
Fc(p)

]
z
≤

[
Fc(p)

]
z+1

for 1 ≤ z < L. This is obtained from

the definition of Fc by putting together the following facts: (i) if p is position-monotone, then

so is the profile given by
∑W −1

w=0 pz−w (where as usual pz is assumed to be equal to δ0 for z ≤ 0);

(ii) F is monotone (Lemma 28) and (iii) if p′
z

is position-monotone then at least for 1 ≤ z ≤ L

the profile given by
∑W −1

w=0 pz+w satisfies the position-monotonicity condition (in fact the only

problem is at the right end of the profile).

We now state the counterpart of Lemma 38 for the one-sided recursion.
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Lemma 43. Under the increasing φ hypothesis, if p ¹ p′ then Gc ◦Fc(p) ¹Gc ◦Fc(p). As a con-

sequence, the sequence {(Gc◦Fc)(n)(δ1/Q)} is monotonous and thus the limit {(Gc◦Fc)(∞)(δ1/Q)}

exists and is a fixed point of the operator Gc ◦Fc.

The next step is to show that we need only look at the one-sided recursion initialized with

δ1/Q.

Lemma 44. If (Gc ◦Fc)(∞)(δ1/Q) = δ0, then F (∞)
c (p) = δ0, for any p, and thus there are no

non-trivial fixed points of Fc.

Proof. It is sufficient to prove by induction on n that F (n)
c (p) ¹ (Gc ◦Fc)(n)(δ1/Q). Clearly in

the case n = 0 this holds. For the induction step, we can verify the degradation at positions

1, . . . ,L using Lemma 38, since G has no effect. For z > L, we first note that if Hc is the operator

that reflects the whole chain, i.e. [Hc(p)]z = p2L+1−z , then Fc commutes with this reflection,

so Hc ◦F (n)
c (p) =F (n)

c ◦Hc(p). This allows us to write

[F (n+1)
c (p)]z = [F (n+1)

c ◦Hc(p)]2L+1−z ¹ [(Gc ◦Fc)(n)(δ1/Q)]2L+1−z ¹ [(Gc ◦Fc)(n)(δ1/Q)]z ,

where the second to last inequality follows from what we have already established in the z ≤ L

case, and the last inequality is given by Lemma 42.

3.6.5 The main argument: α<αs

Lemma 45. Under the increasing φ hypothesis, if ∆Σ> 0, if W > 2(α2+1)
Q∆Σ and L > 4W , the only

fixed point of the coupled SP equation is δ0.

The proof will require an estimate of the coupled version of the complexity functional and its

first and second derivative in a certain direction. We first introduce the coupled complexity

functional as Σc :M{1,...,2L} →R,

Σc(p) =
2L−W +1∑

z ′=1
Ed

∫
[0,1/Q]d

d∏
i=1

(
1

W

W −1∑
w=0

dpz ′+w (xi )

)
log g (x1, . . . , xd )

+ α

2

2L∑
z=1

∫
[0,1/Q]2

dpz (x1)dpz (x2) log(1−Qx1x2), (3.44)

where we adopt the convention that pz = δ0 for all z 6∈ {1, . . . ,2L}. The derivatives will be

computed with respect to the right-shift direction, obtained as follows. Let H :M{1,...,2L} →
M{1,...,2L} be defined by [H (p)]1 =δ0 and [H (p)]z = p

z−1
for z = 2, . . . ,2L. The directions that

we consider in the remaining proofs are all of the form H (p)−p.

Proof. Because of Lemma 44, it is enough to show that there is no nontrivial fixed point of

Gc ◦Fc. Assume that p is such a fixed point; from this we will derive a contradiction. We
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consider the coupled complexity functional restricted to the convex combinations of p and

H (p). These are parameterized by t ∈ [0,1] as (1− t )p+ tH (p).

As in the case of the non-coupled scenario, we can show that the function Σc((1 − t)p +
tH (p)) as a function of t ∈ [0,1] is analytic. The next step is to write Taylor’s theorem for this

function with the remainder in Lagrange form: for a function f : [0,1] →R twice continuously

differentiable, we have that f (1) = f (0)+ f ′(0)+ 1
2 f ′′(x), for some x ∈ (0,1). In our case,

Σc(H (p))−Σc(p) = d

dt
Σc((1− t )p+ tH (p))

∣∣∣∣
t=0

+ 1

2

d2

dt 2Σc((1− t )p+ tH (p))

∣∣∣∣
t=s

, (3.45)

for some s ∈ (0,1).

By Lemmas 46, 47 and 48 below we have the following bounds:∣∣∣Σc(H (p))−Σc(p)
∣∣∣=Σ(p2L),

d

dt
Σc((1− t )p+ tH (p))

∣∣∣∣
t=0

= 0,

1

2

∣∣∣∣ d2

dt 2Σc((1− t )p+ tH (p))

∣∣∣∣
t=s

∣∣∣∣≤ 2(α2 +1)

QW
,

which when plugged back into (3.45) imply Σ(p2L) ≤ 2(α2+1)
QW . Observe now that Σ(p2L) ≥∆Σ

(this holds whenever F (p2L) 6=δ0, see definition of ∆Σ; if this were not true, p would not be a

fixed point of G ◦F ). If W > 2(α2+1)
Q∆Σ then the claim follows by contradiction.

In the next three lemmas we assume that the coupled chain is such that L > 4W .

Lemma 46. If p ∈M{1,...,2L} is one-sided (i.e. pL+1 = . . . = p2L), we have that

Σc(p) =Σc(H (p))+Σ(p2L).

Proof. Let us examine first the definition of Σc. Note that because of the one-sidedness of the

profile, the terms corresponding to z ′ ∈ {L+W −1, . . . ,2L−W +1} and z ∈ {L, . . . ,2L} appearing

in the two sums(3.44) are all equal, respectively. If we remove one such term from each of the

sums, say the one corresponding to z ′ = z = 2L−W +1, the two removed terms combined give

the (uncoupled) complexity functional of the local density that is repeated on the right half of

the profile, namely Σ(pz ′) =Σ(p2L). We now look at what remains in the sum. We perform a

shift in the indices that does not modify the quantity. We shift all local densities in the profile

at positions < z ′ one position to the right (padding it with δ0 on the leftmost position), thereby

obtaining the profile H (p), while also shifting the corresponding summation indices z ′ and z

one to the right. Also, since now the two sums start at z ′ = z = 2, we need to extend the sums

to terms corresponding to z ′ = z = 1, but that is trivially done, as these terms are be 0. We can

now identify what remains as Σc(H (p)).
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Lemma 47. Suppose that p ∈M{1,...,2L} is a one-sided profile such that p =G ◦F (p) (i.e. it is a

fixed point of G ◦F ). Then d
dtΣc((1− t )p+ tH (p))

∣∣∣∣
t=0

= 0.

Proof. We adopt the same tactic as for the uncoupled case (Lemma 34). What we want is

essentially the directional derivative of Σc at p in the direction δp = H (p)−p, which we

compute in a manner similar to the derivation of (3.42):

δΣc(p)[δp]

=
2L−W +1∑

z ′=1
Ed d

∫
[0,1/Q]d

(
1

W

W −1∑
w=0

dδpz ′+w (xi )

)
d∏

i=2

(
1

W

W −1∑
w=0

dpz ′+w (xi )

)
log g (x1, . . . , xd )

+α
2L∑

z=1

∫
[0,1/Q]2

dδpz (x1)dpz (x2) log(1−Qx1x2). (3.46)

We follow the steps in the derivation of (3.42), so we use the fact that d is Poisson and the

second part of Lemma 35:

Ed d
∫

[0,1/Q]d−1

d∏
i=2

(
1

W

W −1∑
w=0

dpz ′+w (xi )

)
log g (x1, . . . , xd ) =

=α
∫

[0,1/Q]
dF

(
1

W

W −1∑
w=0

dpz ′+w (xi )

)
(x) log(1−Qx1x).

We then obtain

δΣc(p)[δp] =

=
2L−W +1∑

z ′=1

1

W

W −1∑
w ′=0

α

∫
[0,1/Q]2

dδpz ′+w ′(x1)dF

(
1

W

W −1∑
w=0

dpz ′+w (xi )

)
(x) log(1−Qx1x)

+α
2L∑

z=1

∫
[0,1/Q]2

dδpz (x1)dpz (x2) log(1−Qx1x2).

In the first sum we make the change of variables z ′+w ′ → z. We will sum z over {1, . . . ,2L},

and w ′ over {0, . . . ,W −1}. Since we sum over more terms now, we will take care that the extra

terms, i.e. all those characterized by z −w ′ ≤ 0 or z −w ′ > 2L−W +1, are all 0. This is readily

apparent below, as
∫

[0,1/Q] dδ0(x) log(1−Qx1x) = 0:

δΣc(p)[δp] =α
2L∑

z=1

∫
[0,1/Q]2

dδpz (x1)
1

W

W −1∑
w ′=0

duz−w ′(x) log(1−Qx1x)

+α
2L∑

z=1

∫
[0,1/Q]2

dδpz (x1)dpz (x2) log(1−Qx1x2),
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where

uz−w ′ = 1

W

W −1∑
w ′=0

F
( 1

W

∑W −1
w=0 pz−w ′+w

)
, if z −w ′ ∈ {1, . . . ,2L−W +1}

δ0, otherwise.
=

[
Fc(p)

]
z

.

Thus we can summarize our calculation as

δΣc(p)[δp] =α
2L∑

z=1

∫
[0,1/Q]

dδpz (x1)
∫

[0,1/Q]
d

([
Fc(p)

]
z
−pz

)
(x) log(1−Qx1x) . (3.47)

What we obtained in (3.47) holds in fact in a more general setting, in which p is any profile

(not necessarily one-sided) and δp is any difference of profiles. We will find this observation

useful later.

We now note that fixed points p of G ◦F satisfy (i) for 1 ≤ z ≤ L,
[
Fc(p)

]
z
= pz and (ii) for

L+1 ≤ z ≤ 2L, [H (p)]z = pz−1 = pz and so δpz = 0. Thus, each of the 2L terms in (3.47) is zero

and the claim follows.

Lemma 48. Suppose that p ∈M{1,...,2L} is a one-sided profile such that p =G ◦F (p) (i.e. it is a

fixed point of G ◦F ). Then for s ∈ (0,1) we have
∣∣∣ d2

dt 2Σc((1− t )p+ tH (p))
∣∣

t=s

∣∣∣≤ 4(α2+1)
QW .

Proof. Let p′ = (1−t )p+tH (p). Then the second derivative at t = s ca be rewritten as d2

ds2Σc(p′+
sδp)

∣∣∣∣
s=0

, where δp is the same as in the calculation of the first derivative in the previous lemma,

namely H (p)−p.

Repeating the same kind of reasoning as before, this is done by extracting the coefficient of
1
2 s2 in the power series expansion of Σc(p′+ sδp) around s = 0. We obtain

d2

ds2Σc(p′+ sδp)

∣∣∣∣
s=0

=

=
2L−W +1∑

z ′=1
Ed d(d −1)

∫[
0, 1

Q

]d

2∏
i=1

(
1

W

W −1∑
w=0

dδpz ′−w (xi )

)
d∏

i=3

(
1

W

W −1∑
w=0

dp′
z ′−w (xi )

)
log g (x1, . . . , xd )

+α
2L∑

z=1

∫
[0,1/Q]2

dδpz (x1)dδpz (x2) log(1−Qx1x2). (3.48)

We begin with an observation that will allow us to obtain bounds for both sums. We prove that

if p is a fixed point of G ◦F and u, v are any position-monotone profile satisfying H (u) ¹ v ¹ u,

then for any w ∈ {0, . . . ,W −1} and any L+w ≤ M ≤ 2L,∣∣∣∣∣ M∑
z=1

∫
[0,1/Q]2

dδpz−w (x1)(duz (x)−dvz (x)) log(1−Qx1x)

∣∣∣∣∣≤ 4

QW
. (3.49)
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We use the expansion log(1−Qx1x) =∑
j≤1

1
j Q j x j

1 x j .

M∑
z=1

∫
[0,1/Q]2

dδpz−w (x1)(duz (x)−dvz (x)) log(1−Qx1x) = (3.50)

=
M∑

z=1

∫
[0,1/Q]2

dδpz−w (x1)(duz (x)−dvz (x))
∑
j≥1

1

j
Q j x j

1 x j (3.51)

= ∑
j≥1

Q j

j

L+w∑
z=1

(∫
[0,1/Q]

dδpz−w (x1)x j
1

)(∫
[0,1/Q]

(duz (x)−dvz (x))x j
)

. (3.52)

where in the last step we limited the scope of the sum to 1 ≤ z ≤ L +w ; this is because for

z > L+w we have δpz−w = 0.

We next use the fact that p is a fixed point of G ◦F . Thus for 1 ≤ z ≤ L we have that pz =[
Fc(p)

]
z

, and since the right hand side is an average (see (3.37)), there are densities az so that

pz = 1
W

∑W −1
w ′=0 az−w ′ .

For differences of densities at neighboring positions the terms in the middle cancel:

dδpz = pz−1 −pz = 1

W
(az−W −az ).

This allows us to obtain the bound∣∣∣∣∫
[0,1/Q]

dδpz (x)x j
∣∣∣∣≤ 2

W Q j
. (3.53)

Note that degradedness implies ordering of the moments, so that p ¹ p′ implies
∫

dp(x)x j ≤∫
dp′(x)x j . This together with the position-monotonicity of the profile p and the bound above

allow us to write∣∣∣∣∣∑
j≥1

Q j

j

L+w∑
z=1

(∫
[0,1/Q]

dδpz+w (x1)x j
1

)(∫
[0,1/Q]

(duz (x)−dvz (x))x j
)∣∣∣∣∣≤ (3.54)

≤ ∑
j≥1

Q j

j

L+w∑
z=1

(∫
[0,1/Q]

(duz (x)−dvz (x))x j
1

)
2

W Q j
(3.55)

≤ ∑
j≥1

2

W j

∫
[0,1/Q]

dpL+w (x1)x j
1 ≤ ∑

j≥1

2

W jQ j
≤ 4

W Q
, (3.56)

which finishes the proof of (3.49).

We now turn back to (3.48) and bound the two sums. The second sum can be easily seen to fit

the pattern of (3.49) with w = 0, u = p, v =H (p) and M = 2L.

For the first sum in (3.48) more processing is needed, but the idea remains the same. To

simplify notation, we introduce p̃ by [p̃]z = 1
W

∑W −1
w=0 pz−w . One can immediately see that if p

is position-monotone, so is p̃.
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We use the first part of Lemma 35 to get

2L−W +1∑
z ′=1

Ed d(d −1)
∫

[0,1/Q]d

2∏
i=1

(
dδp̃z ′(xi )

) d∏
i=3

(
dp̃′

z ′(xi )
)

log g (x1, . . . , xd )

=Ed d(d −1)
2L−W +1∑

z ′=1

∫
[0,1/Q]2

dδp̃z ′(x1)d
(
F (d−1)(p̃z ′−1, p̃′

z ′ , . . . , p̃′
z ′)−

−F (d−1)(p̃z ′ , p̃′
z ′ , . . . , p̃′

z ′)
)
(x) log(1−Qx1x)

=Ed d(d −1)
1

W

W −1∑
w=0

2L−W +1∑
z ′=1

∫
[0,1/Q]2

dδpz ′−w (x1)d
(
F (d−1)(p̃z ′−1, p̃′

z ′ , . . . , p̃′
z ′)−

−F (d−1)(p̃z ′ , p̃′
z ′ , . . . , p̃′

z ′)
)
(x) log(1−Qx1x).

At this point we can apply again (3.49), this time with uz = F (d−1)(p̃z ′−1, p̃′
z ′ , . . . , p̃′

z ′), vz =
F (d−1)(p̃z ′ , p̃′

z ′ , . . . , p̃′
z ′) and M = 2L−W +1.

It can be checked coordinate-wise that H (u) ¹ v ¹ u using Lemma 28.

We conclude that the first sum in (3.48) is bounded in absolute value byEd d(d −1) 4
QW = 4α2

QW ,

which together with the bound on the second sum prove the claim.

3.6.6 The main argument: α>αs

Lemma 49. Under the increasingφ hypothesis, if∆Σ< 0, for L > L0(∆Σ), the profile F (∞)
c (δ1/Q)

is a nontrivial fixed point of Fc.

Proof. Let p∗ be a fixed point of Σ such that Σ(p∗) =∆Σ. Such a fixed point exists because of

Lemma 37. Moreover, there is L0 such that for L > L0, the profile p∗ given by p∗
z = p∗ for all

1 ≤ z ≤ 2L has the property that Σc(p∗) < 0. This can be seen from the fact that contributions

to Σc(p∗) from the middle of the chain are negative (in fact equal to ∆Σ), and these dominate

the sum.

We have that Fc(p∗) ¹ p∗. This occurs because at each position [Fc(p∗)]z is a convex combi-

nation of δ0 and F (p∗) = p∗. δ0 ¹ p∗, we get [Fc(p∗)]z ¹ [p∗)]z .

This means that the sequence F (n)
c (p∗) is monotone with respect to degradation and so the

limit F (∞)
c (p∗) exists. The complexity functional is itself monotone (see Lemma 50 below),

so Σ(F∞
c (p∗)) <Σ(p∗) < 0. Consequently, F (∞)

c (p∗) is not the trivial fixed point δ0, since the

latter has complexity 0.

Observe now that F (n)
c (δ1/Q) is lower-bounded in degradation by F (n)

c (p∗). Thus F (n)
c (δ1/Q)

must be a nontrivial fixed point.

Lemma 50. Let p ∈ M{1,...,2L} be a profile such that Fc(p) ¹ p or Fc(p) º p. Then Σc(p) ≤
Σc(Fc(p)) or Σc(p) ≥Σc(Fc(p)), respectively.
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Proof. Assume that Fc(p) ¹ p, since the other case will be similar. We interpolate between p

andΣc(Fc(p)) by setting p′ = (1−t )p+tFc(p). It is enough to show that d
dtΣc((1−t )p+tFc(p)) ≤

0 at every t ∈ (0,1).

We set δp =Fc(p)−p, and carry out the computations of the first directional derivative in the

same way as in the proof of Lemma 47, where we derived (3.47):

d

dt
Σc((1− t )p+ tFc(p)) =

= d

ds
Σc(p′+ sδp)

∣∣∣∣
s=0

=α
2L∑

z=1

∫
[0,1/Q]

dδpz (x1)
∫

[0,1/Q]
d

([
Fc(p′)

]
z
−p′

z

)
(x) log(1−Qx1x) .

We expand log(1−Qx1x) as −∑
j≥1

Q j x j
1 x j

j , and rewrite the first derivative as

α
2L∑

z=1

∑
j≥1

Q j

j

(∫
[0,1/Q]

(
d[Fc(p)]z −dpz

)
(x)x j

)(∫
[0,1/Q]

(
d[Fc(p′)]z −dp′

z

)
(x)x j

)
.

The moments of two distributions that are degraded w.r.t. each other are ordered in the

same fashion, so the two integrals above are both positive, which proves the claim. We already

assumed that Fc(p) ¹ p. The fact that Fc(p′) ¹ p′ is easily seen to follow from the monotonicity

of convex combinations with respect to degradation (see the discussion at the end of Section

E.1).

3.7 Numerical simulations and results

So far we are only able to understand distributional fixed points of equationslike (3.16) through

numerical analysis. In the 1-RSB framework, this can prove challenging because of two-layer

distributions that appear for 0 < m < 1. It becomes even more computationally expensive

when spatial coupling is involved, because when simulating a coupled chain, we need to

keep separate distributions for each position. In this section we present the numerical results,

together with a number of practical observations about the implementation.

3.7.1 Practical observations

Since we typically have no idea of the typical shape of the distributions �(µ) and P (�), they will

be kept as populations of samples. In particular, the distribution P will need to be represented

by a population of populations. We try to reach the fixed point of (3.16) by first initializing P 0

with Dirac deltas on the Dirac deltas on corners {η1, . . . ,ηQ } of ∆Q , and then iterating (3.16)

to go from P t to P t+1. We need to keep track of the populations as the iterations progress,

a technique called population dynamics. For the special cases m = 0 and m = 1, one single
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level of population dynamics is enough, which makes it much easier to compute with high

accuracy.

Analyzing freezing requires some extra precautions. Let us call hard fields the values of µ that

have all mass on one single corner of∆Q . To be able to measure the amount of frozen variables

correctly, one needs to keep track of the hard fields separately. Note that in order to generate

hard fields under P t+1, there need to be hard fields present in P t . This is because a hard

field is produced when all incoming messages are hard fields, except one. As the iterations

progress, it can be that marginals are produced which are so close to a hard field that they

become numerically indistinguishable. If we were not to explicitly label the “true” hard fields

by some other means, they could be confused with the latter. This is important, since the

latter do not correspond to frozen variables. This dichotomy does not, however, influence the

recursion (3.16) or the computation of the entropic quantities.

Sampling the new populations can be made more difficult by re-weighting factors. An equation

like (3.16) is easy to handle, since for each member of the new population on the left-hand

side we need to choose d independent random individuals of the former population, and

then combine them. However, the rule of calculating the new sample � from the set of

d old samples �1, . . . ,�d is not so simple to implement. These samples are in themselves

populations of marginals. Differently from the case of the �’s, it is not enough to sample d

independent marginals µ1, . . . ,µd from �1, . . . ,�d , then combine them using µ= f(µ1, . . . ,µd ),

and declare µ to be a representative sample of �. This does not work because we assumed we

pick µ1, . . . ,µd independently. However, the probability that µ1, . . . ,µd occur is amplified by a

factor z(µ1, . . . ,µd )m (see (3.15)).

To fix this, one idea can be to (i) choose µ1, . . . ,µd independently; then (ii) compute µ =
f(µ1, . . . ,µd ) and the re-weighting factor z(µ1, . . . ,µd )m and then (iii) with probability

z(µ1,...,µd )m

A

keep µ as a sample of the new population �, otherwise discard it. Here A is a constant suf-

ficiently high so that
z(µ1,...,µd )m

A is always at most 1. Steps (i), (ii), (iii) are repeated until we

obtain the desired number of samples. This strategy can be improved, particularly in the case

where we do not know apriori the typical values of the re-weighting factor. A more adaptive

strategy is the following: set A = 0 in the beginning; then to obtain samples do (i) and (ii) as

before and then if z(µ1, . . . ,µd )m ≤ A follow up with (iii), otherwise let γ= A/z(µ1, . . . ,µd )m

and delete each of the samples we already possess with probability γ independently. This can

improve the runtime by a factor A2/A1 where A2 is the value of A at the end of the second

method, and A1 is the value used in the first method.

In the case of coupled systems, we need to maintain a population at each position, in order

to model {Pz }. For the special values m = 0 and m = 1 it is perfectly feasible to simulate a

lengthy chain. For arbitrary m, one can resort to various ways to diminish the chain length.

For example, the chain can be ended on only one side, while at the other end all edges that

normally connect beyond the boundary are connected to the last position. In effect, we set

Pz =PL for all z > L. This chain will tend to descend (i.e. move towards the trivial fixed point)
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faster than the open ended chain with L →∞ would, but the differences are negligible even

when L is a small multiple of W .

There is also the question of how should the total and cluster free entropies be computed

for a coupled chain. The “true” free entropies of the simulated chain are those obtained by

adding all contributions from all positions of the chain. However, this is not a very meaningful

quantity. If the chain is short, the effects of the boundary would be substantial. The right

quantities would only be obtained once L →∞. Using the one-sided chain idea presented

in the previous paragraph, the total free entropy and the cluster free entropy can then be

computed at position L, which has the role of a proxy for the typical position in the middle of

long chain.

3.7.2 Numerical results

The rigorous results are complemented by simulations that show that threshold saturation

permeates many aspects relating to the phase transition phenomenology of random CSPs.

Among the effects that remind of some form of threshold saturation we count the following.

The global picture for Q = 4 is provided in Figure 3.3.

• The dynamic threshold αd moves to the condensation threshold αc .8 In other words,

for all α ∈ (αd ,αc ) we observe the equality of the curves Φc(m=1)(α) and φc(m=1)(α)

computed for the coupled problem. This seems to indicate that asymptotically all valid

colorings are grouped in a finite amount of clusters, even in this regime where in the

uncoupled scenario the solution space shatters into exponentially many clusters. If the

geometric interpretation of clustering remains correct for the coupled problem, the

solution space of the problem is still highly connected.

One can imagine the following thought experiment that could potentially explain this

effect. Consider a graph that is coupled on a circular chain. This graph will behave in

all respects like an uncoupled graph: since there is no boundary where nodes have a

smaller degree, every neighborhood of every vertex is distributed in the same manner.

Clustering is related to long-range correlations: taking a neighborhood of a vertex v

of increasing depth T and fixing the nodes at distance T to arbitrary values can affect

the marginal at v . Statistical physics lore suggests that clustering is present if and

only if this marginal is not asymptotically almost surely (a.a.s) uniform. We call this

presence of long-range correlations. In the uncoupled graph and the circularly coupled

one the neighborhoods are distributed in the same way, so the same type of clustering

occurs. This is no more true in the coupled scenario with an open boundary. The

typical neighborhood of the latter can be obtained in the following way: take a typical

neighborhood in the circularly coupled graph, together with position labels; fix apriori

8To be exact, one would need to have larger and larger W in order to see that the thresholds fully coincide. But
already for W = 4 it is hard to see a difference. Running a more time consuming simulation could in principle
reveal remnant small gaps between the thresholds. This phenomenon has already been observed in [HMU13]
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two consecutive positions where to cut the circular chain; then prune the neighborhood

by deleting exactly those edges that cross the cut. If T is much bigger than the chain

size L, the removal of edges will have a big effect on the marginal at v : in fact they will

free v of any influence from the boundary and cause the marginal to be a.a.s. uniform.

One can therefore conjecture that as W →∞, the location where long range correlations

appear is αc .

• The above behaviour can be replicated for all values m ∈ (0,1). In this setting, we

consider m fixed and look at the functionsΦ(m)(α) and φ(m)(α) as α varies. In a neigh-

borhood of the pointα(m)
∗ where the two are equal the complexity function changes sign

from positive to negative. When spatial coupling is used, the two entropic quantities

are equal whenever α<α(m)
∗ , and equal to the total free entropy of the uncoupled case.

On the other hand, for α>α(m)
∗ the total and cluster free entropies do not change when

spatial coupling is used.

• For m ∈ (0,1), in the spatially coupled scenario freezing is never observed below α(m)
∗ .

This, together with the threshold saturation of the SP threshold to the coloring threshold

αs suggests that in the coupled coloring problem (where now m∗ is the right one at

every α), freezing is never experienced at all, except possibly at the location of the

coloring threshold αs . An important observation is that the quantities α(m)
f viewed as a

function of m have a limit as m → 0 different than α(0)
f . This is true in both coupled and

uncoupled scenarios.

3.8 Conclusions and open problems

We conclude by mentioning that the picture presented in Figures 3.3 and 3.4 is still very far

away from being mathematically rigorous.

The only parts that are proven correct so far are for m = 1: the location of αc and the total

free entropy for α<αc (see [BCOH+14]; the authors show in this paper also that αc is a point

of non-analyticity for Φ(α)) and the location of α(m=1)
f (see [Mol12]). All these results hold

only for Q >Q0 for a fixed but rather large Q0. The freezing threshold on the planted model is

determined for all Q ≥ 3. In the case of the coupled planted model, we have determined in

Section 3.4 a lower bound on the freezing threshold.

This does not mean all parts of the picture at m = 1 are fully understood. Clustering does not

yet have a solid geometric interpretation, and the position of αd is not determined rigorously.

The reconstruction framework of [MM06] provides a model for this where properties can

be proven, but the link between this model and actual properties of random CSPs remain

conjectured. The first observations of threshold saturation of αd were offered in [HMU13].

A problem that remains open is whether in the reconstruction framework one can prove

threshold saturation. One could envision a proof along the lines presented in the proof of

saturation of the SP threshold. The missing pieces are an ordering of marginalsµ in such a way
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Figure 3.3 – A global picture of all thresholds that appear for Q = 4. The solid red curve
represents the total free entropy Φ(α) of the solution set. A phase transition occurs at αc ,
whereΦ(α) is non-analytic (the analytic continuation beyond αc is shown with a dotted line).
For α<αc , the m = 1 equations were used to determine the total free entropyΦ(m=1) (the red
curve) and the free entropy per cluster φ(m=1) (the green curve). Beyond αc , the true value of
Φ(α) is given by the RSB computation with a particular value of m, which is plotted as m∗(α).
The values m∗(α) are computed by iterating (3.16) at pairs (m,α) in order to find Φ(m)(α)
and φ(m)(α); m∗(α) is then determined by searching for the points where the two entropic
quantities are equal. Everything done up to this point is pertaining to the uncoupled scenario.
For the coupled scenario, the total free entropy (the red curve) is identical. The cluster free
entropy (the green curve) undergoes saturation. This is apparent in Figure 3.4.
The freezing curves α(m)

f and αc(m)
f are computed by testing for freezing at many pairs (m,α)

and determining the border line between the frozen and non-frozen regions.

that the recursion 3.20 descends monotonously to a fixed point. Another issue is what would

be the driving potential for this recursion, and one candidate seems to be the complexity

functional. While the geometry of the clusters for the uncoupled model is partly understood,

especially beyond the freezing threshold ([Mol12, BCOH+14]), it remains open

The picture where m < 1 is much less mathematically developed. Naturally, many of the

open questions about clusters apply also to this setting, and much less is known. While the

equations at m = 0 are understood fairly well, it is not clear at all if there is a direct relationship

with some structures on the random graph. The SP equations have been, however, used

successfully in efficient algorithms like SP-guided decimation. At m = 0 there are various

upper and lower bounds forαs , obtained by sophisticated versions of first and second moment

methods, but they do not yet match.
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Figure 3.4 – Two pairs of plots showing the saturation of the cluster free entropy at m = 1 and
m = 0.5. For m = 1 the numerical results are more accurate because the simplified equations
for m = 1 are used. For each value of m the results are shown for both the uncoupled and
uncoupled scenarios.

Also, the model at m = 0 is not obtained by simply taking the limit m → 0, a fact implied by the

observed discontinuity of the freezing curve α(m)
f . This is observed for both the coupled and

the uncoupled models, and may suggest there may be more than one way to handle the limit

m → 0.

Finally, the proof we have seen in Section 3.6 for the saturation of the SP threshold holds for

Q = 3 and is missing a (small) ingredient to turn it into a proof for the case Q ≥ 3. Numerical

tests suggest that the monotonicity of the function φ (Lemma 24) holds for arbitrary Q, which

would imply that the result holds in general.
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4 Finding solutions of random K -SAT
using spatial coupling

In this chapter we investigate how spatial coupling can help search for solutions of a base

instance1 of K -SAT. The approach can be summarized as follows: (i) We start with a base

instance F , the one for which we need to find a satisfying assignment. We sample a coupled

instance F̃ which will maintain the local structure of F locally. (ii) We then run a greedy

algorithm on the coupled instance F̃ . (iii) We finally attempt to extract a solution for F from

the solution (or partial solution) of F̃ found by the algorithm.

We examine the points above in slightly more detail:

(i) Because of the restriction of F̃ resembling F , this coupled construction is different

from what we have seen in previous chapters. In particular, the coupled instances

we are considering now are not generated from scratch, but they are moulded on the

structure of a base instance. The exact technical details of how this is achieved will be

presented soon, but intuitively what happens is that one exact copy of the base instance

is placed at each position. This puts copies of the same variable in the base instance in a

special relationship — we call such variables siblings. Then we shuffle the edges between

positions on the chain, but in such a way that the endpoints change only between siblings.

Thus, the local structure of the base logical formula is preserved.

(ii) We will focus on an algorithm called Unit Clause Propagation (UCP), although in principle

the framework could be generalized to a wider class of algorithms. UCP has the advantage

that it is simple and offers a great amount of flexibility in the step where we choose the

next clause to treat. We will need to adapt this so called “free” step in order to encourage

the formation of a suitable solution.

(iii) This is arguably the biggest obstacle in this approach. Just having a solution for the

coupled instance does not necessarily mean we could “project” it nicely into a base

structure, since sibling variables may not agree for a value. Surely, if the coupled truth

assignment we found is such that sibling variables take equal values (let us call this

1The standard, uncoupled instances of K -SAT will be referred to as base instances.
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consensus), then the projection of the solution is feasible. The goal is to adapt the

algorithm in such a way that it prefers consensus when it has the choice.

We begin with an overview of the method in Section 4.1. This is followed by a description of a

special type of spatial coupling in Section 4.2. Sections 4.3 and 4.4 describe the base UCP and

coupled UCP algorithms. Numerical results are presented in Section 4.5, and Section 4.6 is

dedicated to conclusions.

4.1 Overview

One can imagine multiple ways in which such an algorithm could be driven towards a solution

that can be “projected”. For example, we could keep changing the values of variables until

consensus among siblings is achieved. Here we adopt a different approach. UCP is a greedy

algorithm, which does not go back on a decision taken: so if it has assigned a value to a

variable, that value remains assigned. In other words, if we make a mistake somewhere, there

is no way to turn back and fix it. The solution to this is to move in the chain to some other

place where the values have not been decided yet. After all, we do not need consensus at all

positions of the chain: it is enough if it emerges for all vertices inside some small region which

is 2W −1 positions wide.

This suggests the following strategy: run the algorithm in such a way so that values that have

already been decided are always situated in the left part of the chain, while the right part is

pristine. In this manner we are able to “turn space into time”. This has the advantage that

it makes it unnecessary to keep the whole chain in memory. The left part of the chain (the

“past”) can be forgotten if no solution for the base instance could be found there. Likewise,

we can generate the right part of the chain (the “future”) only when the algorithm needs to

access it. We would only need to store a finite part of the chain, where the algorithm operates

at the current time. This way we are not bound anymore by problems such as chain size: the

algorithm can continue running on an arbitrarily long chain.

It was already observed by Hamed Hassani that on a spatially coupled formula, “vanilla” UCP

performs much better than on an uncoupled formula, essentially for the same reason why

Belief Propagation works much better on coupled LDPC codes: there is a boundary and a

decoding wave forms. This is the kind of effect that we are after. We have, however, the

additional objective of building consensus among sibling variables. For this we will modify

the “free” step in UCP in two ways: whenever it previously had the choice to pick the next

variable and assign a random value to it, in the modified case it will (i) seek a not-yet-decided

variable as left as possible in the chain and (ii) instead of flipping a fair coin to decide the

value, it should take a value that leans towards that of the majority of its siblings. While rule (i)

imprints a direction on the chain, rule (ii) pushes the current assignment towards consensus.

The experiments show that, indeed, consensus can be formed, if we wait long enough. More-

over, this happens for values of α larger than the uncoupled UCP threshold (which for K = 3
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lies at 8/3). This consensus takes, however, a significant amount of time (or space) to appear:

observations seem to suggest that the required length of the chain is a power law in N .2 While

this is not a tragedy from a time-complexity point of view (the runtime is still at most quadratic

in N ), it does, however, significantly thwart attempts at rigorous analysis. Tracking the state

over such a long period of time is hard. Moreover, since we bias UCP toward consensus-

building and we tend to favor free variables situated as to the left as possible takes us even

further away from the independence assumptions that make UCP amenable to analysis.

For the above reasons, the only evidence we have at the moment about the performance of

this method is experimental in nature. The effects observed are otherwise quite novel: they

open the door to the possibility of improving algorithmic thresholds on base problems by way

of spatial coupling.

The rest of the chapter is roughly divided into two parts: in the first we explain how to build

the coupled instance and how to adapt UCP to build consensus among variables, while in the

second we present the numerical results of the simulations.

4.2 Construction of the coupled structure

The coupling procedure we introduce now is markedly different from the one presented in

Section 1.9. This is because we already start from a base instance, fixed a priori, and which

serves as mould for a distribution of coupled graphs taylored specifically for this base instance.

We now describe what we exactly mean by this. We denote by V the set of variables of the base

formula, which without loss of generality we can assume to be [N ] = {1, . . . , N }. The variables

take values in a binary alphabet B = {0,1}. A literal is a variable together with a “sign”, i.e. an

element of V ×B . A clause is a vector of literals of size K , i.e. an element of (V ×B)K . The base

formula F can then be described by a vector of M clauses Fa , for a ∈ [M ], each literal being

addressed as Fa,k , for k ∈ [K ]. In the factor graph picture, edges correspond to literals in a

clause: these are characterized by tuples (a,k) and linking clause nodes a with variable nodes

i and having a built-in sign. An illustration of this is given in Figure 4.1. An assignment is a

function σ : V → B . We say that σ satisfies F if for all clauses a ∈ [M ] there exists at least one

literal (a,k) where σi = b and (i ,b) = Fa,k .

A coupled formula is defined in a similar manner, with the remark that variables and clauses

are additionally indexed by their position on the chain. Let us assume that the chain is infinite,

so the set of positions is Z. Then variables are identified by pairs from V ×Z, literals by tuples

from V ×Z×B , clauses by vectors from (V ×Z×B)k and coupled formulas by vectors of clauses

indexed also by position, i.e., indexed on the set [M ]×Z. we still let i and a range over [N ] and

[M ], respectively, so variables and clauses will be indexed by pairs (i , z) and (a, z).

In coupled formula edges are only allowed to connect to variables at a close-by position.

2For tested values of N , of the order of 104.
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a1 a2 a3

i1 i2 i3 i4

Figure 4.1 – A factor graph representation of the logical formula (i1 ∨ i4)∧ (i2 ∨ ī4)∧ (i2 ∨ ī3).
Positive literals (i.e. those that do not appear negated, having a sign of 1) are denoted by a
full edge, while those that are negated (having a sign of 1) are dashed. In the notation of this
section this formula is encoded by

F1,1 = (1,1), F1,2 = (4,1), F2,1 = (2,1), F2,2 = (4,0), F3,1 = (2,1), F3,2 = (3,0),

with K = 2, N = 4 and M = 3.
One satisfying assignment for this formula isσ= (1,1,0,0), whileσ′ = (0,1,0,0) is not satisfying,
because the first clause is violated.

We call a coupled formula F̃ well formed if it satisfies the windowing constraints: for all

(k, a, z) ∈ [K ]× [M ]×Z, the literal F̃(a,z),k is a tuple((i , z ′),τ) satisfying z ′ ∈ z + [W ]−1.

We now describe how the coupled formula relates to the base instance. A coupled formula

F̃ is said to be a lift of a base formula F if all edges of the coupled factor graph “project” to

edges of the base factor graph; in other words, for all (k, a, z) ∈ [K ]× [M ]×Z we have that

if F̃(a,z),k is the literal ((i , z ′),τ) then Fa,k = (i ,τ). Moreover, we say that the lift is regular if

“copies” of the same edge do not meet at variable nodes; in other words F̃(a,z1),k 6= F̃(a,z2),k , for

all (a, z1, z2,k) ∈ [M ]×Z2 × [K ].

We say that a node (i , z) or (a, z) projects to a node i or a in the base instace. The same can

be said about edges. The preimage of a node i or a through the projection consists of the set

of nodes (i , z) and (a, z), respectively, for z ∈Z. The nodes that differ only in the position z,

i.e. they project to the same thing, will be called siblings. For a regular lift all sibling edges are

disjoint, i.e. their target variables are all different.

In effect, all the extra information contained in a lift can be encoded by functions φF
a,k :Z→Z,

which we call connection descriptors, by setting F̃(a,z),k = (i , z ′,τ), where Fa,k = (i ,τ) and

z ′ =φF
a,k (z).

A well-formed lift is one for which φF
a,k (z)− z ∈ [W ]−1, for all (a, z,k) ∈ [M ]×Z× [K ]. Such a

lift is also regular if for all a and k the functions φF
a,k are bijective.

Given a base formula F , to describe a method of sampling a lift, it is sufficient to say how we

sample all the connection descriptors. In both models below, all connection descriptors are

chosen independently from each other.
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• The Poisson random lift. Each entry φF
a,k (z) of the connection descriptors is chosen

uniformly at random from {z, . . . , z +W −1}. However, the connection descriptors sam-

pled in this way are most likely not injective, so this does not result in a regular lift. This

means that the variable-node degrees are not preserved, and the factor graph F̃ does

not look locally as F . It can be easily seen that the resulting coupled factor graph will

contain many short loops. This is illustrated in Figure 4.2.

• The permutation-based random lift. Each function φF
a,k is a permutation chosen at ran-

dom, satisfying the window constraint using one of the methods outlined in Appendix F.

This approach ensures that the neighborhood of a node (a, z) chosen at random looks

exactly as the neighborhood of node a in the base factor graph.

We consider both these models in the simulations. It appears that the Poisson random lift

behaves somewhat better. This may be due to the fact that the loops which appear in the

Poisson random lift are always reinforcing: if between two nodes there are two different paths

in the lifted instance, then these two paths project to the same path in the base formula. This

induces some positive correlation between the values of sibling variables on the two paths

(note that the signs of literals are also matching on the two paths), which in turn contributes

to the creation of consensus.

a) b) c)

Figure 4.2 – In a) we represent two edge of the base instance. In b) and c) we show two typical
preimages of the two edges for a Poisson random lift and a permutation-based lift, respectively.
The window size was set to W = 3. We show how the Poisson random lift can easily create
loops even in places where the base graph is tree-like (a cycle is emphasized in b), while for
the permutation-based lift this is not possible.

Let F̃ be a lift of a formula F . If a satisfying assignment {σi ,z } of F̃ is such that all sibling

variables take the same value, then for each i there is a valueσi so that for all z,σi ,z =σi . Then

{σi } is a satisfying assignment for the formula F , and we also say that the assignment {σi ,z }

projects to {σi }. Typically the lifted formula F̃ will have many other satisfying assignments,

where preimages of i take different values. It is worth noting, however, that even in this case,

if we find a window of 2W −1 subsequent positions z −W +1, . . . , z +W −1 where for each

variable i all its preimages at these positions take the same value under an assignment, then

from this we can construct a satisfying assignment for the base instance. We call the event
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when a collection of variables has the same values under an assignment σ a σ-consensus

among the said set of variables.

The goal in the rest of this chapter is to run an algorithm on F̃ to find an assignment for the

coupled formula and try to find such a window (a projection window) where consensus forms

among all sets of siblings. This enables us to project the solution to F .

4.3 Unit Clause Propagation

Unit Clause Propagation (UCP) is a greedy algorithm [DG84] for finding satisfying assignments

of K -SAT. It works as follows. A partial assignment is maintained during the execution of the

algorithm, under which variables have values 1, 0 and ∗ (undetermined). Initially, all variables

are marked ∗. The following steps are performed iteratively until either (i) at least one clause

is contradicted by the partial assignment or (ii) no stars are left in the partial assignment:

1. Forced step. A unit clause is one which satisfies two conditions: (i) Exactly one variable v

among the K is starred; all the rest are determined and (ii) whether the clause is satisfied

or not depends on the value that this variable takes. If there is at least one unit clause,

we are forced to satisfy it, setting v to the matching value. In this case we call v a critical

variable

2. Free step. If there is no unit clause, we choose a starred variable at random and assign it

a random binary value.

At each iteration, one more variable is determined, so the algorithm runs in linear time (check-

ing whether clauses fall in the categories above has an amortized cost). Unit clause propagation

performs as follows: for α<αUCP-low, then it succeeds w.h.p. For α ∈ (αUCP-low,αUCP-high), it

succeeds with Θ(1) probability, while for α>αUCP-high it fails w.h.p. The values for αUCP-low

and αUCP-high were determined for K = 3 in [CR92] and [Ach01] to be 2/3 and 8/3, respectively.

The asymptotic behaviour is O
(
2K /K

)
for both thresholds [CR92].

4.4 Unit Clause Propagation on the Lifted Factor Graph: turning

space into time

Just running vanilla UCP on the coupled graph will typically result in a solution where sibling

variables take different values. The occurrence of consensus at all variables in a projection

window as discussed above is then very improbable. To change this, we will bias the algorithm

in order to enhance the probability that sibling variables take the same value. This will be

done by modifying the free step of UCP, both in the way it chooses the next variable to set and

in the way it chooses its value.

As discussed at the beginning of the chapter we will arrange things such that the region
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where the algorithm operates moves to the right along the chain as time progresses. We take

advantage of this by only keeping a small part of the chain in memory, which requires us to

generate a new part of the chain as it becomes necessary.

The bias that affects the value of the chosen variable in the free step takes into accout the

values of σ at all siblings left of the current position. It is exponentially decaying, with a

parameter β< 1, which governs how fast the bias forgets values from the past. We set

Bias(i ,z) = (1−β)
∑

z ′<z
βz−z ′−1(2σi ,z ′ −1).

The factor (1−β) appears in order to ensure that Bias(i ,z) is clamped in the interval [−1,1].

It takes the extremal values +1 and −1 when all siblings to the left have value 1 or value 0,

respectively. If the value is ∗, we set σ= 1/2, so that it does not count towards the bias. Note

that the bias can be updated online, using the previous bias Bias(i ,z−1) and the value σ(i ,z−1).

The bias can be used to compute the parameter of a Bernoulli random variable which decides

the new value of the variable chosen in the free step. We pass the bias through a sigmoid

function, so the parameter of the Bernoulli is given by

f (x;γ) = 1

2
(1+|x|γ sign(x)),

where x is the bias. Modifying the bias in this manner turns out to be important: using a “flat”

function (i.e. γ= 1) does not achieve the desired results. Values of γ closer to 0, which increase

the rigidity of the decision perform well, and usually better than using the completely rigid

sign function (γ= 0). For most of the experiments we use γ between 0.1 and 0.2.

The algorithm is described below. It takes as parameters the base formula F , the coupling

window size W , the number of positions T on which the algorithm is supposed to work at a

given time and the two parameters controling the biases β and γ. Also, the algorithm lacks the

terminating condition present in standard UCP. In the coupled case, contradicting clauses are

ignored, and the algorithm only stops when it finds a satisfying assignment. To prevent the

algorithm from running forever, in practice we set a cutoff point at some distant position on

the chain and stop the algorithm without a solution in case this is reached.

function COUPLED-UCP(F , W , T , β, γ)

N : number of variables of F ;

M : number of clauses of F ;

(zL , zH ) ← (0,L);

Generate F̃(a,z) for a ∈ [M ] and z ∈ [zL −W, zH +W ];

σi ,z ←∗ for i ∈ [N ] and z ∈ [zL −2W +1, zH +W ];

loop
if ∃ unit clause (a, z) ∈ [M ]× [zL −W, zH +W ] with critical variable (i , z ′) ∈ [N ]× [zL , zH ] then

Choose σ(i ,z ′) so that the clause (a, z) is satisfied;

else

101



Chapter 4. Finding solutions of random K -SAT using spatial coupling

while there is no position (i , zL) with σi ,zL =∗ do
if for each i ∈ [N ] there is σ-consensus among variables in {i }× [zL −2W −2, zL] then

return {σi ,zL }i∈[N ] as a solution of F

end if
Remove from memory F̃(a,zL−W ) for all a ∈ [M ];

zL ← zL +1, zH ← zH +1;

Generate F̃(a,zH+W ) for all a ∈ [M ];

σi ,zH+W ←∗ for i ∈ [N ];

end while
Let (i , zL) be such that σi ,zL =∗;

σi ,zL ←
{

1, w. p. f (Biasi (σ,β);γ)

0, otherwise;
end if

end loop
end function

Note that generating the random lift F̃ can be done “online”. Every time we generate the

clauses at a particular position we are sampling the next entry in each connection descriptor.

In the case of the Poisson random lift, this is fine, since the entries in the connection descriptor

are independent. In the case of the permutation-based random lift we use the Markov chain

generation model presented in Appendix F.

4.5 Numerical results

We measure the runtime of the algorithm by the length of the coupling chain used by the pro-

cess until a solution is found. In a typical experiment we choose values for all parameters, like

α, N , etc. and run the algorithm a large number of times, in order to obtain the distribution of

the coupled chain length. To visualize the outcome, we plot the cdfs, since they are particularly

suited to obtain percentiles and estimates for the proportion of algorithm executions that fail.

4.5.1 Dependence on α, N and the bias decay parameter

The results of experiments to determine the threshold of the algorithm in α are presented

in Figure 4.3 for both the Poisson random lift and the permutation random lift. The Poisson

case exhibits the higher threshold of the two and also its threshold is somewhat sharper. We

observe a range of α where for which many runs of the algorithm would not end. A separate

plot showing threshold behavior for the case K = 5 is given in Figure 4.5.

4.5.2 Dependence on N

To determine the scaling in N , we consider the same experiment with N now increasing in

powers of 2. We observe that for the range of N under consideration, the length of chain

required is governed by a power law. Plots and a brief discussion of this is given in Figure 4.4.
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Figure 4.3 – In these two plots we show the influence of α on the runtime of the algorithm, on
the top for the Poisson lift, and on the bottom for the permutation-based lift. The Poisson lift
exhibits a more definite threshold at in the region 3.45 <α< 3.55. For the permutation-based
lift, the transition is much smoother and also lies at a lower value of α, between around 2.7
and 3.1. We observe two phenomena, which are more clear for the Poisson case: at a first stage,
around α= 3.46, we start to see a heavy tail for the distribution of t . This shows that on many
runs, the algorithm is not able to find a solution at all. At a much later stage (Poisson: 3.56, not
shown; Permutations: around 3.1), the algorithm fails on all runs.
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Figure 4.4 – Computation of the scaling factor of the chain length with N that increase in
powers of 2 in the Poisson case. On the top we show how the distribution of chain lengths
changes, while on the bottom we show the median of the chain lengths for various values of α
and N . The median is not shown in the cases it exceeds the cutoff value of 3 ·104.
In both plots, the chain length is shown in log-scale, to emphasize the power law that emerges.
This enables us to determine that for the values of N plotted the scaling is of the formΘ(Nη),
with η around 0.4. The similarity in the shape of the curves suggests that the threshold in α is
around the same place for all values of N .
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Figure 4.5 – For K = 5 we see roughly the same picture. Here the transition observed is for α
between 10 and 11, whereas the threshold beyond which standard UCP finds no solutions for
the base instance at N = 5000 is around 7.3. Just for comparison, the satisfiability threshold
for K = 5 is conjectured to be at αs = 13.67.

To unclutter the presentation, we omit the equivalent results for the permutation random lift,

as they are very similar.

4.5.3 The varying hardness of base instances

The experiments presented so far have been done by sampling base instances at random and

then solving them using spatial coupling. But not all base instances share the same level of

hardness. One can see this by running experiments that keep the base instance fixed. In Figure

4.6 we see that near the transition (α = 3.48) it can even happen that some base instances

can be solved all the time (all runs on that base instance are successful), while some cannot

be solved at all (all runs on that base instance would run forever). Also, the variance in the

chain length becomes considerably smaller once we condition on a fixed base instance. This

provides a reasonable explanation for the heavy tails obtained in Figure 4.3, where some runs

of the algorithm were able to finish, while others were not.

A valid question is whether running spatially coupled UCP really differentiates hard from easy

instances at fixed values of α as N →∞. There is some evidence that this is not true: in Figure

4.4 we see that the distributions depicted by the cdfs tend to concentrate as N increases, and

their tail becomes thinner. This may suggest that the existence of easy and hard base instances

105



Chapter 4. Finding solutions of random K -SAT using spatial coupling

0 5000 10000 15000 20000

t (length of spatial chain used)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n
o

fu
n

fi
n

is
h

ed
p

ro
ce

ss
es

b
y

it
er

at
io

n
t Poisson; N = 4096, K = 3, α= 3.48, W = 4, (1−β)−1 = 10.0, γ−1 = 7.0

Random base instance

Same base instance 1

Same base instance 2

Same base instance 3

Figure 4.6 – Not all base instances are created equal: we compare the outcome of an experiment
where each time a new random base instance is chosen with the case where a base instance is
sampled only once at the beginning of the experiment and then reused every time. The latter
experiment is repeated 3 times, for 3 different base instances. We observe for one of the base
instances chosen, Coupled UCP in never able to find a solution, suggesting this instance is
much harder to satisfy than the other two.

is a finite-size effect.

4.6 Concluding remarks

The main purpose of this investigation was to explore whether using spatial coupling to

obtain solutions for the base instance can give useful results. We gathered some evidence that

suggests that this is indeed the case, using a modified form of UCP. We overcome the need to

store a large spatial chain in memory by having UCP operate on a small part of the chain at a

time and moving in a definite direction along the chain. However, for the time being, little

seems to suggest that a rigorous proof for this method is obtainable.

We see that much of the improvement gained depends on the local structure of the coupled

factor graph. The fact that the Poisson random lift performs much better than the permutation-

based random lift suggest that there may be even better ways to do the coupling. However, the

improvement comes at the price of losing the local equivalence of neighborhoods between

the base instance and the random lift.
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4.6. Concluding remarks

We have also inferred a scaling law that relates the size of the base formula to the runtime of

the algorithm (or the length of the spatially coupled chain used). It could be, however, that this

law does not hold anymore for N much larger than 105, a place where simulations become

prohibitive. This, together with the question of whether at high N there is still a dichotomy

between hard and easy base instances remain open.
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A The root-free expression of the Bethe
free entropy on trees

Given a factor graph that is a tree, pick one root i among the variable nodes, and for each node

u 6= i in the graph (be it variable node or function node), let p(u) be its only neighbor on the

path to i . Using recursion on a tree it can be easily be checked that

log Z = log Z i + ∑
u 6=i

log Z u→p(u).

Since Z is independent of the choice of i , we need a formula which is not dependent on the

way we choose the root. Such a formula would be readily generalizable to situations where the

graph is not a tree. We first define some quantities which are not “directional”.

Z i =∑
σi

∏
b∈∂i

µb→i (σi ), (A.1)

Z a = ∑
σ∂a

ψa(σ∂a)
∏
j∈a

µ j→a(σ j ), (A.2)

Z i a =∑
σi

µi→a(σi )µa→i (σi ). (A.3)

Using the following two relations, we are able to transform directional contributions to Z into

direction-less ones:

Z a =∑
σi

µi→a(σi )
∑
σ∂a\i

ψa(σ∂a)
∏

j∈a\i
µ j→a(σ j )

=∑
σi

µi→a(σi )µa→i (σi )Z a→i

= Z i a Z a→i ; (A.4)
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Appendix A. The root-free expression of the Bethe free entropy on trees

Z i =∑
σi

µa→i (σi )
∏

b∈∂i \a
µb→i (σi )

=∑
σi

µa→i (σi )µi→a(σi )Z i→a

= Z i a Z i→a . (A.5)

Finally, putting everything together, we obtain

NΦ=∑
i

log Z i +∑
a

log Z a − ∑
i∼a

log Z i a .

a1

a2

a3

a4

i1

i2

i3

i4

µa1→i2

µi2→a2

µi1→a2

µa2→i3

µa3→i3

µa4→i3

µi4→a4

Figure A.1 – An example of factor graph, with messages that are needed to compute the
marginals for i3. The partition function can be computed by gathering all normalization
constants resulting from the message processing:

Z = Z i3 Z a3→i3 Z a2→i3 Z a4→i3 Z i2→a2 Z i1→a2 Z a1→i2 Z i4→a4 .

Using relations (A.5) and (A.4) we obtain

Z = Z i3
Z a3

Z a3i3

Z a2

Z a2i3

Z a4

Z a4i3

Z i2

Z i2a2

Z i1

Z i1a2

Z a1

Z a1i2

Z i4

Z i4a4
.
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B The belief propagation formalism and
density evolution for LDPC codes on
BMS channels
B.1 Message passing in terms of beliefs

The message passing equations for coding are given by (1.6) and for LDPC codes they take the

form

µi→a(σi ) = 1

Z i→a
ehi (σi−1)

∏
b∈∂i \a

µb→i (σi ), Z i→a =∑
σi

ehi (σi−1)
∏

b∈∂i \a
µb→i (σi ),

(B.1)

µa→i (σi ) = 1

Z a→i

∑
σ∂a\i

1+∏
j∈aσ j

2

∏
j∈a\i

µ j→a(σ j ), Z a→i = ∑
σ∂a

1+∏
j∈aσ j

2

∏
j∈a\i

µ j→a(σ j ).

Using the HLLR messages νi→a = 1
2 log µi→a (+1)

µi→a (−1)
, it is easy to see that the processing at a node i

becomes

νi→a = hi +
∑

b∈∂i \a
νb→i .

For processing at a node a, we observe the following:

µa→i (σi ) = ∑
σ∂a

1+∏
j∈∂aσ j

2

∏
j∈∂a\i

e(σ j−1)ν j→a
µ j→a(+1)

= 2|∂a|−2

[ ∏
j∈∂a\i

e−ν
j→a
µ j→a(+1) coshν j→a +σi

∏
j∈∂a\i

e−ν
j→a
µ j→a(+1) sinhν j→a

]
.

Then µa→i (+1)
µa→i (−1)

= 1+∏
j∈∂a\i tanhν j→a

1−∏
j∈∂a\i tanhν j→a , and we are able to deduce

tanhνa→i = ∏
j∈∂a\i

tanhν j→a .

For the terms occurring in the Bethe expression, we treat log Zi , log Za and log Zi a separately.
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BMS channels

We obtain

log Zi = log
∑
σi

ehi (σi−1)
∏

b∈∂i \a
µb→i (σi )

= log
(
1+e−2(hi+∑

a∈∂i ν
a→i )

)
+ ∑

a∈∂i
logµa→i (+1),

log Za = log
∑
σ∂a

1+∏
j∈aσ j

2

∏
j∈a

µ j→a(σ j )

= log

[
2|∂a|−1

( ∏
j∈∂a

e−ν
j→a

coshν j→a +σi
∏

j∈∂a
e−ν

j→a
sinhν j→a

)]
+ ∑

i∈∂a
logµ j→a(+1)

= log
1+∏

j∈∂a tanhν j→a

2
+ ∑

i∈∂a
log(1+e−2νi→a

)+ ∑
i∈∂a

logµ j→a(+1)

=− log
(
1+e−2tanh−1 ∏

j∈∂a tanhν j→a
)
+ ∑

i∈∂a
log(1+e−2νi→a

)+ ∑
i∈∂a

logµ j→a(+1),

log Zi a = log
∑
σi

µi→a(σi )µa→i (σi )

= log(1+e−2(νi→a+νa→i ))+ logµi→a(+1)+ logµa→i (+1),

where we used the identity 1+x
2 = 1

1+e−2tanh−1 x
.

Note that in the Bethe expression NΦ = ∑
i log Zi +∑

a log Za −∑
i∼a log Zi a all terms of the

form logµi→a(+1) and logµa→i (+1) cancel out. This allows us to write

NΦ=∑
i

log
(
1+e−2(hi+∑

a∈∂i ν
a→i )

)
−∑

a
log

(
1+e−2tanh−1 ∏

j∈∂a tanhν j→a
)
+ (1.22)

+ ∑
i∼a

log(1+e−2νi→a
)− ∑

i∼a
log(1+e−2(νi→a+νa→i )).

B.2 Properties of symmetric densities

The following identities hold in fact for all h,h′:

(1+e−2h)(1+e−2h′
)

1+e−2h−2h′ = 2

1+ tanhh tanhh′ = 1+e−2tanh−1(tanhh tanhh′). (B.2)

By taking the logarithm on both sides, and assuming h and h′ are distributed according to x

and y, respectively, we obtain

H(x)+H(y) = H(x~y)+H(x�y). (B.3)
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C Auxilliary proofs for the interpolation
method

C.1 Proof of (2.27)

Proposition 51. Given a fixed configuration graph G whose underlying type set is m-admissible

for m > K 2 and a fixed channel realisation h, then with the notation from the proof of Lemma

14 we have that

1

|Bα|
∑

a∈Bα

〈
σ(1)

a · · ·σ(r )
a

〉= 1

|B ′
α|

∑
a∈B ′

α

〈
σ(1)

a · · ·σ(r )
a

〉+O

(
1

m

)
. (C.1)

Proof. Rewrite the left hand side as

1

|B ′
α|

|B ′
α|

|Bα|

( ∑
a∈B ′

α

〈
σ(1)

a · · ·σ(r )
a

〉− ∑
a∈B ′

α\Bα

〈
σ(1)

a · · ·σ(r )
a

〉)
. (C.2)

We will first find an estimate of the quantity |B ′
α \ Bα|, i.e. the number of (pseudo-)check

constraints that connect to at least one socket multiple times. To do this, let us look at

the subset of B ′
α where ai = a j (i.e. edges i and j connect to the same socket), for some

distinct i , j with 1 ≤ i , j ≤ K . The cardinality qi , j of this subset is 0 if αi 6=α j , and is equal to

|B ′
α|/|Fi | ≤ |B ′

α|/m if αi =α j .

A (rough) upper bound for |B ′
α\Bα| is given then by sum

∑
i 6= j qi , j , which in turn never exceeds

K 2|B ′
α|/m.

We are now able to bound the ratio |B ′
α|/|Bα| appearing in (C.2) by m/(m −K 2). Indeed, this

follows from

|B ′
α|

|Bα|
= |B ′

α|
|B ′
α|− |B ′

α \ Bα|
.

The absolute value of the second sum in (C.2) is clearly upper-bounded by |B ′
α \ Bα|, since the
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bracket takes values between 0 and 1. Putting everything together, we obtain

1

|Bα|
∑

a∈Bα

〈
σ(1)

a · · ·σ(r )
a

〉≤ ( m

m −K 2

) 1

|B ′
α|

∑
a∈B ′

α

〈
σ(1)

a · · ·σ(r )
a

〉+ K 2

m −K 2 ,

1

|Bα|
∑

a∈Bα

〈
σ(1)

a · · ·σ(r )
a

〉≥ 1

|B ′
α|

∑
a∈B ′

α

〈
σ(1)

a · · ·σ(r )
a

〉 − K 2

m −K 2 .

C.2 Proof of Theorem 9

We construct a smooth family of channels by interpolating between the given channel c∗ and

the worst channel, denoted by ∆0 (since in the log-likelihood representation it consists of a

point mass at 0):

ch = h−h∗

1−h∗∆0 + 1−h

1−h∗ c
∗,

where h∗ = H(c∗) and the parameter h has been chosen in such a way that it coincides with

H(c), varying from h∗ to 1. Also, to ease notation, for the DE fixed point we use xh as a

shorthand for xch .

The plan is as follows: first we will show that

d

dh
Φ(xh,ch) = g BP(h). (C.3)

Then by Theorem 7, we can replace g BP(h) with g MAP(h). We integrate the two sides between

h∗ and 1 and check that for the worst channel

Φ(x1,∆0) = R = lim
N→∞

1

N
EH(X |Y (1)),

thereby ending the proof of Theorem 9.

It remains to check (C.3). Note that an equivalent form of (2.6) written in the density evolution

language is

g BP(h) =
[

d

dh
H(ch ~Λ

~(ρ�(xh′)))

]
h′=h

. (C.4)

In the ensuing calculations, we will replace xh by x whenever its meaning is clear from context.

It can be easily checked that this form is very similar to the left hand side of (C.3), except

that the differential operator only affects c and not x (i.e. it is a partial derivative). We will

subsequently show that since x is the forward DE fixed point, the partial derivative equals the
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C.2. Proof of Theorem 9

total derivative.

We will compute the derivative of each term in (2.11) separately. The treatment is somewhat

similar to the calculation of directional derivatives of the potential function in [KYMP12]. Each

of the first three terms is of the form

d

dh
H( f �(xh)) = lim

∆h→0

H( f �(xh+∆h))−H( f �(xh))

∆h

= lim
∆h→0

H( f �(x+∆x))−H( f �(x))

∆h
,

where f (u) =∑
k fk uk is some polynomial and ∆x is a shorthand for xh+∆h −xh. To keep the

formulas uncluttered, in all expressions containing the limit ∆x→ 0 we suppress the h indices.

Expanding, we obtain

d

dh
H( f �(xh)) = lim

∆h→0

H
(∑

k fk
∑

j≥1
(k

j

)
∆x� j �xk− j

)
∆h

= lim
∆h→0

H
(∑

k k fk∆x�xk−1
)

∆h
+ lim
∆h→0

H
(
∆x�2 � g (x,∆x)

)
∆h

= lim
∆h→0

H
(
∆x� f ′�(x)

)
∆h

,

where in the last step all the higher order terms (i.e. those containing a ~-power of ∆x higher

than 1 disappear. The polynomial g was introduced just to collect those terms, and the fact

that they vanish is shown below in Lemma 57. Explicitly, the derivatives of the first three terms

are:

d

dh

[
−Λ

′(1)

P ′(1)
H(P�(xh))

]
=−Λ′(1) lim

∆h→0

H
(
∆x�ρ�(x)

)
∆h

,

d

dh

[−Λ′(1)H(ρ�(xh))
]=−Λ′(1) lim

∆h→0

H
(
∆x�ρ′�(x)

)
∆h

,

d

dh

[
Λ′(1)H(xh �ρ�(xh))

]=
=Λ′(1) lim

∆h→0

H
(
∆x�ρ�(x)

)+H
(
∆x�x�ρ′�(x)

)
∆h

.

Using Lemma 55, we replace H
(
x�ρ′�(x)�∆x

)
with H

(
ρ′�(x)�∆x

)−H
(
x~ (ρ′�(x)�∆x)

)
,

and we are thus able to cancel the contributions of the first two terms.

The derivative of the last of the four terms in (2.11) needs to be handled more carefully, since

it contains both kinds of operations on densities. However, the idea remains the same: we

examine the quantity
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H((c+∆c)~Λ~(ρ�(x+∆x))−c~Λ~(ρ�(x)))

andi we classify the terms that appear according to the position of ∆c and ∆x. There are two

terms that contain once either ∆c and ∆x:

• ∆c~Λ~(ρ�(x)),

• c~Λ′~(ρ�(x))~ (ρ′�(x)�∆x).

The higher order terms (the ones that contain at least two of ∆x and ∆c) are of the types

• (∆x�∆x� g1(x,∆x))~ g2(x,∆x,c),

• (∆x� g1(x))~ (∆x� g2(x))~ g2(x,∆x,c),

• (∆x� g1(x,∆x))~ g2(x,∆x)~∆c,

where the functions g1, g2, g3 are products involving ~ and � of their parameters. All the

terms above have vanishing contributions in the limit, by Lemma 57.

We are now able to collect all the terms that remain and assemble them in the form

d

dh
U (xh,ch) = lim

∆h→0

H((x−c~Λ′~(ρ�(x)))~ (ρ′�(x)�∆x))

∆h
+ lim
∆h→0

H(∆c~Λ~(ρ�(x)))

∆h

= 0+ g BP(h),

where in the last step we used the fact that x is the fixed point of the DE equation, and also the

alternative definition of the BP GEXIT curve provided by (C.4).

The proof is now complete, and we are left to show that the higher order terms do not con-

tribute in the limit. We begin with some definitions and some new notations. Degradation

induces a partial ordering on X , which we denote by z ≺ z ′, where z ′ is degraded with respect

to z. Note that density evolution preserves degradation, and the following proposition follows

from standard arguments in [RU08].

Proposition 52. If c,c′ ∈X and c≺ c′ then xc ≺ xc′ .

For any z ∈X , the Bhattacharyya functional [RU08] is given by

B(z) =
∫
z(h)e−hdz(h). (C.5)
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There is a metric defined on X , the Wasserstein distance (on the |D| domain) [KRU12], that

has the following useful properties which we state here without proof. For any z,z′y ∈X ,

d(z~y,z′~y) ≤ 2d(z,z′),

d(z�y,z′�y) ≤ d(z,z′).

Let F be the set of functions f : X →X of the form

f (z) = y1 ∗1 (y2 ∗2 (. . . (yk ∗k z)))

for some y1, . . . ,yk ∈X and ∗1, . . . ,∗k ∈ {~,�}. We can easily extend f by linearity, in order to

define quantities like f (z−z′). Then for each f ∈F there is a constant M such that for all z≺ z′

we have that

d( f (z), f (z′)) ≤ Md(z,z′). (C.6)

If z≺ z′, the Wasserstein distance is bounded above and below by powers of the Bhattacharyya

functional, in the sense that

1

4
(B(z′)−B(z))2 ≤ d(z,z′) ≤ 2

√
B(z′)−B(z).

The following lemma (part of Lemma 21 in [KRU12]) will enable us to factorize the entropy of

a ~-product. The reason why we consider the Bhattacharyya functional is contained in the

following lemmas.

Lemma 53. Let z,z′,y,y′ ∈X such that zÂ z′. Then

|H((z−z′)~ (y−y′)| ≤ 8

log2
B(z−z′)

√
2d(y,y′).

We are now ready to tackle the higher order contributions. Let M1, M2, . . . denote constants

independent of the channel.

Proposition 54. With the notation from the beginning of this section, for any f ∈F (extended

by linearity), we have

lim
∆h→0

H(∆x~ f (∆x))

∆h
= 0,

lim
∆h→0

H(∆c~ f (∆x))

∆h
= 0.

Proof. We concentrate on the first limit, as the second is similar but easier. Applying Lemma
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53 we obtain the upper bound

lim
∆h→0

M1
B(∆x)

√
2d( f (x), f (x+∆x))

H(∆c)
.

Since the parametrization is just a linear interpolation between c∗ and ∆0 and H(·) and B(·)
are linear functionals, we have that H(∆c) = M2B(∆c). Then we can replace the denominator

by the Bhattacharyya quantity and use the regularity condition (2.13). The only thing left to be

shown is that
√

2d( f (x), f (x+∆x)) → 0. This follows from inequality (C.6) and the fact that d

is a metric.

The main tool to turn � into ~ and vice-versa is the following.

Lemma 55 (Duality lemma, [RU08]). Let z,z′,y,y′ ∈X . Then

H(z~y)+H(z�y) = H(z)+H(y).

For differences of densities, because of linearity of H, this takes the forms

H((z−z′)~y)+H((z−z′)�y) = H(z−z′), (C.7)

H((z−z′)~ (y−y′))+H((z−z′)� (y−y′)) = 0. (C.8)

Proposition 54 with the identity map as f and (C.8) implies

lim
∆h→0

|H(∆x�∆x)|
∆h

= 0. (C.9)

Proposition 56 (Proposition 6 in [KYMP12]). If z is any symmetric measure (not necessarily

signed), then

H(z) = z(R)−
∞∑

k=1

(log2)−1

2k(2k −1)
Mk (z),

where Mk (z) = ∫
(tanhh)2k dz(h) and z(R) is the total mass of te z.

Moreover, for any symmetric measures z1 and z2,

Mk (z1 �z2) = Mk (z1)Mk (z2).

Since the quantities Mk (∆x�∆x) = Mk (∆x)2 are all positive, the previous proposition implies

that

|H(∆x�∆x�y)| ≤ |H(∆x�∆x)|, (C.10)
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for all y ∈X . By an application of (C.7), one also obtains

|H((∆x�∆x�y1)~y2)| ≤ 2|H(∆x~∆x)|. (C.11)

We are finally ready to state the result proving the vanishing contribution of higher order

terms:

Lemma 57. We have

lim
∆h→0

H((∆x�∆x� g1(x,∆x))~ g2(x,∆x,c,∆c))

∆h
=0, (C.12)

lim
∆h→0

H((∆x� g1(x))~ (∆x� g2(x))~ g3(x,∆x,c))

∆h
=0, (C.13)

lim
∆h→0

H(∆c~ (∆x� g2(x))~ g3(x,∆x,c))

∆h
=0. (C.14)

Proof. The limit (C.12) is a direct consequence of (C.11). The third one, (C.14), is a conse-

quence of Proposition 54. The second one can also be reduced to the form appearing in

Proposition 54 by using the Duality Lemma twice:

H((∆x� g1(x))~ (∆x� g2(x))~ g3(x,∆x,c))

= H(∆x� g1(x)� ((∆x� g2(x))~ g3(x,∆x,c)))

= H(∆x~ (g1(x)� ((∆x� g2(x))~ g3(x,∆x,c)))).
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D Auxilliary lemmas and calculations
for freezing threshold in graph color-
ing
D.1 Relating the planted model to the Galton-Watson process

We call an assignment balanced if the number of vertices of each color under the assignment is
N
Q −o(N−2/3). This definition was chosen in such a way that an assignment chosen uniformly

at random will w.h.p. be balanced.

Lemma 58. The total variation distance between the distribution of the graph neighborhood

Nv (G(N ,α;σ); t ) and the distribution of T (α; t ) is 1−o(1) as N →∞.

Proof. Let E1 be the event that σ is not balanced and let E2 be the event that σ is balanced

but Nv (G(N ,α;σ); t) is not a tree. Their probabilities are both o(1): for the former it is a

consequence of the Central Limit Theorem; for the latter it will become clear towards the end

of the proof. In what follows we condition on E1 not happening.

We now play a card game: place one card on each potential edge of the graph, face down. The

card indicates whether that is an actual edge or not, and is drawn according to the planted

model. This means all cards are independent. We first pick a node at random, call it u: this will

be the root, and we mark it red, and we turn all cards neighboring u. We mark the neighbors

of u green.1 As long as there are green nodes at distance ≤ t , pick one of them, mark it red

and do the same thing as we did with the root, with one exception: never reveal cards that are

between this node and another green node. These cards are to remain face down until the end

of the game: we color the back of these cards red. Not revealing the red cards means that we

always reveal a tree, even if the full neighborhood is not a tree. We forget now the labels of the

vertices, but we keep the ordering of children (this helps with computing probabilities); we

also annotate the nodes with their colors under σ.

Suppose the revealed tree has size m. Then there will be less than m2 red cards. Each card in

general indicates “edge” with probability p = αQ
(Q−1)N , so given the revealed tree, the probability

that there is in fact a cycle in the neighborhood is O( m2

N ).

1These colors are just for explaining the proof; they have nothing to do with the planted coloring σ!
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We now compare the probability of the revealed tree in the two distributions, in two steps.

(A) We first compute the probability that a revealed node colored q has d ≤ N 1/10 children

colored q ′ 6= q . In the card game, this is given by the binomial distribution:(
N
Q −o(N 2/3)

d

)(
αQ

(Q −1)N

)d (
1− αQ

(Q −1)N

) N
Q −o(N 2/3−d)

.

In the Galton-Watson tree, the same quantity is given by the Poisson distribution e−
α

Q−1 1
d !

(
α

Q−1

)d
.

After simplifications it is apparent that the ratio between the two is 1+o(N−1/5).

(B) The probability of the whole tree is a product of m(Q −1) quantities of the type computed

in step (A). Assuming m = o(N 1/10) (we will see this is a reasonable choice), the probability of

the tree showing up only differs by a ratio of 1−o(N 1/20).

The expected size and of the Galton-Watson tree of depth t is O(1), since it does not depend

on N at all. The variance is also O(1), so clearly the event E3 of trees with m > N 1/10 occuring

has probability o(1) probability by Chebyshev’s inequality.

Then by the union bound Pr[E2] ≤ Pr[E3]+O( m2

N ) = o(1). The total variation bound is obtained

by summing the differences between the two distributions, outside E1, E2 and E3.

This lemma can be extended to the coupled scenario quite easily.

Lemma 59. For fixed W and L, the total variation distance between the distribution of the graph

neighborhood N
coup

v (G(N ,α,L,W ;σ); t ) and the distribution of T coup(α,L,W ; t ) is 1−o(1) as

N →∞.

Proof. The only difference to the uncoupled scenario is the existence of the additional label

representing position. When comparing the probability of each tree appearing under the two

distributions, the quantities computed in step (A) will be the probabilities that a node situated

at position z and colored q has d neighbors at position z +w with w ∈ {−W +1, . . . ,W −1},

and colored q ′ 6= q . At boundaries there will be fewer terms but none of this impacts the final

result.

D.2 Asymptotic behaviour of the freezing threshold for the coupled

model

We derive here the first terms in the asymptotic expansion of the freezing threshold as Q →∞.

It is more convenient to work with a = α
(Q−1)log(Q−1) , as the following lemmas will make clear
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D.2. Asymptotic behaviour of the freezing threshold for the coupled model

that this is the right scaling. With this convention, we rewrite the potential and its derivative as

U (x) = x2

2
−x + 1

a log(Q −1)

Q−1∑
q=1

1

q

(
1− 1

(Q −1)ax

)q

. (D.1)

U ′(x) = x −
(
1− 1

(Q −1)ax

)Q−1

. (D.2)

Lemma 60. For fixed Q, a > 0, x > 0, if ax < 1 then U ′(x) > 0. By integration we also obtain that

U (x) > 0. The claim is also valid for ax = 1 when a < e.

Proof. We distinguish two cases.

When x ≤ 1
a log2(Q−1)

, we use 1−e−y ≥ y to obtain U ′(x) ≥ x − (log(Q −1)ax)Q−1 > 0.

When x ≥ 1
a log2(Q−1)

, we use 1− y ≥ e−y to obtain U ′(x) ≥ x −e−(Q−1)1−ax ≥ 0.

Lemma 61. If a > 0, x ∈ (0,1] are fixed such that 1 < ax < (1− x/2)−1, then for all sufficiently

large Q, U (x) > 0. Moreover, for a > 2 and x = 1, we have U (x) < 0 for all sufficiently large Q.

Proof. We first observe that
∑Q−1

q=1
1
q

(
1− 1

(Q−1)ax

)q =∑Q−1
q=1

1
q −O

(
(Q −1)1−ax

)
.

Using
∑Q−1

q=1
1
q = log(Q −1)+O(1), it we easily check that for a < 2 and for large enough Q

U (x) = x2

2
−x + 1

a
−o(1) > 0.

For a > 3, we see immediately that the above expression attains negative values.

From this it becomes apparent that one should search for the coupled freezing threshold in

the vicinity of a = 2; we also infer that we should find the minimum of U (x) at values of x close

to 1. There are two possibilities: (i) either the minimum is achieved in the interior at some x∗,

where U ′(x∗) = 0 is fulfilled or (ii) the minimum is achieved at x = 1. In any case, for the first

few terms in the expansion we will see that U (1) will be identical to U (x∗).

We write x∗ = 1−κ and a = 2+δ, with δ,κ = o(1). The condition U ′(x∗) = 0 gives κ = (Q −
1)−1+2κ−δ+δκ+O((Q −1)−2+o(1)).

The following expansion will be useful. For two functions f and ε, if ε= (C +o(1)) log−1( f ),

then

1

f 1+ε = e− log f −C+o(1) = e−C

f
+o(

1

f
). (D.3)

We will self-consistently check that δ=O( 1
log(Q−1) ). Using the remark above, we can deduce
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κ=O( 1
Q−1 ).

We now turn to the condition U (x∗) = 0. For this expansions

Q−1∑
q=1

1

q
(1− 1

(Q −1)ax )q =
Q−1∑
q=1

1

q
− 1

(Q −1)1−2κ+δ−κδ +O

(
1

(Q −1)2−o(1)

)
,

Q−1∑
q=1

1

q
= log(Q −1)+γ+ 1

2(Q −1)
+O(

1

(Q −1)2−o(1)
),

where γ is the Euler-Mascheroni constant. After some rearrangement we obtain(
1

2
+ κ2

2

)
(2+δ) = 1+ γ

log(Q −1)
+ 1

2(Q −1)log(Q −1)

− 1

(Q −1)1+δ log(Q −1)
+O(

1

(Q −1)2−o(1)
).

Note that if we were to look at the condition U (1) = 0 instead, the differece would be only the

term κ2

2 , which is so small that we will anyway ignore. After another application of (D.3) and

the change α= (2+δ)(Q −1)log(Q −1), we finally obtain that for the coupled system

αc(m=1)
f = 2(Q −1)log(Q −1)+2γ(Q −1)+1−2e−2γ+o(1), (D.4)

or in terms of Q,

αc(m=1)
f = 2Q logQ +2γQ −2logQ −1−2γ−2e−2γ+o(1). (D.5)
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E Proofs and observations for the SP
threshold saturation

E.1 Properties of the space of densities

We make now a number of observations in order to understand better the densities p. We first

introduce a suitable metric and then an ordering between densities. We will view the equation

(3.35) as the fixed point equation of an operator on densities, and the ordering on densities

will be chosen in such a way that this operator be monotone. Since these properties may turn

out to be useful later, we phrase them in a more general language.

E.1.1 The metric space

Let M be the space of probability measures on a closed interval I of the real line, hereafter

referred as densities. We begin with the observation that elements of M can be put in bijective

correspondence with the (i) continuous-to-the-right-limit-to-the-left (càdlàg) functions that

are nondecreasing and 0 on (−∞, inf I ) and 1 on [sup I ,+∞) or (ii) elements of L1(I ′), nonde-

creasing a.e., 0 to the left of I and 1 to the right, where I ′ is some neighborhood of I . We refer

to the object given by (i) and (ii) as the cdf of a probability measure, even though the cdf is

given strictly speaking by (i), while (ii) is the equivalence class of (i) in the sense of equality

almost everywhere. The cdf will typically be written as p((−∞, ·)).

The metric dC :M×M→Rwill be given by the distance in L1 norm between the cdfs of the

measures, in other words by

dC (p,p′) =
∫ ∣∣p((−∞, x])−p′((−∞, x])

∣∣dx. (E.1)

The metric space thus defined is complete, because L1(I ′) is complete and the subset of valid

cdfs of M in L1(I ′) is closed. The latter is true because the limit of a converging sequence of

cdfs (given in the case of cdfs a.e. by pointwise limit) is clearly nondecreasing and takes values

0 and 1 to the left and to the right of I , respectively. Note that it is important in this definition
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Appendix E. Proofs and observations for the SP threshold saturation

that I be compact.

The metric space is totally bounded. To see this, assume for simplicity that I = [0,1]. Fix ε> 0

and set n = d1
ε e. Let Mε be defined as the set of densities with support on the set whose cdfs

are nondecreasing step functions that jump only at positions in Bn = {0, 1
n , . . . , n−1

n ,1} and take

the discrete values also in Bn . Then any density p ∈M is at most 2ε away from an element from

the finite set Mε. Since M as a metric space is complete and totally bounded, it is compact.

E.1.2 Partial ordering

The partial ordering we set on M is an ordering of cdfs in the sense that p ¹ p′ if the cdf of p

lies above that of p′, i.e. p((−∞, x]) ≥ p′((−∞, x]). The intuition regarding the direction of the

inequalities is recovered when one thinks that for the “lesser” density the probability mass

lies to the left of the mass of the “greater” density. The ordering can be expressed equally by

p((x,+∞)) ≤ p′((x,+∞)). Mirroring the terminology used for channel coding, we will say that

p′ is degraded with respect to p.

Note that in the case where two densities are ordered, the absolute value appearing in (E.1)

comes out of the integral. As such, in a monotone sequence of densities, the distances are

additive. This implies that a monotone sequence of densities always converges.

We introduce the operations ∨ and ∧ by defining

(p∨p′)((x,+∞)) = max{p((x,+∞)),p′((x,+∞))}, (p∧p′)((x,+∞)) = min{p((x,+∞)),p′((x,+∞))},

for arbitrary p,p′ ∈M. It can be easily checked that

dC (p∧p′,p′) ≤ dC (p,p′). dC (p∨p′,p′) ≤ dC (p,p′), (E.2)

(E.3)

E.1.3 Linear combinations of densities

We will make use of addition and multiplication by scalar of elements of M. These are to be

understood as operations on signed measures, and they are equivalent to the same operations

performed on cdfs in L1(I ′) (regardless of whether the results are cdf’s or not). It is also clear

that convex combinations of elements of M are, however, in M. Infinite convex combinations

will also be used, of the kindEd p(d), where {p(d)} is an infinite sequence of densities. These

should be interpreted as the densities corresponding to the limit (in L1(I ′)) as n → ∞ of

the cdfs of the partial sums
∑n

d=0
e−ααd

d ! p(d). The limit always exists in the case of Poisson

distributions, as it can be verified immediately that the sequence of partial sums is Cauchy.

Convex combinations of densities that are pairwise ordered are themselves ordered. In other

words, if {ti } is a countable sequence of nonnegative reals such that
∑

i ti = 1, and if p(i )
1 ¹ p(i )

2
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for all i , then
∑

i ti p(i )
1 ¹∑

i ti p(i )
2 when the sums converge.

E.2 Proofs of properties of functions f , g and φ

E.2.1 Proof of Lemma 23

Proof. We write the partial derivative with respect x1 (the function is symmetric under re-

ordering of parameters). It is

∂gd

∂x1
(x1, . . . , xd ) = ∂

∂x1

Q−1∑
l=0

(−1)l

(
Q

l +1

)
d∏

i=1
(1− (l +1)xi )

=−
Q−1∑
l=0

(−1)l

(
Q

l +1

)
(l +1)

d∏
i=2

(1− (l +1)xi )

=−Q
Q−1∑
l=0

(−1)l

(
Q −1

l

)
d∏

i=2
(1− (l +1)xi )

=−Q fd−1(x2, . . . , xd ). (E.4)

The first claim now follows, since fd−1(x2, . . . , xd ) has a probabilistic interpretation and is thus

nonnegative.

For the last claim, we have limd→∞(1− 1
Q )−d gd ( 1

Q , . . . , 1
Q ) =Q. Thus there is c0 > 0 and d0 such

that for all d ≥ d0 it holds that gd ( 1
Q , . . . , 1

Q ) ≥ c0(1− 1
Q )d . We will set K = min{c0,mind=1,...,d0 (1−

1
Q )−d gd ( 1

Q , . . . , 1
Q )} and the claim follows.

E.2.2 Proof of Lemma 24

Proof. Because of symmetry, it will be sufficient to prove that φ(x) is increasing in x1. To

simplify notation, let us set T (l +1) =∏d
i=2(1− (l +1)xi ). The fact that φ(x) is increasing in x1

is equivalent to the positivity of the quantity

∂ f (x)

∂x1
g (x)− f (x)

∂g (x)

∂x1
=

=
Q−1∑
l=0

(−1)l+1

(
Q −1

l

)
(l +1)T (l +1)

Q−1∑
l ′=0

(−1)l ′
(

Q

l ′+1

)
(1− (l ′+1)x1)T (l ′+1)

−
Q−1∑
l=0

(−1)l

(
Q −1

l

)
(1− (l +1)x1)T (l +1)

Q−1∑
l ′=0

(−1)l ′+1

(
Q

l ′+1

)
(l ′+1)T (l ′+1)

=
Q−1∑

l ,l ′=0
(−1)l+l ′+1

(
Q −1

l

)(
Q

l ′+1

)
[(l +1)− (l ′+1)]T (l +1)T (l ′+1)
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=
Q−1∑

l ,l ′=0

(−1)l+l ′+1

Q

(
Q

l +1

)(
Q

l ′+1

)
[(l +1)2 − (l ′+1)(l +1)]T (l +1)T (l ′+1)

= ∑
0≤l<l ′<Q

(−1)l+l ′+1

Q

(
Q

l +1

)(
Q

l ′+1

)
(l − l ′)2T (l +1)T (l ′+1).

For Q = 3, the above condition reduces to

3T (1)T (2)−4T (1)T (3)+T (2)T (3) > 0.

Since if T (3) = 0 the condition holds trivially, we will assume that T (1),T (2),T (3) are all positive

and it will be enough to show that 3
4

1
T (3) + 1

4
1

T (1) > 1
T (2) . This we prove using the arithmetic-

geometric mean inequality twice, as follows:

3

4

1

T (3)
+ 1

4

1

T (1)
≥ 1

T (3)3/4T (1)1/4
=

d∏
i=2

1

(1−3xi )3/4(1−xi )1/4
≥

≥
d∏

i=2

1
3
4 (1−3xi )+ 1

4 (1−xi )
≥

d∏
i=2

1

1−2xi
= 1

T (2)
.

E.2.3 Proof of Lemma 25

Proof. We begin with the bounds on φ. The positivity is a direct consequence of the mono-

tonicity of φ. We derive now the upper bound. To make notation more compact, let x be the

vector (x1, . . . , xd ) and x the same without x1, i.e. (x2, . . . , xd ).

We have

∂

∂x1
φ(x) = ∂

∂x1

f (x)

g (x)
= 1

g (x)2

(
∂ f (x)

∂x1
g (x)− f (x)

∂g (x)

∂x1

)
. (E.5)

The quantities f (x), g (x),
∂ f (x)
∂x1

and
∂g (x)
∂x1

only depend on x, and all have a probabilistic

interpretation. It is in fact the same probabilistic interpretation that allowed us to write f and

g in the first place. We have d −1 balls indexed from 2 to d that are placed into Q +1 bins,

labeled {1, . . . ,Q,∗}. Ball i will be placed in each of the numbered bins with probability xi and

with probability 1−Qxi it will go into the ∗ bin. Let B be the random variable that counts the

number of empty bins among {1, . . . ,Q}.

For f (x) and g (x) we already know the probabilistic interpretation. For the other two it arises

using the inclusion-exclusion principle:

f (x) = 1

Q
P[B = 1], g (x) =P[B ≥ 1].
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∂ f (x)

∂x1
=

Q−1∑
l=0

(−1)l+1

(
Q −1

l

)
(l +1)

d∏
i=2

(1− (l +1)xi )

=
Q−1∑
l=0

(−1)l+1

(
Q −1

l

)
l

d∏
i=2

(1− (l +1)xi )+
Q−1∑
l=0

(−1)l+1

(
Q −1

l

)
d∏

i=2
(1− (l +1)xi )

=
Q−2∑
l ′=0

(−1)l ′(Q −1)

(
Q −2

l ′

)
d∏

i=2
(1− (l ′+2)xi )−

Q−1∑
l=0

(−1)l

(
Q −1

l

)
d∏

i=2
(1− (l +1)xi )

= 2

Q
P[B = 2]− 1

Q
P[B = 1].

∂g (x)

∂x1
=

Q−1∑
l=0

(−1)l+1

(
Q

l +1

)
(l +1)

d∏
i=2

(1− (l +1)xi )

=−
Q−1∑
l=0

(−1)l Q

(
Q −1

l

)
d∏

i=2
(1− (l +1)xi )

=−P[B = 1].

We make the dependence on x1 explicit in f (x) and g (x):

f (x) = f (x)+x1
∂ f (x)

∂x1
= 1

Q
(P[B = 1]+x1(2P[B = 2]−P[B = 1])) ,

g (x) = g (x)+x1
∂g (x)

∂x1
=P[B ≥ 1]−x1P[B = 1].

Replacing all these into (E.5) and noticing that the numerator does not in fact depend on x1,

we obtain

∂

∂x1
φ(x) = (2P[B = 2]−P[B = 1])P[B ≥ 1]+P[B = 1]P[B = 1]

Q(P[B ≥ 1]−x1P[B = 1])2

≤ 2P[B = 2]P[B ≥ 1]−P[B = 1](P[B ≥ 1]−P[B = 1])

Q(P[B ≥ 1]− 1
QP[B = 1])2

= 2P[B = 2]P[B ≥ 1]−P[B = 1]P[B ≥ 2]

Q(Q−1
Q P[B ≥ 1])2

≤ 2

Q

P[B ≥ 1]

P[B ≥ 2]
= 2Q

(Q −1)2 (E.6)

In the case of log g (x) we have

∂

∂x1
log g (x) =

∂
∂x1

g (x)

g (x)
= −P[B = 1]

P[B ≥ 1]−x1P [B = 1]
≥ −P[B = 1]

Q−1
Q P[B ≥ 1]

≥− Q

Q −1
.
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E.3 Properties of the operator F

E.3.1 Proof of Lemma 28 (Monotonicity with respect to the densities)

We will first prove that the operator F is monotone with respect to ¹, by first splitting up F in

the terms corresponding to each degree d . Let F (d) :Md →M be defined by

F (d)(p1, . . . ,pd ) =
∫

[0,1/Q]d
dp1(x1) · · ·dpd (xd )δφ(x1,...,xd ). (E.7)

The fixed-degree version of F will be used for all the proofs in this group.

Proof. We show that for fixed p2, . . . ,pd , we have that F (d)(p,p2, . . . ,pd ) ¹F (d)(p′,p2, . . . ,pd ).

Let us first make an observation. Since φ(x1, . . . , xd ) is increasing in x1, there is a func-

tion ψ : [0,1/Q]d → R, such that φ(x1, . . . , xd ) > a is equivalent to x1 > ψ(a, x2, . . . , xd ), for

all x1, . . . , xd , a ∈ [0,1/Q].

We can now prove the first part of the lemma by making use of the function ψ:

F (d)(p,p2, . . . ,pd )((a,1/Q]) =
=

∫
[0,1/Q]d

dp1(x1) · · ·dpd (xd )1(φ(x1, . . . , xd ) > a)

=
∫

[0,1/Q]d
dp(x1) · · ·dp(xd )1(x1 >ψ(a, x2, . . . , xd ))

=
∫

[0,1/Q]d−1
dp(x2) · · ·dp(xd )p((ψ(a, x2, . . . , xd ),1/Q])

≤
∫

[0,1/Q]d−1
dp(x2) · · ·dp(xd )p′((ψ(a, x2, . . . , xd ),1/Q])

=F (d)(p′,p2, . . . ,pd )((a,1/Q]).

It is then easy to see that by applying this result for all d parameters one obtains F (d)(p, . . . ,p) ¹
F (d)(p′, . . . ,p′). Then the second claim of the lemma follows since F (p) =Ed F (d)(p, . . . ,p).

E.3.2 Proof of Lemma 29 (Monotonicity with respect toα)

Proof. Let d1 be drawn randomly from a Poisson(α) distribution, and independently let d2 be

drawn from Poisson(α′−α). Then d1 +d2 is Poisson(α′)-distributed.

Since δ0 ¹ p, we observe that

F (d+d ′)(p, . . . ,p) ¹F (d+d ′)(p, . . . ,p︸ ︷︷ ︸
d times

,δ0, . . . ,δ0︸ ︷︷ ︸
d ′ times

) =F (d)(p, . . . ,p).
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We then have

Fα′(p) =Ed1:αEd2:α′−αF (d1+d2)(p, . . . ,p) ¹Ed1:αF (d1)(p, . . . ,p) =Fα(p).

E.3.3 Proof of Lemma 30 (Continuity)

Proof. We will prove that

dC (F (p),F (p′)) ≤ γdC (p,p′), (E.8)

for some constant γ> 0 depending only on Q. We begin with a weaker claim that assumes

that p º p′.

We first prove a version of the claim for F (d):

dC (F (d)(p,p2, . . . ,pd ),F (d)(p′,p2, . . . ,pd ) =

=
∫ 1/Q

0
dx

∫
[0,1/Q]d

d(p−p′)(x1)dp2(x2) · · ·dpd (xd )1{φd (x1, . . . , xd ) > x}

=
∫

[0,1/Q]d
d(p−p′)(x1)dp2(x2) · · ·dpd (xd )

∫ 1/Q

0
dx1{φd (x1, . . . , xd ) > x}

=
∫

[0,1/Q]d
dp2(x2) · · ·dpd (xd )d(p−p′)(x1)φd (x1, . . . , xd )

=
∫

[0,1/Q]d−1
dp2(x2) · · ·dpd (xd )

∫ 1/Q

0
dx1(p((x,1/Q])−p′((x,1/Q])))

∂

∂x1
φd (x1, . . . , xd ).

Using the upper bound in Lemma 25, we obtain

dC (F (d)(p,p2, . . . ,pd ),F (d)(p′,p2, . . . ,pd ) ≤ 2Q

(Q −1)2 dC (p,p′), (E.9)

for some fixed K , not dependent on d . Applying the above inequality for each parameter of

F (d) incurs an extra factor of d . We can then write

dC (F (p),F (p′) =Ed dC (F (d)(p, . . . ,p),F (d)(p′, . . . ,p′))

=Ed d
2Q

(Q −1)2 dC (p,p′) = 2αQ

(Q −1)2 dC (p,p′). (E.10)

To generalize this result for arbitrary p and p′, we used what we proved so far for the pairs p,

p∧p′ and p′, p∧p′. Using (E.2) and the triangle inequality we obtain the desired result.
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E.3.4 Proof of Lemma 31 (F (∞)(p) is a fixed point)

Proof. We need to show that F (∞)(p) =F (F (∞)(p)). Using Lemma eff-continuity, we get

dC (F (n+1)(p),F ◦F (∞)(p′)) = dC (F ◦F (n)(p),F ◦F (∞)(p′)) =O(dC (F (n)(p),F (∞)(p′))).

As n →∞, the right hand side tends to 0 by definition, and from the left hand side we get that

F ◦F (∞)(p′) is the limit of the sequence {F (n+1)(p)}, which concludes the argument.

E.4 The basin of attraction of δ0 is an open set

We will showing that T contains a neighborhood of δ0. Let B(ε) be the open ball centered at

δ0 of radius ε. We first need two very technical lemmas that show that F is a contracting map

around δ0.

It is necessary that we treat separately the cases Q ≥ 4 and Q = 3. We treat the latter first, as it

is simpler. Define sε = (1−ε)δε +εδ1/Q.

Lemma 62. For Q ≤ 4 and ε> 0 sufficiently small, F (sε) ¹ sε1.5

Proof. Consider the following setting. Draw a number d from Poisson(α). Then draw inde-

pendently d numbers x1, . . . , xd from sε. We need to check that the probability of the event E

that φ(x1, . . . , xd ) ≥ ε1.5 happens is less than ε1.5.

Let d0 = bε−0.01c. Then for ε small enough, we have that Pr[d ≥ d0] ≤ ε0.1.

Let Y count the number of 1/Q among x1, . . . , xd . In the event Y ∈ {0,1}, we haveφ(x1, . . . , xd ) =
O((dε)2) (according to Lemma 65), and for d < d0 this is outside the event E . The case Y ≤ 2

occurs with probability O((dε)2) by the union bound.

Also by the union bound we get

Pr[E ] ≤ Pr[d ≥ d0]+Pr[Y ≤ 2|d < d0] ≤ ε1.5.

For Q = 3, the approach needs to be more complex. Define

rε = (1−ε−ε2)δε2 +εδε+ε2δ1/Q.

So instead of working with just two masses, at 1/Q and ε, we work with three masses, at 1/Q, ε

and ε2.

Lemma 63. For Q = 3 and ε> 0 sufficiently small, F (rε) ¹ sε1.2 .
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Proof. The setting is the same as in the previous proof, except now x1, . . . , xd are drawn from

rε; d0 is chosen in the same manner. Let Y and Y ′ count the number of 1/Q and ε among

x1, . . . , xd , respectively.

Let E be the event that φ(x1, . . . , xd ) ≥ ε1.2. We need to check whether P[[]E ] < ε2.4. Also, let E ′

be the event that φ(x1, . . . , xd ) ≥ ε2.4. We will check that P[[]E ′] < ε1.2.

We distinguish the following events, compute their probabilities and see what the values of φ

are (using Lemma 65 below) in each of them:

Pr[Y = 0,Y ′ = 0] =O(1), φd (x) =O(d 2ε4),

Pr[Y = 0,Y ′ = 1] =O(dε), φd (x) =O(dε3),

Pr[Y = 1,Y ′ = 0] =O(dε2), φd (x) =O(dε2),

Pr[Y = 0,Y ′ = 2] =O(d 2ε2), φd (x) =O(ε2).

All the other combinations of Y and Y ′ result in events that are O((dε)3). We can then fit

the cases (Y ,Y ′) ∈ (0,0), (0,1) outside E ′ and the cases (Y ,Y ′) ∈ (1,0), (0,2) outside E . We then

perform a union bound like in the previous proof to account for the cases d > d0.

One can check that all p ∈B(ε2) satisfy p ¹ sε or p ¹ rε, as the case may be. Because of the

monotonicity of F and the previous two lemmas, there will be some small ε0 > 0 for which for

all p ∈B(ε2
0) we have that F∞(p) =δ0. Thus the set T contains a neighborhood of δ0. We can

in fact show more.

Lemma 64. The set T is open. As a consequence M\T is compact.

Proof. The last assertion is clear, since the complement of T is closed and it is a subset of the

compact space M.

Let p ∈T. We show that all points p′ ∈M at distance at most d , where d is still to be determined

are inside T. Let n be such that F (n)(p) ∈B(ε2
0), set χ= ε2

0 −dC (F (n)(p),δ0). Also, let γ be the

constant in (E.8). Then setting d = χγ−n ensures that F (n)(p′) ∈B(ε2
0), which places it in the

basin of attraction of δ0.

We present here the last part of the calculations used in the two technical lemmas in the

beginning.

Lemma 65. The next identities hold as ε→ 0 and d = o(ε−1.1), while Q is constant:

φ
(Q≥4)
d (ε, . . . ,ε) =O((dε)3),

φ
(Q≥4)
d (

1

Q
,ε, . . . ,ε) =O((dε)2),

φ
(Q=3)
d (ε2, . . . ,ε2) =O(ε4),
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φ
(Q=3)
d (ε,ε2, . . . ,ε2) =O(dε3),

φ
(Q=3)
d (

1

Q
,ε2, . . . ,ε2) =O(dε2),

φ
(Q=3)
d (ε,ε,ε2, . . . ,ε2) =O(d 2ε2),

φ
(Q=3)
d (

1

Q
,ε,ε2, . . . ,ε2) =O(d 2ε).

Proof. In all cases above, we can disregard the denominator (see 3.33) of φd , since it is 1−o(1).

The first identity is obtained as follows: let ζ1, . . . ,ζd be random colors with probability ε each

and ∗ with probability 1−Qε. Let N be the number of non-stars. Then the numerator of φd is

the probability that N =Q −1. For this to happen, a necessary condition is that at least 3 of

the ζ’s need to be non-∗. By the union bound, this probability is O((dε)3).

The second identity is obtained in a similar way: now ζ1 is a random color with probability

1/Q each, and the rest of the ζ’s are chosen as before. But now it is necessary that at least 2 of

ζ2, . . . ,ζd be non-star, which happens with probability O((dε)2).

For the case Q = 3, we use the formula for the numerator of φd :

fd (x1, . . . , xd ) = T (1)−2T (2)+T (3),

where T ( j ) =∏
j (1− j x j ), and pick the first order terms in dε.

E.5 Properties of the complexity functional

E.5.1 Proof of Lemma 32 (Continuity)

Proof. Let p,p′ ∈M. We have∣∣∣∣∫
[0,1/Q]d

dp(x1) · · ·dp(xd ) log g (x1, . . . , xd )−
∫

[0,1/Q]d
dp′(x1) · · ·dp(xd ) log g (x1, . . . , xd )

∣∣∣∣
≤

∫
[0,1/Q]d−1

dp(x2) · · ·dp(xd )
∫ 1/Q

0
dx

∣∣p((−∞, x])−p′((−∞, x])
∣∣ ∂
∂x

log g (x, . . . , xd )

=O(dC (p,p′)),

where in the last step we used the fact that the derivative of g is bounded (and it does not

depend on d , see Lemma 25).

Using this we immediately derive the continuity of the first sum of Σ, while the second sum is

treated in the same manner.
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E.5.2 Proof of Lemma 33 (Analyticity on line segment)

Proof. Note that the second term that appears in Σ is in fact a second-degree polynomial in t ,

so we only need to concentrate on the first term, which has the form

Ed

∫
[0,1/Q]d

d∏
i=1

(dp+ t (dp′−dp))(xi ) log g (x1, . . . , xd )

=Ed

d∑
k=0

t k

(
d

k

)∫
[0,1/Q]d

k∏
i=1

dp(xi )
∏

i=k+1d

(dp′−dp)(xi ) log g (x1, . . . , xd ). (E.11)

We use the fact that g (x1, . . . , xd ) is bounded (Lemma 23), which gives logK +d log(1− 1
Q ) ≤

log g (x1, . . . , xd ) ≤ 0 for some constant K . By integrating g we obtain∣∣∣∣∣
∫

[0,1/Q]d

k∏
i=1

dp(xi )
∏

i=k+1d

(dp′−dp)(xi ) log g (x1, . . . , xd )

∣∣∣∣∣≤ 2k | logK +d log(1− 1

Q
)|.

Note that we have made no assumption on what exactly p is and in fact the previous inequality

remains valid even if x1, x2, . . . are distributed according to different distributions p1,p2, . . ..

This observation is useful in proving the equivalent of this lemma for the coupled complexity

functional.

The coefficient ak of t k in (E.11) is bounded in absolute value by

∑
d≥k

αd e−α

d !

(
d

k

)
2k | logK +d log(1− 1

Q
)| = e−O(k logk),

which ensures that the power series
∑

k≥0 ak t k converges everywhere.

E.5.3 Proof of Lemma 36 (Σ(p) is decreasing in α)

Proof. Differentiating with respect to α and using the identity (3.39), we obtain

d

dα
Σ(α)(p) = d

dα

[ ∑
d≥0

αd e−α

d !

∫
[0,1/Q]d

dp(x1) · · ·dp(xd ) log g (x1, . . . , xd )

− α

2

∫
[0,1/Q]2

dp(x1)dp(x) log(1−Qx1x)

]
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=
∫

[0,1/Q]
dp(x1)

[
Ed

∫
[0,1/Q]d

dp(x2) · · ·dp(xd+1)
(

log g (x2, . . . , xd+1)

+ log(1−Qx1φ(x2, . . . , xd+1))
)− 1

2

∫
[0,1/Q]

dp(x) log(1−Qx1x)

]

=Ed

∫
[0,1/Q]d

dp(x1) · · ·dp(xd ) log g (x1, . . . , xd )

+ 1

2

∫
[0,1/Q]2

dp(x1)dp(x2) log(1−Qx1x2).

E.5.4 Proof of Lemma 36 (Negative complexity gap)

Proof. Suppose that p∗ 6=F (p∗). Let us interpolate between p∗ and F (p∗), i.e. take p∗+ tδp,

as a function of t , whereδp =F (p∗)−p∗. If d
dtΣ(p∗+tδp)|t=0 is negative, which we prove below,

then there is t1 ∈ (0,1) such that p1 = p+ t1δp and Σ(p1) <Σ(p∗), which yields a contradiction.

We are left to check the negativity of the first derivative, which we check by using Lemma 35:

d

dt
Σ(p+ tδp) = δΣ(p)[δp] =α

∫
[0,1/Q]

dδp(x1)
∫

[0,1/Q]
d(F (p)−p)(x) log(1−Qx1x) .

Expanding the logarithm, we obtain

d

dt
Σ(p+ tδp) =α

∫
[0,1/Q]

dδp(x1)
∫

[0,1/Q]
dδp(x)

[
− ∑

j≥1

Q j

j
x j

1 x j

]

=− ∑
j≥1

Q j

j

(∫
[0,1/Q]

dδp(x)x j
)2

< 0.

The fact that ∆Σ coincides with the infimum follows from the fact that p∗, being a fixed point,

is not in T.
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F Sampling infinite permutations

This appendix deals with the problem arising in sampling the connection descriptors for a

regular lift of a base formula in Chapter 4. This means we are looking for a method to sample a

permutation φ : z→ z which satisfies the window constraint φ(z)− z ∈ {0, . . . ,W −1} at every z.

Let the entries of the random permutation be denoted by random variables Yz . Define the

random variables Tz with values in {0,1}W −1 as Tz; j =∑
z ′<z δYz′ ,z+ j , for j = 0, . . . ,W −2. The

bitstring Tz simply encodes the which of the values {z, . . . , z+W −2} are occupied by “past” val-

ues Y (interpreting the spatial dimension as temporal). Every 1 in the string means “occupied”

and every 0 “free”.

We make the following ansatz: the random variable Yz is conditionally independent of

Yz−1,Yz−2, . . . given Tz . This way {Tz }z becomes a Markov chain and the values of Yz can

be deduced from the transitions of the chain. Note that the quantity Γ=∑W −2
j=0 Tz; j is invariant

with respect to z. Thus the states of the Markov chain will be bit strings of length W −1 with a

fixed weight Γ. Let w be a state of the chain. Let S be the shift-left operator, which moves all

bits of w except the first one position to the left and adds a 0 at the end. Let R j be the operator

that changes the bit in position j to 1. Then the only transitions allowed in the Markov chain

are (i) if w starts with a 0, then S(w) and (ii) if w starts with a 1 then S ◦R j (w) for all j such

that w j = 0.

In the case W = 2, there are only two infinite permutations that satisfy the windowing con-

straint: the identity z 7→ z and z 7→ z +1. The former has Γ= 0 and the latter Γ= 1. However,

for W ≥ 3, the behaviour is richer.

The Markov Chain approach to sampling the permutations enables us to generate the entries

sequentially, whenever we need them. This is used in the Coupled-UCP algorithm to generate

parts of the coupled structure as more positions are needed.

We used two methods in which to run the Markov chain, but in the simulations of Chapter 4

no difference is observed:
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• After fixing W,Γ, set the Markov chain in such a way that all transitions that are allowed

from a state have equal probability. Compute the stationary state of the Markov chain,

sample T0 from it, and then run the Markov chain starting from 0 (we are not interested

in the negative part of the chain). Note that in this setting Yz will not be distributed

uniformly over {z, . . . , z +W −1}. For W = 5 and Γ= 2 the full chain is given below.

1010 1001

0011
0101

1100 0110

• Engineer the degrees of freedom available in the transition probabilities of the Markov

chain in such a way that the Yz are uniformly distributed across the window. Then

proceed as above. Finding such a Markov chain is not possible for all pairs (W,Γ), and

in particular for W = 4 it is not possible at all. Also for Γ = 0 and Γ = W −1 the chain

is forced to do the same transition at every step, so this case is not so interesting. An

example for W = 5 and Γ= 2 which could be used is given below.

1010 1001

1100

1
21

2

0110

1

1

1

This is the Markov Chain used to generate coupled lifts for the plots in Chapter 4
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Zecchina and Eric Tramel, Oxford University Press, 2015

• And now to something completely different: spatial coupling as a proof technique
Andrei Giurgiu, Nicolas Macris, Rüdiger Urbanke
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ISIT 2012

148



• Fast Randomized Test-and-Set and Renaming
Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, Rachid Guerraoui
DISC 2010

• Computing in Social Networks
Andrei Giurgiu, Rachid Guerraoui, Kvin Huguenin, Anne-Marie Kermarrec
SSS 2010

Contributed Talks • International Symposium on Information Theory, Istanbul, Turkey 2013

• 16th Joint Conference on Communications and Coding, Holzgau, Austria 2013

• International Symposium on Information Theory, Boston, USA 2012

Other Conferences
Attended

• Phase transitions in discrete structures and computational problems, Warwick,
UK 2014

• Statistical physics, Optimization, Inference and Message-Passing algorithms, Les
Houches, France 2013

• Information Theory Workshop, Lausanne, Switzerland 2012

• Statistical Physics of Complexity, Optimization and Systems Biology, Les Houches,
France 2012

• Symposium on Principles of Distributed Computing (PODC), Zurich, Switzer-
land 2010

• 58th Meeting of Nobel Laureates in Lindau, Germany 2008

Computer Skills • Programming: C, C++, Python, Java, Pascal, Prolog, Haskell, Common Lisp,
Matlab, Mathematica;

• Operating Systems: UNIX-based (Linux, Solaris, Mac OS X), Microsoft Windows
• Formatting Languages: LATEX
• Applications: Editors, open source programming tools (various compilers, debug-

gers, interpreters), database servers, multimedia and office applications

Languages • English, Romanian — fluent in written and spoken
• French, German — good in written and spoken (B2)
• Italian, Spanish — basic knowledge

Honors and Prizes • Outstanding Teaching Award, EPFL 2013
• Member of the President’s List during the three academic years 2005 - 2008
• Study scholarship from Jacobs University, 2005 - 2008
• Merit scholarship award from the Polytechnic of Bucharest, 2003 - 2005
• National Olympiad of Computer Science 2000-2003, top places (2003, third place)
• Fifth place in the Southeastern European Regional Contest of the ACM 2004
• Twelfth place in the Northwestern European Regional Contest of the ACM 2005
• Third Prize in the International Mathematics Competition (IMC), in Blagoev-

grad, 2007

149


	Title page

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Outline of the thesis
	Optimization and factor graphs
	Constraint satisfaction problems
	Adversarial hardness
	Random instances
	Statistical physics
	The setting
	Message passing and the cavity method (the replica-symmetric case)
	Replica symmetry breaking

	Planted models
	Error correcting codes
	Channels
	Codes and capacity
	LDPC codes
	MAP Decoding and the Gibbs measure
	Smooth families of channels and thresholds
	Belief Propagation and the Bethe Approximation
	Density evolution

	Spatial coupling
	The spatial coupling paradigm
	Threshold saturation for LDPC codes
	Historical note


	LDPC codes achieve capacity: Spatial coupling as a proof technique
	Preliminaries
	Simple ensembles
	Coupled ensembles
	Graphical notation

	Outline of the results
	Comparison of entropies for coupled and simple ensembles
	Proof of the Maxwell construction
	Proof of the equality of the MAP- and the BP-GEXIT curves above the MAP threshold
	Exactness of the replica-symmetric formula

	Some useful lemmas
	The configuration model
	The interpolation
	Retrieving the original LDPC ensembles
	The large N limit
	Final remarks

	Threshold saturation in the coloring of random graphs
	Preliminaries and the replica-symmetric approximation
	The 1-RSB approach
	Sampling clusters of the right size
	Meta-message passing equations
	The mean-field form
	Freezing

	The special case m=1
	Reconstruction on trees
	Free entropies and complexity
	Freezing phenomenon

	Freezing on the planted graph
	Freezing on the planted coupled graph

	The special case m=0
	Monotonicity properties of the functions f, g and phi

	Proof of threshold saturation of the SP threshold to the colorability threshold
	Preliminaries
	Properties of the operator F
	Properties of the complexity functional
	The coupled potential
	The main argument: alpha < alpha-s
	The main argument: alpha > alpha-s

	Numerical simulations and results
	Practical observations
	Numerical results

	Conclusions and open problems

	Finding solutions of random K-SAT using spatial coupling
	Overview
	Construction of the coupled structure
	Unit Clause Propagation
	Unit Clause Propagation on the Lifted Factor Graph: turning space into time
	Numerical results
	Dependence on , N and the bias decay parameter
	Dependence on N
	The varying hardness of base instances

	Concluding remarks

	The root-free expression of the Bethe free entropy on trees
	The belief propagation formalism and density evolution for LDPC codes on BMS channels
	Message passing in terms of beliefs
	Properties of symmetric densities

	Auxilliary proofs for the interpolation method
	Proof of (2.27)
	Proof of Theorem 9

	Auxilliary lemmas and calculations for freezing threshold in graph coloring
	Relating the planted model to the Galton-Watson process
	Asymptotic behaviour of the freezing threshold for the coupled model

	Proofs and observations for the SP threshold saturation
	Properties of the space of densities
	The metric space
	Partial ordering
	Linear combinations of densities

	Proofs of properties of functions f, g and phi
	Proof of Lemma 23
	Proof of Lemma 24
	Proof of Lemma 25

	Properties of the operator F
	Proof of Lemma 28 (Monotonicity with respect to the densities)
	Proof of Lemma 29 
	Proof of Lemma 30 (Continuity)
	Proof of Lemma 31 

	The basin of attraction of delta-zero is an open set
	Properties of the complexity functional
	Proof of Lemma 32 (Continuity)
	Proof of Lemma 33 (Analyticity on line segment)
	Proof of Lemma 36 
	Proof of Lemma 36 (Negative complexity gap)


	Sampling infinite permutations
	Bibliography
	Curriculum Vitae

