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The question is, are we happy to suppose that our 
grandchildren may never be able to see an elephant 
except in a picture book? 

Sir David Attenborough 
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Abstract 
Environmental heterogeneity is one of the main actors of biodiversity and species adap-

tation as it exerts a selective pressure on observable characteristics of living organisms. Conse-
quently, local adaptation favours certain genetic variants and, by doing so, leaves a footprint in 
the genetic heritage across populations.  The identification of these adaptive genetic variations is 
the main objective of landscape genomics and allows, among other things, to study the role of 
specific regions of the genome in evolutionary processes. Landscape genomics studies also pro-
vide essential information for species conservation and for the prediction of migrations due to 
environmental changes. 

To identify these adaptations to the environment, it is necessary to define a study area where the 
populations are sampled. However, defining the scale of the study area is not a trivial task. In fact, 
whether the work is carried out at a local or at a broad scale determines the relevance of envi-
ronmental factors (climate, soil, topography) and the type of signature of selection that will be 
observed. In addition, the concept of scale in ecology takes into account not only the extent of the 
study area but also the pattern and density of the geographic distribution of observations, and the 
spatial resolution of predictors (environmental variables), which is intrinsically linked to the ex-
tent. However, a priori indications about the relevance of any resolution over another are rare in 
the literature and it is therefore essential to question this issue. 

In this thesis, we propose a multi-scale landscape genomic framework to identify signatures of 
adaptation to the environment. This multidisciplinary framework lies at the interface between 
geographic information systems, spatial analysis, environmental modelling, population genetics 
and computer science. Specifically, we focus on the relevance of variables derived from Digital 
Elevation Models (DEMs) and on the application of multi-scale analysis aiming to detect signa-
tures of selection. 

We applied this analytical framework to three case studies, comprising four species: Biscutella 
laevigata sampled at a local scale in the Alps, Plantago major sampled at a regional scale in an 
urban environment, sheep (Ovis aries) and goats (Capra hircus) sampled all across the territory of 
Morocco. In particular, the case of Biscutella laevigata allowed us to evaluate the role of topo-
graphic features based on Very High Resolution DEMs and to include DEM-derived variables as 
predictors in association models to study the adaptation of species to their local environment. On 
the other hand, the case of Moroccan sheep and goats permitted to include for the first time 
whole genome sequence data within landscape genomic models. 

The results revealed several important findings. First, we showed that micro-climate variability is 
highly dependent on topographic factors at a local scale and that therefore, DEMs are relevant for 
understanding species adaptation to a mountainous environment. We also demonstrated that it is 



Abstract 

8 
 

essential to consider the scale of spatial representativeness by assessing DEM-derived variables at 
various spatial resolutions. Indeed, two out of three case studies showed that the models involv-
ing topographic variables were sensitive to changes in resolution. 

At the same time, we used independent methods to detect the signatures of selection in order to 
improve the robustness of these detections. In the case of sheep and goats, we demonstrated the 
usefulness of high-density genetic data by identifying "peaks of selection" within specific regions 
of several chromosomes. We then used these regions to identify genes potentially subject to se-
lection to formulate hypotheses about the possible relationship between the genotype and a 
phenotype. 

Finally, we took advantage of the spatial dimension of our case studies and measured the spatial 
autocorrelation (SA) of the frequency of genetic markers. Our results indicate that SA is stronger 
for genetic markers subject to selection as compared to neutral markers. These results contribute 
to a controversial debate on spatial dependence between samples. Indeed, although SA is a 
source of false associations in statistical approaches, it is also a natural phenomenon that inevita-
bly induces autocorrelation at the level of genetic variants present in significant associations. 

In summary, we used several landscape genetics approaches to understand the role of environ-
mental factors in the local adaptation of various species. Our findings mainly provide an important 
contribution to the understanding and use of scale in landscape genomics, also useful in land-
scape ecology.  

 

Keywords: Digital Elevation Models, Multi-scale analysis, Very High Spatial Resolution, Landscape 
Genomics, Whole Genome Sequence Data, Generalized Linear Model, Geographic Information 
Systems, Spatial Autocorrelation, Temperature and Humidity Loggers, Local Adaptation, Biscutella 
Laevigata, Plantago Major, Capra Hircus, Ovis Aries, Nextgen 
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Résumé 
L’hétérogénéité environnementale est un des principaux acteurs de la biodiversité  et de 

l’adaptation des espèces en exerçant une pression de sélection sur les caractères d’une espèce ou 
d’une population. Par conséquent, l’adaptation locale favorise certains variants génétiques et, ce 
faisant, laisse une empreinte dans le patrimoine génétique des populations. L'identification de ces 
variations génétiques adaptatives est l'objectif principal de la génomique environnementale et 
permet, entre autres, d'étudier le rôle du génome dans les processus évolutifs. La génomique 
environnementale fournit également des informations essentielles pour la conservation des es-
pèces et pour la prédiction des flux migratoires liés aux changements environnementaux.  

Afin d’identifier cette adaptation à l’environnement, il est nécessaire de définir une zone d’étude 
au sein de laquelle sont échantillonnés des individus. Pourtant, délimiter l’échelle de la zone 
d’étude n’est pas évident. En effet, travailler à une large échelle ou à une échelle locale détermine 
la pertinence des facteurs environnementaux (climat, sol, topographie) et celle des signatures de 
sélection qui seront observées. De plus, le concept  d’échelle en écologie tient compte non seu-
lement de l’étendue de la zone d’étude mais également de la forme et de la densité de la distribu-
tion géographique des observations, et de la résolution spatiale des variables environnementales, 
qui est intrinsèquement liée à l’étendue. Or, des informations disponibles a priori sur la perti-
nence de l’utilisation d’une résolution par rapport à une autre sont rarement fournies dans la 
littérature, et il est donc fondamental d’étudier cette question. 

Dans cette thèse, nous proposons un cadre d’analyse multi-échelle en génomique environnemen-
tale pour identifier des signatures de sélection naturelle dans le but de comprendre le phéno-
mène évolutif de l’adaptation à l’environnement local. Ce cadre d’analyse pluridisciplinaire se 
situe à l’interface entre les systèmes d’information géographique, l’analyse spatiale, la modélisa-
tion environnementale, la génétique des populations et l’informatique. Plus particulièrement, 
nous nous concentrons sur la pertinence des variables calculée à partir de modèles numériques 
d’altitude (MNA) – dont une partie à très haute résolution –  et sur l’application de l’analyse mul-
ti-échelle dans le but de détecter des signatures de sélection. 

Nous avons appliqué ce cadre d’analyse à trois cas d’études, comprenant quatre espèces : Biscu-
tella laevigata échantillonnée à une échelle locale dans les Alpes, Plantago major à une échelle 
régionale dans un environnement urbain, la chèvre (Capra hircus) et le mouton (Ovis aries) au 
Maroc. En particulier, le cas de Biscutella laevigata nous a permis d’évaluer le rôle de la topogra-
phie dans l’adaptation à l’environnement, grâce à un MNA à très haute résolution; et le cas des 
chèvres et moutons échantillonnés au Maroc a permis d’utiliser pour la première fois des données 
génétiques issues du séquençage intégral de 320 individus dans des modèles de génomique envi-
ronnementale. 



Résumé 

10 
 

Les résultats révèlent plusieurs découvertes importantes. Premièrement, nous montrons que la 
variabilité microclimatique est fortement dépendante des facteurs topographiques à une échelle 
locale et que, par conséquent, les MNA sont pertinents pour comprendre l’adaptation des es-
pèces à un environnement montagneux. Nous démontrons également qu’il est fondamental de 
considérer l’échelle de représentativité spatiale, en évaluant les variables issues d’un MNA à diffé-
rentes résolutions spatiales. En effet, deux des trois cas d’études montrent que les modèles impli-
quant des variables topographiques sont sensibles à des changements de résolution. 

D’autre part, nous avons utilisé des méthodes indépendantes pour détecter les signatures de 
sélection, et ce afin d’améliorer la robustesse de ces détections. Dans le cas des chèvres et mou-
tons, nous avons mis en évidence l’utilité des données génétique de très haute densité en identi-
fiant  des « pics de sélection » au sein de certaines régions des chromosomes. Nous pouvons alors 
utiliser ces régions pour identifier des gènes potentiellement soumis à la sélection et pour formu-
ler des hypothèses à propos des relations possibles entre le génotype et un phénotype. 

Enfin, nous avons tiré parti de la dimension géographique de ces cas d’étude en mesurant 
l’autocorrélation spatiale (AS) de la fréquence des marqueurs génétiques. Nos résultats souli-
gnent que l’AS est plus forte pour les marqueurs génétiques soumis à la sélection que pour les 
marqueurs neutres. Ces résultats contribuent à un débat controversé sur la dépendance spatiale 
entre les échantillons. En effet, bien que l’AS soit la cause d’associations fausses dans les ap-
proches statistiques, elle est surtout un phénomène naturel qui induit inévitablement une auto-
corrélation au niveau des variants génétiques présents dans les associations significatives.  

En résumé, nous avons utilisés plusieurs approches de génétique environnementale pour com-
prendre le rôle des facteurs topo-climatiques dans les processus d’adaptation locale de plusieurs 
espèces. Nos conclusions fournissent une contribution importante à la compréhension et à 
l’utilisation de l'échelle en génomique environnementale, et en écologie spatiale de manière gé-
nérale. 

 

Mots-clés: Modèle numérique d’altitude, analyse multi-échelle, très haute résolution, génomique 
environnementale, séquençage intégral, adaptation locale, modèle linéaire généralisé, systèmes 
d’information géographique, autocorrélation spatiale, capteurs de température et humidité, Bis-
cutella Laevigata, Plantago Major, Capra Hircus, Ovis Aries, Nextgen 
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Environmental heterogeneity shapes adapta-tion at a local scale Problematics 
Detecting signatures of local adaptation  

Environmental heterogeneity is known to be one of the main drivers of species diversity 
and local adaptation (Darwin & Wallace 1858). Environment exerts a selective pressure on pheno-
typic traits of living organisms, and by doing so, leaves a footprint of adaptation in the genetic 
information across populations. Finding these footprints is the goal of many studies that aim to 
identify genes related to local adaptation and to understand their function. Even though most 
phenotypic traits are determined by multiple genetic variations, identifying genomic regions po-
tentially under selection helps to localise ecologically meaningful traits (Tiffin & Ross-Ibarra 2014).  
More importantly, genetic variations also provide essential clues for conservation practices, by 
discriminating independent groups, localising boundaries in the landscape (Allendorf et al. 2010) 
as well as by forecasting migrations and adaptations of populations to environmental changes, 
such as habitat fragmentation or climate change (Segelbacher et al. 2010; Manel & Holderegger 
2013).  

Mechanisms of adaption can be studied using population genetics approaches. According to 
population genetics theory (Fisher 1930), it is expected that most of the genetic diversity – genet-
ic differences between individuals of one or several populations – is neutral in an evolutionary 
sense, meaning that these variations do not affect the survival of individuals (Kimura 1968). At the 
same time, variations under positive or balancing selection are instead assumed to show respec-
tively higher or lower genetic divergence between populations. These variations under positive, 
negative or balancing selection are thus typically considered to arise as outliers in a response to 
environmental pressure, whereas neutral variations are influenced by demographic forces and 
population history in a similar way (Lewontin & Krakauer 1973; Beaumont & Nichols 1996; Luikart 
et al. 2003). However, despite the power of population genetics approaches to detect environ-
ment-related genetic variants,  they often fail to provide insights on causes of natural selection 
that led to adaptation, such as environmental pressures for example (Schoville et al. 2012).  

In order to identify the environmental factors that are responsible for local adaptation, we need 
to combine our knowledge on genetic variations with information on the landscape. More im-
portantly, we want to understand how do the major characteristics of the landscape, such as cli-
mate factors, topography, habitat fragmentation and landscape structure shape populations 
through demographic or selection processes (Manel et al. 2003; Holderegger & Wagner 2008). 
These are the main goals of a discipline called landscape genetics. In this discipline, one goal is to 
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use the environment to screen genetic variations for potential signs of adaptation, without neces-
sarily looking at variations in observable traits. One of the main assets of landscape genetics is 
that it takes advantage of the geographic component of both genetic and environmental data and 
makes use of Geographic Information Systems (GIS) to explore and analyse data spatially (Joost 
2006). Landscape genetics thus hold a great promise to answer multiple fundamental questions 
on local adaptation, but could also be useful in conservation perspectives, for example to analyse 
gene flow in space and time or to locate evolutionary significant habitats (Joost et al. 2010). How-
ever, this direction still remains mostly unexplored and there are only few examples of conserva-
tion management where landscape genetics has been applied in practice (Segelbacher et al. 
2010). 

 

The operational scale of adaptation and the relevance of environmental data 

When studying local adaptation, it is important to define how local a study should be 
and how local we do expect adaptation to operate. The overall area encompassed by the study, 
commonly referred to as extent, is a key component of scale and often subject to debate. In fact, 
it was long believed that a high rate of gene flow - the transfer of alleles or genes from one popu-
lation to another - would only allow local adaptation at relatively large extents. However, numer-
ous recent studies have shown the opposite, highlighting that local adaptation is common and 
that local populations could represent important evolutionary units (Hereford 2009; Richardson et 
al. 2014). Because local adaptation is more widespread than previously thought, the genetic di-
versity that translates into functional traits also remains underappreciated. In addition, conserva-
tion efforts should target smaller habitats in order to preserve the full range of evolutionary units. 
Indeed, local adaptation could create more resilience to abrupt human disturbances, for example 
resistance to pests or herbicide in agriculture.  

However, defining the ecological scale of a study (i.e. the grain and extent to be used) raises im-
portant questions regarding the relevance of environmental variables. If local adaptation does 
occur at a local scale, how fine should the resolution of our environmental variables be? While it 
is obvious that common climatic variables (the most used environmental data, e.g. WorldClim 
with 1km spatial resolution) such as temperature or precipitation are applicable to adaptation 
studies at a regional scale, it is not clear whether they are still relevant locally since other factors 
could play a more important role but also because their spatial resolution might be too coarse. In 
addition, the range of scales at which local adaptation operates still remains unknown and de-
pends on many factors such as demography, mobility or dispersal, life history and generation time 
(Hall & Beissinger 2014). In addition, fieldwork data are only available at narrow temporal scales 
while adaptation occurs over much longer periods of time (Landguth et al. 2010). It also means 
that, in most cases, it is difficult to obtain fieldwork data for wide-ranging species because of the 
distance they travel. Until now, most studies that investigate environmental influence on evolu-
tionary processes use available large-scale environmental datasets and do not assess several 
sources or spatial resolutions. Yet, at a local scale, other factors such as topographic structure are 
driving environmental conditions encountered by plants (Körner 2003). Typically, variations in 
topography are derived from Digital Elevation Models (DEMs) and thus, it is crucial to define the 
appropriate spatial resolution of environmental variables. Therefore, it would be relevant to apply 
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a multi-resolution approach starting for example with a resolution finer than the average home 
range of the organism (Anderson et al. 2010) and then assessing coarser resolutions. However, 
using different resolutions raises other concerns regarding the scale at which topographical data 
represents at best the natural phenomenon studied. Indeed, correlations between environmental 
features and proxies from DEMs are valid at one scale but may significantly change with resolu-
tion (Levin 1992). In fact, most of these variables were developed to approximate features of the 
terrain and the relation may not hold anymore at a much finer scale, and thus cannot be used to 
provide an insight on local adaptation.  

 Objectives 
This thesis proposes a multi-scale landscape genomic framework to identify signatures 

of selection. Particularly, it focuses on the relevance of Very High Resolution Digital Elevation 
Models (VHR DEMs) and on the application of a multi-scale analysis to detect local adaptation to 
environment. We expected that VHR DEMs would refine association models in landscape ge-
nomics and identify potential candidates of selection. The central question of this work can be 
expressed as follows: 

What can we learn on the adaptation of species to environment by applying a multi-scale land-
scape genomic framework?  

To answer this main question, we explore three case studies that differ between each other on 
their scale (or extent), species, topography, genetic data and sampling scheme. With their analysis 
and comparison, we hope to provide a solid ground to answer this main question. Therefore, for 
each of the following case studies, we analyse the two main components of scale – spatial resolu-
tion and extent - through a series of sub-questions. With resolution, we aim to understand what 
level of detail is necessary in topographic-related variables to detect local adaptation. Our goal is 
not to find the resolution suitable to any case, but to evaluate how sensitive the model is to a 
change of resolution and to assess the possibility of deriving an optimal resolution. 

To answer this main objective, we ask the following sub-questions: 

 

1. How important is topography to model micro-habitat conditions encountered by plants 
and to detect signatures of selection?  

To answer this question, we assess in the first case study (Chapter 4) whether fine scale topogra-
phy obtained from a very high resolution DEM can model ecologically relevant features such as 
temperature, humidity or snow cover to settle their usefulness at a local scale. In a second phase, 
we perform correlations between these DEM variables and genetic data of an alpine plant to find 
out if signatures of selections related to topographic heterogeneity can be found at such local 
scale.  

 



Environmental heterogeneity shapes adaptation at a local scale 

18 
 

2. Is very high resolution necessary to model micro-habitat conditions encountered by 
plants? 

It is often expected that a higher precision should bring results that are more accurate, but it 
should not be forgotten that a high amount of details might blur the output signal. In each case 
study, we produced DEM-derived variables at different nested scales, and establish the same cor-
relations in a multi-scale framework, thus specifying the level of detail at which we detect the 
most significant signals of local adaptation. 

 

3. How does the relevance of DEM-derived variable vary in function of the extent of the 
study site and of the mobility of the species? 

While we might expect that DEM-derived variables are relevant for local scale studies in alpine 
plants, their relevance at larger extents and in other environments is unknown. In fact, different 
scales of study may highlight different environmental variables and spatial distribution patterns. 
In addition, different species show various dispersal distances or mobility and thus are likely to 
adapt to climate variability or to different topographical conditions. In Chapters 5 and 6, we apply 
the same workflow as for the local scale of Chapter 4, but this time at a regional and large scale 
respectively. 

 

4. Are significant associations identified by means of correlative methods also detected by 
population genetics approaches? 

One may expect that strong patterns of selection, associated with particular genomic loci, could 
be detected by several independent approaches. However, because these approaches differ by 
their prerequisites, such as inclusion of population structure, spatial autocorrelation or environ-
mental variables, they appear to be more or less conservative than others are. Therefore, for each 
case study, we compared loci under selection identified by different approaches in order to un-
derstand why these approaches do or do not detect the same genetic markers. 

 

5. How can spatial autocorrelation contribute to the analysis of signatures of selection? 

Spatial autocorrelation is at the same time a natural component of landscape features and a 
source of spurious correlations. However, its quantification in adaptation to environment has 
been largely omitted in most real case studies. We assessed for each case study the benefits of 
global and local spatial autocorrelation measurements, and evaluated their fluctuation over con-
tinuous distance. 
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6. How does whole genome sequencing improve the detection of signatures of adaptation? 

The main advantage of using WGS data is the ability to assess the exact position of the signatures 
of adaptation within the genome, and benefit from the large online databases to search for gene 
functionality and evaluate their concordance with associated environmental variable. In reverse, 
when the detected gene has not been described yet, future studies may be facilitated by knowing 
a potential actor of selection on specific genes. In the third case study (Chapter 6), we aimed to 
detect signatures of selection from independent approaches by comparing their detections on 
chromosomes and evaluating gene functions of commonly found genetic markers. 

 

Methodology 

To facilitate comparisons, each of the three case studies is analysed in a similar way. For each of 
them, we first obtained relevant environmental variables in order to correlate them with genetic 
data. To do so, in addition to retrieving climatic data from existing databases, we computed DEM-
derived variables at multiple scales and extracted their values at sampling locations. Afterwards, 
we compared these correlations with population genetic approach, in order to discover common 
detections and understand discrepancies. We also analysed the spatial and genetic structure of 
the population in order to characterize the genetic dataset and to identify barriers to gene flow. 
Finally, it was essential to regroup information in graphs. Indeed, since we use several methods of 
detection, and because our data are embedded within a geographic context, we thought the best 
way to analyse the results was to produce graphs grouping general information per method, per 
association, and for comparisons between methods.  Details on this workflow can be found at the 
beginning of Chapter 3.  

The three case studies we propose differ mainly by their extent; starting from a local scale for an 
alpine plant, to a regional scale for a plant in an urban environment, finishing at a large scale for 
two domesticated mammal. However, they also differ from each other by several parameters, 
and thus, do not necessarily use the same variables. In fact, the studied species are different and 
the spatial distribution of samples is not comparable. In addition, certain methods of detection 
are not applicable in every case. For these reasons, while we consolidate common methods used 
in Chapter 3, we analyse each case study separately. In each case study chapter, we provide a 
description of the general context and purpose, specific parameters of methods applied, results 
and a short interpretation. Hereunder, we describe the motivations proper to each case study and 
summarize their characteristics in Table 1.1. 
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Table 1.1 Summary of the three case studies. Description of the key parameters regarding scale, genetic and 

environmental data 

Species Biscutella laevigata Plantago major 
Ovis aries (OA) &  Capra 

hircus (CH) 

Study site 
Les Rochers-de-Naye (Swit-

zerland) 
Geneva (Switzerland) Morocco 

Scale Local Regional Large 

Study area 1.5 x 0.4 km 13 x 23 km 1160 x 906 km 

# of samples 361 464 161 OA & 161 CH 

Genetic markers AFLP SNPs SNPs (WGS) 

# of loci 266 464 1.7 and 1.8 million 

DEM resolution range (m) 0.5 – 8 2 – 64 90 – 2880 

Climatic variables 
Temperature and Humidity 

loggers 

Swiss Eco-climatic GIS data 
(Zimmermann & Kienast 

1999) 
WorldClim 

Climatic variables window 
size (m) 

/ 25 – 825 1000 – 33000 

 

 1.1.1 Relevance of DEM-derived variables to detect local adaptation of the alpine herb Biscutella laevigata L in les Rochers-de-Naye (Swiss Alps). 
Observing adaptation of alpine plants at a local scale requires fine scale environmental 

data. However, while it is often expected that a higher precision should bring more accurate re-
sults, it should not be forgotten that a high amount of details might blur the output signal. Our 
first case study takes advantage of very high resolution, not only to model microhabitat condi-
tions with a fine resolution, but also to evaluate the scale dependency of associations between 
genetic markers and topographic variables. 

B. laevigata is a perennial alpine plant that occurs in small patches in warm and dry areas. Our 
study zone is situated at « les Rochers-de-Naye » (N46°26‘00‘‘   E6°58‘50‘‘) where B. laevigata 
forms a natural hybrid zone between closely related lineages. This case study is unique for several 
reasons: first, most of the individuals live close to the ridge and in aggregates. Second, observing 
adaptation at such a local scale requires acquiring fine scale environmental data. Therefore, we 
acquired and gathered different types of variables for this study (climatic variables, DEM-derived 
variables, snow cover, and infrared red aerial image) to detect local adaptation of B. laevigata at a 
very fine scale.  
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The first part of the study investigates the usefulness of DEMs as a surrogate to important climatic 
variables and highlights their ability to model micro-habitat conditions as those encountered by 
plants (Leempoel et al. accepted; Körner 2003). We modelled the relationship between primary as 
well as secondary VHR DEM-derived environmental variables (e.g. direct solar radiation, wetness 
index, vector ruggedness measure) and climatic variables measured in the field. To evaluate fur-
ther the influence of the spatial resolution, VHR DEM-derived variables showing spatial resolu-
tions of 0.5, 1, 2 and 4 meters were used to assess the goodness-of-fit and the significance of the 
models. The second part investigates on one hand the genetic dispersal and population structure 
of the sampled plants and on the other hand attempts to correlate local environmental data with 
genetic variation. A multi-scale approach was applied here as well on DEMs in order to evaluate 
the scale dependency of these correlations.  

 1.1.2 Local adaptation of Plantago major L. in the urban environment of Geneva 
Green spaces and biodiversity in general have an important direct and indirect economic 

value. However, the recent fragmentation and anthropogenic pressure on these habitats is in-
creasing and modifies the connectivity and the way species adapt to urban environment. There-
fore, the analysis of their population structure, gene flow and local adaptation is primordial in a 
perspective of conservation (Cushman et al. 2006). In addition, despite being well studied in natu-
ral habitats, fragmentation is rarely assessed in urban environments where it is known to be fast-
er (Di Giulio et al. 2009). 

As part of the UrbanGene project on Geneva biodiversity, 464 individuals of the plant Plantago 
major were sampled along five transects departing from the city centre. P. major grows in a wide 
variety of habitat (lawns, along roadsides, areas disturbed by humans) and is naturally present in 
urban environments. It often grows in compacted or disturbed soils, making it important for soil 
rehabilitation. 

The purpose of this study is to assess whether climate, topography or urban characteristics are 
important to understand both the population structure and local adaptation to the environment 
of P. major. In fact, the sampled plants are encountered in habitats differencing 1) in topography, 
with several hills surrounding the city; 2) in climate, with the mountain massifs of the French Alps 
and the Jura creating local variability of climatic conditions; and 3) in urbanization density from 
the city of Geneva. These factors can influence both the connectivity of the population and its 
local adaptation. 

 1.1.3 Identification of signature of selection in Moroccan sheep and goats using whole genome sequencing and multi-resolution environmental data 
Domesticated species are submitted to both human and environmental pressure, lead-

ing to locally adapted populations. However, local breeds are nowadays threatened by industrial 
breeds with better production values but little evaluation of their capacity to adapt to new habi-
tats. This case study is part of the project NEXTGEN (http://NextGen.epfl.ch/), which is the first 
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project aiming at a comparative analysis of whole genome data and high density sequencing for 
sheep, goats and cattle. Our purpose in this case is to evaluate the local adaptation of sheep and 
goats in Morocco, by assessing breeds uniqueness and their adaptive genetic resources. In fact, 
identification of both neutral and adaptive variation would highlight the necessity of keeping 
these resources.  

For this purpose, sheep (Ovis aries L.) and goats (Capra hircus L.) were uniformly sampled across 
Morocco in order to encounter a wide range of environmental conditions as well as to assess the 
geographic structure of the population. Because the study area is large and that the mobility of 
these species is considerable, we expect that climatic variables would play a more important role 
than topography in the detection of signatures of selection. In addition, with two species sampled 
in a similar way, we may identify similar genomic regions associated with the same environmental 
variables. Using whole genome sequencing, this project is the first to accomplish a reference ge-
nome for goats and opens new perspective in the detection of candidate SNPs and genes that are 
under selective pressure. Identification of genomic regions under selection is likely to allow us 
investigating or discovering genes located at, or nearby, detected genomic variations.  

 

 

Outline of the following chapters 

In the following chapters, we will present the state of research in adaptive landscape genetics in 
Chapter 2, emphasising the theoretical background in population and landscape genetics as well 
as the recent progresses in the acquisition of environmental data. In Data and Methods (Chapter 
3), We present the different environmental datasets we used, the acquisition of VHR DEMs and 
the methods used to detect signatures of selection. The next three chapters are the three cases 
studies above-mentioned containing a detailed description of the case studies and their results, as 
well as an interpretation of their results. Finally, a general discussion is provided in Chapter 7, 
comparing the three case studies and discussing the hypothesis we made. 
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Chapter 2 State of research 2.1.1 Discovering potential signatures of selection 
Natural selection can occur when individuals are subject to an environmental pressure. 

This process can either favour individuals who are more adapted to their environment than others 
or disadvantage those endowed with unfavourable traits (Darwin & Wallace 1858). Concretely, 
this capacity for adaptation translates in variations between individuals in the genetic code. How-
ever, these genetic variants, or polymorphism, are not necessarily related to adaptation. In fact, 
most variants are neutral in the evolutionary sense, which means that having one variant or an-
other is not beneficial or disadvantageous for those who carry it. What differs between adaptive 
and neutral, or non-adaptive, traits is the evolution of their frequency through time in a popula-
tion. In fact, if a variant is highly beneficial, future generations will inherit this variant and it will 
eventually become fixed in the population (Figure 2.1). On the other hand, demographic process-
es such as random genetic drift or migration mainly determine the neutral genetic background. In 
other words, several individuals in a given population will carry identical DNA sequences at certain 
genomic regions where adaptive pressure is exerted, but random variations instead in the rest of 
their genome. This is what evolutionary biologists have been trying to quantify for decades: the 
contribution of natural selection to the overall genetic diversity of a population (Nielsen 2005). 
Studying adaptation thus involves identifying genomic regions under selection that stand out from 
the neutral genetic background (Allendorf et al. 2010). Many methods have been developed for 
this purpose over the past decades. They are mainly extended versions of the Fst-outlier approach 
from Lewontin & Krakauer (1973) and differ mainly in the demographic models implemented, the 
statistical approach (frequentist or Bayesian) and whether selection is explicitly included in the 
model (Savolainen et al. 2013). 
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Figure 2.1 Example of outlier detection in population genetics. Each circle represents an individual and each 

quarter a locus. Colours represent different variants, or alleles. Differences in allele frequencies between two 

populations are used to create an expected range of differences in frequencies for neutral loci. One allele of 

a locus (brown) has a higher frequency in population B. Therefore, locus D is detected as an outlier and is a 

candidate to natural selection. 

 

Environmental features structure genetic variation at both the population and individual levels. 
Studying how landscape elements affect the distribution of neutral and adaptive genetic varia-
tions is in fact the primary goal of landscape genetics (LG), a combination of population genetics 
(PG) and landscape ecology. LG was originally defined by Manel et al. (2003) as a scientific disci-
pline that “aims to provide information about the interaction between landscape features and 
micro-evolutionary processes, such as gene flow, genetic drift or selection”. The purpose is thus 
to identify genetic discontinuities and their correlations with environmental features such as bar-
riers or environmental clines, and determine to what extent the landscape is involved in the dis-
tribution of functional adaptive variation (Schwartz et al. 2009; Lowry 2010). Recent studies have 
also tested isolation by resistance – the permeability trough different habitats – or environment, 
by partitioning landscape and environmental factors (Hall & Beissinger 2014).  

 

Most LG studies focused on gene flow and on the variation of the genetic structure with respect 
to habitat connectivity (Storfer et al. 2006; Holderegger & Wagner 2008; Manel et al. 2010a). 
However, as emphasized by Lowry (2010), landscape genetics is lacking methodological ap-
proaches that would explain how landscape features influence adaptive genetic variations and 
aim to correlate allele frequencies with the environment in order to understand its effect on the 
adaptive component of genetic diversity (Holderegger & Wagner 2008). Such methods test for 
correlation between alleles and environmental variables, where the significant models provide an 
insight on natural selection (Figure 2.2; Joost et al. 2007). The main advantage of this approach is 
the possibility to screen the genome for selection signals without any a priori hypothesis about 
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specific loci. Such correlative approaches can be applied either to an individual or population-
based design sampled across a heterogeneous landscape, and may rely on the same genetic 
markers as in large genome scans.  

 
Figure 2.2 Detection of loci under selection using correlative approaches. Each circle represents an individual 

and each quarter - a locus. Colours represent different variants, or alleles. Here we illustrate how an envi-

ronmental gradient exerts a selection pressure on grey/brown locus. The brown variant is present close to 

the brown extremity and grey variant close to the grey extremity of the gradient. Other loci are not affected 

by the gradient, their distribution depends thus mostly on gene flow. 

 

Benefits of including the geographic component of genetic data 

Because genetic information is embedded in a geographic context, geographic information is an 
important component of landscape genetics. It provides a view of genetic diversity and natural 
selection processes that complement information obtained from population genetics models. For 
this purpose, Geographic Information Systems (GIS) are essential to landscape genetics. By using 
GIS, one can precisely relate genetic variation (within sampled individuals) with geographic coor-
dinates to visualize spatial genetic patterns. Based on these patterns, one can further generate 
post hoc analysis regarding the causes of genetic boundaries. In fact, one of the main advantages 
of GIS is the possibility to overlay genetic information with layers of physical barriers, landcover or 
topographical maps (Manel & Holderegger 2013), or to understand the distribution of neutral 
genetic variation and gene flow. Beyond these arguments, landscape genetics can benefit from 
exploratory spatial data analysis (ESDA), which permits to identify atypical locations (spatial outli-
ers), clusters or patterns of association. In addition, ESDA is particularly helpful when its tools are 
interactive, allowing the user to dynamically connect samples on a map to histograms, boxplots or 
Moran’s scatterplot, such as in GeoDa (Anselin et al. 2006). Among this collection of methods, 
spatial autocorrelation is the most important because almost all geographic phenomena show 
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values similarities with location similarity (Anselin 1998). Spatial autocorrelation, as measured by 
Moran’s I and Local Indicators of Spatial Association (LISA), allow us to identify and localise spatial 
autocorrelation patterns. For example, Moran’s I can be used to estimate the scale of gene flow 
(Hall & Beissinger 2014). However, spatial autocorrelation is also a paradox: When spatial auto-
correlation is observed in regression models, independence assumptions for errors are violated in 
standard statistical tests (developed in section 3.5.3).  

But above all, the main interest of GIS in the context of correlative approaches is to extract values 
of environmental variables from the geographic coordinates of individuals. Spatial coincidence of 
these variables can be either acquired by direct measurement in the field or extracted from inter-
polated and remote sensing data. It is in this GIS environment that Joost et al. (2007) proposed 
the spatial analysis method (SAM) to detect adaptive loci. SAM performs logistic regression in 
order to identify non-random distribution of genetic variants and their relationship with environ-
mental variables. It has been originally used in the large pine weevil (Hylobius abietis) and in 
sheep (Ovis aries) to identify commonly detected loci with PG methods, highlighting potential 
drivers of selection. Several other recent studies used spatial patterns of selection to study adap-
tation (Manel et al. 2010b; Poncet et al. 2010). The advantages of correlative approaches can be 
summarized as follows: i) independence from population genetic assumptions such as Hardy-
Weinberg, ii) operational unit at the individual or population level, iii) identification of candidate 
environmental variables of selection, iv) quantification of correlations with genetic markers (Joost 
et al. 2007). 

 

The trouble with population structure 

Regardless of the outlier detection methods used, the study of the population structure is a major 
challenge. Indeed, patterns of selection can be similar to several demographic effects, thus lead-
ing to false detections of adaptation, also named false positives. Many methods in fact assume 
that neutral regions of the genome will freely move between populations via gene flow, while loci 
under selection will show higher genomic divergence across habitats. Such structuring demo-
graphic processes are bottlenecks or drift for example (Figure 2.3). However, these demographic 
processes can lead to patterns that are similar to selection. In fact, several studies have shown 
that both types of outlier detection methods show a high rate of false positives, especially correl-
ative approaches (Pérez-Figueroa et al. 2010; De Mita et al. 2013). It is thus essential to analyse 
the genetic structure of populations in addition to underlying selection, and we rather talk about 
signatures of selection or loci possibly under selection because of this confounding effect (Nielsen 
2005; Lowry 2010). 
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Figure 2.3 Schematic interpretations of different demographic processes within a population that lead to 

patterns similar to selection. Each circle represents an individual and each quarter a locus. Colours represent 

different variants, or alleles. Both bottleneck and drift can produce similar patterns on the brown variant as 

when it is under selection. Bottleneck involves a drastic reduction in population size and recolonization by 

few individuals, thus reducing genetic diversity. Genetic drift is the change of allele frequency due to sto-

chastic processes. Alleles are here eventually lost or fixed, especially with small or moderate population 

sizes. 
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Differences in sampling design  

It is not trivial to define what a population is. Indeed, there is no consensus on a definition of 
populations and there are numerous versions existing in the literature (Waples & Gaggiotti 2006). 
More importantly, defining a population can yield bias by creating subjective groups of individu-
als, which, in turn, could have management and conservation implications (Allendorf et al. 2010; 
Segelbacher et al. 2010). Landscape genetics tends to use more and more individuals as the oper-
ational unit and therefore does not require discrete populations to be defined in advance (Manel 
et al. 2003). This certainly eliminates the population assignment bias, but of course, creates an 
incompatibility with PG studies. In addition, a good sampling strategy in LG requires individuals to 
be sampled continuously through the geographic area of the study and not only in several previ-
ously-identified discrete locations. Finally, individual-based sampling is essential to fine-scale ge-
netic studies in order to detect discontinuities and localize environmental features that serve as 
barriers to gene flow (Allendorf et al. 2010). It results in the fact that LG can use other statistical 
approaches. It is indeed important to consider spatial dependence between sampled individuals 
and do the sampling at a geographical scale small enough to test for spatial autocorrelation in 
genetic data (Hall & Beissinger 2014). Manel et al. (2003) insisted on the necessity to use specific 
statistical tests for LG data such as spatial autocorrelation and correlograms, interpolations, clus-
tering approaches, PCA or mantel tests. 

Another difference between PG and LG is that the sampling design should be stratified across 
important environmental variables. Response to environment in this case is the main criteria and 
is often incompatible with PG sampling strategies (Manel et al. 2010a). Sampling scheme should 
match the spatial distribution of the population, whether it is clustered or continuous along a 
gradient. Otherwise, it can fail to detect genetic differences caused by landscape features (Manel 
et al. 2012a).  

 

Recent advancements in landscape genetics 

Landscape genetics evolved with the technical advancement of modern genomics but especially 
with the development and adoption of statistical and modelling approaches. The former have in 
fact flourished and became more complex. Landscape genetics tools have started to include popu-
lation structure, landscape and historical ecology, niche modelling and conservation (Petren 2013; 
Manel & Holderegger 2013). These new methods aim to correct the high rate of false positives 
and to process large datasets in a reasonable amount of time (Manel & Segelbacher 2009). 
Among them we can cite Bayenv and LFMM (Coop et al. 2010; Frichot et al. 2013), some of which 
are detailed later on. Criticism has also been expressed concerning the Mantel test, one of the 
most used methods for correlating environmental features and genetic similarity. Mantel’s ele-
vated type 1 error rates and the non-independence of response and predictor variables was ob-
served in multiple independent studies (Balkenhol et al. 2009; Manel & Holderegger 2013). Later 
it was even suggested by certain groups to stop using mantel test and prefer linear correlations, 
regressions and canonical analysis (Legendre & Fortin 2010; Bolliger et al. 2014). They also sug-
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gested incorporating the covariance of allele frequencies, unmeasured environmental variation 
with Moran’s Eigenvector maps or demographic effects in mixed effect models (Bolker et al. 2009; 
Manel et al. 2010b).  

The emerging number of different methods that aim to detect loci under selection highlights the 
necessity to compare them systematically especially since they produce conflicting results 
(Bolliger et al. 2014). Only few studies have applied, as far as we know, both types of approaches 
(i.e. correlative and population genetic approaches) to the same dataset. In addition, previous 
studies used only a limited number of methods on simulations (Pérez-Figueroa et al. 2010; De 
Mita et al. 2013; Jones et al. 2013) or empirical data (Bonin et al., 2006; Parisod & Joost, 2010).  

A final important aspect regarding the detection of loci under selection is a rapid increase in the 
genetic markers available. Indeed, we now have to deal with datasets of ≈100k SNPs for hundreds 
of individuals and, consequently, computation time of statistical tests becomes a limiting factor. 
However, genomics is not only an increase of dataset sizes, it also increase the quality and density 
of information. Particularly, when the species or a related species as been fully sequenced, we can 
easily identify the location of each single nucleotide polymorphism (SNP) within genome, judge if 
it falls into a coding region and thus identify if the SNP has a direct functional role (Schwartz et al. 
2009). However, most LG studies have so far used neutral genetic markers such as microsatellites 
(Bolliger et al. 2014) or Amplified Fragment Length Polymorphisms (AFLPs), with the disadvantage 
of not providing information on their genomic localisation. Today, SNPs are the most promising 
genetic data and allow us to quickly spot regions of the chromosomes where selected loci are 
identified (Manel & Segelbacher 2009). In addition, genomics is increasing the precision of ap-
proaches that require neutral loci by genotyping thousands of them or more and easily excluding 
those under selection (Allendorf et al. 2010). Nevertheless, the increasing size of datasets is thus 
one of the main advantages of simple correlative approaches because they are capable of identi-
fying outlier loci from the vast genomic background in a few hours, in contrast to complex meth-
ods requiring a neutral simulation model. These recent developments in the detection of adaptive 
loci in large datasets are grouped under the term landscape genomics (Luikart et al. 2003; Joost et 
al. 2007; Schwartz et al. 2009; Guillot et al. 2014).  

 2.1.2 Recovering relevant environmental information 
One way to collect environmental data is to measure directly in the field, but this is cost-

ly and time-consuming, especially for large-scale studies. In addition, it often involves measure-
ments at specific time periods that are not necessarily the most appropriate for studies on evolu-
tionary processes. Therefore, most studies depend on climatic variables interpolated at large geo-
graphical scales from weather stations distributed across territories of interest, such as the 
WorldClim dataset (Figure 2.4; Hijmans et al. 2005; http://www.worldclim.org/current). These 
data are often delivered in continuous grids and their spatial resolution typically varies between 
1km and 10 km. This inevitably results in a multi-scale problem when integrated in GIS, as gener-
alization and aggregation of the data will occur (Joost et al. 2010). 
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Figure 2.4 Global distribution of climate stations (red dots) used in WorldClim datasets to interpolate precip-

itation. From http://www.worldclim.org/methods 

Environmental variables over large grids can also be retrieved through the interpolation of long-
term weather station data combined with DEMs in regression models. The main advantage of this 
approach is the possibility of detecting the heterogeneity with respect to topography (Figure 2.5). 
In order to compute accurate regression models from such combined datasets, it is preferable to 
work with weather stations encountering different climatic regimes (Zimmermann & Kienast 
1999). Datasets at 25m resolution are important examples of this method and their data have 
been proven useful to many studies, including studies in landscape genetics (Manel et al. 2010b; 
Parisod & Joost 2010; Jones et al. 2013; Fischer et al. 2013). 

 

Figure 2.5 Example of a product from the Swiss Eco-Climatic GIS data dataset 

(http://www.unil.ch/ecospat/en/home/menuguid/tools--data/data.html). This map shows the mean annual 

temperature interpolated over Switzerland using weather station data and a digital elevation model. 
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Alternatively, environmental data can be obtained from Digital Elevation Models (DEMs) (Figure 
2.6). The most common use of DEMs in landscape and evolutionary ecology consists in retrieving 
altitude or computing primary terrain attributes (i.e. slope, aspect and curvature), which underlie 
biophysical processes at local or regional scales, especially in mountainous areas (Guisan & 
Zimmermann 2000; Kozak et al. 2008; Manel et al. 2010a). DEMs appeared in the 50s, have be-
come increasingly popular in the 1980s but were available only for some countries (Miller & 
Laflamme 1958; Moore et al. 1991). However, they had the disadvantages of being costly and had 
a coarse resolution. Since, their increasing accuracy, resolution and availability turned them into 
accessible indicators of topographic variability, though not necessarily those with the highest pre-
dictive potential (Guisan & Zimmermann 2000; Lassueur et al. 2006; Kalbermatten et al. 2012) .   

 

Figure 2.6 Example of a High Resolution Digital Elevation Model and several variables derived exclusively 

from the DEM. The first image shows an aerial image draped on a 3D representation of the DEM. The two 

images on the right are the Total insolation in September (top-right) and the catchment area (bottom-right) 

A large variety of DEM-derived variables can be computed. Conventionally, primary terrain attrib-
utes are calculated from the directional derivatives of the topographic surface (Wilson & Gallant 
2000, Chapter I; Böhner et al. 2002). In many studies, primary attributes have been used as prox-
ies for factors such as solar radiation (Fu & Rich 2002), evapotranspiration (Guisan & Zimmermann 
2000), overland and subsurface flow (Broxton et al. 2009), soil water content (Moore et al. 1991), 
snowmelt (Lyon et al. 2008), wind, erosion/deposition rate, or soil characteristics (Wilson & 
Gallant 2000). However, more complex variables have been developed over the last two decades 
to model hydrological processes, solar radiation or local morphometry directly (Wilson & Gallant 
2000; Kalbermatten et al. 2012). Named secondary topographic attributes, they are a combina-
tion of primary attributes and more complex neighbourhood: solar radiation for example com-
bines slope, aspect, sunshine duration and adjacent relief. A higher predictive power of secondary 
topographic attributes such as wetness indices (Beven & Kirkby 1979), stream power (Moore et al. 
1991), terrain ruggedness (Riley et al. 1999) or temperature (Wilson & Gallant 2000) may be of 
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particular interest for assessing ecological patterns related to specific processes at a landscape 
scale. For example, Böhner & Selige (2006) used two secondary topographic attributes - a wetness 
index and a solifluction index - to predict soil pH and snow cover. Secondary topographic attrib-
utes have also be developed for specific ecological purposes, such as differentiating bighorn 
sheep habitats across different mountain ranges using the Vector Ruggedness Measure (VRM) 
developed by Sappington et al. (2007). They found that the correlation between the commonly 
used Terrain Ruggedness Index and slope was indeed very high at their study site and the produc-
tion of VRM improved the description of relief heterogeneity as well as of habitat differentiation. 
Despite these convincing examples, DEM-derived variables remain underexploited and a better 
understanding of their ecological relevance is thus necessary for a broader usage in studies deal-
ing with natural landscapes (Manel et al. 2010a; Leempoel et al. accepted, Appendix II). 

Although newly developed DEMs come with finer resolution and higher accuracy, their relevance 
to provide results that are more accurate is unknown. In particular, to what extent high resolution 
likely evidence micro-relief and related micro-climate physical phenomena that may not be 
grasped at coarser resolutions remains poorly known (Levin 1992; Marceau & Hay 1999; Cavazzi 
et al. 2013). Indeed, no consensus has emerged yet on the benefits and drawback of high resolu-
tion and this is well illustrated by the multi-resolution approaches of Pradervand et al. (2013) that 
did hardly improve species distribution models of alpine plants at a regional scale, although the 
distribution of some plants known to live in microhabitats was significantly better predicted. In 
addition, the accuracy of sampling’s georeferencing could result in inappropriate extractions of 
environmental values at sampling positions thus creating artefacts in the models.   

Therefore, evaluating the influence of scale on computation of environmental variables is essen-
tial. In fact, geomorphological structures naturally constitute a continuum multi-scale and charac-
terizing landscape processes at a single scale is far too simple and requires a multi-resolution 
analysis (Wilson & Gallant 2000). However, geomorphometric variables (e.g. slope, aspect, water-
sheds, wetness indices etc.) are complicate to interpret because they are often tested on DEM at 
one relatively coarse resolution in order to correlate with particular feature of the topography, 
but these relations may not hold at finer resolutions (Gallant & Hutchinson 1996; Marceau & Hay 
1999). 
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Figure 2.7 A Visual analysis of a shaded DEM at different scales shows different features. The first image is 

generated on the basis of the initial DEM at 0.5m resolution while the second is taken from the generalized 

DEM at 8m. 

As mentioned above, high-resolution images do not imply better results but at least they must 
contain information from larger scales (Figure 2.7). Authors have thus proposed generalisation 
techniques in order to evaluate the impact of resolution on the computation of variables. For 
example,  Wood (1996) proposed a multi-scale version of the first and second derivatives of the 
surface by enlarging the local neighbourhood. Consequently, the computation of these local indi-
cators translates to more general features of the DEM. More recently, Kalbermatten (2010) pro-
posed a multi-scale analysis framework of DEMs in the frequency domain in order to visualise and 
extract topographic features at different nested scales. For this purpose, Fourier transforms could 
not be used due to their stationarity in space. Therefore, Kalbermatten (2010) explored wavelet 
transform to perform the signal processing tasks. This scale-driven process delimitates scale inter-
vals, successively filtering the low-pass information contained in the DEM and reconstructing 
high-resolution images using the high pass coefficients only. The transform obtained gives a high 
positive value when the local signal matches the wave in shape and dimension and a low value 
when it does not. While Wavelets have been used in landscape ecology to characterize landscape 
structure at different scales (Dale & Mah 1998), it was the first time they were applied for visual 
analysis of topographic structures (Kalbermatten et al. 2012). Related to signal processing of 
DEMs, Kalbermatten et al. (2012) also proposes a series of terrain indicators obtained from struc-
ture tensors (i.e. energy, coherency and orientation). He evaluated their usefulness on the same 
case study in a multi-scale context (Figure 2.8). While this application is not entirely relevant for 
our purpose, the DEM generalization we used is based on these development, more precisely on 
their scaling function.  
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Figure 2.8 Example of multi-scale analysis using the wavelet transform framework on a DEM featuring a 

landslide from (Kalbermatten et al. 2012) . Each image corresponds to a different level of decomposition 

where the low-pass coefficient is set to zero and only the high-pass coefficients are used to produce a high-

resolution image of concavity and convexity. Taken from Kalbermatten (2010)  2.1.3 Finding how local is local adaptation 
Local adaptation has always been a major focus in evolutionary biology and several defi-

nitions exist to describe this process. Local adaptation happens in a geographic area within which 
movement of individuals regularly occurs (Richardson et al. 2014) and a population can be con-
sidered locally adapted when it shows a higher fitness than any other populations introduced in 
this habitat (Kawecki & Ebert 2004).  

So far, most studies on local adaptation have focused on identifying phenotypic variation but did 
not try to explain the underlying processes at the genetic level, which are thus poorly understood 
(Savolainen et al. 2013). In addition, many studies have a particular hypothesis concerning the 
driver of local adaptation, and others directly assess candidate genes (Savolainen 2011; Manel & 
Holderegger 2013). However, it is true that obtaining big genetic datasets is costly and thus makes 
it difficult to identify loci involved in polygenic quantitative traits. In fact, the few that performed 
such analyses at the genetic level used model species (Fournier-Level et al. 2011; Fraser 2013). 

For a long time, it was assumed that a high rate of gene flow would prevent local adaptation 
(Richardson et al. 2014). From the theoretical point of view, if populations exchange migrants, 
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local adaptation is the result of a balance between selection and migration, otherwise they would 
cancel each other out. Therefore, signatures of selection, despite gene flow, informs us on the 
strength of selection (Kawecki & Ebert 2004). In addition to gene flow, temporal variations in hab-
itat conditions also act against local adaptation while in contrast, spatial heterogeneity favours 
the maintenance of polymorphism (Hastings 1983; Kawecki & Ebert 2004). 

However, recent theories and examples show the opposite (Richardson et al. 2014). Local adapta-
tion is more widespread than thought and it takes place in a wide range of species. Several studies 
have shown evidences of fine scale adaptation in plants, mice, fish, snails, frogs and many others 
within a range of distances varying from dozen of meters to several kilometres (Skelly 2004; 
Vekemans & Hardy 2004; Parisod & Bonvin 2008; Kavanagh et al. 2010; Richardson et al. 2014). In 
addition, Many studies have shown genetic variations based on plants phenology along latitudinal 
clines (Savolainen et al. 2013), showing that natural selection can vary spatially and lead to local 
adaptation along an environmental gradient. It was also observed that clines variation are often 
stronger in randomly mating species, thus expecting selection to be more efficient (Savolainen 
2011). Local adaptation was also shown to arise rapidly and must be due to ongoing or recent 
spatially varying selection related to differences in environmental conditions (Kawecki & Ebert 
2004 and Figure 2.9). For example, many plants species that recolonized inhabitable areas after 
the last glaciation 10000 years ago show clines in phenology (Savolainen et al. 2013). 

 

 

 

Figure 2.9 Example of a micro-geographic adaptation to a rapid environmental change. The peppered moth, 

Biston betularia, has a light morph and a dark morph. The map shows the adaptation area, with the colour 

representing the level of pollution. Circles represent the proportion of moths sampled at a site that were 

either light or dark. From (Saccheri et al. 2008; Richardson et al. 2014) 
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These studies show that local adaptation is frequent but few assessed their findings at different 
scales. Only a couple of them have considered different extents of study area to study local adap-
tation. For example, Manel et al. (2010b) were able to show that temperature and precipitation 
are the two main environmental variables that drive adaptation in Arabis alpina sampled in the 
European Alps across different extents.  

Finally, among the mechanisms of local adaptation cited in Richardson et al. (2014), one is par-
ticularly relevant to the topic of this thesis, which is that micro-geographic adaptation often oc-
curs in populations exposed to spatially autocorrelated selection (Figure 2.9). In fact, selective 
environment are often clustered distributed along clines, leading to positive spatial autocorrela-
tion when effective gene flow occurs from populations facing similar selection.  
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Chapter 3 Data and Methods 
In this chapter, we describe the workflow and methods that were commonly applied to 

each of the three case studies. Their study areas differ from each other in terms of extent, topog-
raphy and sampling strategy, thus requiring different environmental datasets and different reso-
lutions. We also describe the methods that were used to evaluate and describe the genetic da-
tasets, to assess population structure and to identify signatures of selection. Finally, we explain 
the graphical results that were produced in a similar way in each case study. 

The workflow is the same for each case study (Figure 3.1). It is summarized here-under and de-
tailed in each case study chapters.  

1. Extracting environmental information 

First, we recovered climatic data from known datasets and extracted their values at sampling 
locations (e.g. WorldClim). The second type of variables is derived from DEMs that were either 
acquired from global or local databases. Afterwards, we computed series of DEM-derived varia-
bles and extracted their values at sampling locations. To evaluate how much resolution can affect 
our results, it is crucial to produce corresponding variables at different resolutions either by using 
a multi-scale approach (for DEM variables) or by using increasing window sizes (for climatic varia-
bles). Combining these two sets of variables creates a large dataset in which redundancy between 
variables must be evaluated and eventually removed some variables before further analyses. 
Therefore, a subset of variables must be selected based on a maximum threshold of collinearity.  

2. Spatial and genetic structure of the dataset 

We analysed the spatial and genetic structure of each dataset. In fact, it is important to know if 
the sampling locations are clustered or not, if they belong to different habitats, if gene flow is high 
and if the genetic structure indicates separate populations. All this information is essential when 
evaluating the relevance of adaptation signals. 

3. Identification of genetic markers under selection 

Next, markers potentially under selection are identified through several methods. We used two 
correlative approaches (Samβada and LFMM) to correlate the presence/absence of genetic mark-
ers with environmental variables mentioned above. In addition, one population genetic approach 
(BayeScan) was used, when applicable, to detect differences in allele frequencies between popu-
lations.  

4. Graphical illustration of results 
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Finally, it was essential to regroup information in graphs. Indeed, since several methods of detec-
tion are used and because each dataset is embedded within a geographic context, we thought the 
best way to analyse the results was to produce graphs representing general information per 
method, per genetic marker, and graphs for comparisons between methods. 

 

 

Figure 3.1 Workflow applied to each case study 
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3.1 Digital Elevation Models 
The first section of this sub-section details the methods applied to Digital Elevation 

Models (DEMs) and the relevance of their use for the different case studies. As mentioned above, 
each case study requires different DEMs at different resolutions due to the extent of the study 
area and to the sampling strategy applied. We explain why we decided to acquire very high reso-
lution (VHR) DEMs for the local scale study (B. laevigata case study) and develop the treatment 
and validation of this VHR DEM. Next, we detail multi-scale methods that were applied to each 
DEM to obtain a continuous representation of topographic features. Finally, we describe each 
computed DEM-derived variable, and give the parameters used for their computation. 3.1.1 Existing DEMs 
The Sheep & Goats case study shows the largest extent with samples separated by several kilome-
tres. In this case, existing DEMs with a moderate resolution are sufficient to render on local to-
pography.  

To date, existing DEMs with a worldwide coverage have a coarse resolution and limited accuracy. 
Among them, we can cite the SRTM (Shuttle Radar Topography Mission), which is based on radar 
interferometry, and the ASTER GDEM, based on stereo-photogrammetry. These models have a 
resolution of ≈90m and ≈30m respectively and have a poor vertical accuracy (≈15m) (Tachikawa et 
al. 2011).  We decided to use the SRTM instead of the ASTER for several reasons: first, the ASTER 
model is known to show more artefacts than the SRTM (Tachikawa et al. 2011); second, since the 
study area is quite large, we wanted to avoid long computation time and thus preferred to use a 
coarser resolution; Finally, SRTM and ASTER GDEM have similar levels of accuracy. The SRTM 
(void filled) over the territory of Morocco was retrieved in April 2014 from 
http://earthexplorer.usgs.gov (courtesy of the U.S. Geological Survey). 

 

For the P. major case study in Geneva, however, we had to look for models with a higher resolu-
tion, since our study area is small (15 x15 km) and our samples are located close to each other 
(tens to hundreds of meters). National or local administrations typically provide adequate moder-
ate-to-high resolution DEMs. In Switzerland, the federal office of topography (swisstopo) provides 
a DEM at 25m resolution, based on contour lines of national maps, and a 2m model based on 
LIDAR (Light Detection And Ranging) with an accuracy of 0.5m; © 2013 swisstopo (JD100064).  

However, the administration of the state of Geneva acquired in 2009 a 1m resolution model, with 
a vertical accuracy of 15cm (http://ge.ch/sitg/sitg_catalog/sitg_services?service_id=27&page=1). 
This model covers an area slightly larger than the canton territory. However, some individuals 
were situated outside of this DEM’s limits (see Figure 5.7). We had a look at DEMs from the 
French national geographic institute (IGN) to cover these areas but the resolution of their models 
is too coarse (25m) for a multi-scale study at that scale. We were thus not able to extract DEM 
variables values at these sampling locations, which were thus not included in the analysis. 
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Finally, a finer resolution was necessary for the B. laevigata case study. Indeed, a steep cliff locat-
ed close to sampling locations is a potential source of artefacts in the DEM. Therefore, we consid-
ered that swisstopo model at 2m resolution might show significant artefacts because the model 
processing is automatized and controlled solely over large areas. In addition, because this case 
study focuses on a local scale, the resolution of 2m might not be accurate enough to grasp micro-
habitat variability. Therefore, we decided to acquire two very high resolution DEMs using two 
distinct approaches. The first DEM we acquired using a drone (abbreviated RPOD05). The main 
advantage of using drones for model acquisition is that they are cheap and easy to manipulate. 
However, resulting digital-photogrammetry models are typically less precise than LIDAR data and, 
because they cannot access the terrain under the canopy, these models are not appropriate for 
forested areas.  The second DEM we acquired is a high-resolution Light Detection And Ranging 
(LIDAR) model (Heli05). LIDAR models have the advantages of being precise and enable the cover-
age of either a surface or a terrain by filtering the point cloud. However, they remain fairly expen-
sive.  

 3.1.2 Acquisition and comparison of Very High Resolution DEMs 
The RPOD05 model was acquired by the R-pod research group (HEIG-VD) in September 2011 
(http://www.r-pod.ch) with the help of the Sensefly drone (http://www.sensefly.com/). The pur-
pose was to capture series of images and build a 3D model using stereo-photogrammetry. The 
drone thus captured images every 5 seconds according to a flight plan over the sampling area. 
Afterwards, the research group uploaded these images in the software Pix4D, which uses image 
matching techniques, to find common points between images and produce a DEM as well as a 
rectified aerial image, or orthophoto. They obtained a Ground Sample Distance (GSD) of 7.5cm 
and a longitudinal and lateral covering of 82% and 40% respectively. However, not all flight lines 
were performed due to strong wind, which resulted in a limited overlap over the ridge. The model 
acquired has a spatial resolution of 0.5m and an estimated altitude accuracy of 1m. 

The HELI05 model was acquired by the Helimap Company using a LIDAR scanner in October 2011 
(http://www.helimap.ch/).  The LIDAR sensor was mounted on a helicopter, which allowed inves-
tigators to produce a very detailed model while flying close to the ground at a low speed. To re-
duce the costs, we decided to treat the LIDAR point cloud in our lab. 

Processing 

The laser point cloud obtained from Helimap was filtered in Terrascan 
(http://www.terrasolid.fi/en/products/terrascan). This software allowed us to visualise and classi-
fy points, as well as to produce DEMs with different methods. We first analysed the initial classifi-
cation of points as obtained with default parameters (Figure 3.2). 
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Figure 3.2 Illustration of the LIDAR point cloud on the ridge of “Les Rochers-de-Naye” obtained from Helimap 

with points classified by category. Both images show the initial classification of points. Top view with orient-

ed to the north (top), 3D view (bottom) 

We first noted the presence of void zones (no data) on the northern side of the ridge that are due 
to the obstruction of the LIDAR sight by the steep cliff. However, this does not cause a problem 
for the analysis since these voids are far enough from the sampling locations, meaning voids will 
not interfere in the computation of variables, at least at high resolution. These voids are filled in a 
further step.  

Then we observed that many points are considered as unclassified even though some could be-
long to the ground class. This problem is often observed in LIDAR models including steep topogra-
phy and can be solved by changing the classification parameters. Therefore, we performed a re-
classification of ground points from the unclassified class to increase the precision of the terrain 
model. After discussion with the staff of Helimap company, we decided to use the following pa-
rameters for this reclassification: Classification maximums: Terrain angle: 90°; Iteration angle: 9° 
to plane; Iteration distance: 0.2m to plane.  Classification Options: Reduce iteration angle when 
edge length < 0.5m.  
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In addition, we performed a visual inspection of the ground class and corrected major errors of 
reclassification by hand.  

After these processing steps in Terrascan, we exported the ground class as a separate point cloud 
in order to estimate the density of points per pixel in SAGA GIS (see section 3.1.4). We wanted to 
make sure that there were enough points per pixel to guarantee a sufficient precision of the final 
DEM with at least 3 points per pixel. Initially, we aimed to have a DEM with a resolution of 25cm, 
but as can be seen in Figure 3.4, the density of such a model is too low close to some sampling 
locations. Therefore, we opted for a model at 0.5m resolution.  

 In Figure 3.3, we can see that by choosing the 0.5m resolution, we drastically reduced the 
amount of pixels with one or two PPP and increased higher densities, thus expanding the histo-
gram. Similarly, in Figure 3.4, we can see that that the ridge is covered more densely.  

 

 

Figure 3.3 Histograms of points per pixel at two resolutions. Comparison of HELIMAP LIDAR point cloud den-

sity at 0.25m (grey) and 0.5m (black) resolution. For an expected density of 3 points per pixel, this figure 

shows that a resolution of 0.25 does not provide results accurate enough. 
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Figure 3.4 Points per pixel at two resolutions (0.25m, 0.5m) on the reclassified LIDAR point cloud obtained 

from Helimap. Colour scale represents the density and is valid for both images. A density of 0.5m (bottom) 

shows a better coverage in general and especially for the ridge. 
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The next step of the analysis workflow consists in exporting the DEM from the point cloud. Again, 
we used Terrascan to perform this task and chose to export an average per pixel rather than gen-
erating a TIN, in order to retain most of the local variability (Figure 3.5).  

 

Figure 3.5 Zoom on the ridge from the DEM obtained with average parameter (fill 5pixels). Raw output from 

Terrascan at a resolution of 0.5m. Voids will be filled later on with a lower resolution model. 

The last step of the workflow consisted in filling the voids of the Helimap DEM. To do so, we first 
resampled the DEM obtained from the state of Vaud. The latter model completes the one from 
swisstopo (2m resolution) by adding flight lines over 2000m altitude and by increasing the quality 
of the model itself (five laser pulses instead of one per m² in mountainous areas) (Kleiner et al. 
2010; http://www.vd.ch/index.php?id=49899). The enhanced model has a resolution of 1m and is 
resampled at the resolution of the Helimap DEM (0.5m) using the SAGA Multilevel B-Spline Inter-
polation from Grid. Then we combined the two DEMs with a priority to the Helimap DEM. The 
resulting filled DEM is hereafter named Heli05 (Figure 3.6).  
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Figure 3.6 Filled DEM at a resolution of 0.5m (Heli05). Hillshade with contour lines every 50 meters. This 

DEM was used further on to compute DEM-derived variables for the B. laevigata case study. Sampling area 

is highlighted in the red box. 

 

Comparison between HR and VHR DEMs for the B. laevigata case study 

To select the most appropriate DEM among the three proposed (i.e. Swisstopo model at 2m – 
ST2, RPOD05, HELI05), we first compared 511 precise GPS measurements of altitude to altitude 
values extracted from the DEMs. Afterwards, we quantified the delineation of the ridge versus the 
geolocation of the sampled plants. All sampling points were geo-referenced with a Differential 
GPS unit (DGPS) offering a horizontal accuracy of ~2-3cm and a vertical accuracy of ~3-4cm (TOP-
CON-HIPer Pro). 

Table 3.1 shows that the variability in altitude measurement between DGPS and DEM is globally 
much higher for the RPOD05 model than for HELI05.  The only few high errors in Heli05 can be 
explained by the position of certain samples. Indeed, some plants were sampled on the other side 
of the ridge where the slope is very steep; this can lead to a difference between DEM and DGPS 
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measurements (Figure 3.7). The standard deviation of Heli05 drastically decreased when we took 
these points out (STD = 0.12). 

Table 3.1 Differences in altitude measurement between DGPS coordinates and three candidate DEMs. DPGS 

measurements were obtained along the ridge at sampling locations of plants. 

 

DGPS -  
Heli05 

DGPS - 
Rpod05 

DGPS -   
Swisstopo2 

Average -0.20 0.42 2.50 

Min -0.61 -1.54 -1.43 

Max 6.49 35.53 47.32 

STD 0.67 3.75 8.27 

 

 

Figure 3.7 Histograms of differences in altitude measurement between DGPS coordinates and the three 

candidate DEMs. Important differences can be found for all models (top). More precise estimation of the 

distribution of errors is represented on the bottom histograms. 
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Next, we looked at the delineation of the ridge by computing an orientation variable for each 
model and overlaid the DGPS coordinates of sampled plants. We know from field observations 
that these points are located mostly on the southern-eastern side of the ridge and based on that 
we can judge how well the ridge is delineated in each DEM. Figure 3.8 illustrates well that Heli05 
performs a much better delineation of the ridge than the other DEMs. 

 

Figure 3.8 Orientation (Aspect) variable computed in SAGA GIS for each DEM at two different locations (top, 

bottom) of divergences between DGPS coordinates and DEMs: Heli05 (left), Rpod05 (middle), Swisstopo2 

(right) 

On the basis of these analyses, we concluded that Heli05 is the most precise model out of three 
proposed and gives the best delineation of the ridge (Leempoel & Joost 2012). Therefore, we used 
it to compute DEM-derived variables for the B. laevigata case study.  3.1.3 Multi-scale analysis 
The purpose of a multi-scale analysis is to understand how the resolution of a DEM influences the 
computation of derived variables and thus, indirectly, how it will affect the significance of their 
correlations with genetic data. In other words, a multi-resolution analysis is likely to let us know 
how important microhabitat is, and what level of detail is necessary to detect local adaptation. 
The purpose of such an analysis is not to determine an optimal resolution throughout models, but 
to evaluate how sensitive a model is to a change of resolution and how many significant associa-
tions would be missed if only one resolution is considered. 

Many methods have been proposed to apply a multi-scale generalization of DEMs, and more 
widely to images (Gallant & Hutchinson 1996; Wood 1996). Wavelet transforms, for example, are 
signal-processing techniques that focus on the compression and noise reduction of multidimen-
sional signals (Figure 3.9). The work of Kalbermatten (2010) focused on the visual analysis of 
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DEMs’ multi-scale decomposition by using wavelet transforms. His purpose was to analyse DEMs 
in the frequency domain and to benefit from a multi-dimensional model while keeping the large-
scale geometry of the model. He demonstrated that simply averaging pixels provides a poor ap-
proximation of the general shape compared with other methods such as B-splines (Kalbermatten 
2010). His work thus showed that a wavelet transform pipeline was a clever way to generalize 
topography and demonstrated the usefulness of B-splines, a generalization of Bezier curve, to 
model arbitrary functions, such as DEMs.  

 

Figure 3.9 Pattern analysis with the wavelet transform. The wavelet template can show a poor match (left) 

or a good match (right) and thus provide negative or positive values respectively. Changing the scale of the 

wavelet implies a modification of the window size, while the shape of the wavelet remains intact. Taken 

from Dale & Mah (1998b) 

In Kalbermatten’s work, wavelets are used to produce low-pass coefficients (DEM at a coarser 
resolution) as well as high-pass coefficients containing details that were not passed to the low-
pass coefficients. Unlike Kalbermatten (2010), we are not interested in the illustration of struc-
tures from different scales at high resolution. Instead, we need to use the low-pass coefficients 
only to produce variables at different resolutions. Therefore, the calculation of the high pass is 
unnecessary and we looked for a simpler procedure. After discussion with Dimitri Van De Ville 
(Medical Image Processing Lab, EPFL), we decided to take advantage of the Gaussian Pyramid 
algorithm implemented in MATLAB (MATLAB Version 12b. Natick, Massachusetts: The Math-
Works Inc., 2010.), as it is known to approximate well cubic b-splines 
(http://www.mathworks.fr/fr/help/images/ref/impyramid.html). 

The code we used can be found in 0. It imports a DEM as a georeferenced Geotiff and exports 
DEMs at coarser resolutions by automatically updating the cell size and corners of the projection 
parameters.  

 

Illustration of the Gaussian pyramid using DEM profile cuts 

To understand how different generalisation techniques work, we analysed a profile cut at differ-
ent resolutions and compared the results obtained with the original model (Heli05), with average 
resampling and with the Gaussian pyramid (Figure 3.10). 
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Figure 3.10 Profile cuts on the ridge of the Heli05 DEM. The original profile (thick black line) is compared to 

an average (blue) and to the Gaussian Pyramid result (red) at 1m (left) and 4m resolution (right).These fig-

ures show that a Gaussian pyramid provides a better approximation of the general shape of the profile that 

averaging pixels.  

 3.1.4 DEM-derived variables 
SAGA GIS 

We used SAGA GIS (Böhner et al. 2006) to compute environmental variables from DEMs. SAGA 
GIS is a fast and robust open source software that provides a large diversity of DEM-derived vari-
ables. In addition to simple terrain attributes, a large variety of secondary attributes related to 
morphometry can be computed, like solar radiation and hydrology (see Table 3.2). Although most 
of the proposed variables come with literature references, SAGA GIS does not provide an updated 
reference manual and, thus, often lacks a description of specific parameters for each variable. 
Importantly, SAGA GIS can be accessed from the command console as well as from the R package 
RSAGA (Brenning 2008), which facilitates automated computation of variables. Therefore, we 
were able to apply iteratively the same script to all DEMs but also to all case studies. This script 
can be found in 0. 

Many DEM variables can be computed or accessed. Among them, we chose the following: 

Altitude (alt). Altitude often correlates with many other variables such as precipitation, tempera-
ture, oxygen concentration etc. Even though altitude is often used in landscape genetics, it is diffi-
cult to interpret because of its correlations with other crucial variables. 

 

Primary attributes 

Primary attributes (slope, aspect, curvature) are the simplest variables that can be computed and 
are often used as proxies for water flow, snow movements, erosion or solar radiation. They are 
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usually built based on a 3x3 moving window. For this reason, we chose to compute them using 
the method of Zevenbergen & Thorne (1987). In each case, we computed Slope, Aspect (orienta-
tion), Curvature, Plan Curvature and Profile Curvature. Because Aspect ranges from zero to 360 
degrees, it was converted in two variables: Eastness (Sine of Aspect) and Northness (Cosine of 
Aspect). 

 

Morphometric variables.  

Several secondary attributes related to morphometry were computed with SAGA GIS.  

The Downslope Distance Gradient (DDG) quantifies downslope controls on local drainage. It is 
thus related to the slope but was specifically designed to accurately model the underground wa-
ter (Hjerdt et al. 2004). This variable is typically recommended for the computation of the topo-
graphic wetness index, but we also used it as an independent variable.   

The Morphometric Protection Index (MPI) expresses the protection of a point from the surround-
ing relief (Yokoyama et al. 2002). It is based on the maximum angle found at zenith or at nadir 
from the point, over a defined radius. It is a good proxy for protection from wind for example.  

The Terrain ruggedness index (TRI) is a quantitative measure of topographic heterogeneity 
(Böhner & Antonić 2009). However, it was shown to be highly correlated with slope when slope is 
steep. Sappington et al. (2007) proposed an alternative, the Vector Ruggedness Measure (VRM), 
which also quantifies rugosity but can be applied to any area. These variables might be related to 
stone density and be a proxy for certain soil characteristics (e.g. soil porosity). 

Finally, the Sky-view factor (SVF) expresses the ratio of the radiation received by a planar surface 
over the radiation emitted by the entire hemispheric environment (Häntzschel et al. 2005). In 
other words, it quantifies the percentage of a hemisphere centred on each point that is obstruct-
ed by the surrounding landscape. In addition of being a pre-requisite for the processing of solar 
radiation variables, it is also a proxy to quantify humidity or protection from wind. 

 

Solar radiation variables 

Solar radiation modelling depends on slope, orientation, sky view factor and also takes into ac-
count adjacent relief (Wilson & Gallant 2000; Böhner & Antonić 2009). In SAGA GIS, it is possible 
to compute several variables related to insolation, such as direct (Di), diffuse (Df) and total inso-
lation (Ti), duration of insolation, sunrise and sunset. The user must define the latitude of the 
grid, either by giving an average latitude (46° for 1st and 2nd case studies) or by creating two grids 
of latitude and longitude values (for the Sheep & Goats case study at a large scale). 

The output depends on the chosen time range. Indeed, it is possible to compute solar radiation 
for a specific hour, day or a range of days. In addition, one must define a time step of computa-
tion (0.5h by default). We decided to define two different days instead of monthly averages, the 
21st of June and the 21st December. 
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Hydrology variables 

SAGA GIS offers to compute many variables related to hydrology but most of them are oriented 
towards the modelling of watershed basins rather than providing indices. Here we focused on the 
topographic wetness index (TWI), which is the logarithm of the ratio between the catchment 
area (CA) and the tangent of slope (Beven & Kirkby 1979). It quantifies the topographic control of 
hydrological processes and can be computed in two ways. One way is to use the specific catch-
ment area (SCA) instead of the CA and the DDG instead of the slope, as proposed in Hjerdt et al. 
(2004). This, however, requires additional prior computation. Particularly, we had to fill the sinks 
of the DEM to obtain a DEM were each pixel can flow into another one. For this we used the Fill 
Sinks algorithm from Wang & Liu (2006). Then we used the “Flow width and Specific Catchment 
Area” algorithm to get the SCA (Gruber & Peckham 2009) and to create the TWI. The second way 
to compute TWI is simpler. One can do it using the SAGA Wetness Index (SWI), where the compu-
tation pipeline is embedded within one algorithm and produces outputs of Catchment Area, 
Catchment Slope (CSlo), Modified Catchment Area (MCA) and the SWI (Böhner & Selige 2006). 

 

We computed 26 DEM variables in total. The description and details of the parameters used to 
compute them are given in Table 3.2. 

 

  



Data and Methods 

52 
 

Table 3.2 Description of the parameters used to calculate DEM-derived variables at each resolution 

 Variable Abbre-
viation Units Parameters 

Altitude Alt m 

Pr
im

ar
y 

at
tr

ib
ut

es
 Slope Slo radians 

Method = (Zevenbergen & 
Thorne 1987) 

Eastness (Sine of 
Aspect) Eas radians 

Northness (Cosine of 
Aspect) Nor radians 

Profile curvature Vcu radians/m 
Plan curvature Hcu radians/m 

Curvature Cu radians/m 

Se
co

nd
ar

y 
at

tr
ib

ut
es

 

Downslope distance 
gradient ddg radians Vertical distance = 5m 

Morphometric pro-
tection index mpi 

no unit; Value is negative 
when the point is not pro-

tected and positive when it is. 
Radius = 1 pixel 

Terrain ruggedness 
index tri no unit Radius = 1 pixel 

Vector Ruggedness 
Measure vrm no unit Radius = 1 pixel 

Visible Sky vis no unit Max search radius = 10000; 
Method = sectors; Number of 

sectors = 8 Sky-view factor svf no unit 

Diffuse Solar radia-
tion in June Df6 kwh/m² Latitude=46°; Time Period=30 

day; Time resolution=0.5h; Time 
Span=5 days; Day of year=01/06 -

> 30/06; Atmospheric ef-
fects=Height of Atmosphere and 

Vapour pressure 

Direct Solar radiation 
in June Di6 kwh/m² 

Total Solar radiation 
in June Ti6 kwh/m² 

Total Catchment Area TCa m²  
Method = Multiple Flow Direc-

tion 
Specific Catchment 

Area SCa  m²/m 

Flow Width FW m  
Topographic Wetness 

Index TWI SCa/ddg Area Conversion =  No conver-
sion; Method = Standard 

Modified Catchment 
Area Mca m²   Suction = 10; Type of Area = 

square root of CA; Minimum 
Slope = 0; Offset Slope = 0.1; 

Slope Weighting = 1 

Catchment Slope  Cslo %  
Topographic Wetness 

Index (SAGA) SWI MCa/Slo 
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Structure tensor variables 

In addition to his work on multi-scale visualisation of DEMs, Kalbermatten (2010) also interpreted 
wavelet coefficients directly from the gradient of a Laplace-filter. From these wavelet coefficients, 
it is then possible to create structure tensors with a local Gaussian window of 3x3 and to generate 
three related variables (Van De Ville et al. 2008). These variables had never been used in terrain 
analysis before and we decided to use them to assess if they correlate to different terrain features 
(Figure 3.11). We computed these three variables in ImageJ software (Bethesda, USA) using the 
OrientationJ plugin (Rezakhaniha et al. 2012). We included them in our environmental dataset in 
order to estimate their correlation with other DEM-derived variables and later to include them in 
association models with genetic markers.  

These variables are the following:  

Energy: Energy of the local gradient. 

Coherency: coherency of the pixel regarding its neighbourhood. This is the ratio between the 
mean square magnitude of the gradient and the magnitude of the orientation vector. Range [0 1]. 
A large coherency corresponds to a dominant orientation in the neighbourhood.  

Orientation: local orientation of the pixel (degrees). 

 

Figure 3.11 Example of structure tensor results for the first decomposition level of a landslide in Switzerland. 

Coherency (left), energy (centre) and orientation (right). From (Kalbermatten 2010) 

 3.2 Climatic variables 
The next section details climatic variables that were extracted from either existing global or re-
gional datasets. However, for the B. laevigata case study, a separate chapter is devoted to the 
acquisition and evaluation of climatic data (Chapter 4.1.2). 

Several climatic datasets are available worldwide. Among them, the CRU (New et al. 2002) and 
the WorldClim (Hijmans et al. 2005; http://www.worldclim.org/current) are the most used and 
are both products of interpolations between weather stations dispersed on each continent (see 
Figure 2.4). In addition WorldClim dataset is based on several climatic databases gathered over 30 
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years and on an elevation model (SRTM). For the Sheep & Goats case study, we used the World-
Clim dataset because it shows a higher resolution than the CRU dataset (Table 3.3). 

 

Table 3.3 List of variables from the WorldClim dataset used in the Sheep & Goats case study. Variables tmin, 

tmean, tmax and prec are available for each month of the year. 

Variable   Description Units 
tmin Minimal temperature °C x 10 
tmean Mean temperature °C x 10 
tmax Maximal temperature °C x 10 
prec Precipitation mm 
BIO1 Annual Mean Temperature °C x 10 
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) °C x 10 
BIO3 Isothermality (BIO2/BIO7) (* 100) °C x 10 
BIO4 Temperature Seasonality (standard deviation *100) °C x 10 
BIO5 Max Temperature of Warmest Month °C x 10 
BIO6 Min Temperature of Coldest Month °C x 10 
BIO7 Temperature Annual Range (BIO5-BIO6) °C x 10 
BIO8 Mean Temperature of Wettest Quarter °C x 10 
BIO9 Mean Temperature of Driest Quarter °C x 10 
BIO10 Mean Temperature of Warmest Quarter °C x 10 
BIO11 Mean Temperature of Coldest Quarter °C x 10 
BIO12 Annual Precipitation mm 
BIO13 Precipitation of Wettest Month mm 
BIO14 Precipitation of Driest Month mm 
BIO15 Precipitation Seasonality (Coefficient of Variation) mm 
BIO16 Precipitation of Wettest Quarter mm 
BIO17 Precipitation of Driest Quarter mm 
BIO18 Precipitation of Warmest Quarter mm 
BIO19 Precipitation of Coldest Quarter mm 

 

Regional or local studies require higher resolution climatic datasets. Indeed, the WorldClim da-
taset, with its resolution of ≈1km, is not appropriate for the B. laevigata and P. major case studies 
(extents of a few kilometres). In addition, when the terrain is rugged like in Switzerland, we ex-
pect interpolations models base on weather station data to take topography into account. For this 
purpose, Zimmermann & Kienast (1999) proposed a set of climatic variables over Switzerland, 
named Swiss Eco-Climatic GIS data, produced through interpolations and regressions. Some of 
these variables are based only on measures of mean temperature, precipitation or cloudiness at 
different locations and elevations in Switzerland, some are based on DEMs only, such as direct 
solar radiation, and others are a combination of both (Table 3.4). We included these variables in 
the P. major case study.  
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Table 3.4 Swiss eco-climatic variables used in the P. major case study 

Variable Description Units 
clou monthly mean cloudiness 1/10 % 
ddeg annual degree-days with various threshold limits day*deg 
gamst monthly continentality indices (seasonality of climate) unitless 
prec monthly mean precipitation sum (1961-1990) 1/10mm  
pday # of precipitation days per growing season #day 
etpt monthly potential evapotranspiration measures 1/10mm / day 
mbal monthly moisture balance: P/ETP - 1.0 daily avg. 
mind monthly moisture index :  P – ETP 1/10mm 
swb annual average site water balance 1/10mm  
tave monthly mean of average temperature (1961-1990) 1/100 deg.C 
tmax monthly mean of maximum temperature (1961-1990) 1/100 deg.C 
tmin monthly mean of minimum temperature (1961-1990)             1/100 deg.C 
sfroy annual average # of frost days during growing season         #day 

 

Window size for climatic variables 

Climatic variables were also estimated at varying scale. Therefore, we considered using different 
window sizes to evaluate the influence of neighbouring values on the correlation between genetic 
markers and variables. To compute different window sizes, we used the “Simple Filter tool” in 
SAGA GIS. It computes a raster in which each pixel is the average of neighbouring pixels including 
the reference pixel itself. For the computation we used the following parameters: 

Search mode: Circle; Filter: Smooth; Radius: 3,5,9,17,33 pixels. 

 3.3 Selection of variables 
The variables were retrieved at all sampling location using the tool “Add grid values to points” in 
SAGA GIS. This function extracts for each point the pixel value directly under it.  

Usage of large sets of environmental variables inevitably leads to redundancy in the analysis. In 
fact, it is common in landscape ecology and landscape genetics to perform a PCA on environmen-
tal data to extract the main axes of environmental variation and use PCA axes as environmental 
variables. On the other hand, one may argue that this procedure is done at the expense of inter-
pretation, since PCA axes often represent several variables of interest. We considered that the 
number of variables in univariate models should remain high to represent a variety of variables as 
wide as possible. Therefore, we opted for a computation procedure based on correlations, as 
used by Stucki (2014). In order to keep a maximum of variables but avoid redundancy, we defined 
an threshold of 0.9 (in terms of absolute value) for univariate models. This procedure is random in 
the sense that it randomly selects a variable between the two that show a high correlation (thus 
higher than +0.9 or lower than -0.9). Correlations between variables were computed using 
Spearman's rank correlation coefficient in R using cor.test {stats}. 
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The loop is the following: 

1. Threshold of 0.9 

2. Search for the highest absolute correlation 

3. Random selection of one of the 2 variables concerned 

4. Loop until no pairwise-correlations are higher than the threshold 

 

We also kept track of deleted variables and of their correlation with selected variables, in order to 
facilitate the ecological interpretation later on. 

For multivariate cases however, a threshold of 0.9 is not adapted. It results in high multicollineari-
ty leading to biased and unstable regression parameters (Stucki 2014). Multicollinearity can be 
estimated by calculating variance inflations factors (VIF), which depend on the determination 
coefficient (R²) of the linear regression between predictors. VIF is calculated with the following 
equation and its usual maximum tolerated value is 5 (Dobson & Barnett 2008).   

ܨܫܸ = 1(1 − ܴଶ) 

Equation 3.1 Variance Inflation Factor 

 

Therefore, in a bivariate model, lowering the pairwise correlation threshold to 0.8 corresponds to 
a maximum VIF of 2.8. 

 3.4 Genetic data and spatial structure 
In this section, we explain the methods used to evaluate the spatial distribution of sam-

pling locations, the methods used to produce the descriptive statistics of the genetic data and 
population structure of the three case studies. 3.4.1 Spatial distribution of samples 
Sampling strategies are diverse in landscape genetics and are typically redefined for each particu-
lar study. Some studies focus on populations while others tend to evaluate continuous species 
responses to environmental gradients. Therefore, the geographic spread of sampling locations 
might influence the results and it is thus important to assess it. 
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We estimated geographic clustering of samples in QGIS (QGIS Development Team, 2014. QGIS 
Geographic Information System. Open Source Geospatial Foundation Project. 
http://qgis.osgeo.org). We used the nearest neighbour index, which expresses the ratio of the 
observed distance between points and the expected distance between points. The expected dis-
tance is an average distance between neighbours in a hypothetical random distribution. 

 

Equation 3.2 Average Nearest Neighbour analysis 

ܰܰܣ = ഥ௘௦௧ܦഥ௢௕௦ܦ  ഥ௢௕௦ܦ   ݁ݎℎ݁ݓ   = ∑ ݀௜௡௜ୀଵܰ ഥ௘௦௧ܦ   ݀݊ܽ   = 12ටேௌ  

Where ܰ is the number of events, ܵ is the surface and ݀௜  is the distance between two points. 

This clustering index varies between zero and two (0 for completely clustered, 1 for random and 2 
for completely dispersed). Its significance can be estimated with a Z score and informs on whether 
to reject the null hypothesis of a random distribution or not. For convenience we also converted 
the Z score into a p-value.  

In addition, knowing the distance between samples is essential to estimate the relevance of multi-
scale variables. For example, distance between samples can inform us about the minimum resolu-
tion we should use. It is also valuable in defining neighbourhood sizes for spatial autocorrelation 
(3.5.3). We thus computed and provided histograms of the pairwise distances, as well as the 
shortest distances between individuals. 

 3.4.2 Descriptive statistics of genetic data 
We computed the descriptive statistics of genetic data for each dataset in order to: 1) assess the 
quality of the genetic data and 2) evaluate gene flow and genetic diversity.  

P. major and sheep & goats case studies were analysed with PLINK (Purcell et al. 2007) as the 
underlying genetic data were provided in a corresponding format.  The following statistics were 
computed: 

- Missingness per individual 

- Missingness per locus 

- Minor Allele Frequency 

- Heterozygosity 

- Inbreeding coefficient 

Amplified Fragment Length Polymorphisms (AFLPs) were used in the B. laevigata case study and 
Single Nucleotide Polymorphisms (SNPs) in the two others. AFLP are dominant markers, where 
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the presence of a band could be a homozygote or a heterozygote individual. Therefore, we could 
not evaluate heterozygosity using the inbreeding coefficient (Fis) for AFLP data. 

For the B. laevigata case study, we used SPAGeDi (Hardy & Vekemans 2002) to estimate the mean 
relationship coefficient between samples, a measure of isolation by distance. The relationship 
coefficient is assessed for each genetic marker, from which a mean value is computed at each 
distance interval. To assess the significance of the coefficients, SPAGeDi performs permutations 
between individuals. 3.4.3 Population structure 
Individuals of a dataset are all related with a certain level and some can form distinct groups, or 
populations. Assessing the population structure within a dataset informs us on the presence of 
clusters of related individuals and is likely to provide hints on the presence of geographic barriers 
to gene flow. In addition, as already mentioned in the introduction, population-genetic-based 
methods require individuals to be assigned to populations in order to evaluate Fst. Two software 
were used to assess population structure. 

 

Admixture 

Admixture (Alexander et al. 2009) estimates allelic frequencies of SNPs in ancestral populations as 
well as the proportion of individual genomes coming from these ancestral populations. Admixture 
uses bi-allelic SNPs data to assign each individual to a population. It requires the user to define 
the number of expected clusters (K) and can be launched over several Ks to estimate its most 
likely value using a cross validation method. For this cross-validation, genotypes are partitioned in 
a certain number of groups that are masked one by one. At each turn, membership coefficients 
and allelic frequencies are computed from the visible genotypes. Values of masked genotypes are 
then predicted from the membership coefficients and allelic frequencies of ancestral populations. 
Cross validation (CV) error measures the average deviation of predicted genotypes from hidden 
values and real genotypes. Because this task is performed for each K, the minimal value of CV 
indicates the most probable value of K. Admixture has the advantage of being much faster than 
Structure (Pritchard et al. 2000) as it does not use Bayesian computation. It is thus appropriate for 
the Sheep & Goats case study. 

 

Structure 

Admixture is not appropriate for AFLP data and polyploid species. In addition, it is not recom-
mended to use it when the dataset is small. Therefore, for the B. laevigata case study, using AFLP 
data, and the P. major case study, with 464 SNPs only, we used the program Structure. 

Structure 2.4 (Pritchard et al. 2000) is a model based clustering method capable of identifying 
distinct genetic populations and of probabilistically assigning individuals to populations. We de-
cided not to use sampling location as prior population information as we expect the relief of both 
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case studies to create a complex pattern of membership between individuals that does not corre-
spond to geographic relatedness. We chose the model with admixture for the ancestry model, 
selected a burning length of 20 000 and a number of simulations of 100 000, as recommended in 
(Pritchard et al. 2007). The number of clusters was set between K=2 and K=7 and 20 iterations 
were computed for each K. Secondly, we used Structure Harvester (Earl & vonHoldt 2012) to find 
the most likely number of clusters using the log probability of the data and the ΔK statistic 
(Evanno et al. 2005). Afterwards, we used CLUMPP (Jakobsson & Rosenberg 2007) on the most 
likely K, in order to calculate the mean cluster membership coefficients across the 20 replicates of 
cluster analysis (Greedy algorithm, 1000 random input orders).  

 3.5 Identification of signals of selection  
This section describes the methods that were used to detect signatures of selection, the differ-
ences between them and the reasoning behind the selection of a particular method for each case 
study. 3.5.1 Correlative methods to detect outlier loci 
Correlative approaches in landscape genetics estimate the strength of a relationship between 
genetic markers and environmental variables. Compared with population genetics approaches, 
they have the advantage of identifying environmental variables responsible for selection as well 
as of obtaining a statistically representative number of individuals per landscape type and not per 
population (Joost et al. 2007). We used two correlative approaches to detect signatures of selec-
tion. 

 

Samβada 

Samβada (Stucki 2014) is an individual-based method performing logistic regressions. It is a vari-
ant of linear regression in which the binary genetic marker is either present or absent and corre-
lates with a quantitative environmental variable. Therefore, it provides the probability of occur-
rence of a genotype for each individual in function of environmental parameters (Joost 2006).  
The aim of Samβada was to improve SAM, the spatial analysis method (Joost et al. 2008) by in-
creasing its computational power over large datasets on the one hand and by providing multivari-
ate models on the other hand. Because the method is simple, it has the advantage of being fast 
and can efficiently process millions of models.  Finally, it also provides spatial statistics that are 
helpful for the interpretation of significant results regarding spatial autocorrelation (see section 
3.5.3).  
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Equation 3.3 Logistic regression. The  natural  logarithm  of  odds  (or  logit) is  assumed  to  be  linearly re-

lated to x, the independent variable. ݈(݌)ݐ݅݃݋ = β଴ + βଵݔ 

 

Samβada performs a univariate logistic regression for each combination of genotype and envi-
ronmental variable (Equation 3.3). The significance of each model is assessed by a comparison 
between the values predicted by the model and observed values. It calculates the parameters of 
an estimated function that best fits observed values by maximizing the probability of obtaining 
the observed set of data (Hosmer & Lemeshow 2000). Therefore, the maximum likelihood func-
tion is expressing the probability that observed data are a function of unknown parameters. 

In Samβada, two tests of significance are performed, likelihood ratio G (Equation 3.4) and Wald 
test (Equation 3.5). A model is considered significant if both G and Wald tests are significant. In 
addition, a value of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and 
several pseudoR² are calculated for each model (Stucki 2014). 

 

Equation 3.4 Equation of the likelihood ratio G 

ܩ = −2݈݊ -the likelihood of the new mod ′ܮ is the likelihood of the initial model (with a constant only) and ܮ ′ܮܮ
el including the examined variable. If added parameters are equal to zero, this statistic follows a 
chi-square distribution with a number of degrees of freedom equal to the number of added pa-
rameters (Joost et al. 2007). 

 

Equation 3.5 Equation of the Wald test of significance 

ݓ = β෠௜ߪ(β෠௜) 

The Wald test is obtained by comparing the maximum likelihood estimate of the β෠௜ parameter 
with the estimate of its standard error. 

 

Multivariate models 

Samβada can also produce multivariate models to assess the effect of several environmental vari-
ables on genetic variation. First, Samβada computes univariate models for each marker per envi-
ronmental variable. In a second analysis, it considers all possible combinations of variables and 
compares for each of them the G, Wald, AIC and BIC scores with the univariate scores. If any of 
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the combination models better predicts the frequency of a genetic marker than the univariate 
model only, it is considered significant and recorded in the results file. Models are then sorted 
according to their Wald score in a table. 

The advantage of multivariate models is that population structure can be included as a co-
explanatory variable through a membership coefficient and thus can estimate if the prediction of 
a locus is better explained by a multivariate model (one or several environmental variables + pop-
ulation structure) or by the membership coefficient alone (Stucki 2014). 

 

Bonferroni correction and false discovery rate. 

Because Samβada performs multiple simultaneous tests, a correction of the significance level 
must be applied to avoid excessive false positives. Bonferroni correction for multiple tests was 
applied to select the significant models. This correction consists in dividing the defined level of 
significance α by the number of tests performed (Shaffer 1995). 

However, with datasets of increasing size, Bonferroni correction becomes too conservative and 
one might consider computing a false discovery rate (FDR) instead (Benjamini & Hochberg 1995). 
FDR is the ratio between the number of false discoveries and the total number of models consid-
ered significant (Figure 3.12). FDR implemented in Samβada is based on Storey & Tibshirani (2003) 
and calculates a q-value for each model based on the G scores. Consequently, by fixing a signifi-
cance threshold α, we obtained a group of significant models in which a proportion α are false 
positives. For example, a threshold of 10% (FDR=0.1) implies that 10% of the significant models 
are false discoveries. 

 

 

Figure 3.12 Estimation of the false discovery rate. Tests for which the null hypothesis is true are uniformly 

distributed from 0 to 1, which are estimated by the blue line and is adjusted on the basis of the frequency of 

tests having p-values close to 1. When a threshold of significance is defined (vertical black line), the propor-

tion of false positives among the significant models is estimated by the ration between the false discoveries 

(blue surface) and all the discoveries (blue and red surfaces). From Stucki (2014) 
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RecodePLINK 

RecodePLINK is used for recoding of PLINK’s .ped and .map files to Samβada’s format. Because 
Samβada’s format requires binary data, each bi-allelic SNP is recode as three genotypes (e.g. AG, 
GG and GG). 

 

LFMM 

We used another correlative approach named Latent Factor Mixed Models (LFMM; Frichot et al. 
2013). It differs from Samβada in the ability to assess the influence of the population structure on 
correlations. In fact, LFMM uses a hierarchical Bayesian mixed model based on a variant of princi-
pal component analysis in which residual population structure is introduced via unobserved fac-
tors. It thus detects signals of adaptation at the same time as it infers the background level of 
population structure. The regression model is a linear mixed-model that contains a genotypic 
component and a matrix of genetic variability, which, in turn, is not explained by the environment 
and adjusts its parameters in a Bayesian context. 

LFMM only performs univariate models and assess their significance with a z score, on the basis of 
which a p-value is calculated. Like Samβada, it is possible to apply the FDR method from Storey & 
Tibshirani (2003) if the distribution of p-values permits it (see Figure 3.12). 

LFMM considers bi-allelic genetic markers (such as SNPs) encoded as 0, 1 and 2. The number of 
simulations of the Gibbs sampler was kept at default value provided in the manual (number of 
iterations: 10000; burnin: 5000).  The user also has to define the number of latent factors K, which 
can be estimated using the Tracy-Widom theory that provides the number of significant axes of 
the PCA on genetic data (Patterson et al., 2006). For each dataset, two values of K were tested as 
recommended. 

LFMM was designed to use SNP data only and cannot be applied to AFLP markers, such as in the 
B. laevigata case study. In addition, we were not able to make it work on the SNPs of the P. major 
case study. 

 3.5.2 Population genetics approaches 
BAYESCAN (Foll & Gaggiotti 2008) is based on a Bayesian method and uses differences in allele 
frequencies between populations in order to identify candidate loci. In particular it decomposes 
locus–population Fst coefficients into a population-specific component (beta) shared by all loci 
and a locus-specific component (alpha) shared by all the populations using a logistic regression. A 
given locus is assumed to be under natural selection when a locus-specific component alpha sig-
nificantly different from 0 is necessary to explain the observed pattern of diversity. Consequently, 
for each locus, the posterior probabilities of two alternative models are estimated, including or 
not the alpha component. Posterior probabilities directly allow for the control of the expected 
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proportion of false positives among outlier markers using a FDR. BAYESCAN has proven to be ro-
bust to a wide range of demographic scenarios and can use very small sample sizes with no par-
ticular risk of bias.  

We used the settings suggested by Foll & Gaggiotti (2008) with an exception for the length of the 
pilot run, where we used 10,000 instead of 5000, with a total length of the chain of 100,000 itera-
tions. 

Importantly, BAYESCAN cannot be applied to the Sheep & Goats case study since we did not iden-
tify distinct populations. 

 3.5.3 Spatial autocorrelation 
Spatial autocorrelation occurs when geographically close objects are more related than distant 
objects (Tobler 1970). Spatial autocorrelation is thus expected to take place in many situations, be 
it for environmental variables or for genetic data. However, this phenomenon also implies that 
characteristics of close objects can be partially predicted by their neighbours, thus refuting inde-
pendence between samples, which constitute the basis of many standard statistic tests (Dobson & 
Barnett 2008). Therefore, measuring spatial autocorrelation is necessary if one aims to assess the 
independence between samples as well as the influence of the geographical or environmental 
component on the spatial structure of samples. 

For this purpose, we used the Moran’s I measurement of spatial autocorrelation (Moran 1950) for 
both genetic data (frequency of markers) and environmental variables. Moran’s index varies be-
tween [-1 1] and indicates outlier values when negative, clustering when positive and randomness 
when close to 0. 

 

Equation 3.6 Moran’s I global autocorrelation coefficient 

ܫ = ܰ ∑ ∑ ௜ܹ,௝( ௜ܺ − തܺ)൫ ௝ܺ − തܺ൯௝௜൫∑ ∑ ௜ܹ,௝௝௜ ൯ ∑ ( ௜ܺ − തܺ)ଶ௜  

Where ܰ is the number of observation units, ௜ܹ,௝ the spatial weight, ௜ܺ  the value of the variable 
at location ݅,  ௝ܺ the value of the variable at location ݆ and  തܺ the mean of the variable. 

The calculation of Moran’s I measurement starts with the definition of a weighting scheme, or 
neighbourhood, as the value of each point is compared with a weighted average of its neighbours. 
Two types of weighting schemes exist. The first is named “fixed kernel” and is based on a defined 
distance, thus involving a variable number of points (e.g. spatial lags); the second is name “adap-
tive kernel” on a defined number of points to consider, thus involving a variable distance (e.g. 
nearest neighbours). 

We used Samβada to measure Moran’s I rather than any GIS, as Samβada is able to process Mo-
ran’s I for each marker and each variable included in the analysis. Samβada proposes three 
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weighting schemes using fixed kernels (mobile window, Gaussian kernel, bi-square kernel) and 
one adaptive kernel (nearest neighbour). Among the proposed weighting schemes, we opted for a 
nearest neighbour weighting scheme for all case studies as in Stucki (2014).  

 

Equation 3.7 Moran’s I pseudo p-value 

݁ݑ݈ܽݒܲ = ݏ݊݋݅ݐܽݐݑ݉ݎ݁݌ ݉݋ܴ݀݊ܽ) > (ܫ + ݏ݊݋݅ݐܽݐݑ݉ݎ݁݌ ݉݋1ܴܽ݊݀ + 1  

Where ܫ is the observed Moran’s I value. 

In addition, to assess spatial autocorrelation over larger distances, we decided to take into ac-
count several values of K nearest neighbour, starting from 10 to 100 by steps of 10 for the Sheep 
& Goats case study; and from 20 to 200 by steps of 20 for the B. laevigata and P. major case stud-
ies. We then plotted obtained Moran’s I to produce a correlogram. The significance of each meas-
urement was assessed using permutations. We opted for 999 permutations to obtain a signifi-
cance of three decimals (0.001). 

Moran’s I is a global measure of spatial autocorrelation but it does not show where autocorrela-
tion is strong and/or significant.  Anselin (1995) developed a local index of spatial association (LI-
SA) to solve this problem. LISA informs us on whether a point is significantly correlated with its 
neighbours and, if so, if the autocorrelation is positive or negative.  In our case, LISA allows us to 
visualize whether the frequency of a genotype is correlated with the frequency in its neighbours 
and whether the autocorrelation is a local and a global phenomenon. The computation of LISA 
slightly differs from the computation of Moran’s I, however, the sum of LISA indices is proportion-
al to the global autocorrelation measurement (Anselin 1995).  

 

Equation 3.8 Local Index of Spatial Association 

௜ܫ = ൤ܼ௜ܵଶ൨ ෍ ௜௝௡ݓ
௝ୀଵ , ௝ݖ ݆ ≠ ݅ 

Where ܼ௜  is the deviation from the mean, ܵ the standard deviation of the dataset, ݓ௜௝ the weight. 

LISA’s significance is assessed by permutations where the local value is fixed and the values of its 
neighbours are randomly picked from the entire dataset (N-1, since the point of interest is fixed). 

The parameters and weighting scheme we chose are the same like for the global Moran’s I. How-
ever,  the significance level α is set to 0.01 instead of 0.05, which is considered to be a more ap-
propriate cut-off value (Anselin 1995). 
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3.6 Visualisation of the results 
The case studies described use large datasets with many variables processed by several 

methods of detection, resulting in many different outputs that cannot only be analysed in tables. 
We wanted to separate results by locus or chromosome, by variable, by resolution, and visualise 
maps of candidate loci to understand their spatial distribution and assess the robustness of their 
detection. 

Therefore, a clear visualisation framework was necessary to make it possible to compare the re-
sults obtained through all the methods described above. We decided to use first and foremost 
graphical outputs for all the data. Importantly, we scripted the production of these graphics. 

For each method, an overview of the results including for example histograms of scores and bar 
plot per variable (e.g. Figure 6.11 p127). These graphics significantly facilitated the examination of 
the results. Tables themselves were modified from the original output to include descriptive sta-
tistics, such as minor allele frequencies, spatial autocorrelation scores as well as a “detection 
score” produced by other methods (e.g. Table 4.6 p84). 

In addition, in the sheep & goats case study, we compared results between methods by plotting 
their score versus their position on the chromosomes. Doing so, we were able to evaluate the 
presence of clusters of detected SNPs in the genome and to track for their presence in the results 
produced by each method (e.g. Figure 6.13 p130). 

In addition to the overviews per method, we focused on the representation of significant associa-
tions between genetic markers and environmental variables. We subdivided the graphs into dif-
ferent compartments in order to include the map of the locus, its local spatial autocorrelation 
indices, the correlated environmental variable, as well as the evolution of the scores with resolu-
tions. In addition, we provided a table containing important descriptive statistics (an example is 
provided in Figure 3.13 and described in the next sub-chapter).  

Finally, we produced scatterplots showing the relationship between results produced by the dif-
ferent methods. For example comparing Samβada’s G score to LFMM’s p-value, to Moran’s I etc. 
In each of these graphs, we classified the genetic markers by colour, representing either those 
commonly detected or those detected by one method only. 

We used Matlab to load and treat results from each outlier detection method as well as from the 
spatial analysis. We performed the treatment of the results for each case study in a similar way, 
and used Matlab to produce the corresponding graphs. 

 3.6.1 Visualisation of significant associations between genetic markers and envi-ronmental variables 
In Figure 3.13, a map showing the genetic marker analysed is provided in graph (A), close to its 
correlated environmental variable in graph (B). This allows us to visualise the level of clustering of 
the marker and its correlation with the environmental variable. In the cases of SNPs, the title of 
the graph (A) indicates which genotype is involved in the association model. In addition, the fre-
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quencies of each genotype are provided in the legend. Similarly in graph (B), a legend is added to 
display the minimum, average, and maximum values of the variable. Units of the environmental 
variables can be found in sections 3.1.4 and 3.2. In cases of multi-scale variables, only the variable 
with the best association with the genetic marker according to the G score is shown.  

Graph (C) illustrates the local indices of spatial association (LISA) performed for the genetic mark-
er with an adaptive weighting scheme of 20 neighbours. The legend informs us on the different 
categories of spatial autocorrelation: positive autocorrelation HH (High-High) and LL (Low-Low), 
negative autocorrelation HL (High-Low) and LH (Low-High), and non-significant autocorrelation 
(NS). Point size of the four significant categories of LISA are bigger than non-significant to high-
light them. For global autocorrelation, graph (D) is a correlogram that displays the evolution of 
Moran’s I for all genetic markers of the dataset at different distances or number of neighbours. 
Here, all loci of the datasets are coloured in grey and the genetic marker of interest in red. It al-
lows us to evaluate how strong is spatial autocorrelation for this genetic marker, how it evolves 
with distance and how it behaves compared with other markers. 

Then, the evolution of the significance of the model with decreasing resolution (or increasing 
window size) can be observed in graph (E). An horizontal blue line indicates the threshold of sig-
nificance specified in each case study.  

Finally, general information on the model is provided in graph (F), including the best G score 
(among the different resolutions), the Wald score of this model, its q-value, the Moran’s I of the 
marker and its p-value, the Moran’s I of the variable and its p-value, the best scores in other 
methods and their corresponding variable. 
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Figure 3.13 Visualisation of the significant association between genotype 6 12259667 AA and Precipitation 

Seasonality (bio15) in goats detected by Samβada. Explanations on the different graphs can be found on p. 

65. 
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Chapter 4 Biscutella Laevigata in Les Ro-chers-de-Naye 
Observing adaptation of alpine plants at a local scale requires fine scale environmental data. 
However, while it is often expected that a higher precision should bring more accurate results, it 
should not be forgotten that a high amount of details might blur the output signal.  

As part of the project Velux Stiftung (Project 705), 361 B. laevigata were sampled along the ridge 
of “Les Rochers-de-Naye” (Western Swiss Alps). Our purpose was to assess on one hand whether 
fine scale topography obtained from a very high resolution DEM can model ecologically relevant 
features such as temperature or humidity, to settle their usefulness at a local scale, and on the 
other hand to find out if DEM-derived proxies of environmental features can detect signatures of 
selections. The strength of this study is to take advantage of very high resolution to evaluate the 
scale dependency of microhabitat modelling and of signatures of selection at a local scale. 

     

Extracting 
environmental 

information

•DEM acquired at a resolution of 0.5m (120 derived variables)
•34 Climatic variables from in-situ measurements
•Multi-resolution computation at 0.5,1,2,4 and 8m

Spatial and 
genetic structure 

of the dataset

•Sampling design at a fine scale
•Geographic distances between samples
•Population structure evaluated using Structure and CLUMPP

Identification of 
genetic markers 
under selection

•Correlative approach: Samβada
•Population genetic approach: BayeScan
•Spatial autocorrelation with adaptive kernel (20 to 200 neighbours)

Visualisation of 
the results

•Summary of results for Samβada
•Comparison of results between methods
•Graphical representation of significant results
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B. laevigata is a widespread autotetraploid Brassicaceae, which occur in small patches in warm 
and dry areas (Parisod & Bonvin 2008).  It is a perennial self-incompatible alpine plant and gener-
alist Diptera and Lepidoptera achieve pollen dispersal while seeds disperse through wind and 
gravity. It survived the glacial ages as a diploid (Manton 1937) and is thought to have recolonized 
the alps starting from multiple refugia, with the peripheral alps representing the historical core of 
the lineage (Parisod & Besnard 2007). The study zone is situated at « les Rochers-de-Naye » 
(N46°26‘00‘‘   E6°58‘50‘‘) where B. laevigata forms a natural hybrid zone between closely related 
lineages. Parisod & Christin (2008) and Parisod & Joost (2010) showed that individuals consistent-
ly presented similar genotypes in habitats of contrasting solar radiation.   

To investigate its adaptation to a local mountainous environment, we acquired a high resolution 
DEM to model micro-habitat conditions and used temperature loggers to study the variability of 
climatic conditions. The first part of the study demonstrates the usefulness of DEMs as a surro-
gate to crucial climatic variables and highlights the ability of DEM variables to model micro-
habitat conditions as those encountered by plants (Leempoel et al.; Körner 2003). This research 
was submitted to Methods in Ecology and Evolution and can be found in Appendix II. The second 
part explores the population structure and exposes the correlations between local environmental 
data and genetic variation. In addition, a multi-scale approach was applied on DEMs in order to 
evaluate the scale dependency of these correlations. 

 4.1 Environmental Data 
We computed variables from the VHR DEM (0.5m spatial resolution) detailed in section 3.1.2. 
These variables (see Table 3.2) were computed at resolutions of 0.5, 1, 2, 4 and 8m. Unlike the 
other case studies, we decided not to use 6 but only 5 different resolutions since we found 16m to 
be too coarse for this case. In fact, the delineation of the ridge at a coarse resolution might not be 
accurate enough to model the habitat of the plants and could introduce an important bias.  

 4.1.1 Remote sensing data 
In addition to climatic variables detailed below, we extracted two additional variables from re-
mote sensing data. The first one is an aerial Infrared image obtained from Swisstopo (Swissimage 
© 2013 swisstopo, JD100064), with a resolution of 0.5m. The second one is an orthophoto ob-
tained in winter with the same drone as described in section 3.1.2. We hoped to identify uncov-
ered areas and estimate sun reflectance of the snow by measuring the intensity of light on the 
image. Values of each band (Red, Green, and Blue) were extracted at each sampling location and 
summed into one total intensity variable. 

 4.1.2 Ecological relevance of VHR DEM variables  
The local scale of this case study requires high-resolution climatic variables. Indeed, we men-
tioned that the eco-climatic variables from Zimmermann & Kienast (1999) were irrelevant due to 
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their coarse resolution and high correlation with altitude (Leempoel & Joost 2012). Therefore, we 
decided to install a series of temperature and humidity loggers along the ridge. The purpose of 
this analysis is twofold. First, it allowed us to evaluate the role of topography on local climatic 
variability, by performing multivariate regression models between climatic measurements and 
VHR DEM-derived variables. Secondly, temperature measures could be directly used in associa-
tion models with the frequency of genetic markers to account for micro-habitat conditions in pos-
sible signatures of local adaptation. 

Environmental information was measured with 60 uncovered temperature loggers placed at the 
centre of each plant sampling plot (Figure 4.4) and 20 additional uncovered temperature loggers 
installed at random locations, outside of these plots, along the ridge to measure direct air tem-
perature (Figure 4.1 A). Furthermore, 25 temperature and humidity covered loggers were placed 
close to 1 uncovered logger over 3 to measure ambient temperature and humidity. 

Following this design, uncovered I Button loggers (1922L) from Maxim Integrated 
(http://www.maximintegrated.com/) were placed 15cm above the ground to estimate direct air 
temperature (DT) as perceived by the plant, while covered temperature and humidity loggers (I 
Button 1923) measured ambient temperature (AT) and humidity (HU) at 15cm above the ground 
(see Figure 4.2 for an example). These loggers were covered with a white shield pierced with sev-
eral holes to avoid stagnant air. Loggers were set to record information with a frequency of 30 
minutes during 126 days, from June 15, 2013 to October 18, 2013, with an accuracy level of 0.5 
degrees C° and 5% for humidity. The devices were used to produce i) direct air temperature (DT), 
ii) ambient temperature (AT) and iii) air humidity (HU) variables. The 126 days mentioned above 
were grouped in 9 periods of 14 days (P1: June 15 to 28; P2: June 29 to July 12; P3: July 13 to 26; 
P4: July 27 to August 9; P5: August 10 to 23; P6: August 24 to September 6; P7: September 7 to 
20; P8: September 21 to October 4; P9: October 5 to 18). 
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Figure 4.1 (A) Study zone and sampling locations of loggers on the ridge of Les Rochers-de-Naye in the Swiss 

Western Alps. Loggers were placed at and between Biscutella laevigata locations (not shown here, see Fig-

ure 4.4). Uncovered and covered loggers were used to measure direct air temperature and ambient temper-

ature respectively. (Background image with 50 m isoelevation lines: Swissimage © 2013 swisstopo 

(JD100064)). (B) Mean daily direct air temperature and standard deviation (in green) from the 15 June to the 

18 October 2013, measured with uncovered loggers. Vertical lines delimit the defined periods. The periods 

retained for following analyses are displayed in bold. 
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Figure 4.2 Illustration of loggers placed on the ridge of Les Rochers-de-Naye. Loggers measuring tempera-

ture and humidity were covered with a white shield while loggers measuring direct air temperature were 

uncovered (situated just above the cover logger on the picture). 

The following descriptive statistics were computed for direct air temperature (DT), ambient tem-
perature (AT) and humidity (HU) during each period: minimum (MIN), maximum (MAX), mean 
(MEA), standard deviation (SD), median (MED), mean value at 1am (M1A), mean value at 1pm 
(M1P), mean daily range (MDR). 

In addition, soil moisture was measured by Geiser (2014) at 201 representative sampling loca-
tions. The soil volumetric water content was evaluated once with a FieldScout TDR 300 Soil Mois-
ture Meter (Spectrum Technologies, Aurora, USA, http://www.specmeters.com/). According to le 
Roux et al. (2012), soil moisture values are highly correlated among distinct sampling events and 
therefore only one measure was carried out (more than 24 hours after previous rainfall) to get a 
reliable percent soil moisture value (MSM).  

To perform multivariate regression models between DEM-derived variables and climatic variables 
measured in the field, we used the original DEM (resolution of 50cm) described in section 3.1.2 
gradually generalized to 1, 2 and 4 meters using the Gaussian Pyramid (section 3.1.3). On the ba-
sis of each of these DEMs, we computed DEM-derived variables (see section 3.1.4 p49). In the 
cases of Direct air Temperature (DT), and Soil Moisture Measurements (MSM), we had a set of 
eight DEM-derived variables, and five in the case of Ambient Temperature (AT) and Ambient Hu-
midity (HU). We used a Stepwise Generalized Linear Models (SGLM) (Nelder & Wedderburn 1972) 
with a Gaussian family and controlled the addition or removal of a term based on the Akaike In-
formation Criterion (AIC). After model completion, co-linearity between variables was controlled 
using Variance Inflation Factors (VIF; Montgomery & Peck 1982), based on the threshold >3; (Zuur 
et al. 2009). Models with variables showing VIF>3 were processed again, excluding the inflating 
variables. Adjusted R² ((N-1)/(N-k-1) where N = number of observations and k = number of predic-
tors) were calculated for each model. 
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Instead of GLMs, Generalized linear mixed models (GLMM) (Breslow & Clayton 1993; Bolker et al. 
2009) were performed on the dataset of soil moisture to take into account the possible effect of 
spatial autocorrelation. These variables were collected in plots and the merging by plot was thus 
considered as the random effect variable in the multivariate GLMMs. GLMMs were performed 
with the lme4 R package (Bates & Maechler 2009). As the package does not support step proce-
dure, we used the resulting DEM-derived variables from SGLMs procedures as fixed effects in the 
GLMMs. GLMMs were not performed on air temperature and humidity data since only one logger 
at most was located in each plot. 

 

Results 

The distribution of average direct air temperature over the whole sampling period provides a 
global view on climatic conditions during summer 2013 (Figure 4.1 B). The average for the whole 
period was 12.1C° and we focused here on four among the nine periods of 14 days representative 
of contrasted weather conditions at such altitude. P1 is representative of early spring, with the 
beginning of the growing season and containing a cold episode, whereas P3 and P6 are character-
ized by warm averages and a high standard deviation, representing early and late summer condi-
tions, respectively. Finally, P9 is representative of late fall conditions and contains a snowy epi-
sode.  

Together with altitude, terrain wetness index (twi), vector ruggedness measure (vrm), eastness 
(eas) and slope (slo) are the DEM-derived variables that best explained the variance of measured 
environmental variables. Hereunder, the VHR DEM-derived variables showing the best goodness-
of-fit to explain the variability of measured environmental variables and ecological factors, de-
pending on different spatial resolutions and periods of time, are presented. 

Direct air temperature (DT) 

Among all DT models, twi was the most frequently significant DEM-derived variable (47% of the 
models). It was positively correlated with measured variables related to high temperatures (M1P, 
MAX, MDR) and negatively correlated with those related to cold temperatures (M1A, MIN, MEA) 
(see Table 4.1 and Appendix III). Other DEM-derived variables, such as slope, eastness and ddg, 
were less frequently significant. Altitude is also frequently significant (55% of the models), but 
mainly with measured variables related to cold temperatures (M1A, MED, MEA, MIN).  

Significance of DEM-derived variables varied considerably with spatial resolution, whereas it re-
mains constant to a large extent at all resolutions for elevation. Although significance was lower 
when computed at 0.5 or 1m than at coarser resolutions for twi (Appendix III), adjusted R² (aR²) 
were usually highest in models at 0.5 or 2m resolution and almost systematically lower at 4m. 
Noticeably, aR² are higher for all measured variables (except for mean range) during periods P1 
and P9, which correspond to the two coldest periods among the four analysed. 
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Table 4.1 Summary of the results of multivariate generalized linear models sorted by adjusted R²(aR²) in 

decreasing order for DIRECT AIR TEMPERATURE (DT), measured with uncovered loggers at 15 cm above the 

ground. First column is the abbreviation of the model shown, with different calculated variables and time 

periods. The second column tells at which resolution (Res) the highest aR² was found. Coefficients for each 

variable show when the variable is significant and its significance is expressed with “*” where p-values 

<0.001 correspond to ***, <0.01: **, <0.05: *. All models at all resolutions can be found in Appendix III. 

Abbreviations are the following. Measured variables: minimum (MIN), maximum (MAX), mean (MEA), me-

dian (MED), mean temperature at 1am (M1A), mean temperature at 1pm (M1P), mean daily range (MDR). 

Time periods: P1=15 to 28 June, P3=13 to 26 July, P6=24 August to 06 September, P9=05 to 18 October. 

DEM-derived variables : Altitude (alt), Terrain Wetness Index (twi), Vector Ruggedness Measure (vrm), East-

ness (eas), Slope (slo), Horizontal Curvature (hcu), Vertical Curvature (vcu), Downslope Distance Gradient 

(ddg) 

 

 

Ambient temperature (AT) 

Significant correlation between DEM-derived variables and AT are much less frequent (49% of the 
models) than for previously presented DT models (91%; Appendix III). However, relevant predic-
tors are the same like DT models, except that horizontal curvature (hcu) is significant at a 2 m 
resolution (Table 4.2). Like DT models, twi is positively correlated with measured variables related 
to high temperatures, and negatively correlated with cold temperatures. The goodness-of-fit of 
altitude is high in all models and is involved in the models with the highest R², particularly during 
the snow episode (P9).  
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Table 4.2 Summary of the results of multivariate generalized linear models sorted by adjusted R²(aR²) in 

decreasing order for AMBIENT TEMPERATURE (AT), measured with uncovered loggers 15 cm above the 

ground. First column is the abbreviation of the model show, with different measured variables and time 

periods. The second column tells at which resolution (Res) the highest aR² was observed. Coefficients of each 

variable are showed when the variable is significant in a model and its significance is expressed with “*” 

where p-values <0.001 correspond to ***, <0.01: **, <0.05: *. All models at all resolutions can be found in 

Appendix III. Abbreviations as in Table 4.1. 

 

 

Ambient humidity (HU) 

Among the 112 HU models computed, only 35 (40%) were significant (Appendix III), contrasting 
with models for DT (90%) and AT (70%). Such a low rate of significant models was related to the 
rare significance of altitude and of DEM-derived variables such as eastness, slo and hcu in HU 
models (5% of them). On the other hand, twi was the DEM-derived variable with most frequently 
and highly significant models (37%). It was significant for all categories of measured variables and 
all periods analysed, except during the snowy episode (P9). Like DT models, resolution influences 
twi significance and models have an aR² optimum at 1 or 2m (Table 4.3).  

Table 4.3 Summary of the results for multivariate generalized linear models sorted by adjusted R² (aR²) in 

decreasing order for AMBIENT HUMIDITY (HU), measured with uncovered loggers 15 cm above ground. First 

column is the abbreviation of the model showed, with different measured variables and time periods. The 

second column tells at which resolution (Res) the highest aR² was found. Coefficients of each variable are 

showed when the variable is significant and its significance is expressed with “*” where p-values <0.001 

correspond to ***, <0.01: **, <0.05: *. All models at all resolutions can be found in Appendix III. Abbrevia-

tions as in Table 4.1. 
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To assess the importance of the time-period for the three categories of environmental variables 
(DT, AT, HU), we computed models between DEM-derived variables and measured variables over 
the entire fieldwork season (i.e. 15 June to 18 October) (Appendix III). Although the same predic-
tors are significant for roughly the same measured variables, our results show that periods with 
cloud cover (P1) or snow cover (P9) contrasted with those of sunshine (P3, P6) and that this con-
trast could be explained by the higher goodness-of-fit of topography in the latter case (weaker 
significance of altitude, stronger significance of eas, slo, twi). In addition, the use of several meas-
ured variables is justified in order to distinguish different ecological conditions, as recommended 
by (Ashcroft et al. 2011; Vercauteren et al. 2012). 

 

Soil moisture 

In soil moisture models, vector ruggedness measure (vrm) was the only DEM-derived variable that 
showed a significant contribution across resolutions (Table 4.4). However, its contribution was 
dependent on resolution, as models were less and less significant with coarser resolutions. Given 
that altitude showed a stable contribution though scales, the highest aR² was obtained at 0.5m 
resolution due to the highest goodness-of-fit of vrm at that resolution. 

Table 4.4 Summary of multivariate GLMMs on one-time measurements of SOIL MOISTURE sorted by adjust-

ed R² (aR²). Coefficients of each variable are showed when the variable is significant and its significance is 

expressed with “*” where p-values <0.001 correspond to ***, <0.01: **, <0.05: *. Abbreviations as in  

Table 4.1. 

 

 4.1.3 Extraction of climatic variables at sampling locations 
We retrieved DT measurements for each plant by extracting temperature data from their closest 
logger. In the cases where temperature data were missing, we extracted data from the second 
closest logger, up to the third closest. In cases where DT measurements showed missing data, we 
deleted variables for which more than 10% of individuals had missing data. In total, 34 variables 
from loggers were used in the following analysis. 4.1.4 Variables selected 
A total of 160 variables were considered for associations with genetic markers. The selection pro-
cedure ended up with 66 uncorrelated variables for a maximum correlation threshold of 0.9. 
Among them, 12 (out of 34) are temperature measurements from loggers and 50 (out of 120) 
were DEM-derived variables. However, we noticed that most of the DEM variables computed 
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were not correlated with any other selected variable for at least one resolution, except for alti-
tude (correlated with coordinates) and two solar radiation variables, diffuse and direct insolation, 
correlated with total insolation. Therefore, we decided to keep all DEM-derived variables in the 
dataset, expect those mentioned above, since we wanted to calculate their correlation with ge-
netic markers at multiple resolutions. The remaining variables are coordinates, population struc-
ture (see below), Infrared and Snow reflection. 

 4.2 Spatial and genetic structure of the dataset 4.2.1 Sampling design 
Precise coordinates are essential for local scale studies as it is crucial to estimate accurately the 
positions of plants in the corresponding pixels of environmental rasters. All sampling points and 
loggers were thus geo-referenced with a differential GPS unit  offering a horizontal accuracy of 
~2-3cm and a vertical accuracy of ~3-4cm (TOPCON-HIPer Pro,                        
http://www.topcon.com.sg/survey/hiperpro.html).  

Sampling locations were selected by Geiser (2014) along the ridge. She followed a random cluster 
sampling, guided by the population density of B. laevigata and guaranteeing that all data points 
are located within pixels representing 0.5x0.5m in the field, corresponding to the pixel size of the 
DEM. A total of 361 individuals of the focal species were sampled in 60 4x4m areas with at least 
five individuals per area. When less than five plants were reported, a new area was selected at a 
random distance ranging from 0 to 25m (see transects and resulting distribution in Figure 4.4). 4.2.2 Spatial structure 
B. laevigata show a highly clustered spatial distribution, with a nearest neighbour index of 0.021 
(p-value < 0.0001). The average observed distance between sampling locations is of 0.44m dis-
tributed at 1.2km maximum (Figure 4.3). The spatial distribution of B. laevigata reflects its sam-
pling but was also coherent with its natural distribution along the ridge.  
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Figure 4.3 Histograms of pairwise distances between samples (left) and shortest distances between samples 

(right) for B. laevigata. Samples were collected continuously along the ridge. Therefore, the histogram of 

distances between samples shows a linear decrease as the sampling is linear along the ridge. In addition, the 

closest neighbour of each sample is often situated at less than 1m because plants were sampled in plots. 

 

Figure 4.4 Sampling locations of B. laevigata and transects. Sampling locations were selected along the 

ridge following a random cluster sampling guided by the population density of the plant. Transect F is the 

only exception with an orthogonal direction from the ridge. A total of 361 points representing individuals 

were sampled in 60 4x4m plots with at least five individuals per plot. 
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4.2.3 Genetic data and population structure 
Genetic data were developed by collaborators Céline Geiser and Christian Parisod from the Uni-
versity of Neuchatel using amplified fragment length polymorphisms (AFLPs). They first tested a 
set of 38 AFLP primer combinations and retained the six best regarding polymorphism and repro-
ducibility (MCAG/EATC, EAGG/MCGG, MCAG/EAAT, EACT/MCAC, MCGA/EATA and MCGG/EATA). 
To evaluate the error rate, they replicated 15% of the individuals and obtained an error rate of 
2.93% (Geiser 2014).   

Among the 266 AFLP markers obtained, 233 were polymorphic (frequency of minor variant >0.05). 
The following histogram shows the distribution of the minor allele frequency, which is skewed 
towards low frequencies. Only these markers are used in subsequent analysis.  

 

 

Figure 4.5 Minor variant frequency for B. laevigata AFLP dataset. A kernel window curve (in red) was added 

to facilitate the visualization of the distribution. The distribution is skewed towards low frequencies. Only 

markers with a polymorphism >0.05 were used in subsequent analysis 

Because AFLP are dominant markers, we could not gain information on the heterozygosity of the 
dataset. Therefore, other analyses are often performed on AFLP, such as pairwise relationship  
coefficients computed in SPAGeDI. The pairwise relationship coefficient was computed at 20 dis-
tance intervals and the significance was assessed with 9999 permutations of individuals’ values 
(described in section 3.4.2). Figure 4.6 illustrates the fine-scale genetic structure of B. laevigata 
and shows that nearby individuals were genetically related until the fourth distance class. Pair-
wise relationship is strong within the 233 markers used, and decreases rapidly with distance. 
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Figure 4.6 Pairwise relationship coefficient for dominant markers in B. laevigata, assuming an inbreeding 

coefficient of 0.5.Pairwise relationships are calculated for 20 intervals of distances and are shown in black 

when significant (p-value < 0.05/20) and in white when not significant. The graph shows a sharp decrease of 

pairwise relationship at short distances. 

We used Structure (section 3.4.3) to assess population structure, using a model with admixture 
and adding a row of recessive alleles for AFLP data, as described in the manual. We set a burnin of 
20 000 and 100 000 simulations and each K was run 20 times. Afterwards, we uploaded the re-
sults in Structure harvester, which indicated two distinct clusters using the Evanno method (Table 
4.5). These results are consistent with Geiser (2014), who also identified two distinct cluster using 
K-means clustering, with a similar spatial distribution of the two groups. Finally, CLUMPP was 
used to obtain membership coefficients of each individual.   

Table 4.5 Results of Structure Harvester for B. laevigata. Twenty iterations were performed for each K 

(K=1:6) in Structure and evaluated in Structure Harvester. The names of the columns designate the mean 

likelihood LnP(K) and the variance per value of K; the rate of change of the likelihood distribution Ln’(K); the 

absolute values of the second order rate of change of the likelihood distribution |Ln''(K)|; the Delta K.  

K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| Delta K 

1 20 -41483 0.3  

2 20 -40861 4.8 621.6 190.9 39.16 

3 20 -40430 14.3 430.6 269.1 18.71 

4 20 -40269 522.4 161.5 405.2 0.77 

5 20 -39702 66.3 566.7 240.3 3.62 

6 20 -39376 55.1 326.4  
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On the map showing the clusters (Figure 4.7), we can observe the clear geographic distinction 
between Group 1 and 2. These two groups are separated by an area were no B. laevigata are 
growing and correspond to a stony area. We used the delimited populations A and B (populations 
definition based on both genetic and geographic structure) to perform the population method 
BayeScan. 

 

Figure 4.7 Map showing the membership coefficient [0-1] to the second group identified for B. laevigata in 

case of K=2. Two populations were identified in Structure and the corresponding 20 iterations were aggre-

gated with Clumpp. Starting from this result, we decided to define two populations (A and B) for further use 

with population genetics methods. A partial circle was added to facilitate the visualization of the 361 indi-

viduals.  
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4.3 Identification of genetic markers under selection 4.3.1 Samβada 
A total of 32154 models were computed in Samβada. The significance threshold is based on a 
Bonferroni correction (0.01/number of models computed) and corresponded to a minimum G and 
Wald scores of 29.3 and 26.4 respectively. At this level, Samβada detected 34 significant associa-
tions involving 21 genetic markers. Among these models, 18 involve membership coefficient of 
population structure, latitude and longitude. The remaining associations involve seven DEM-
derived variables and four temperature variables (Table 4.6) with moderate G and Wald scores 
(mean of 38 and 29 respectively).  

Four genetic markers are associated with temperature variables, and height with DEM variables. 
Genetic markers are most frequently correlated to primary terrain attributes of curvatures (Hcu, 
Vcu, and Cu), followed by Orientation (structure tensor variable) and single occurrences with rug-
gedness (VRM), protection index (MPI) and sky view factor (SVF). There is no significant associa-
tion with solar radiation or hydrology variables. We can notice the sensitivity of models to spatial 
resolution, as most markers are significantly associated with these variables at one or rarely two 
spatial resolutions, usually of 4 and 8 meters. On the other hand, significant markers correlated 
with temperature variables are mostly associated to mean temperature (mea) or mean tempera-
ture a 1pm (m1p) measured from late June to mid-July. One marker (C1V428) is detected by both 
types of environmental variables but its association with SVF was biased because of the presence 
of an outlier (see Appendix II.a). We show in Figure 4.14 its association with mean temperature 
between the 13 to 26 of July. 

Seven markers are associated to latitude, longitude or membership coefficient of population 
structure only and 3 with these variables and environmental variables. Marker C2N142 for exam-
ple, was associated with orientation variable (structure tensor) but also with latitude, longitude 
and membership coefficient (Appendix II.a). Similarly, marker C1N272 (Figure 4.16) is associated 
to the minimum temperature (05 to 18 October) and with latitude and longitude.  

 

Multivariate models 

Before computing bivariate models, we first had to assess again the correlations between varia-
bles in order to limit collinearity (section 3.3 p55). We used the same script as the one defined in 
section 3.3 but with a maximum correlation threshold of 0.8. The resulting dataset contained 59 
variables (including latitude, longitude and coefficient of membership). Afterwards, we set 
Samβada parameters to output only significant models with improved explanatory power com-
pared to univariate models (see section 3.5.1 p59). 

Only one association model came out as significant, for marker C2V404 with longitude and alti-
tude (4m). However, this model should not be retained since these two variables are highly corre-
lated (-0.91). In fact, our expectations were to evaluate whether genetic markers associated with 
geographic or population structure would be better explained by including an additional environ-
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mental variable. Therefore, we had to add coordinates in the dataset, despite their eventual cor-
relations with other variables. 

 

Table 4.6 Results for univariate multi-resolution Samβada results on B. laevigata. The table shows one mod-

el per line with the following columns: the AFLP marker, the associated variable, the resolution of the best G 

score for the models involving a DEM variable, the best G and Wald scores among all resolutions, the AIC of 

the model at the best resolution, the minor allele frequency of the marker (MAF), the Q value and Fst of the 

marker in BayeScan results, the Moran’s I and its p-value for the marker with a neighbourhood of 20 individ-

uals, the Moran’s I of the variables with a neighbourhood of 20 individuals. Models are ranked according to 

their Wald score. 

 

 4.3.2 BayeScan 
For BayeScan, we used the populations defined in section 4.2.3 and converted the Structure file to 
BayeScan file format using PGDspider (Lischer & Excoffier 2012). Because we could not compute 
inbreeding coefficient (Fis) from AFLP data, we decided to set a higher bound of 0.5 for this pa-
rameter, as proposed in BayeScan manual. This way, BayeScan can move freely the value of Fis 
within its prior range in order to incorporate the uncertainty on this parameter.  

BayeScan does not detect any markers under selection (see Appendix II.a). The Q-values ranged 
from 0.9 to 0.78, far from showing any decisive evidence of selection. 

 

Marker Variable
Best 

Resolution
Best G 
score

Best 
Wald 
score

AIC MAF
Bayescan 

Qvalue
Bayescan 

Fst

# of 
significant 

resolutions

Moran 
for 

marker

Moran P-
value for 
marker

Moran 
for 

variable

Moran P-
value for 
variable

C1N109 Hcu_08 8 39.58 34.69 338.6 0.21 0.902 0.034 1 0.139 0.001 0.316 0.001
C1V342 VRM_04 4 36.94 33.09 278.6 0.16 0.898 0.032 1 0.215 0.001 0.448 0.001

C1N109 Orientation 8 41.28 32.43 336.9 0.21 0.902 0.034 2 0.139 0.001 0.953 0.001
C1N256 M1pJun1528 34.97 30.99 309.4 0.18 0.907 0.033 0.176 0.001 0.763 0.001
C1V138 Hcu_08 8 30.92 30.83 149.6 0.07 0.895 0.033 1 0.116 0.001 0.316 0.001
C1N81 meaJul1326 42.94 29.55 392.8 0.29 0.910 0.034 0.134 0.001 0.422 0.001

C1V428 meaJun2912 43.43 28.96 212.0 0.11 0.854 0.036 0.271 0.001 0.641 0.001
C1V200 Cu_08 8 34.11 28.57 447.2 0.37 0.869 0.032 1 0.120 0.001 0.562 0.001

C1V428 SVF_01 1 36.73 27.93 218.7 0.11 0.854 0.036 2 0.271 0.001 0.136 0.001
C1V485 M1pJun1528 37.17 27.36 253.6 0.14 0.904 0.034 0.129 0.001 0.763 0.001
C1V206 meaJul1326 39.80 27.29 235.7 0.12 0.898 0.032 0.131 0.001 0.422 0.001
C1V200 Vcu_08 8 30.42 27.07 450.8 0.37 0.869 0.032 1 0.120 0.001 0.583 0.001
C1V344 MPI_02 2 31.71 27.06 427.1 0.32 0.911 0.033 1 0.113 0.001 0.273 0.001
C2N142 Orientation 4 32.58 26.75 314.8 0.18 0.841 0.038 4 0.219 0.001 0.807 0.001

C1N272 minOct0518 62.27 26.46 328.6 0.23 0.900 0.035 0.119 0.001 0.533 0.001
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4.3.3 Comparison between methods 
Comparisons between methods have a limited utility in this case study since BayeScan did not 
detect any markers under selection. However, we are also looking for correlations between 
methods and to distinguish significant markers from neutral ones. However, Figure 4.8 shows that 
there is no correlation between BayeScan’s Q-value and Samβada’s Wald score. The same obser-
vation is done between BayeScan’s Q-value and Samβada’s G score (not shown). Similarly, Figure 
4.9 shows no correlation between BayeScan’s Q-value and Samβada’s AIC. There is thus no differ-
ence of BayeScan Q-value between significant and non-significant markers identified in Samβada. 

On Figure 4.10, we can notice that all detected markers by Samβada show a higher spatial auto-
correlation compared to neutral loci. SA of detected markers decreases after spatial lags of 20 and 
40 neighbours and stabilizes around the mean value taken by most of neutral markers. 

 

Figure 4.8 Scatter plot showing BayeScan’s Q-value against Samβada’s G score for B. laevigata. Markers 

possibly under selection by environmental variables are displayed in red. The figure shows that there is no 

correlation between these independent methods. 
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Figure 4.9 Scatter plot showing BayeScan’s Q-value against Samβada’s AIC for B. laevigata. Markers possi-

bly under selection by environmental variables are displayed in red. The plot shows that there is no correla-

tion between these independent methods 

 

Figure 4.10 Moran’s I Correlogram for B. laevigata markers using increasing spatial lags from 20 to 200 

neighbours. Neutral markers are shown in grey and markers possibly under selection by environmental vari-

ables in red (see Table 4.6 for the detected markers). Significant genetic markers in Samβada are amongst 

the most spatially autocorrelated 
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4.3.4 Visualisation of significant associations 
Spatial analysis of significant models allows us to visualise the correlation between genetic mark-
ers and environmental variables as well as to analyse spatial autocorrelation patterns. The main 
purpose of comparing these graphs is to find common trends and differences between the signifi-
cant models. Details on the different parts of these graphs can be found in section 3.6 (p65). 

Figure 4.11 to Figure 4.16 illustrate six of the significant Samβada models (other significant mod-
els are provided in Appendix II.a). They were chosen because they represent the most significant 
associations involving DEM-derived variables (Figure 4.11 to Figure 4.13) or temperature meas-
urements (Figure 4.14 to Figure 4.16).  

The first observation we can make is that DEM-derived variables involved in significant models do 
not have the same response to change of spatial resolution. In fact, some show a sharp increase 
of Samβada’s scores at 8m (Figure 4.11 for example) while others show a local optima at 4m 
(Figure 4.13). On the other hand, it is important to observe that DEM-derived variables show clus-
tered values at coarse resolution and a high spatial autocorrelation. While this was inevitable for 
loggers variables (because the same logger measurements were attributed to several samples), it 
is less obvious for DEM-derived variables. Indeed, by degrading very high resolution at multiple 
scales, close points were more likely to be located on the same pixel at coarser resolutions. This is 
well illustrated in Figure 4.11, where the G and Wald score are low except at 8m. In Figure 4.13, 
however, we can see that VRM was close to significance at 2m before showing a peak at 4m. Simi-
larly, minor alleles of most significant markers are highly spatially clustered, as illustrated by their 
maps and by their Moran’s I correlograms. However, local indices of spatial autocorrelation (LISA) 
rarely indicate the presence of local clusters. 
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Figure 4.11 Visualisation of the main results for the model involving marker C1N109 and variable Curvature 

at 8m. 

 

Figure 4.12 Visualisation of the main results for the model involving marker C1N109 and variable Orienta-

tion at 8m. 
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Figure 4.13 Visualisation of the main results for the model involving marker C1V342 and the Vector Rugged-

ness Measure at 4m. 

 

Figure 4.14 Visualisation of the main results for the model involving marker C1V428 and mean temperature 

between the 13 and 26 of July. 
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Figure 4.15 Visualisation of the main results for the model involving marker C1N256 and mean temperature 

at 1pm between the 15 and 28 of June. 

 

Figure 4.16 Visualisation of the main results for the model involving marker C1N272 and minimum tempera-

ture between the 05 and 18 of October. 
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4.4 Discussion 
Relevance of VHR DEM-derived variables to model microclimatic variability 

The apparently homogeneous ridge on which B. laevigata was sampled, showing a constant slope 
and slight changes in orientation, turned out to be highly heterogeneous at a high resolution. 
Prior work on ecotypes of Biscutella laevigata (Parisod & Christin 2008) suggested a mosaic distri-
bution of subalpine and alpine habitats, and the use of VHR DEM-derived variables here brought 
clear evidence of topographic control on micro-climatic patterns. 

Our climatic models consistently reported decreasing adjusted R² at the coarsest spatial resolu-
tion (4m), supporting the hypothesis that VHR provides better predictions of climatic variables in 
heterogeneous areas such as mountains. However, our models did not generally converge to-
wards a clear optimal resolution and reveal that the most suitable resolution depends on the type 
of DEM-derived variable considered. This is particularly well illustrated by vrm, showing the high-
est significance at 0.5m and highlighting that soil characteristics are best grasped when initially 
computed with as much details as possible, whereas hydrology variables, such as twi, reach opti-
ma at different resolutions (Böhner & Selige 2006; Buchanan et al. 2013).  

Our results further bring advantages of using a large panel of DEM-derived variables. Terrain wet-
ness index (twi) showed the highest explanatory power among the DEM-derived variables here 
tested, highlighting a relevant proxy for dryness across the studied landscape (Appendix III). In 
addition, models including more variables such as eastness and slope best predicted temperature, 
probably because these primary attributes have a high influence on radiation and wind exposure 
(Wilson & Gallant 2000; McVicar et al. 2007; Appendix S5). For instance, in our specific study area, 
twi partially accounted for the distance to the ridge as well as for the protection from wind, which 
could further contribute to temperature and humidity variability. In fact, distance to ridge and twi 
were moderately correlated at very high resolutions (i.e. 0.6 at 0.5m and 0.7 at 1m) and dropped 
to 0.3 at coarser resolutions. Although such correlations are inevitable and likely blur interpreta-
tions, our models showed that most of the significant contribution of twi were obtained at 0.5 
and 2m, when the correlation between twi and distance to ridge were not the strongest. This 
highlights the relevance of multi-scale analysis. 

Among other overlooked DEM-derived variables in the literature, vector ruggedness measure 
(vrm) appeared as the most important predictor of soil moisture (MSM), suggesting that vrm at 
such high resolution is a suitable proxy for the distribution of stony soils along the ridge and thus 
for soils with different porosities. Accordingly, the negative coefficients observed here support 
the hypothesis that high roughness highlight stony soils implying low soil moisture, whereas low 
roughness reflects developed soils retaining higher moisture. This vrm variable, measuring vector 
dispersion across the central pixel rather than being a derivative of slope, represents a much bet-
ter proxy than related proxies such as Terrain Ruggedness Index (Appendix S3&4), as previously 
stressed by Sappington et al. (2007).  

Although our results show a significant contribution of micro-topography to model micro-habitat, 
unmeasured factors may play a major role. For instance, it is generally admitted that high eleva-
tion and exposed sites are more likely to be coupled with free air environment as compared with 
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low elevation sites that are protected (Pepin & Seidel 2005). However, we observed 5°C differ-
ence in ranges for AT and up to 8°C for DT. Such important temperature variability over short 
distances cannot only be due to large scale effects and support our evidences for a micro-
topographic control (Fridley 2009). In addition, VHR DEM-derived variables in our models high-
lighted the lower relevance of elevation as compared with studies at regional or continental scale. 
Despite a correlation of -0.99 reported between temperature and elevation across Switzerland 
(Zimmermann & Kienast 1999), we showed here that the 0.5°C decrease per 100m elevation in-
crease do not hold at a local scale. Therefore, the important variability of temperature observed 
here is likely valid in various mountainous areas, even when microhabitats variability is only par-
tially distinguished from large scale factors. Our results thus confirm that proxies other than ele-
vation can - and in fact probably better - account for temperature variability in as mountainous 
areas. 

On top of micro-climatic factors, meso-climatic ones might affect climatic variables in the study 
area. For instance, varying wind patterns and cloud cover across the studied ridge could impact on 
the variability of local climates. The results obtained here for micro-topography are however not 
disqualified by meso-climatic patterns. In contrast to common cloudiness on the highest part of 
the study area early and late during the growth season, the contribution of DEM-derived variables 
appeared consistently significant at different time periods, demonstrating a substantial effect of 
micro-topography. In addition, several DEM variables such as protection index, sky view factor or 
ruggedness might constitute surrogates for protection from wind at a micro-climatic level. No-
ticeably, temperatures measured during the snow episode provide an indirect measure of snow 
cover, as loggers situated under the snow during this period (P9) did not show a daily cycle of 
temperature at sampling locations. Therefore, modelling of snow cover heterogeneity could be 
improved by combining topographic variables (Gottfried et al. 1998; Randin et al. 2009) with the 
daily cycles of loggers.  Our results thus highlight the role of micro-topographic effects and the 
need to consider different measured variables and temporal variability at a scale pertinent for 
plants, as previously reported by Körner (2003) and Scherrer & Körner (2011). 

 

Detecting signature of natural selection with multi-scale DEMs and climatic variables 

We studied the adaptation of B. laevigata at a local scale with two goals: first, to characterize 
gene flow and to find signatures of selection at a local scale. Second, to assess the relevance of 
VHR DEM-derived variables and logger measurements to detect these signatures.  

Regarding the likelihood of observing selection patterns, it should be noted that there is no strong 
evidence of selection. In fact, significance of associations in Samβada is moderate and BayeScan 
did not detect any markers under selection, despite the high amount of individuals. This lack of 
common ground suggests that Samβada’s detections probably contain a large proportion of false 
positives and an additional population genetics approach, such as FDIST or Mcheza (Antao & 
Beaumont 2011), would have provided a valuable comparison to BayeScan results.  

One explanation for the absence of local adaptation could be the limited gene flow. Figure 4.6 
indeed shows a steep decline in pairwise relationships between individuals over 30m and high-
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lights that, beyond the patches in which several individuals were sampled, little dispersal is ex-
pected. In addition, this observation corroborates the results obtained by Parisod & Christin 
(2008), who also observed a strong decline in pairwise relationship at short distances for the same 
population, with another set of AFLP markers. Furthermore, the different distribution maps of 
genetic markers we propose in section 4.3.4 all show a strong clustering of genetic variants in 
patches and a limited spread in surrounding patches, indicating a strong isolation-by-distance. 
Finally, a clear population structure was evidenced due to a geographic barrier (Figure 4.7), which 
consists in a large and steep stony area where soil cover is poor. This area is also barely covered 
by vegetation and thus provides a likely explanation to the limited gene flow between the two 
populations identified. In addition, the steep terrain conditions must render the dispersion of 
seeds difficult as B. laevigata seeds disperses by wind and gravity (Parisod & Christin 2008). How-
ever, Geiser (2014) identified instead a pre-zygotic barrier, suggesting that this is probably a major 
force shaping the genetic structure in this population. A possible role of a post-zygotic barrier was 
not excluded either. Geiser (2014) also found that peaks of open flowers were not shifted in time 
between both populations but that very few flowers of both populations co-occur at the same 
period. However, this observation was made for only one of the two growing seasons evaluated. 

Correlations between genetic markers and in-situ measurement of climatic variability most often 
occurred with the mean temperature (either with the mean of all measurements during a range 
of days or with the mean of measurements at 1pm during a range of days). We show that spatial 
analysis of these significant models provided important information regarding spatial distribution 
patterns of genetic markers. In fact, markers associated to temperature variables revealed two 
spatial patterns in genetic data. One is a cluster of presence/absence in the highest elevation area 
(southwest), where temperature is slightly lower than average (Figure 4.14 and Figure 4.16 and 
other examples in Appendix II.a). The second pattern is a cluster located on the north-east of the 
ridge, where orientation is changing (facing south) and where temperatures are usually higher 
(Figure 4.15 and other examples in Appendix II.a). Both patterns were expected after fieldwork 
and analysis of loggers’ data as we noticed that the change of orientation on the ridge implies an 
increase in temperature and we could expect it to be important for plants habitat. The other pat-
tern of cold temperature close to the summit (south-west) was also evidenced in our data and in 
the field, as this part of the ridge has a higher elevation and is more often exposed to wind and 
cloud cover. These results show that in-situ measurements of climatic variables are relevant at 
such scale.  

DEM-derived variables involved in significant models are related to morphometry (vrm, curvature, 
mpi), which are proxies to the variability of stony soils, snow cover and soil humidity. On the other 
hand, no markers are associated to insolation or aspect, which were our main expectations in a 
mountainous area. These variables may not show enough variability at sampling locations. In fact, 
solar radiation variables were highly correlated with slope and aspect, meaning that shade from 
local relief does not influence solar radiation in the study area. Furthermore, we knew from the 
regressions models between climatic and DEM variables that solar radiation variables do not con-
tribute to temperature variability.  

Regarding resolution, its impact is strong on correlations and highest scores are observed at 
coarsest resolutions in the range proposed (i.e. 0.5 to 8m). It highlights once again that relevant 
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topographic features can only be detected with a multi-scale approach, and that starting from a 
very high resolution is essential here to delimit the ridge correctly. One interesting example is 
illustrated in Figure 4.13 where marker C1V342 is correlated with vrm at a resolution of 4 meters, 
resolution at which vrm is moderately clustered, thus limiting a potential bias due to pseudo-
replicas. In addition, the distribution of the variants is more widespread than in other models and 
partially depends on the proximity of the geographic barrier, which corresponds well to the ob-
servation that this area is unusually covered by rocks and that vrm could be a proxy for this geo-
morphological feature. In addition, other significant genetic markers show a similar pattern and 
are associated with curvature, a known proxy for stony soils or soil humidity (Appendix II.a). Spa-
tial representation also allow us to disqualify models, such as marker C1V428 with variable svf 
(see Appendix II.a). In this case, the unique low cluster of values of svf biases the regression as 
these samples are situated just on the other side of the ridge where the view distance is limited to 
the north. 

B. laevigata has been studied several times over the past decade (Parisod & Besnard 2007; 
Parisod & Bonvin 2008; Parisod & Christin 2008). The publication of Parisod & Joost (2010) is of 
particular interest to compare with our results, as they evaluated signatures of selection in two 
populations of B. laevigata, including the one at “Les Rochers-de-Naye”. In contrary to our results, 
they found that BayeScan detected more markers under selection than a correlative approach. In 
addition, they identified several common markers, one of them being highly significant in both 
methods. Identified markers were mainly associated with altitude and degree-days, which were 
both spatially autocorrelated. However, both variables had a resolution of 25m, which we consid-
ered to be too coarse to delineate the ridge and could be a source of spurious correlations due to 
pseudo-replication. 

To conclude this chapter, we consider that the important variability of the temperature observed 
on this site should be typically observed in many mountainous areas where microhabitats variabil-
ity can be distinguished from large-scale factors. On the other hand, we found weak evidences of 
adaptation of B. laevigata but show that a clear population structure can be identified at a local 
scale in mountainous areas, probably because of limited dispersal and of the presence of a geo-
graphic barrier. Although Samβada models are moderately significant, we found that environmen-
tal heterogeneity measured with VHR DEMs and in in-situ measurement of climate at such a local 
scale is substantial and could have a major influence on gene flow and adaptation.  
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Chapter 5 Plantago Major in Geneva 
Green spaces and biodiversity in general have an important direct and indirect economic value. 
However, the recent fragmentation and anthropogenic pressure on these habitats is increasing 
and modifies the connectivity and the way species adapt to urban environment. Therefore, the 
analysis of their genetic population structure, gene flow and local adaptation is primordial in a 
perspective of conservation (Cushman et al. 2006). In addition, despite being well studied in natu-
ral habitats, fragmentation is rarely assessed in urban environments where it is known to be fast-
er (Di Giulio et al. 2009). 

As part of the Urbangene project on Geneva urban biodiversity, leaves from 479 P. major plant 
individuals were sampled along five transects departing from the city centre. Our purpose was to 
assess whether climate, topography or urban environment are important to understand both its 
population structure and signals of local adaptation to the environment.  

 

Extracting 
environmental 

information

•DEM-derived variables at 1m
•Climatic variables interpolated from climate and topography
•Multi-resolution analysis at 1, 2, 4, 8, 16, 32m
•Selection of variables

Spatial and 
genetic structure 

of the dataset

•Spatial distribution of samples
•Descriptive statistics of genetic data withPLINK
•Population structure: Structure and CLUMPP
•Spatial autocorrelation with adaptive kernel, from 20 to 200 neighbours

Identification of 
genetic markers 
under selection

•Correlative approaches: Samβada
•Population genetic approaches: BayeScan

Visualisation of 
the results

•Summary of results for Samβada
•Comparison of results between methods
•Graphical representation of significant results
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Plantago major is an abundant and widely distributed synanthropic plant (species that live near, 
and benefit from, an association with humans). P. major grows in a wide variety of habitat and 
often occurs in human disturbed areas such as in lawns or along roadsides and sidewalks. It often 
grows in compacted or disturbed soils and thus naturally grows in urban environments, making it 
important for soil rehabilitation. In Geneva, P. major is widely distributed and is thus a relevant 
species to measure fragmentation and anthropogenic pressure.  

Our purpose was to assess whether climate, topography or urban characteristics are important to 
understand both its population structure and local adaptation to the environment. A sampling 
design of five transects were chosen along the right shore of the lake, in direction of Geneva air-
port, along the Rhone river, in direction of the Salève hill and in direction of Anemasse (Figure 
5.2). Along these transects, the plants face different environmental conditions influenced by 1) 
topography, with several small mountains surrounding the city; 2) climate, with the mountain 
massifs of the French Alps and the Jura creating local variability of climatic conditions; and 3) ur-
ban density.  

 5.1 Environmental Data 
Climatic variables at P. major sampling locations where recovered from the Swiss eco-climatic 
dataset (Table 3.4). Although these variables show a large variability over the territory of Switzer-
land, it was not the case at the scale of Geneva. In fact, 12 variables were discarded because they 
showed little variability at the study site and were more qualitative than quantitative. On the var-
iables selected, different window sizes were applied to extract the variables at 6 different dis-
tances around each sampling point (3x3, 5x5, 9x9, 17x17, 33x33 pixels), resulting in a dataset of 
72 climate variables (12x6). 

The DEM was obtained from the Geneva canton, at a resolution of 1m. However, it was not possi-
ble to produce DEM-derived variables at such spatial resolution because the model contains 105 
million pixels. Therefore, we reduced the resolution to 2m before obtaining DEMs at 5 generalized 
resolutions (4, 8, 16, 32, 64m). Twenty-three DEM-derived variables were computed for each res-
olution, resulting in a dataset of 138 DEM-derived variables (see Table 3.2). Structure tensor vari-
ables, however, could not be computed at 2m due to systematic failure of the software and were 
thus processed at 4m only.  5.1.1 Variables selected 
In order to avoid multi-collinearity, 87 variables were kept after filtering with a threshold of 0.9 
(see section 3.3). Eventually, only four variables were coming from the eco-climatic dataset and 
80 from the DEM. Like in B. laevigata case study, most DEM variables showed a weak correlation 
with any other variable for at least one resolution, except Total insolation, which was deleted due 
to its high correlation with Direct insolation. The environmental dataset thus contained 156 varia-
bles to which we added latitude and longitude as well as the population structure variable (see 
section 5.2.2). 
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5.2 Spatial and genetic structure of the dataset 5.2.1 Spatial structure 
All sampling locations were geo-referenced with a standard GPS device during fieldwork (preci-
sion <7m). Leave tissue from 479 P. major plant individuals were sampled along the five transects 
by Ivo Widmer (EPFL, LaSIG). The nearest neighbour index described in section 3.4.1 showed sig-
nificant clustering (0.37, p-value < 0.00001), due to the sampling design in transects. This index 
was computed on 464 individuals instead of the 479 sampled, due to insufficient quality of genet-
ic data (see section 5.2.2). Regarding the pairwise geographic distances, a few samples were close 
to each other (<25m) but the average shortest distance is about a hundred meters, with a maxi-
mum below 600m. The maximal distance between two points is less than 2.5km. 

  

Figure 5.1 Histogram of pairwise distances between samples (left) and shortest distance between samples 

(right) of P. major. Sampling design is made of 5 transects along which plants were sampled at ≈100m inter-

vals.  



Plantago Major in Geneva 

98 
 

 

Figure 5.2 Sampling locations of P. major along transects. The sampling strategy was defined to cover five 

transects departing from Geneva city centre, in order to assess the impact of urbanization and other envi-

ronmental variables on gene flow and on the spatial distribution of genetic diversity. The present figure 

shows the coordinates of 479 sampled locations, among which 464 were used. 5.2.2 Genetic data and population structure 
Samples were sequenced by LGC Genomics, a private company based in Berlin, Germany. DNA 
was extracted from leaves using sbeadex maxi plant kits (LGC Genomics) and restriction-site asso-
ciated DNA sequencing (RADseq) was performed using the Illumina HiSeq 2000 platform (Illumi-
na). Due to budget limitations, 192 amplified libraries were pooled per lane (3 lanes), thus reduc-
ing coverage. The raw genetic dataset contained 20420 SNPs and was pre-filtered for a minimum 
coverage of six. However, the dataset contained missing data and we performed a series of filter-
ing tasks using VCFtools (Danecek et al. 2011) and PLINK . First, we filtered the VCF file in order to 
keep loci with at most 40% missingness, resulting in a dataset of 5110 SNPs. Then, we computed 
statistics such as depth of coverage and minor allele frequency (MAF) to check for the quality of 
the dataset. Afterwards, we converted the VCF file to a PLINK PED file. On the latter one, we fil-
tered all SNPs showing a minor allele frequency below 5% as well as those with a missingness-per-
site above 20%. Finally, these filtering steps resulted in a dataset of 464 bi-allelic SNP markers that 
was used for further analyses. The code for computing these steps can be found in 0. 
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Figure 5.3 Histogram of missingness-per-site (left) and of minor allele frequency (right) for the 479 individu-

als of P. major. Missingness-per-site was high and we decided to filter loci with more than 20% of the data 

missing. The MAF histogram shows a high occurrence of low frequencies. 

Figure 5.3 shows the missingness-per-site and the minor allele frequency (MAF) statistic for the 
464 SNPs. Missingness-per-site was cut at 20% and there is not particular observation to be made 
on the first graph. Regarding MAF, we can see that most of the sites show a low minor allele 
frequency, which did not substantially increase before 0.5. In Figure 5.4, we can observe that, 
despite the previous filtering operations, missingness-per-individual was still high for a few 
individuals. Therefore, we deleted individuals with a missingness above 50%, resulting in a dataset 
of 464 individuals.  

The histogram of inbreeding coefficient (Fis; Figure 5.5) shows a strong variability in the dataset 
with a considerable proportion of individuals experiencing negative Fis values. In addition, we can 
see in Figure 5.6 that the distribution of negative Fis values seem to be spatially clustered, with 
transect B showing most of the negative values. We adress this point in the discussion. 
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Figure 5.4 Histogram of missingness-per-individual (left) for the 479 individuals of P. major. Missingness-

per-individual decreases sharply and only a few samples have more than 50% of the data missing. 

 

Figure 5.5 Histograms of inbreeding coefficient (Fis) per individual for P. major. Fis of a large part of the 

samples are negative due to an excess of heterozygotes. This could indicate the presence of a polyploid sub-

species. 
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Figure 5.6 Map of inbreeding coefficient (Fis) per individual for P. major. An Inverse Distance Weighted 

(IDW) interpolation was performed on the Fis coefficients to improve its visualisation. Negative Fis samples 

are mostly located in transect B, which could indicate the presence of a polyploid sub-species in this area. 

We assessed population structure using the program Structure (see section 3.4.3) and used the 
Evanno method in Structure Harvester to indicate the most likely number of genetic clusters. In 
Structure, we used the admixture model with a burnin of 20 000 and 100 000 simulations. Each K 
was run 20 times. The Delta K indicates that the most likely value is K=3 (Table 5.1). Afterwards, 
CLUMPP was used to aggregate the twenty runs performed. Finally, individuals were assigned to 
populations based on the maximum membership coefficient found for one of the three popula-
tions. Figure 5.7 illustrates the population structure of the dataset and allows us to distinguish 
population 1 from 3, while population 2 is composed of a few individuals only. However, Fst di-
vergence is weak between population 1 and 3 (0.068), but higher between these two and popula-
tion 2 (0.159 and 0.180). Although the spatial segregation of genetic populations is not clear-cut, 
it seems that in the southern transects (C,D,E) the majority of individuals are assigned to the ge-
netic populations 1 while individuals from populations 3 are more clustered in in the northern 
transects (A, B). However, the distribution is difficult to interpret due to the admixed transect C 
(Rhone river) and the presence of individuals from population 1 up to the north of transect A. On 
the other hand, individuals from population 3 were barely present in transects D and E. Member-
ship coefficients to population 1 only were used further on in Samβada models as population 2 
was small and population 1 was largely negatively correlated to population 3. 
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Table 5.1 Structure output results for P. major. Twenty iterations were performed for each K (K=1:6) in 

Structure and evaluated in Structure Harvester. The names of the columns designate the mean likelihood 

LnP(K) and the variance per value of K; the rate of change of the likelihood distribution Ln’(K); the absolute 

values of the second order rate of change of the likelihood distribution |Ln''(K)|; the Delta K, showing a most 

likely value of K=3. 

K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| Delta K 

1 20 -173999 1.9    

2 20 -169021 504.3 4977.2 1446.3 2.86 

3 20 -165491 12.2 3530.9 2233.1 182.02 

4 20 -164193 162.4 1297.7 285.9 1.76 

5 20 -163181 258.8 1011.8 388.1 1.49 

6 20 -162557 1946.3 623.6  
 

 

Figure 5.7 Genetic population structure as calculated by Structure and CLUMPP for three genetic clusters for 

P. major. Individuals were assigned to populations based on their maximum membership coefficient to one 

of the three populations. Background raster is the Sky View Factor (2m spatial resolution).The two main 

populations (1 and 3) are not clearly distinct but seem to segregate along a north/south axis. Population 2 is 

essentially located on transect E. 
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5.3 Identification of genetic markers under selection 5.3.1 Samβada 
The PLINK file was converted to Samβada’s format using RecodePLINK. Each SNP was thus recod-
ed as three genotypes (see section 3.5.1). 

A total of 265 872 models were performed in Samβada for 159 variables and 1392 genotypes. The 
significance threshold is based on a Bonferroni correction (0.01/number of models computed), 
corresponding to a minimum G and Wald score of 34.44 and 30.25 respectively. 

With this threshold, 300 models are considered significant. Among them, a large part involve 
membership coefficient (population structure) with 45 models, latitude (50 models) and longitude 
(2 models). Other significant models involve genotypes associated with precipitation in December 
(prec12) at different window sizes (194 models) and seasonality of climate (gamst) with 9 models, 
also at different window sizes (both variables are described in Table 3.4). It must be noted that 
window size does not influence the associations, consequently most genotypes associated with 
these climatic variables are significant at every scale.  On the other hand, we should mention that 
DEM-derived variables are never involved in significant models. 

When considering genotypes associated with climatic variable (regardless of the resolution), we 
obtain 34 significant models, involving 34 genotypes (Table 5.2). Two of them are detected by 
both prec12 and gamts, which are both kept in the procedure of selection of variables (correlation 
of -0.82). However, most genotypes associated with environmental variables are also associated 
with latitude or/and membership coefficient. In these cases, G and Wald scores are generally 
higher with the latter ones compared to prec12. However, it was not systematically the case and 
11 genotypes (8 SNPs) are detected by precipitation only.  

 

Multivariate models 

Multivariate models were computed on 49 variables including latitude, longitude and member-
ship coefficient (population structure). We had to reduce the environmental dataset in order to 
avoid multicollinearity and variance inflation, and thus used the procedure of selection described 
in section 3.3, with a threshold of 0.8. Eleven bivariate models are considered significant, mostly 
involving average temperature in December (tave12) and altitude at 2m resolution. However, 
genotypes detected in bivariate models were already detected in univariate models, either with 
precipitation or latitude (see section 3.5.1 for details on the bivariate method). It is thus surprising 
to note that these genotypes are associated with two “new” variables in bivariate models and not 
with their significant parent plus another variable. Only one genotype has a significant parent and 
is this time associated with latitude and membership coefficient. 
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5.3.2 BayeScan 
For BayeScan analyses, we used the three populations identified with Structure (Figure 5.7). Be-
cause the genetic population structure is weak, we decided to keep only individuals with a mem-
bership coefficient of 0.75 or more, resulting in the deletion of 125 individuals (see Figure 5.7).  
The PED file was converted to a BayeScan file format using PGDspider (Lischer & Excoffier 2012). 
BayeScan parameters used are described in section 3.5.2.  

BayeScan detected six SNPs with decisive evidence for selection (FDR threshold = 0.1; Figure 5.8). 
Two of the loci most likely to be under selection were also detected by Samβada with variables 
prec12, but also with latitude and membership coefficient. Another one, MC01915554:13, is only 
associated with membership coefficient in Samβada, while the remaining three, the least signifi-
cant of them, are not detected by Samβada. We also observe that most insignificant loci had a 
similar Fst. 
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Table 5.2 Significant Samβada models for P. major. The table shows one model per line with the following 

columns:  the genotype, the associated variable, the resolution of the best Wald score, the best G and Wald 

scores among all resolutions, the AIC of the model at the best resolution, the frequency of the genotype, the 

missingness of the SNP, the Q value and Fst of the SNP in BayeScan results, the Moran’s I and its p-value for 

the marker with a neighbourhood of 20 individuals, the Moran’s I of the variables with the same neighbour-

hood. Finally, an “X” is present if the genotype was also significant with either geographic or population 

structure variables. Models are ranked according to their Wald score 

 

 

Genotype Variable

Best 
moving 
window 

size

Highest 
G score

Highest 
Wald 
score

AIC
Frequ
ency

Site 
missin
gness

BayeScan 
Qvalue

BayeSca
n Fst

Moran 
for 

marker

Moran 
p-value 

for 
marker

Moran 
for 

variable

Detection 
by latitude, 

longitude 
or 

population 
structure

MC03993697:21_CC G_prec12 1 93.6 67.3 470.5 0.51 0.11 5.93E-05 0.09 0.37 0.001 0.88 X
MC03993697:21_CG G_prec12 1 80.1 59.3 475.1 0.35 0.11 5.93E-05 0.09 0.31 0.001 0.88 X
MC06309558:73_CT G_prec12 16 70.6 50.9 467.1 0.27 0.02 0.80173 0.02 0.24 0.001 0.88 X
MC06309558:73_CC G_prec12 16 70.6 50.9 467.1 0.71 0.02 0.80173 0.02 0.24 0.001 0.88 X
MC06929001:75_GG G_prec12 2 50.6 42.6 548.5 0.42 0.07 0.77161 0.02 0.20 0.001 0.88 X
MC06929001:75_CG G_prec12 2 50.6 42.6 548.5 0.52 0.07 0.77161 0.02 0.20 0.001 0.88 X
MC00827814:20_AC G_prec12 original 47.7 42.1 428.6 0.25 0.16 0.75435 0.02 0.20 0.001 0.88
MC06681055:73_CC G_prec12 original 49.4 42.1 481.2 0.34 0.16 9.62E-07 0.11 0.44 0.001 0.88 X
MC00247904:97_AC G_prec12 4 45.1 40.3 537.3 0.34 0.05 NaN NaN 0.15 0.001 0.88 X
MC06698177:33_AG G_prec12 original 44.7 40.3 543.8 0.33 0.02 0.79602 0.02 0.18 0.001 0.88 X
MC01643098:103_TT G_prec12 original 44.1 39.1 483.2 0.56 0.13 0.73718 0.02 0.15 0.001 0.88
MC06085250:39_AG G_prec12 16 42.1 38.6 514.5 0.29 0.01 0.68304 0.02 0.13 0.001 0.88
MC01834138:78_CT G_prec12 16 41.4 38.5 432.1 0.20 0.00 0.6451 0.02 0.13 0.001 0.88 X
MC01651581:47_AT G_prec12 original 43.4 38.4 478.9 0.30 0.14 0.59404 0.02 0.17 0.001 0.88 X
MC01585839:73_CT G_prec12 2 48.3 37.6 466.9 0.25 0.02 0.74508 0.02 0.22 0.001 0.88 X
MC01585839:73_CC G_prec12 2 48.3 37.6 466.9 0.73 0.02 0.74508 0.02 0.22 0.001 0.88 X
MC06784148:25_GT G_prec12 2 39.5 36.5 454.3 0.23 0.05 0.74828 0.02 0.16 0.001 0.88
MC01643098:103_CT G_prec12 1 39.9 36.4 406.0 0.21 0.13 0.73718 0.02 0.15 0.001 0.88
MC05667273:31_AG G_prec12 1 39.6 36.1 393.7 0.20 0.15 0.72188 0.02 0.18 0.001 0.88
MC03690815:99_AT G_prec12 original 39.3 35.9 273.8 0.11 0.04 0.76275 0.02 0.16 0.001 0.88 X
MC03690815:99_AA G_prec12 original 39.3 35.9 273.8 0.86 0.04 0.76275 0.02 0.16 0.001 0.88 X
MC01301563:54_GT G_prec12 original 39.8 35.8 476.8 0.29 0.13 0.68597 0.02 0.11 0.001 0.88 X
MC01883648:43_GG G_prec12 2 43.2 35.5 532.4 0.31 0.00 0.79423 0.02 0.13 0.001 0.88 X
MC05778243:40_AA G_prec12 original 41.2 34.8 563.1 0.35 0.00 NaN NaN 0.21 0.001 0.88 X
MC01276423:101_CT G_prec12 16 36.9 34.8 424.2 0.20 0.01 0.70939 0.02 0.13 0.001 0.88 X
MC03993697:21_CC G_gamst 16 132.3 34.0 431.8 0.51 0.11 5.93E-05 0.09 0.37 0.001 0.97 X

MC00185267:124_AG G_prec12 original 36.2 33.6 538.1 0.31 0.01 0.6529 0.02 0.06 0.001 0.88
MC06784148:25_TT G_prec12 original 36.3 33.2 560.4 0.58 0.05 0.74828 0.02 0.11 0.001 0.88

MC03895169:134_CT G_prec12 original 35.8 33.2 552.7 0.33 0.01 0.79632 0.02 0.17 0.001 0.88 X
MC05667273:31_AA G_prec12 1 36.4 33.1 482.1 0.55 0.15 0.72188 0.02 0.18 0.001 0.88

MC02223852:142_CG G_prec12 16 35.7 32.9 523.1 0.32 0.07 0.75911 0.02 0.10 0.001 0.88 X
MC02192085:71_AA G_prec12 original 40.6 31.1 402.4 0.19 0.06 0.80005 0.02 0.14 0.001 0.88 X
MC06681055:73_AC G_prec12 16 35.3 30.6 507.9 0.39 0.16 9.62E-07 0.11 0.22 0.001 0.88 X
MC03993697:21_CG G_gamst 16 121.8 30.6 433.4 0.35 0.11 5.93E-05 0.09 0.31 0.001 0.97 X
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Figure 5.8 BayeScan results for P. major. The FDR threshold was set to 0.1 and corresponds to a log(PO) of 1. 

Six SNPs show a decisive evidence of selection. Most SNPs have a low and similar Fst. 

 5.3.3 Comparison between methods 
We mention that we tried to use LFMM, but did not manage to make it work, even though we 
tried with several environmental variables, different levels of missingness per site and per individ-
ual or deletion of individuals without variable values. 

The spatial autocorrelation of detected genotypes in Samβada is higher than that for the neutral 
markers (Figure 5.9). We note that the two SNP markers that are detected by both methods 
(BayeScan and associated with prec12 in Sambada) show the highest values of Moran’s I (two 
genotypes for each of these SNPs are significant in Samβada). 

Figure 5.10 shows BayeScan results versus the Samβada Wald score. Two out of six BayeScan de-
tections are also detected by Samβada. However, the most significant Wald scores are amongst 
BayeScan neutral loci. 
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Figure 5.9 Moran’s I Correlogram for P. major genotypes. Neutral genotypes are in grey, genotypes detected 

by Samβada’s and involving environmental variables are shown in red. Commonly detected genotypes are in 

black. The figure shows that significant loci are more spatially autocorrelated than neutral loci. In addition, 

commonly detected loci show a higher SA than all other loci. 

 

Figure 5.10 Scatter plot of BayeScan Q-value against Samβada G score for P. major. Genotypes associated 

with environmental variables in Samβada are in red and commonly detected genotypes are in black. The 

figure shows that there is no correlation between the scores of these two independent methods. However, 

commonly detected loci are amongst the most significant in BayeScan. 
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Figure 5.11 Scatter plot of BayeScan Q-value against Samβada AIC for P. major. Genotypes associated with 

environmental variables in Samβada are in red and commonly detected genotypes are in black. The figure 

shows that there is no correlation between the scores of these two independent methods. However, com-

monly detected loci are amongst the most significant in BayeScan. 

 5.3.4 Visualisation of significant associations 
The main purpose of comparing these graphs of significant associations is to find common trends 
or differences between them. Details on the different parts of these graphs can be found in sec-
tion 3.6 (p65). 

Figure 5.12 to Figure 5.14 illustrate three examples of genotypes only associated with the amount 
of precipitation in December (prec12). They show an uneven spatial distribution along an axis that 
goes through transects B and C (NW-SE direction), with an evident clustering. Indeed, for each of 
them, LISA coefficients are significant in this transect and not elsewhere. The map of the variable 
shows a precipitation gradient with decreasing winter precipitation in SE direction. Winter precip-
itation is highest in transect B and highlights important differences in environmental conditions in 
the study region. 

Figure 5.15 and 5.16 illustrate two SNPs commonly detected by Samβada and BayeScan. Both are 
amongst the most significant models for both methods and are also detected in Samβada by lati-
tude and membership coefficient. They both show a clear-cut distribution between north and 
south. These SNPs also show the two highest values in Moran’s I correlograms (see also Figure 
5.9). 
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In general, all detected variables show a strong global spatial autocorrelation and both variables 
and markers show their strongest Moran’s I in the first spatial lag of 20 neighbours (Figure 5.12 to 
5.16 and appendix II.b). In addition, LISA coefficients were often significant and well identify the 
presence of clusters. They show a general trend of being significantly positive in the two northern 
transects, A and B. Most of the other significant models display a similar trend like as in figure 
5.15 and 5.16 shown below (see Appendix II.b). 

 

 

 

Figure 5.12 Visualisation of the main results for the model involving genotype MC00827814:20_AC and 

precipitation in December. This genotype was only detected by Samβada and only associated with prec12. 
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Figure 5.13 Visualisation of the main results for the model involving genotype MC01643098:103_TT and 

precipitation in December. This genotype was only detected by Samβada and only associated with prec12. 

 

Figure 5.14 Visualisation of the main results for the model involving genotype _AG and precipitation in De-

cember. This genotype was only detected by Samβada and only associated with prec12. 
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Figure 5.15 Visualisation of the main results for the model involving genotype MC03993697:21_CC and pre-

cipitation in December. This genotype is the most significant with prec12 in Samβada and was also detected 

with latitude, membership coefficient and gamts. It is also one of the significant SNPs in BayeScan. 

 

Figure 5.16 Visualisation of the main results for the model involving genotypeMC06681055:73 _CC and pre-

cipitation in December. This genotype is the most significant with prec12 in Samβada and was also detected 

with latitude, membership coefficient and gamts. It is also one of the significant SNPs in BayeScan. 
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5.4 Discussion 
Investigations regarding P. major around Geneva are part of a larger project aiming to assess the 
impact of urbanization on population structure and adaptation of several species. Particularly, 
within this study we focused on the impact of topography and climate at a regional scale on a 
plant submitted to a potentially high anthropogenic pressure.  

We encountered several difficulties to handle P. major genetic dataset. The genetic dataset for P. 
major consisted of 464 SNP markers, which is low compared with recent papers that assessed 
population structure with SNPs (Namroud et al. 2008; Lamaze et al. 2012; Hübner et al. 2012; 
Moore et al. 2014) but should be enough to assess it, particularly since we have a large sample 
size (Morin et al. 2009). However, genetic differentiation between the two main genetic clusters 
was low. Figure 5.6 shows that many individuals in transect B but also in other transects show 
negative inbreeding. We also recalculated the Fis without transect B, still encountering negative 
Fis. Nevertheless, the SNP markers are statistically reliable since only SNPs that occur in more 
than 80% of individuals with a minor allele frequency of 5% are included in this dataset and we 
found several trends and spatial patterns that are worth discussing further. 

The population structure is moderate and shows a distinct distribution of population 1 and 2 on 
one side of Geneva and of the Rhone River, and of population 3 on the other side.  However, Fst 
between the two main populations is low and does not evidence a clear separation. Nevertheless, 
this boundary is supported by the sharp spatial structure of 39 SNPs correlated with latitude and 
of 2 SNPs with longitude. The spatial distribution of these SNPs shows a clear-cut distribution 
along the barrier constituted by the river, the city and the lake (see Figure 5.15, 5.16 and Appen-
dix II.b). This could mean that both major populations are quite isolated and experience restricted 
migration to and from the global distribution of P. major. In fact, small isolated populations are 
likely to experiment a higher level of inbreeding and a reduction of genetic diversity through ge-
netic drift. 

Precipitation in December (prec12) and continentality (gamst) are the only two environmental 
variables involved in potentially adaptive genetic variation among the study region, indicating to 
be selection factors for P. major. However, prec12 and latitude largely detected the same geno-
types, despite these variables are only moderately correlated between each other (0.79). It is thus 
impossible to disentangle the influence of these two variables in our dataset. In addition, multi-
variate models do not better explain the spatial distribution of these SNPs, showing that there is 
no combined effect of these two variables. In addition, their score in Samβada are higher with 
latitude than with precipitation, suggesting that latitudinal structure is more likely to explain the 
spatial distribution of these SNPs. However, since most detected loci respond to latitude, mem-
bership coefficient and prec12, we can hypothesize that the population structure is influenced by 
an adaptation to precipitation. A few additional SNPs were correlated to precipitation only and 
are illustrated in figure 5.12 to 5.14. These models have a different spatial pattern than most of 
the other detections. In fact, they show a strong spatial autocorrelation in transect B, highlighting 
a remarkable clustering that could be due to precipitation. 

If we suppose that most significant models are true positives and that Samβada has a low risk of 
missing adaptive loci, precipitation is the only relevant variables to explain local adaptation of P. 
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major in the Geneva cross-border area. In fact, Eco-climatic variables are largely redundant at this 
regional scale and show higher pairwise correlations than the values given for the entire country 
(Guisan & Zimmermann 2000). In addition, using different window sizes does not influence the 
correlations of these interpolated variables with genetic markers, despite the fact that they take 
topography into account. On the other hand, DEM-derived variables were irrelevant in this study. 
The effect of topographic variability might not be sufficient in the flat area of Geneva to influence 
plant habitat, or might simply be negligible compared with anthropogenic pressure, also consid-
ered in this project. Indeed, we will investigate the role of urban-related variables on the connec-
tivity between populations and on the adaptation of the species. For example, these variables will 
include the type of landcover and the percentage of green spaces as these variables can impact 
the connectivity between populations. We will also consider the height of the buildings, which 
could be derived from the surface model, as it strongly affects wind that is essential for the spread 
of seeds. 

On the other hand, BayeScan identified 6 SNPs under selection. Three of them are also detected 
by Samβada with prec12, but also by latitude. If we consider that BayeScan is a powerful method 
with little risk of detecting false positives (De Mita et al. 2013), these common detections comfort 
us in the hypothesis that precipitation, is a relevant selection factor in this case, despite its con-
fusing detections with latitude. However, the weak population genetic structure most probably 
makes it more difficult to detect signatures of selection with the BayeScan method. In fact, 
BayeScan uses the entire genetic dataset to evaluate the neutral background and is detections 
might thus be biased in this case. In addition, BayeScan’s best performances take place when 
more genetic data are used to estimate properly the neutral variability and when a larger number 
of populations is considered (De Mita et al. 2013). With 464 SNPs, BayeScan may not have enough 
data to model neutral variability, ending up in identifying loci that may be neutral contributors to 
the moderate population structure observed around Geneva. We also note that, with BayeScan 
alone, we would not have detected the peculiar distribution in transect B. 

To conclude, Samβada and BayeScan both detected substantial and common signatures of selec-
tion due to precipitation. However, their high correlation with latitude, corresponding to a geo-
graphic barrier (lake, river, and city) does not allow us to conclude for a strong evidence of selec-
tion. 
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Chapter 6 Sheep & goats in Morocco 
Domesticated species are submitted to both human and environmental pressure, leading to local-
ly adapted populations. However, local breeds are nowadays threatened by industrial breeds with 
better production values but with little evaluation of their capacity to adapt to new habitats. In 
this case study, we evaluate the local adaptation of sheep (Ovis Aries L.) and goats (Capra Hircus 
L.) in Morocco by assessing breeds uniqueness and their adaptive genetic resources. Therefore, 
identifying both neutral and adaptive variations may highlight the necessity of keeping these re-
sources.  

For this purpose, sheep and goats were uniformly sampled across a region showing marked varia-
tion in environmental conditions between mountains, plains and deserts. Because the study area 
is large and that the mobility of these species is considerable, we expected that climatic variables 
would play a more important role than topography in the detection of signatures of selection. In 
addition, with two species sampled in a similar way, we may identify similar genomic regions as-
sociated with the same environmental variables. 

 

Extracting 
environmental 

information

•16 DEM variables derived from SRTM (resolution ≈90m)
•67 Climatic variables from WorldClim dataset (resolution ≈1km)
•Multi-resolution analysis  (180, 360, 720, 1440, 2880m)
•Selection of 10 DEM and 14 Climatic variables  for goats, 12 and 18 for sheep

Spatial  and 
genetic 

structure

•Geographic Distances between samples
•Population structure with Admixture for K=1 to 5
•Genetic diversity and descriptive statistics in PLINK
•Spatial autocorrelation: Moran I and LISA for 10 to 100 neighbours

Identification of 
genetic markers 
under selection

•Correlative approaches : Samβada and LFMM
•Population genetic approaches : XPCLR

Visualisation of 
the results

•Summary of results for Samβada
•Comparison of results between methods per chromosome
•Graphical representation of significant results
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This case study is part of the project NEXTGEN (http://nextGen.epfl.ch/), which is the first project 
aiming at a comparative analysis of whole genome sequencing (WGS) data and high-density se-
quencing for sheep, goats and cattle. The purpose of the project is to study the genomic basis of 
adaptation and resistance to parasites to raise awareness on the preservation of genetic re-
sources. Indeed, future breeding programmes will be designed to exploit whole genome data in 
livestock populations but should also seek for durable strategies by maintaining genetic diversity. 
In fact, industrial breeding has become more widespread and exert an increasing pressure on 
traditional breeds (Taberlet et al. 2008). However, direct anthropic selection is relatively modest 
on these Moroccan populations and until recently, it was difficult to distinguish well-defined 
breeds. Furthermore, livestock farming could be endangered on the long term by the extinction of 
the local well-adapted breeds and, therefore, an evaluation of wild ancestors as reservoirs of ge-
netic diversity is crucial. In addition, Benjelloun et al. (2015) previously assessed the genetic diver-
sity of three phenotypically distinct indigenous breed, showing high genetic diversity.  

The project NEXTGEN is also the first project to use WGS in a landscape genomics context and 
opens new perspective in the detection of candidate SNPs and genes under selective pressure. In 
fact, it also aims to provide the necessary tools for the exploitation of next generation sequencing 
in conservation genetics and farm animal practices.  

 6.1 Environmental Data 6.1.1 Environmental variables  
Climatic variables were recovered from WorldClim dataset (Table 3.3). To estimate these climatic 
variables at different scales, we extracted their values with different window sizes of 3x3, 5x5, 
9x9, 17x17, 33x33 pixels, corresponding to distances from ≈3 to ≈33km. It should be noted that 
weather stations used to interpolate the climatic variables are not disseminated uniformly across 
the territory of Morocco, where more stations can be found along the coast than in the mountain 
range and further east (see Figure 2.4).  

DEM-derived variables were computed from the SRTM DEM (see section 3.1.1). Its initial projec-
tion system is WGS84 but SAGA GIS requires projected DEMs in a metric system and we decided 
to use the Merchich / Nord Maroc projection system (EPSG: 26191). We estimated that this sys-
tem is more adapted than the Sud Maroc projection because the majority of samples are situated 
in the northern half of the country and because the territory is large enough to be covered by two 
UTM zones, thus making the selection difficult. The DEM was projected with a resolution of 90m. 
The list of variables computed can be found in Table 3.2. Multi-scale DEM variables were comput-
ed using the Gaussian Pyramid described in section 3.1.3 at resolutions of 180, 360, 640, 1024 and 
2048 meters. Variables from structure tensors could not be produced at this original resolution, 
and were computed at a resolution of 180m. They were thus not included in the Multi-scale anal-
ysis, as we could not compute them at each resolution. 
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6.1.2 Variables selected 
Despite sheep & goats sampling design is the same and covers the entire territory of Morocco, 
sampling locations are different (Figure 6.1 and Figure 6.2). Consequently, environmental variabil-
ity can be different between both samples sets and thus, we may not obtain the same set of vari-
ables when selecting uncorrelated variables (see section 3.3). Therefore, we performed pairwise 
correlations between all 81 variables (67 climatic variables and 14 DEM-derived variables) for 
both datasets independently. By doing so, we expect to cover a maximum of the environmental 
space for both samples sets while deleting redundant variables. The list of variables deleted was 
kept as they may help interpretation of adaptation (Appendix II.c). Latitude and longitude varia-
bles were also included in the analysis to account for spatial structure. However, no membership 
coefficient was added to the dataset since population structure was weak (see below). 

The number of variables selected for sheep is a bit larger than for goats, 31 for sheep compared 
with 27 in goats out of 81 (see Appendix II.c). We found a high redundancy between WorldClim 
temperature variables and precipitation. Most of the other bioclimatic variables were also highly 
correlated with temperature and precipitation variables. On the other hand, most of DEM-derived 
variables were kept.  

 6.2 Spatial and genetic structure of the dataset 
The sampling strategy we applied was constrained by several criteria. Among the 412 farms for 
goats and 432 for sheep, we had to select only 164 individuals for each species due to budget 
limitations. In fact, it is currently impossible to fund whole genome sequencing of ≈3000 individu-
als and we had to choose sequenced individuals wisely. The most important criterion was to op-
timize the selection in order to have the widest possible range of environmental conditions 
among our samples. The second criterion was to take the geographic space into account. Indeed, 
we wanted to maximise the spread of individuals over the covered area in order to ensure a spa-
tial representativeness of all the regions of Morocco. Finally, we tried to take enough individuals 
per breed in order to maximise the chances of finding genetic differences among them. 

However, traditional random sampling cannot take these criteria into account. Therefore, we 
opted for a sampling scheme that maximised environmental information and spatial spread by 
applying a regular grid over the study area in which each cell contains between 1 and 18 individu-
als distributed among several farms (Figure 6.1 and Figure 6.2). 

In order to choose samples as different as possible, Stucki (2014) first performed a principal com-
ponent analysis (PCA) on the 117 variables extracted from the Climatic Research Unit (CRU) da-
taset (New et al. 2002). The PCA allows maximising the ecological distance between the farms 
(separately for sheep and goats). Afterwards, she performed an ascending hierarchical classifica-
tion on the first 7 PCA-axes (96 % of the variance) to regroup farms according to the ecological 
distances between them. Using the Ward criteria, we reduced the number of classes from 432 
and 413 for sheep & goats respectively to the desired 164 classes, corresponding to the 164 indi-
viduals retained (Escoffier & Pages 2008).   
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After regrouping classes, individuals among classes were randomly selected but since we wanted 
to guarantee spatial representativeness as well, 50 different random samplings were performed. 
Among these 50 samplings, we chose the one with the maximal index of spatial distribution, 
which was the sum of distances between each farm and its nearest neighbour. Finally, we found 
that all breeds were sufficiently well represented, as the number of individuals per breed did not 
change much from one random sample to another (Figure 6.1 and 6.2). 

Finally, a couple of individuals were not sequenced, thus reducing the datasets to 161 individuals 
each. 

 

Figure 6.1 Spatial distribution of sampled sheep in Morocco. Illustration of the sampling strategy using a 

regular grid distribution. The purpose is to guarantee a representative spatial and environmental distribu-

tion as well as breed diversity. In total, 161 individuals from 6 breeds and non-breed individuals were  se-

quenced.  
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Figure 6.2 Spatial distribution of sampled goats in Morocco. Illustration of the sampling strategy using a 

regular grid distribution. The purpose is to guarantee a representative spatial and environmental distribu-

tion as well as breed diversity. In total, 161 individuals from 5 breeds and non-breed individuals were  se-

quenced. 

 6.2.1 Spatial structure 
Both datasets benefited from a random stratified sampling over the territory of Morocco. We 
used the average nearest neighbour measurement to evaluate spatial clustering (3.4.1, p56) and 
obtained for sheep a value of 0.95 (P-value = 0.2, non-significant) and for goats 0.89 (P-value = 
0.001, significant clustering). Both are closer to 1 (random distribution) than for the previous case 
studies, showing that the method of selection of samples was appropriate to minimize spatial 
clustering and optimize environmental variability. Therefore, the probability of encountering 
samples with the same habitat is low.  

Histograms of pairwise distance show that maximal distances between two points do not exceed 
1200km (Figure 6.3 top). Shortest distances histograms are close to a normal distribution with a 
mean around 30km and a maximum lower than 100km. 

 



Sheep & goats in Morocco 

120 
 

 

Figure 6.3 Histograms of pairwise distances between samples (top) and shortest distances between samples 

(bottom) for sheep (left) and goats (right). Both histograms of distances between samples are close to a 

Poisson distribution, which is expected when individuals are randomly sampled. These histograms also show 

that the spatial distribution of samples is similar for both species. 

 6.2.2 Genetic data and population structure 
Sheep and goats genetic datasets were obtained with whole genome sequencing at 12X coverage. 
A detailed description of their production and filtering for goats can be found in Benjelloun et al. 
(2015). Briefly, DNA extraction was done using Puregene Tissue Kit from Qiagen. Samples were 
then sent to the Génoscope (Centre national de séquençage, Paris) where whole genome se-
quences were obtained using Illumina Hiseq2000. Afterwards, paired-end reads were mapped to 
the goat reference genome (CHIR v1.0, GenBank assembly GCA_00317765.1) and sheep oar3.1 
reference genome, respectively. Variant calling was done using three different algorithms: 
Samtools mpileup (Li et al. 2009), GATCK UnifiedGenotyper (McKenna et al. 2010) and Freebayes 
(Garrison & Marth 2012). Original SNP datasets contained ≈39 million and ≈32 million variants for 
sheep and goat respectively. These datasets were first filtered to remove sites with more than 
two allelic variants and indels. Afterwards, PLINK was used to filter these datasets according to 
three criteria: missingness-per-individual of maximum 5%, missingness-per-site of maximum 10% 
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and a minor allele frequency (MAF) of minimum 5%. Finally, SNPs in linkage disequilibrium  were 
suppressed. Linkage disequilibrium occurs when alleles are non-randomly associated, which is the 
case with combinations of alleles at very close positions. SNPs in linkage disequilibrium are thus 
redundant in correlative analysis. This filtering was performed in PLINK with windows of 50 SNPs 
and steps of 10 SNPs with a r² of 0.2. The final datasets contained 1.7 and 1.8 million SNPs for 
sheep and goats respectively. We note that all genotypes were renamed AA, AG and GG to facili-
tate recoding in RecodePLINK (see section 3.5.1). 

 

Figure 6.4 Number of SNPs per chromosome after LD filtering for sheep (left) and goats (right). The number 

of SNPs per chromosome is decreasing with the reference number of the chromosome as they are arranged 

by size. 

 

Figure 6.5 Histograms of missingness-per-site for sheep (left) and goats (right). Missing data are rare thanks 

to whole genome sequencing data and the sufficient coverage of each individual. 
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In Figure 6.4, the number of SNPs per chromosome is decreasing with the reference number of 
the chromosome; the latter being usually defined by the decreasing size of the chromosomes. In 
sheep for example, the first three chromosomes are much larger than the others. 

Figure 6.5 shows that missingness-per-site was low and, while there are a few outliers SNPs for 
both species, it is evident that the data are of high quality and missingness rarely exceeds 5% 
thanks to WGS. In addition, missingness-per-individual does not exceed 2%. 

 

Figure 6.6 Histograms of minor allele frequencies (MAF) for the 1.7 and 1.8 million SNPs in filtered datasets 

of sheep (left) and goats (right). Both species show a higher frequency of minor alleles at both end of the 

spectrum. In the case of sheep, the amount of high frequencies is higher than for goats. 

 

Figure 6.7 Histograms of inbreeding coefficients per individual for sheep (left) and goats (right). Few individ-

uals showing an excess of heterozygotes are found in both species. Most individuals have an inbreeding 

coefficient close to zero but the distribution is larger in the case of goats. 
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Histograms of minor allele frequency (Figure 6.6) are similar between species. We can note that 
sheep have a higher occurence of minor alleles with a frequency close to 0.5. 

Histograms of inbreeding coefficients show low values for both datasets (Figure 6.7). A visual 
inspection of these coefficients on a map (not shown) did not show any spatial patterns for either 
the lower or higher Fis outliers. 

Population structure was assessed with admixture for values of K between 1 and 5. Both species 
showed a weak population structure with increasing cross-validation error, indicating K=1 as the 
most likely number of populations. In the case of K=2, we found a Fst of 0.054 for sheep and 0.048 
for goats, indicating, again little differences among individuals and we concluded that distinct 
populations could not be defined for both datasets. Nevertheless, we decided to illustrate the 
membership coefficients in the case of K=2 on maps. Figure 6.8 shows that most of sheep have an 
admixed membership to both populations. However, two small clusters can be distinguished. The 
first is situated between the sea and the high-Atlas mountains, and the second one is located 
southeast of the mountains, close to the desert. For goats (Figure 6.9), most of individuals belong 
to the first cluster, ranging over the entire territory, and only a few individuals are attributed to 
the second cluster along the coast. 

 

Table 6.1 Cross-validation error from Admixture results for sheep and goats from K=1 to K=5. Convergence is 

assessed by studying the Log-likelihood and cross validation error. These results show that K=1 is the most 

likely number of clusters in both species. 

 

K Iterations  Log l ikel ihood CV error Iterations  Log l ikel ihood CV error 
1 1 -272728869.4 0.533 1 -254103443.4 0.520
2 76 -271396236.5 0.548 69 -252618371.7 0.531
3 166 -270116337.9 0.565 89 -251305468 0.552
4 563 -268868329.8 0.604 74 -250168974.9 0.576
5 129 -267744118 0.614 108 -248936278.1 0.600

GoatsSheep
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Figure 6.8 Map of membership coefficient to population 2 for sheep in the case of K=2. 

 

Figure 6.9 Map of membership coefficient to population 2 for goats in the case of K=2. 
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6.3 Identification of genetic markers under selection in sheep 
Due to datasets sizes, we decided to first perform univariate models on original variables in order 
to compute associations within a reasonable time and facilitate the handling of output files. In 
fact, after recoding SNPs as three genotypes (see recodePLINK in section 3.5.1), genetic datasets 
were constituted of 5.1 and 5.3 million genotypes for sheep and goats respectively. Therefore, 
multi-resolution analysis were performed afterwards on a subset of SNPs with all selected varia-
bles, as described in next section. 

We note that the weak population structure observed does not allow us to apply population ge-
netics approaches to the datasets, or to use population structure variables to perform multivari-
ate analysis in Samβada. Another method, using artificially defined populations, is presented in 
section 6.3.2. 

 6.3.1 Samβada results 
Original resolution models 

A False discovery threshold of 0.2 was applied on Samβada’s results to define the significance 
level (see section 3.5.1 p59).  With this threshold, Samβada identifies only 40 significant models 
for sheep (Table 6.2). However, we note that a FDR threshold of 0.1 would have been sufficient to 
detect most of these associations (28 out of 40), as some are showing low Q-values (minimum of 
0.0001).  

Genotypes in significant models are recurrently associated with precipitation (prec4, prec8, prec9, 
bio14, bio15), accounting for 25 amongst the most significant associations (Figure 6.10). A few 
genotypes are associated to maximum temperatures. Longitude and latitude, however, are rarely 
involved in significant models as only 4 genotypes are associated with longitude, although they 
are amongst the most significant models. On the other hand, only three genotypes are associated 
with DEM-derived variables.  

Occurrences by chromosome highlights an uneven distribution of genotypes involved in signifi-
cant models (Figure 6.10). Chromosome 23 is the most represented and its significant genotypes 
are mostly correlated to precipitation and maximum temperature in April (Figure 6.14). The next 
most remarkable chromosome is chromosome 19, including all 4 genotypes correlated with longi-
tude. Among them, one is detected by longitude only while the others are also correlated with 
precipitation variables (prec8, prec9, bio14). 
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Table 6.2 Summary of significant models (FDR=0.2), genotypes and variables at the original resolution with 

Samβada in Sheep 

 # of Significant models # of models computed 
Number of models 40 166 545 473 
Number of genotypes 26 1 842 823 x3 
Number of variables 14 32
 

 

Figure 6.10 Distribution of the frequency of environmental variables at their original resolution and of SNPs 

per chromosome involved in significant models from Samβada for sheep. 

 

Models involving multi-scale variables 

As mentioned above, computing multi-scale models on the entire genetic dataset cannot be 
achieved in a reasonable time and we decided to select a subset of loci that were associated with 
variables at their original resolution with a Q-value lower than 0.4. With this threshold, 412 mod-
els were kept, comprising 243 SNPs. 

Samβada was thus run again on this set of 243 SNPs (729 genotypes) and 120 variables (28 varia-
bles x 5 resolutions). In that case, a model is kept if at least one resolution showed a Q-value low-
er than the FDR threshold selected (0.2). To focus on multi-scale environmental associations, the 
following results exclude latitude and longitude. Orientation and Coherency were not considered 
either, as they could not be computed at the highest resolution. 

In these models involving multi-resolution variables, 11 additional genotypes are detected with a 
FDR threshold of 0.2 (Table 6.3). However, with a FDR threshold of 0.1, there is no change with 
respect to the original resolution models. Most additional SNPs detected are thus showing weak 
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significance. Table 6.5 (p133) shows the significant associations between genotypes and multi-
scale variables for sheep. 

These newly detected genotypes are mostly correlated with precipitation or DEM variables (VRM, 
TI2112). Regarding occurrences per chromosome, chromosome 7 shows the double of significant 
models compared to original resolution, all of these genotypes being related to precipitation vari-
ables and showing high significance with window sizes of 5x5 and 9x9 (Figure 6.11). 

We note that without a membership coefficient and considering the limited number of models 
involving latitude and longitude, we did not consider relevant to perform multivariate models. 

 

Table 6.3 Summary of significant models from multi-scale analysis with Samβada in Sheep 

 # of significant models # of models computed 
Number of models 53 126 315 
Number of genotypes 33 243 x 3
Number of variables 16 28

 

 

Figure 6.11 Distribution of the frequency of multi-scale environmental variables and of SNPs per chromo-

some involved in significant models from Samβada for sheep. 

 6.3.2 Comparison between methods 
LFMM was also applied for each species (section 3.5.1). However, because computation time for 
several millions of markers on each variable would have been too long to run, it was only applied 
to environmental variables that either showed up frequently in Samβada’s significant models or 
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were involved in highly significant models. We chose the following variables: prec 9, prec 4, prec 
8, tmax 4, and bio 15. We computed LFMM models with 1, 2 and 3 latent factors. Since the num-
ber of latent factors did not influence substantially the SNPs detected, we decided to discuss 
those encountered with K=1 only. It must be noted that the distribution of p-values did not allow 
us to apply FDR to LFMM results. Therefore, we opted for a Bonferroni correction (0.05/number 
of models computed).  

A total of 32 significant models are identified by LFMM (Table 6.6). Detected SNPs are significantly 
associated with all variables but prec 9, prec 8 and tmax 4 are more frequent (Figure 6.12). Seven 
SNPs are detected twice, mostly with prec 8 and prec 9. For LFMM results, there is no particular 
observation regarding the distribution of SNPs per chromosome.  

 

Table 6.4 Summary of models of association between SNPs and a subset of  variables (prec 9, prec 4, prec 8, 

tmax 4, bio 15)  with LFMM in sheep 

 # of significant models # of models computed 
Number of models 32 8 024 225
Number of SNPs 25 1 604 845
Number of variables 5 5
 

 

Figure 6.12 Distribution of the frequency of a subset of environmental variables and of SNPs per chromo-

some involved in significant models from LFMM for sheep. 

In addition to Samβada and LFMM, collaborators Badr Benjelloun and François Pompanon from 
the Laboratoire d’Ecologie Appliquée (LECA; Université Joseph Fourier, Grenoble) applied XP-CLR 
to detect signatures of selection (Chen et al. 2010). XP-CLR is a genome scan approach that at-
tempt to identify selective sweeps between two populations. Because XP-CLR is a population-
based method, it was decided to define populations based on environmental criteria, due to the 
weak population structure identified in both species. Therefore, 2 groups of 20 individuals were 
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extracted at both ends of the four environmental gradients (i.e. altitude, bio7, bio15, prec4). For 
example, the first population is constituted of 20 goats encountered at the lowest altitude values 
and the second population is constituted of 20 goats encountered at the highest altitude values.  
The major drawback is that it does not necessarily guarantee a random spatial spread of samples 
and thus might generate correlations between environmental variables higher than what we ob-
served for the whole case study. We decided to compare directly the significant XP-CLR scores to 
those calculated by Samβada and by LFMM, looking at their positions on chromosomes. In XP-
CLR, a moving window is centred on a position with a distance defined at 2500 base pairs on each 
side. Therefore, correspondences with significant SNPs detected by LFMM and Samβada were 
searched at a distance of 2500 base pairs on each side of SNPs positions. 

XP-CLR detected many more regions than Samβada or LFMM. Its results are shown in graphs per 
chromosome (Figure 6.14 to Figure 6.15 and in Appendix II.c). XP-CLR detected 8 loci in common 
with Samβada but none with LFMM. Each of the four variables tested in XP-CLR were regularly 
involved in significant detections.  
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Figure 6.13 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 23 for sheep. For XP-CLR, only significant windows are shown and color-codes depend on 

the variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. The peak is highlighted with a red 

frame. 
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Figure 6.14 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 1 for sheep. For XP-CLR, only significant windows are shown and color-codes depend on the 

variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. 
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Figure 6.15 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 7 for sheep. For XP-CLR, only significant windows are shown and color-codes depend on the 

variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. 
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Chromosome 23 shows the largest number of significant SNPs detected by Samβada (Figure 6.13). 
Comparing positions allowed us to notice the presence of a peak of significant SNPs in each meth-
od, even though it is not significant in LFMM. The peak is also clear in XP-CLR and corresponds to 
an association with the environmental variable prec 4. This is the only peak detected in sheep 
with multiple methods. 

SNPs detected by LFMM are mostly located on chromosome 1 and we can see that many other 
SNPs are close to being significant in this method (Figure 6.13). However, none of them is detect-
ed by either Samβada or XP-CLR. 

Finally, some of the most significant genotypes detected in Samβada are located on chromosome 
7 (Figure 6.15). Here as well, there is no common detection between Samβada and the two other 
methods. 

 

Table 6.5 Samβada’s significant results involving multi-resolution variables in sheep. The table shows one 

model per line including the genotype, the associated environmental variable, the resolution of the variable 

at which the highest G score was found (Best resolution), the highest G and Wald scores of the model involv-

ing the variable at the best resolution, the frequency of the genotype, the most significant LFMM p-value of 

the corresponding SNP and its associated variable, the highest XP-CLR score and its corresponding variable, 

the Moran’s I of the genotype obtained with a neighbourhood of 20 individuals. Models are ranked accord-

ing to their G score. SNPs identified in the peak on chr 23 are in bold. 

 Genotypes Variable Best 
resolution 

Highest 
G 

Highest 
Wald 

Fre-
quen

cy 

Highest 
LFMM 

LFMM 
variable 

Highest 
XP-CLR 

XP-CLR 
varia-

ble 

Mo-
ran 

Fig 6.18 19:2170224_AA prec_9 ws01 51.69 28.96 0.269 5.89E-09 prec 9 0.31 

Fig 6.19 23:43874160_GG prec_4 initial 45.84 28.87 0.219 0.00013 tmax 4 117.83 bio7-H 0.37 

Fig 6.20 23:43794976_GG prec_4 initial 43.61 28.68 0.238 9.09E-05 prec 4 0.31 

Fig 6.21 23:43812782_GG prec_4 initial 43.61 28.68 0.238 8.16E-05 prec 4 0.31 

 7:48256781_AG prec_8 ws08 42.61 20.06 0.106 0.010115 prec 8 0.11 

 7:48262822_AG prec_8 ws08 42.61 20.06 0.106 0.00925 prec 8 0.11 

 19:2167574_AA prec_9 initial 42.32 27.13 0.294 3.22E-08 prec 9 0.31 

Fig 6.24 7:48256781_GG prec_8 ws04 41.33 22.10 0.119 0.010115 prec 8 0.17 

 7:48262822_GG prec_8 ws04 41.33 22.10 0.119 0.00925 prec 8 0.17 

 19:2167574_AA prec_8 ws02 37.93 23.44 0.294 3.22E-08 prec 9 0.31 

 23:43874160_GG tmax_4 initial 37.31 27.14 0.219 0.00013 tmax 4 117.83 bio7-H 0.37 

 19:2170224_AA prec_8 ws08 37.11 22.07 0.269 5.89E-09 prec 9 0.31 

Fig 6.22 23:43861704_GG prec_4 ws08 37.02 27.67 0.406 3.04E-06 prec 4 73.95 Alt-H 0.22 

 23:43794976_GG tmax_4 initial 36.04 26.52 0.238 9.09E-05 prec 4 0.31 

 23:43812782_GG tmax_4 initial 36.04 26.52 0.238 8.16E-05 prec 4 0.31 

 23:43847594_GG prec_4 ws01 33.47 25.79 0.463 3.63E-06 prec 4 32.90 Alt-H 0.15 

 1:38304177_AG bio_15 ws08 33.21 18.04 0.106 0.052543 bio 15 0.12 

 1:38304177_GG bio_15 ws08 33.21 18.04 0.106 0.052543 bio 15 0.12 

 23:43874160_GG tmax_8 initial 33.12 24.50 0.219 0.00013 tmax 4 117.83 bio7-H 0.37 

 7:48256781_AG prec_9 ws08 32.91 20.66 0.106 0.010115 prec 8 0.11 

 7:48262822_AG prec_9 ws08 32.91 20.66 0.106 0.00925 prec 8 0.11 

Fig 6.23 23:44038684_AA prec_4 ws01 32.87 22.67 0.163 2.01E-05 prec 4 105.87 bio7-H 0.14 

 1:190582_AA tmax_8 ws08 32.58 18.13 0.063 0.002206 tmax 4 0.11 

 23:43874160_AG prec_4 ws16 32.30 21.50 0.163 0.00013 tmax 4 117.83 bio7-H 0.26 

 23:44095648_AA prec_4 ws01 31.90 21.74 0.144 4.42E-05 prec 4 0.19 

 23:44084253_AA prec_4 ws01 31.70 21.59 0.144 1.85E-05 prec 4 0.19 
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Fig 6.25 20:50510912_GG Catch_sl
ope 0180 31.60 15.53 0.206 0.034827 prec 9 29.29 Alt-H 0.24 

 3:211734411_AA tmax_9 initial 30.88 23.49 0.244 0.002991 tmax 4 0.07 

 19:2162818_GG prec_9 ws01 30.84 22.71 0.325 6.66E-06 prec 9 0.28 

 23:43794976_GG prec_10 initial 30.68 20.35 0.238 9.09E-05 prec 4 0.31 

 23:43812782_GG prec_10 initial 30.68 20.35 0.238 8.16E-05 prec 4 0.31 

 1:190582_AA tmax_9 ws04 30.26 17.28 0.063 0.002206 tmax 4 0.11 

 18:60885624_AG bio_8 ws04 30.10 19.95 0.125 0.123731 tmax 4 0.01 

 19:2170224_AA bio_14 initial 30.00 16.49 0.269 5.89E-09 prec 9 0.31 

 1:190582_AA tmax_4 ws04 29.92 18.56 0.063 0.002206 tmax 4 0.11 

 5:70648057_GG TI2112 initial 29.91 20.38 0.138 0.324822 prec 8 0.04 

 10:13537408_GG Catch_sl
op initial 29.86 23.56 0.3 0.384299 prec 4   0.01 

 18:11745070_AG bio_3 ws04 29.65 22.34 0.156 0.214845 bio 15 0.12 

 7:48256781_AG bio_14 ws04 29.62 22.59 0.106 0.010115 prec 8 0.11 

 7:48262822_AG bio_14 ws04 29.62 22.59 0.106 0.00925 prec 8 0.11 

 18:11745070_GG bio_3 ws04 29.56 22.37 0.163 0.214845 bio 15 0.11 

 14:875672_AG tmax_8 initial 29.40 21.88 0.475 0.026939 prec 4 0.13 

 5:60766984_AG TI216 initial 29.37 22.59 0.444 0.218402 tmax 4 0.07 

 5:70648057_AG TI2112 initial 29.32 20.02 0.119 0.324822 prec 8 0.04 

 14:875672_AG bio_7 ws16 29.09 23.16 0.475 0.026939 prec 4 0.13 

 7:48256781_GG prec_9 ws08 29.04 20.37 0.119 0.010115 prec 8 0.17 

 7:48262822_GG prec_9 ws08 29.04 20.37 0.119 0.00925 prec 8 0.17 

 2:66041147_AG bio_3 ws16 29.03 22.69 0.244 0.030539 prec 9 0.11 

 1:216819947_AG VRM initial 28.93 16.38 0.188 0.200267 tmax 4 0.05 

 23:43794976_AG prec_4 ws16 28.87 20.46 0.175 9.09E-05 prec 4 0.18 

 23:43812782_AG prec_4 ws16 28.87 20.46 0.175 8.16E-05 prec 4 0.18 

 23:43794976_GG tmax_8 initial 28.84 22.41 0.238 9.09E-05 prec 4 0.31 

 23:43812782_GG tmax_8 initial 28.84 22.41 0.238 8.16E-05 prec 4 0.31 

 

Table 6.6 LFMM’s significant results for univariate models involving a subset of environmental variables in 

sheep. The table shows one model per line including the locus, the associated variable, its z score and p-

value, the minor allele frequency, the mean and maximum G score between the three genotypes in Samβada 

for the same environmental variable, the maximum Moran’s’ I between the three genotypes and the dis-

tance at which it was found. Models are ranked according to their P-value. 

 SNPs Variable Zscore P-value MAF Mean 
G score 

Max G 
score 

Max 
Moran 

Distance of 
max Mo-

ran 

Fig 6.26 7:88146918 prec_8 8.2671 5.13E-14 0.242 4.039 7.739 0.029 5 
 4:12303967 prec_8 8.0433 1.89E-13 0.243 0.727 1.434 0.016 1 

Fig 6.28 1:125752841 tmax_4 7.4421 5.86E-12 0.053 0.409 0.852 0.014 3 
Fig 6.27 16:16446171 prec_8 7.4242 6.48E-12 0.013 0.657 1.066 0.039 1 

 21:5710355 tmax_4 7.4048 7.23E-12 0.296 5.926 13.317 0.012 5 
 2:212487548 prec_9 7.3296 1.10E-11 0.227 1.418 3.357 0.033 1 
 1:264377461 tmax_4 7.3047 1.26E-11 0.230 0.277 0.731 -0.004 3 
 26:29680812 prec_8 7.2689 1.54E-11 0.039 3.173 9.238 0.099 1 
 5:95006908 prec_4 7.2318 1.90E-11 0.105 2.532 4.037 0.042 2 
 26:38634496 tmax_4 7.1867 2.43E-11 0.235 1.828 4.371 -0.001 2 
 1:1189051 prec_9 7.1732 2.62E-11 0.123 1.658 3.309 0.008 1 
 6:7438056 tmax_4 7.1573 2.86E-11 0.270 0.145 0.337 0.053 1 
 1:80764418 tmax_4 7.1391 3.16E-11 0.000 0.008 0.016 -0.008 10 
 15:8048267 prec_9 7.1301 3.32E-11 0.224 0.494 0.881 0.003 2 
 1:1189051 prec_8 7.1276 3.37E-11 0.123 0.387 1.005 0.008 1 
 10:47538166 prec_8 7.0627 4.81E-11 0.065 0.279 0.622 0.009 5 
 2:104456155 prec_9 6.9853 7.35E-11 0.125 0.275 0.696 0.022 1 
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 9:9714798 prec_4 6.9784 7.63E-11 0.170 0.011 0.025 0.023 1 
 4:12303967 prec_9 6.9656 8.18E-11 0.243 0.233 0.524 0.016 1 
 7:88146918 prec_9 6.9311 9.86E-11 0.242 3.053 5.952 0.029 5 
 19:43221906 prec_8 6.9118 1.09E-10 0.255 3.577 8.397 0.012 2 
 2:222236016 prec_8 6.9053 1.13E-10 0.258 1.568 3.587 0.008 8 
 21:4412095 prec_4 6.8466 1.56E-10 0.263 1.948 4.329 0.042 4 
 3:180621248 prec_8 6.8374 1.64E-10 0.085 0.198 0.605 0.091 1 
 19:43221906 prec_9 6.8131 1.87E-10 0.255 1.481 3.823 0.012 2 
 4:32900303 prec_8 6.8125 1.87E-10 0.156 2.726 5.894 0.081 3 
 23:44417365 tmax_4 -6.795 2.06E-10 0.239 8.333 17.276 0.028 4 
 7:88146918 tmax_4 -6.788 2.14E-10 0.242 3.354 7.440 0.029 5 
 26:29680812 bio_15 -6.774 2.30E-10 0.039 2.180 5.608 0.099 1 
 18:57803509 prec_9 6.7696 2.36E-10 0.059 3.560 6.226 0.102 2 
 2:212487548 prec_8 6.7495 2.63E-10 0.227 1.585 3.595 0.033 1 
 9:83776120 prec_4 -6.731 2.90E-10 0.191 6.362 11.478 0.081 1 

 

The analysis of the relationship between LFMM’s p-values and Samβada’s G score confirmed that 
there is no relationship between their results. SNPs detected by both methods are clearly distinct 
(Figure 6.16). We can also note that those detected by both Samβada and XP-CLR are not neces-
sarily showing a high G score in Samβada or a low p-value in LFMM. 

Figure 6.17 shows the Moran’s I correlograms for 729 genotypes including the significant geno-
types in Samβada (33 genotypes) and LFMM (25 SNPs, highest Moran’s I among the three geno-
types of each SNP was plotted). The difference between both methods is clear: Samβada identi-
fies mostly genotypes with a strong spatial autocorrelation, while LFMM detects loci with weak or 
null spatial autocorrelation.  

 

Figure 6.16 Scatterplot of Samβada’s G score against LFMM’s p-value in sheep. Neutral loci are shown in 

grey, those detected by Samβada in red, those by Samβada and XP-CLR in black and those by LFMM in blue. 

Loci detected by LFMM are clearly distinct from those detected by Samβada. There is no distinction possible 

between genotypes detected by Samβada and XP-CLR. 
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Figure 6.17 Moran’s I correlograms for sheep. Neutral genotypes are shown in grey and genotypes associat-

ed with environmental variables, either by Samβada (left) or LFMM (right) are in red. 

 6.3.3 Visualisation of significant associations 
Figures 6.18 to 6.28 allow us to compare the spatial distribution of genotypes significantly associ-
ated with environmental variables, their spatial autocorrelation, the influence of spatial resolution 
(or moving-window in the case of climatic variable) and other information like best models de-
tected by LFMM and XP-CLR for the corresponding SNP. Details on the different parts of these 
graphs can be found in section 3.6 (p65).  

The six examples shown in figures 6.18 to 6.24 are representative of the most significant models 
processed in Samβada. The first notable observation is the high level of spatial autocorrelation of 
the genotypes involved in significant models, which is clearly illustrated on the map showing the 
spatial distribution of SNPs and on the Moran’s I autocorrelogram. In addition, LISA coefficients 
show one or two locally significant clusters of positive autocorrelation. These examples also illus-
trate the high spatial autocorrelation of climatic variables. This remark, however, is not valid for 
DEM variables such as for the catchment slope variable (see for instance Figure 6.25). Regarding 
the impact of multi-scale variables, there is a limited influence of window size on climatic varia-
bles but a strong influence of resolution on DEMs variables.  

On the other, close SNPs in the peak on chromosome 23 display similar patterns of spatial distri-
bution (Figure 6.18 to Figure 6.23), although the dataset was corrected to take linkage disequilib-
rium into account. 
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Afterwards, we show some of the most significant LFMM models (Figure 6.26 to Figure 6.28). 
Spatial patterns of distributions of significant SNPs are less autocorrelated than in Samβada’s re-
sults and, thus, their association with variables is less straightforward. In fact, Moran’s I is low for 
all of them and does not change much with distance. This is also true locally, as few points have 
significant LISA values. 

 

Significant models identified by Samβada 

 

Figure 6.18 Visualisation of the significant association between genotype 19:_AA and precipitation in Sep-

tember in sheep detected by Samβada. 
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Figure 6.19 Visualisation of the significant association between genotype 23:43874160_GG and precipita-

tion in April in sheep detected by Samβada 

 

Figure 6.20 Visualisation of the significant association between genotype 23:43794976_GG and precipita-

tion in April in sheep detected by Samβada 
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Figure 6.21 Visualisation of the significant association between genotype 23:43823782_GG and maximal 

temperature in April in sheep detected by Samβada 

 

Figure 6.22 Visualisation of the significant association between genotype 23:43861704_GG and precipita-

tion in April in sheep detected by Samβada 
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Figure 6.23 Visualisation of the significant association between genotype 23:44038684_AA and precipitation 

in April in sheep detected by Samβada 

 

Figure 6.24 Visualisation of the significant association between genotype 7:48256781_GG and precipitation 

in August in sheep detected by Samβada 
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Figure 6.25 Visualisation of the significant association between genotype 20:50510912_GG and Catchment 

slope (spatial resolution 180m) in sheep detected by Samβada. 

Significant models identified by LFMM  

 

Figure 6.26 Visualisation of the significant association between SNP 7:88146918  and precipitation in Sep-

tember in sheep detected by LFMM. 
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Figure 6.27 Visualisation of the significant association between SNP 16:16446171 and precipitation in Au-

gust in sheep detected by LFMM. 

 

Figure 6.28 Visualisation of the significant association between SNP 1:125752841 and maximum tempera-

ture in April in sheep detected by LFMM. 
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 6.4 Identification of genetic markers under selection in goats 6.4.1 Samβada results 
Original resolution models 

For goats, a total of 82 genotypes are identified by Samβada with weak Q-values (minimum of 
0.04). Contrary to sheep, the amount of detections depend heavily on the false discovery thresh-
old (see Table 6.7). Indeed, while a threshold of 0.2 identifies 95 significant models, a threshold of 
0.1 identifies 9 significant models only, involving 8 SNPs associated with 3 variables (latitude, bio 
15 and bio 7).  

Table 6.7 Summary of significant models (FDR=0.2), genotypes and variables at the original resolution with 

Samβada in goats 

 # of significant models # of models computed 
Number of models 95 142 997 233 
Number of genotypes 82 1 789 702 x3 
Number of variables 20 28
 

Genotypes associated to latitude are by far the most represented in significant models. Indeed, 
among the 82 genotypes detected, 34 are significantly associated with latitude only and 4 with 
longitude only, supporting the weak latitudinal population structure identified in Figure 6.9 
(p124). The other genotypes are significantly associated with environmental variables but with 
different occurrences per variables (Figure 6.29). Bio 15 (Precipitation Seasonality) is the most 
frequent variables involved in significant models and counting among the most significant models. 
Genotypes correlated with Bio 7 are the second most frequent (Temperature Annual Range) fol-
lowed by altitude (SRTM). Two genotypes are associated with both bio 7 and tmax 7. 

Occurrences of significant genotypes per chromosome is also uneven (Figure 6.29). Chromosome 
6 shows the highest number of significant genotypes, which are mostly correlated with precipita-
tion variables (bio 15, bio 14, prec8), altitude and latitude. On the other hand, chromosome 4 has 
12 genotypes out of 17 correlated with latitude, the others with precipitation variables (bio 15, 
prec 1). 
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Figure 6.29 Distribution of the frequency of environmental variables at their original resolution and of SNPs 

per chromosome involved in significant models from Samβada for goats.  

 

Multi-resolution results 

To perform multi-resolution, we selected loci from models with a Q-value lower than 0.4 as ex-
plained in section 6.3.1 (p125). With this threshold, we kept 1878 models comprising 1341 SNPs. 

Samβada processed this set of 1341 SNPs versus 120 variables (24 variables x 5 resolutions). A 
model is considered to be significant if at least one resolution shows a Q-value lower than the FDR 
threshold selected (0.2). To focus on multi-scale environmental associations, the following results 
exclude latitude and longitude. Orientation and Coherency were not considered either, as they 
could not be computed at all resolutions. 

A total of 22 genotypes were newly detected (Table 6.8), mostly associated with DEM variables 
altitude and total insolation in June (Ti216). However, if we lower the significance threshold to 
0.1, genotypes detected are the same than at original resolution and are still associated with vari-
ables bio 15 and bio 7. The major change in occurrences per chromosome takes place on chromo-
somes 4 (Figure 6.30). In fact, most of its significant SNPs were correlated to latitude, which we 
did not consider in the multi-resolution analysis. On the other hand, chromosome 6 has three 
more significant SNPs thanks to associations with altitude (SRTM) and bio 14. 

Regarding the impact of multi-scale variables, window sizes of climatic variables had little influ-
ence on score of models. One exception is bio 14 (Precipitation of Driest Month) with four more 
detections (Figure 6.30), usually showing best results with moving window sizes of 9x9 and 17x17. 
Regarding DEM-derived variables, however, the number of significant genotypes associated with 
them increased substantially with multi-scale variables, in particular with TI216 (+4 associated 
genotypes) and for altitude (+5). It is interesting to note that most models involving TI216, Nor 
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and Slo show their best score at a resolution of 180m. These SNPs are located in seven different 
chromosomes. On the other hand, there is no optimal resolution for altitude. 

We note that without a membership coefficient and considering the limited number of models 
involving latitude and longitude, we did not consider relevant to perform multivariate models. 

 

Table 6.8 Summary of significant models from multi-scale analysis with Samβada in goats 

 Significant models Total
Number of models 81 500 689 
Number of genotypes 64 1341 x 3 
Number of variables 19 25
 

 

Figure 6.30 Distribution of the frequency of multi-scale environmental variables and of SNPs per chromo-

some involved in significant models from Samβada for goats. 

 6.4.2 Comparison between methods 
To apply LFMM to the goats’ dataset, we selected variable that were either involved in the most 
significant models in Samβada or were frequently involved in these models. We chose the follow-
ing variables: bio15, bio 7, prec 7, TI216 (180m), SRTM (1440m). 

One and two latent factors were tested for goats, but we did not observe major differences in the 
significant associations. With K=1, LFMM identifies a few additional significant SNPs compared to 
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K=2 and includes all those detected with K=2. Therefore, we chose to discuss on the results for 
K=1 only. It must be noted that the distribution of p-values did not allow us to apply FDR on 
LFMM results. Therefore, we opted for a Bonferroni correction (0.05/number of models comput-
ed). 

A total of 45 significant models are detected by LFMM (Table 6.11). All variables significantly de-
tected at least one SNP, but their frequency of occurrence differs from Samβada results. Indeed, 
genotypes associated with precipitation in January (prec 1) are by far the most frequent in LFMM 
models and those with bio 15 the least frequent (Figure 6.31). Two SNPs are detected by two dif-
ferent variables, one with bio15 and SRTM, the other with bio7 and Ti216. We can also observe 
that the distribution per chromosome is different from Samβada’s results. Here, no chromosome 
has much more detected SNPs than another. 

 

Table 6.9 Summary of models of association between SNPs and a subset of  variables (bio15, bio 7, prec 7, 

TI216 180m, SRTM 1440m) with LFMM in goats 

 # of significant models # of models computed 
Number of models 45 1.7 million x 5 
Number of SNPs 43 1.7 million
Number of variables 5 5
 

 

Figure 6.31 Distribution of the frequency of selected environmental variables and of SNPs per chromosome 

involved in significant models from LFMM for goats.  
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Figure 6.32 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 6 for goats. For XP-CLR, only significant windows are shown and color-codes depend on the 

variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. The peak is highlighted with a red 

frame. 
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Figure 6.33 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 1 for goats. For XP-CLR, only significant windows are shown and color-codes depend on the 

variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. 
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Figure 6.34 Comparison between significant XP-CLR, Samβada and LFMM results according to their position 

on chromosome 15 for goats. For XP-CLR, only significant windows are shown and color-codes depend on 

the variable. Significant genotypes in Samβada are shown in red and their associated variable are given in as 

labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded according to their 

associated variable. The blue bar represents the threshold of significance. 
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SNPs on chromosome 6 are the most frequent in Samβada and are mainly associated with bio15 
and altitude (Figure 6.32). Comparing the results according to their positions allows us to detect a 
peak on chromosome 6 in each method, even though it is not significant in LFMM. The peak in XP-
CLR is clear when using populations based on altitude and bio 15. The latter one is also the most 
frequent variable in Samβada. 

Chromosome 1, involving the second highest number of significant genotypes in Samβada, shows 
a different pattern (Figure 6.33). Here, Samβada’s significant genotypes are scattered and do not 
correspond to high scores shown by the other methods. In fact, none of Samβada significant re-
sults correspond to low p-values in LFMM or to significant scores in XP-CLR. Chromosome 1 also 
shows a high amount of significant SNPs in LFMM but they do not match with the other methods. 

Similarly, two SNPs from chromosome 15 (Figure 6.34) are involved in the most significant models 
in LFMM (both with prec 1) but we do not detect any match with the other methods. Other 
graphs per chromosome are provided in Appendix II.c. 

At this point, a few general observations can be made. First, XP-CLR detects much more significant 
regions than both Samβada and LFMM. The only matches are found with Samβada in the peak on 
chromosome 6 (12 SNPs matching). On the other hand, there is no match between LFMM and 
Samβada or between LFMM and XP-CLR. Although LFMM detected the peak, its results are more 
different from Samβada and XP-CLR than these two against each other. In Table 6.10, we show 
the significant results from Samβada  and we can observe that most of their LFMM counterparts 
identify the same variable as Samβada, at least those with low p-values.  

 

Table 6.10 Samβada’s significant results involving multi-resolution variables in goats. The table shows one 

model per line including the genotype, the associated environmental variable, the resolution of the variable 

at which the highest G score was found (Best resolution), the highest G and Wald scores of the model involv-

ing the variable at the best resolution, the frequency of the genotype, the most significant LFMM p-value of 

the corresponding SNP and its associated variable, the highest XP-CLR score and its corresponding variable, 

the Moran’s I of the genotype obtained with a neighbourhood of 20 individuals.. Models are ranked accord-

ing to their G score. SNPs identified in the peak on chr 6 are in bold. 

 Genotypes Variable 
Best 
reso-
lution 

High-
est G 

Highest 
Wald Frequency Highest 

LFMM 
LFMM 

variable 
Highest 
XP-CLR 

XP-CLR 
variable Moran 

Fig 6.37 6:12259667_AA bio_15 initial 37.11 25.92 0.286 9.97E-09 bio 15 98.04 temp7-H 0.16 

Fig 6.40 6:12254244_AA bio_15 initial 37.11 25.92 0.286 1.64E-08 bio 15 87.61 temp7-H 0.16 

Fig 6.41 4:95035251_AG bio_15 ws01 36.46 22.23 0.143 0.05025 bio 15 0.16 

 24:19436980_GG bio_15 ws16 36.26 26.44 0.236 0.17 

 1:10309616_AA bio_7 initial 35.94 12.48 0.056 0.00388 bio 7 0.11 

Fig 6.39 6:12242353_GG bio_15 ws16 33.82 25.57 0.381 2.11E-08 bio 15 66.69 temp7-H 0.15 

 13:74456761_AA bio_7 ws08 33.52 19.37 0.093 0.00482 bio 7 0.08 

Fig 6.42 3:104936887_GG TI2112 0360 32.97 23.34 0.369 1.42E-01 bio 7 0.11 

 6:26455416_GG SRTM 0720 32.85 19.90 0.161 0.0132 SRTM 0.05 

 6:26455416_GG bio_14 ws16 32.72 13.87 0.161 0.0132 SRTM 0.05 

 4:25093566_GG prec_1 initial 32.52 22.47 0.118 2.91E-03 prec 1 0.27 

 11:15823825_AG bio_7 ws08 32.37 24.86 0.211 0.01227 bio 7 0.12 
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 1:10309616_AA tmax_7 initial 31.94 13.25 0.056 3.88E-03 bio 7 0.11 

 6:12254244_GG bio_15 ws08 31.71 25.26 0.435 1.64E-08 bio 15 87.61 temp7-H 0.13 

 15:53255703_GG nor 0180 31.26 23.74 0.230 1.02E-01 bio 7 0.02 

 6:47914533_AA prec_1 initial 31.25 15.85 0.118 0.00191 prec 1 0.23 

 22:42794456_GG SRTM 1439 31.20 20.89 0.199 0.00659 SRTM 0.07 

 6:12254244_GG SRTM 2879 31.15 24.77 0.435 1.64E-08 bio 15 87.61 temp7-H 0.13 

Fig 6.38 6:12218302_GG SRTM 2879 31.08 24.68 0.388 1.18E-06 bio 15 23.6 Alt-H 0.15 

 4:51418120_GG prec_1 ws16 31.06 21.99 0.112 0.00894 prec 1 0.33 

 26:3818155_GG bio_8 ws01 30.78 21.40 0.106 0.07 

 6:12254244_GG prec_8 initial 30.75 25.24 0.435 1.64E-08 bio 15 87.61 temp7-H 0.13 

 4:95035251_AG prec_8 ws04 30.68 22.09 0.143 0.05025 bio 15 0.16 

 20:4481114_GG bio_7 ws04 30.65 19.58 0.099 0.03437 bio 7 0.09 

 6:12276649_AA bio_15 initial 30.51 22.74 0.280 2.08E-07 bio 15 0.15 

 1:147737581_GG TI216 0180 30.41 23.31 0.481 2.98E-05 bio 7 0.14 

 6:48842226_GG TI216 0180 30.35 23.83 0.342 0.00294 Ti216 0.10 

 6:70862842_GG bio_14 initial 30.34 18.16 0.296 0.03976 bio 15 0.09 

 22:41805444_AA Slo 0180 30.31 7.72 0.082 2.14E-02 prec 1 -0.01 

 6:25849772_AG SRTM initial 29.94 15.88 0.112 0.05414 bio 7 0.07 

 12:17515212_AG bio_9 initial 29.86 18.54 0.344 4.64E-01 SRTM 0.06 

 1:23002164_AA SRTM 1439 29.78 16.11 0.120 2.96E-04 bio 7 0.12 

 11:15823825_GG bio_7 ws16 29.69 23.57 0.224 1.23E-02 bio 7 0.10 

 6:26455416_GG tmean_2 ws02 29.68 19.63 0.161 0.0132 SRTM 0.05 

 13:78939678_AG PlCu initial 29.68 13.96 0.118 0.69111 bio 15 0.03 

 6:48842226_GG prec_8 initial 29.65 24.70 0.342 0.00294 Ti216 0.10 

 9:38675107_GG TI216 0180 29.58 23.26 0.422 1.76E-05 bio 7 0.21 

 9:38668915_GG TI216 0180 29.58 23.26 0.422 1.45E-05 bio 7 0.21 

 24:28807953_AA bio_15 initial 29.55 18.61 0.125 0.14 

 1:124570528_AG TI216 initial 29.55 19.38 0.199 5.64E-02 Ti216 0.04 

 8:46850695_AG Slo initial 29.51 16.49 0.415 0.34179 Ti216 0.00 

 6:12259667_GG bio_15 ws08 29.46 23.84 0.435 9.97E-09 bio 15 98.04 temp7-H 0.10 

 14:26405742_GG bio_9 ws16 29.44 22.08 0.323 2.36E-01 SRTM 0.03 

 25:6830009_AG tmean_2 initial 29.30 23.66 0.491 0.08164 Ti216 0.05 

 9:55810891_GG bio_14 ws16 29.19 24.23 0.261 0.00815 Ti216 0.12 

 6:12218302_AA bio_15 ws16 29.15 22.31 0.319 1.18E-06 bio 15 23.6 Alt-H 0.14 

 6:48842226_GG bio_14 ws08 29.09 23.48 0.342 2.94E-03 Ti216 0.10 

 14:45215445_GG prec_1 ws16 29.05 21.41 0.112 0.00732 prec 1 0.20 

 6:26455416_AG bio_14 ws16 29.04 12.05 0.137 0.0132 SRTM 0.05 

 28:40372626_GG SRTM 1439 28.98 22.37 0.199 0.01514 SRTM 0.04 

 1:77790195_AG bio_8 ws02 28.91 21.67 0.472 4.87E-01 bio 7 0.09 

 20:28161553_GG tmax_10 ws01 28.89 22.12 0.335 5.50E-05 bio 15 0.15 

 11:25042928_AG tmin_8 ws16 28.85 18.15 0.100 0.2361 SRTM 0.10 

 11:25030523_AG tmin_8 ws16 28.70 18.28 0.106 5.90E-02 SRTM 0.10 

 14:1335043_GG prec_1 ws16 28.69 20.39 0.242 0.00412 prec 1 0.13 

 24:19436980_AG bio_15 ws16 28.69 22.10 0.217 0.11 

 20:25965154_AG nor 0180 28.61 23.36 0.344 0.0568 bio 7 0.02 

 2:133961081_GG tmax_7 initial 28.53 21.88 0.425 0.04215 bio 7 0.12 

 6:12207826_GG SRTM 2879 28.53 23.15 0.379 1.02E-06 SRTM 0.15 

 2:133961081_GG tmean_6 initial 28.49 21.20 0.425 4.21E-02 bio 7 0.12 

 4:95035251_AG bio_14 ws04 28.44 23.28 0.143 0.05025 bio 15 0.16 

 6:12254244_GG bio_14 ws08 28.44 22.02 0.435 1.64E-08 bio 15 87.61 temp7-H 0.13 

 4:95035251_GG bio_15 ws01 28.44 20.24 0.155 0.05025 bio 15 0.13 

 13:74456761_AA tmax_7 initial 28.43 16.53 0.093 4.82E-03 bio 7 0.08 

 9:14309947_GG bio_7 ws16 28.43 18.95 0.099 0.04395 bio 7 0.08 

 7:79661490_AA TI216 initial 28.43 17.35 0.099 6.35E-04 Ti216 0.01 

 9:38857907_GG tmax_7 initial 28.36 22.08 0.354 1.05E-03 bio 7 0.16 

 6:26455416_AG SRTM 0720 28.20 17.10 0.137 1.32E-02 SRTM 0.05 



Sheep & goats in Morocco 

152 
 

 20:4481114_GG tmax_7 initial 28.18 16.76 0.099 3.44E-02 bio 7 0.09 

 6:12187316_GG bio_15 initial 28.08 20.10 0.193 7.61E-03 bio 15 0.23 

 1:59516318_GG tmean_2 ws08 28.04 21.67 0.329 4.29E-03 SRTM 0.10 

 6:48842226_GG tmean_2 initial 28.03 22.94 0.342 2.94E-03 Ti216 0.10 

 6:12259667_GG prec_8 initial 28.02 23.43 0.435 9.97E-09 bio 15 98.04 temp7-H 0.10 

 7:54532252_AA prec_8 initial 28.01 15.79 0.168 1.49E-02 SRTM 0.12 

 3:36013665_AG tmean_6 ws08 27.99 17.18 0.106 1.91E-01 prec 1 0.00 

 1:56842826_AA prec_1 ws02 27.92 20.50 0.063 1.74E-05 prec 1 0.36 

 1:74038394_AA prec_6 ws01 27.91 12.32 0.081 0.00794 bio 15 0.13 

 11:25021331_AG tmin_8 ws16 27.90 17.86 0.099 0.3131 SRTM 0.08 

 6:12259667_GG SRTM 2879 27.88 22.73 0.435 9.97E-09 bio 15 98.04 temp7-H 0.10 

 17:4322848_GG tmax_10 ws04 27.83 21.65 0.313 0.05285 SRTM 0.06 

 28:40372626_AG SRTM 1439 27.82 21.66 0.193 0.01514 SRTM 0.03 

 

Table 6.11 LFMM’s significant results for univariate models involving a subset of environmental variables in 

goats. The table shows one model per line including the locus, the associated variable, its z score and p-

value, the minor allele frequency, the mean and maximum G score between the three genotypes in Samβada 

for the same environmental variable, the maximum Moran’s’ I between the three genotypes and the dis-

tance at which it was found. Models are ranked according to their P-value. 

 SNPs Variable Zscore P value MAF Mean G 
score 

Max G 
score 

Max 
Moran 

Distance of 
max Moran 

Fig 6.43 4:5923331 prec_1 9.18677 2.03E-16 0.15484 1.21892 2.127 0.039 1 

Fig 6.45 17:2263702 TI216 -9.14991 2.54E-16 0.08497 0.22179 0.7185 0.019 1 

Fig 6.44 15:3909036 prec_1 8.51769 1.13E-14 0.10191 2.02485 3.1125 0.042 4 

 15:45878555 prec_1 8.50812 1.20E-14 0.25806 2.22142 3.8869 0.008 1 

 10:29730546 prec_1 8.14834 9.99E-14 0.09615 4.55115 7.4974 0.019 6 

 27:42551769 prec_1 8.00561 2.29E-13 0.09615 0.55146 1.4409 0.024 1 

 13:43643932 prec_1 7.85768 5.39E-13 0.01948 4.0131 6.929 0.060 1 

 9:88900192 bio_7 -7.72437 1.16E-12 0.0719 0.10504 0.2 0.069 3 

 19:16896720 TI216 -7.64165 1.86E-12 0.06494 0.13327 0.3641 0.023 1 

 11:97481069 prec_1 7.57495 2.71E-12 0.01911 2.54324 3.7031 0.019 3 

 8:1761930 prec_1 7.55728 3.00E-12 0.23077 2.4394 5.7013 0.053 1 

 10:80063740 prec_1 7.45367 5.38E-12 0.15385 1.09282 2.7444 0.023 2 

 6:3446921 prec_1 7.33412 1.05E-11 0.13725 0.42352 0.8642 0.004 2 

 5:71106895 SRTM 7.30185 1.26E-11 0.05195 0.62947 1.2034 0.013 1 

 5:89094139 prec_1 7.29644 1.30E-11 0.24026 1.66023 2.9687 0.004 5 

 2:5663077 SRTM 7.25431 1.64E-11 0.21019 7.37206 15.611 0.053 2 

 1:114098068 prec_1 7.25062 1.67E-11 0.08861 0.85468 1.5454 0.010 2 

 1:124546289 prec_1 7.2492 1.69E-11 0.23529 2.48821 5.0381 0.027 1 

 2:4657541 bio_15 7.23758 1.80E-11 0.24183 1.5616 2.6398 0.012 1 

 10:33822403 SRTM 7.18854 2.36E-11 0.20915 1.55 3.7999 0.022 4 

 13:34211339 prec_1 7.15316 2.87E-11 0.04487 0.82829 1.4438 0.009 3 

 23:24525923 TI216 -7.13568 3.16E-11 0.2013 8.48158 18.956 0.111 1 

 2:58995772 bio_7 7.1291 3.28E-11 0.13725 1.88712 4.5233 0.045 3 

 13:4414264 prec_1 7.10113 3.83E-11 0.28205 0.79441 1.8274 0.023 3 
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 18:59196467 prec_1 7.05767 4.86E-11 0.2129 2.26856 4.473 0.021 1 

 22:35260639 TI216 -7.0555 4.92E-11 0.32692 0.25217 0.8965 -0.005 8 

 18:9500578 prec_1 7.02113 5.94E-11 0.2013 1.77365 3.1243 0.065 1 

 13:48099783 prec_1 7.02103 5.94E-11 0.12903 0.98941 1.6708 0.076 1 

 28:5541929 prec_1 6.98978 7.05E-11 0.16993 0.39813 0.844 -0.009 10 

 27:36189456 SRTM -6.93667 9.41E-11 0.0719 2.24656 3.9621 0.017 3 

 1:132775653 prec_1 6.93386 9.56E-11 0 0.81898 0.9129 0.030 1 

 14:12686959 bio_7 -6.88416 1.25E-10 0.30065 1.68659 2.8483 0.027 2 

 15:4780144 prec_1 6.86518 1.39E-10 0.25 1.05422 2.0146 0.009 1 

 8:35490226 bio_15 -6.83662 1.62E-10 0.01307 0.89036 2.3857 0.002 3 

 15:6707714 SRTM 6.83371 1.64E-10 0.03922 0.09075 0.2526 0.001 3 

 9:69563755 prec_1 6.83314 1.65E-10 0.20915 2.17063 3.41 0.046 1 

 22:55984785 prec_1 6.8297 1.68E-10 0.22581 0.05967 0.13 0.005 4 

 18:41102518 prec_1 6.81835 1.79E-10 0.26144 0.03289 0.0731 -0.001 4 

 8:35490226 SRTM 6.80688 1.90E-10 0.01307 1.55512 3.2111 0.002 3 

 29:1957547 prec_1 6.80002 1.97E-10 0.07643 0.35467 0.9722 0.012 2 

 8:110668946 TI216 6.763 2.41E-10 0.25 3.61157 9.3634 0.021 1 

 20:65900817 TI216 -6.75505 2.51E-10 0 0.0983 0.3816 -0.007 7 

 1:87669244 prec_1 6.74881 2.60E-10 0.20645 0.70403 1.5134 0.012 7 

 23:24525923 bio_7 -6.73395 2.81E-10 0.2013 3.91396 7.4263 0.111 1 

 5:94548328 bio_7 -6.72966 2.88E-10 0.08387 1.03963 2.3933 0.037 1 

 

Figure 6.35 shows that there is no correlation between Samβada’s G score and LFMM’s p-value. 
Significant SNPs detected in both methods are clearly distinct. However, we note that SNPs de-
tected by Samβada and XP-CLR have a higher significance in LFMM than those detected by 
Samβada only. 

Regarding spatial autocorrelation, most of the significant genotypes that correlated with climatic 
variables show a moderate Moran I. This is not the case for genotypes associated with DEM varia-
bles, in which spatial autocorrelation is lower. On the other hand, SNPs detected in LFMM sys-
tematically show low Moran’s I (Figure 6.36). 
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Figure 6.35 Scatterplot of Samβada’s G score against LFMM’s p-value in goats. Neutral loci are shown in 

grey, those detected by Samβada in red, those by Samβada and XP-CLR in black and those by LFMM in blue. 

 

Figure 6.36 Moran’s I correlograms for goats. Neutral genotypes are shown in grey and genotypes associat-

ed with environmental variables, either by Samβada (left) or LFMM (right) are in red. 
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6.4.3 Visualisation of significant associations 
Details on the different parts of these graphs can be found in section 3.6 (p65).  

Figure 6.37 to Figure 6.42 are representative of some of the most significant models in Samβada. 
We first note that most models involving climatic variables do not evidence an influence of win-
dow size on Samβada’s scores. In addition, models that became significant by increasing window 
size remain poorly significant. For genotypes associated with DEM-derived variables, however, 
multi-scale variables always plays a major role in the final scores but we cannot identify a general 
trend. This is well illustrated in Figure 6.42, where the model involving the original resolution is 
not significant but those involving the variable at 180 and 360m are significant. 

From Figure 6.37 to Figure 6.40, we show several SNPs identified in the peak on chromosome 6 
and associated with bio15. They all show a similar pattern of spatial distribution. For example, 
genotype 6 12259667 AA is involved in the most significant model in Samβada (Figure 6.37). Its 
Moran’s I is high compared with other loci but the LISA coefficients are rarely significant.  

Genotype 4 95035251 AG is also one of the most significant genotype in Samβada’s models and is 
associated with bio 15 (Figure 6.41). Here as well, LISA coefficient are not significant even though 
Moran’s I is high. However, we can visually identify a cluster of AG genotypes in the northeast, 
which well fits the low values of bio 15.  

Figure 6.42 shows the most significant genotype associated with a DEM-derived variables. This 
SNP is only associated with total insolation in December, with a best score at a resolution of 
360m. We notice that different spatial resolutions do not generate sharp differences in Samβada’s 
scores.  
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Significant models identified by Samβada  

 

Figure 6.37 Visualisation of the significant association between genotype 6 12259667 AA and Precipitation 

Seasonality (bio15) in goats detected by Samβada. 

 

Figure 6.38 Visualisation of the significant association between genotype 6 GG and altitude (SRTM) in goats 

detected by Samβada. 



Sheep & goats in Morocco 

157 
 

 

Figure 6.39 Visualisation of the significant association between genotype 6 GG and Precipitation Seasonality 

(bio15) in goats detected by Samβada. 

 

Figure 6.40 Visualisation of the significant association between genotype 6 12254244 AA and Precipitation 

Seasonality (bio15) in goats detected by Samβada. 
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Figure 6.41 Visualisation of the significant association between genotype 4 95035251 AG and Precipitation 

Seasonality (bio15) in goats detected by Samβada. 

 

Figure 6.42 Visualisation of the significant association between genotype 3:104936887 GG and Total Insola-

tion on the 21 of December (Ti2112) in goats detected by Samβada. 
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Significant models identified by LFMM  

 

Figure 6.43 Visualisation of the significant association between SNP 4:5923331 and precipitation in January 

in goats detected by LFMM. 

 

Figure 6.44 Visualisation of the significant association between SNP 15:3909036 and precipitation in January 

in goats detected by LFMM. 



Sheep & goats in Morocco 

160 
 

 

 

Figure 6.45 Visualisation of the significant association between SNP 17:2263702 and Total insolation on the 

21 of June (Ti216) in goats detected by LFMM. 

 6.5 Discussion  
In this chapter, we analysed the correlation between genetic markers in sheep and goats versus 
DEM-derived as well as climatic variables to detect consistent and robust signatures of selection. 
In addition, with the help of WGS data, we expected to identify annotated genes, or highlight 
unknown genes, that would support some of these signals of selection. 

Despite the high amount of genotypic variation covering their entire genome, both sheep and 
goats show a limited amount of significant signatures of adaptation and weak scores in Samβada 
& LFMM. From these results, it is obvious that adaptation traits, if present, are discreet in these 
domesticated mammals. 

Nevertheless, we found one remarkable result in each species with candidate regions in the form 
of “peaks” of selection obtained on chromosome 23 in sheep (Figure 6.14) and on chromosome 6 
in goats (Figure 6.32). These peaks are clearly visible in each method, and represent a remarkable 
signature of selection. Despite SNPs in these peaks were not significant in LFMM, the peaks are 
clearly visible in this method and, thus, increase the robustness of these signatures. Furthermore, 
the same variables were involved in the detected models in each method (bio 15 for goats, prec 4 
and tmax 4 for sheep) (see Table 6.5 and Table 6.10).  Furthermore, the seven SNPs detected by 
Samβada in this peak on chromosome 6 of goats show a similar spatial distribution and a spatial 



Sheep & goats in Morocco 

161 
 

autocorrelation above 0.1 (see Figure 6.19 and Figure 6.37 for representative examples). The spa-
tial distribution of bio 15, prec 8 and SRTM are similar, explaining why these variables are some-
times significant for the same genotypes. In sheep also, eight significant SNPs identified by 
Samβada in the peak on chromosome 23 have a similar spatial distribution (Figure 6.19) and a 
spatial autocorrelation above 0.2.  

 

We decided to investigate these two peaks in more details and to look for proximal genes. We 
used the genome assembly of NCBI genetic databases, accessed at the following addresses:  

 for sheep http://www.ensembl.org/Ovis_aries/Info/Index  
 for goats http://www.ncbi.nlm.nih.gov/genome?term=capra%20hircus 

In the peak identified on chromosome 23 in sheep (Figure 6.46), we identified five genes 
(LDLRAD4, FAM210, RNMT, MC1R and ACTHR) that were corresponding to the detections in 
Samβada and XP-CLR. Among the five SNPs identified by Samβada, three are located in the coding 
sequences of genes LDLRAD4, FAM210 and RNMT. Detections by XP-CLR, however, were located 
in or around genes RMNT, MC1R and ACTHR.  

For these genes, we investigated their function and whether a causal relationship can be found 
with the associated environmental variable. We note that so far we haven’t investigated the ge-
nomic regions in which other significant SNPs were detected. In addition, we will further compare 
genetic sequences of significant SNPs associated with the same variable between the two species. 
In fact, if two species have similar signatures of selection due to the same environmental varia-
bles, it increases the robustness of these signatures. 

 

 

Figure 6.46 Zoom on the peak encountered for sheep on chromosome 23 between positions 43 650 000 and 

43 900 000. Black lines are showing the different genes in this window, red dots are the significant Samβada 

results and blue dots are the significant XP-CLR results. Arrows (< >) indicate if the gene is on the forward or 

reverse strand. 

The gene MC1R is the melanocortin-1 receptor. It binds to a class of pituitary peptide hormones 
known as the melanocortins located on the plasma membrane of melanocytes, which produce the 
pigment melanin (Benjelloun et al. 2015). MC1R is one of the key proteins involved in regulating 
mammalian coat and hair colour and has been investigated in many mammals (Fontanesi et al. 
2009). As a result of its central situation in the peak identified and its importance in mammalian 
studies, we consider MC1R as a robust candidate for selection in Moroccan goats. In addition, 
significant SNPs detected in MC1R are associated to precipitation and maximum temperature in 
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April and the spatial distribution of these SNPs shows the prevalence of certain genotypes at the 
edge of the Sahara desert, where temperature is particularly high and almost no precipitation 
occur. MC1R polymorphism could thus express a different phenotypes of coat or hair colour due 
to desert conditions. 

RNMT is an RNA (guanine-7-) methyltransferase enzyme with a methyltransferase domain and an 
N-terminal domain whose function is unclear (Aregger & Cowling 2013). It is conserved in mam-
mals, but not required for cap methyltransferase activity. The RNMT N-terminal domain is re-
quired for transcript expression, translation and cell proliferation. We could not find a link be-
tween this function and the patterns of selection observed. 

On the peak identified on chromosome 6 in goats (Figure 6.32 p147), incomplete genome annota-
tion of goats assembly prevents us from identifying the gene detected (D4S2842) (Figure 6.47). 
Only one position, significant in XP-CLR, was identified in the gene. However, it is interesting to 
note that this peak was also identified as a signature of selection in the Black population in 
Benjelloun et al. (2015).   

 

 

Figure 6.47 Zoom on the peak encountered for goats on chromosome 6 between positions 12 200 000 12 

300 000. Black line is  showing the gene in this window, red dots are the significant Samβada results and 

blue dots are the significant XP-CLR results. Arrows (< >) indicate if the gene is on the forward or reverse 

strand. 

In both peaks, SNPs were mostly associated to precipitation variables. Furthermore, top candidate 
SNPs outside these peaks are mainly correlated with precipitation variables in both species and 
for both LFMM and Samβada. It demonstrates that precipitation in Morocco, which vary substan-
tially from coast to desert, are likely to be the main driver of local adaptation to environment in 
both species. This could corroborate to the results from Benjelloun et al. (2015), who found sev-
eral candidate genes giving insights on a possible adaptation to panting. On the other hand, we 
found that SNPs are rarely associated to DEM-derived variables and show weak significance with 
these variables. It indicates that, as expected, topographic variables are not relevant at such scale 
for a mobile species.  

Multi-scale variables increased the amount of detected SNPs but the newly detected SNPs are 
moderately significant. Regarding climatic variables, window size has little effect on the signifi-
cance of models. For DEM-derived variables, however, spatial resolution had a substantial influ-
ence on the goodness-of-fit but there is no general trend for a decrease or an increase of signifi-
cance throughout the continuous representation of scales. 
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In the population structure of sheep (Figure 6.8), we can see that the strongest membership coef-
ficients partially correspond to Sardi and D-man breeds (see the map of breeds in Figure 6.1). We 
note that there is a link with the peak on chromosome 6. In fact, there is a moderate spatial cor-
respondence between the local cluster observed in all SNPs identified in this peak (Figure 6.19 to 
Figure 6.23) and the membership coefficient to population 2.  

For goats, strongest coefficients to the second population correspond to the northern breed 
(Figure 6.2 and Figure 6.9). Using a subset of this dataset, Benjelloun et al. (2015) previously as-
sessed the genetic diversity of three phenotypically distinct indigenous populations: the Black, 
Draa and Northern breeds (see Figure 6.2 p119 for their spatial distribution). They could not iden-
tify either a clear population structure between these 3 breeds using either mitochondrial haplo-
types of WGS variants. They attribute this lack of population structure to uncontrolled breeding 
strategies in which extensive breeding systems favour high gene flow. We mention also that they 
found a very high genetic diversity (24 million variants) and a low linkage disequilibrium in be-
tween the three populations. In comparison the human 1000 genome project identified ≈15 mil-
lion SNPs.  

 

Whole genome sequence data also allowed us to apply a false discovery rate (FDR) on the p-
values obtained in Samβada, which is by default implemented with a Bonferroni correction for 
multiple tests. Here we compared a threshold at 0.1 and 0.2, meaning that we assume 10 or 20% 
of false discoveries in the results. Both species should be distinguished at this point. In fact, for 
goats, a threshold of 0.2 increased considerably the number of detections while for sheep, most 
models with this threshold already showed q-values below 0.1. However, multi-scale variables do 
not improve the number of detected SNPs below the 0.1 threshold.  In addition, Wald scores are 
low, often lower than the accepted threshold for the two other case studies, in which much less 
associations were computed. Furthermore, compared to the two previous case studies, Moran 
correlograms of detected loci are more spread in the neutral background and choosing a more 
conservative threshold would have led to a clearer distinction between neutral and selected loci. 
Therefore, a FDR of 0.1 might be a better option in these cases, particularly in sheep. 

On the other hand, Samβada scores are low compared with those obtained by Stucki (2014) in 
Ugandan cattle. There are two major differences with these results. First, the population structure 
is weak or non-existing in our case while five populations were identified in Uganda. Second, we 
only had 160 individuals, compared with 804 in Uganda. These two parameters partially explain 
why our scores are so low and why we do not obtain common detections between LFMM and 
Samβada. In fact, both types of approaches depend largely on the number of individuals 
(Lotterhos & Whitlock 2015). However, it is surprising to notice the complete absence of common 
detections between the Samβada and LFMM, contrasting with the results from Stucki (2014) who 
identified many common SNPs. Here, LFMM identified SNPs at very different genomic positions. 
In addition, there is no visual evidence highlighting correlation when comparing the map of the 
SNP detected by LFMM and the map of its associated variable. The weak population structure and 
LFMM’s loss of power under IBD models (Lotterhos & Whitlock 2015) might explain why it oppos-
es to other methods so strongly in this case study. In fact, LFMM was developed to cope with the 
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effects of populations’ structure, not the absence of it. We also note that we tried values of 1, 2 
and 3 for K without causing any major change in the SNPs detected. Therefore, Samβada seem to 
be more appropriate than LFMM in this case. 

 

To conclude this chapter, we found weak evidences of adaptation in sheep and goats but identi-
fied, in both cases, peaks of signatures of selection in their genome. Further investigation of these 
peaks indicated polymorphism in and nearby genes that were, for most of them, related to pre-
cipitation patterns. These results demonstrate the relevance of genome screening and point the 
way ahead for further functional research. 
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Chapter 7 General discussion and conclu-sion 
In this thesis, we assessed the local adaptation to environment based on three case studies. To do 
so, it is important to define how local a study should be and how local we do expect adaptation to 
operate. However, defining the scale of a study (i.e. the grain and extent to be used) raises im-
portant questions regarding the relevance of environmental variables, particularly their spatial 
resolution. Therefore, our main goal was to evaluate how fine the resolution of environmental 
variables should be to detect local adaptation and how sensitive are detections of signatures of 
selection to the spatial resolution of environmental variables. 

To tackle this problematic, we proposed a multi-scale landscape genomics framework to identify 
signatures of selection. Particularly, we focused on the relevance of Very High Resolution Digital 
Elevation Models (VHR DEMs) and the application of a multi-resolution analysis to detect adapta-
tion at different scales. We explored three case studies that differ between each other on their 
scale (or extent), species, topography, genetic data and sampling scheme. To increase the robust-
ness of these detections, we compared several methods of outlier detection.  

 

Relevance of DEM-derived variables in a landscape genomic context 

Our results validate two essential concerns regarding DEMs: i) multi-scale approaches are valua-
ble when facing topographic heterogeneity, and ii) investigating a large diversity of DEM-derived 
variables is crucial in order to evaluate all topographic aspects that might influence climatic varia-
bility.  

At a local scale, we were able to show that DEM-derived variables can be used as relevant surro-
gates for environmental variables and to better understand relationships with local topography. 
Indeed, physiological activity and adaptation of plants are affected by temperature, humidity and 
soil characteristics (Körner 2003; Böhner & Selige 2006; Manel et al. 2012b) and we found that 
signatures of selections related to topographic heterogeneity were substantial at the local scale of 
the B. laevigata case study. However, the relevance of DEM-derived variables at wider extents 
was null in a flat urban environment at a regional scale and weak for mobile mammal species at a 
large scale. These results show that DEM variables are relevant in a landscape genomics context 
and provide proxies to essential ecological conditions assessed in many geomorphological studies 
(Wilson & Gallant 2000). In addition, DEM variables widen the diversity of environmental varia-
bles available to offer a maximum of potential pressures of selection. 
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Furthermore, DEM-derived variables are easy-to-compute proxies for environmental features, are 
cheap, and involve limited fieldwork but good knowledge of Geographic Information Systems. 
DEM-derived variables should thus be widely used as proxies of environmental features in ecology 
and evolution (Kozak et al. 2008). In addition, open source GIS alternatives (e.g. SAGA GIS, Quan-
tum GIS and GRASS) provide algorithms to process a variety of secondary terrain attributes. By 
scripting the computation of variables in RSAGA, we facilitated investigations of a large spectrum 
of variables at different scales. Finally, several DEMs with a global cover are freely available and 
the upcoming release of the TANDEM-X model with a resolution of ≈10m and a high accuracy 
holds great promises for future use of multi-scale DEM-derived variables (Krieger et al. 2007). As 
regards very high resolution, LIDAR represents the best DEM acquisition technology at the mo-
ment, providing great precision and high resolution across hardly accessible terrains, but still ex-
pensive (Xiaoye Liu 2008). Although they do not show the same level of precision like LIDAR, ste-
reo-photogrammetry from Unmanned Aerial Vehicles (UAV) constitutes a less powerful but suita-
ble and cheaper alternative subject to intense research (Leempoel & Joost 2012). 

Despite these advantages, DEMs remain underexploited in landscape genetics. Although they are 
often used for altitude, primary attributes or solar radiation, usage of more complex variables like 
morphometric or hydrology indices is underestimated in the literature and we recommend to go 
beyond the traditional use of DEMs (Dobrowski 2011). Indeed, the present models demonstrated 
that DEM-derived variables, such as slope, eastness, vrm or twi, provide suitable or complemen-
tary surrogates to in situ measurements for characterization of plant habitat. We voluntarily as-
sessed a very large panel of DEM variables, sometimes at the expense of redundancy, to make a 
point regarding variables diversity. However assessing the collinearity between variables is thus 
crucial, not only to avoid redundancy but also to improve ecological interpretation, particularly for 
multivariate models. 

Furthermore, most DEM-derived variables used in this thesis were shown in the literature to be 
surrogates for many relevant ecological features (Wilson & Gallant 2000; Böhner & Selige 2006). 
However, while we demonstrated that DEM-derived variables can approximate climatic variables 
at a local scale, this relationship may not be valid in other places or with different spatial resolu-
tion. Indeed, it is important to keep in mind that relationships between properties of interest and 
terrain attributes cannot be transferred from one area to another with different characteristics 
(Wilson & Gallant 2000). While this does not question the relevance of topographic variables in a 
landscape genetics context, the ecological or geomorphological interpretation of DEM variables 
found in the literature only partially improves our understanding of the correlation between ge-
netic markers and the DEM variable simply because we do not know if the ecological interpreta-
tion is valid in our cases. On the other hand, DEM variables obtained from structure tensors that 
we tested in these case studies also lack relationship with environmental features. In fact, these 
variables were first applied by Kalbermatten (2010) on a landslide to help visualising the different 
structures in the landscape, but he did not assess the relationship between these variables and 
ecological or geomorphological processes. Therefore, we cannot interpret the associations be-
tween genetic markers and structure tensor variables. For example, we expect that energy and 
coherency are proxies for terrain ruggedness, but they were not correlated with other terrain 
ruggedness variables. On the other hand, we found that orientation from structure tensors is less 
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noisy than aspect when compared at the same resolution. Nevertheless, the fact we detected 
significant associations with these variables is a strong argument favouring further investigation.  

 

The spatial resolution of environmental data 

By addressing to what extent a finer resolution provides ecologically relevant predictions, results 
from B. laevigata case study shed new light on these scale issues. While it is often expected that a 
higher precision should bring results that are more accurate, we demonstrated that the highest 
resolution available is rarely contributing to the most significant models. In addition, associations’ 
strength heavily depended on the resolution of the variable. In fact, variations in the goodness-of-
fit due to spatial resolutions indicates that multi-scale approaches should systematically be con-
sidered to model micro-climatic variables and association with genetic markers. We argue that 
using DEMs at their original grid resolution, without consideration of scale representativeness, 
likely leads to an underestimated role of topographic features in ecological models. Indeed, a too 
fine resolution may hold an excess of details and generate too much noise, while too coarse reso-
lution would only show generalized properties of the landscape and lose explanatory power 
(Cavazzi et al. 2013). This issue is rarely addressed in the landscape genetics literature and most 
studies using DEMs at their original resolution often ended up with a minor contribution of topog-
raphy (Zimmermann & Kienast 1999; Manel et al. 2010b; Vercauteren et al. 2012; Patsiou et al. 
2014).  

The main difficulty with multi-scale variables is to interpret the detected spatial resolution. For 
example, the most recurrent resolution of DEM variables involved in significant models in goat 
was 180m, but only a couple of multi-scale models involving DEM variables were detected. Usual-
ly, each DEM-derived variable is scale dependent in a different way: for example curvatures or 
hydrology variables are strongly dependent on the resolution (Wilson & Gallant 2000). We believe 
that using different resolutions allows calibrating the DEM variables and spurring them to fit cli-
matic features, rather than seeking one optimal resolution. The difficulty, however, is to find an 
ecological feature that may correspond to the DEM-derived variable at that resolution, which is 
what we achieved in the first part of B. laevigata case study (Leempoel et al. accepted). In fact, 
the high sensitivity of terrain analysis to DEMs’ spatial resolution questions even more the inter-
pretability of significant associations. Indeed, we remind that relationships between terrain at-
tributes and environmental parameters are only valid at the scale for which they have been de-
rived (Wilson & Gallant 2000). 

Another important point regarding spatial resolution is the presence of pseudo-replicates when 
the resolution is not appropriate for the sampling design. Pseudo-replication occurs when the 
number of samples are treated inappropriately as independent replicates. It means that observa-
tions may not be independent if the observations are correlated in space. For example, the sam-
pling design of B. laevigata (Figure 4.4), imposed by its peculiar spatial distribution, contains 
pseudo-replicates, and thus increases the probability to abusively take into account recurrent high 
frequencies for a given marker due in reality to the fact that close individuals are genetically re-
lated (spatial autocorrelation due to demography). When the spatial resolution of the DEM is 
coarse, these close samples will retrieve their DEM variables from the same pixels, thus inflating 
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autocorrelation due to spurious correlations. Therefore, GLM estimates are inflated and standard 
errors are likely to be too small between closely-related individuals. This questions the detection 
of B. laevigata models with DEM-derived variables since these variables were mostly significant at 
their coarsest resolutions. In this case, methods such as General Estimating Equations (GEE; 
Hanley et al. 2003; Hardin & Hilbe 2003; Poncet et al. 2010) or generalized linear mixed models 
(GLMM; Liang & Zeger 1986; Bolker et al. 2009), that take into account pseudo-replicates might 
have been more appropriate. In these methods, the sampling design is integrated as supplemen-
tary information in order to account for autocorrelation and to estimate correctly the correlation 
matrix between individuals. In the sheep & goats case study, however, pseudo-replicates were 
avoided by selecting only one individual per farm (section 6.2), guaranteeing the spatial spread of 
sampling locations. 

On the other hand, we found that window size of climatic variables did not influence substantially 
associations with genotypes, for both P. major and sheep & goats case studies, even when these 
variables considered topography. This is due to the interpolation process itself, which results in 
smoothing the variable between points (weather stations). The limited number of weather sta-
tions, located in and around the sampling area, is not sufficient to model local climatic variability 
at these extents.  

 

Detection of signatures of selection 

Many methods exist to detect footprints of selection. They differ mainly on the different princi-
ples or theory they are based on and thus separate in two categories: correlative approaches and 
population genetic approaches. They also differ by their sensitivity to demographic effects, inclu-
sion of population structure or of spatial autocorrelation. In fact, population genetics methods of 
detection of selection are well established and have been tested against many demographic sce-
narios (Beaumont & Nichols 1996). On the other hand, correlative approaches often show a high 
rate of false positives but are more powerful as they can identify environmental pressures of se-
lection (De Mita et al. 2013). Common detections should thus increase the robustness of signa-
tures of selection by separating true from false positives and by identifying the environmental 
actor responsible for selection. However, only a few comparisons between methods have been 
published using simulations (Pérez-Figueroa et al. 2010; De Mita et al. 2013 and references 
therein). In these papers, BayeScan is shown to have a low rate of false positives and a good pow-
er of detection, unless selection pressure is low. On the other hand, correlation based methods 
were sufficiently powerful to detect true positives even when selection pressure was low and 
regardless of the demographic scenario. Finally, we note that in Lotterhos & Whitlock (2015) both 
types of methods failed to identify loci under weak selection, which probably constitute the ma-
jority of loci. 

In the three case studies, comparison between methods was difficult. In fact, not all methods 
could be applied to each case study, due to the lack of population structure or to systematic fail-
ure of software. In fact, population genetics approaches require assignment of individuals to pop-
ulations, which we could not achieve for sheep & goats in Morocco. Even if we had found a signif-
icant population structure, we doubt that methods like BayeScan could have processed WGS da-
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tasets in a reasonable time. Regarding the systematic failure in LFMM in P. major case study, we 
mentioned in section 5.3.3 that we tried to filter the genetic dataset differently or try other pa-
rameters, without success. Similarly, applying LFMM on the sheep dataset sometimes resulted in 
crashes of the software. 

Common detections turned out to be rare in all case studies. There is none for B. laevigata, de-
spite Samβada identified moderate correlations. Here, BayeScan does not detect any markers 
under selection between the two populations identified or even when we defined populations 
based on transects. Using an additional population genetic approach, like Fdist or Mcheza, could 
have provided an interesting comparison. In P. major, we found two common detections between 
Samβada and BayeScan suggesting that precipitation is a major actor of natural selection. Howev-
er, precipitation and latitude largely detected the same loci and it is thus impossible to disentan-
gle the effect of both variables. In this case, either BayeScan does not have enough power due to 
the small genetic dataset and the few populations identified; or the spatial distribution of these 
common detections is possibly due to precipitation and latitude. In sheep & goats, validation of 
models depend more on the advantages of having the positions of SNPs rather than on the com-
mon detections. In fact, peaks of high scores were observed in each method at the same loca-
tions, with one example for each mammal. However, LFMM failed to identify significant SNPs in 
these peaks and there is no trend between LFMM and GLM models, not even regarding their spa-
tial patterns.  

In these three case studies, our philosophy was to focus on a correlative approach (Samβada) and 
then to compare its results to other methods (BayeScan, LFMM, XP-CLR). We highlight several 
advantages of GLM as a first approach, corroborating those identified by Stucki (2014). First, 
Samβada is a good first approach to detect adaptive signals as it does not have any pre-requisite 
and does not make theoretical assumptions like population genetics methods (Joost et al. 2007). 
On the contrary, LFMM and BayeScan use a theoretical background in population genetics for 
their models and require parameters to be defined. For example, LFMM requires the number of 
latent factors and BayeScan requires assignment of individuals to populations. A second ad-
vantage of simple correlative approaches is their ability to screen efficiently large genome da-
tasets with hundreds of environmental variables to look for significant associations. This permit-
ted to filter the environmental dataset for other methods such as LFMM, which are much longer 
to run. We consider this step safe as correlative approaches are known to have a high rate of false 
positives but little-to-no false negatives (De Mita et al. 2013).  

However, the main issue in Samβada remains that it cannot distinguish true from false positives. 
Therefore, we investigated the usefulness of multivariate models as well as spatial autocorrela-
tion measurements to tackle this issue. Regarding multivariate models, our hope was to better 
explain the distribution of genetic markers by a combination of an environmental variables and a 
variable related to demographic processes (membership coefficient, latitude, longitude). Howev-
er, this problem is more complex than initially thought as historical movements of populations are 
often confronted with landscape patterns (Prunier et al. 2013). For example, most of the geno-
types associated with precipitation in Samβada for P. major are also significantly correlated to 
latitude and longitude but were not significant in the multivariate case. In these cases, it is thus 
not possible to know whether the coordinates or the environmental variable is responsible for the 
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spatial pattern of the locus of interest. In fact, we never encountered significant multivariate 
models in our case studies, unlike Stucki (2014) with Ugandan cattle. She obtained several signifi-
cant bivariate models including membership coefficient (population structure) and one environ-
mental variable, which brings us close to the LFMM functioning. A great improvement for 
Samβada would be to integrate directly variables of population structure and geographic vectors, 
such as Moran's eigenvector maps (Borcard & Legendre 2002; Manel et al. 2010b), to perform 
multivariate models. 

Another more general issue is that these methods have been developed independently and lack a 
coherent framework (Wagner & Fortin 2013). While we recommend using systematically several 
approaches (at least one correlative and one differential), the major difficulty is to define a sam-
pling design that could suit both landscape and population genetics purposes (Joost et al. 2013). 
In fact, differential and correlative methods do not apprehend populations or individuals the 
same way. Therefore, differential methods often show spurious autocorrelation due to spatial 
clustering of samples data; and correlative approaches at the individual level may end up with 
limited population structure, thus discarding differential methods. More broadly, both types of 
methods do not have yet a good understanding of how sampling design affects performances of 
detection (Lotterhos & Whitlock 2015). 

To conclude this section, let us mention that common identification of genetic markers under 
natural selection was rare and that this lack of common ground prevented us from providing ro-
bust signatures of selection. We do not consider correlative approaches as a sufficient tool to 
detect signatures of selection but as part of a panel of methods, in which it is a valuable initial 
step. In addition, we recommend identifying systematically correlations between genetic data and 
environmental variables on one side, and coordinates and population structure on the other side, 
to estimate whether detected patterns of adaptation are a combination of environmental pres-
sure and demographic processes or if they can be due to environment only. 

 

Questions related to spatial analysis 

When looking for signatures of selection due to environmental variables, we expect to find spatial 
autocorrelation (SA) in detected genetic markers as SA is a natural component of environmental 
variables (Legendre 1993). Indeed, the SA we are looking for is induced by the environment, but 
we hope to distinguish it from the one due either to demographic effect (isolation by distance) or 
to sampling design (spurious SA) (Cushman & Landguth 2010). However, SA induced by patterns 
of selection is often confounded with demographic effects such as isolation by distance 
(Vekemans & Hardy 2004). In fact, in population genetics, autocorrelation is most often men-
tioned as caused by demographic processes and thus, its measurement serves as a descriptive 
analysis of the spatial structure of genetic data (Sokal et al. 1998; Diniz-Filho et al. 2009). There-
fore, Moran’s I correlograms are used in population genetics to describe the complexity of IBD 
patterns, both in original variable and model’s residuals, as SA violates the assumption of inde-
pendent error of non-spatial linear models. If SA does occur, analysis should be modified to ac-
count for it (Wagner & Fortin 2005). To better understand this dilemma, many authors have re-
viewed SA and tried to find solutions to limit its confounding and spurious effects (Legendre 1993; 
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Wagner & Fortin 2005; Dale & Fortin 2009; Diniz-Filho et al. 2009). However, studies comparing 
different methods of detection of natural selection only included SA as a point of discussion and 
rarely measured it (Pérez-Figueroa et al. 2010; De Mita et al. 2013; Lotterhos & Whitlock 2015). In 
these cases, SA is mentioned for the spurious correlations it might generate but not for its inevi-
table presence in signatures of selection.  

In all case studies, Samβada’s significant models were all strongly spatially autocorrelated, even 
(more) in common detections with BayeScan. They constituted most of the highest SA in the cor-
relograms, which depicted neutral vs detected loci (Figure 4.10,Figure 5.9, Figure 6.17 and Figure 
6.36). In fact, we found high spatial autocorrelation in each significant environmental variable and 
we thus expected that it would induce SA in detected loci. However, we know that logistic regres-
sions are subject to high false positive rates, partly due to demographic or spurious autocorrela-
tion effects (Fortin et al. 2002) that inflates false positive errors, thus overestimating detections of 
selection (Diniz-Filho et al. 2009; De Mita et al. 2013). However, Samβada’s results contrasts 
sharply with those from LFMM in sheep & goats, as the SA of genotypes detected by LFMM is 
close to zero (spatial independence). Therefore, while it makes sense that LFMM results are less 
autocorrelated because LFMM corrects associations by using population structure, the absence of 
SA questions the validity of these models. In other words, we consider that SNPs detected by 
LFMM in sheep & goats might not be valid because they are not spatially autocorrelated.  

It is difficult to compare our results to the literature because SA is rarely used to characterize sig-
natures of selection. Nevertheless, Stucki (2014) compared Moran’s I and Samβada G score for 
models she computed on Ugandan cattle. She found a strong correlation between these two vari-
ables (Figure 7.1) and distinguished neutral markers (non-significant G score, weak SA) from 
common detections between Samβada and LFMM (significant but moderate G score, moderate 
SA) and those only detected by Samβada (high G score, high SA). Common detections were thus 
showing substantial SA, but genotypes with very high SA were ignored by LFMM. Her results show 
that LFMM can detect spatially autocorrelated loci and support our statement that LFMM cannot 
perform well under the absence of strong population structure. In our case, we also found that 
high Samβada scores often imply high global spatial-autocorrelation but more importantly, we 
assessed the spatial autocorrelation of all loci and were able to illustrate that selected loci are 
more spatially autocorrelated than neutral loci. 
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Figure 7.1 Comparison of SNPs detected by Samβada and LFMM. The graph shows the Moran’s I in function 

of the G score of correlative models in Ugandan cattle. Neutral loci are in violet, loci detected by LFMM only 

are in orange, loci detected by Samβada in blue and loci detected by Samβada and LFMM in red. From 

(Stucki 2014). 

Regarding B. laevigata and P. major, we cannot eliminate a potential SA due to sampling design.  
In fact, transects have been pointed out as a source of false SA (Dale & Fortin 2002). On the other 
hand, sheep & goats case study is based on a grid and on stratified random sampling, thus avoid-
ing clusters. We consider this design as the best for landscape genomics studies, which should 
seek to reduce biases due to sampling design and focus more on the diversifications of habitat 
conditions rather than to correspond to the actual distribution of a population.  

In addition to global autocorrelation measurements, Samβada can also compute Local Indices of 
Spatial Association, or LISA (Anselin 1995). Measuring local spatial autocorrelation of significant 
genetic markers could allow us to identify best candidates of local adaptation by studying the 
spatial relationship of genetic markers with environmental features. In fact, LISA indices assess 
whether samples are locally dependent and detect the presence of significant spatial clusters 
(Stucki 2014). However, LISA measurements in Samβada were disappointing as we found out that 
fixed kernels, such as Gaussian and Bi-square weighting schemes, did not work. We expected 
these weighting schemes to provide more significant measurements of local clusters, as the val-
ues of neighbour will be weighted by the distance to the point of interest, rather than the binary 
presence/absence only. We also suggest developing a local Moran index for alleles rather than for 
genotypes. In fact, alleles at sampling locations vary from zero to two in diploid data and could be 
more powerful to detect clusters. Finally, we note that LISA is never used in landscape and popu-
lation genetics and that, at the exception of Samβada, packages to compute LISA coefficient in an 
automatic way are rare. 
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To conclude this part, we hope to raise awareness on the issue of SA and recommend to system-
atically measuring it in landscape genomics. Unfortunately, comprehensive measurements of SA 
are inexistent in the literature. While our results cannot provide a clear methodology to distin-
guish true and false positives, we believe that spatial autocorrelation is an important characteris-
tic of signatures of selection when one wants to find correlations with environmental variables, 
which are naturally autocorrelated. In addition, despite this point is clear in the literature, SA is 
rarely measured in case studies but only mentioned (Dale & Fortin 2009). Finally, to improve 
Samβada’s detections, we suggest analysing SA in residuals to assess the bias it produces. 

 

Promises of whole genome sequencing data 

Whole genome sequencing (WGS) holds great promises in landscape genomics. The main ad-
vantage of using WGS data for interpreting signatures of selection is the ability to assess the exact 
position of the detected SNP within the genome. In conjugation with genome assembly, WGS 
allows to assess the link between the environmental variables involved in the detection and the 
function of the gene.  

In the sheep & goats case study, we demonstrated that searching for signatures of adaptation in 
whole genome sequence datasets greatly benefited from usage of a correlative method. First, we 
identified peaks of selection. Screening the entire genome allowed us to identify places in the 
genome that are worth considering for deep investigation at the gene level. Second, we found 
that SNPs detected in these peaks were associated with the same (or similar) environmental vari-
ables and displayed similar distribution patterns, reinforcing the probability of detecting selection 
due to the environment. In addition, the identified peaks of selection were identified in inde-
pendent method and allowed us to visually target specific regions of the genome, without count-
ing on different thresholds of significance and results filtering. Despite LFMM failed to detect sig-
nificant loci at the peak position, the peak detected by this method is still clearly visible. In these 
cases, we can assume that these peaks of high scores are the translation of selective sweeps act-
ing on these genomic regions, shaping the frequency of nearby positions and the spatial distribu-
tion of nearby polymorphisms.  

When relevant positions are identified, we can benefit from the large online databases (like NCBI) 
and map the location of nearby genes. Indeed, knowing the genes involved allowed us to search 
for their functionality and evaluate if it concords with the environmental variable the SNP is asso-
ciated with. Furthermore, finding a phenotypic variation related to a gene greatly could improve 
our understanding of adaptation and demonstrates the power of genome screening using correla-
tive approaches. In the other case, when the detected gene has not been described yet, the asso-
ciated environmental variable informs on the functionality of the gene. Finally, assessing whether 
the detected SNPs are synonymous or non-synonymous variations could inform further on a po-
tential selection. In fact, only non-synonymous variations can change the amino-acid sequence of 
the coded protein. If the SNP is synonymous (no change of amino-acid), there is normally no rea-
son to believe a selection pressure is exerted on it. 
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Another advantage of WGS is the possibility to compare similar genes in different species against 
the same environmental variables. In fact, we detected in both species SNPs that were associated 
with the same environmental variables. Therefore, further investigation of genetic sequences 
around these SNPs could greatly increase the reliability of these signatures of adaptation.  

One minor drawback when comparing methods is the large size of the WGS datasets, which re-
quire heavy computational power for the analyses and powerful software that could process the 
results. In our case, we found that a first analysis at one resolution was a good start to filter the 
data with a loose threshold of significance. Afterwards, the subset of SNPs was analysed again 
with the multi-scale environmental dataset. Using logistic regression as a first exploratory analysis 
was here pertinent to facilitate the analysis and interpretation. Still, the recent availability of high 
performance computers will likely suppress this issue. 

 

Perspectives 

The three case studies analysed in this thesis comprise several species at different extents. Such 
diversity of situations does not allow to accurately assess the role of scale in species adaptation. 
Instead, to study the operational scale of adaptation, we should study the same species at multi-
ple extents (i.e. by increasing the size of the study area). For example, an alpine plant would be a 
good candidate for this type of study, as we would expect to find signatures of selection mainly 
related to topographic features and climatic conditions, respectively at a local and at a large scale. 

At the same time, we could take advantage of a model species to better understand the mecha-
nisms of adaptation at different scales. Indeed, by using a model species, we often benefit from a 
reference genome on which we can align SNPs sequences to identify genomic regions and genes 
under selection. In addition, we can benefit from the literature on the model species regarding its 
functional genomics and adaptation to the environment. Arabis alpina for example, is an alpine 
plant often studied in its natural environment and a large part of its genome has been sequenced 
(Ansell et al. 2008; Manel et al. 2010b; Poncet et al. 2010; Melodelima & Lobréaux 2013; 
Lobréaux et al. 2014). Conversely, one can also imagine a reverse approach where a known gene 
with well-studied phenotypic variability is analysed along an environmental gradient correspond-
ing to the alleged selection pressure. 

We showed that DEM-derived variables are relevant proxies for important ecological features. 
However, the relationship between DEM and environmental features depends on the spatial reso-
lution of the DEM, on the extent of the case study, and can vary from one location to another. 
Finding these relationships is therefore a crucial step to interpret the signatures of selections. In 
the B. laevigata case study, signatures of selection were not robust and it would be interesting to 
apply the same framework to other species in mountainous areas, in order to compare with our 
results. In addition, the B. laevigata case study did not benefit from recent high-throughput ge-
netic data, such as SNPs. We therefore suggest producing a wide range of SNPs from the plants 
already sampled and reproduce associative models using the extensive environmental database 
that we have acquired for this thesis. 
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Defining a sampling design that is suitable for both population and landscape genetics approaches 
is a complicated step as these distinct approaches have different pre-requisites. In fact, the three 
case studies differed in the sampling design and we showed that this could cause problems with 
certain approaches of detection of selection. We discuss two important points concerning the 
sampling design. First, we emphasize the importance of considering false detections that spatial 
autocorrelation can generate with specific sampling designs. Indeed, when several individuals are 
sampled in a few populations, we increase the risk of false positives due to a strong spatial auto-
correlation. In addition, a small number of populations does not allow estimating changes in allele 
frequency along an environmental gradient. Conversely, sampling along an environmental gradi-
ent may turn the assignment of individuals to populations more difficult and thus, does not allow 
combining both types of approaches. Secondly, De Mita et al. (2013) propose to favour a high 
number of populations with few samples rather than a small number of populations with many 
samples. These authors observed that this type of sampling design improves the performance of 
logistic regressions and of BayeScan. Such an approach indeed allow on one hand to apply popu-
lations genetics approaches such as BayeScan by considering each plot as a population, with no 
particular risk of bias, and on the other hand correlative approaches. However, more complex 
logistic regressions must then be used to take into account pseudo-replicas effects (i.e. several 
samples in the same plot), such as GEE or GLMM. 

Finally, we suggest three main strategies found in the literature, with their pros and cons, to in-
crease the robustness of detections in correlative approaches. One is to sample the same popula-
tion at different time periods, but it is expensive and there should be correlations between gener-
ations. A second one is to do common garden experiments, were individuals from different popu-
lations along an environmental gradient are interchanged and diagnosed over one or several 
growing seasons (De Kort et al. 2014). However, this could be too slow for selection to be detect-
ed. A third one is to replicate a study by sampling different populations of the same species in 
geographically distinct habitats, which is not always possible (Schwartz & McKelvey 2009). In this 
case, detecting the same association in similar habitats provides a robust evidence of environ-
mental adaptation. 

 

Conclusion 

What can we learn about the adaptation of species to the environment by applying a multi-scale 
landscape genomic framework?   

The framework that we proposed in this thesis highlighted the benefits of a multidisciplinary ap-
proach (i.e. GIS, spatial analysis, environmental modelling, population genetics and computer 
science) for the exploration of genetic and environmental data in evolutionary biology. i) We es-
tablished the relevance of DEMs in providing proxies to particular micro-habitat conditions for 
plants, and outlined the large panel of variables that can be computed from DEMs. ii) We contrib-
uted to a better understanding of scale in adaptation studies by using multi-scale environmental 
data, and demonstrated the need to consider the scale representativeness of topographic fea-
tures. iii) We combined population and landscape genetics methods to detect signatures of selec-
tion and showed that both types of approaches are mutually beneficial. iv) We used spatial statis-
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tics and demonstrated the importance of spatial autocorrelation in the interpretation of signa-
tures of selection. v) Finally, we improved the investigation and interpretation of signatures of 
selection by providing appropriate graphical representations combining the different information 
existing for each significant model. In these graphs, we highlighted the complementarity between 
spatial analysis, cartography and correlative approaches. Importantly, we developed an automat-
ed procedure to produce these numerous graphs.  

In the following paragraphs, we summarize the findings of this thesis regarding the research ques-
tions that were asked in the objectives section (p. 17).  

 

1. How important is topography in modelling of the micro-habitat conditions encountered 
by plants and in detecting signatures of selection? 

DEM-derived variables are relevant for modelling micro-climatic conditions in mountainous areas 
and may constitute good proxies to environmental factors involved in the adaptation process at a 
local scale. Despite being potentially useful for assessing the environmental variability, DEM-
derived variables are largely omitted in landscape genetics. DEMs also remain underexploited 
regarding the large diversity of variables that can be computed from them. Our results advocate 
going beyond the traditional use of elevation, slope and aspect in order to cover all possible rela-
tionships between topography and habitat.  

 

2. Is very high resolution necessary to model micro-habitat conditions encountered by 
plants? 

One of the most important findings of this thesis is the discovery of the dependency between 
association models and the spatial resolution of some DEM-derived variables. We demonstrate 
that scale representativeness must be considered, regardless of the original resolution of the DEM 
and of the species studied. These examples also show that a higher resolution does not necessari-
ly mean better explanatory power, thus contributing to an indecisive debate in the current litera-
ture. Furthermore, each DEM-derived variable responds differently to a change of resolution, 
which suggests that only multi-scale approaches can evaluate the role of topographic features in 
local adaptation. On the other hand, we found that increasing window sizes on interpolated cli-
matic data do not substantially influence association models. 

 

3. How does the relevance of DEM-derived variable vary in function of the extent of the 
study site and of the mobility of the species? 

Adaptation may occur at every scale but the type of variables (climatic, topographic, soil) involved 
in signatures of adaptation depends on the type of organism and on the extent of the study. 
However, we did not observe common detections between independent approaches at a local 
scale, which does not allow us to confirm a higher relevance of DEM-derived variables compared 
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to climatic variables. Nevertheless, we report no significant models involving topography at a re-
gional scale and few models at a large scale.  

 

4. Are significant associations identified by means of correlative methods also detected by 
population genetics approaches? 

Detecting genetic markers under selection with independent approaches should increase the ro-
bustness of detections by decreasing the amount of false positives. However, we notice that pre-
requisites of these approaches cannot always be respected. Still, we found common detections in 
two of the three case studies: two SNPs in the P. major case study and two genomic regions in the 
sheep & goats case study. Based on these results, we recommend to take advantage of the strong 
theoretical background of population genetic approaches on one hand, and to identify a potential 
pressure of selection in correlative approaches on the other hand. Our results also support the 
observation that Samβada produces a higher number of false positives. However, its efficiency in 
handling large datasets in a reasonable time still makes us recommend using it as an initial step, 
with little chance of missing potential signatures of adaptation.   

 

5. How can spatial autocorrelation contribute to the analysis of signatures of selection? 

Spatial autocorrelation is rarely measured while investigating signatures of selection. Here, we 
show that SA is stronger in these signatures than in neutral markers. This result adds even more 
controversy to an ambiguous perception regarding the nature of SA. Indeed, this topic remains 
ambiguous even after decades of debate and we regret that SA is often considered as a nuisance 
and not commonly measured in landscape genetics studies. In fact, spatial autocorrelation could 
be essential for better understanding evolutionary phenomena and local adaptation to environ-
ment, as advocated by Legendre (1993). We thus recommend measuring systematically SA, both 
at the global and local level, and consider it while investigating adaptation to the environment. 

 

6. How does whole genome sequencing improve the detection of signatures of adaptation? 

For the first time we used whole genome sequencing data in landscape genomics. Together with 
environmental variables, genetic data of high density allowed us to locate signatures of selection 
in the genome and to identify genes associated with them. By investigating the underlying func-
tions of these genes, one can potentially relate these signatures of selection to a phenotype and 
better understand adaptation processes. Furthermore, analysing the spatial distribution of these 
genotype-phenotype associations could greatly help in conservation practices.  
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 Scripts Appendix I.Appendix I.a Computation of DEM-derived variables 
#All variables script 
library(RSAGA) 
setwd("C:/data/RDN/MRS") 
myenv  <-  rsaga.env(workspace=getwd(),  path="C:/Program Files/SAGA-GIS_2_1") 
 
 
rsaga.get.libraries()  
rsaga.get.modules(c("ta_morphometry")) 
rsaga.get.usage("ta_morphometry", 0)  
rsaga.get.usage("ta_morphometry", 9)  
rsaga.get.usage("ta_morphometry", 7)  
rsaga.get.usage("ta_morphometry", 16)  
rsaga.get.usage("ta_morphometry", 17)  
 
rsaga.get.usage("ta_lighting", 3)  
rsaga.get.usage("ta_lighting", 2)  
 
rsaga.get.modules(c("ta_preprocessor")) 
rsaga.get.usage("ta_preprocessor", 5)  
rsaga.get.modules(c("ta_hydrology")) 
rsaga.get.usage("ta_hydrology", 15)  
rsaga.get.usage("ta_hydrology", 1)  
rsaga.get.usage("ta_hydrology", 19)  
rsaga.get.usage("ta_hydrology", 20)  
 
 
filename<-c("HAGP") 
res=c(16,8,4,2,1,0) 
for (i in 1:6){    
    if (res[i]<11){ 
      r0='_0' 
    }else{ 
      r0='_' 
    } 
 
# Slope, Aspect, Curvature, Horizontal Curvature, Vertical Curvature      
rsaga.geoprocessor("ta_morphometry",0,list(ELEVATION=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                           SLOPE=paste(filename,"_Slo", r0, res[i], ".sgrd",sep = ""),  
                                           ASPECT=paste(filename,"_Asp", r0, res[i], ".sgrd",sep = ""), 
                                           CURV=paste(filename,"_Cu", r0, res[i], ".sgrd",sep = ""), 
                                           HCURV=paste(filename,"_Hcu", r0, res[i], ".sgrd",sep = ""),  
                                           VCURV=paste(filename,"_Vcu", r0, res[i], ".sgrd",sep = ""), 
                                           METHOD="5")) 
#Downslope distance gradient at 5m  
rsaga.geoprocessor("ta_morphometry",9,list(DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                            GRADIENT=paste(filename,"_DDG", r0, res[i],".sgrd",sep = ""), 
                                           DISTANCE="5")) 
 
 
#Morphometric protection index at 1 pixel  
rsaga.geoprocessor("ta_morphometry",7,list(DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                           PROTECTION=paste(filename,"_MPI", r0, res[i],".sgrd",sep = ""),  
                                           RADIUS=toString(res[i]*2))) 
 
#Terrain ruggedness index at 1 pixel  
rsaga.geoprocessor("ta_morphometry",16,list(DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                            TRI=paste(filename,"_TRI", r0, res[i],".sgrd",sep = ""), RADIUS=1)) 
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#Vector ruggedness measure at 1 pixel 
rsaga.geoprocessor("ta_morphometry",17,list(DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                            VRM=paste(filename,"_VRM", r0, res[i], ".sgrd",sep = ""), 
                                            RADIUS=1)) 
 
#Sky view factor and visible sky  
rsaga.geoprocessor("ta_lighting",3,list(DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""), 
                                        VISIBLE=paste(filename,"_vis", r0, res[i], ".sgrd",sep = ""),  
                                        SVF=paste(filename,"_SVF", r0, res[i], ".sgrd",sep = ""), 
                                        METHOD="1")) 
 
#Solar radiation variables for 21 of June and 21 of December  
rsaga.geoprocessor("ta_lighting",2,list(GRD_DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                        GRD_SVF=paste(filename,"_SVF", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_DIRECT=paste(filename,"_Di216", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_DIFFUS=paste(filename,"_Df216", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_TOTAL=paste(filename,"_Ti216", r0, res[i], ".sgrd",sep = ""), 
                                        LATITUDE="46", PERIOD="1", DAY_A="20", MON_A="5", METHOD="0")) 
rsaga.geoprocessor("ta_lighting",2,list(GRD_DEM=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""),  
                                        GRD_SVF=paste(filename,"_SVF", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_DIRECT=paste(filename,"_Di2112", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_DIFFUS=paste(filename,"_Df2112", r0, res[i], ".sgrd",sep = ""),  
                                        GRD_TOTAL=paste(filename,"_Ti2112", r0, res[i], ".sgrd",sep = ""), 
                                        LATITUDE="46", PERIOD="1", DAY_A="20", MON_A="11", METHOD="0")) 
 
# Preprocessing of DEM for hydrology variables 
rsaga.geoprocessor("ta_preprocessor",5,list(ELEV=paste(filename, '_alt', r0, res[i], ".sgrd",sep = ""), 
                                            FILLED=paste(filename,"_FIL", r0, res[i], ".sgrd",sep = ""), 
                                            MINSLOPE=0.1)) 
 
#SAGA Wetness Index  
rsaga.geoprocessor("ta_hydrology",15,list(DEM=paste(filename,"_FIL", r0, res[i], ".sgrd",sep = ""), 
                                          C=paste(filename,"_Ca", r0, res[i], ".sgrd",sep = ""), 
                                          GN=paste(filename,"_CSlo", r0, res[i], ".sgrd",sep = ""), 
                                          CS=paste(filename,"_MCa", r0, res[i], ".sgrd",sep = ""), 
                                          SB=paste(filename,"_SWI", r0, res[i], ".sgrd",sep = "")))   
 
#Total catchment area (needed for Specific catchment area)  
rsaga.geoprocessor("ta_hydrology",1,list(ELEVATION=paste(filename,"_FIL", r0, res[i], ".sgrd",sep = ""), 
                                         CAREA=paste(filename,"_TCa", r0, res[i], ".sgrd",sep = ""), 
                                         Method="3")) 
#Specific catchment area (needed for Topographic Wetness Index)  
rsaga.geoprocessor("ta_hydrology",19,list(DEM=paste(filename,"_FIL", r0, res[i], ".sgrd",sep = ""), 
                                          WIDTH=paste(filename,"_FW", r0, res[i], ".sgrd",sep = ""), 
                                          TCA=paste(filename,"_TCa", r0, res[i], ".sgrd",sep = ""), 
                                          SCA=paste(filename,"_SCa", r0, res[i], ".sgrd",sep = ""), 
                                          METHOD="1")) 
# Topographic Wetness Index 
rsaga.geoprocessor("ta_hydrology",20,list(SLOPE=paste(filename,"_DDG", r0, res[i],".sgrd",sep = ""), 
                                          AREA=paste(filename,"_TCa", r0, res[i], ".sgrd",sep = ""), 
                                          TWI=paste(filename,"_TWI", r0, res[i], ".sgrd",sep = ""), 
                                          CONV="1",METHOD="0"))  
} 
 Appendix I.b Multi-resolution computation of DEMs using a Gaussian Pyramid 
clear all, clc 
% DEM matrix of pixels 
filename='C:\Data\RDN\DEM-DerivedVariables\PreProcessing\HAr0x1000_unsigned4Bytes.tif' 
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[OriDEM, OriR] = geotiffread(filename); 
n_decomp=5; 
DEM=OriDEM; 
R=OriR; 
for i=1:n_decomp 
     gaussPyramid = vision.Pyramid('PyramidLevel', i); 
     J = step(gaussPyramid, OriDEM); 
     DEM=J.data; 
     R.RasterSize=size(DEM); 
     geotiffwrite(['HAr_' num2str(round(R.DeltaX)) '.tif'],DEM,R,'CoordRefSysCode','EPSG:26191'); 
   clear gaussPyramid J 
   i 
end 
 Appendix I.c Genetic data filtering for P.major 
Initial purpose is to keep those with at least 60% coverage for now. 
bin/./vcftools --vcf  plantago_AC6FILT.vcf  --max-missing 0.6 --recode --recode-INFO-all --out plantago_FILT.vcf 
kept 5110 out of a possible 20420 Sites 
Then get some statistics 
#depth 
bin/./vcftools --vcf plantago_FILT.vcf  --depth 
#site-mean-depth 
bin/./vcftools --vcf plantago_FILT.vcf  --site-mean-depth 
#ld statistics 
bin/./vcftools --vcf plantago_FILT.vcf --hap-r2 
#heterozygosity 
bin/./vcftools --vcf plantago_FILT.vcf --het 
#site quality 
bin/./vcftools --vcf plantago_FILT.vcf --site-quality 
 
Then output a plink file 
#output a plink file 
bin/./vcftools --vcf plantago_FILT.vcf --plink plantago_FILT 
 
In plink 
#Remove individuals outside of the chosen study area 
plink --file out --remove indtodel.txt --recode --out outgva479  
#Keep only SNPS with MAF>0.05 
plink --file outgva479 --maf 0.05 --recode --out outgva479_maf05 
#Try two datasets with a maximum missingness of 0.2 or 0.1 
plink --file outgva479_maf05 --geno 0.2 --recode --out gva_miss02_479 
plink --file outgva479_maf05 --geno 0.1 --recode --out gva_miss01_479plink --bfile goats-filtered –missing 
#Finally, keep only individuals with a maximum missingness of 50% 
plink --file gva479 --mind 0.50 --recode --out gva_miss50 
plink --file gva_miss50 --out gva_miss50bed --make-bed  
 
#Compute several statistics (same statistics for sheep and goats) 
plink --file gva479 --missing 
plink --file gva479 --hardy 
plink --file gva479 --freq 
plink --file gva479 –het 
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 Additional results Appendix II.
Appendix II.a B. laevigata 

 

Figure Appendix II.a.1 Correlations for selected variables in the 1st case study. Each selected variable (grey 

background) is shown with its highly correlated variables (>0.9). 
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HAGP_Nor_01
HAGP_Eas_01
HAGP_CSlo_01 HAGP_Slo_01 = 0.93266
HAGP_DDG_01

HAGP_Df2112_01
HAGP_Hcu_01
HAGP_MPI_01
HAGP_SWI_01
HAGP_TWI_01
HAGP_VRM_01
HAGP_Nor_02
HAGP_CSlo_02
HAGP_DDG_02
HAGP_Hcu_02
HAGP_MPI_02
HAGP_SWI_02

HAGP_Ti2112_02 HAGP_Ea s_02 = -0.9786 HAGP_Di2112_02 = 0.99689
HAGP_TWI_02
HAGP_VRM_02
HAGP_Nor_04

HAGP_Di 2112_04 HAGP_Eas _04 = -0.97356 HAGP_Ti2112_04 = 0.99598
HAGP_Hcu_04
HAGP_MPI_04

HAGP_Cu_04 = 0.9555 HAGP_Df216_04 = -0.91729 HAGP_Df2112_04 = -0.91766 HAGP_Di216_04 = -0.93189 HAGP_Slo_04 = 0.93226 HAGP_SVF_04 = -0.91567
HAGP_Ti216_04 = -0.93328 HAGP_Vcu_04 = 0.95104

HAGP_TWI_04 HAGP_DDG_04 = -0.94212
HAGP_VRM_04
HAGP_Nor_08
HAGP_Eas_08 HAGP_Di2112_08 = -0.95706 HAGP_Ti2112_08 = -0.94279
HAGP_Cu_08 HAGP_Vcu_08 = 0.97237

HAGP_Hcu_08
HAGP_MPI_08
HAGP_TRI_08 HAGP_Df216_08 = -0.90298 HAGP_Df2112_08 = -0.90269 HAGP_Slo_08 = 0.92886 HAGP_SVF_08 = -0.9032
HAGP_TWI_08 HAGP_DDG_08 = -0.95033
HAGP_VRM_08

HAGP_Coherency_00
HAGP_Energy_00 HAGP_Cu_00 = -0.94537 HAGP_Hcu_00 = -0.96482 HAGP_TRI_00 = 0.96307 HAGP_TRI_01 = 0.96404 HAGP_Vcu_01 = 0.90323

HAGP_Orientation_00
HAGP_Coherency_01

HAGP_Energy_01 HAGP_TRI_02 = 0.91109
HAGP_Orientation_01
HAGP_Coherency_02

HAGP_Energy_02
HAGP_Orientation_02
HAGP_Coherency_04

HAGP_Energy_04
HAGP_Coherency_08

HAGP_Energy_08
HAGP_Orientation_08

HAGP_TRI_04
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Figure Appendix II.a.2 BayeScan results for B. laevigata. The FDR threshold was set to 0.1 and corresponds to 

a log(PO) of 1. It is thus not shown on the graph. 

 

Figure Appendix II.a.2 Scatter plot showing the Moran’s I (weighting scheme of 20 nearest neighbours) 

against Samβada’s G score for B. laevigata. Markers possibly under selection by environmental variables 

are displayed in red. 
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Figure Appendix II.a.3 Visualisation of the main results for the model involving marker C1V138 and 
variable horizontal Curvature at 8m. 

 

Figure Appendix II.a.4 Visualisation of the main results for the model involving marker C1N81 and 
mean temperature between 13 to 26 July. 
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Figure Appendix II.a.5 Visualisation of the main results for the model involving marker C1V200 and 
variable Curvature at 8m. 

 

Figure Appendix II.a.6 Visualisation of the main results for the model involving marker C1V428 and Sky View 

Factor at 1m. 
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Figure Appendix II.a.7 Visualisation of the main results for the model involving marker C1V485 and 
variable Mean temperature at 1pm between the 15 and 28 of June. 

 

Figure Appendix II.a.8 Visualisation of the main results for the model involving marker C1V206 and 
variable mean temperature between the 13 and 26 of June. 
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Figure Appendix II.a.9 Visualisation of the main results for the model involving marker C1V200 and 
variable Vertical Curvature at 8m. 

 

Figure Appendix II.a.10 Visualisation of the main results for the model involving marker C1V200 and 
variable Morphometric protection index (MPI) at 2m. 
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Figure Appendix II.a.11 Visualisation of the main results for the model involving marker C2N142 and 
Orientation at 4m. 

 

Figure Appendix II.a.12 Visualisation of the main results for the model involving marker C2N378 and 
variable Horizontal Curvature at 8m. 
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Appendix II.b P. major 

Table Appendix II.b.1 Correlations for selected variables. Each selected variable (grey background) 
is shown with its highly correlated variables (>0.9). 

 

X_PROJ
Y_PROJ
Group1

G_gamst_ws08 G_gamst_ws00 = 0.99786 G_gamst_ws01 = 0.99858 G_ga mst_ws02 = 0.999 G_ga mst_ws04 = 0.99944 G_gamst_ws 16 = 0.99842
G_tave12_ws16 G_tave12_ws00 = 0.98721 G_tave12_ws01 = 0.98799 G_tave12_ws02 = 0.98898 G_ta ve12_ws04 = 0.99106 G_tave12_ws 08 = 0.99545

G_mbal6_ws00 = 0.96827 G_mba l6_ws01 = 0.9716 G_mbal6_ws02 = 0.96681 G_mbal6_ws04 = 0.93789 G_mbal6_ws 08 = 0.90391
G_mind6_ws00 = 0.98705 G_mind6_ws02 = 0.99589 G_mind6_ws04 = 0.96801 G_mind6_ws08 = 0.9264
G_prec12_ws00 = 0.99893 G_prec12_ws01 = 0.99912 G_prec12_ws02 = 0.99926 G_prec12_ws04 = 0.99956 G_prec12_ws 16 = 0.9987
G_precyy_ws00 = 0.96681 G_precyy_ws01 = 0.96741 G_precyy_ws02 = 0.96815 G_precyy_ws04 = 0.96944 G_precyy_ws 08 = 0.97197
G_precyy_ws16 = 0.97562

Coherency_04
Orientation_04

G_Nor_02
G_Eas_02
G_CSlo_02
G_Cu_02

G_DDG_02
G_Nor_04
G_Eas_04
G_CSlo_04
G_Cu_04

G_DDG_04
G_Di216_04 G_Di2112_04 = 0.90081 G_Ti 216_04 = 0.9941 G_Ti 2112_04 = 0.91238

G_Nor_08
G_Eas_08
G_CSlo_08 G_CSlo_16 = 0.91804
G_Cu_08

G_DDG_08
G_Nor_16
G_Eas_16
G_Cu_16

G_DDG_16
G_ddeg300_ws00 = -0.97615 G_ddeg300_ws01 = -0.97663 G_ddeg300_ws02 = -0.97622 G_ddeg300_ws04 = -0.97488 G_ddeg300_ws 08 = -0.96933
G_ddeg300_ws16 = -0.95205 G_mbal 6_ws08 = 0.90254 G_prec6_ws00 = 0.92655 G_prec6_ws01 = 0.92669 G_prec6_ws02 = 0.92664

G_prec6_ws04 = 0.92543 G_prec6_ws08 = 0.91716 G_a lt_02 = 0.99814 G_alt_04 = 0.99805 G_alt_08 = 0.99836
G_alt_16 = 0.99817 G_Df2112_16 = 0.91138 G_Df216_32 = 0.91701 G_Df2112_32 = 0.93156 G_alt_64 = 0.99668

G_Df216_64 = 0.93151 G_Df2112_64 = 0.94679
G_Nor_32
G_Eas_32
G_CSlo_32 G_CSlo_16 = 0.90215
G_Cu_32

G_DDG_32
G_Di216_16 = 0.91203 G_Di2112_32 = 0.90598 G_Di216_64 = 0.91826 G_Ti216_16 = 0.90869 G_Ti216_32 = 0.99545
G_Ti2112_32 = 0.91559 G_Ti216_64 = 0.92147

G_Nor_64
G_Eas_64
G_CSlo_64
G_Cu_64

G_DDG_64
G_Di2112_64 G_Di2112_32 = 0.91437 G_Di216_64 = 0.92361 G_Ti 2112_32 = 0.9107 G_Ti2112_64 = 0.99891

G_Hcu_02
G_MPI_02 G_Slo_02 = 0.92638 G_TRI_02 = 0.92089
G_SVF_02 G_SVF_04 = 0.95733
G_Hcu_04
G_MPI_04
G_Hcu_08
G_MPI_08
G_Slo_08 G_TRI_08 = 0.97952
G_SVF_08 G_SVF_04 = 0.90962 G_SVF_16 = 0.93289
G_Hcu_16
G_MPI_16
G_Hcu_32
G_MPI_32

G_mind6_ws01

G_prec12_ws08

G_alt_32

G_Di216_32
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G_SVF_32 G_SVF_16 = 0.95655 G_SVF_64 = 0.92082
G_Hcu_64
G_MCa_64 G_MCa _32 = 0.91825 G_SWI_64 = 0.92271
G_MPI_64
G_TCa_02 G_TWI_02 = 0.91708

G_Ti2112_02 G_Di2112_02 = 0.99905 G_Di2112_04 = 0.90308 G_Ti 2112_04 = 0.90398
G_Vcu_02

G_VRM_02
G_TCa_04 G_TWI_04 = 0.91715
G_TRI_04 G_Slo_02 = 0.90572 G_Sl o_04 = 0.97527 G_TRI_02 = 0.92375
G_Vcu_04

G_VRM_04
G_SWI_08 G_MCa _04 = 0.92313 G_MCa_08 = 0.98505 G_MCa_16 = 0.90209 G_SWI_04 = 0.9201 G_SWI_16 = 0.93469
G_TCa_08 G_TWI_08 = 0.92325

G_Ti216_08 G_Di216_08 = 0.9936 G_Ti2112_08 = 0.91101
G_Vcu_08

G_VRM_08
G_TCa_16 G_TWI_16 = 0.90885

G_Ti2112_16 G_Di216_16 = 0.9148 G_Di2112_16 = 0.99887 G_Di 2112_32 = 0.90967 G_Ti2112_32 = 0.91107
G_TRI_16 G_Slo_16 = 0.98469
G_Vcu_16

G_VRM_16
G_TCa_32
G_TRI_32 G_Slo_32 = 0.98116
G_TWI_32
G_Vcu_32

G_VRM_32
G_TCa_64
G_TRI_64 G_Slo_64 = 0.98106
G_TWI_64
G_Vcu_64

G_VRM_64
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Table Appendix II.b.2 List of significant genotypes (left) and SNPs (right) detected in sambada. 
Columns correspond to the type of variable involved, either genotypes detected by geographic or 
population structure only (left), environmental variables (centre) or both (right). 

 

Total XYG Genotypes Total ENV Genotypes Common Genotypes Total XYG SNPs Total ENV SNPs Common SNPs

97 - (21 duplicate) 203 - (169 duplicate) 97 - (56 duplicate) 203 - (178 

53 11 23 24 8 17
MC00247904:97_AA MC00185267:124_AG MC03993697:21_CC MC01041748:50 MC00185267:124 MC00247904:97
MC00247904:97_CC MC00827814:20_AC MC05778243:40_AA MC01367811:82 MC00827814:20 MC03993697:21
MC01041748:50_CC MC01643098:103_CT MC06309558:73_CC MC01467732:35 MC01643098:103 MC05778243:40
MC01041748:50_TT MC01643098:103_TT MC06309558:73_CT MC01570173:97 MC02001781:113 MC06309558:73
MC01367811:82_AA MC02001781:113_AG MC06681055:73_AC MC01591310:36 MC05667273:31 MC06681055:73
MC01367811:82_AG MC05667273:31_AA MC06681055:73_CC MC01643092:55 MC05966531:14 MC06929001:75
MC01367811:82_GG MC05667273:31_AG MC06929001:75_CG MC01775189:98 MC06085250:39 MC02192085:71
MC01467732:35_CC MC05966531:14_CT MC06929001:75_GG MC01915554:13 MC06784148:25 MC01276423:101
MC01467732:35_TT MC06085250:39_AG MC02192085:71_AA MC03957223:72 MC01301563:54
MC01570173:97_AA MC06784148:25_GT MC00247904:97_AC MC04640598:94 MC01585839:73
MC01570173:97_GG MC06784148:25_TT MC01276423:101_CT MC05872911:140 MC01651581:47
MC01591310:36_CC MC01301563:54_GT MC06302512:53 MC01834138:78
MC01591310:36_CT MC01585839:73_CC MC06533076:78 MC01883648:43
MC01591310:36_TT MC01585839:73_CT MC06965223:91 MC02223852:142
MC01643092:55_CC MC01651581:47_AT MC01068585:101 MC03690815:99
MC01643092:55_CT MC01834138:78_CT MC01272757:76 MC03895169:134
MC01643092:55_TT MC01883648:43_GG MC01510673:114 MC06698177:33
MC01775189:98_CC MC02223852:142_CG MC01576512:22
MC01775189:98_CT MC03690815:99_AA MC01768188:74
MC01915554:13_AA MC03690815:99_AT MC02001843:31
MC01915554:13_CC MC03895169:134_CT MC02099341:85
MC03957223:72_CC MC03993697:21_CG MC02206548:70
MC03957223:72_CT MC06698177:33_AG MC03464566:154
MC03957223:72_TT MC05277703:114
MC04640598:94_CC
MC04640598:94_TT
MC05778243:40_CC

MC05872911:140_AA
MC05872911:140_AG
MC05872911:140_GG

MC06302512:53_TT
MC06533076:78_AA
MC06533076:78_AG
MC06533076:78_GG
MC06965223:91_CC
MC06965223:91_CT
MC06965223:91_TT

MC01068585:101_GG
MC01068585:101_GT
MC01272757:76_GT
MC01272757:76_TT

MC01510673:114_GG
MC01576512:22_GT
MC01768188:74_CT
MC02001843:31_AG
MC02099341:85_AG
MC02206548:70_GG
MC02206548:70_GT

MC03464566:154_CG
MC04640598:94_CT

MC05277703:114_AA
MC05277703:114_AT
MC05778243:40_AC

G
en

ot
yp
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SN
PS
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Figure Appendix II.b.1 Scatter plot showing the Moran’s I (weighting scheme of 20 nearest neighbours) 

against Samβada’s G score for P. major. Markers possibly under selection by environmental variables are 

displayed in red. 

 

 

Figure Appendix II.b.1 Visualisation of the main results for the model involving genotype 

MC06309558:73_CT and precipitation in December.  



Appendix  

215 
 

 

Figure Appendix II.b.2 Visualisation of the main results for the model involving genotype 

MC06929001:75_GG and precipitation in December. 

 

Figure Appendix II.b.3 Visualisation of the main results for the model involving genotype 
MC06681055:73_CC and precipitation in December. 
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Figure Appendix II.b.4 Visualisation of the main results for the model involving genotype 
MC00247904:97_AC and precipitation in December. 

 

Figure Appendix II.b.5 Visualisation of the main results for the model involving genotype 
MC01834138:78_CT and precipitation in December. 
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Figure Appendix II.b.6 Visualisation of the main results for the model involving genotype 
MC03993697:21_CC and precipitation in December. 

 

Figure Appendix II.b.7 Visualisation of the main results for the model involving genotype 
MC06784148:25_GT and precipitation in December.   
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 Appendix II.c Sheep & Goats 
Table Appendix II.c.1 Selected and deleted variables for sheep after the selection procedure. 

Selected variable Correlated variables for a 0.9 threshold (deleted)
SRTM tmin_12 tmin_11 tmin_3 tmin_2 tmin_1 tmean_12 tmean_1 bio_11 bio_6 

nor     
eas     
Cu     

PlCu     
PrCu     
VRM     
CSlo SVF TWI Energy200   

TI216 Di216 Df216    
TI2112 Di2112 Df2112    

Orientation200     
Coherency200     

tmin_5 tmin_9 tmin_8 tmin_7 tmin_6   
tmin_4 tmin_11 tmin_10 tmin_9 tmin_3 tmin_2 tmean_12 tmean_11 tmean_10 tmean_4 

tmean_3 tmean_2 tmean_1 tmax_12 tmax_11 bio_11 bio_1   
tmean_9 tmean_6 tmax_10 bio_1   
tmean_5 tmin_8 tmin_7 tmean_6   
tmax_9 tmean_8 tmean_7 tmax_6 tmax_5 bio_10   
tmax_8 tmean_7 tmax_7 tmax_6 bio_5   
tmax_4 tmax_10 tmax_5 tmax_3   
prec_10 prec_11 prec_3 bio_16 bio_13 bio_12   
prec_9 tmax_2 tmax_1 bio_18 bio_17   
prec_8     
prec_6 prec_5 bio_17    
prec_4 prec_5 prec_3 prec_2 bio_12   
bio_15     
bio_14 prec_7 bio_17    
bio_9     
bio_8     
bio_7 bio_4 bio_2    
bio_3     
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Table Appendix II.c.2 Selected and deleted variables for goats after the selection procedure. 

Selected variable Correlated variables (deleted)

SRTM tmin_12 tmin_11 tmin_3 tmin_2 tmin_1 tmean_12 tmean_1 bio_11 bio_6
nor     
eas     
Slo VRM TWI    
Cu     

PlCu     
PrCu     
SVF CSlo Energy200    

TI216 Di216 Df216    
TI2112 Di2112 Df2112    

Orientation200     
Coherency200     

tmin_8 tmin_9 tmin_7 tmin_6 tmin_5 tmean_5 bio_1   
tmean_6 tmean_9 tmean_8 tmean_7 tmean_5 tmax_5 bio_10   
tmean_2 tmin_11 tmin_10 tmin_9 tmin_4 tmin_3 tmin_2 tmean_12 tmean_11  

tmean_10 tmean_4 tmean_3 tmean_1 tmax_12 tmax_11 tmax_2 tmax_1  
prec_9 bio_17 bio_11 bio_1   

tmax_10 tmean_10 tmean_9 tmean_4 tmax_11 tmax_4 tmax_3 tmax_2 tmax_1 bio_1
tmax_7 tmax_8 tmax_6 bio_5   
prec_8     
prec_6 prec_5 bio_17    
prec_1 prec_12 prec_11 prec_4 prec_3 prec_2 bio_19 bio_16 bio_13 bio_12
bio_15     
bio_14 prec_7 bio_17    
bio_9     
bio_8     
bio_7 bio_4 bio_2    
bio_3     

 



Appendix  

220 
 

 

Figure Appendix II.c.1 Distribution of Q-values from Samβada for sheep 

 

Figure Appendix II.c.1 Distribution of Q-values from Samβada for goats 
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Figure Appendix II.c.2 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 2 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.3 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 3 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.4 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 5 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.5 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 10 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 



Appendix  

225 
 

 

 

Figure Appendix II.c.6 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 14 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 



Appendix  

226 
 

 

 

Figure Appendix II.c.7 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 18 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.8 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 19 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.9 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 20 for sheep. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.10 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 2 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.11 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 3 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.12 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 7 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.13 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 9 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.14 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 11 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.15 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 13 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.16 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 20 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Figure Appendix II.c.17 Comparison between significant XP-CLR, Samβada and LFMM results according to 

their position on chromosome 25 for goats. For XP-CLR, only significant windows are shown and color-codes 

depend on the variable. Significant genotypes in Samβada are shown in red and their associated variable are 

given in as labels. The blue bar represents the threshold of significance. LFMM’s SNPs are color-coded ac-

cording to their associated variable. The blue bar represents the threshold of significance. 
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Very high resolution digital elevation models: are 
multi-scale derived variables ecologically relevant? 
Short running title: Ecological relevance of VHR DEM-derived environmental variables 
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1Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engi-
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Abstract 
 Digital Elevation Models (DEMs) are often used in landscape ecology to retrieve elevation 

or first derivative terrain attributes such as slope or aspect in the context of species dis-

tribution modelling. However, DEM-derived variables are scale-dependent and, given the 

increasing availability of very high resolution (VHR) DEMs, their ecological relevance must 

be assessed for different spatial resolutions. 

 In a study area located in the Swiss Western Alps, we derived VHR DEMs-derived variables 

related to morphometry, hydrology and solar radiation. Based on an original spatial reso-

lution of 0.5 meters, we generated DEM-derived variables at 1m, 2m and 4m spatial reso-

lutions, applying a Gaussian Pyramid. Their associations with local climatic factors, meas-

ured by sensors (direct and ambient air temperature, air humidity and soil moisture) as 

well as ecological indicators derived from species distribution, were assessed with multi-

variate Generalized Linear Models (GLM) and Mixed Models (GLMM).  

 Specific VHR DEM-derived variables showed significant associations with climatic factors. 

In addition to slope, aspect and curvature, the underused wetness and ruggedness indices 

predicted measured ambient humidity and soil moisture, respectively. Remarkably, spa-

tial resolution of VHR DEM-derived variables had a significant influence on models’ 

strength, with coefficients of determination decreasing with coarser resolutions or show-

ing a local optimum with a 2m resolution, depending on the variable considered.  
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 These results support the relevance of using multi-scale DEM variables to provide surro-

gates for important climatic variables such as humidity, moisture and temperature, offer-

ing suitable alternatives to direct measurements for evolutionary ecology studies at a lo-

cal scale. 

Keywords: Digital Elevation Models, Multi-scale analysis, Very High Spatial Resolution, Tempera-
ture and Humidity Loggers, Landolt’s Ecological Indicators, Generalized Linear Models, Local Scale 

 

Introduction 
Digital elevation models (DEMs) are widely used in landscape and evolutionary ecology to under-
stand the distribution of species and their genetic variation (Kozak et al. 2008). Their most com-
mon use in ecology consists in retrieving elevation, or in computing primary terrain attributes (i.e. 
slope, aspect and curvature), which underlie biophysical processes at local or regional scales, es-
pecially in mountainous areas (Elith & Leathwick 2009; Manel et al. 2010a). In many studies, pri-
mary attributes have been used as proxies for factors such as solar radiation (Fu & Rich 2002), 
evapotranspiration (Guisan & Zimmermann 2000), overland and subsurface flow (Broxton et al. 
2009), soil water content (Moore et al. 1991), wind, erosion/deposition rate, soil characteristics 
(Wilson & Gallant 2000), climatic variables as well as snow accumulation and melt (Lyon et al. 
2008; Dobrowski 2011). Their accuracy and increasing availability turned them into accessible 
indicators of topographic variability, though not necessarily those with the highest predictive po-
tential (Guisan & Zimmermann 2000; Pradervand et al. 2014).  

A large variety of DEM-derived variables can be computed. Conventionally primary terrain attrib-
utes are calculated on the basis of 3x3 moving window (Wilson & Gallant 2000; Böhner et al. 
2002), but more complex variables have been developed over the last two decades to model hy-
drological processes, solar radiation or local morphometry (Wilson & Gallant 2000; Kalbermatten 
et al. 2012). Named secondary topographic attributes, they are often a combination of primary 
attributes calculated using a moving window of varying size. Solar radiation for example combines 
slope, aspect, sunshine duration and adjacent relief (Wilson & Gallant 2000). The higher predic-
tive power of secondary topographic attributes such as wetness indices (Beven & Kirkby 1979), 
stream power (Moore et al. 1991), terrain ruggedness (Riley et al. 1999) or temperature (Wilson 
& Gallant 2000) may be of particular interest for assessing ecological patterns related to specific 
processes at a landscape scale. For example, Böhner & Selige (2006) used two secondary topo-
graphic attributes - a wetness index and a solifluction index - to predict soil pH and snow cover. 
Secondary topographic attributes were also developed for specific purposes, such as differentiat-
ing habitats across different mountain ranges using the Vector Ruggedness Measure (VRM) de-
veloped by Sappington et al. (2007). Despite convincing examples of their usefulness, DEM-
derived variables diversity is rarely potentiated in species distribution models or landscape genet-
ics.  
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Commonly used DEMs show a moderate to coarse resolution (≈30m for ASTER GDEM, ≈90m for 
SRTM) and a poor accuracy (Tachikawa et al. 2011). In addition, most studies would only consider 
DEMs at their original resolution or use GPS measurement to compute slope and aspect (Patsiou 
et al. 2014; Greenwood et al. 2015). However, the gradual emergence of very high resolution 
(VHR, ≈1m) elevation data offered unprecedented level of details for exploring the morphological 
characteristics of landscape and promoted new applications (see Lassueur et al. 2006; 
Kalbermatten et al. 2012 and references therein). Indeed, high resolution provides several general 
advantages. First, it permits to get safer projections on the persistence of species, like in refugia, 
and more accurate estimations of species distribution in response to global changes (Dobrowski 
2011). Climate experienced by an organism is indeed a combination of regional climate pattern 
and local terrain influence, which shape the habitat constraints an organism is facing. For exam-
ple, cold air drainage, elevation, topographic position, slope and aspect are the main terrain fac-
tors influencing the coupling between local and regional climate (Barry 1992).  

In particular, the use of VHR invites reconsidering a number of scale issues raised 20 years ago by 
Levin (1992). Among them, it is crucial to remember that a high spatial resolution (a small grain) 
does not necessarily imply better models. Accordingly, it is key to understand the scale-
dependency of topographic features and thus to evaluate the usefulness of VHR DEM-derived 
environmental variables for studies at local scales (≈1 km²) in the light of multi-scale analysis. It is 
indeed necessary to use spatial resolutions matching the geographic distribution of phenomena 
under study and the accuracy of sampling’s georeferencing. Accordingly, evaluating the influence 
of scale on the computation of environmental variables is essential. In particular, to what extent 
VHR likely evidence micro-relief and related micro-climate physical phenomena that may not be 
grasped at coarser resolutions remains poorly known (Levin 1992; Marceau & Hay 1999; Cavazzi 
et al. 2013). Furthermore, no consensus has emerged yet on the benefits and drawbacks of VHR 
and this is well illustrated by the multi-resolution approaches of Pradervand et al. (2013) that did 
hardly improve species distribution models of alpine plants at a regional scale, although the dis-
tribution of some plants known to live in microhabitats was significantly better predicted. Even 
though the relationship between species’ occurrences and a given environmental variable does 
not necessarily hold across scales, most studies in ecology use variables at a single resolution with 
no consideration of scale representativeness. However, scale-dependency is likely central to res-
ervations raised about the contribution of DEMs to ecological modelling and thus deserves addi-
tional investigations. 

The present work integrates the methodological constraints mentioned above to illustrate how 
VHR DEM-derived variables can be used to characterize mosaic habitats along a 2 km long alpine 
ridge encompassing the subalpine-alpine ecotone (Parisod & Christin 2008). Given the steep al-
pine configuration of this landscape, topography was assumed to be a major driver of air temper-
ature and humidity, as well as soil moisture, thus ruling the distribution of plants (Körner 2003). 
Accordingly, our aims were to (i) assess the ecological relevance of VHR DEM-derived variables by 
modelling the relationship between primary as well as secondary VHR DEM-derived environmen-
tal variables (e.g. direct solar radiation, wetness index, vector ruggedness measure) and climatic 
variables measured in the field, and (ii) to identify relevant scales by computing VHR DEM-derived 
variables at spatial resolutions of 0.5, 1, 2 and 4 meters and assessing the goodness-of-fit and 
significance of corresponding models. Climatic variables were obtained from different sources; 



Appendix  

240 
 

105 loggers were distributed along the ridge to measure temperature and humidity at high tem-
poral resolution during several months. In addition, we obtained one time measurements of soil 
moisture at high spatial density. Finally, we modelled the relationship between the same VHR 
DEM-derived variables and a series of ecological indicators derived from plant species composi-
tion (Landolt et al. 2010).  

Material and Methods 
a) Study area and sampling design 

The focal study area is a narrow ridge  located in the Swiss Western Alps, at “Les Rochers de-
Naye” (N46°26’00’’ E6°58’50’’), covering an elevation range included between 1864 and 2043 m. 
Locally adapted ecotypes of the plant Biscutella laevigata were shown to grow within a distance 
of less than 10 meters from the cliff in contrasted microsites (Parisod & Bonvin 2008; Parisod & 
Joost 2010) and this area was thus selected as a suitable model landscape to highlight mosaic 
habitats across the local subalpine-alpine ecotone.  

In order to assess the ecological relevance of VHR DEM-derived environmental variables, the de-
sign and the georeferencing of sampling locations are key elements since the precision of their 
location has to exactly match the highest resolution of the DEM described in the next section. 
Therefore, sampling locations were selected following a random cluster sampling guided by the 
population density of the focal species and guaranteeing that all data points are located within 
pixels representing 0.5x0.5m in the field, resulting in 60 4x4m areas with at least five individuals 
of B. laevigata (see resulting distribution in Figure 1A). Briefly, direct air temperature was meas-
ured with 60 uncovered temperature loggers placed at the centre of each area as well as 20 addi-
tional ones installed at random locations along the ridge. Ambient temperature was measured 
with 25 temperature and humidity covered loggers, placed next to one uncovered logger over 
three. Soil moisture was measured at 201 sampling locations representative of the focal species 
(Figure 2B). Furthermore, species composition was assessed in 452 plots of 0.2 m × 0.2 m at the 
corners of 1m × 1m squares located within the 60 areas as well as 53 additional ones randomly 
located along the ridge (Appendix S1).  

Details on these measurements can be found in the next sub-section. 

All sampling points and loggers were geo-referenced with a differential GPS unit (TOPCON-HIPer 
Pro, http://www.topcon.com.sg/survey/hiperpro.html) offering a horizontal accuracy of ~2-3cm 
and a vertical accuracy of ~3-4cm. 

 

b) Temperature, humidity and soil moisture data 

Air temperature and humidity 

Direct air temperature (DT) was measured with uncovered IButton loggers (1922L) from Maxim 
Integrated (http://www.maximintegrated.com/) placed 15cm above the ground. Furthermore, 



Appendix  

241 
 

covered temperature and humidity loggers (IButton 1923) measured ambient temperature (AT) 
and humidity (HU) at 15cm above the ground (. These loggers were covered with a white shield 
pierced with several holes to avoid stagnant air. Loggers were set to record information with a 
frequency of 30 minutes during 126 days, from June 15, 2013 to October 18, 2013, with an accu-
racy level of 0.5 degrees C° and 5% for humidity. These 126 days were grouped in 9 periods of 14 
days (P1: June 15 to 28; P2: June 29 to July 12; P3: July 13 to 26; P4: July 27 to August 9; P5: Au-
gust 10 to 23; P6: August 24 to September 6; P7: September 7 to 20; P8: September 21 to October 
4; P9: October 5 to 18). 

The following descriptive statistics were computed for DT, AT and HU during each period: mini-
mum (MIN), maximum (MAX), mean (MEA), standard deviation (SD), median (MED), mean value 
at 1am (M1A), mean value at 1pm (M1P), mean daily range (MDR). 

Soil moisture 

The soil volumetric water content was evaluated once with a FieldScout TDR 300 Soil Moisture 
Meter (Spectrum Technologies, Aurora, USA, http://www.specmeters.com/). Following le Roux et 
al. (2012), soil moisture values are highly correlated among distinct sampling events and a singly 
measurement taken more than 24 hours after rainfall was assumed to yield reliable soil moisture 
values (MSM).  

 

c) Ecological indicators 

Species composition was assessed in 452 plots (Appendix S1), with species cover estimated as the 
proportions of the plot covered by the species. Landolt’s ecological indicator values (Landolt et al. 
2010) were used to provide an expert-based ecological characterization of sampling plots from 
their composition in plant species. Landolt’s indicators specify tolerance of species of the Swiss 
flora to climatic or soil conditions, including competitive interactions between species. They are 
better adapted to the alpine flora than the more commonly used Ellenberg's ecological indicators 
(Ellenberg et al. 1991). The mean value of indicators, weighted by the square-rooted abundance 
of species, was estimated at the plot level, providing a set of five soil indicators, LDT-
colloidal_dispersion (soil aeration), LDT-moisture, LDT–humus (humus proportion), LDT-
nutritive_substances (soil fertility, mainly nitrogen), LDT-pH_reaction (soil pH), and three climate 
indicators, LDT-continentality, LDT-light, and LDT-temperature. 

 

d) DEM acquisition and processing 

We acquired a VHR DEM based on Airborne LIDAR (LIght Detection And Range) technology. A 
Riegl VQ-480 laser scanner (http://www.riegl.com/) was installed on a helicopter in October 2011 
by the HELIMAP Company (http://www.helimap.ch/) to get an average density of 25 soil 
points/m². The raw point cloud was then processed with the TERRASCAN software (TERRASOLID 
Ltd, Helsinki; http://www.terrasolid.fi/ ) to filter buildings, vegetation and all other surface ele-
ments in order to obtain a terrain model (Xiaoye Liu 2008). The final density of the ground class 
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was 10 points/m² on average and the spatial resolution of the DEM was set to 50cm. A few void 
locations (no data) were filled with the help of a 1m resolution model obtained from the State of 
Vaud (ASIT-VD; http://www.asitvd.ch/), and using a Multilevel B-Spline Interpolation in SAGA GIS 
(Seungyong et al. 1997). 

A multi-scale analysis framework was used to understand how important micro-habitat conditions 
are and what level of detail is necessary to optimally correlate climatic variables with topographic 
related variables. Our approach is based on the work of Kalbermatten (2010) and Kalbermatten et 
al. (2012), who showed that a wavelet transform pipeline is a clever way to generalize topography 
and demonstrated the usefulness of B-splines, a generalization of Bezier curve, to model arbitrary 
functions, such as DEMs. Therefore, we took advantage of the Gaussian Pyramid algorithm im-
plemented in MATLAB (MATLAB Version 12b. Natick, Massachusetts: The MathWorks Inc., 2010) 
to approximate topography at multiple resolutions. The original VHR DEM (50cm) was thus gener-
alized to 1, 2 and 4 meters to constitute the multi-scale DEM datasets. 

We used SAGA GIS (Böhner et al. 2006) and the R package RSAGA (Brenning 2008) to compute 
and automate the production of DEM-derived variables. We initially computed 16 DEM variables 
related to morphometry, hydrology and solar radiation, for which details are provided in Appen-
dix S2. Solar radiation variables were computed during one month of the growing season (June).  

 

e) Selection of independent DEM-derived variables 

Correlation between each pair of variable was assessed (Appendix S3) and specific variables were 
omitted from subsequent analyses according to the following rules: (i) the maximum correlation 
threshold was set to 0.6, (ii) secondary attributes that where highly correlated (>0.6) with primary 
attributes (i.e. slope and eastness/northness) were deleted, and (iii) the remaining choice be-
tween eastness and northness was decided at random due to the high correlation between these 
two variables. In the end, eight independent variables were retained (Table 1): altitude (alt), ter-
rain wetness index (twi), sine of aspect or eastness (eas), downslope distance gradient (ddg), 
slope (slo), horizontal curvature (hcu), vertical curvature (vcu), and vector ruggedness measure 
(vrm). 

Given the limited number of observations available for covered ambient temperature (AT) and air 
humidity (HU) variables (n=25), correlations between retained DEM variables where higher than 
for uncovered loggers locations and we had to limit the study to 5 independent DEM-derived var-
iables (Appendix S4): altitude (alt), eastness (eas), slope (slo), horizontal curvature (hcu) and ter-
rain wetness index (twi). 

f) Regression analysis 

Multivariate regression models were performed to explain the variability of climatic variables and 
ecological factors measured in the field, for each spatial resolution. We used a Step Generalized 
Linear Models (SGLM; Nelder & Wedderburn 1972) with a Gaussian family and controlled the 
addition or removal of a term based on the Akaike Information Criterion (AIC). After model com-
pletion, co-linearity between variables was controlled using Variance Inflation Factors (VIF; 
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Montgomery & Peck 1982), based on the threshold >3 (Zuur et al. 2009). Models with variables 
having VIF>3 were processed again, excluding the inflating variables. Landolt factors were log-
transformed to fit at normal distribution and all variables were standardized. Adjusted R² ((N-
1)/(N-k-1) where N = number of observations and k = number of predictors) were calculated for 
each model. 

Instead of GLMs, Generalized linear mixed models (GLMMs) (Breslow & Clayton 1993; Bolker et 
al. 2009) were performed on the dataset of soil moisture and Landolt’s indicators to take into 
account the possible effect of spurious spatial autocorrelation. These variables were indeed col-
lected in plots and the merging by plot was thus considered as a random effect. GLMMs were 
performed with the lme4 R package (Bates & Maechler 2009). As the package does not support 
step procedure, we used the resulting DEM-derived variables from SGLMs procedures as fixed 
effects in the GLMMs.  

 

g) Conventions for variables abbreviations  

To facilitate understanding of the following chapters, the conventions used for abbreviations are 
here-below summarized.  

Environmental variables from loggers are written in Upper case and with two letters (DT, AT, HU). 
Landolt indicators are written in upper case with three letters in italic (ex: LDT-moisture) and 
measured soil moisture with three letters (MSM).  

For DT, AT and HU models, measured variables are written in upper case with three letters (MEA, 
MED, MIN, MAX, MDR, M1A, M1P).  

Finally, all DEM-derived variables are written in lower case (alt, slo, twi, vrm, eas, hcu, vcu, ddg). 

 

Results 
The distribution of average direct air temperature (DT) over the whole sampling period provides a 
global view on climatic conditions during summer 2013 (mean 12.1°C; Figure 1B). We focused 
here on four among the nine periods of 14 days representative of contrasted weather conditions 
at such altitude: P1 and P9 are representative of the beginning and the end of the growing season 
and present a cold and a snowy episode, respectively, whereas P3 and P6 are representative of 
early and late summer conditions, respectively, and are characterized by warm averages with high 
standard deviations.  

Together with altitude (alt), terrain wetness index (twi), vector ruggedness measure (vrm), east-
ness (eas) and slope (slo) are the DEM-derived variables that best explain the variance of meas-
ured environmental variables. Hereunder, we present the VHR DEM-derived variables showing 
the best model’ fit to explain the variability of measured environmental variables and ecological 
factors, depending on different spatial resolutions and periods of time. 
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a) Direct air temperature (DT) 

Among all DT models, twi is the most frequently significant DEM-derived variable (47% of the 
models). It is positively correlated with measured variables related to high temperatures (M1P, 
MAX, MDR) and negatively correlated with those related to cold temperatures (M1A, MIN, MEA) 
(see Table 2 and Appendix S5). Similarly, alt is also frequently significant (55% of the models), but 
mainly with measured variables related to cold temperatures (M1A, MED, MEA, MIN). Other 
DEM-derived variables such as slope, eastness and ddg are less frequently significant.  

Significance of DEM-derived variables varies considerably with spatial resolution, whereas it re-
mains relatively constant at all resolutions for elevation. Although the significance for twi is lower 
when computed at 0.5 or 1m than at coarser resolutions (Appendix S5), adjusted R² (aR²) are usu-
ally highest in models at 0.5 or 2m resolution and almost systematically lower at 4m. Noticeably, 
aR² are higher for all measured variables (except for mean range) during periods P1 and P9, which 
correspond to the two coldest periods among the four analysed. 

b) Ambient temperature (AT) 

Significant contributions of DEM-derived variables in AT models are much less frequent (49% of 
the models that converged) than for previously presented DT models (91%; Appendix S6). Howev-
er, relevant predictors are the same as for DT models, except that horizontal curvature (hcu) is 
significant at a 2 m resolution (Table 3). Like DT models, twi is positively correlated with measured 
variables related to high temperatures, and negatively correlated with cold temperatures. Alti-
tude also remains a good predictor and is involved in the models with the highest R², particularly 
during the snow episode (P9).  

c) Ambient humidity (HU) 

Among the 112 HU models computed, only 35 (40%) showed at least one significant predictor 
(Appendix S7), contrasting with prior models for DT (90%) and AT (70%). This is likely related to 
the rare significance of altitude and of DEM-derived variables such as eastness, slo and hcu in HU 
models (5% of them). On the other hand, twi is the DEM-derived variable with most frequently 
and highly significant models (37%). It is significant for all categories of measured variables and all 
periods analysed, except during the snowy episode (P9). Like DT models, resolution influences twi 
significance and models have an aR² optimum at 1 or 2m (Table 4).  

To assess the importance of the time-period for the three categories of environmental variables 
(DT, AT, HU), we computed models between DEM-derived variables and measured variables over 
the entire fieldwork season (i.e. 15 June to 18 October) (Appendix S8). Although the same DEM 
variables are significant for almost the same measured climatic variables, our results show that 
periods of cold, cloud cover (P1) or snow cover (P9) contrasted with those of sunshine (P3, P6). 
Indeed, a stronger significance of eas, slo, twi and a weaker significance of altitude are observed 
during those sunshine periods. In addition, the use of several measured variables is justified in 
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order to distinguish different ecological conditions, as recommended by (Ashcroft et al. 2011; 
Vercauteren et al. 2012). 

d) Soil moisture 

In soil moisture models, vector ruggedness measure (vrm) was the only DEM-derived variable that 
had a significant contribution across resolutions (Table 5). However, its contribution was depend-
ent on resolution, as models were less and less significant with coarser resolutions. Given that alt 
showed a stable contribution though scales, the highest aR² was obtained at 0.5m resolution. 

e) Ecological indicators  

Determination coefficients of models including Landolt’s ecological indicators were low at all reso-
lutions. Only LDT-moisture and LDT-nutritive_substances showed aR² above 0.15. Two DEM-
derived variables, twi and slope, showed a significant contribution to LDT-moisture across scales 
(Table 6). Unlike other models, GLMM’s aR² values for LDT-moisture were stable through resolu-
tions. 

Discussion 
Variables derived from DEMs are crucial for species distribution models or landscape genetics, but 
their ecological relevance remains subject to caution (Lassueur et al. 2006; Dubuis et al. 2013). In 
particular, the relationship between DEM-derived variables and ecological features does not nec-
essarily hold across spatial scales and appears highly dependent on the spatial resolution. In order 
to foster application of DEMs in ecology and evolution, their relevance to approximate environ-
mental features must be evaluated and suitable approaches should be further developed. Our 
results validate two essential concerns regarding DEMs: i) multi-scale approaches are valuable 
when facing topographic heterogeneity, and ii) it is crucial to investigate a large diversity of DEM-
derived variables in order to evaluate all topographic aspects that might influence climatic varia-
bility. Using a specific area with challenging features at the interface between subalpine and al-
pine conditions, we were able to show that DEM-derived variables can be used as relevant surro-
gates for environmental variables and to better understand relationships with local topography. 
Indeed, physiological activity and adaptation of plants are affected by temperature, humidity and 
soil characteristics (Körner 2003; Böhner & Selige 2006; Manel et al. 2012b). 

Our models consistently report decreased aR² at 4m spatial resolution, supporting the hypothesis 
that VHR provides better predictions in heterogeneous areas such as mountains. However, our 
models did not generally converge towards a clear optimal resolution and reveal that the most 
suitable resolution depends on the type of DEM-derived variable considered. This is particularly 
well illustrated by vrm, showing highest significance at 0.5m and highlighting that soil characteris-
tics are best grasped when initially computed with as much details as possible, whereas hydrology 
variables, such as twi, reach optima at different resolutions (Böhner & Selige 2006; Buchanan et 
al. 2013). Variation in the model fit across scales highlights the necessity of implementing multi-
scale approaches in ecological studies involving DEM-derived variables. The computation of such 
variables at multiple scales should be systematically considered to model micro-climatic variables 



Appendix  

246 
 

such as temperature, humidity and soil moisture in a mountainous area. Furthermore, we argue 
that using DEMs at their original grid resolution, without consideration of scale representative-
ness, likely leads to an underestimated role of topographic features in ecological models. In fact, a 
too fine resolution may hold an excess of details and generate too much noise, while too coarse 
resolution would only show generalized properties of the landscape and lose explanatory power 
(Cavazzi et al. 2013). Although most studies using DEMs at their original resolution often ended 
up with a minor contribution of topography in their models (Zimmermann & Kienast 1999; Manel 
et al. 2010b; Vercauteren et al. 2012; Patsiou et al. 2014), we show here that coupling VHR DEMs 
with a multi-scale approach generates variables with a high predictive power. Accordingly, acquir-
ing high or very high resolution DEMs and performing multi-scale analysis further on represent a 
suitable approach for local scale studies in ecology and evolution. At the moment, LIDAR repre-
sents the best DEM acquisition technology, providing great precision and high resolution across 
hardly accessible terrains, but still expensive (Xiaoye Liu 2008). Although they do not show the 
same level of precision like LIDAR, stereo-photogrammetry from Unmanned Aerial Vehicles (UAV) 
constitutes a less powerful but suitable and cheaper alternative subject to intense research 
(Leempoel & Joost 2012).  

 

Our results further bring advantages of using a large panel of DEM-derived variables. On the one 
hand, terrain wetness index (twi) showed the highest explanatory power among the DEM-derived 
variable here tested, highlighting a relevant proxy for dryness across the studied landscape 
(Figure 2A). In addition, models including more variables such as eastness and slope best predict-
ed temperature, probably because these primary attributes have a high influence on radiation 
and wind exposure (Wilson & Gallant 2000; McVicar et al. 2007; Appendix S5). For instance, in our 
specific study area, twi partially accounted for the distance to the ridge as well as for the protec-
tion from wind, which could further contribute to temperature and humidity variability. In fact, 
distance to ridge and twi were moderately correlated at high resolution (i.e. 0.6 at 0.5m and 0.7 
at 1m) and dropped to 0.3 at coarser resolutions. Although such correlations are inevitable and 
likely blur interpretations, our models showed that most of the significant contribution of twi 
were obtained at 0.5 and 2m, when the correlation between twi and distance to ridge were not 
the strongest. This, again, highlights the relevance of a multi-scale analysis. 

Among other overlooked DEM-derived variables in the literature, vector ruggedness measure 
(vrm) appeared as the most important predictor of soil moisture (MSM), suggesting that vrm at 
such high resolution is a suitable proxy for the distribution of stony soils along the ridge and thus 
for soils with different porosities. Accordingly, the negative coefficients observed here support 
this hypothesis that high roughness highlight stony soils implying low soil moisture, whereas low 
roughness reflects developed soils retaining higher moisture. This vrm variable, measuring vector 
dispersion across the central pixel rather than being a derivative of slope, represents a much bet-
ter proxy than related proxies such as Terrain Ruggedness Index (Appendix S3&4), as previously 
stressed by Sappington et al. (2007). Nevertheless, the present models demonstrate a variety of 
DEM-derived variables as suitable or complementary surrogates to in situ measurements for 
characterization of plant habitats and we recommend to go beyond their traditional use of eleva-
tion, slope and aspect (Dobrowski 2011).  
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In addition, DEM-derived variables are easy-to-compute proxies of environmental features, in-
volving limited fieldwork but good knowledge of Geographic Information Systems, DEM-derived 
variables should thus be widely used as proxies of environmental features in ecology and evolu-
tion (Kozak et al. 2008). Furthermore, open source GIS alternatives (e.g. SAGA GIS, Quantum GIS 
and GRASS) provide algorithms to process a variety of secondary terrain attributes.  

 

The distribution of the focal species along an apparently homogeneous ridge, showing a constant 
slope and slight changes in orientation, in fact turned out to be highly heterogeneous at a high 
resolution. Prior work on ecotypes of Biscutella laevigata (Parisod & Christin 2008) suggested a 
mosaic distribution of subalpine and alpine habitats, and the use of VHR DEM-derived variables 
here brought clear evidence of topographic control on micro-climatic patterns. Our results indeed 
show a significant contribution of micro-topography to model micro-habitat, even though un-
measured factors may play a major role. For instance, it is generally admitted that high elevation 
and exposed sites are more likely to be coupled with free air environment as compared with low 
elevation sites that are protected (Pepin & Seidel 2005). However, we observed 5°C difference in 
ranges for AT and up to 8°C for DT. Such important temperature variability over short distances 
cannot only be due to large scale effects and support our evidences for a micro-topographic con-
trol (Fridley 2009). In addition, VHR DEM-derived variables in our models highlighted the lower 
relevance of elevation as compared with studies at regional or continental scale. Despite a corre-
lation of -0.99 reported between temperature and elevation across Switzerland (Zimmermann & 
Kienast 1999), we here showed that the 0.5°C decrease per 100m elevation increase did not hold 
at a local scale. Therefore, the important variability of temperature observed here is likely valid in 
various mountainous areas, even when microhabitats variability is only partially distinguished 
from large scale factors. Our results thus confirm that proxies other than elevation can - and in 
fact probably better - account for temperature variability in as mountainous areas. 

On top of micro-climatic factors, meso-climatic ones might affect climatic variables in the study 
area. For instance,  varying wind patterns and cloud cover across the studied ridge could impact 
on the variability of local climates. The results obtained here for micro-topography are however 
not disqualified by meso-climatic patterns. In contrast to common cloudiness on the highest part 
of the study area early and late during the growth season, the contribution of DEM-derived varia-
bles appeared consistently significant at different time periods, demonstrating a substantial effect 
of micro-topography. In addition, several DEM variables such as protection index, sky view factor 
or ruggedness might expected to be surrogates of protection from wind at a micro-climatic level. 
Noticeably, temperatures measured during the snow episode provide an indirect measure of 
snow cover, as loggers situated under the snow during that period did not show a daily cycle of 
temperature at sampling locations. Therefore, modelling of snow cover heterogeneity could be 
improved by combining topographic variables (Gottfried et al. 1998; Randin et al. 2009) with the 
daily cycles of loggers.  Our results thus highlight the role of micro-topographic effects and the 
need to consider different measured variables and temporal variability at a scale pertinent for 
plants, as previously reported by Körner (2003) and Scherrer & Körner (2011). 



Appendix  

248 
 

Noticeably, variables derived from VHR DEM predicted Landolt indicators derived from species 
distribution with less accuracy than climatic variables. Insufficient variability in this biological da-
taset compared to extension of Landolt's indicator values (attributed to species across the whole 
Alps (Landolt et al. 2010) certainly explains such limited relevance of micro-topography to a large 
extent. Our data are indeed restricted to a single site and may thus not show sufficient variation 
for indicators such as temperature (here, only alpine belt), continentality (only oceanic condi-
tions), light (only open, alpine grasslands), soil pH (only calcareous soils), humus and aeration 
(mainly humic and silty soils). Furthermore, Landolt’s indicators include biotic interactions such as 
competition that were not taken into consideration by DEM-derived variables. Although the exact 
reasons underlying the relatively low adjusted R2 in models derived from biotic data remain elu-
sive, this work shows that models using VHR DEM-derived variable were generally significant for 
ecological indicators showing a high variability at local scale in mountainous environment (Körner 
2003). Variables retained in models (i.e. wetness index, ruggedness, slope and curvature) were 
indeed highly coherent with factors related to micro-topography and to slope, such as lower soil 
humidity on steep slopes leading to higher drainage and in superficial soils likely developing on 
mounds rather than in hollows (Gobat et al. 1989; Burga et al. 2010) .  

Although they are not directly linked to ecological features, DEM-derived variables are relevant 
proxies and easily accessible sources of environmental variability. We demonstrated that DEMs 
cannot be used without consideration for their scale representativeness and that only a multi-
scale approach can detect these features. In fact, a VHR DEMs is mandatory to model properly 
local topographic features and allowed us to perform multi-scale analysis to show a strong effect 
of resolution to model climatic variables, models in which higher resolution does not necessarily 
mean better explanatory power. Finally, we noted that DEMs are underexploited regarding the 
large diversity of variables that can be computed from them and we strongly recommended going 
beyond the traditional use of elevation, slope and aspect.  
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Figure 1 (A) Study zone and sampling locations for loggers on the ridge of Les Rochers-de-Naye in the Swiss 

Western Alps. Loggers were disposed at and between Biscutella laevigata locations (not shown). Uncovered 

and covered loggers were used to measure direct air temperature and ambient temperature respectively. 

(Background image with 50 m isoelevation lines: Swissimage © 2013 swisstopo (JD100064)). (B) Mean daily 

direct air temperature and standard deviation (in grey) from the 15 June to the 18 October 2013, measured 

with uncovered loggers set 15 cm above soil level. Vertical lines delimit the defined periods. Retained periods 

for following analyses are in bold. 
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Figure 2 (A) Map of the mean Direct air Temperature (DT) at 1am (M1A) during period P6 (August 24 to 

September 6). Terrain Wetness Index at 1m resolution computed from the DEM is in the background with 50 

m iso-elevation lines. Additional zoom on the ridge to distinguish the loggers and visualize the correlation 

between the measured variable and the twi. (B) Map of one-time measurements of soil moisture (in percent) 

with Vector Ruggedness Measure at a 0.5m resolution computed from the DEM is in the background with 50 

m iso-elevation lines. Additional zoom on the ridge to distinguish the loggers and visualize the correlation 

between soil moisture and the vrm. For more details on these results, refer to table 2 and 5. 
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Table 2 Summary of multivariate generalized linear models sorted by adjusted R²(aR²) in decreasing order 

for DIRECT AIR TEMPERATURE (DT), measured with uncovered loggers at 15 cm above soil level. First column 

is the abbreviation of the model showed, with different measured variables and time periods. The second 

column tells at which resolution (Res) the highest aR² was found. Coefficients of each variable are showed 

when significant and significance is expressed with “*” where p-values <0.001 correspond to ***, <0.01: **, 

<0.05: *. All models at all resolutions can be found in supporting information of this paper. Abbreviations are 

the following. Measured variables: minimum (MIN), maximum (MAX), mean (MEA), median (MED), mean 

temperature at 1am (M1A), mean temperature at 1pm (M1P), mean daily range (MDR). Time periods: 

P1=15 to 28 June, P3=13 to 26 July, P6=24 August to 06 September, P9=05 to 18 October. DEM-derived vari-

ables : Altitude (alt), Terrain Wetness Index (twi), Vector Ruggedness Measure (vrm), Eastness (eas), Slope 

(slo), Horizontal Curvature (hcu), Vertical Curvature (vcu), Downslope Distance Gradient (ddg) 

 

Table 3 Summary of multivariate generalized linear models sorted by adjusted R²(aR²) in decreasing order 

for AMBIENT TEMPERATURE (AT), measured with uncovered loggers at 15 cm above soil level. First column 

is the abbreviation of the model showed, with different measured variables and time periods. The second 

column tells at which resolution (Res) the highest aR² was found. Coefficients of each variable are showed 

when significant and significance is expressed with “*” where p-values <0.001 correspond to ***, <0.01: **, 
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<0.05: *. All models at all resolutions can be found in supporting information of this paper. Abbreviations as 

in  

Table 4.1. 

 

Table 4 Summary of multivariate generalized linear models sorted by adjusted R² (aR²) in decreasing order 

for AMBIENT HUMIDITY (HU), measured with uncovered loggers at 15 cm above soil level. First column is the 

abbreviation of the model showed, with different measured variables and time periods. The second column 

tells at which resolution (Res) the highest aR² was found. Coefficients of each variable are showed when 

significant and significance is expressed with “*” where p-values <0.001 correspond to ***, <0.01: **, <0.05: 

*. All models at all resolutions can be found in supporting information of this paper. Abbreviations as in  

Table 4.1 

Table 4.1. 

 

Table 5 Summary of multivariate GLMMs on one-time measurements of SOIL MOISTURE sorted by adjusted 

R² (aR²). Coefficients of each variable are showed when significant and significance is expressed with “*” 

where p-values <0.001 correspond to ***, <0.01: **, <0.05: *. Abbreviations as in  

Table 4.1. 
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Supporting information 
Appendix S1 Map of LDT-moisture (background: Terrain Wetness Index at 0.5m resolution) 
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Appendix S2 Description and parameters of DEM-derived variables computed at each resolution 
(i.e. 0.5, 1, 2, 4m) 

 

 

 

 

 

 

 

 

 

 

Variable Abreviation Description Units Parameters/ Reference

Altitude alt DEM Altitude m /

Slope slo radians

Sinus of Aspect (eastness) eas radians

Profi le curvature vcu radians/m

Plan curvature hcu radians/m

Downslope distance 
gradient ddg

Quantify downslope controls on 
local drainage radians

Vertical distance : 2m             
Hjerdt et al. (2004)

no unit
Value is negative when 
the point is not 
protected and positive 
when it is.

Terrain ruggedness index tri Quantitative measure of topographic 
heterogeneity 

no unit Radius = 1 pixel  (Bönher & 
Antonic, 2009)

Vector Ruggedness 
Measure

vrm Quantifies ruggosity with less 
correlation to slope

no unit Radius = 1 pixel  (Sappington et 
al. 2007)

Visible Sky vis Ratio of the sky area over the 
obstructed area

no unit

Sky-view factor svf

Ratio of the radiation received by a 
planar surface to the radiation 
emitted by the entire hemispheric 
environment

no unit

Diffuse Solar radiation in 
June df6 Diffuse insolation kwh/m²

Direct Solar radiation in 
June di6 Direct insolation kwh/m²

Total Solar radiation in 
June ti6 Sum of direct and diffuse insolation. kwh/m²

Pr
im

ar
y 

at
tr

ib
ut

es
Se

co
nd

ar
y 

at
tr

ib
ut

es

Proxies for water flow, snow 
movements, erosion, solar radiation

Method= Zevenbergen and 
Thorne, 1987

Terrain Wetness Index
Quantifies topographic control on 
hydrological processes

Where a  is the specific 
catchment area and S 
the ddg

twi

Radius = 1 pixel  (Yokohama, 
2002)

Expresses the protection of a point 
from the surrounding relief. It is 
based on the maximum angle found 
at the zenith or at nadir from the 
point over a  defined radius

mpiMorphometric protection 
index

Latitude=46°; Time Period=30 
day; Time resolution=0.5h; Day 
of year=01/06 -> 30/06; 
Atomspheric effects=Lumped 
Atmospheric Transmittance  
(Boehner & Antonic, 2009; 
Wilson & Gallant, 2000).

Default Parameters (Riley et al., 
1999)

ܹ = ݈ܽ݊ ܵ 
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Appendix S3 Table of Spearman correlations coefficients calculated between DEM-derived varia-
bles showing a spatial resolution of 0.5m at Landolt sampling locations. Selected variables for all 
models are displayed on a grey background in the headers. Grey level in the table is lighter when 
approaching 0 and darker when approaching 1 or -1. Coefficients with an absolute value above 
0.6 are written in bold. DEM-derived variables abbreviations : Altitude (alt),  sinus of aspect (eas), 
cosine of aspect (nor), downslope distance gradient (ddg), horizontal curvature (hcu), morpho-
metric protection index (mpi), slope (slo), terrain ruggedness index (tri), vertical curvature (vcu), 
vector ruggedness measure (vrm), diffuse insolation in June (df6), direct insolation in June (di6), 
total insolation in June (ti6), sky view factor (svf), visible sky (vis), terrain wetness index (twi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

alt eas ddg hcu mpi slo tri vcu vrm df6 di6 ti6 svf vis twi

alt 1 -0.21 0.149 0.178 -0.29 -0.21 -0.2 0.067 0.145 0.409 -0.02 0.013 0.201 0.339 -0.5
eas -0.21 1 0.23 0.141 -0.21 -0.14 -0.11 0.058 -0.25 0.051 0.409 0.363 0.086 0.138 -0.16
ddg 0.149 0.23 1 -0.12 0.4 0.632 0.56 -0.04 0.587 -0.48 -0.39 -0.4 -0.62 -0.36 -0.17
hcu 0.178 0.141 -0.12 1 -0.71 -0.42 -0.39 0.791 -0.41 0.406 0.329 0.359 0.423 0.647 -0.59
mpi -0.29 -0.21 0.4 -0.71 1 0.841 0.8 -0.58 0.664 -0.82 -0.64 -0.67 -0.83 -0.88 0.505
slo -0.21 -0.14 0.632 -0.42 0.841 1 0.987 -0.29 0.804 -0.9 -0.82 -0.84 -0.96 -0.67 0.298
tri -0.2 -0.11 0.56 -0.39 0.8 0.987 1 -0.24 0.835 -0.93 -0.86 -0.88 -0.97 -0.63 0.261

vcu 0.067 0.058 -0.04 0.791 -0.58 -0.29 -0.24 1 -0.23 0.255 0.166 0.207 0.288 0.668 -0.7
vrm 0.145 -0.25 0.587 -0.41 0.664 0.804 0.835 -0.23 1 -0.71 -0.82 -0.83 -0.85 -0.54 0.169
df6 0.409 0.051 -0.48 0.406 -0.82 -0.9 -0.93 0.255 -0.71 1 0.752 0.791 0.947 0.723 -0.35
di6 -0.02 0.409 -0.39 0.329 -0.64 -0.82 -0.86 0.166 -0.82 0.752 1 0.993 0.824 0.444 -0.18
ti6 0.013 0.363 -0.4 0.359 -0.67 -0.84 -0.88 0.207 -0.83 0.791 0.993 1 0.85 0.495 -0.23
svf 0.201 0.086 -0.62 0.423 -0.83 -0.96 -0.97 0.288 -0.85 0.947 0.824 0.85 1 0.718 -0.3
vis 0.339 0.138 -0.36 0.647 -0.88 -0.67 -0.63 0.668 -0.54 0.723 0.444 0.495 0.718 1 -0.71
twi -0.5 -0.16 -0.17 -0.59 0.505 0.298 0.261 -0.7 0.169 -0.35 -0.18 -0.23 -0.3 -0.71 1
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Appendix S5 Summary of multivariate generalized linear models for DIRECT AIR TEMPERATURE 
(DT), measured with uncovered loggers at 15 cm above soil level. First column is the abbreviation 
of the model shown, with different measured variables and time periods. Coefficients of each 
variable are shown when significant and significance is expressed with “*” where p-values <0.001 
correspond to ***, <0.01: **, <0.05: *. Abbreviations are the following. Measured variables: min-
imum (MIN), maximum (MAX), mean (MEA), median (MED), mean temperature at 1am (M1A), 
mean temperature at 1pm (M1P), mean daily range (MDR). Time periods:  P1=15 to 28 June, 
P3=13 to 26 July, P6=24 August to 06 September, P9=05 to 18 October. DEM-derived variables 
abbreviations as in Appendix S3. 

 

Model Res aR² alt twi vrm eas slo hcu vcu ddg
DT-M1A-P1 0.5 0.49 -0.77*** -0.5*** 0.22*

DT-M1A-P1 1 0.52 -0.79*** -0.52***

DT-M1A-P1 2 0.52 -0.64*** -0.49***

DT-M1A-P1 4 0.49 -0.6*** -0.54***

DT-M1A-P3 0.5 0.39 -0.53*** -0.62*** 0.32**

DT-M1A-P3 1 0.44 -0.54*** -0.75*** 0.18*

DT-M1A-P3 2 0.45 -0.38*** -0.67***

DT-M1A-P3 4 0.32 -0.27** -0.78*** -0.48*

DT-M1A-P6 0.5 0.28 -0.46*** -0.58*** 0.27*

DT-M1A-P6 1 0.46 -0.49*** -0.81*** 0.25** -0.2*

DT-M1A-P6 2 0.42 -0.32** -0.69*** 0.28*

DT-M1A-P6 4 0.31 -0.3** -0.48*

DT-M1A-P9 0.5 0.69 -0.71*** 0.17* -0.21*

DT-M1A-P9 1 0.65 -0.72*** 0.23**

DT-M1A-P9 2 0.66 -0.73*** -0.2* 0.29*

DT-M1A-P9 4 0.65 -0.69*** 0.17*

DT-M1P-P1 0.5 0.21 -0.27* 0.35**

DT-M1P-P1 1 0.19 -0.26* 0.28*

DT-M1P-P1 2 0.25 -0.39*** -0.33**

DT-M1P-P1 4 0.21 -0.36** -0.5**

DT-M1P-P3 0.5 0.18 0.38** -0.37**

DT-M1P-P3 1 0.10 0.26*

DT-M1P-P3 2 0.12 -0.33**

DT-M1P-P3 4 0.01

DT-M1P-P6 0.5 0.11 -0.26* 0.26*

DT-M1P-P6 1 0.08 0.25*

DT-M1P-P6 2 0.08 0.27*

DT-M1P-P6 4 0.00

DT-M1P-P9 0.5 0.23 0.38** -0.33* 0.44*

DT-M1P-P9 1 0.16 0.45***

DT-M1P-P9 2 0.14 0.31* -0.29**

DT-M1P-P9 4 0.04
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
DT-MAX-P1 0.5 0.10 0.27*

DT-MAX-P1 1 0.05 -0.25*

DT-MAX-P1 2 0.11 -0.34**

DT-MAX-P1 4 0.07 -0.96*

DT-MAX-P3 0.5 0.11 0.32** -0.27*

DT-MAX-P3 1 0.10 0.27*

DT-MAX-P3 2 0.13 -0.35**

DT-MAX-P3 4 0.00

DT-MAX-P6 0.5 0.00

DT-MAX-P6 1 0.00

DT-MAX-P6 2 0.00

DT-MAX-P6 4 0.00

DT-MAX-P9 0.5 0.16 0.38** 0.27*

DT-MAX-P9 1 0.11 0.24* 0.24*

DT-MAX-P9 2 0.16 0.29* -0.35**

DT-MAX-P9 4 0.06 -0.27*

DT-MEA-P1 0.5 0.32 -0.44*** 0.3*

DT-MEA-P1 1 0.31 -0.42*** 0.25*

DT-MEA-P1 2 0.37 -0.53*** -0.3**

DT-MEA-P1 4 0.34 -0.5*** -0.48**

DT-MEA-P3 0.5 0.15 0.38* 0.24*

DT-MEA-P3 1 0.13 -0.34** -0.31* 0.26*

DT-MEA-P3 2 0.09 -0.24* -0.34*

DT-MEA-P3 4 0.11 -0.23* -0.29*

DT-MEA-P6 0.5 0.30 -0.4*** 0.46** -0.3* 0.29*

DT-MEA-P6 1 0.27 -0.48*** -0.34** 0.33**

DT-MEA-P6 2 0.32 -0.35** -0.8*** 0.41** -0.45*

DT-MEA-P6 4 0.24 -0.34** -1.26*** -1.17**

DT-MEA-P9 0.5 0.48 -0.41*** 0.31** -0.36** 0.37* 0.36*

DT-MEA-P9 1 0.40 -0.4*** 0.37***

DT-MEA-P9 2 0.36 -0.45*** 0.26* -0.22*

DT-MEA-P9 4 0.28 -0.39*** 0.24*

DT-MED-P1 0.5 0.58 -0.75***

DT-MED-P1 1 0.59 -0.74*** 0.17*

DT-MED-P1 2 0.59 -0.75***

DT-MED-P1 4 0.56 -0.74***

DT-MED-P3 0.5 0.32 -0.54*** -0.51*** 0.27*

DT-MED-P3 1 0.35 -0.57*** -0.6***

DT-MED-P3 2 0.37 -0.4*** -0.57***

DT-MED-P3 4 0.23 -0.32** -0.37**

DT-MED-P6 0.5 0.32 -0.56*** -0.65*** 0.25*

DT-MED-P6 1 0.47 -0.56*** -0.77*** 0.2* -0.21*

DT-MED-P6 2 0.46 -0.42*** -0.67*** 0.21*

DT-MED-P6 4 0.39 -0.4*** -0.55*

DT-MED-P9 0.5 0.79 -0.84*** 0.2** 0.11*

DT-MED-P9 1 0.77 -0.86*** -0.14* 0.2**

DT-MED-P9 2 0.75 -0.79*** 0.19* -0.18*

DT-MED-P9 4 0.74 -0.82***
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
DT-MIN-P1 0.5 0.13 -0.37**

DT-MIN-P1 1 0.12 -0.42***

DT-MIN-P1 2 0.13 -0.39**

DT-MIN-P1 4 0.12 -0.37**

DT-MIN-P3 0.5 0.18 -0.27* -0.55*** 0.23*

DT-MIN-P3 1 0.00

DT-MIN-P3 2 0.28 -0.24*

DT-MIN-P3 4 0.29 -0.28** -0.57* 0.96***

DT-MIN-P6 0.5 0.11 -0.38** 0.31*

DT-MIN-P6 1 0.16 -0.28* -0.5*** -0.24*

DT-MIN-P6 2 0.12 -0.42*** 0.27*

DT-MIN-P6 4 0.03

DT-MIN-P9 0.5 0.44 0.82*** 0.27* 0.4***

DT-MIN-P9 1 0.33 0.49*** 0.26*

DT-MIN-P9 2 0.50 0.28**

DT-MIN-P9 4 0.30 0.4* 0.47**

DT-MDR-P1 0.5 0.14 0.42*** -0.24*

DT-MDR-P1 1 0.12 0.38**

DT-MDR-P1 2 0.19 -0.25* -0.38***

DT-MDR-P1 4 0.14 -0.53**

DT-MDR-P3 0.5 0.22 0.25* 0.47*** -0.41***

DT-MDR-P3 1 0.15 0.25* 0.39** 0.25*

DT-MDR-P3 2 0.14 0.24* -0.37**

DT-MDR-P3 4 0.03

DT-MDR-P6 0.5 0.14 0.39** -0.29*

DT-MDR-P6 1 0.11 0.38**

DT-MDR-P6 2 0.16 0.25* -0.36**

DT-MDR-P6 4 0.06 -0.63*

DT-MDR-P9 0.5 0.13 0.47** 0.33*

DT-MDR-P9 1 0.06 0.32*

DT-MDR-P9 2 0.04 0.3*

DT-MDR-P9 4 0.00

DT-RAS-P1 0.5 0.20 0.48*** -0.29*

DT-RAS-P1 1 0.14 0.4***

DT-RAS-P1 2 0.19

DT-RAS-P1 4 0.17 -0.23* 0.39**

DT-RAS-P3 0.5 0.19 0.41*** -0.32**

DT-RAS-P3 1 0.15 0.43***

DT-RAS-P3 2 0.19 -0.54***

DT-RAS-P3 4 0.07 -0.29*

DT-RAS-P6 0.5 0.10 0.31* 0.35* -0.25*

DT-RAS-P6 1 0.12 0.33** 0.38**

DT-RAS-P6 2 0.12 -0.32**

DT-RAS-P6 4 0.00

DT-RAS-P9 0.5 0.13 0.34** 0.28*

DT-RAS-P9 1 0.12 0.33*

DT-RAS-P9 2 0.17 0.28* -0.36**

DT-RAS-P9 4 0.00
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Appendix S6 Summary of multivariate generalized linear models for AMBIENT TEMPERATURE 
(AT), measured with uncovered loggers at 15 cm above soil level. First column is the abbreviation 
of the model shown, with different measured variables and time periods. Coefficients of each 
variable are shown when significant and significance is expressed with “*” where p-values <0.001 
correspond to ***, <0.01: **, <0.05: *. Measured variables, DEM-derived variables and periods 
abbreviations as in Appendix S3&4. 

    

 

Model Res aR² alt twi vrm eas slo hcu vcu ddg
DT-STD-P1 0.5 0.13 0.48***

DT-STD-P1 1 0.11 0.35**

DT-STD-P1 2 0.15

DT-STD-P1 4 0.13 -0.58**

DT-STD-P3 0.5 0.17 0.41** -0.37**

DT-STD-P3 1 0.13 0.34* 0.27*

DT-STD-P3 2 0.11 0.25* -0.31**

DT-STD-P3 4 0.03

DT-STD-P6 0.5 0.13 0.3* -0.3*

DT-STD-P6 1 0.11 0.28* -0.25*

DT-STD-P6 2 0.13 0.28* -0.42**

DT-STD-P6 4 0.04 -0.57*

DT-STD-P9 0.5 0.13 0.31* 0.49**

DT-STD-P9 1 0.08 0.32*

DT-STD-P9 2 0.09 0.24* -0.27*

DT-STD-P9 4 0.00
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
AT-M1A-P1 0.5 0.34 -0.82**

AT-M1A-P1 1 0.37 -0.88** -0.45*

AT-M1A-P1 2 0.38 -0.73** -0.41*

AT-M1A-P1 4 0.37 -0.6** -0.39*

AT-M1A-P3 0.5 0.21 -0.51*

AT-M1A-P3 1 0.33 -0.69** -0.64*

AT-M1A-P3 2 0.40 -0.74*** 0.48*

AT-M1A-P3 4 0.18 -0.46*

AT-M1A-P6 0.5 0.45 -0.71**

AT-M1A-P6 1 0.61 -0.67** -0.56*

AT-M1A-P6 2 0.58 -0.56** -0.49*

AT-M1A-P6 4 0.60 -0.6** -0.47**

AT-M1A-P9 0.5 0.42 -0.71**

AT-M1A-P9 1 0.57 -0.66** -0.38* 0.53*

AT-M1A-P9 2 0.48 -0.53* -0.74*

AT-M1A-P9 4 0.37 -0.63**

AT-M1P-P1 0.5 0.29

AT-M1P-P1 1 0.31 -0.56*

AT-M1P-P1 2 0.31

AT-M1P-P1 4 0.32

AT-M1P-P3 0.5 0.23 0.5*

AT-M1P-P3 1 0.24

AT-M1P-P3 2 0.42 0.45* -0.66**

AT-M1P-P3 4 0.00

AT-M1P-P6 0.5 0.23 0.52*

AT-M1P-P6 1 0.34 0.6**

AT-M1P-P6 2 0.07

AT-M1P-P6 4 0.07

AT-M1P-P9 0.5 0.33 0.6**

AT-M1P-P9 1 0.50 0.53*

AT-M1P-P9 2 0.37 0.43*

AT-M1P-P9 4 0.27 0.55*

AT-MAX-P1 0.5 0.13 0.42*

AT-MAX-P1 1 0.03

AT-MAX-P1 2 0.17 0.45*

AT-MAX-P1 4 0.12

AT-MAX-P3 0.5 0.06

AT-MAX-P3 1 0.14

AT-MAX-P3 2 0.19 -0.81* 0.64* -0.81**

AT-MAX-P3 4 0.00

AT-MAX-P6 0.5 0.35 0.55**

AT-MAX-P6 1 0.15 0.51* -0.48*

AT-MAX-P6 2 0.43 0.48* -0.44*

AT-MAX-P6 4 0.12

AT-MAX-P9 0.5 0.41 0.55*

AT-MAX-P9 1 0.37

AT-MAX-P9 2 0.29

AT-MAX-P9 4 0.25 -0.5*
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
AT-MEA-P1 0.5 0.41 -0.7**

AT-MEA-P1 1 0.41 -0.68**

AT-MEA-P1 2 0.37 -0.72**

AT-MEA-P1 4 0.42 -0.58*

AT-MEA-P3 0.5 0.19

AT-MEA-P3 1 0.14

AT-MEA-P3 2 0.32 0.63** -0.61*

AT-MEA-P3 4 0.07

AT-MEA-P6 0.5 0.27 0.55*

AT-MEA-P6 1 0.35 0.61**

AT-MEA-P6 2 0.00

AT-MEA-P6 4 0.00

AT-MEA-P9 0.5 0.41 0.53*

AT-MEA-P9 1 0.55 0.64**

AT-MEA-P9 2 0.32 -0.58*

AT-MEA-P9 4 0.20 -0.48*

AT-MED-P1 0.5 0.35 -0.7**

AT-MED-P1 1 0.36 -0.7**

AT-MED-P1 2 0.35 -0.7**

AT-MED-P1 4 0.36 -0.71**

AT-MED-P3 0.5 0.16 -0.43*

AT-MED-P3 1 0.22 -0.58*

AT-MED-P3 2 0.21 -0.46*

AT-MED-P3 4 0.16 -0.43*

AT-MED-P6 0.5 0.66 -0.84***

AT-MED-P6 1 0.72 -0.82*** -0.5*

AT-MED-P6 2 0.73 -0.72*** -0.4*

AT-MED-P6 4 0.80 -0.74*** -0.44**

AT-MED-P9 0.5 0.89 -0.94*** -0.35**

AT-MED-P9 1 0.86 -0.89*** -0.35*

AT-MED-P9 2 0.87 -0.92*** -0.25*

AT-MED-P9 4 0.84 -0.88***

AT-MIN-P1 0.5 0.15

AT-MIN-P1 1 0.27 -0.55* 0.6*

AT-MIN-P1 2 0.38 -0.81*** 0.87** -0.75** 0.55*

AT-MIN-P1 4 0.12 -0.4*

AT-MIN-P3 0.5 0.10

AT-MIN-P3 1 0.10

AT-MIN-P3 2 0.41 -0.8*** 0.66* -0.51* 0.92**

AT-MIN-P3 4 0.10

AT-MIN-P6 0.5 0.00

AT-MIN-P6 1 0.00

AT-MIN-P6 2 0.00

AT-MIN-P6 4 0.00

AT-MIN-P9 0.5 0.13

AT-MIN-P9 1 0.19 -0.42*

AT-MIN-P9 2 0.43 0.67** -0.89*

AT-MIN-P9 4 0.26 0.83*
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
AT-MDR-P1 0.5 0.14 0.41*

AT-MDR-P1 1 0.19 0.49*

AT-MDR-P1 2 0.15

AT-MDR-P1 4 0.18 0.54*

AT-MDR-P3 0.5 0.19 0.46*

AT-MDR-P3 1 0.21 0.48*

AT-MDR-P3 2 0.49 0.43* 0.52** -0.69***

AT-MDR-P3 4 0.00

AT-MDR-P6 0.5 0.26 0.54*

AT-MDR-P6 1 0.31 0.58*

AT-MDR-P6 2 0.08

AT-MDR-P6 4 0.10

AT-MDR-P9 0.5 0.31 0.58*

AT-MDR-P9 1 0.26 0.54*

AT-MDR-P9 2 0.22

AT-MDR-P9 4 0.26 -0.53*

AT-RAS-P1 0.5 0.38 0.73***

AT-RAS-P1 1 0.28 0.58**

AT-RAS-P1 2 0.30 -0.45*

AT-RAS-P1 4 0.24 0.52*

AT-RAS-P3 0.5 0.15

AT-RAS-P3 1 0.22 0.54* -0.49*

AT-RAS-P3 2 0.59 0.75*** 0.48* -0.96***

AT-RAS-P3 4 0.05

AT-RAS-P6 0.5 0.40 0.59* 0.54*

AT-RAS-P6 1 0.35 0.56* 0.62*

AT-RAS-P6 2 0.36 0.53*

AT-RAS-P6 4 0.22

AT-RAS-P9 0.5 0.37

AT-RAS-P9 1 0.39

AT-RAS-P9 2 0.38 0.68**

AT-RAS-P9 4 0.33

AT-STD-P1 0.5 0.10

AT-STD-P1 1 0.09

AT-STD-P1 2 0.08

AT-STD-P1 4 0.11 0.47*

AT-STD-P3 0.5 0.17 0.44*

AT-STD-P3 1 0.18 0.45*

AT-STD-P3 2 0.41 0.4* 0.51** -0.62**

AT-STD-P3 4 0.00

AT-STD-P6 0.5 0.27 0.55*

AT-STD-P6 1 0.31 0.58*

AT-STD-P6 2 0.15

AT-STD-P6 4 0.10

AT-STD-P9 0.5 0.29

AT-STD-P9 1 0.28 0.51*

AT-STD-P9 2 0.33 0.64**

AT-STD-P9 4 0.25
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Appendix S7 Summary of multivariate generalized linear models for AMBIENT HUMIDITY (HU), 
measured with uncovered loggers at 15 cm above soil level. First column is the abbreviation of the 
model shown, with different measured variables and time periods. Coefficients of each variable 
are shown when significant and significance is expressed with “*” where p-values <0.001 corre-
spond to ***, <0.01: **, <0.05: *. Measured variables, DEM-derived variables and periods abbre-
viations as in Appendix S3&4. 

 

Model Res aR² alt twi vrm eas slo hcu vcu ddg
HU-M1A-P1 0.5 0.18 0.47*

HU-M1A-P1 1 0.12

HU-M1A-P1 2 0.12

HU-M1A-P1 4 0.15 0.44*

HU-M1A-P6 0.5 0.47 0.56**

HU-M1A-P6 1 0.76 0.82*** 0.48** 0.54**

HU-M1A-P6 2 0.44 0.71**

HU-M1A-P6 4 0.62

HU-M1A-P9 0.5 0.16

HU-M1A-P9 1 0.18

HU-M1A-P9 2 0.06

HU-M1A-P9 4 0.20 0.55*

HU-M1P-P1 0.5 0.27 0.96** 0.59*

HU-M1P-P1 1 0.21 0.76**

HU-M1P-P1 2 0.28 0.59**

HU-M1P-P1 4 0.10

HU-M1P-P3 0.5 0.11 0.63*

HU-M1P-P3 1 0.27 0.88** 0.54*

HU-M1P-P3 2 0.10 0.84*

HU-M1P-P3 4 0.00

HU-M1P-P6 0.5 0.38 0.55* -0.53*

HU-M1P-P6 1 0.16

HU-M1P-P6 2 0.28 0.7* -0.8*

HU-M1P-P6 4 0.00

HU-M1P-P9 0.5 0.22

HU-M1P-P9 1 0.23 -0.47*

HU-M1P-P9 2 0.30

HU-M1P-P9 4 0.15
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
HU-MEA-P1 0.5 0.17 0.56*

HU-MEA-P1 1 0.14 0.43*

HU-MEA-P1 2 0.30 0.61**

HU-MEA-P1 4 0.15 0.45*

HU-MEA-P3 0.5 0.12 0.58*

HU-MEA-P3 1 0.31 0.74** -0.45*

HU-MEA-P3 2 0.35 0.75**

HU-MEA-P3 4 0.09

HU-MEA-P6 0.5 0.40 0.45* 0.77**

HU-MEA-P6 1 0.42 0.46* 0.76**

HU-MEA-P6 2 0.34 0.64**

HU-MEA-P6 4 0.38 0.62**

HU-MEA-P9 0.5 0.00

HU-MEA-P9 1 0.00

HU-MEA-P9 2 0.00

HU-MEA-P9 4 0.00

HU-MED-P3 0.5 0.16 0.63*

HU-MED-P3 1 0.35 0.78**

HU-MED-P3 2 0.47 0.7**

HU-MED-P3 4 0.11

HU-MED-P6 0.5 0.49 0.58** 0.67*

HU-MED-P6 1 0.63 0.53** 0.72**

HU-MED-P6 2 0.59 0.72***

HU-MED-P6 4 0.65 0.34* 0.7***

HU-MIN-P1 0.5 0.10 0.58*

HU-MIN-P1 1 0.07

HU-MIN-P1 2 0.24 -0.56**

HU-MIN-P1 4 0.00

HU-MIN-P3 0.5 0.06

HU-MIN-P3 1 0.12 0.56*

HU-MIN-P3 2 0.16 0.74*

HU-MIN-P3 4 0.11

HU-MIN-P6 0.5 0.09

HU-MIN-P6 1 0.00

HU-MIN-P6 2 0.22 0.53*

HU-MIN-P6 4 0.09
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Model Res aR² alt twi vrm eas slo hcu vcu ddg
HU-MDR-P1 0.5 0.27 -0.62* -0.7* 0.42*

HU-MDR-P1 1 0.16

HU-MDR-P1 2 0.48 -0.75*** 0.42*

HU-MDR-P1 4 0.27 0.42*

HU-MDR-P3 0.5 0.09

HU-MDR-P3 1 0.19 -0.76*

HU-MDR-P3 2 0.07

HU-MDR-P3 4 0.00

HU-MDR-P6 0.5 0.27 -0.63* 0.51*

HU-MDR-P6 1 0.20 -0.66*

HU-MDR-P6 2 0.24 -0.94* 0.7*

HU-MDR-P6 4 0.00

HU-MDR-P9 0.5 0.00

HU-MDR-P9 1 0.00

HU-MDR-P9 2 0.00

HU-MDR-P9 4 0.00

HU-RAS-P1 0.5 0.24 -0.52*

HU-RAS-P1 1 0.21 -0.57*

HU-RAS-P1 2 0.37 -0.55* 0.51*

HU-RAS-P1 4 0.22 -0.58*

HU-RAS-P3 0.5 0.08

HU-RAS-P3 1 0.08

HU-RAS-P3 2 0.25 -0.63**

HU-RAS-P3 4 0.00

HU-RAS-P6 0.5 0.56 0.81***

HU-RAS-P6 1 0.57 0.77*** 0.47*

HU-RAS-P6 2 0.53 0.63**

HU-RAS-P6 4 0.56 0.56**

HU-RAS-P9 0.5 0.40 0.63**

HU-RAS-P9 1 0.29 0.52*

HU-RAS-P9 2 0.25 0.55*

HU-RAS-P9 4 0.26 0.54*

HU-STD-P1 0.5 0.20 -0.59*

HU-STD-P1 1 0.17 -0.68*

HU-STD-P1 2 0.27 -0.58**

HU-STD-P1 4 0.14 -0.43*

HU-STD-P3 0.5 0.11 -0.64*

HU-STD-P3 1 0.16 -0.76*

HU-STD-P3 2 0.00

HU-STD-P3 4 0.00

HU-STD-P6 0.5 0.25 -0.51*

HU-STD-P6 1 0.07

HU-STD-P6 2 0.18

HU-STD-P6 4 0.07

HU-STD-P9 0.5 0.00

HU-STD-P9 1 0.00

HU-STD-P9 2 0.00

HU-STD-P9 4 0.09
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