Revisiting the Route Choice Problem:
A Modeling Framework based on Mental Representations

Evanthia Kazagli & Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
École Polytechnique Fédérale de Lausanne

May 12, 2015
Agenda

1. Introduction
2. Methodology
3. Case study
4. Conclusion
Introduction

Agenda

1. Introduction
2. Methodology
3. Case study
4. Conclusion
Route choice (RC)

Predict the route that a traveler would choose to go from the origin (O) to the destination (D) of her trip.

- One of the key travel demand models.
- Core of traffic assignment for planning and real-time operations.
- Need to go beyond the shortest/fastest path models.
Motivation

Estimation of RUMs\(^1\) with RP\(^2\) data and path assumption is challenging

Operational limitations
- Data
- Choice set
- Structural correlation

Behavioral limitations

\(^1\) Random Utility Models.
\(^2\) Revealed Preferences.
State-of-the-art

- Path based models
 1. Complex;
 2. Fail to capture observed behavior.

- No realistic, yet simple model, based on RP data has been proposed.

- Few attempts to use abstract elements related to perceptions
 1. [Ben-Akiva et al., 1984] path generation and sampling;
 2. [Frejinger and Bierlaire, 2007] capturing correlation.
Proposed framework

1. Simple model exploiting RP data
2. Not based on paths
3. Key feature: *mental representations*
4. The general framework may be network-free, yet applicable to traffic assignment
Agenda

1. Introduction
2. Methodology
3. Case study
4. Conclusion
A *path* is solely the manifestation of the route choice – the way the traveler implements her decision to take a specific route.

How can we represent a route in a behaviorally realistic way without increasing the model complexity?

- Choice takes place at a higher conceptual level.

 → Mental Representation Item (MRI) = *main modeling element*
Outline of the methodology

1. Definition of the *MRI*:
 1. Empirical evidence through simple qualitative analyzes
 2. Literature review in relevant fields

2. Definition of a RUM model based on *MRI*:
 1. Choice set C_n
 2. Explanatory variables x_{in}, z_n
 3. Specification of the deterministic utility function V_{in}
 4. Assumption about the error terms ε_{in}
Mental Representation Item (MRI)

- MRIs are associated with mental representations used in daily language to describe a route.

- An MRI is an item characterising the mental representation of an itinerary:
 E.g. a highway, the city center or a bridge.

- Strategic decisions.
The *MRI* components

Perceptual: a name and a description; **Tangible**: a point and a span

“City center” — Go through the center

“Peripheral” — Avoid the center
Definition of the alternatives

A route is either one-MRI or a sequence-of-MRIs.

The number of MRIs should be kept low so that the number of sequences-of-MRIs is also low and can be enumerated.

Issues:

1. How to relate available data to MRI alternatives; and
2. How to specify the utility function for the abstract alternatives.

→ Different heuristics can be considered and evaluated.
From data to *MRIs*

Geographical span.

- Interviews and surveys.
- GPS devices and smartphones.

Maximum likelihood estimation:

Obtain the contribution of each piece of data to the likelihood function. Let i be an alternative of the *MRI* model, and y an observation, then:

$$\sum_i P(y|i) \cdot P(i|C, x_{in}, z_n)$$

where $P(y|i)$ is the measurement model, $P(i|C, x_{in}, z_n)$ is the choice model. Associating each piece of data to a single alternative, so that $P(y|i)$ takes values 0 and 1 only, is convenient. For more complex measurement models, we refer to [Bierlaire and Frejinger, 2008] and [Chen and Bierlaire, 2013].
Specification of the utility function

Probably the most complex part.

The main modeling element is a mental representation. This has implications for the specification of the utility functions:

- The attributes are fuzzy and based on perceptions rather than objective measurements.

- Possibilities to investigate the impact of perception on behavior:
 1. Model perceptions – e.g. using latent variables;
 2. Network-free approach – e.g. using the level of service of the MRIs;
 3. Use network data to generate attributes for each MRI and specify the utility functions.
Specification of utility functions

Deterministic approach

1. For each MRI determine a representative node m (OD dependent).

2. Calculate the fastest path from O to m.

3. Calculate the fastest path from m to D.

4. Use the attributes of the generated path for the MRI.
Agenda

1 Introduction
2 Methodology
3 Case study
4 Conclusion
Borlänge data

✓ GPS data → map-matched trajectories

✓ Borlänge road network:

1. 3077 nodes and 7459 unidirectional links
2. Link travel times
3. Clear choices

- We use a sample of 139 observations.
- We present one possible way to operationalize the model, taking advantage of the available network model.
Borlänge road network
Borlänge MRI CS

\[C = \{ 1: \text{through the city center (CC)}, \\
2: \text{clockwise movement around the CC}, \\
3: \text{counter-clockwise movement around the CC}, \\
4: \text{avoid the CC} \} \]
Example of observed routes (1)

Around the CC movements
Example of observed routes (2)

Avoid the CC alternatives
Example of observed routes (3)

Through the CC movements
Representative nodes

- City center (fastest of the two)
- Perimeter (clock, counter-clock depending on OD)
- Avoid (all ODs except for 21-3, 3-21)
- Avoid (for ODs 21-3, 3-21)
Example of MRI choice set

- **chosen alternative (through CC)**
- **around CC alternatives (clock and counter-clockwise)**
- **avoid CC alternative**
Choice model

For the present case, logit can be sufficient:

\[P_n(i|C) = \frac{e^{\nu_{ni}}}{\sum_{j \in C} e^{\nu_{jn}}} \]
Estimation results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Model 1 Parameter value; Rob. Std (Rob. t-test 0)</th>
<th>Model 2 Parameter value; Rob. Std (Rob. t-test 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC\textsubscript{ AROUND}</td>
<td>-2.11; 1.44; (-1.47)</td>
<td>-0.975; 1.67; (-0.58)</td>
</tr>
<tr>
<td>ASC\textsubscript{ AVOID}</td>
<td>1.87; 2.09; (0.89)</td>
<td>0.307; 1.70; (0.18)</td>
</tr>
<tr>
<td>$\beta \text{ TIME}\textsubscript{CC}$</td>
<td>-0.772; 0.274; (-2.82)</td>
<td></td>
</tr>
<tr>
<td>$\beta \text{ TIME}\textsubscript{(0−10min)}$</td>
<td>-0.286; 0.165; (-1.74)</td>
<td></td>
</tr>
<tr>
<td>$\beta \text{ TIME}\textsubscript{(>10min)}$</td>
<td>-0.616; 0.216; (-2.86)</td>
<td></td>
</tr>
<tr>
<td>$\beta \text{ TIME}\textsubscript{AVOID}$</td>
<td>-0.583; 0.187; (-3.11)</td>
<td>-0.871; 0.173; (-5.03)</td>
</tr>
<tr>
<td>$\beta \text{ LENGTH}$</td>
<td></td>
<td>-0.138; 0.493; (-2.99)</td>
</tr>
<tr>
<td>$\beta \text{ LENGTH}\textsubscript{CC}$</td>
<td>-0.288; 0.130; (2.22)</td>
<td>-0.270; 0.143; (-1.89)</td>
</tr>
<tr>
<td>$\beta \text{ LEFT}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta \text{ IS}$</td>
<td>-0.0474; 0.022; (-2.16)</td>
<td>-0.063; 0.018; (-3.42)</td>
</tr>
</tbody>
</table>

Number of observations	139	139
Number of parameters	8	6
\bar{p}	0.375	0.416
$\mathcal{L}(0)$	-183.201	-183.201
$\mathcal{L}(\hat{\beta})$	-106.563	-101.064
Forecasting results (Model 1)

1. Randomly select 80% of the data for estimation.
2. Apply the model in the rest 20%.
3. Repeat 100 times.

→ Check market shares (MS), predicted probabilities, elasticities.
Boxplot of MS from the application in 20% of the data and CI from the estimation with the full dataset
Agenda

1. Introduction
2. Methodology
3. Case study
4. Conclusion
Conclusion

It is possible to have a meaningful model using simple heuristics.

Achievements
- Simple and flexible.
- Behaviorally realistic.

Challenges
- Involved modeling.
- Data processing.
Conclusions

Future steps

1. Traffic assignment.
2. Other model specifications.
3. MRI sequences and additional complexity \rightarrow Quebec GPS dataset
4. Extention using a multiple-level representation.
THANK YOU!
Modeling interurban route choice behavior.

Route choice modeling with network-free data.

Probabilistic multimodal map-matching with rich smartphone data.
Journal of Intelligent Transportation Systems.

Descriptive statistics of the main variables

<table>
<thead>
<tr>
<th>variable</th>
<th>mean</th>
<th>median</th>
<th>min</th>
<th>max</th>
<th>std.dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT_CC (min)</td>
<td>10.18</td>
<td>8.38</td>
<td>3.88</td>
<td>38.03</td>
<td>6.41</td>
</tr>
<tr>
<td>TT_CL (min)</td>
<td>9.98</td>
<td>8.18</td>
<td>2.86</td>
<td>38.93</td>
<td>6.32</td>
</tr>
<tr>
<td>TT_CO (min)</td>
<td>10.21</td>
<td>8.37</td>
<td>3.81</td>
<td>36.47</td>
<td>6.23</td>
</tr>
<tr>
<td>TT_AV (min)</td>
<td>11.80</td>
<td>13.12</td>
<td>2.66</td>
<td>38.58</td>
<td>11.81</td>
</tr>
<tr>
<td>L_CC (km)</td>
<td>7.65</td>
<td>5.21</td>
<td>1.88</td>
<td>42.91</td>
<td>7.39</td>
</tr>
<tr>
<td>L_CL (km)</td>
<td>7.84</td>
<td>5.47</td>
<td>1.57</td>
<td>43.82</td>
<td>7.30</td>
</tr>
<tr>
<td>L_CO (km)</td>
<td>7.95</td>
<td>5.48</td>
<td>2.33</td>
<td>42.62</td>
<td>7.23</td>
</tr>
<tr>
<td>L_AV (km)</td>
<td>9.18</td>
<td>9.04</td>
<td>1.54</td>
<td>42.29</td>
<td>8.90</td>
</tr>
</tbody>
</table>

Alternative choices

<table>
<thead>
<tr>
<th>alternative</th>
<th># times chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through CC</td>
<td>13</td>
</tr>
<tr>
<td>Clockwise</td>
<td>53</td>
</tr>
<tr>
<td>Counter-clockwise</td>
<td>51</td>
</tr>
<tr>
<td>Avoid CC</td>
<td>22</td>
</tr>
</tbody>
</table>
Specification table of model 1

Piecewise linear travel time for the around alternatives

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Through CC</th>
<th>Around clock CC</th>
<th>Around counter CC</th>
<th>Avoid CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC_{CC}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ASC_{AROUND}</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ASC_{AVOID}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>βTIME_{CC}</td>
<td>TT (min)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\beta \text{TIME}^{(0-10\text{min})}_{AROUND}$</td>
<td>0</td>
<td>TT (min) \leq 10</td>
<td>TT (min) \leq 10</td>
<td>0</td>
</tr>
<tr>
<td>$\beta \text{TIME}^{(>10\text{min})}_{AROUND}$</td>
<td>0</td>
<td>TT (min) > 10</td>
<td>TT (min) > 10</td>
<td>0</td>
</tr>
<tr>
<td>$\beta \text{TIME}_{AVOID}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TT (min)</td>
</tr>
<tr>
<td>βLEFT</td>
<td># left turns</td>
<td># left turns</td>
<td># left turns</td>
<td># left turns</td>
</tr>
<tr>
<td>βIS</td>
<td># intersections</td>
<td># intersections</td>
<td># intersections</td>
<td># intersections</td>
</tr>
</tbody>
</table>
Appendix

Power series of degree 3 for the travel time

![Graph showing the utility for different travel times with a power series of degree 3. The x-axis represents travel time in minutes ranging from 0 to 40, and the y-axis represents utility ranging from -30 to 0. The curve descends as travel time increases, indicating a decreasing utility.]
Power series of degree 3 for the length
Specification table of model 2

Length

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Through CC</th>
<th>Around clock CC</th>
<th>Around counter CC</th>
<th>Avoid CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ASC_{CC})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ASC_{AROUND})</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(ASC_{AVOID})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\beta_{LENGTH_{CC}})</td>
<td>Length (km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\beta_{LENGTH})</td>
<td>0</td>
<td>Length (km)</td>
<td>Length (km)</td>
<td>Length (km)</td>
</tr>
<tr>
<td>(\beta_{LEFT})</td>
<td># left turns</td>
<td># left turns</td>
<td># left turns</td>
<td># left turns</td>
</tr>
<tr>
<td>(\beta_{IS})</td>
<td># intersections</td>
<td># intersections</td>
<td># intersections</td>
<td># intersections</td>
</tr>
</tbody>
</table>
Metropolis-Hastings (MH) algorithm [Flötteröd and Bierlaire, 2013] to sample paths given the OD and C.

The probability of each path p to be selected, given the OD and C, is:

$$P(p|C) = \sum_i P(p|i) \cdot P(i|C)$$

where the sum spans the alternatives in the MRI models, $P(i|C)$ is the MRI-choice model, and $P(p|i)$ is the probability of path p to be actually used by a traveler who has chosen the sequence of MRIs i.

Traffics assignment
Application

Route guidance

Provision of information in an aggregate manner:

1. Guidance on VMS
2. Radio announcements
3. Oral instructions in in-vehicle navigation systems

\(^3\text{Variable message signs.}\)
Hierarchical ordering of the decision process

Multi-level hierarchical structure ~ Normative Pedestrian Flow Theory

[Hoogendoorn, 2001]
Model structure

Layer ℓ
- Choice set: list of MRIs C_ℓ.
- Choice model:
 \[P_\ell(i|C_\ell; \beta^\ell) \]

Layer $\ell + 1$
- Choice set: list of MRIs $C_{\ell+1}$.
- Choice model:
 \[P_{\ell+1}(i|C_{\ell+1}; \beta^{\ell+1}) \]

Behavioral consistency
- All layers refer to the same choice.
- Level of granularity varies.
- Analysis can be performed in any layer.

Structural consistency
\[
\bar{P}_\ell(i|C_\ell; \beta^\ell) = \sum_{j \in C_{\ell+1}} P(i|j, C_\ell; \beta^\ell)P(j|C_{\ell+1}; \beta^{\ell+1})
\]