Passenger-Centric Railway Operations

Michel Bierlaire Stefan Binder Yousef Maknoon Tomáš Robenek

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

May 19, 2015

Outline

- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

Bierlaire et al. (EPFL)

May 19, 2015 2 / 35

A B A A B A

Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion = mismatch

Bierlaire et al. (EPFL)

• • = • • = •

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Published Every Saturday, \$1. per year-Advance Payment. SATURDAY, APRIL 7, 1883. TIME TABLE			
		E. T., V. & C	. R. R.
		PASSENGER,	ARRIVES
		No. 1, West,	6:37, a. m
No. 2, East,	9:45, p. m		
No. 3, West,	11:51, p.m		
NO. 4, East,	0.00, a. m		
No. 5	7.90 a m		
No.8	6:20, p. m		
JNO. W. EAKI	N, Agent.		
E. T. & W. N.	C. R. R.		
Passenger, leaves,	7, a. m.		
Passenger, leaves,	7, a. n		

Behavioral models

- Given the configuration of the system...
- predict the demand

May 19, 2015 5 / 35

Demand-supply interactions

Multi-objective optimization

Maximize satisfaction

Outline

2 Measuring satisfaction

Ideal timetable

Disposition timetable

Bierlaire et al. (EPFL)

ECOLE POLYTECHNIQUE

Measuring satisfaction

Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models
- Main concept: utility function
- Common model: logit

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Choice probability
$$P_n(i|\mathcal{C}_n) = rac{e^{V_{in}}}{\sum_{j\in\mathcal{C}_n}e^{V_{jn}}}.$$

- Decision-maker n
- Alternative $i \in C_n$

Variables: $x_{in} = (z_{in}, s_n)$

Attributes of alternative i: zin

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n: s_n

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession

• etc.

- ∢ ∃ →

ÉCOLE POLYTECHNIQUI

Willingness to pay

Attributes of alternative i: zin

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Willingness to pay for alternative i

- Value of travel time
- Value of waiting time
- Value of comfort
- Value of transfers
- Value of not being on time
- etc.

Willingness to pay

Utility

$$U_{in} = \beta_c c_{in} + \beta_t t_{in} + \cdots$$

Value of time

$$VOT_{in} = \frac{\partial U_{in} / \partial t_{in}}{\partial U_{in} / \partial c_{in}} = \frac{\beta_t}{\beta_c}$$

Equivalence

Utility

$$U_{in} = \beta_c c_{in} + \beta_t t_{in} + \beta_w w_{in} + \beta_{cft} cft_{in} + \beta_T T_{in} + \beta_e e_{in} + \beta_\ell \ell_{in} + \cdots$$

Willingness to pay: cost per unit

- Travel time: β_t/β_c
- Waiting time: β_w/β_c
- Comfort: $\beta_{\rm cft}/\beta_c$
- Transfers: β_T / β_c
- Being early: β_e/β_c
- Being late: β_{ℓ}/β_{c}

Travel time equivalent: hours per unit

- Cost: β_c/β_t
- Waiting time: β_w/β_t
- Comfort: β_{cft}/β_t
- Transfers: β_T / β_t
- Being early: β_e/β_t
- Being late: β_{ℓ}/β_t

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline

2 Measuring satisfaction

Ideal timetable

Disposition timetable

ECOLE POLYTECHNIQUE

Bierlaire et al. (EPFL)

Passenger-Centric Railway Operations

May 19, 2015 14 / 35

Planning of railway operations

Timetables

Objectives

- Minimize cost
- Maximize satisfaction

Constraints

- Cyclicity
- or not...

Modeling elements

Supply

- Line $\ell :$ sequence of stations served by the same train
- Train $v \in V_{\ell}$: service of a line at a given departure time

Demand

- Origin / destination i
- Ideal arrival time t
- Path $p \in P_i$: sequence of portions of lines to reach d from o
 - Access/egress time for path p (OD i)
 - Travel time for path p
 - Waiting time for path p

Decision variables

- x_i^{tp}: 1 if passenger with ideal time t between OD pair i chooses path p; 0 otherwise
- y_i^{tp/v}: 1 if a passenger with ideal time t between OD pair i on the path p takes the train v on the line ℓ; 0 otherwise
- d_v^{ℓ} : the departure time of a train v on the line ℓ (from its first station)
- u_v^{ℓ} : number of train units of a train v on the line ℓ
- α_v^{ℓ} : 1 if a train v on the line ℓ is being operated; 0 otherwise

Calculation variables

- C_i^t : total cost of a passenger with ideal time t between OD pair i
- w_i^t : total waiting time of a passenger with ideal time t between OD pair i
- s_i^t : value of the scheduled delay of a passenger with ideal time t between OD pair *i*
- z_v^l: dummy variable modeling the cyclicity corresponding to a train v on the line l
- o_{vg}^{ℓ} : occupation of train v of line ℓ on segment g

Problem constraints

- passenger cost $\leq \varepsilon$
- everyone uses at most one path
- link between path and trains: everyone boards one train of each line in the path
- cyclicity
- everyone uses only trains that are actually running
- train capacity
- maximum number of train units

Calculation constraints

- Scheduled delay
- Waiting time
- Overall cost

Bierlaire et al. (EPFL)

Current model

Departure times of trains are fixed, current values are used (cyclic).

Cyclic model

Departure times are optimized, cyclicity is enforced.

Non-cyclic model

Departure times are optimized, cyclicity is not enforced.

Case Study – Switzerland

S-Train Network Canton Vaud, Switzerland

Case study: Switzerland

Context

- SBB 2014 (5 a.m. to 9 a.m.)
- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer 4 mins

∃ > < ∃</p>

Case study: Switzerland

Willingness to pay from the literature

- Value of travel time: 27.81 CHF / hour
- Value of waiting time: 69.5 CHF /hour
- Value of comfort: —
- Value of transfers: 4.6 CHF / hour (10 min. travel time)
- Value of being late: 27.81 CHF / hour
- Value of being early: 13.9 CHF / hour
- etc.

Pareto: current model

May 19, 2015 27 / 35

æ

- (四) - (三) - (三)

Pareto: cyclic model

3

・ロト ・聞ト ・ヨト ・ヨト

28 / 35

Pareto: non cyclic

May 19, 2015 29 / 35

æ

▲圖▶ ▲ 国▶ ▲ 国▶

Impact of congestion

Outline

Demand and supply

- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

Motivation

Figure: Bray Head, Railway Accident, Ireland, 1867. The Liszt Collection.

Bierlaire et al. (EPFL)

Passenger-Centric Railway Operations

May 19, 2015 32 / 35

Recovery

Research question

What are the impacts, in terms of passenger (dis-)satisfaction, of different recovery strategies in case of a severe disruption in a railway network?

Recovery strategies

- Train cancellation
- Partial train cancellation
- Global re-routing of trains
- Additional service (buses/trains)
- "Direct train"
- Increase train capacity

Outline

- Demand and supply
- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

Bierlaire et al. (EPFL)

ECOLE POLYTECHNIQUE

34 / 35

A B A A B A

May 19, 2015

Passenger-Centric Railway Operations

Conclusions

Importance of demand

- Passenger satisfaction
- Choice behavior
- Willingness to pay
- Heterogeneity

Railway applications

- Ideal timetables
- Disposition timetables

Bierlaire et al. (EPFL)

May 19, 2015 35 / 35

-