Workshop in Discrete Choice Models

Activity path size for correlation between activity paths

Antonin Danalet, Michel Bierlaire

EPFL, Lausanne, Switzerland
May 29, 2015
Outline

Motivation: Activity-based model for pedestrian facilities

A path choice approach to activity modeling

Correlation between activity paths
Outline

Motivation: Activity-based model for pedestrian facilities

A path choice approach to activity modeling

Correlation between activity paths
Activities in pedestrian infrastructure
Spatial choices in pedestrian infrastructure
Motivation

- **Activity-based approach**: modeling the activity participation patterns
- **Not tour-based** (no “home” location in pedestrian facilities)
- **No hierarchy** of dimensions or aggregation
Outline

Motivation: Activity-based model for pedestrian facilities

A path choice approach to activity modeling

Correlation between activity paths
Notation

- Measurement $\hat{m} = (\hat{x}, \hat{t})$ (e.g., WiFi traces)

 $$(\hat{m}_1, \hat{m}_2, ..., \hat{m}_J) = \hat{m}_{1:J}$$

- Activity episode $a = (x, t^-, t^+)$ (e.g., BC, 12:10-14:10)

 $$(a_1, a_2, ..., a_\psi) = a_{1:\psi}$$

- Activity type A_k (e.g., eating)

- Activity $A = (A_k, t^-, t^+)$ (e.g., eating, 12:10-14:10)

 $$(A_1, A_2, ..., A_\psi) = A_{1:\psi}$$
Model the activity-episode sequence $a_{1:\psi}$ when observing $\hat{m}_{1:t}$ from antennas
Raw data

Pre-processing

Activity-episode sequence detection [DFB14]

Modeling

Activity path choice model [DB15]

Destination choice model [TDdLB15]
Yoram’s model

Daily Activity Pattern
- Number and purposes of tours
- Stops per tour

Tour-Level Models
- Main destination
- Main mode
- Timing of main activity

Trip-Level Models
- Destination for each stop
- Mode for each segment
- Timing of each segment

[SBA11]
Path choice approach to activity modeling

1. Input
 1.1 Network traces $\hat{m}_{1:J}$
 1.2 Semantically-enriched routing graph
 1.3 Potential attractiveness measure

2. Pre-processing
 2.1 Activity-episode sequence $a_{1:\psi}$ detection [DFB14]

 \[
 P(a_{1:\psi} | \hat{m}_{1:J}) \propto P(\hat{m}_{1:J} | a_{1:K}) \cdot P(a_{1:\psi})
 \]

3. Modeling
 3.1 Activity path choice model [DB15]
 3.2 Destination choice model [TDdLB15]
Modeling assumption

- Sequential choice:
 1. activity type, sequence, time of day and duration

\[P(A_{1:Ψ}) \]

2. destination choice conditional on 1.

\[P(x|A_{1:Ψ}) \]

- Motivations:
 - Behavior: precedence of activity choice over destination choice
 - Dimensional: destinations × time × order is large

Today, we focus on 1. [DB15].
Full model

Probability of reproducing observations $\hat{m}_{1:J}$ of individual i is

$$P_i(\hat{m}_{1:J}) = \sum_{a_1;\psi \in C} P(\hat{m}_{1:J}|a_1;\psi) \cdot P(a_1;\psi)$$ \hspace{1cm} (1)$$

$$= \sum_{a_1;\psi \in C} P(\hat{x}_{1:J}|x_1;\psi) \cdot P(A_1;\psi) \cdot P(x|A_1;\psi)$$ \hspace{1cm} (2)$$

$$= \sum_{a_1;\psi \in C} \prod_{j=1}^{J} P(\hat{x}_j^{\psi} | x_\psi) \cdot P(A_1;\psi) \cdot \prod_{\psi=1}^{\Psi} P(x|A_\psi)$$ \hspace{1cm} (3)$$
Toy example

\[P(\hat{m}) = \frac{2}{3} P(\text{Café}) \cdot \left(P(\text{Café A}|\text{Café}) + P(\text{Café B}|\text{Café}) \right) + \frac{1}{3} P(\text{Platform}) \cdot P(\text{Platform 1}|\text{Platform}) \]
Observations: activity patterns in a transport hub

Activity types

Waiting for the train (on platform 1)
Having a coffee (in Café A)
Buying a ticket (at the machine)
Activity path

Activity types

A_1

A_2

\vdots

A_k

Activity network

S \quad \cdots \quad e

1 \quad 2 \quad \cdots \quad T \quad \text{Time units}$
Activity network

Convenience store
Fast food
Cafe
Service
Walking
Not in the train station

S

08:00-08:01
08:02-08:03
08:04-08:05
08:06-08:07
08:08-08:09
e
Challenge 1: Choice set generation

- Simple random sampling: observations dominate alternatives
- Importance sampling using Metropolis-hastings algorithm [FB13]
 - Observation score [Che13]
 - Strategic sampling [LK12]
Outline

Motivation: Activity-based model for pedestrian facilities

A path choice approach to activity modeling

Correlation between activity paths
Challenge 2: Correlation between activity paths

- IIA property might not hold
- Activity paths share unobserved attributes
- Due to overlaps?
- Deterministic correction: Activity Path Size?
Route path size

- Aggregation of alternatives \[\text{[BAL85]}\]
 - Elemental alternatives: activity paths
 - Aggregate alternatives: nodes in the activity network

- Size of aggregate alternative: number of paths using this link

- In activity network: constant, \(K^{\tau-1}\), cancels out, no correction.
Activity Path Size

- Similarity measure: shared primary activity [Bow98]
 - Primary activity A_p: relative majority of nodes
 - Size of node: nb of paths using it, with primary activity A_p
- Similarity measure: shared pattern
 - Pattern p: ordered sequence of activity types, without duration
 - Activity pattern: Home-Work-Shop-Home
 - Size of node: number of paths using the node, with pattern p
Primary Activity Path Size

• Node $A_{k,\tau}$ corresponds to primary activity A_p

$$M_{A_{k,\tau}} = \left[\frac{x^{T-1}}{(T-1)!} \right] \sum_{j \geq 0} \frac{x^{j-1}}{(j-1)!} \left(1 + x + \frac{x^2}{2!} + \cdots + \frac{x^{j-1}}{(j-1)!}\right)^{K-1}$$

• Node $A_{k,\tau}$ does not correspond to primary activity A_p

$$M_{A_{k,\tau}} = \left[\frac{x^{T-1}}{(T-1)!} \right] \sum_{j \geq 0} x^j j! \left(1 + x + \frac{x^2}{2!} + \cdots + \frac{x^{j-1}}{(j-1)!}\right)^{K-2} \left(1 + x + \frac{x^2}{2!} + \cdots + \frac{x^{j-2}}{(j-2)!}\right)$$
Activity Pattern Path Size

$$M_{A_k,\tau} = \sum_{i=1}^{|p_k|} \left(\frac{\tau - 1}{L_i - 1} \right) \left(\frac{T - \tau}{|p| - L_i} \right)$$

- $|p|$: number of elements in pattern p
- $|p_k|$: number of times activity type k appears in pattern p
- L_i: index of the ith occurrence of activity type k in pattern p
Conclusion

• Network traces can be used for estimation of activity-based models in pedestrian facilities
• Activity path approach models pattern, time of day, duration and number of episodes simultaneously, using recent developments in route choice modeling
• Similar paths are probably correlated; deterministic correction proposed
Future work

• Estimate a model with Primary Activity Path Size and Activity Pattern Path Size
• Cross nested logit model with sampling of alternatives for route choice models [LB14] adapted to activity path choice
Thank you

Workshop in Discrete Choice Models:
Activity path size for
correlation between activity paths
Antonin Danalet, Michel Bierlaire

– antonin.danalet@epfl.ch
Moshe Ben-Akiva and Steven R. Lerman.
Discrete Choice Analysis: Theory and Application to Travel Demand.

John L. Bowman.
The Day Activity Schedule Approach to Travel Demand Analysis.

Jingmin Chen.
Modeling route choice behavior using smartphone data.

Loïc Tinguely, Antonin Danalet, Matthieu de Lapparent, and Michel Bierlaire. Destination Choice Model including a panel effect using WiFi localization in a pedestrian facility. *In 15th Swiss Transport Research Conference (STRC)*, page 44, Monte Verità, Ascona, Switzerland, 2015.