Model Checking a Networked System Without the Network

Rachid Guerraoui and Maysam Yabandeh
School of Computer and Communication Sciences, EPFL, Switzerland
email: firstnanme. | astname@pfl.ch

Global State
.——- System State _.._ _

gTe

Network State

Global State
———-System State —.._

’ N

/

(\
/

A\ %

Abstract

Current approaches to model checking distributed sys- @
tems reduce the problem to that of model checking cen-

tralized systemsglobal states involving all nodes and
communication links are systematically explored. The

fr nt chan in the n rk element of the gl |
equent changes in the network element of the globa o :>

states lead however to a rapid state explosion and make

it impossible to model check any non-trivial distributed //Shared Networ

system. We explore in this paper an alternativéocal _ o] o
approach where the network is ignored, a priori: only theFigure 1: State transition in model checking distributed
local nodes’ states are explored and in a separate magyStéms. In (a) the classic global approach, the model
ner. The set of valid system states is a subset of all comchecker creates the entire state space of the global states,
binations of the node local states and checking validitpVhereas in (b) our proposed local approach, the net-
of such a combination is only performed a posteriori work element is eliminated from the stored states and the
in case of a possible bug. This approach drastically remodel checker keeps track of only node local states.
duces the number of transitions executed by the model
checker. It takes for example the clasgliobal approach .
several minutes to explore the interleaving of message ngth tOf the seguer:ce ofdelnaﬁledk_eveg_tst _(l:)orgsljdered.
in the celebrated Paxos distributed protocol even Considt- urren7 agprl(;aclgs 12 mod € Ctﬁc mgbl IS “tu ?h tsysf
ering only three nodes and a single proposal. Oaal ems [7, 8, ST] reduce the probiem 1o that o
approach explores the entire system state in a few se(p-mdel checking a centralized sy_st_em (Figure 1). The sets
onds. Our local approach does clearly not eliminate theeﬁ(plorgd a'reglc:bal d;tattﬁs gprtn_rt))n?lr:jg thk?cal ;tates of
state exponential explosion problem. Yet, it postponeét € n? tes Invo V(ﬁ mth:et IS r:(utet Sys ?”." |.3.1,s§t$e

its manifestations till some deeper levels. This is al- er:n st e,fas Well as work state involving the ex-
ready good enough for online testing tools that restart th&Nange o messgges.)

model checker periodically from the current live state of | "€ €xponential state space explosion problem man-
a running system. We show for instance how this ap_|fests itself very quickly in thigglobal approach, which

proach enables us to find two bugs in variants of Paxos.Makes the model checking of distributed systems practi-
cally ineffective. This is because the global state changes

following any small change into a node local state or the
1 Introduction network state. Consider for instance the celebrated Paxos

protocol [9], in the simple setting with three nodes where
At each step of model checking a centralized system, (igxactly one proposes at the start, i.e., no contention: it
one of the traversed states is selected, (ii) an enablet@kes the global model checking approach 1514 s (run-
event is executed on that state, and (i) the resultinghing on a 3.00 GHz Intel(R) Pentium(R) 4 CPU with 1
state is added to the list of traversed states. The useMB of L2 cache) to explore the interleaving of messages.
specified invariants are checked against the traversed The starting point of this paper is a couple of simple,
states after each step and the set of these states growsmplementary observations: (1) in the global model
exponentially with thedepth of the exploration, i.e., the checking approach, the invariants are checked on each

traversed global state, although these invariants are typi In global model checking approach, visiting the sys-
cally specified only on the system states, i.e., the invaritem states is part of the exploration process: the new
ants do not involve the network states [8, 18, 19, 14]; global states (which involve the system states) are ex-
(2) for checking invariants that are defined on systenplored by running enabled events on the previously vis-
variables, visiting the system part is a priori sufficient. ited global states. Therefore, skipping a system state
Focusing on these states only, and ignoring the netmakes the exploration incomplete. In contrast, our lo-
work states, significantly reduces the exploration spaceal approach separates the exploration of transitions from
in comparison to the classic approach where each syghe creation of system states. This makes it possible to
tem state is typically repeated in multiple global statesignore all system states on which the user-specified in-
that differ only in the network part. variants can inherently not be violated: for instance, the
We present in this paperlacal model checking ap- Paxos invariant stipulates that no two decisions should
proach, which essentially consists in keeping track of thebe different and all undecided states can systematically
traversed local nodes’ states separately by ignoring thée eliminated.
network, a priori. Combined, these states are sufficienSummary of Contributions.
for invariant checking. The approach is most effective on
protocols that involve frequent changes into the network,
i.e., the nodes have lots of parallel network activities. Fo
the Paxos example state space with one proposal, our ap-
proach explores the entire system state in a few seconds.
We show that our approach implete in the sense that
any violation of a system state invariant that could be de-
tected by the global approach could be detected by our
local approach. Two important remarks are however in
order.
First, the combination of node states does not induce
system states that are allid: the fact that we ignore
the network element, a priori, means that some combi-
nations of node states might not occur in a real run. In
other words, although complete, checking invariants on
the retrieved system states isisound since it could re-
port a violation on an invalid system state. We address
this problem by, a posteriori, verifying every preliminary
violation report to make sure the sequence of events lead-
ing to the corresponding system state could also happen
in areal run. Aninvariant violation is then reported to the
user only if passes this test. If the number of preliminary
violations is low enough, which turns out to be the case
in our experiments with Paxos, the performance penalty
of verifying them becomes negligible. The rest of the paper is organized as follows2 il-
Second, although our local approach is several orderlistrates our approach through a simple example. The
of magnitude faster than the classic model checking apPackground is recalled i§3. § 4 presents our approach.
proach, the state explosion problem is not eliminatedAfter presenting the evaluation resultsgis, we contrast
(The cost of invalid states created by our approach, allocal model checking approach with related work§if
though low at the start, will anyway eventually domi- and conclude the paper 7.
nate in the general case.) Yet, we believe this can, to
a large extent, be addressed loyline model checking 2 | gcal Model Checking: A Primer
tools where the model checker is run for just a short pe-
riod (a few seconds): in this case, our approach is effitere we use a simple example to highlight the difference
cient enough to search till depths of-280 for the Paxos petween global model checking and our local approach.
example state space. The example we consider here does not attempt to illus-
i — , , trate the performance improvements obtained by our ap-
n testing, invariants are used to express the high-levepenties 0401 byt aims at explaining the main idea. The exam-
of the system. Including the in-flight messages in invasaatthough
possible in theory, makes defining the invariants too caragéd in ~ Pl€ System is a simple distributed tree structure, depicted
practice. in Figure 2. Node 0 initiates a message for Node 4 and

e We introduce a new, local approach to model check-
ing distributed systems. Instead of keeping track
of global states, we eliminate the network element
from the model checking states and keep only track
of node local states. Our approach optimistically
eliminates the overhead of ensuring soundness of
every visited state and instead verifies soundness
only on the states that violate the invariants.

e Our approach decouples exploration algorithm from
system state space creation. This feature opens the
door for optimizations that skip some system states
without, however, hurting the completeness of ex-
ploration. We benefit from this aspect in our exper-
iments by skipping the system states that could not
violate the Paxos invariant.

e Having the exploration, system state creation, and

soundness verification decoupled, the model check-

ing process can be embarrassingly parallelized to
benefit from the ever increasing number of cores.

We present an efficient implementation of our ap-

proach and we show how this approach tracks bugs

in two variants of Paxos, known to be one of the
most complex distributed algorithms.

©O) 0 FHHHE

/ \ l send
® /@\ 01052 [FSIHHEE s
@ @ l 0—1
{0-10-2 [-SIHHHEH
Figure 2: A simple distributed tree algorithm. Each node l 00
forwards the message to its children.
{0102, [-SIHHHEH
2—3,2—4}
i p— l 2—-3
lsend O s ESHHMH
l 24
{0—1,0-2} 5~
{0—1,0-2, -

(0— y {02} 23,24} [SIFIFAI-r —r

072 o= (02122324 & Figure 4: Local model checking approach on the ex-

{Oﬁz}\ W l‘zﬂw‘l} ample tree in Figure 2. The first column indicates the

changes into the shared network element. The middle

@osaogy e Oz e (021208 e column shows the set of states of Node 0 to 4. The first
{2*;/ \Qf%) {Oﬂl/ \5%4} <2ﬁ3i/ \f‘bﬂ event is the local event of Node 0 that generates the mes-
203 st 2o} s ©Oo1) st | 203 s sage. The generated message is then added to the shared
= o network element. At each step, an event is selected and

=3 {Z*N ﬁ gl =3 is executed on all states of the destination node. The re-

¢ s—r sultant states are added to the list of visited node states if

they have not been visited before. The last column shows
Figure 3: The global state space of the example tree ithe new system states created after each step.
Figure 2 as explored by a global model checking ap-
proach. The network element of the global state is rep-
resented by the set of in-flight messages. Each arrowssential part for invariant checking, is separated from
depicts a transition in the model checker from one globathe model checking state. Instead, we keep a shared net-
state to another. The label besides each arrow indicate&ork component that receives the generated messages by
the event that triggers the transition. Although the globalall the transitions in the model checking. Observe that

states inside the rectangles are duplicates, they are n8te messages added to the network are not removed by
joined into one state, for simplicity of presentation. the executed transitions. This is necessary for the com-

pleteness of the search, because each message must be
received by all the states of the destination node, includ-
changes its state ®ent . Each node, upon receiving a ing the node states that will be explored later.
message, forwards it to its children. Node 4 changes its The last column of the figure depicts the new system
state tor ecei ved upon receiving the message. states created after each step. The system states are cre-
At each step of global model checking, the modelated temporarily for the sake of being checked against
checker transitions from a global state to another by runthe user-specified invariants. Observe that, in total, only
ning an enabled event, such as handling a message. Thesystem states are created in contrast with the 12 global
global state contains the network state besides the systestates of Figure 3. Moreover, the last system state, i.e.,
state, i.e., the local state of all the nodes. The globat stat”----” is invalid since Node 4 could not receive the mes-
space of the example system is depicted in Figure 3. Theage before it is sent by Node 0. After an invariant is
initial state of each node is denoted "-". The system stat&iolated on a system state, we ruisaundness verifica-
is shown by concatenating the five states of Nodes 0 to 4jon phase to ensure the validity of the system state.
The state of Node 0 and 4 is changed to "s” and "r” after
the sending and receiving of the message, respectively.
Each change into the network element causes creation @ Preliminaries
a new global state. As one can observe, the number of
system states covered by this global state space is mudle present here a simple model of a distributed system
less than its size. and a basic model checking algorithm based on depth-
Figure 4 illustrates our local approach on the same exfirst search. The model is later altered ih to explain lo-
ample system. Here, the network element, i.e., the noneal model checking algorithm. We then explain the short

basic notions:

N — node identifiers

S — node states

M — message contents

N x M — (destination process, message)-pair

C = 2NxM _ get of messages with destination

A — internal node actions (timers, application calls)

global state: (L, 1) € G, G =2N*5 x 2NxM
system state (local nodes’ stated) C N x S
(function fromN to 5)
in-flight messages (network)l C N x M

behavior functions for each node:
message handler Hy; C (S x M) x (S x C)
internal action handlerH, C (S x A) x (S x C)

transition function for distributed system :

node message handler execution
((s1,m), (s2,¢)) € Hyy

before: (Lo W {(n,s1)}, IoW{(n,m)})~
after: (Lo W {(n,s2)}, 1o We)

internal node action (timer, application calls)
((Slaa)ﬂ (8270)) € HA
before: (Lo W {(n,s1)}, 1)~
after: (LoW{(n,s2)}, T Wc)

Figure 5: A simple distributed system model

has two kinds of handlers: (i) a message handler exe-
cutes in response to a network message; (i) an inter-
nal handler executes in response to a node-local event
such as a timer and an application call. We represent
message handlers by a set of tuplég. The condition
((s1,m), (s2,¢)) € Hy means that, if a node is in state
s1 and it receives a message then it transitions into
statess and sends the setof messages. Each element
(n/,m') € cis a message with target destination nade
and contentn’. ((s1,a), (s2,¢)) € Hy4 represents the
handling of an internal node actieanc A. An internal
node action handler is analogous to a message handler,
but it does not consume a network message.

System behavior. The behavior of the system specifies
one step of a transition from owgobal state (L,) to an-
other global stat€¢Z’, I’). We denote this transition by
(L,I)~(L',I") and describe it in Figure 5 in terms of
handlersd; andH 4. 2 The handler that sends the mes-
sage, inserts the message directly into the network state
1, whereas the handler receiving the message simply re-
moves it from/. To keep the model simple, we assume
that transport errors are particular messages, generated
and processed by message handlers.

Observations. The following observations can be de-
rived from the definitions ofi,; and H 4 in Figure 5:

(i) Except the node in which the event is executed, the
state of other nodes, i.ely, is untouched. This implies
that to execute an event on nodewe require only the
state of nodes; (ii) To executeH ,; with messagen on
noden, the only required part from the network state is
tuple (n,m): the rest of the network state, i.dg, is

run in online model checking, where the model checkeryntouched. These observations indicate that the entire

can benefit from our local model checking approach.

3.1 System Model

global state of the system is not required to execute a
handler in the model checker.

3.2 Global Model Checking

Figure 5 describes a simple model of a distributed sys-

tem, taken from [18].
System state. The global state of the entire distribute

system encompasses (1) the system state, i.e., local staft®

Global model checking is based on a standard search al-

d gorithm such as bounded depth-first search (B-DFS) for

cking invariant violations in the transition system-cap

of all nodes, and (2) in-flight network messages. We as:@reOI by relation.- of Eigure 5. The search starts fror_n a
sume a finite set of node identifiedé (e.g., correspond- given global state, which, in the stan_dard approach, is the
ing to IP addresses). Each nades N has a local state initial state of the system. By executing enabled handlers
L™ € S. A node state encompasses node-local infor—(HM andHA) on the traversed global states, the search
mation, such as explicit state variables of the distributedSySter‘nat'C"leIy explores reachable global states at larger

node implementation, the status of timers, and the stat@nd larger depths and checks whether the states satisfy

that determines application calls. A network state corre-the giveni nvari ant condition.

sponds to the set of in-flight messagés\We represent So_undness. B-DFS is sound in_ the sense that all vio-
each in-flight message by a p&iv, M) whereN is the lation reports could also occur in a real run of the sys-

destination node of the message ards the remaining tem. In other words, there is rfelse positive in the re-

message content (including sender node information anBorted bugs. Moreoverz all traversed states are yahd and
message body) could also be created in a real run. The sufficient part

Node behavior. Each node in the system runs the for soundness, however, is only the reported violations

same state-machine implementation. The state machine 2w in the handler definition means disjoint union.

Distributed System Implementation
|
p R — . msg
Initial Handler [——* I
States ™| Node States|LS| Execution |9/ Network |

Ls{ y—— s v
System State | SS | Invariant SSI Soundness
Creation _>Checking [false] | Verification Errors
A
|
Invariants
a b Figure 7: In our local approach, the handler execution

works only on node states and produces new node states.
Figure 6: The covered state space in model checking by ocal and system states are denoted "LS” and "SS”,
(a) a model checker started from the initial global staterespectively. The messages are not removed from the
and (b) an online model checker that restarts periodicallshared network component after execution. The sound-
from the current live system state. The curved line repmess verification checks the validity of a system state,
resents the states explored by the running system. only after an invariant violation is reported.

to the developer. We will show later that our local model
checking is also sound, even though some system states
created a priori might be invalid.

Completeness.An exploration algorithm is complete if,
given enough time and space, it can explore all system
states. In other words, completeness is satisfied if there . . . L
is no false negative in bug reporting. Although B-DFS internal node action (timer, ;atppllcatlon calls)
is complete, due to an inherently limited time budget, in ((s1,0), (s2.¢)) € H}y

practice it can explore only a small fraction of the state before: (Lo W {(n,s1)},I")~

space of complex algorithms. after: (Lo W {(n,52)}, I We)

node message handler execution
((817 m)v (325 C)) € HJI\J
before: (LoW{(n,s1)}, It W{(n,m)})~
after: (Low{(n,s2)}, ITW{(n,m)}Wec)

3.3 Online Model Checking Figure 8: The altered handlers in local model checking.

Due to the state space explosion problem, a model

checker of a distributed system cannot explore deepefecreate thesystem states upon which the invariants are
than certain steps in a limited time budget. For examhecked. After a preliminary violation report on a sys-
ple, evenin the very small state space experiment of Figtem state, the validity of the system state is checked by
ure 10, where only one node proposes once, the modg| soundness verification module. If the system state is
checker cannot explore more than 15 events within &onfirmed to be valid, the error is then (and only then)
minute. An online model checker is, on the other handreported to the developer.

restarted periodically from the live state of arunning sys- |,stead of keeping a separate network state for each

tem. As a consequence, the model checker has a Chanﬁﬁ)bal state, we keep one single network stétethat

to explore more relevant states at deeper levels, instea(q)mains all generated messages during the model check-

of getting stuck in the exponential explosion problem ating (Figure 7). The execution of handlers must change to

some very ghallow depths. _ work with the shared network stafé” (Figure 8). In the
Figure 6 illustrates the use of a model checker in Parnew handlersfl, and H,, the network state of the in-

allel with a running system. As one can see, an onling, , giobal state is replaced with the new shared network
model checker does not require solving the exponentiali e 7+ Furthermore. the received message, m)
explosion problem completely; it is rather sufficient to ’

explore till a depth that is useful for testing purposes.

is not removed from/ ™ after the execution of handler

H),. In other words, the content df* is always in-

creasing. It is not hard to see that the altered handlers

4 Local Model Checking preserve the completeness of the search: for each Transi-
tion (L,, I,)~(Lg, 1) in Hyy, there exist a correspond-

The architecture of our local model checking approach igng Transition(Ly, I,7) ~(Lg, I;7) in Hj,. We discuss

depicted in Figure 7. In this approach, the model checkepoundness later in this section.

keeps track of node states separately: [sgt contains Recall from§ 3 that, to execute a handler on node

all the traversed states of node This is enough to the only required state is the state of nodd.e., LS™.

1 proc findBugs(liveState, invariant)

2
3
4
5
6
7
8
9

10

LS =emptySet()]+ = emptySet();
foreachn € N
LS™ = LS"U {liveStaté'};
while (! StopCriterion)
if (3((s,e),(s',c)) € Hy; where LS? € LS™, (n,e) € I'"
[| 3((s,e),(s',¢c)) € Hy where LST € LS™)
addNextStateq, s, s’, e, ¢, LS);
checkSysteminvariani(s, liveState,L.S, invariant);

uproc addNextStatey, s, s', e, ¢, L.S)

12
13
14
15
16
17

22
23
24
25

29
30
31
32

33
34
35
36

It=I"ug
LS"=LS™Uus’;
LSY, .predecessors.adde);

proc checkSystemInvariani(s, liveState,LS, invariant)
foreach ss : system state
whereVny,. ss"* € LS"*
if (!invariant(ss))
if (isStateSound(liveStates))
reportBugés); // a bug found

proc isStateSound(liveState, state)
//obtain all sequences following predecessor pointers
foreach h : list of event sequencashere
h™ € (staté'.predecessorsy/ * is closure operator
if (isSequenceValid(liveState))
return true;
return false;

proc isSequenceValid(liveStatg)
state = liveState;

while (3n, nextStatevhere state” 210 nextState)

state = nextState;
h".popFirst();
return h == (;

Figure 9: Local model checker algorithm.

ing, an enabled handler, either network or local, is exe-
cuted. For network handlers, the algorithm at each step
checks all network messages in Variabbie. To obtain

the enabled network events, for each messagfenode

nin I, all the currently visited states of nodeare con-
sidered (Line 6). The corresponding network handler is
then executed (Line 8) and ProcedadNext St at e

is called on the resultant staté, and the set of new net-
work messageg;, Note that the messages that are added
to network /™ in this round of the loop (i.e¢ in Fig-

ure 8) will be considered on the node states in the next
round.

As in the global model checking approach, the node
local events, such as timers and application calls, are de-
fined based on the node local states. In other words, the
value of node staté.S? determines which of the local
events are enabled. To obtain the enabled local events,
we look at all visited node states and retrieve their local
events (Line 7).

In ProcedureaddNext St at e, the set of new net-
work messages is added to the shared netwdrk,
(Line 12). If the state of node has changed, it is added
to setLS (Line 13). Variablepredecessors keeps track
of all the last immediate node states as well as the exe-
cuted events on them that led to the current node state
(Line 14). We need more than one pointer in Vari-
ablepredecessors, since the same node state might be
reached by executing different sequences of events.
Creating system states. The invariants are defined
on system states. Since we do not store the system
states, they must be temporarily created for the sake
of invariant checking, which is performed by Procedure
checkSyst em nvari ant. The procedure is called
after each change tbS. Each system states is created
by combining the node states of different noded.if\.

(We will explain in§ 4.2 an optimization that prevents

Therefore, the stored node states are enough to execuggvisiting system states.)

the handlers and we do not need to recreate the SyStem The On|y purpose of System state creation is to Verify
state for that. To execute network handlers, however, Wéhe user-speciﬁed invariaat on them. Therefore, we

require also messade, m) from the network (we do not

can design invariant-specific system state creation to by-

need the whole network state.). As shown in Figure 7, theyass the system states that could not possibly violate the
handler execution module receives input only from nodejnvariant. In other words, ifn’ = in andin/(ss) is

states and the shared network module.

4.1 Algorithm

Figure 9 presents our algorithm. Varialilé' in Figure 9
refers to the set of all visited node states, ie,s), where

false, verifyingin(ss) is not necessary. In order for this

to be usefulin’ should be cheaply verifiable. One way
to achieve that is to decompoa€ into some locally ver-
ifiable properties. For example, the Paxos invariant spec-
ifies that no two nodes should choose different values. In
system state creation, therefore, we can ignore the node

n is the node index and is the node state. Procedure states in which no value is chosen yet. If the invariant is
f i ndBugs takes the live state of the system as input, todefined on node states separately, the invariant-specific

initialize Variable LS at Lines 3-4. As in global model

system state creation can also bypass the system states

checking , the search terminates upon exceeding soma which none of node states have violated the invariant.
bounds, such as running time or search depth (Line 5). For example, in RandTree distributed tree structure, one
Handler execution. At each step of the model check- invariant specifies that in all node states the children and

siblings must be disjoint sets. implementation of the local model checking approach,
Soundness verification. Since taking all combina- denoted LMC, uses MaceMC [8], a model checker for
tions of node states could result into some invalid systendlistributed system implementations in the Mace lan-
states, the preliminary violation of an invariant could beguage [7]. Mace programs are basically structured C++
unsound. Proceduries St at eSound, therefore, veri- implementations, in which the boundary of handlers and
fies validity of the system state upon which an invari- the protocol messages need to be specified. This helps
ant is violated. Variableoredecessors in each node Mace automatically generate the code for serialization
states’ contains all the last immediate node states thaand deserialization of the protocol state, and simplifies
led to s’. Following these pointers, we obtain the setthe definition of events in the model checker.
of event sequences that could leadsto If a system We use CrystalBall [18, 17] for online running of the
state is valid, then there exists at least one valid commodel checker, in parallel with a live distributed system.
bination of its node states’ event sequentésnes 25- The model checker is then periodically restarted from the
26 loop on all these combinations and invoke Procedurgéaken snapshot. It is worth noting that LMC improves the
i sSequenceVal i d on each. The number of paths performance of model checking anyway, independent of
could exponentially increase with sequence size, whiclCrystalBall. For testing of complex programs, however,
is the major cost in soundness verification. we use the online model checking approach to restart the
Proceduré sSequenceVal i d receives: event se- model checker before exponential explosion manifests.
quences ', i € N) corresponding tox nodes in the We changed MaceMC to work only on one global ob-
system. The procedure then looks for a valid total ordefiect of the network simulator, i.el*. To change the
for execution of the events, in which an event is executechetwork handler implementations froff, to H}, (Fig-
only after it is enabled. For example, to execute a neture 8), we changed the network simulator not to remove a
work handler that receives messagerom nodes, the message after its delivery. MaceMC automatically gener-
message must first be generated by an eventAieach ates specific functions for (de)serializing a module state
step, the procedure verifies whether any of the events oim the service. We added specific functions to save and
top of theh’ stacks are enabled (Line 33). The first en-restore the whole service stack. This is required for
abled event is greedily selected for execution based omulti-layer services such as 1Paxos [15] (one of the pro-
the definition of handlers in Figure 5 (the events are extocols we check), which uses Paxos as its lower layer
ecuted similar to a real run of the distributed system.).module. To efficiently check for duplicate states, we use
The loop continues until there are no enabled events othe hashes of the serialized states. For each notlee
top theh’ stacks. Afterward, the fact thdt is empty hashes of the traversed states are kepsiatastructure.
(Line 36) indicates that the set of sequenced events in The serialized state itself is stored imlaque structure
was possible to run and hence its corresponding systemo benefit from its efficiency in random access.
state is valid. Each message keeps track of the number of node
Procedurel sSequenceVal i d returns true if and states on which it has been executed. Therefore, in each
only if the corresponding input system state is valid. Theround, each message is checked only on the newly added
proof of the above statement is covered in the technicaétates, by jumping over the old states. Instead of the ac-
report [16]. Intuitively, since an event in not popped out tual event, its hash is added into the predecessor point-
from h unless it is a valid, enabled event, the feasibil-ers. These hash values will be checked against the hash
ity of executing all events implies that the system state isjalues of the enabled events, later when we verify the
valid. It actually does not matter which enabled event issoundness of the system state.
selected for the next step, since the demanded order byest driver. The test in model checking a service is
the sequences will be eventually enforced by receivingyenerally driven by an application sending requests to

only the messages that are already generated. the service. In Paxos for example, an application send-
ing propose requests to the service is the test driver of
4.2 Implementation Details the model checker. The more complex the test driver, the

larger the generated state space is. A careful design of the
Local model checking can be used for testing programgest driver could greatly impact the efficiency of model
in all languages, including C++. Basically, any of exist- checking. In our Paxos experiments, the test driver pro-
ing stateful global model checking tools could be instru-poses values for a particular index. The index is selected
mented to run our proposed algorithm. Our prototypefrom recent chosen proposals, where not all the nodes

have learned the proposal yet. Otherwise, a new index is
3Each event sequence r_nust determi_nist_ically lead to the sade used for the proposal.

state. If the event handler implementation is dependenbaresnon- . -

deterministic values, those values must be recorded asfthe event, ~ SYStem states.To avoid revisiting system states, check-

to be replayed deterministically on a re-execution of thenev ing invariants on system states is performed only after

visiting a new node state, which implies the possibility loading the test driver.
for creating new system states. For each new node state For efficient implementation of soundness verification
(n,s), the system states are created by iterating over thenodule, we take advantage of the following observation.
states of all the nodes except nad@nd loading them. The role of the simulator in executing evenvn noden
This is because the combinations of the previously vis-s to (i) updates the state of node(ii) remove the mes-
ited states of node: and the node states of the other sagem from the network ife is a network event for de-
nodes have already been verified in previous rounds. Itisivery of messagen, and (iii) add the set of messages,
worth noting that this optimization could make the modelresulting from the execution ef to the network.
checking incomplete because the handler execution that The consumed message by a network event is specified
has not produced a new node state could still change thiey its corresponding hash in the node event sequence,
pointers inpredecessors, which means the possibility of which was given as a part of the input to the procedure.
a valid event sequence for a previously rejected systerithe set of the generated messages by an event execution
state. To address this issue we could cache the systeoan also be remembered by keeping the hashes of the
states in which an invariant is violated and reverify themgenerated messagesyiredecessor. In this manner, the
after the changes intbS that affect them. input to ProceduresSequenceVal i dis the set of se-
Beside the general approach for system state creatioguenced events as well as the set of generated messages
we also implemented an invariant-specific variation, deby each event. The execution of evenin Procedure
noted LMC-OPT, optimized for the Paxos main invari- i sSequenceVal i d can then be simplified as follows:
ant. In this variation, we map the node states to the values
that are chosen in them. Because most of the node statesl'
have not chosen any value, lots of them will not be in-
cluded in this mapping. When creating system states, we
thus select only the node states that at least two of them =
are mapped to different values. This optimization helps
avoid the creation of lots of redundant system states and
consequently omits their corresponding invariant check- ~*
ing and soundness verification steps.
Soundness verification. Procedurda sSt at eSound The above implementation simplifies Procedure
uses pointers in Variablgredecessor to find event se- j sSt at eSound to some integer comparison opera-
quences that could lead to the input node states. For thgons and therefore makes checking the validity of a set
sake of simplicity in implementation, we ignore tbeif- of sequenced events very efficient.
references in following the pointers irpredecessor. Al- Local assertions. LMC checks for the system invari-
though in theory this could make the exploration incom-ants defined on the system state. The source code could
plete, in practice the search in the limited time budget isstill be instrumented by some local assertions by which
incomplete anyway and benefiting from the simplicity is, the developers have benefited in earlier stages of testing.
hence, preferable. Moreover, after the soundness verifithe violation of the local assert statements in the pro-
cation on a system state is finished, some more pointergess of local model checking could imply that either (i)
could be added intpredecessor by the process of lo- the node state is invalid, perhaps because of delivering an
cal model checking. Therefore, a complete explorationunexpected message, or (ii) there is a bug in the system
should invoke soundness verification after each changander test. Checking the latter case necessitates (i) cre-
into apredecessor. However, an efficient implementa- ating all the system states by combining the node state
tion of that would be complex since it should check only with all states from other nodes, and (i) checking the va-
for the newly added pointers. For the sake of simplic-jidity of those states by invoking soundness verification.
ity in implementation, we invoke soundness verification This approach is very expensive since it involves lots of
only after a new node state is visited. invocation of soundness verification.
Procedurei sSequenceVal i d. The validity of a set In general we could ignore violation of a local assert
of sequenced events could in general be checked by exince a protocol bug will eventually manifest itself by vi-
ecuting them in a simulator (the same way the globalolating a system invariant. Alternatively, we can discard
model checking approach transitions from one globalthe node state on which the assertion is violated assum-
state to another). If no event from the sequences is enng that the assert violation implies the invalidity of the
abled in the simulator, it indicates that sequence of eventaode state. In the applications we tested, the assert state-
is not valid. Although using the simulator simplifies the ments were mostly used to exclude the receipt of unex-
implementation, initializing the simulator at each run of pected messages, i.e., the case that could be caused by
the soundness verification is expensive since it involvegonservative message delivery policy of LMC, which de-

A local event is always enabled. A network event

e is enabled if the hash of the required message is
found in the set of generated message hashes,

If evente is enabled, then pop it out from the se-
quence. If event is a network event, remove the
hash of the corresponding message frormset

After popping out evernt, add its generated mes-
sage hashes to sett.

livers the message to all the node states of the destinatioproach of local model checking performs better since it
We, therefore, benefited from the local assert violationsdoes not pay for ensuring validity of every single visited
by discarding the corresponding node states. state. Otherwise, the cost of soundness verification dom-
Local events. The presented algorithm ih4 is com- inates. For example, in online model checking, if a run
plete in the sense that, given enough time and space, @f the model checker is revealing a bug in the protocol,
explores all possible states. In practice, however, wat is likely to see lots of violation reports caused by both
have a short time budget to check the reachable stateslid and invalid event sequences. Perhaps, one solution
from a given current state. Therefore, the developersould be running both local and global model checker in
might be interested to favor some events to be exploregarallel and use the result of the one that finishes sooner.
first in the search. Hence, in each round we put a bound By eliminating the network element from the model
on the number of local events that each node can exeshecking state, local model checking reduces the ex-
cute; after finishing the round, the bounds are increaseglored state space since each system state is repeated in
and the model checking is started from scratch. This apmultiple global states that are different only in the net-
proach is in spirit similar to B-DFS search, where thework part. The larger the network state space is, the more
search depth is increased at each step. space and time is saved by eliminating it. Local model
Duplicate messagesln general, a node could infinitely checking is, therefore, most effective for the protocols
issue duplicates of the same message. For example, that are chatty, i.e., exchange lots of messages to service
the verified Paxos implementations, the same Chosea request. Otherwise, if the nodes rarely communicate,
message will be sent over and over to the proposer thdhe change into the network is rare and therefore there is
insists for an already chosen value. To favor the maimot much to be saved by local model checking.
protocol messages in the limited time of search, we have In contrast with global model checking, local model
put a limit on the number of duplicate messages senchecking considers interleaving of parallel network
from a source to a destination node. This limit is setevents only when they turn out to be dependent. LMC,
to zero for the results reported in this paper. Note thatherefore, avoids lots of unnecessary event interleaving.
the duplicate messages can be postponed to be procesdeer example, upon receipt of the Accept message, the
later, after processing some main protocol messages. nodes in Paxos broadcast some Learn messages in par-
As we explained, to ensure completeness, the megllel, which enables LMC to perform much better than

sages are never erased from the network objétt, global model checking. The more parallel network ac-
However, if node statea~ s’ wherem is a network tivities in the system, the more effective LMC is. For ex-
event, execution ofn on s’ is redundant since is al- ~ ample, we could not expect much from LMC in a chain
ready executed in the sequence. To avoid redundant eystem in which each node simply forwards the input
ecutions, we keep the history of the messages that hagessage to the next.
been executed to obtain the state: a network event is con- The current implementation of LMC assumes a best-
sidered on a state only if it is not in the history of the effort, lossy network, i.e., IP. The protocols that use UDP
state. After executing messageon node state thatre- can, therefore, be directly model checked with LMC. Al-
sults into node state, we apply the two following rules though, TCP could be considered as part of the protocol
to maintain the history: (i}’.history = s.history, (i) stack, in practice this is not efficient, and TCP is usu-
s'.history.addLast(m). Thus, message: will never ally simulated in the model checker. To do so, LMC im-
be executed on node stateas well as its descendants. plementation should be also augmented to benefit from
Maintaining history gets complicated if statealready the fact that reordered messages in a connection will
exists since we need to maintain separate histories fogventually be rejected by TCP and could, hence, be ig-
different sequences that lead 40 We have simplified nored, saving some unnecessary handler executions in
the implementation by applying rule (i) only if the state the model checker.
does not exist. Since the run of LMC in the limited time
bL'ld'get is not complete anyway, we decided to favor sim5 Evaluation
plicity over completeness here.

We evaluate in this section the performance of our local
4.3 Scope of Applicability model checking approach com_pared to a classic glpbal

one. We also illustrate the ability of our tool, LMC, in
In contrast with global model checking that validity of finding bugs in Paxos and its variant, 1Paxos.
each traversed state is ensured, local model checking op- We use Paxos as a complex distributed testbed to eval-
timistically allows visiting invalid states and verifieseth uate the performance of the proposed local model check-
validity of a state only after it violates an invariant. If ing approach. In usual implementations of Paxos, each
we have a few preliminary violations, the optimistic ap- node implements three roles: proposer, acceptor, and

10000 ; ; T . 1e+06

B-DFS —+— |
1000 ¢ LMC-GEN-system -
5 100000 | LMC-OPT-system - e
I 100 ¢ 8 LMC-local % Jaratc)
o 5 a
& 10 b] % 10000 f -
< EIEIE[] k<]
g ! a2 8 1000}
= z@ RV E
o L =} B 3 R Ra kel 2 L K
@ 01 g2 5> E 100 | o e HHEHHK KK
< 1 EX' < EE K e K
& 001 | g8%] g B X
w gRx = jajES
R B-DFS —+— 10 ¢ ol
0.001 e LMC-GEN - 1 AR
0.0001 LMC-OPT, - 1 1 ; ‘ ‘ ‘
' 0 5 10 15 20 25 0 5 10 15 20 25
Depth Depth

Figure 10: The elapsed time in model checking Paxod=igure 11: The number of explored states. The number
where only one out of three nodes proposes a value. of system states explored by LMC-OPT is zero and is,
hence, not plotted in the figure.

learner. Multiple proposers can concurrently propose

values for the same index. The Paxos invariant (alsglored through an online model checker. The depth of

known as the Paxos safety property) stipulates that néhe state space is 22 events (three initialization, one pro-

two nodes will choose different values for the same in-pose local event, three Prepare messages, three Prepar-
dex. A proposition (i.e., proposing a value for an index) eResponse messages, three Accept messages, and nine
starts by broadcasting Prepare messages to the accdpgearn messages). LMC explores also longer sequences
tors. The acceptors respond by a PrepareResponse me&g-events (up to 25) since it could also explore some in-
sage. After receiving it from a majority of acceptors, the valid sequences of evenfsThe elapsed time is depicted
proposer broadcasts an Accept message to the acceptoirsa logarithmic scale to illustrate exponential state gpac

The value in the Accept message is the value returneéxplosion problem. In B-DFS, the exponential explosion

by the PrepareResponse message with the highest pretarts from the very early steps, which makes the explo-

posal number, which reflects the accepted values froniation take 1514 s. The growth in LMC-OPT is much
previous proposals, if there is any. Each acceptor theffess steep, which allows it to finish the model checking
broadcasts a Learn message to the learners. A value is just 189 ms {8,000 times faster than B-DFS).

chosen by the learners after receiving the Learn message The growth in LMC-GEN, although still much more

from a majority of acceptors. gentle than B-DFS, is steeper than LMC-OPT. The ex-

For benchmarking purposes, we use a state space gloration finishes in 5.16 s which is stit300 times

Paxos running between three nodes, in which one nodtaster than B-DFS. The extra delay is due to the cre-

proposes a value once and the others react to this pr@tion of the system states out of the explored node states,

posal by communicating using Paxos messages. Thwhich in LMC-OPT is optimized to be performed only
long chain of messages following each proposal couldafter a different value is chosen. Figure 11 depicts the
be received in a variety of orders, which all must be con-number of explored states. The number of created system
sidered by a model checker. For each experiment, we restates in LMC-GEN, although much less than B-DFS, is
port on evaluation of 3 algorithms: (i) B-DFS (explained much more than the total number of node states, denoted
in § 3), (i) LMC-GEN, which is the non-optimized, LMC-local in the figure. LMC-OPT, on the other hand,
general version of our local model checker (LMC), anddrops the number of created system states to zero since

(i) LMC-OPT, which is a version of our local model there is no bug in the Paxos implementation to lead to

checker optimized for the Paxos main invariant accord-any preliminary violations. (LMC-OPT creates a system

ing to § 4.2. The experiments are run on a 3.00 GHzstate only if it is likely to invalidate the invariants.)

Intel(R) Pentium(R) 4 CPU with 1 MB of L2 cache. The total number of performed transitions in B-DFS
is 157,332. LMC drops this to 1,186, which 4132
times less. This is because a LMC transition from state

5.1 LMC Speedup s to states’ in noden, is redundantly executed several

Here we evaluate the speedup in model checking thdimes in global model checking approach (once for each
we can get by our tool, LMC. Figure 10 presents theglobal state that encompasseand its network event is
results for the example state space, in which only onénabled).

node proposes a Ve}lue-_ Th|5_ state space IS relatively 4The invalid sequences will be eventually rejected by soessn
small and yet effective in finding bugs when it is ex- verification phase if they violate some invariants.

10

This state space of Paxos is very useful in online 12
model checking, where we expect the model checker to
seek for a bug in the time budget of less than a minute.
Both LMC-OPT and LMC-GEN can finish this state
space in this duration and LMC-OPT can continue for
more complicated state spaces where there is some time
left (as we explained if 4.2, the model checker, in favor
of time, starts with small state spaces by gradually in-
creasing the number of allowed local events.). This is in o ‘ ‘ ‘
contrast to B-DFS that will not go further than depth 12 0 5 10 15 20 25
within a minute. Depth

B-DFS —+—
LMC-GEN Bl
1+ LMC-OPT -
LMC-local ¥

0.8
0.6

04 r
/Ifll‘“‘l-lil

02t /
o KKK KK
/

Increased Memory Size (MBytes)

Figure 12: The consumed memory. The numbers for all
5.2 LMC Scalability Limits configurations of LMC are close together and are, hence,

. overlapped in the figure.
We showed that LMC manages to finish a valuable state

space in less than a few seconds. This is already good
enough for practical applications such as online model
checking that restarts the model checker every few sec-
onds. From the theoretical point of view at least, it is
interesting to find the scalability limits of LMC, i.e., the
point where the postponed exponential explosion prob-
lem eventually manifests and makes LMC ineffective for
the rest of the exploration. To this aim, we choose a much
bigger state space, where two separate nodes propose LMC-OPT
two values. The depth of the state space is 41 events, T onior
which is two times the events in one error-free proposal. 0000 T T e 0 25 30 35
(LMC explores also longer sequences of events, up to 68, Depth
since it could also explore invalid sequences of events.)

Due to exponential explosion problem, neither B-DFSFigure 13: The overheads of LMC in model checking
nor LMC could finish the state space, even after hourd?axos in which a bug is injected.
of running. Within this duration, B-DFS explores till 20

steps (out of maximum depth of 41) and LMC searches]
till 39 steps (out of maximum depth 68). The major con- Ween LMC-local and LMC-OPT (resp. LMC-GEN) in-

tributor to the slowdown of LMC is the expensive task dicates the memory overhead of system state creation
of soundness verification. The number of different even2S Well as soundness verification. - Although there is a
sequences that must be considered for checking validitf’arginal overhead for system states, the memory eventu-
of a system state exponentially increases with the searcflly retumns to the system by reusing the deleted objects.
depth. In the above example that the search depth of & consumed additional memory by all algorithms is
LMC is 39, each invocation of soundness verification in-1€SS than 1 MB which can totally it into the L2 cache.
duces~10 s into the algorithm. Invocations of sound- However, the exponential trend in memory consumption

ness verification are much less in the smaller state spacd B-DFS, promises the ineffectiveness of B-DFS for
in which only one node proposes a value. deeper searches. LMC in contrast uses the memory very

efficiently (~200 KB in total) and this amount grows lin-
early by increase in search depth.

0.1 F

0.01 ¢

Elapsed time in second

5.3 LMC Memory Requirements

Figure 11 depicts the very fact that the number of nodes 4 | MC Overheads

states explored by LMC is much less than the total num-

ber of system or global states. Because LMC keeps tracklere we break down the overheads that limit the scala-
only of node states, and the system states are creatdility of LMC. LMC has two major overheads: (1) cre-
only temporarily, LMC is expected to require very low ation of system states out of traversed node states, and (2)
memory footprint. Figure 12 verifies this expectation by verifying soundness of the preliminary violations. The
depicting the memory footprints of different algorithms. precise load of each overhead depends on the particular
LMC-local denotes the run of LMC-OPT in which the system under test. Figure 13 illustrates the overheads
creation of system states is disabled. The difference besf LMC-OPT in the buggy implementation of Paxos,

11

for which the corresponding bug is reportedrb.5. but due to message losses ofly has learned it. Start-
In LMC-system-state the soundness verification phaséng from this system state, LMC detected in 11 s a vi-
is disabled and in LMC-explore the creation of systemolation of the Paxos invariant in the following scenario:
states is eliminated. N> proposes a new valug but its Prepare messages is
The difference between LMC-system-state and LMC-not received byV;. N, responds by a PrepareResponse
explore captures the overhead of creating the systermessage containing value, because this value was ac-
states and checking the invariant on them. The overheacepted byN; in the previous round. Howevéys, since
is zero until 21 steps since the unnecessary system statbad not accepted any value for indey responds back
are bypassed by the optimization in LMC-OPT. After- by the same value proposed B, v». Receipt of Pre-
wards, the overhead increases with the depth search, bpareResponse d¥; triggers the bug, and/; broadcasts
cause as the exploration moves forward, more node states) Accept message for instead ofv;. Eventually this
are explored and hence more combinations of them mudeads to choosing valug in N», which is different from
be considered for system state creation. The differencéhe value chosen by, i.e.,v;.
between LMC-OPT and LMC-system-state reveals the
overhead of soundness verification. (LMC-OPT did not .
go further than 28 steps, the level at which the injecteoE"6 Testing 1Paxos
bug is rediscovered.) This overhead is the major contribi this section, we report on running our prototype to
utor to the exponential increase in model checking timefing bugs on a variant of Paxos, denoted 1Paxos [15]:
The reason is that not all combinations of node states arghjs is an efficient variation of Multi-Paxos [2] that uses
valid, and the more node states are traversed, the Moy one acceptor. Upon failure, the active acceptor is
invalid system states will be checked. On the other handseplaced with a backup acceptor by the global leader.
since the injected bug is close to manifest in this run ofrperefore, it is necessary that the acceptor and leader
the model checker, the number of invalid combinationsyples to be assigned to two separate nodes. To uniquely
of node states that violate the invariant increases. LMCjgentify the global leader and the active acceptor, 1Paxos
OPT triggers the soundness verification for 773 timesyses a separate consensus protocol referred to as PaxosU-
and each call takes 45 ms in average. Overall, 427,73ty [15]. The global leader and the active acceptor are
different event sequences were checked by the soundnegfentified by the last LeaderChange and AcceptorChange

verification module. entries in the PaxosUltility, respectively. In this experi-
ment, we have implemented PaxosUtility using Paxos it-
5.5 Testing Paxos self. 1Paxos is more complex than Paxos for it comprises

more logic. Here we use the same setup that was used for
In this section, we report on our experiments in inject-testing Paxos, with the difference that the application in-
ing a bug into a Paxos implementation and then runningstead of proposing a value triggers the fault detector with
our prototype to verify its ability to detect the bug. The the probability of 0.1 to stress the fault tolerance mecha-
bug we injected was reported in a previous implementanisms of 1Paxos. In 225 s, the tool found one new bug in
tion of Paxos [10]: once the leader receives the PrepartPaxos that we report in the following.
eResponse message from a majority of nodes, it creates The bug was created because of the wrong usage of the
the Accept request by using the submitted value from’++” operator; if the operator is used after the operand,
the last PrepareResponse message instead of the Prepiue returned value is the original value and not the in-
eResponse message with highest round number. The irreased one. The developer had made this mistake in
stalled invariant is the original Paxos invariant: no two the initialization function, where the leader is set to
nodes can choose different values. the first node of the members and the acceptor is set

Every one minute, the online model checking frame-to the second. The used command wasept or =
work takes the live system state of a running Paxos applix (nenber s. begi n() ++) which makes the acceptor
cation and use that to initialize the next run of LMC. The be the same node as the leader. The bug is of course
application encompasses three nodes, each node priixed by putting the "++" operator before the operand,
poses its Id for a new index and then sleeps for a randome.,accept or == (++nenbers. begi n()).
time between 0 and 60 s. The nodes communicate using During the live run, nodévs attempts to be the leader
UDP and 30% of non-loopback messages are randomlipy inserting a LeaderChange entry into the PaxosuUTility.
dropped to allow rare states to be also created. At this moment, it obtains from the PaxosUtility the cor-
The bug was detected after 1150 seconds. The run akct value of the active acceptor, whichNs. After N;

LMC that detected the bug was initialized with the fol- becomes leader, it proposes valygor indexk;, which
lowing live state: for indext;, node N; has proposed is accepted by the acceptor, i.83. N> then broadcasts
valuew;, nodesN; and N, have accepted this proposal, a Learn message, which is received/By as well as it-

12

self. Atthis point the live system state, in which all nodesCartesian abstraction in a different way: namely, to ex-
exceptN; have chosen valug; for the indexk;, is taken plore the system state space without exploring the global
to be used by LMC. state space.

Starting from the above system state, LMC highlights In [6], Cartesian Abstraction is used on top of boolean
the following scenario that violates the Paxos invariant:abstraction of threads to find race conditions in multi-
N1, which still assumes it is the leader, proposes valughreaded programs. After boolean abstraction, each
vy for indexk; to the acceptor. Sincd; considers itself thread is represented by a long boolean expression over
to be the leader, according to the protocol, it does not reglobal and local variables including an artificially added
fer to PaxosUltility to get the acceptor Id. TherefoMg, variable for line number. A race condition is also rep-
uses its current value, which is setiq, i.e., its own Id, resented by a boolean expression over the line numbers
due to the initialization bug described abové. accepts in which the threads read and write the global variables.
the proposal and sends a Learn messagé tdJponre- Race conditions are detected by taking conjunction of the
ceiving the loopback messag®h; assumes value; as thread boolean expressions with race conditions. There-
chosen for index:;. This violates the Paxos invariant fore, there is no need for system state creation. This ap-
since other nodes have chosen a different valuepie., proach cannot be applied on general system invariants

that would express a relation between local variables of
multiple threads. The approach applies a heuristic on the

6 Related Work detected races to eliminate some of the false positives.
) , .) One could indeed generalize the Cartesian abstract in-
Cartesian abstraction. This is an abstracuon—based. terpretation presented in [11] to distributed systems, by

verification technique where an overapproximated Va”'using the network as the global object. However, the net-

ant of the program is model checked, instead of the origi-Work would still be part of the model checking states,

nal one [1]. Due to overapproximation, the reported bugs o catenated to the local states. In our approach, we ex-

are not sound, which makes the technique mainly useful),,je the network element from the model checking state
for correctness proving, benefiting from the complete—and use only a shared network element.

ness of the search. Malkis et al. [11] achieved thread]\/lonotonic abstraction. Monotonic abstraction [13]

modular model checking [5, 12] using a Cartesian ab-y¢ \he network has been used in verification of security

stract interpretation of multi-threaded programs. Eac%rotocols since it accounts for the maximal knowledge
thread state consists of the thread local variables plus thg 5 .o g by attacker. Dolev-Yao's model [4] is one such
global variables. For each thread, the model checker SeRAodel, in which the attacker remembers all messages
arately explores possible valuations of the thread locajy, ;i have been intercepted or overheard. The shared net-
v_ariables as well as the global variableg. The approxima\-Nork object in our local model checking approach is es-
tion comes from the fact that the valuations of the globalgetia)iy an application of a monotonic abstraction since

variables by a thread are also used by other threads, '9he delivered messages are not removed from the net-

noring the causal order for obtaining them. Again, theWork. The shared monotonic network is key to ensuring

unsoundness, stemmed from the approximation, makeg,q completeness of the search by applying the generated
the technique inappropriate for testing purposes. In congycccanes also on future generated node states,

trast, our reported bugs are sound and this is ensuregnline model checking. CrystalBall [18, 17] is a

by keeping track of the events executed for obtaining g, mework that implements the online model checking
node state and checking the validity of the combination

fth histori f imi X . iolati scheme. To be effective in practice, the online model
(r)epto(ratse Istories after a preliminary Invariant violation ¢yecker must be fast enough to explore till a reasonable

) _ depth in the period between two restarts (typically a few
We also make use of the Cartesian product of indepenz

k Seconds). CrystalBall uses a heuristic, namebnse-
dently explored node states to obtain the system Stateﬁuence Prediction, which prunes the local events of an

Cartesian abstraction is essential here in our approach iglready visited node state. As a heuristic, Consequence
order to create the system states and check (system-widg}a jiction is incomplete and could, hence, miss some

invariants against them. In contrast, previous works benbugs due to false negatives. In contrast, our local model
efited from the Cartesian abstraction by not creating SYSghecking approach offers a complete search accompa-
tem states; skipping the system states is possible sinGgeq \vith proofs. Furthermore, complex distributed sys-
the invariants in multi-threaded programs are just threadsa 15 such as Paxos. often generate lots of network mes-
local assert statements and could be verified on a Iocagages on which Cor;sequence Prediction does not have

state of a thread without having the rest of the system,,y effect. For instance, in the used Paxos state spaces
state.> Our local model checking approach employs the

a set of thread-local assert statements, which has showsh rgsalts
5There is an ongoing research to convert a system-wide &t on small multi-threaded programs [3].

13

throughout this paper, we consider only the interleav-anonymous reviewers for their excellent feedback.

ing of the resulting network messages after some pro-

posals. Therefore, Consequence Prediction, which doegeferences

not prune the network messages, would not offer any im-

provement over B-DFS. [1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
Cartesian Abstraction for Model Checking C Programs.
In TACAS, 2001.

[2] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
Made Live: an Engineering Perspective. HODC, 2007.

7 Concluding Remarks

We introduce a novellocal approach to model check- o
ing distributed systems. Essentially, the underlying idea [3] A- Cohen and K. Namjoshi. Local proofs for global safety
is to remove the network state from the global state ~ PropertiesFormal Methodsin System Design, 2009.

when model checking, and focus on the remaining sys-[4] D. Dolev and A. Yao. On the security of public key pro-
tem state, which is the usual required part for invariant ~ tocols.|EEE Trans. on information theory, 29(2), 1983.
checking. The system state is itself built temporarily out [5] C. Flanagan and S. Qadeer. Thread-modular model
of node states, and these are maintained separately. Al- checking. InModel Checking Software. Springer, 2003.
though complete, the approach is not sound in the sensge] T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
that some system states could be invalid, i.e., could not Thread-modular abstraction refinementQaAv, 2003.

have been produced by an actual run of the system. ,W?[Y] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and
check the soundness of the system state, a posteriori, © o . vahdat. Mace: Language Support for Building Dis-
only if an invariant is violated. tributed Systems. IRLDI, 2007.

By removing the_ network from the global states, our 8] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat.
local model checking approach creates much less sys- | ife peath, and the Critical Transition: Finding Liveness
tem states than in the global approach. In addition, Bugs in Systems Code. MSDI, 2007.

f"‘.”d In contrast with thg Iatte'r approach, in which vis- [9] L. Lamport. The part-time parliamentOCS, 1998.

iting the system states is an inherent part of the explo-

ration process, local approach separates the exploratidd®l X- Liu, W. Lin, A. Pan, and Z. Zhang. WIiDS Checker:
of transitions from the actual creation of system states. ~ Combating Bugs in Distributed Systems.NSDI, 2007.
This makes it possible to exploit the specificities of the[11] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
user-specified invariants and a priori eliminate all system modular verification is cartesian abstract interpretation
states on which these invariants cannot be violated. ICTAC. Springer, 2006.

Clearly, the state exponential explosion problem is[12] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
not eliminated in our approach, and it indeed eventually =~ Modular Counterexample-Guided Abstraction Refine-
manifests, especially because of invalid system states. ~Ment. INSAS 2010.

Yet the problem is postponed and this makes our local13] J. Mitchell. Multiset rewriting and security protocahal-
approach an adequate match for online model checking ysis. InRewriting Techniques and Applications, 2002.

that restarts the model checker periodically. Using on{14] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler,
line model checking augmented with our local approach, and D. L. Dill. CMC: A Pragmatic Approach to Model
we found a previously reported bug in a traditional Paxos Checking Real CodeSl GOPS Oper. Syst. Rev., 2002.
implementation, as well as a new bug in a recent varianfys) m. yabandeh, L. Franco, and R. Guerraoui. One Acceptor
of Paxos. Both bugs have been identified by focusing on s Enough. Technical report, EPFL, 2010.

a simple, arguably common case, namely the case Witﬁ6]
no contention for which distributed protocols are typi-
cally optimized and hence error-prone.

For future works, one can think of methods to auto-
matically prune the system states according to a given
invariant. In addition, the low memory consumption of
our approach brings potentials for techniques that trad&te!
memory for CPU, gaining more speedup.

M. Yabandeh and R. Guerraoui. Local Model Checking.
Technical report, EPFL, 2011.

[17] M. Yabandeh, N. Knkevic, D. Kosti, and V. Kuncak.
CrystalBall: Predicting and Preventing Inconsistenaies i
Deployed Distributed Systems. NSDI, 2009.
M. Yabandeh, N. Knkevic, D. Kostit, and V. Kuncak.
Predicting and preventing inconsistencies in deployed
distributed systemsACM TOCS, 28(1), 2010.

[19] J. Yang and et al. MODIST: Transparent Model Checking
8 Acknowledgments of Unmodified Distributed Systems. NSDI, 2009.

We thank Viktor Kuncak for invaluable comments. We
are also thankful to our shepherd Alex Snoeren and the

14

