
Model Checking a Networked System Without the Network

Rachid Guerraoui and Maysam Yabandeh
School of Computer and Communication Sciences, EPFL, Switzerland

email: firstname.lastname@epfl.ch

Abstract

Current approaches to model checking distributed sys-
tems reduce the problem to that of model checking cen-
tralized systems:global states involving all nodes and
communication links are systematically explored. The
frequent changes in the network element of the global
states lead however to a rapid state explosion and make
it impossible to model check any non-trivial distributed
system. We explore in this paper an alternative: alocal
approach where the network is ignored, a priori: only the
local nodes’ states are explored and in a separate man-
ner. The set of valid system states is a subset of all com-
binations of the node local states and checking validity
of such a combination is only performed a posteriori,
in case of a possible bug. This approach drastically re-
duces the number of transitions executed by the model
checker. It takes for example the classicglobal approach
several minutes to explore the interleaving of messages
in the celebrated Paxos distributed protocol even consid-
ering only three nodes and a single proposal. Ourlocal
approach explores the entire system state in a few sec-
onds. Our local approach does clearly not eliminate the
state exponential explosion problem. Yet, it postpones
its manifestations till some deeper levels. This is al-
ready good enough for online testing tools that restart the
model checker periodically from the current live state of
a running system. We show for instance how this ap-
proach enables us to find two bugs in variants of Paxos.

1 Introduction

At each step of model checking a centralized system, (i)
one of the traversed states is selected, (ii) an enabled
event is executed on that state, and (iii) the resulting
state is added to the list of traversed states. The user-
specified invariants are checked against the traversed
states after each step and the set of these states grows
exponentially with thedepth of the exploration, i.e., the

Figure 1: State transition in model checking distributed
systems. In (a) the classic global approach, the model
checker creates the entire state space of the global states,
whereas in (b) our proposed local approach, the net-
work element is eliminated from the stored states and the
model checker keeps track of only node local states.

length of the sequence of enabled events considered.
Current approaches to model checking distributed sys-
tems [7, 8, 18, 19, 14] reduce the problem to that of
model checking a centralized system (Figure 1). The sets
explored areglobal states comprising thelocal states of
the nodes involved in the distributed system, i.e., thesys-
tem state, as well as thenetwork state involving the ex-
change of messages.

The exponential state space explosion problem man-
ifests itself very quickly in thisglobal approach, which
makes the model checking of distributed systems practi-
cally ineffective. This is because the global state changes
following any small change into a node local state or the
network state. Consider for instance the celebrated Paxos
protocol [9], in the simple setting with three nodes where
exactly one proposes at the start, i.e., no contention: it
takes the global model checking approach 1514 s (run-
ning on a 3.00 GHz Intel(R) Pentium(R) 4 CPU with 1
MB of L2 cache) to explore the interleaving of messages.

The starting point of this paper is a couple of simple,
complementary observations: (1) in the global model
checking approach, the invariants are checked on each

1

traversed global state, although these invariants are typi-
cally specified only on the system states, i.e., the invari-
ants do not involve the network states [8, 18, 19, 14];1

(2) for checking invariants that are defined on system
variables, visiting the system part is a priori sufficient.
Focusing on these states only, and ignoring the net-
work states, significantly reduces the exploration space
in comparison to the classic approach where each sys-
tem state is typically repeated in multiple global states
that differ only in the network part.

We present in this paper alocal model checking ap-
proach, which essentially consists in keeping track of the
traversed local nodes’ states separately by ignoring the
network, a priori. Combined, these states are sufficient
for invariant checking. The approach is most effective on
protocols that involve frequent changes into the network,
i.e., the nodes have lots of parallel network activities. For
the Paxos example state space with one proposal, our ap-
proach explores the entire system state in a few seconds.
We show that our approach iscomplete in the sense that
any violation of a system state invariant that could be de-
tected by the global approach could be detected by our
local approach. Two important remarks are however in
order.

First, the combination of node states does not induce
system states that are allvalid: the fact that we ignore
the network element, a priori, means that some combi-
nations of node states might not occur in a real run. In
other words, although complete, checking invariants on
the retrieved system states isunsound since it could re-
port a violation on an invalid system state. We address
this problem by, a posteriori, verifying every preliminary
violation report to make sure the sequence of events lead-
ing to the corresponding system state could also happen
in a real run. An invariant violation is then reported to the
user only if passes this test. If the number of preliminary
violations is low enough, which turns out to be the case
in our experiments with Paxos, the performance penalty
of verifying them becomes negligible.

Second, although our local approach is several orders
of magnitude faster than the classic model checking ap-
proach, the state explosion problem is not eliminated.
(The cost of invalid states created by our approach, al-
though low at the start, will anyway eventually domi-
nate in the general case.) Yet, we believe this can, to
a large extent, be addressed byonline model checking
tools where the model checker is run for just a short pe-
riod (a few seconds): in this case, our approach is effi-
cient enough to search till depths of 20∼30 for the Paxos
example state space.

1In testing, invariants are used to express the high-level properties
of the system. Including the in-flight messages in invariants, although
possible in theory, makes defining the invariants too complicated in
practice.

In global model checking approach, visiting the sys-
tem states is part of the exploration process: the new
global states (which involve the system states) are ex-
plored by running enabled events on the previously vis-
ited global states. Therefore, skipping a system state
makes the exploration incomplete. In contrast, our lo-
cal approach separates the exploration of transitions from
the creation of system states. This makes it possible to
ignore all system states on which the user-specified in-
variants can inherently not be violated: for instance, the
Paxos invariant stipulates that no two decisions should
be different and all undecided states can systematically
be eliminated.
Summary of Contributions.

• We introduce a new, local approach to model check-
ing distributed systems. Instead of keeping track
of global states, we eliminate the network element
from the model checking states and keep only track
of node local states. Our approach optimistically
eliminates the overhead of ensuring soundness of
every visited state and instead verifies soundness
only on the states that violate the invariants.

• Our approach decouples exploration algorithm from
system state space creation. This feature opens the
door for optimizations that skip some system states
without, however, hurting the completeness of ex-
ploration. We benefit from this aspect in our exper-
iments by skipping the system states that could not
violate the Paxos invariant.

• Having the exploration, system state creation, and
soundness verification decoupled, the model check-
ing process can be embarrassingly parallelized to
benefit from the ever increasing number of cores.

• We present an efficient implementation of our ap-
proach and we show how this approach tracks bugs
in two variants of Paxos, known to be one of the
most complex distributed algorithms.

The rest of the paper is organized as follows.§ 2 il-
lustrates our approach through a simple example. The
background is recalled in§ 3. § 4 presents our approach.
After presenting the evaluation results in§ 5, we contrast
local model checking approach with related work in§ 6
and conclude the paper in§ 7.

2 Local Model Checking: A Primer

Here we use a simple example to highlight the difference
between global model checking and our local approach.
The example we consider here does not attempt to illus-
trate the performance improvements obtained by our ap-
proach but aims at explaining the main idea. The exam-
ple system is a simple distributed tree structure, depicted
in Figure 2. Node 0 initiates a message for Node 4 and

2

Figure 2: A simple distributed tree algorithm. Each node
forwards the message to its children.

Figure 3: The global state space of the example tree in
Figure 2 as explored by a global model checking ap-
proach. The network element of the global state is rep-
resented by the set of in-flight messages. Each arrow
depicts a transition in the model checker from one global
state to another. The label besides each arrow indicates
the event that triggers the transition. Although the global
states inside the rectangles are duplicates, they are not
joined into one state, for simplicity of presentation.

changes its state tosent. Each node, upon receiving a
message, forwards it to its children. Node 4 changes its
state toreceived upon receiving the message.

At each step of global model checking, the model
checker transitions from a global state to another by run-
ning an enabled event, such as handling a message. The
global state contains the network state besides the system
state, i.e., the local state of all the nodes. The global state
space of the example system is depicted in Figure 3. The
initial state of each node is denoted ”-”. The system state
is shown by concatenating the five states of Nodes 0 to 4.
The state of Node 0 and 4 is changed to ”s” and ”r” after
the sending and receiving of the message, respectively.
Each change into the network element causes creation of
a new global state. As one can observe, the number of
system states covered by this global state space is much
less than its size.

Figure 4 illustrates our local approach on the same ex-
ample system. Here, the network element, i.e., the non-

Figure 4: Local model checking approach on the ex-
ample tree in Figure 2. The first column indicates the
changes into the shared network element. The middle
column shows the set of states of Node 0 to 4. The first
event is the local event of Node 0 that generates the mes-
sage. The generated message is then added to the shared
network element. At each step, an event is selected and
is executed on all states of the destination node. The re-
sultant states are added to the list of visited node states if
they have not been visited before. The last column shows
the new system states created after each step.

essential part for invariant checking, is separated from
the model checking state. Instead, we keep a shared net-
work component that receives the generated messages by
all the transitions in the model checking. Observe that
the messages added to the network are not removed by
the executed transitions. This is necessary for the com-
pleteness of the search, because each message must be
received by all the states of the destination node, includ-
ing the node states that will be explored later.

The last column of the figure depicts the new system
states created after each step. The system states are cre-
ated temporarily for the sake of being checked against
the user-specified invariants. Observe that, in total, only
4 system states are created in contrast with the 12 global
states of Figure 3. Moreover, the last system state, i.e.,
”----r” is invalid since Node 4 could not receive the mes-
sage before it is sent by Node 0. After an invariant is
violated on a system state, we run asoundness verifica-
tion phase to ensure the validity of the system state.

3 Preliminaries

We present here a simple model of a distributed system
and a basic model checking algorithm based on depth-
first search. The model is later altered in§ 4 to explain lo-
cal model checking algorithm. We then explain the short

3

basic notions:
N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M − set of messages with destination
A − internal node actions (timers, application calls)

global state: (L, I) ∈ G, G = 2N×S × 2N×M

system state (local nodes’ states): L ⊆ N × S

(function fromN to S)
in-flight messages (network): I ⊆ N × M

behavior functions for each node:
message handler: HM ⊆ (S × M) × (S × C)
internal action handler: HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution:
((s1, m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n, m)}) ;

after: (L0 ⊎ {(n, s2)}, I0 ⊎ c)

internal node action (timer, application calls):
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I) ;

after: (L0 ⊎ {(n, s2)}, I ⊎ c)

Figure 5: A simple distributed system model

run in online model checking, where the model checker
can benefit from our local model checking approach.

3.1 System Model

Figure 5 describes a simple model of a distributed sys-
tem, taken from [18].
System state. Theglobal state of the entire distributed
system encompasses (1) the system state, i.e., local states
of all nodes, and (2) in-flight network messages. We as-
sume a finite set of node identifiersN (e.g., correspond-
ing to IP addresses). Each noden ∈ N has a local state
Ln ∈ S. A node state encompasses node-local infor-
mation, such as explicit state variables of the distributed
node implementation, the status of timers, and the state
that determines application calls. A network state corre-
sponds to the set of in-flight messages,I. We represent
each in-flight message by a pair(N, M) whereN is the
destination node of the message andM is the remaining
message content (including sender node information and
message body).
Node behavior. Each node in the system runs the
same state-machine implementation. The state machine

has two kinds of handlers: (i) a message handler exe-
cutes in response to a network message; (ii) an inter-
nal handler executes in response to a node-local event
such as a timer and an application call. We represent
message handlers by a set of tuplesHM . The condition
((s1, m), (s2, c)) ∈ HM means that, if a node is in state
s1 and it receives a messagem, then it transitions into
states2 and sends the setc of messages. Each element
(n′, m′) ∈ c is a message with target destination noden′

and contentm′. ((s1, a), (s2, c)) ∈ HA represents the
handling of an internal node actiona ∈ A. An internal
node action handler is analogous to a message handler,
but it does not consume a network message.
System behavior. The behavior of the system specifies
one step of a transition from oneglobal state (L, I) to an-
other global state(L′, I ′). We denote this transition by
(L, I) ;(L′, I ′) and describe it in Figure 5 in terms of
handlersHM andHA. 2 The handler that sends the mes-
sage, inserts the message directly into the network state
I, whereas the handler receiving the message simply re-
moves it fromI. To keep the model simple, we assume
that transport errors are particular messages, generated
and processed by message handlers.
Observations. The following observations can be de-
rived from the definitions ofHM andHA in Figure 5:
(i) Except the node in which the event is executed, the
state of other nodes, i.e.,L0, is untouched. This implies
that to execute an event on noden, we require only the
state of noden; (ii) To executeHM with messagem on
noden, the only required part from the network state is
tuple (n, m): the rest of the network state, i.e.,I0, is
untouched. These observations indicate that the entire
global state of the system is not required to execute a
handler in the model checker.

3.2 Global Model Checking

Global model checking is based on a standard search al-
gorithm such as bounded depth-first search (B-DFS) for
tracking invariant violations in the transition system cap-
tured by relation; of Figure 5. The search starts from a
given global state, which, in the standard approach, is the
initial state of the system. By executing enabled handlers
(HM andHA) on the traversed global states, the search
systematically explores reachable global states at larger
and larger depths and checks whether the states satisfy
the giveninvariant condition.
Soundness. B-DFS is sound in the sense that all vio-
lation reports could also occur in a real run of the sys-
tem. In other words, there is nofalse positive in the re-
ported bugs. Moreover, all traversed states are valid and
could also be created in a real run. The sufficient part
for soundness, however, is only the reported violations

2
⊎ in the handler definition means disjoint union.

4

Figure 6: The covered state space in model checking by
(a) a model checker started from the initial global state,
and (b) an online model checker that restarts periodically
from the current live system state. The curved line rep-
resents the states explored by the running system.

to the developer. We will show later that our local model
checking is also sound, even though some system states
created a priori might be invalid.
Completeness.An exploration algorithm is complete if,
given enough time and space, it can explore all system
states. In other words, completeness is satisfied if there
is no false negative in bug reporting. Although B-DFS
is complete, due to an inherently limited time budget, in
practice it can explore only a small fraction of the state
space of complex algorithms.

3.3 Online Model Checking

Due to the state space explosion problem, a model
checker of a distributed system cannot explore deeper
than certain steps in a limited time budget. For exam-
ple, even in the very small state space experiment of Fig-
ure 10, where only one node proposes once, the model
checker cannot explore more than 15 events within a
minute. An online model checker is, on the other hand,
restarted periodically from the live state of a running sys-
tem. As a consequence, the model checker has a chance
to explore more relevant states at deeper levels, instead
of getting stuck in the exponential explosion problem at
some very shallow depths.

Figure 6 illustrates the use of a model checker in par-
allel with a running system. As one can see, an online
model checker does not require solving the exponential
explosion problem completely; it is rather sufficient to
explore till a depth that is useful for testing purposes.

4 Local Model Checking

The architecture of our local model checking approach is
depicted in Figure 7. In this approach, the model checker
keeps track of node states separately: setLSn contains
all the traversed states of noden. This is enough to

Figure 7: In our local approach, the handler execution
works only on node states and produces new node states.
Local and system states are denoted ”LS” and ”SS”,
respectively. The messages are not removed from the
shared network component after execution. The sound-
ness verification checks the validity of a system state,
only after an invariant violation is reported.

node message handler execution:
((s1, m), (s2, c)) ∈ H ′

M

before: (L0 ⊎ {(n, s1)}, I
+ ⊎ {(n, m)}) ;

after: (L0 ⊎ {(n, s2)}, I
+ ⊎ {(n, m)} ⊎ c)

internal node action (timer, application calls):
((s1, a), (s2, c)) ∈ H ′

A

before: (L0 ⊎ {(n, s1)}, I
+) ;

after: (L0 ⊎ {(n, s2)}, I
+ ⊎ c)

Figure 8: The altered handlers in local model checking.

recreate thesystem states upon which the invariants are
checked. After a preliminary violation report on a sys-
tem state, the validity of the system state is checked by
a soundness verification module. If the system state is
confirmed to be valid, the error is then (and only then)
reported to the developer.

Instead of keeping a separate network state for each
global state, we keep one single network stateI+ that
contains all generated messages during the model check-
ing (Figure 7). The execution of handlers must change to
work with the shared network stateI+ (Figure 8). In the
new handlers,H ′

M andH ′

A, the network state of the in-
put global state is replaced with the new shared network
state,I+. Furthermore, the received message,(n, m),
is not removed fromI+ after the execution of handler
H ′

M . In other words, the content ofI+ is always in-
creasing. It is not hard to see that the altered handlers
preserve the completeness of the search: for each Transi-
tion (Lp, Ip) ;(Lq, Iq) in HM , there exist a correspond-
ing Transition(Lp, I

+
p) ;(Lq, I

+
q) in H ′

M . We discuss
soundness later in this section.

Recall from§ 3 that, to execute a handler on noden,
the only required state is the state of noden, i.e., LSn.

5

1 proc findBugs(liveState, invariant)
2 LS = emptySet();I+ = emptySet();
3 foreachn ∈ N
4 LSn = LSn∪ {liveStaten};
5 while (! StopCriterion)
6 if (∃((s, e), (s′, c)) ∈ H ′

M whereLSn
s ∈ LSn, (n, e) ∈ I+

7 || ∃((s, e), (s′, c)) ∈ H ′

A whereLSn
s ∈ LSn)

8 addNextState(n, s, s′, e, c, LS);
9 checkSystemInvariant(n, s′, liveState,LS, invariant);

10

11 proc addNextState(n, s, s′, e, c, LS)
12 I+ = I+ ∪ c;
13 LSn = LSn ∪ s′;
14 LSn

s′ .predecessors.add(s, e);
15

16 proc checkSystemInvariant(n, s′, liveState,LS, invariant)
17 foreach ss : system state
18 where∀nk. ssnk ∈ LSnk

19 if (! invariant(ss))
20 if (isStateSound(liveState,ss))
21 reportBug(ss); // a bug found
22

23 proc isStateSound(liveState, state)
24 //obtain all sequences following predecessor pointers
25 foreachh : list of event sequenceswhere
26 hn ∈ (staten.predecessors)∗ // ∗ is closure operator
27 if (isSequenceValid(liveState,h))
28 return true;
29 return false;
30

31 proc isSequenceValid(liveState,h)
32 state = liveState;

33 while (∃n, nextStatewhere state
hn.first()

; nextState)
34 state = nextState;
35 hn.popFirst();
36 return h == ∅;

Figure 9: Local model checker algorithm.

Therefore, the stored node states are enough to execute
the handlers and we do not need to recreate the system
state for that. To execute network handlers, however, we
require also message(n, m) from the network (we do not
need the whole network state.). As shown in Figure 7, the
handler execution module receives input only from node
states and the shared network module.

4.1 Algorithm

Figure 9 presents our algorithm. VariableLS in Figure 9
refers to the set of all visited node states, i.e., (n,s), where
n is the node index ands is the node state. Procedure
findBugs takes the live state of the system as input, to
initialize VariableLS at Lines 3-4. As in global model
checking , the search terminates upon exceeding some
bounds, such as running time or search depth (Line 5).
Handler execution. At each step of the model check-

ing, an enabled handler, either network or local, is exe-
cuted. For network handlers, the algorithm at each step
checks all network messages in VariableI+. To obtain
the enabled network events, for each messagee of node
n in I+, all the currently visited states of noden are con-
sidered (Line 6). The corresponding network handler is
then executed (Line 8) and ProcedureaddNextState
is called on the resultant state,s′, and the set of new net-
work messages,c. Note that the messages that are added
to networkI+ in this round of the loop (i.e.,c in Fig-
ure 8) will be considered on the node states in the next
round.

As in the global model checking approach, the node
local events, such as timers and application calls, are de-
fined based on the node local states. In other words, the
value of node stateLSn

s determines which of the local
events are enabled. To obtain the enabled local events,
we look at all visited node states and retrieve their local
events (Line 7).

In ProcedureaddNextState, the set of new net-
work messages is added to the shared network,I+

(Line 12). If the state of noden has changed, it is added
to setLS (Line 13). Variablepredecessors keeps track
of all the last immediate node states as well as the exe-
cuted events on them that led to the current node state
(Line 14). We need more than one pointer in Vari-
ablepredecessors, since the same node state might be
reached by executing different sequences of events.
Creating system states. The invariants are defined
on system states. Since we do not store the system
states, they must be temporarily created for the sake
of invariant checking, which is performed by Procedure
checkSystemInvariant. The procedure is called
after each change toLS. Each system statess is created
by combining the node states of different nodes inLS.
(We will explain in § 4.2 an optimization that prevents
revisiting system states.)

The only purpose of system state creation is to verify
the user-specified invariantin on them. Therefore, we
can design invariant-specific system state creation to by-
pass the system states that could not possibly violate the
invariant. In other words, ifin′ ⇒ in and in′(ss) is
false, verifyingin(ss) is not necessary. In order for this
to be useful,in′ should be cheaply verifiable. One way
to achieve that is to decomposein′ into some locally ver-
ifiable properties. For example, the Paxos invariant spec-
ifies that no two nodes should choose different values. In
system state creation, therefore, we can ignore the node
states in which no value is chosen yet. If the invariant is
defined on node states separately, the invariant-specific
system state creation can also bypass the system states
in which none of node states have violated the invariant.
For example, in RandTree distributed tree structure, one
invariant specifies that in all node states the children and

6

siblings must be disjoint sets.
Soundness verification. Since taking all combina-
tions of node states could result into some invalid system
states, the preliminary violation of an invariant could be
unsound. ProcedureisStateSound, therefore, veri-
fies validity of the system state upon which an invari-
ant is violated. Variablepredecessors in each node
states′ contains all the last immediate node states that
led to s′. Following these pointers, we obtain the set
of event sequences that could lead tos′. If a system
state is valid, then there exists at least one valid com-
bination of its node states’ event sequences.3 Lines 25-
26 loop on all these combinations and invoke Procedure
isSequenceValid on each. The number of paths
could exponentially increase with sequence size, which
is the major cost in soundness verification.

ProcedureisSequenceValid receivesn event se-
quences (hi, i ∈ N) corresponding ton nodes in the
system. The procedure then looks for a valid total order
for execution of the events, in which an event is executed
only after it is enabled. For example, to execute a net-
work handler that receives messagem from nodes, the
message must first be generated by an event ins. At each
step, the procedure verifies whether any of the events on
top of thehi stacks are enabled (Line 33). The first en-
abled event is greedily selected for execution based on
the definition of handlers in Figure 5 (the events are ex-
ecuted similar to a real run of the distributed system.).
The loop continues until there are no enabled events on
top thehi stacks. Afterward, the fact thath is empty
(Line 36) indicates that the set of sequenced events inh

was possible to run and hence its corresponding system
state is valid.

ProcedureisSequenceValid returns true if and
only if the corresponding input system state is valid. The
proof of the above statement is covered in the technical
report [16]. Intuitively, since an event in not popped out
from h unless it is a valid, enabled event, the feasibil-
ity of executing all events implies that the system state is
valid. It actually does not matter which enabled event is
selected for the next step, since the demanded order by
the sequences will be eventually enforced by receiving
only the messages that are already generated.

4.2 Implementation Details

Local model checking can be used for testing programs
in all languages, including C++. Basically, any of exist-
ing stateful global model checking tools could be instru-
mented to run our proposed algorithm. Our prototype

3Each event sequence must deterministically lead to the samenode
state. If the event handler implementation is dependent on some non-
deterministic values, those values must be recorded as partof the event,
to be replayed deterministically on a re-execution of the event.

implementation of the local model checking approach,
denoted LMC, uses MaceMC [8], a model checker for
distributed system implementations in the Mace lan-
guage [7]. Mace programs are basically structured C++
implementations, in which the boundary of handlers and
the protocol messages need to be specified. This helps
Mace automatically generate the code for serialization
and deserialization of the protocol state, and simplifies
the definition of events in the model checker.

We use CrystalBall [18, 17] for online running of the
model checker, in parallel with a live distributed system.
The model checker is then periodically restarted from the
taken snapshot. It is worth noting that LMC improves the
performance of model checking anyway, independent of
CrystalBall. For testing of complex programs, however,
we use the online model checking approach to restart the
model checker before exponential explosion manifests.

We changed MaceMC to work only on one global ob-
ject of the network simulator, i.e.,I+. To change the
network handler implementations fromHM to H ′

M (Fig-
ure 8), we changed the network simulator not to remove a
message after its delivery. MaceMC automatically gener-
ates specific functions for (de)serializing a module state
in the service. We added specific functions to save and
restore the whole service stack. This is required for
multi-layer services such as 1Paxos [15] (one of the pro-
tocols we check), which uses Paxos as its lower layer
module. To efficiently check for duplicate states, we use
the hashes of the serialized states. For each noden, the
hashes of the traversed states are kept in aset structure.
The serialized state itself is stored in adeque structure
to benefit from its efficiency in random access.

Each message keeps track of the number of node
states on which it has been executed. Therefore, in each
round, each message is checked only on the newly added
states, by jumping over the old states. Instead of the ac-
tual event, its hash is added into the predecessor point-
ers. These hash values will be checked against the hash
values of the enabled events, later when we verify the
soundness of the system state.
Test driver. The test in model checking a service is
generally driven by an application sending requests to
the service. In Paxos for example, an application send-
ing propose requests to the service is the test driver of
the model checker. The more complex the test driver, the
larger the generated state space is. A careful design of the
test driver could greatly impact the efficiency of model
checking. In our Paxos experiments, the test driver pro-
poses values for a particular index. The index is selected
from recent chosen proposals, where not all the nodes
have learned the proposal yet. Otherwise, a new index is
used for the proposal.
System states.To avoid revisiting system states, check-
ing invariants on system states is performed only after

7

visiting a new node state, which implies the possibility
for creating new system states. For each new node state
(n,s), the system states are created by iterating over the
states of all the nodes except noden and loading them.
This is because the combinations of the previously vis-
ited states of noden and the node states of the other
nodes have already been verified in previous rounds. It is
worth noting that this optimization could make the model
checking incomplete because the handler execution that
has not produced a new node state could still change the
pointers inpredecessors, which means the possibility of
a valid event sequence for a previously rejected system
state. To address this issue we could cache the system
states in which an invariant is violated and reverify them
after the changes intoLS that affect them.

Beside the general approach for system state creation,
we also implemented an invariant-specific variation, de-
noted LMC-OPT, optimized for the Paxos main invari-
ant. In this variation, we map the node states to the values
that are chosen in them. Because most of the node states
have not chosen any value, lots of them will not be in-
cluded in this mapping. When creating system states, we
thus select only the node states that at least two of them
are mapped to different values. This optimization helps
avoid the creation of lots of redundant system states and
consequently omits their corresponding invariant check-
ing and soundness verification steps.
Soundness verification. ProcedureisStateSound
uses pointers in Variablepredecessor to find event se-
quences that could lead to the input node states. For the
sake of simplicity in implementation, we ignore theself-
references in following the pointers inpredecessor. Al-
though in theory this could make the exploration incom-
plete, in practice the search in the limited time budget is
incomplete anyway and benefiting from the simplicity is,
hence, preferable. Moreover, after the soundness verifi-
cation on a system state is finished, some more pointers
could be added intopredecessor by the process of lo-
cal model checking. Therefore, a complete exploration
should invoke soundness verification after each change
into apredecessor. However, an efficient implementa-
tion of that would be complex since it should check only
for the newly added pointers. For the sake of simplic-
ity in implementation, we invoke soundness verification
only after a new node state is visited.
ProcedureisSequenceValid. The validity of a set
of sequenced events could in general be checked by ex-
ecuting them in a simulator (the same way the global
model checking approach transitions from one global
state to another). If no event from the sequences is en-
abled in the simulator, it indicates that sequence of events
is not valid. Although using the simulator simplifies the
implementation, initializing the simulator at each run of
the soundness verification is expensive since it involves

loading the test driver.
For efficient implementation of soundness verification

module, we take advantage of the following observation.
The role of the simulator in executing evente on noden
is to (i) updates the state of noden, (ii) remove the mes-
sagem from the network ife is a network event for de-
livery of messagem, and (iii) add the setc of messages,
resulting from the execution ofe, to the network.

The consumed message by a network event is specified
by its corresponding hash in the node event sequence,
which was given as a part of the input to the procedure.
The set of the generated messages by an event execution
can also be remembered by keeping the hashes of the
generated messages inpredecessor. In this manner, the
input to ProcedureisSequenceValid is the set of se-
quenced events as well as the set of generated messages
by each event. The execution of evente in Procedure
isSequenceValid can then be simplified as follows:

1. A local evente is always enabled. A network event
e is enabled if the hash of the required message is
found in the set of generated message hashes,net.

2. If evente is enabled, then pop it out from the se-
quence. If evente is a network event, remove the
hash of the corresponding message from setnet.

3. After popping out evente, add its generated mes-
sage hashes to setnet.

The above implementation simplifies Procedure
isStateSound to some integer comparison opera-
tions and therefore makes checking the validity of a set
of sequenced events very efficient.
Local assertions. LMC checks for the system invari-
ants defined on the system state. The source code could
still be instrumented by some local assertions by which
the developers have benefited in earlier stages of testing.
The violation of the local assert statements in the pro-
cess of local model checking could imply that either (i)
the node state is invalid, perhaps because of delivering an
unexpected message, or (ii) there is a bug in the system
under test. Checking the latter case necessitates (i) cre-
ating all the system states by combining the node state
with all states from other nodes, and (ii) checking the va-
lidity of those states by invoking soundness verification.
This approach is very expensive since it involves lots of
invocation of soundness verification.

In general we could ignore violation of a local assert
since a protocol bug will eventually manifest itself by vi-
olating a system invariant. Alternatively, we can discard
the node state on which the assertion is violated assum-
ing that the assert violation implies the invalidity of the
node state. In the applications we tested, the assert state-
ments were mostly used to exclude the receipt of unex-
pected messages, i.e., the case that could be caused by
conservative message delivery policy of LMC, which de-

8

livers the message to all the node states of the destination.
We, therefore, benefited from the local assert violations
by discarding the corresponding node states.
Local events. The presented algorithm in§ 4 is com-
plete in the sense that, given enough time and space, it
explores all possible states. In practice, however, we
have a short time budget to check the reachable states
from a given current state. Therefore, the developers
might be interested to favor some events to be explored
first in the search. Hence, in each round we put a bound
on the number of local events that each node can exe-
cute; after finishing the round, the bounds are increased
and the model checking is started from scratch. This ap-
proach is in spirit similar to B-DFS search, where the
search depth is increased at each step.
Duplicate messages.In general, a node could infinitely
issue duplicates of the same message. For example, in
the verified Paxos implementations, the same Chosen
message will be sent over and over to the proposer that
insists for an already chosen value. To favor the main
protocol messages in the limited time of search, we have
put a limit on the number of duplicate messages sent
from a source to a destination node. This limit is set
to zero for the results reported in this paper. Note that
the duplicate messages can be postponed to be processed
later, after processing some main protocol messages.

As we explained, to ensure completeness, the mes-
sages are never erased from the network object,I+.
However, if node states

m
; s′ where m is a network

event, execution ofm on s′ is redundant sincem is al-
ready executed in the sequence. To avoid redundant ex-
ecutions, we keep the history of the messages that has
been executed to obtain the state: a network event is con-
sidered on a state only if it is not in the history of the
state. After executing messagem on node states that re-
sults into node states′, we apply the two following rules
to maintain the history: (i)s′.history = s.history, (ii)
s′.history.addLast(m). Thus, messagem will never
be executed on node states′ as well as its descendants.
Maintaining history gets complicated if states′ already
exists since we need to maintain separate histories for
different sequences that lead tos′. We have simplified
the implementation by applying rule (i) only if the state
does not exist. Since the run of LMC in the limited time
budget is not complete anyway, we decided to favor sim-
plicity over completeness here.

4.3 Scope of Applicability

In contrast with global model checking that validity of
each traversed state is ensured, local model checking op-
timistically allows visiting invalid states and verifies the
validity of a state only after it violates an invariant. If
we have a few preliminary violations, the optimistic ap-

proach of local model checking performs better since it
does not pay for ensuring validity of every single visited
state. Otherwise, the cost of soundness verification dom-
inates. For example, in online model checking, if a run
of the model checker is revealing a bug in the protocol,
it is likely to see lots of violation reports caused by both
valid and invalid event sequences. Perhaps, one solution
could be running both local and global model checker in
parallel and use the result of the one that finishes sooner.

By eliminating the network element from the model
checking state, local model checking reduces the ex-
plored state space since each system state is repeated in
multiple global states that are different only in the net-
work part. The larger the network state space is, the more
space and time is saved by eliminating it. Local model
checking is, therefore, most effective for the protocols
that are chatty, i.e., exchange lots of messages to service
a request. Otherwise, if the nodes rarely communicate,
the change into the network is rare and therefore there is
not much to be saved by local model checking.

In contrast with global model checking, local model
checking considers interleaving of parallel network
events only when they turn out to be dependent. LMC,
therefore, avoids lots of unnecessary event interleaving.
For example, upon receipt of the Accept message, the
nodes in Paxos broadcast some Learn messages in par-
allel, which enables LMC to perform much better than
global model checking. The more parallel network ac-
tivities in the system, the more effective LMC is. For ex-
ample, we could not expect much from LMC in a chain
system in which each node simply forwards the input
message to the next.

The current implementation of LMC assumes a best-
effort, lossy network, i.e., IP. The protocols that use UDP
can, therefore, be directly model checked with LMC. Al-
though, TCP could be considered as part of the protocol
stack, in practice this is not efficient, and TCP is usu-
ally simulated in the model checker. To do so, LMC im-
plementation should be also augmented to benefit from
the fact that reordered messages in a connection will
eventually be rejected by TCP and could, hence, be ig-
nored, saving some unnecessary handler executions in
the model checker.

5 Evaluation

We evaluate in this section the performance of our local
model checking approach compared to a classic global
one. We also illustrate the ability of our tool, LMC, in
finding bugs in Paxos and its variant, 1Paxos.

We use Paxos as a complex distributed testbed to eval-
uate the performance of the proposed local model check-
ing approach. In usual implementations of Paxos, each
node implements three roles: proposer, acceptor, and

9

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

E
la

ps
ed

 ti
m

e
in

 s
ec

on
d

Depth

B-DFS
LMC-GEN
LMC-OPT

Figure 10: The elapsed time in model checking Paxos
where only one out of three nodes proposes a value.

learner. Multiple proposers can concurrently propose
values for the same index. The Paxos invariant (also
known as the Paxos safety property) stipulates that no
two nodes will choose different values for the same in-
dex. A proposition (i.e., proposing a value for an index)
starts by broadcasting Prepare messages to the accep-
tors. The acceptors respond by a PrepareResponse mes-
sage. After receiving it from a majority of acceptors, the
proposer broadcasts an Accept message to the acceptors.
The value in the Accept message is the value returned
by the PrepareResponse message with the highest pro-
posal number, which reflects the accepted values from
previous proposals, if there is any. Each acceptor then
broadcasts a Learn message to the learners. A value is
chosen by the learners after receiving the Learn message
from a majority of acceptors.

For benchmarking purposes, we use a state space of
Paxos running between three nodes, in which one node
proposes a value once and the others react to this pro-
posal by communicating using Paxos messages. The
long chain of messages following each proposal could
be received in a variety of orders, which all must be con-
sidered by a model checker. For each experiment, we re-
port on evaluation of 3 algorithms: (i) B-DFS (explained
in § 3), (ii) LMC-GEN, which is the non-optimized,
general version of our local model checker (LMC), and
(iii) LMC-OPT, which is a version of our local model
checker optimized for the Paxos main invariant accord-
ing to § 4.2. The experiments are run on a 3.00 GHz
Intel(R) Pentium(R) 4 CPU with 1 MB of L2 cache.

5.1 LMC Speedup

Here we evaluate the speedup in model checking that
we can get by our tool, LMC. Figure 10 presents the
results for the example state space, in which only one
node proposes a value. This state space is relatively
small and yet effective in finding bugs when it is ex-

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

T
ot

al
 n

um
be

r
of

 s
ta

te
s

Depth

B-DFS
LMC-GEN-system
LMC-OPT-system

LMC-local

Figure 11: The number of explored states. The number
of system states explored by LMC-OPT is zero and is,
hence, not plotted in the figure.

plored through an online model checker. The depth of
the state space is 22 events (three initialization, one pro-
pose local event, three Prepare messages, three Prepar-
eResponse messages, three Accept messages, and nine
Learn messages). LMC explores also longer sequences
of events (up to 25) since it could also explore some in-
valid sequences of events.4 The elapsed time is depicted
in a logarithmic scale to illustrate exponential state space
explosion problem. In B-DFS, the exponential explosion
starts from the very early steps, which makes the explo-
ration take 1514 s. The growth in LMC-OPT is much
less steep, which allows it to finish the model checking
in just 189 ms (∼8,000 times faster than B-DFS).

The growth in LMC-GEN, although still much more
gentle than B-DFS, is steeper than LMC-OPT. The ex-
ploration finishes in 5.16 s which is still∼300 times
faster than B-DFS. The extra delay is due to the cre-
ation of the system states out of the explored node states,
which in LMC-OPT is optimized to be performed only
after a different value is chosen. Figure 11 depicts the
number of explored states. The number of created system
states in LMC-GEN, although much less than B-DFS, is
much more than the total number of node states, denoted
LMC-local in the figure. LMC-OPT, on the other hand,
drops the number of created system states to zero since
there is no bug in the Paxos implementation to lead to
any preliminary violations. (LMC-OPT creates a system
state only if it is likely to invalidate the invariants.)

The total number of performed transitions in B-DFS
is 157,332. LMC drops this to 1,186, which is∼132
times less. This is because a LMC transition from state
s to states′ in noden, is redundantly executed several
times in global model checking approach (once for each
global state that encompassess and its network event is
enabled).

4The invalid sequences will be eventually rejected by soundness
verification phase if they violate some invariants.

10

This state space of Paxos is very useful in online
model checking, where we expect the model checker to
seek for a bug in the time budget of less than a minute.
Both LMC-OPT and LMC-GEN can finish this state
space in this duration and LMC-OPT can continue for
more complicated state spaces where there is some time
left (as we explained in§ 4.2, the model checker, in favor
of time, starts with small state spaces by gradually in-
creasing the number of allowed local events.). This is in
contrast to B-DFS that will not go further than depth 12
within a minute.

5.2 LMC Scalability Limits

We showed that LMC manages to finish a valuable state
space in less than a few seconds. This is already good
enough for practical applications such as online model
checking that restarts the model checker every few sec-
onds. From the theoretical point of view at least, it is
interesting to find the scalability limits of LMC, i.e., the
point where the postponed exponential explosion prob-
lem eventually manifests and makes LMC ineffective for
the rest of the exploration. To this aim, we choose a much
bigger state space, where two separate nodes propose
two values. The depth of the state space is 41 events,
which is two times the events in one error-free proposal.
(LMC explores also longer sequences of events, up to 68,
since it could also explore invalid sequences of events.)

Due to exponential explosion problem, neither B-DFS
nor LMC could finish the state space, even after hours
of running. Within this duration, B-DFS explores till 20
steps (out of maximum depth of 41) and LMC searches
till 39 steps (out of maximum depth 68). The major con-
tributor to the slowdown of LMC is the expensive task
of soundness verification. The number of different event
sequences that must be considered for checking validity
of a system state exponentially increases with the search
depth. In the above example that the search depth of
LMC is 39, each invocation of soundness verification in-
duces∼10 s into the algorithm. Invocations of sound-
ness verification are much less in the smaller state space
in which only one node proposes a value.

5.3 LMC Memory Requirements

Figure 11 depicts the very fact that the number of node
states explored by LMC is much less than the total num-
ber of system or global states. Because LMC keeps track
only of node states, and the system states are created
only temporarily, LMC is expected to require very low
memory footprint. Figure 12 verifies this expectation by
depicting the memory footprints of different algorithms.
LMC-local denotes the run of LMC-OPT in which the
creation of system states is disabled. The difference be-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

In
cr

ea
se

d
M

em
or

y
S

iz
e

(M
B

yt
es

)

Depth

B-DFS
LMC-GEN
LMC-OPT
LMC-local

Figure 12: The consumed memory. The numbers for all
configurations of LMC are close together and are, hence,
overlapped in the figure.

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

E
la

ps
ed

 ti
m

e
in

 s
ec

on
d

Depth

LMC-OPT
LMC-OPT-system-state

LMC-explore

Figure 13: The overheads of LMC in model checking
Paxos in which a bug is injected.

tween LMC-local and LMC-OPT (resp. LMC-GEN) in-
dicates the memory overhead of system state creation
as well as soundness verification. Although there is a
marginal overhead for system states, the memory eventu-
ally returns to the system by reusing the deleted objects.
The consumed additional memory by all algorithms is
less than 1 MB which can totally fit into the L2 cache.
However, the exponential trend in memory consumption
of B-DFS, promises the ineffectiveness of B-DFS for
deeper searches. LMC in contrast uses the memory very
efficiently (∼200 KB in total) and this amount grows lin-
early by increase in search depth.

5.4 LMC Overheads

Here we break down the overheads that limit the scala-
bility of LMC. LMC has two major overheads: (1) cre-
ation of system states out of traversed node states, and (2)
verifying soundness of the preliminary violations. The
precise load of each overhead depends on the particular
system under test. Figure 13 illustrates the overheads
of LMC-OPT in the buggy implementation of Paxos,

11

for which the corresponding bug is reported in§ 5.5.
In LMC-system-state the soundness verification phase
is disabled and in LMC-explore the creation of system
states is eliminated.

The difference between LMC-system-state and LMC-
explore captures the overhead of creating the system
states and checking the invariant on them. The overhead
is zero until 21 steps since the unnecessary system states
are bypassed by the optimization in LMC-OPT. After-
wards, the overhead increases with the depth search, be-
cause as the exploration moves forward, more node states
are explored and hence more combinations of them must
be considered for system state creation. The difference
between LMC-OPT and LMC-system-state reveals the
overhead of soundness verification. (LMC-OPT did not
go further than 28 steps, the level at which the injected
bug is rediscovered.) This overhead is the major contrib-
utor to the exponential increase in model checking time.
The reason is that not all combinations of node states are
valid, and the more node states are traversed, the more
invalid system states will be checked. On the other hand,
since the injected bug is close to manifest in this run of
the model checker, the number of invalid combinations
of node states that violate the invariant increases. LMC-
OPT triggers the soundness verification for 773 times,
and each call takes 45 ms in average. Overall, 427,731
different event sequences were checked by the soundness
verification module.

5.5 Testing Paxos

In this section, we report on our experiments in inject-
ing a bug into a Paxos implementation and then running
our prototype to verify its ability to detect the bug. The
bug we injected was reported in a previous implementa-
tion of Paxos [10]: once the leader receives the Prepar-
eResponse message from a majority of nodes, it creates
the Accept request by using the submitted value from
the last PrepareResponse message instead of the Prepar-
eResponse message with highest round number. The in-
stalled invariant is the original Paxos invariant: no two
nodes can choose different values.

Every one minute, the online model checking frame-
work takes the live system state of a running Paxos appli-
cation and use that to initialize the next run of LMC. The
application encompasses three nodes, each node pro-
poses its Id for a new index and then sleeps for a random
time between 0 and 60 s. The nodes communicate using
UDP and 30% of non-loopback messages are randomly
dropped to allow rare states to be also created.

The bug was detected after 1150 seconds. The run of
LMC that detected the bug was initialized with the fol-
lowing live state: for indexki, nodeN1 has proposed
valuev1, nodesN1 andN2 have accepted this proposal,

but due to message losses onlyN1 has learned it. Start-
ing from this system state, LMC detected in 11 s a vi-
olation of the Paxos invariant in the following scenario:
N2 proposes a new valuev2 but its Prepare messages is
not received byN1. N2 responds by a PrepareResponse
message containing valuev1, because this value was ac-
cepted byN2 in the previous round. HoweverN3, since
had not accepted any value for indexki, responds back
by the same value proposed byN2, v2. Receipt of Pre-
pareResponse ofN3 triggers the bug, andN2 broadcasts
an Accept message forv2 instead ofv1. Eventually this
leads to choosing valuev2 in N2, which is different from
the value chosen byN1, i.e.,v1.

5.6 Testing 1Paxos

In this section, we report on running our prototype to
find bugs on a variant of Paxos, denoted 1Paxos [15]:
this is an efficient variation of Multi-Paxos [2] that uses
only one acceptor. Upon failure, the active acceptor is
replaced with a backup acceptor by the global leader.
Therefore, it is necessary that the acceptor and leader
roles to be assigned to two separate nodes. To uniquely
identify the global leader and the active acceptor, 1Paxos
uses a separate consensus protocol referred to as PaxosU-
tility [15]. The global leader and the active acceptor are
identified by the last LeaderChange and AcceptorChange
entries in the PaxosUtility, respectively. In this experi-
ment, we have implemented PaxosUtility using Paxos it-
self. 1Paxos is more complex than Paxos for it comprises
more logic. Here we use the same setup that was used for
testing Paxos, with the difference that the application in-
stead of proposing a value triggers the fault detector with
the probability of 0.1 to stress the fault tolerance mecha-
nisms of 1Paxos. In 225 s, the tool found one new bug in
1Paxos that we report in the following.

The bug was created because of the wrong usage of the
”++” operator; if the operator is used after the operand,
the returned value is the original value and not the in-
creased one. The developer had made this mistake in
the initialization function, where the leader is set to
the first node of the members and the acceptor is set
to the second. The used command wasacceptor =

*(members.begin()++)which makes the acceptor
be the same node as the leader. The bug is of course
fixed by putting the ”++” operator before the operand,
i.e.,acceptor = *(++members.begin()).

During the live run, nodeN3 attempts to be the leader
by inserting a LeaderChange entry into the PaxosUtility.
At this moment, it obtains from the PaxosUtility the cor-
rect value of the active acceptor, which isN2. After N3

becomes leader, it proposes valuev3 for indexki, which
is accepted by the acceptor, i.e.,N2. N2 then broadcasts
a Learn message, which is received byN3 as well as it-

12

self. At this point the live system state, in which all nodes
exceptN1 have chosen valuev3 for the indexki, is taken
to be used by LMC.

Starting from the above system state, LMC highlights
the following scenario that violates the Paxos invariant:
N1, which still assumes it is the leader, proposes value
v1 for indexki to the acceptor. SinceN1 considers itself
to be the leader, according to the protocol, it does not re-
fer to PaxosUtility to get the acceptor Id. Therefore,N1

uses its current value, which is set toN1, i.e., its own Id,
due to the initialization bug described above.N1 accepts
the proposal and sends a Learn message toN1. Upon re-
ceiving the loopback message,N1 assumes valuev1 as
chosen for indexki. This violates the Paxos invariant
since other nodes have chosen a different value, i.e.,v3.

6 Related Work

Cartesian abstraction. This is an abstraction-based
verification technique where an overapproximated vari-
ant of the program is model checked, instead of the origi-
nal one [1]. Due to overapproximation, the reported bugs
are not sound, which makes the technique mainly useful
for correctness proving, benefiting from the complete-
ness of the search. Malkis et al. [11] achieved thread-
modular model checking [5, 12] using a Cartesian ab-
stract interpretation of multi-threaded programs. Each
thread state consists of the thread local variables plus the
global variables. For each thread, the model checker sep-
arately explores possible valuations of the thread local
variables as well as the global variables. The approxima-
tion comes from the fact that the valuations of the global
variables by a thread are also used by other threads, ig-
noring the causal order for obtaining them. Again, the
unsoundness, stemmed from the approximation, makes
the technique inappropriate for testing purposes. In con-
trast, our reported bugs are sound and this is ensured
by keeping track of the events executed for obtaining a
node state and checking the validity of the combination
of these histories after a preliminary invariant violation
report.

We also make use of the Cartesian product of indepen-
dently explored node states to obtain the system states.
Cartesian abstraction is essential here in our approach in
order to create the system states and check (system-wide)
invariants against them. In contrast, previous works ben-
efited from the Cartesian abstraction by not creating sys-
tem states; skipping the system states is possible since
the invariants in multi-threaded programs are just thread-
local assert statements and could be verified on a local
state of a thread without having the rest of the system
state.5 Our local model checking approach employs the

5There is an ongoing research to convert a system-wide invariant to

Cartesian abstraction in a different way: namely, to ex-
plore the system state space without exploring the global
state space.

In [6], Cartesian Abstraction is used on top of boolean
abstraction of threads to find race conditions in multi-
threaded programs. After boolean abstraction, each
thread is represented by a long boolean expression over
global and local variables including an artificially added
variable for line number. A race condition is also rep-
resented by a boolean expression over the line numbers
in which the threads read and write the global variables.
Race conditions are detected by taking conjunction of the
thread boolean expressions with race conditions. There-
fore, there is no need for system state creation. This ap-
proach cannot be applied on general system invariants
that would express a relation between local variables of
multiple threads. The approach applies a heuristic on the
detected races to eliminate some of the false positives.

One could indeed generalize the Cartesian abstract in-
terpretation presented in [11] to distributed systems, by
using the network as the global object. However, the net-
work would still be part of the model checking states,
concatenated to the local states. In our approach, we ex-
clude the network element from the model checking state
and use only a shared network element.
Monotonic abstraction. Monotonic abstraction [13]
of the network has been used in verification of security
protocols since it accounts for the maximal knowledge
learned by attacker. Dolev-Yao’s model [4] is one such
model, in which the attacker remembers all messages
that have been intercepted or overheard. The shared net-
work object in our local model checking approach is es-
sentially an application of a monotonic abstraction since
the delivered messages are not removed from the net-
work. The shared monotonic network is key to ensuring
the completeness of the search by applying the generated
messages also on future generated node states.
Online model checking. CrystalBall [18, 17] is a
framework that implements the online model checking
scheme. To be effective in practice, the online model
checker must be fast enough to explore till a reasonable
depth in the period between two restarts (typically a few
seconds). CrystalBall uses a heuristic, namelyConse-
quence Prediction, which prunes the local events of an
already visited node state. As a heuristic, Consequence
Prediction is incomplete and could, hence, miss some
bugs due to false negatives. In contrast, our local model
checking approach offers a complete search accompa-
nied with proofs. Furthermore, complex distributed sys-
tems such as Paxos, often generate lots of network mes-
sages on which Consequence Prediction does not have
any effect. For instance, in the used Paxos state spaces

a set of thread-local assert statements, which has shown good results
on small multi-threaded programs [3].

13

throughout this paper, we consider only the interleav-
ing of the resulting network messages after some pro-
posals. Therefore, Consequence Prediction, which does
not prune the network messages, would not offer any im-
provement over B-DFS.

7 Concluding Remarks

We introduce a novel,local approach to model check-
ing distributed systems. Essentially, the underlying idea
is to remove the network state from the global state
when model checking, and focus on the remaining sys-
tem state, which is the usual required part for invariant
checking. The system state is itself built temporarily out
of node states, and these are maintained separately. Al-
though complete, the approach is not sound in the sense
that some system states could be invalid, i.e., could not
have been produced by an actual run of the system. We
check the soundness of the system state, a posteriori,
only if an invariant is violated.

By removing the network from the global states, our
local model checking approach creates much less sys-
tem states than in the global approach. In addition,
and in contrast with the latter approach, in which vis-
iting the system states is an inherent part of the explo-
ration process, local approach separates the exploration
of transitions from the actual creation of system states.
This makes it possible to exploit the specificities of the
user-specified invariants and a priori eliminate all system
states on which these invariants cannot be violated.

Clearly, the state exponential explosion problem is
not eliminated in our approach, and it indeed eventually
manifests, especially because of invalid system states.
Yet the problem is postponed and this makes our local
approach an adequate match for online model checking
that restarts the model checker periodically. Using on-
line model checking augmented with our local approach,
we found a previously reported bug in a traditional Paxos
implementation, as well as a new bug in a recent variant
of Paxos. Both bugs have been identified by focusing on
a simple, arguably common case, namely the case with
no contention for which distributed protocols are typi-
cally optimized and hence error-prone.

For future works, one can think of methods to auto-
matically prune the system states according to a given
invariant. In addition, the low memory consumption of
our approach brings potentials for techniques that trade
memory for CPU, gaining more speedup.

8 Acknowledgments

We thank Viktor Kuncak for invaluable comments. We
are also thankful to our shepherd Alex Snoeren and the

anonymous reviewers for their excellent feedback.

References

[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
Cartesian Abstraction for Model Checking C Programs.
In TACAS, 2001.

[2] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
Made Live: an Engineering Perspective. InPODC, 2007.

[3] A. Cohen and K. Namjoshi. Local proofs for global safety
properties.Formal Methods in System Design, 2009.

[4] D. Dolev and A. Yao. On the security of public key pro-
tocols. IEEE Trans. on information theory, 29(2), 1983.

[5] C. Flanagan and S. Qadeer. Thread-modular model
checking. InModel Checking Software. Springer, 2003.

[6] T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. InCAV, 2003.

[7] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and
A. M. Vahdat. Mace: Language Support for Building Dis-
tributed Systems. InPLDI, 2007.

[8] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat.
Life, Death, and the Critical Transition: Finding Liveness
Bugs in Systems Code. InNSDI, 2007.

[9] L. Lamport. The part-time parliament.TOCS, 1998.

[10] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker:
Combating Bugs in Distributed Systems. InNSDI, 2007.

[11] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
modular verification is cartesian abstract interpretation. In
ICTAC. Springer, 2006.

[12] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-
Modular Counterexample-Guided Abstraction Refine-
ment. InSAS, 2010.

[13] J. Mitchell. Multiset rewriting and security protocolanal-
ysis. InRewriting Techniques and Applications, 2002.

[14] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler,
and D. L. Dill. CMC: A Pragmatic Approach to Model
Checking Real Code.SIGOPS Oper. Syst. Rev., 2002.

[15] M. Yabandeh, L. Franco, and R. Guerraoui. One Acceptor
is Enough. Technical report, EPFL, 2010.

[16] M. Yabandeh and R. Guerraoui. Local Model Checking.
Technical report, EPFL, 2011.

[17] M. Yabandeh, N. Knězevíc, D. Kostíc, and V. Kuncak.
CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems. InNSDI, 2009.

[18] M. Yabandeh, N. Knězevíc, D. Kostíc, and V. Kuncak.
Predicting and preventing inconsistencies in deployed
distributed systems.ACM TOCS, 28(1), 2010.

[19] J. Yang and et al. MODIST: Transparent Model Checking
of Unmodified Distributed Systems. InNSDI, 2009.

14

