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Abstract At the heart of distributed computing lies the
fundamental result that the level of agreement that can be
obtained in an asynchronous shared memory model where ¢
processes can crash is exactly 7 + 1. In other words, an adver-
sary that can crash any subset of size at most 7 can prevent
the processes from agreeing on ¢ values. But what about all
the other 22" ~1 — (n + 1) adversaries that are not uniform in
this sense and might crash certain combination of processes
and not others? This paper presents a precise way to clas-
sify all adversaries. We introduce the notion of disagreement
power: the biggest integer k for which the adversary can pre-
vent processes from agreeing on k values. We show how to
compute the disagreement power of an adversary and derive
n equivalence classes of adversaries.

1 Introduction

The theory of distributed computing is largely related to
determining what can be computed against a specific adver-
sary. Most results so far have been devoted to one specific
form of adversaries: those that can control any subset of size
t of the processes, i.e., the t-failures adversary. In particular,
a seminal result in distributed computing says that the level
of agreement that can be obtained in a shared memory model
where ¢ processes can crash is exactly ¢ + 1 [3,12,15]. In
other words, an adversary that can crash any subset of size at
most ¢ can prevent the processes from agreeing on ¢ values.
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In the case of consensus for instance (+ = 1), this translates
into the FLP impossibility result [9].

In a sense, these results are very incomplete. Indeed, the
t-failures assumption covers only the n “uniform” adversar-
ies in a system of size n. What about the other 221 _(n+1)
adversaries that can crash certain subsets of processes of a
certain size but not others of the same size? In particular,
given any adversary <7, for what k does < prevent k-set
agreement [5]? Beyond intellectual curiosity, the study of
adversaries that are “non-uniform” is practically motivated
by modern multicore architectures where the failures of pro-
cesses in the same core are correlated [2,10,13].

This paper characterizes the power of an adversary .« by
the biggest k for which k-set agreement cannot be solved
with 7, which we call here the disagreement power of <7 .
We show how to automatically compute the disagreement
power of an adversary and group adversaries into n equiv-
alence classes in a system of size n. Adversaries within the
same class solve the same set of colorless tasks. Intuitively,
in a colorless task [4,11], any process can adopt any other
process’ input or output value. Colorless tasks include k-set
agreement and loop-agreement [11].

Determining the disagreement power of certain adversar-
ies is trivial. For others, it is not. Consider, in a system of
3 processes, {p1, p2, p3}, an adversary </ that can fail no
process, both processes p» and p3, or process pi, i.e., & =
{#,23,'1}. It is easy to show that .7 can prevent consensus
but not 2-set agreement. In this sense, adversary </ has the
same disagreement power as the 1-failure adversary, namely,
1. Consider now a more involved scenario: a system of 4
processes and an adversary <7’ that can fail any element of
{@,4,23, 14,12, 134, 124, 123}. What is the disagreement

! When appropriate, we will use ij... as a shorthand for the set
{pi, pj. .-}
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power of .«7’? Using the results of this paper, it can be shown
that it is also 1.

We give a general characterization of adversaries that
enables us to automatically compute their disagreement
power. Namely, we introduce a structural predicate on adver-
saries, parameterized by an integer k, and which, intui-
tively, checks that for any set of faulty processes of size less
than or equal to k, there is some adequate matching set of
the adversary. If there exists such matching sets, then the
structure of the adversary is in some sense similar to the
structure of the uniform k-failures adversary. We prove that
any adversary that satisfies the predicate has disagreement
power k.

We first show (sufficient condition) that if k-set agree-
ment can be solved with some adversary that satisfies the
predicate for k, then k-set agreement can be solved with the
k-failures adversary which, in turn, is known to be impos-
sible [3,12,15]. Hence, an adversary that satisfies the struc-
tural predicate has disagreement power at least k. For this,
we use a new simulation between adversaries, which we call
the conservative back-off simulation, and which we believe
is interesting in its own right. The idea underlying our sim-
ulation is the following: a process backs-off and skips its
simulation step if the process thinks that it is in some faulty-
set of an adversary where the simulated algorithm is known
to work. Conversely (necessary condition), we show how to
solve k-set agreement with any adversary .7 that does not
satisfy the predicate for k. We do this by showing how to
implement failure detector k-anti-€2 [17], known to imple-
ment k-set agreement. (Each query to k-anti-S2 returns n — k
process ids; the specification ensures that there is a correct
process whose id is eventually never output.)

We then use our characterization to split the set of all
adversaries into n disjoint equivalence classes, one for every
level of disagreement: we show that for any two adversar-
ies with the same disagreement power, exactly the same set
of (colorless) tasks can be solved. Intuitively, in a colorless
task [4,11] any process can adopt any input or output value
of any other process without violating the task specification.
The key to our proof of the equivalence is that, for every
adversary with disagreement power k, it is possible to sim-
ulate a wait-free system of k + 1 processes. This can simu-
late every other k-failure adversary [4,6]. Technically, this is
achieved by implementing (k + 1)-anti-S2 for the adversary
and translating it into a vector of k + 12 failure detectors [7]
of which at least one is a “real” €2 (i.e., it eventually out-
puts the same correct process everywhere). Then, each of
the k£ + 1 simulated processes can be associated with one of
the €2’s and a consensus-object can be built to agree on the
simulated steps of such a process.

Since we can compute automatically the disagreement
power of an adversary (using our structural predicate), we
can thus automatically derive results for an “exotic” adver-
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sary using known results about a more orthodox (“uniform’)
adversary with the same disagreement power.

Indirectly, our partitioning contributes to the idea that a
very small subset of results and ad-hoc proofs in distrib-
uted computing should suffice to derive all others. In partic-
ular, if indeed needed to reason about set agreement for the
“wait-free” adversary ((n — 1)-set agreement), topology is
not needed for all the other ones. Results concerning other
k-failures (“uniform”) adversaries can be deduced by [4,6],
whereas results for all of the other (“non-uniform”) 22" ! —
(n+1) adversaries can be deduced from our characterization.

The remainder of the paper is structured as follows. We
first define our model in Sect. 2. We then introduce our notion
of disagreement power and our structural predicate in Sect. 3.
We present our conservative back-off simulation and use it
in Sect. 4 to show that any adversary that satisfies the predi-
cate for k can be reduced to the k-failure adversary (thus the
predicate is sufficient for the simulation). We show in Sect. 5
how to implement k-set agreement with any adversary that
does not satisfy the predicate (therefore, the predicate is nec-
essary). We then show that adversaries with the same dis-
agreement power are actually in the same equivalence class
in Sect. 6 and conclude the paper with some general remarks
in Sect. 7.

2 Model and definitions

We assume a system of deterministic processes that commu-
nicate asynchronously using read-write atomic registers. We
recall below the necessary elements to describe our model
and introduce the notion of an adversary.

Processes and registers. Our system consists of n processes
IT = {p1, p2, ..., pn} sharing atomic registers. We assume
that processes might crash, i.e., fail by prematurely halting.
Processes that crash are called faulty and a process that never
crashes is said to be correct.

Adversaries and runs. Intuitively, an adversary can choose
which set of processes will crash. More precisely, we repre-
sent an adversary as a set of sets of processes (we call these
sets faulty-sets) and the adversary can choose one of these
faulty-sets. Here, we consider only adversaries .« for which
there is always at least one correct process, i.e., [1 ¢ <7.

A run of an algorithm A is an infinite sequence of steps
of the processes. Given an adversary <7, a run is associated
with a set of processes a € o7 that will crash. This set is
chosen by the adversary and the processes in a may crash at
any time. The set of processes that take infinitely many steps
in some run associated with a is then exactly IT\a.

The classical n process k-failure adversary, denoted %" is
the adversary for which at most £ (0 < k < n — 1) processes
may crash: %" = {u < {p1, ..., pn} | lu| < k}. Where the
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number of processes is clear from the context, we will omit
the n (i.e., % = %").

Tasks. A task is a tuple (J, O, A), where J is a set of vec-
tors of input values and O is a set of vectors of output values
such that the value of every process p; corresponds to the i -th
entry of a vector. A is a binary relation from J to . Then,
a task is solved if for each input vector I € J, an output
vector O € O is computed such that O € A(I). Generally,
we say that algorithm A solves a task 7' against adversary
o/ if every run of A associated with each a € o7 satisfies
the specification of T (we say also A implements T against
adversary .«7).

In the following, we restrict ourselves to colorless tasks
(also called convergence tasks) [4,11]. Let val(V') be the set
of values in some vector V. A colorless task is such that if for
all I € Jandforall I’ withval(I") € val(I)thenl’ € Jand
A(I") € A(I). Furthermore, if O € A(I), then for every O’
with val(O’) C val(O) we have O’ € O and O’ € A(I).
As aresult, a colorless task can be specified independently of
the number of processes. In this sense, such a task specifies a
family of tasks, one for every possible number of processes.

k-set agreement. The canonical example of a colorless task
is k-set agreement. Let S be a set of values with |S| = k + 1.
In k-set agreement, J and £ are the sets of all vectors of
values from S such that for all O € O, |val(O)| < k and for
every I € Jwe have O € A(]) iff val(O) € val(1).

Consensus is 1-set agreement. k-set agreement can be
solved against %4 iff 0 <1 < k —1[3,12,15].

In our proofs, we will use a failure detector called k-anti-
Q [17].Itis adistributed oracle that gives the processes infor-
mation about failures [8]. Each query to k-anti-Q2 returns n —k
process ids, with the guarantee that there is a correct process
whose id is returned only a finite number of times at cor-
rect processes. If k = 1, then k-anti-Q2 is equivalent to the
eventual leader failure detector named €2, the weakest fail-
ure detector for consensus [7,14]. If k = n — 1, k-anti-Q
is anti-$2, the weakest failure detector to solve (n — 1)-set
agreement [17]. In general, k-anti-$2 is sufficient to solve
k-set agreement [17].

3 Disagreement power

We define the disagreement power of an adversary o7 to be
the maximal k (0 < k < n) for which it is impossible to
implement k-set agreement against <7. More precisely:

Definition 1 We say that an adversary <7 has disagreement
power k (0 < k < n), denoted dis(<), if (1) it is impos-
sible to implement k-set agreement against </, and (2) it is
possible to implement (k + 1)-set agreement against ..

If an adversary cannot prevent agreement for any k, then
we say that its disagreement power is 0. As established

in[3,12,15], itis possible to implement (k+ 1)-set agreement
against %}, but it is impossible to implement k-set agreement
against % . Hence, the disagreement power of % is k.

Proposition 1 dis(%;) = k.

To compare the power of two adversaries, we define what it
means for an adversary to be stronger than another adversary:

Definition 2 An adversary <7 is stronger than an adversary
A (denoted o = A) if every colorless task that can be
solved against .o/ can be solved against 4.

This relation is clearly transitive. We also compare our adver-
saries with a structural domination property without consid-
ering the tasks that they can solve. The interesting point,
as we will show later, is that this property captures exactly
the disagreement power of an adversary. For our domination
property, we implicitly assume that both adversaries are built
upon the same set of processes IT.

Definition 3 Let ./ and 4 be any two adversaries. We say
that a faulty-set a € o7 dominates a faulty-set b € A in o
and 4 (denoted D(a, <, b, $)), if a D b and

Vb' € % such that b’ O b,3a’ € o/ suchthata’ 2 a
and D(a’, o/, b, B).

In the base case, when there is no strict superset of b in %,
this translates to a 2 b. Where &/ and Z are clear from the
context, we will simply write D(a, b). With a slight abuse of
the D-symbol, we extend the notion of domination to adver-
saries:

Definition 4 We say that an adversary &/ dominates an
adversary # (denoted D (<7, 28)) if and only if the following
property is satisfied:

Vb € A,3a € o suchthat D(a, <, b, B).

This property is intricate. First, we give an example in which
the domination property holds for two adversaries.

Example 1 Assume n = 4 and consider the following adver-
saries (we use ij ... as a shorthand for the set {p;, p;,...}):

of = {0, 12,34, 123, 124, 134, 234}
U ={0,1,2,3,4,12,13, 14, 23, 24, 34}
In this example (also shown in Fig. 1), D(«/, %), i.e., for

every u € %, there exists an a € &/ such that D(a, u)
(e.g. DB, ), D(12,2) and D(123, 13)).

It does not follow that D (<, %) holds if, for all by C
by--- C by in A there exist ag < aj--- C ay in </ such
that b; € q; for all i. To see this, consider the following
example with n = 3:
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Fig. 1 Adversaries «7 and %
from Example 1 with some

exemplary domination relations

Example 2

of ={0,2,12, 13,23}
U = {9,1,2,3,12, 13,23}

In this example, for all ug C u; C uy there exist ag C a; <
ay and u; C a;. But =D (<, %), because for all a € o/
we have —D(a, 3). Consider for example a = 13. We have
3 C 13, but for 23, a superset of 3 in %4, there is no superset
of 13 in .o/ that contains 23.

In our proofs, we use two direct consequences of the dom-
ination relation. These are expressed by the following two
lemmas:

Lemma 1 Let <7 and P be any two adversaries. Then, for
every pair b, b’ € B withb C b, and for every a € <f with
D(a, o/, b, B):

3a' e/, a Da:D@, b, B).

Proof This property follows immediately from the definition
of the domination relation. O

Lemma 2 Let </ and 9 be any two adversaries. Then, for
every a € &/ and for every b € % with ~D(a, </, b, $):

a D b implies that there exists some b’ € % with
b 2 b such that Ya' € </ with a’ D a it holds that
=D(a', o, b, B).

Proof This property follows immediately from the definition
of the domination relation. O

Interestingly, concerning adversary %, our definitions
induce the following property:

Theorem 1 Consider any k with 1 < k < n — 1 and any
element u € U. Then =D (% \{u}, %).

Proof ltis sufficient to show that we have foralla € %4 \{u}:
—D(a, u). Assume by contradiction D(a, u) for some a €
% \{u}. Then, by definition of D(a,u): a 2 u. As a €
X \{u}, we have a 2 u and thus there exists a process p € a
and p € u. Consider two cases:
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Case 1:

|u| = k: Inthis case, Aa € % \{u}suchthata D u.
A contradiction to the fact that D(a, u).

lu| < k: Ask <n—1, we can construct u’ = uUx
such that:

Case 2:

(1) |u'| =k (and thus u’ € %) and
(i) p ¢~

Thus, |u' U {p}| = k + 1. Since p € a, we have
aUu' D {p}Uu' and therefore

laUu'| > k. ()

By definition of D(a, u) applied to u’, there exists
some a’ € % \{u} witha’ 2 a, D(d’, u’) and thus
a’ D u'. Therefore, we havea’ 2 aUa’ D aUu’ and
with (1) this implies that |a’| > k. A contradiction
to the fact that ' € %4 \{u}. O

4 The conservative back-off simulation (sufficient
condition)

In this section, we show that if, for adversaries </ and %,
we have D(<f, %), then < is stronger than 4. Given that
k-set agreement cannot be implemented against %, we get
a sufficient condition for the impossibility of implementing
k-set agreement. Namely, if D(<7, %), then k-set agreee-
ment cannot be implemented against .<7.

Assume D (47, %) for some adversaries .o/ and % over
the same set of processes I1. Let A be any algorithm which
solves a colorless task 7" against .. The conservative back-
off simulation described in Algorithm 1 solves 7" with A
against 4.

The goal of the simulation is to identify, in every possible
run with a set of faulty processes b* € %, a set of processes
a* € o with b* C a*. Hence, the processes outside a*
can use the given algorithm which is known to terminate for
every a* € <. The processes in a* that are not in b* can
then just back-off and omit to take simulation steps, since
the others are enough to ensure termination. Thus, termina-
tion is achieved by simply letting some correct processes take
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only finitely many steps, i.e., to simulate their crashes. The
challenge in this simulation is to find an appropriate set a*.
While it is easy to find sets of processes that contain only
correct processes (e.g. by simply choosing the processes that
recently took steps), it is in general impossible to eventu-
ally agree on such a set (otherwise, problems like consensus
could be easily solved). To circumvent this problem, we take
advantage of two things:

— Itis not necessary to agree exactly on some a*. It is suffi-
cient if each process can find sequencesa; C ay ... of
sets such that eventually a™ is always contained in every
such sequence. If some process overestimates a*, i.e., it
takes a step because it is not faulty in some set a 2 a*,
this is no problem, because it is also not faulty in a*. To
keep the processes from underestimating a* (i.e., assum-
ing a set a C a*), we let them check between every pair
of two simulation steps if all other processes not in a are
still alive.

— The sets in &7 and % are in a certain relation, because
D(<, B).

To determine a*, we first narrow down the possibilities for
b* in the run. This is achieved by simply using step-counters
(denoted STEPC). The current estimations are stored in the set
POSSIBLY- FAULTY. Then, starting from the smallest set b €
POSSIBLY- FAULTY, every process tries to stepwise approxi-
mate a*.

In these steps, we need our property D (<7, %). We main-
tain a set FAULTY that contains our estimates of a*, i.e., the
set of processes who shall consider themselves as faulty. For
every set b that is in POSSIBLY- FAULTY, starting from the
smallest, some a € &/ with D(a, b) that is a superset of
every other previously added element in FAULTY is deter-
ministically chosen (depending only on the state of FAULTY
and POSSIBLY- FAULTY) and added to FAULTY. Since D(a, b),
and every possible next b” in POSSIBLY- FAULTY is a super-
set of b, it is guaranteed that there will always be an a’ € &
thatis a superset of a and D(a’, b") (compare Lemma 1). This
sequence of a’s is stored in FAULTY. Since the subsets of b* in
POSSIBLY- FAULTY are stable (i.e., they are eventually always
in POSSIBLY- FAULTY), even if the supersets of b* change infi-
nitely often, the a added in the step where b* is considered
is such that b* C a. Thus, the a* we are trying to seek is just
the smallest set in FAULTY where b* C a*. Although we do
not know which one of the elements of FAULTY it is, it is safe
for a process p to take a step if it does not belong to some
a € FAULTY and has reason to believe that all other processes
that are not in a are alive. This is simply achieved by deter-
mining which processes took steps since p’s last simulation
step using the variable ALIVE and the state LASTSIMSTEPS at
the last simulation step. A process not in a* will not block

here forever, because all non-faulty processes increase their
step-counters infinitely often.

If some process decides, it writes its decision value into a
special register. If some other process observes that another
process has decided, it adopts its decision value and decides
also.

Consider the adversaries from Example 1: &/ = {#, 12,
34,123, 124, 134,234}, 9% and n = 4. If the actual faulty-
set u™ is 3, then eventually POSSIBLY- FAULTY can only be:
{0, 3,23}, {0, 3, 13} or {@, 3, 34}, because process p3 takes
the least number of steps. Thus, ¢ and u* = 3 are even-
tually always contained in POSSIBLY- FAULTY at all correct
processes.

The only set from .o/ that dominates ¥} € %4 is ¥. The
only one that dominates 3 is 34. Thus, the set FAULTY will
be {0, 34, 134} or {(J, 34, 234} respectively. Therefore, a set
a* = 34 with a* D u* = 3 is eventually always contained
in FAULTY at all correct processes.

For the three processes pi, p» and p4 that take infinitely
many steps, eventually ALIVE C 124, because process p3
takes only finitely many steps. If processes pi, p2 or pa take
only finitely many simulation steps, then we have eventually
ALIVE = 124 at these processes (because the step-counters
keep increasing). In this case, for p; and p; there is always
the set 34 in FAULTY such that ALIVE U 34 = IT and p; and
p2 are not in 34. Thus, processes p; and p, take infinitely
many simulation steps. But this is not the case for p4. Process
P4 takes only finitely many simulation steps and eventually
“backs-off” and stops simulating steps. Therefore, the simu-
lated algorithm is executed as if the faulty set is 34 and thus
has to terminate (since 34 € .2/ and the algorithm is known
to work against .«¢). If one of processes p; and p; has ter-
minated, process p4 can simply adopt the decision value and
also terminate.

For the actual proof, let b* € % be the set of faulty pro-
cesses in some run and assume that D (<7, %). During the
proof, it is important to keep in mind that there is a difference
between process steps and simulation steps, i.e., the steps of
the simulated algorithm the processes execute.

Lemma 3 Algorithm 1 is well-defined.

Proof To show that Algorithm 1 is well-defined, we need
to show that there is always an appropriate set that can be
added to the set FAULTY in the “foreach”-loop. If the set
POSSIBLY- FAULTY is empty, then the “foreach”-loop imme-
diately terminates.

If the set POSSIBLY- FAULTY is non-empty, then for every
b € POSSIBLY- FAULTY, some a € </ with D(a, b) is cho-
sen such that Va’ € FAULTY: a 2 a’. If b is the smallest set
in POSSIBLY- FAULTY, we simply have to choose some set a
where D(a, b). Such a set has to exist, since we assume that
D(</, ). If b is not the smallest set in POSSIBLY- FAULTY,
then there exists a set a’ that has been added to FAULTY in the
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1 shared variable: STEPC; := 0;

2 local variable: LASTSIMSTEPS := [0, ..., 0];
3 local variable: POSSIBLY- FAULTY := %,

4 local variable: FAULTY := ¢,

5 while true do

/* a SWMR register */
/* the state at the last simulated step */

/* the sets of processes that are possibly faulty */
/* the sets of processes that are currently considered faulty */

6 if some other process has decided then adopt its decision value and halt;

7 let Piys -
8 POSSIBLY- FAULTY := {4, {p;, }, {pi, Pir}, - - -, {Piy» - -
9 FAULTY := {J;

10 foreach b € POSSIBLY- FAULTY, ordered by inclusion do

, Di, be the processes ordered by increasing STEPC (ties broken deterministically);
<5 Piyy 1N %,

11 L add some a € &7 to FAULTY such that D(a, b) and Ya’ € FAULTY, a 2 a’ (choose deterministically);

12 | ALIVE := {p; | STEPC; > LASTSIMSTEPS[]};
13 if da € FAULTY such that ALIVEU a = Il and p; ¢ a then
14 execute a step of A;

15 if decided then write decision value into special register and halt;

16 LASTSIMSTEPS := [STEPCy, ..., STEPC,];

17 STEPC; := STEPC; + 1;

Algorithm 1 The conservative back-off simulation for process p; and D (<7, %)

previous step for some b’ € POSSIBLY- FAULTY with b D b’
(because the sets in POSSIBLY- FAULTY and by construction
also the sets in FAULTY are ordered by inclusion). But this
can only happen if D(a’, b’). Thus, by Lemma 1 there has to
exist a set a 2 a’ with D(a, b) forourb D b'. O

Lemma 4 If no correct process halts, then eventually, for
all sets POSSIBLY- FAULTY at a correct process:

(i) b* € POSSIBLY- FAULTY.
(ii) if b € POSSIBLY- FAULTY at some process and b C b*,
then b € POSSIBLY- FAULTY at all correct processes.

Proof Recall that b* is the set of faulty processes in the run.
Thus, all step counters at processes in set b* change only
finitely often. Furthermore, if no correct process halts, then
all the other step counters increase infinitely often. Therefore,
eventually b* is always in POSSIBLY- FAULTY. Moreover, all
the sets b that are in POSSIBLY- FAULTY with b C b* are the
same at all correct processes, because they eventually always
read the same counter-values. O

Lemma 5 [fno correct process halts, then there exists a set
a* € of with a* D b* such that:

(1) a* is eventually always added to FAULTY in every iter-
ation of the outer loop at every correct process and
(ii) foreverya C a* thatis infinitely often added to FAULTY
at some correct process, a is infinitely often added to
FAULTY at every correct process and
(iii) for every set a 2 b* that is infinitely often added to the
set FAULTY at some correct process: a* C a.

Proof By Lemma 4, eventually at all correct processes, all
subsets of b* in POSSIBLY- FAULTY are the same. Thus, all
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the sets a that are added to FAULTY in the “foreach”-loop are
the same at all correct processes up to and including the step
where b* is examined. When b* is examined, by construc-
tion, the set a that is added to FAULTY satisfies D(a, b*) and
thus a D b*. Therefore, there is at least one set a witha D b*
that is eventually in all sets FAULTY at all correct processes.
Let a* be the minimal such set. Then, (i) is true.

Moreover, eventually the sets a that are added to FAULTY
before a* are the same at all correct processes, because the
“foreach”-loop operates ordered by inclusion. Thus (ii) is
true.

To show (iii), assume that it is not true, i.e., there exists
some set a with a D b* that is infinitely often added to
FAULTY at some correct process and a* Z a. Then, by con-
struction of FAULTY and (i): a* 2 a, because new sets are
added to FAULTY only if they are supersets of all previously
added. From (ii) follows that a is infinitely often added to
FAULTY at all correct processes. But since a* is chosen min-
imal, this implies that a 2 b*. A contradiction. O

Lemma 6 For every process that takes infinitely many simu-
lation steps, eventually ALIVE C TI\b* (i.e., eventually only
correct processes are in ALIVE).

Proof For a process that takes infinitely many simulation
steps, LASTSIMSTEPS is updated infinitely often. Therefore,
eventually only processes whose step-counters are infinitely
often increased can be in ALIVE at such a process. But only
the step-counters of correct processes (i.e. the processes in
[T\b*) are increased infinitely often. O

Lemma 7 Ifno correct process halts, then for every correct
process that takes only a finite number of simulation steps, we
eventually have TI\b* C ALIVE (i.e., eventually all correct
processes are in ALIVE).
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Proof Assume some process p; & b* simulates only a finite
number of steps of A. Then, eventually the content of
LASTSIMSTEPS at p; is constant, while the step-counters of
the processes in TT\b* keep constantly increasing, because
we assume that none of them halts. Thus, eventually IT\b* C
ALIVE. [m]

Lemma 8 Ifno correct process halts, then there exists a set
a* € o of processes such that a* 2 b* and exactly the pro-
cesses in TT\a* simulate infinitely many steps of A.

Proof Leta* € </ be the set from Lemma 5.

We first show by contradiction, that processes in a* simu-
late only finitely many steps of A. Assume some process p; €
a* simulates infinitely many steps of A. Then, at process p
there exists infinitely often some set a € FAULTY such that
ALIVEUa = ITand p; ¢ a. This implies that [T\a C ALIVE.
From Lemma 6 follows that eventually ALIVE C IT\b* at p;.
By the transitivity of “C”: [T\a C I1\b* and thus b* C a.
Therefore, by Lemma 5: a* C aand p; ¢ a. A contradiction
to the fact that p; € a™ and thus processes in a* simulate
only finitely many steps of A.

It remains to show that all processes in IT\a*™ simulate
infinitely many steps of A. Assume the contrary, i.e., some
process p; thatis notin a* simulates only finitely many steps
of A. Since a* D b*, every such process is correct and, as
no correct process halts, it takes infinitely many steps. By
claim (i) of Lemma 5, a* is eventually always in FAULTY
at p; and by Lemma 7, eventually ALIVE D IT\b* at p;.
But then, ALIVE U b* = TI and thus ALIVE U g* = IT at
pj- A contradiction to the fact that p; simulates only finitely
many steps of A. Therefore, exactly the processes not in a*
simulate infinitely many steps. O

Theorem 2 If D(<7, B), then of = P.

Proof We show that Algorithm 1 decides in all runs of %
for any colorless task 7" and for any algorithm A that solves
T against 7. For this, it is sufficient if the simulation of A
decides for any correct process, because A solves T against
</ and T is a colorless task. Thus, every other process can
decide on the decision value of any other decided process.

Assume for contradiction that the simulation of A decides
for no correct process, i.e., no correct process halts. From
Lemma 3 follows that Algorithm 1 is well-defined and from
Lemma 8 follows that there exists a set a™ € .7 of processes
such that exactly the set of processes in IT\a* simulate infi-
nitely many steps of A. Since a* € <7, every such run is
indistinguishable from a real run of A against </ and A has
to terminate. Since we assume that I[1 ¢ .7, i.e., that an
adversary cannot crash all processes, we have a* C TI and
thus at least one correct process is not in a* and will decide.
A contradiction.

Thus, at least one correct process decides and all other
correct processes can adopt its decision value. O

From this Theorem follows, that if D(</, %), then k-set
agreement cannot be implemented against <7, since it is
impossible in % [3,12,15].

Corollary 1 If D(</, %), then k-set agreement cannot be
implemented against < .

5 k-Set agreement protocol (necessary condition)

In this section, we show that if for adversaries .« and % we
have ~D (<, %), then k-set agreement can be implemented
against .«7. By the contrapositive, we get a necessary condi-
tion for the impossibility of implementing k-set agreement,
namely if k-set agreement cannot be implemented against
of , then D(t, U).

We compare an adversary <7 with %, the k-failure adver-
sary which contains all sets of size less or equal to k. We will
show how to implement failure detector k-anti-$2, which is
known to be sufficient to implement k-set agreement against
any adversary [17]. Basically, k-anti-Q2 outputs, whenever
queried, at least n — k processes, such that at least one correct
process is output only finitely often. Algorithm 2 implements
k-anti-Q2 against <7 under the assumption that =D (<7, %).

The key to the implementation is to find a set u™ € %
such that u™* contains at least one correct process, i.e., if the
actual set of faulty processes is a* € <7, then u* € a*. It
is sufficient though, that we eventually always find supersets
of u* of size at most k. The output for k-anti- Q2 is then just
the complement of these sets.

As in the previous section, we first try to narrow down the
possibilities for the actual faulty set a*. This is again achieved
by using step-counters (denoted STEPC). The current esti-
mates are stored in POSSIBLY- FAULTY. Then, we determin-
istically select a set u;,;; € % that is not dominated by any
a € & (since =D (<, %), there has to exist at least one).
Although this set is not dominated by any a, it may contain
no correct process (in particular, u;,;; may be the empty set).
However, if so, i.e., if u;,;; € a*, then by Lemma 2 there has
to exist a strict superset of u;,;; which is not dominated by any
a € o/ witha D u;,i; and we can select the maximal such set.
Since a* is eventually always in POSSIBLY- FAULTY, we even-
tually always choose the same b* & a* as EST- u in the step
for a*. Although the supersets of a* in POSSIBLY- FAULTY
may differ in each round, our estimate will eventually always
contain u*, because the prefix until a* in POSSIBLY- FAULTY
is stable.

Consider Example 2 withn = 3,k =2, &/ = {0, 2, 12,
13, 23} and % and recall that =D (<7, %»). Then, for exam-
ple we can choose u;,;; = 3, because for all a € & :
—D(a, 3). Thus EST- u is initially set to 3.

Assume first that p» is the only faulty process, i.e., that the
actual faulty-set is 2. Eventually POSSIBLY- FAULTY can only
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be {0, 2, 12} or {@, 2, 23}. In any case, if a = @ is consid-
ered in the “foreach”-loop, then EST- u remains 3. If a = 2
is considered, then EST- u will be selected as 13, because
EST- u = 13 is maximal such that 2 2 EST-u. Ifa = 12 or
a = 23 is considered, then EST- u remains still 13 and thus
the emulated output of k-anti-€2 does not contain the correct
processes pp and ps, i.e., it will eventually be p».

Assume now that only process p; is correct, i.e., that the
actual faulty-set is 13. Eventually POSSIBLY- FAULTY can
only be {{J, 13}. Thus, since we assume that EST- u is ini-
tialized with 3, the only choice for the next EST- u is 23.
Therefore, eventually there is a correct process (process p2)
that is not in the output of k-anti-<2.

If all processes are correct i.e., the faulty-set is ¢, then
we have to avoid the possibility that the output alternates
between 1, 2 and 3. Eventually POSSIBLY- FAULTY can be
{9, 12}, {9, 13}, {0, 23}, {0, 2, 12} or {@, 2, 23}. In any case,
if a = @ is considered, then EST- u remains 3. After that,
EST- u can be augmented, but 3 will eventually never be in
the k-anti-Q2 output. Therefore, eventually there is a correct
process (process p3) that is not in the output of k-anti-€2.

For the actual proof, let a* € o7 be the actual set of faulty
processes in some run and assume that =D (<7, %).

Lemma 9 Algorithm 2 is well-defined.

Proof To show that Algorithm 2 is well-defined, we first
note that the sets in POSSIBLY- FAULTY can be ordered by
inclusion.

We have to show that there exists some adequate u;y;;.
Since it holds that =D (7, %), there exists some u € %
such that Va € &/ : =D(a, u). Thus, this u can be chosen as
Uinit- The set POSSIBLY- FAULTY will always be a subset of .o’
and is ordered by inclusion. Therefore, =D (a, u;i;) holds
for all possible a in POSSIBLY- FAULTY. It is always possi-
ble to choose an appropriate new EST- u, because if EST- u
is changed during the “foreach”-loop, then it is replaced by
another EST-u € % with —=D(a, EST- u) for all possible
subsequent @ in POSSIBLY- FAULTY. O

Lemma 10 Eventually always at all correct processes, for
all sets POSSIBLY- FAULTY:

(i) a™ € POSSIBLY- FAULTY.
(ii) ifa € POSSIBLY- FAULTY at some process and a C a*,
then a € POSSIBLY- FAULTY at all correct processes.

Proof The proof is analogous to the proof of Lemma 4. O

Lemma 11 Let a1 C --- Ca; be the sequence of sets in
POSSIBLY- FAULTY at some time. Furthermore, let EST- u1,
..., EST- u; be the sequence of corresponding sets selected
in the “foreach”-loop. Then forall 1 <i <I:

EST-u; € a;

@ Springer

Proof The proof is by contradiction. Assume EST- u#; C a;
for some i. We have by definition of u;,;; and by the way
EST- u; is chosen in the “foreach”-loop that =D (a;, EST- u;).
By Lemma 2, this implies that there exists some u € %, u 2
EST- u; such that Va’' € &/, a’ D a; : —D(a’, u). But this
contradicts the fact that EST- u; is chosen maximal. O

Lemma 12 There exists a set u™ € %, with a* 2 u™* that is
eventually always a subset of EST- u in Line 10 at all correct
processes.

Proof By Lemma 11, at every step of the “foreach”-loop:
EST- # € a and by Lemma 10, eventually a* is always con-
tained in POSSIBLY- FAULTY. Thus, at every correct process,
there exists a set u™ € % with a* 2 u* that is a subset of
EST- u in the “foreach”-loop where a* is considered. Let u*
be the minimal such set. To determine EST- u, only the pre-
viously considered sets in POSSIBLY- FAULTY are considered
(it is otherwise deterministic). By Lemma 10, the sets a in
POSSIBLY- FAULTY witha C a* are eventually the same at all
correct processes, and the “foreach”-loop operates ordered by
inclusion. Thus, every correct process will eventually always
have u™* as a subset of EST- u. O

Theorem 3 For all <7, if ~D(, %), then it is possible to
implement k-anti-Q2 against <7 .

Proof By Lemma 9, Algorithm 2 is well-defined and from
Lemma 12 follows that there exists a set u* € % witha* 2
u* thatis eventually in Line 10 always a subset of EST- u at all
correct processes. Therefore, there exists a process p € u*
which is not in a*. Thus, p is correct and p will eventually
never be in the emulated failure detector output. This means,
that the properties of k-anti-$2 are fulfilled (k-anti-€2 outputs,
whenever queried, at least n — k processes, such that at least
one correct process is output only finitely often). Note that it
is always possible to choose n — k processes that are not in
EST- u, because EST- u € %, i.e., |EST- u| < k.

In this way, we can emulate failure detector k-anti-$2
against o7 if =D (7, ). O

Since k-anti-€2 is sufficient to implement k-set agreement
against any adversary [17], we get:

Corollary 2 If =D (<, %), then it is possible to implement
k-set agreement against < .

Furthermore:

Corollary 3 If it is not possible to implement k-set agree-
ment against <7, then D(< , Uy).

If we gather together Corollarys 1 and 2, we obtain a neces-
sary and sufficient condition in terms of a structural predicate
under which k-set agreement can be solved against an adver-
sary.
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1 shared variable: STEPC; := 0;

/* a SWMR register */

2 local variable: u;,;; := deterministically select some maximal u;,;; € % such that for all a € <7, =D(a, ujyi;);

3 local variable: EST- u := u;,i¢;
4 local variable: POSSIBLY- FAULTY := .2/

5 while true do

/* the set of processes that are currently considered faulty */
/* the sets of processes that are possibly faulty */

6 let p;,, ..., pi, be the processes ordered by increasing STEPC (ties broken deterministically);

7 POSSIBLY- FAULTY = {@, {pi, }, {pi,» Pir}, - s {Piys -+ Dip P N5

8 EST- U := Ujpirs

9 foreach a € POSSIBLY- FAULTY, ordered by inclusion do
10 L EST- u := deterministically select some maximal u’ € % such that 4’ 2 EST- u and Va' € </, a’ 2 a implies =D(a’, u');
11 STEPC; := STEPC; + 1;
12 output n — k processes that are not in EST- u;

Algorithm 2 Implementation of k-anti-$2 for process p; and ~D(«/, %).

Theorem 4 k-set agreement can be implemented against </
if and only if =D (<, ).

We can now directly derive the disagreement power of an
adversary by our structural predicate:

Theorem 5 dis(<?) =k if and only if D(<7, %) AN—D (<,
Wit1).

Together with Theorem 1, this induces the following
Corollary:

Corollary 4 Forevery k, there is no adversary o/ < % with
dis(o) = k.

Proof Consider any adversary &/ C %.. From Theorem 1
follows that =D (<7, %). By Theorem 5: dis(</) #k. O

In this sense, an adversary % is a minimal adversary with dis-
agreement power k. Nevertheless, there may be other “locally
minimal” adversaries with disagreement power k. For exam-
ple, the 3-process adversary &/ = {#, 1, 23} is minimal for
disagreement power 1 in the sense that every strict subset
of &7 has disagreement power 0, i.e., it cannot even prevent
consensus.

6 Equivalence classes

In this section we show that if two adversaries have the same
disagreeement power, then they solve exactly the same set
of colorless tasks: dis (<) = dis(9) if and only if &7 = A
and B = .

We will start by showing how to use k-anti-€2 to simulate a
set of k processes, such that at least one of the simulated pro-
cesses takes infinitely many steps (this simulation, although
seemingly simple, may be of independent interest). Our sim-
ulation in Algorithm 3 shows that every colorless task that
can be solved against %kk_ | can be solved against any adver-
sary ./ against which k-anti-S2 is implementable.

We use the fact that there exists an implementation of con-
sensus using €2 (the failure detector that eventually always

outputs the same correct process everywhere) such that
agreement and validity of consensus are satisfied, even if
the €2 failure detector is bogus (i.e., it outputs infinitely often
a faulty process or does not stabilize on one correct process)
[14]. Furthermore, it is possible to extract an array of k fail-
ure detectors (denoted Q, ..., ;) from k-anti-Q with the
property that at least one of them is a “real” €2 and the rest
may be bogus [17]. Thus, we can build consensus-like objects
with every Q' [14] and we have the property that at least one
of these consensuses terminates. An object associated with
a bogus Q' may never terminate, but validity and agreement
are never violated.

As our algorithm itself is relatively simple, we will only
give the main points of the proof (compare e.g. [4] for a more
detailed proof of a simulation).

We denote by consensus; , the r-th instance of the con-
sensus object built using Q; Furthermore, we associate with
every 1 < j < k a*“virtual” process ¢; and all processes use
the consensus ; --objects to agree on the simulated steps of g ;..

Without loss of generality, we assume that the algorithm
that implements the task against %kk_ | uses only one single-
writer multiple-reader (SWMR) register per process. Three
types of steps need to be considered:

— awrite(v)-step in which a process writes v to its associ-
ated SWMR register,

— aread(qj)-step in which a process reads the SWMR reg-
ister associated to process g

— and an internal step which does not involve any registers

Note that these assumptions do not restrict the set of solv-
able tasks [16]. In our simulation, we will use snapshots to
take atomic snapshots of all registers. Such atomic snap-
shots can be implemented using registers [1]. We assume
that associated to each process p; is an array of regis-
ters R[i, 1], ..., R[i, k], one for each simulated process g;.
Every process can write to each of its associated registers.
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A snapshot returns the state of all registers of all processes.
All operations are assumed to take effect instantaneously.

The simulation works as follows: each process tries to sim-
ulate the steps of the k “virtual” processes ¢q1, ..., gi at its
own rate. At the beginning, all processes propose their initial
values to all k consensuses in parallel. Since the algorithm is
deterministic, the internal steps of g ; can just be executed. To
simulate the write-steps of g, every simulator p; writes the
value to be written together with the number of the currently
simulated step to the shared register R[i, j]. To simulate a
read-step of a register associated with a process g, a process
takes a snapshot of all other shared registers associated with
q and returns the “freshest” value (i.e., the value associated
with the maximal step-number). Then, it proposes this value
to the consensus corresponding to ¢ ; and returns the result for
the read-operation. In this way, it is ensured that all simula-
tors will return exactly the same values for every ¢; and thus
all processes will simulate exactly the same steps. If some
virtual process ¢ ; has decided, the simulator just adopts that
value and halts.

Theorem 6 For every adversary </" built upon a set of
n processes and for every k < n: if =D(/", %), then
Uk | = o

Proof We assume an algorithm that solves a colorless task
against %kk_ | and use Theorem 3 to extract k-anti-€2 from
o/" and thus are able to simulate a consensus-object for every
one of the k processes ¢; (of which some may be non-ter-
minating). Since there is some j such that €', eventually
always contains the same correct process, all simulated con-
sensus j --objects will terminate for every r. Thus, we can
construct a consensus ; --object for every simulated read-step
r and all correct processes simulate infinitely many steps
of qj-

Furthermore, since the execution of the simulated algo-
rithm depends only on the values read (i.e., the algorithm
is deterministic), for all j, all processes execute exactly the
same steps for every virtual process ¢ ;. By the definition of
colorless tasks, it is allowed that any process picks up any
other processes’ input and output value and particularly, it is
allowed that several processes have the same input or output
values. It remains to show that every run of the virtual pro-
cesses is indeed a run of the simulated algorithm in %kk_l,
i.e., it is indistinguishable from a real run. For this, we need
to show that the sequence of the simulated operations on the
registers is linearizable. This means, that there needs to exist
some “point of linearization” for every distributed “write”
and “read”-event at which the event appears to take effect
instantaneously and the sequence of these events needs to be
some legal execution according to the register specification.

For this, we use the fact that the sequence of operations
on the real registers is linearizable. For the operations of our
simulated registers, we define the points of linearization of
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the “write” and “read”-steps as follows. For the r;-th step of
a simulated process ¢ : if the simulated step is a “read(gy)”-
step, then let v be the result of the corresponding execution
of consensus i and let p; be the process that first took a
snapshot containing v among the processes that proposed v
to consensus; ;. Then, the point of linearization is exactly
the point of linearization of this real “snapshot”-event. If the
simulated step is a “write(v)”-step, then the point of linear-
ization is exactly the point of linearization of the first real
corresponding “write(v, r;)”-step at some simulating pro-
cess. Note that all processes will write the same value v in
the rj-th step of ¢ j, because the simulated algorithm depends
only on the values read and these are the same at all processes
for every process g, because of the consensuses.

This linearization behaves according to the register spec-
ification: no value is read before it is written and every read
returns the latest written value. Thus, it respects the order of
the linearization of the corresponding “real” events, because
it always returns the value with associated maximal step-
number r. Thus, every simulated run is indistinguishable
from areal run and there exists at least one virtual process that
eventually terminates and every correct simulator decides.

O

Before we state our main result, we recall a theorem from [4]
that, in our notation, states the following:

Theorem 7 (BG [4]) For all n, for all k withn > k: % =
62/](](_'—1.

If we put all our other theorems together, we get the following
result:

Theorem 8 Forany n and any two adversaries &/ and 5" :
dis("™)=dis(B") if and only if " = B" and B" = .
Proof Let k be the disagreement power of <7". By Theo-
rem 5: D(&/", 7/") and therefore with Theorem 2:

A" ! )
Furthermore, since " has also disagreement power k, we
have: —=D(#", %)/, |) (Theorem 5). By Theorem 6: %kk“ =
98" . With the transitivity of “>=" and Theorem 7:

U B" 3)
If we put (2) and (3) together, then by transitivity: &7" = J".
We obtain A" = &/" in the same way. O

Thus, we can reduce any adversary with disagreement power
k to adversary %:

Corollary 5 For any n, any k and any adversary /" with
dis(I") =k: A" = U and U = A"

Proof By Proposition 1, dis(%") = k and by Theorem 8&:
A" = U and U = A" ]
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shared variables: R[i, j]:= (L,0) (forl < j <k);
local variables: initj, r; (for 1 < j <k);

1

2

3 foreach | < j <k in parallel do

4 init; := consensus; o(initial value of p;);
5 ri=1;

6 while g; has not decided do
7
8
9

/* start simulating steps of ¢; with initial value inifj*/

if next step of q; is a write(v)-step then
‘ R[i, j]:= (U,rj);

else if next step of q; is a read(q, )-step then
10 take a snapshot of all registers R[y,x] (I <y <nand1 <x <k);
11 select value v such that there exists an index y with R[y, x] = (v, r) and r is maximal;
12 return consensus;, ; (v) for the read;
13 else
14 | take internal step of ¢,
15 | rj=rj+1

16 decide on g;’s decision value; halt;

Algorithm 3 Emulation of k processes against %kk_l using k-anti-Q2. Algorithm for process p;.

7 Concluding remarks

This paper presents a novel way to precisely characterize
adversaries: the notion of disagreement power, i.e., the big-
gest integer k for which an adversary can prevent processes
from agreeing on k values. This notion partitions the set of all
adversaries into n distinct equivalence classes, one for every
disagreement power. Any two adversaries with the same dis-
agreement power solve exactly the same set of (colorless)
tasks (Sect. 6). We believe that our result could be extended
to colored tasks but this is subject to future work. The key
obstacle for this is that in colored tasks, the decision value of
one terminated process is not necessarily enough to compute
the output values of the others.

Atthe heart of our partitioning lies our simulation between
algorithms that tolerate different adversaries (Sect. 4). Inter-
estingly, the simulation works also if we assume the exis-
tence of stronger objects than registers or even non-deter-
ministic object types. Furthermore, the simulation (as well
as our implementation of k-set agreement parametrized with
an adversary in Sect. 5) remains correct even if the adver-
sary parameter changes for some time before it contains the
actual adversary, e.g., because of some kind of failure detec-
tion mechanisms.
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