
Monocle: Dynamic, Fine-Grained Data Plane Monitoring

(EPFL-REPORT-208867)

Peter Perešı́ni†, Maciej Kuźniar†, Dejan Kostić‡
† EPFL ‡KTH Royal Institute of Technology

†<name.surname>@epfl.ch ‡dmk@kth.se

ABSTRACT
Ensuring network reliability is important for satisfying
service-level objectives. However, diagnosing the cause of
network anomalies in a timely fashion is difficult due to the
complex nature of network configurations. We present Mon-
ocle — a system that uncovers forwarding problems due to
hardware or software failures in switches, by verifying that
the data plane corresponds to the view that an SDN con-
troller installs via the control plane. Monocle works by sys-
tematically probing the switch data plane; the probes are
constructed by formulating the switch forwarding table logic
as a Boolean satisfiability (SAT) problem. Our SAT formu-
lation handles a variety of scenarios involving existing and
new rules, and quickly generates probe packets targeting a
particular rule. Monocle can monitor not only static flow
tables (as is currently typically the case), but also dynamic
networks with frequent flow table changes. Our evaluation
shows that Monocle is capable of fine-grained monitoring
for the majority of rules, and it can identify a rule suddenly
missing from the data plane or misbehaving in a matter of
seconds. Also, during network updates Monocle can help
controllers cope with switches that exhibit transient incon-
sistencies between their control plane and data plane states.

1. INTRODUCTION
Ensuring network reliability is paramount. Software-

Defined Networks (SDNs) are being widely deployed,
and OpenFlow is a popular protocol for configuring net-
work elements with forwarding rules that dictate how
packets will be processed. Most of SDN benefits (e.g.,
flexibility, programmability) stem from its logically cen-
tralized view that is presented to network operators.
Ensuring SDN reliability maps to ascertaining the cor-
respondence between the high-level network policy de-
vised by the network operators and the actual data
plane configuration in switch hardware.

Multiple layers exist in the policy-to-hardware map-
ping [8], and SDN layering makes correspondence check-
ing easier because of the well-defined interfaces between
layers. Tools exist that can check correspondence across
one or more layers ([10–12, 24]), part of this difficult
problem is ensuring correspondence between the desired

network state that the controller wants to install, and
the actual hardware (data plane). We refer to this prob-
lem as data plane correspondence.

Guaranteeing data plane correspondence is diffi-
cult or downright impossible by construction or pre-
deployment testing, because of the possibility of vari-
ous software and hardware failures ranging from tran-
sient inconsistencies (e.g., switch reporting a rule was
updated sooner than it happens in data plane [16]),
through systematic problems (switches incorrectly im-
plementing the specification, e.g., ignoring priority field
in OpenFlow [16]), to hardware failures (e.g., soft errors
such as bit flips, line cards not responding, etc.) and
switch software bugs [24]).

We argue for checking data plane correspondence by
actively monitoring it. However, the choice of moni-
toring tools is limited – operators can use end-to-end
tools (e.g., ping, traceroute, ATPG [24], etc.) or pe-
riodically collect switch forwarding statistics. We ar-
gue that these methods are insufficient – ping/tracer-
oute cannot reveal the problem if it does not affect
ICMP traffic. While ATPG provides end-to-end data
plane monitoring and can quickly localize problems, it
requires substantial time (e.g., minutes to hours [24],
depending on coverage) to pre-compute its data plane
probes. This delay is too long for modern SDNs where
the ever-increasing amount and rate of change demand a
quick, dynamic monitoring tool. In particular, a major
reason behind SDN getting traction is that it makes it
easy to quickly provision/reconfigure network resources
(e.g., virtual machines being started in a cloud data cen-
ter). New network demands created by Amazon EC2
spot instances, more control being given to the appli-
cations [6], and more frequent routing recomputation
(e.g., every second [3]) make it even harder to ensure
data plane correspondence.

Our system Monocle allows network operators to
simplify their network troubleshooting by providing au-
tomatic data plane correspondence monitoring. Mono-
cle transparently operates as a proxy between an SDN
controller and network switches, verifying that the net-
work view configured by the controller (for example

using OpenFlow) corresponds to the actual hardware
behavior. To ensure a rule is correctly functioning,
Monocle injects a monitoring packet (also referred to
as a probe) into a switch, and examines the switch be-
havior. Monocle monitors multiple network switches in
parallel and continuously, i.e., both during reconfigura-
tion (while the data plane is undergoing change during
rule installation), and in steady-state. During reconfig-
uration, Monocle closely monitors the updated rule(s)
and provides a service to the controller which informs
when the rule updates sent to the switch finished be-
ing installed in hardware. This information could be
used by a network controller to enforce consistent up-
dates [19]. In steady-state, Monocle periodically checks
all installed rules and reports rules which are misbe-
having in the data plane. This localization of misbe-
having rules can then be used to build a higher level
troubleshooting tool. For example, link failures mani-
fest themselves as multiple simultaneously failed rules.

Generating data plane monitoring packets is
challenging for a number of reasons. First, it needs to
be quick and efficient – the monitoring tool needs to be
capable of quickly reacting to network reconfigurations,
especially if the controller acts on its output. More-
over, the problem is computationally intractable (NP-
hard). The reason for this level of hardness is because
the monitoring packets need to match the installed rule
while avoiding certain other rules present in a switch.
This case routinely occurs with Access Control rules, for
which the common action is to drop packets. Second,
a big challenge is dealing with the multitude of rules:
drop rules, multicasting, equal-cost multi-path routing
(ECMP) etc. that all have to be carefully dealt with.

The key contributions of this paper are as follows:

1. We present the design and implementation of Mon-
ocle, the first data plane correspondence monitor-
ing tool that can operate on fine-grained timescales
needed in SDN. In particular, Monocle goes beyond
the state-of-the-art in its ability to quickly recompute
the monitoring information after a rule update.

2. We formulate a set of formal constraints the moni-
toring packets must satisfy. We handle unicast, mul-
ticast, ECMP, drop rules, rule deletions and mod-
ifications. When necessary, we provide proofs that
our theoretical foundation is correct. In addition, we
optimize the way of converting the constraints into a
form presented to the off-the-shelf SMT/SAT solvers.

3. We go beyond the state-of-the-art by providing more
detail on how the SAT solution (computed in abstract
header space) is translated into a real packet.

4. We minimize Monocle’s overhead (extra flow table
space) by formulating and solving a graph vertex col-
oring problem.

5. Our evaluation demonstrates that Monocle: (i) de-
tects failed rules and links in a matter of seconds

Probe generation:
probe=(src=10.0.0.1, dst=10.0.0.2)

Probe
injection

Outcome=A ⇒ OK
Outcome=B ⇒ Alarm

Q: Is rule 1 in dataplane?

A

B

probe
Probe collection

 Flow Table:
1. (10.0.0.1, *) ➞ A
2. (*, *) ➞ B

upstream downstream

Figure 1: Overview of data-plane rule checking

while monitoring a 1000-rule flowtable in a hardware
switch, (ii) ensures truly consistent network updates
by providing accurate feedback on rule installation
with only several ms of delay, (iii) takes between 1.48
and 4.03 ms on average to generate a probe packet
on two datasets, (iv) typically has small overhead in
terms of additional packets being sent and received,
and (v) works with larger networks as shown by de-
laying an installation of 2000 flows by only 350ms.

2. Monocle DESIGN
Monocle is positioned as a layer (proxy) between

the OpenFlow controller and the network elements
(switches). Such design allows it to intercept all rule
modifications issued to switches and maintain the (ex-
pected) contents of flow tables in each switch. After de-
termining the expected state of a switch, Monocle can
compute packet headers that exercise the rules on that
switch. Figure 1 shows the core mechanism that the
system uses to monitor a rule. Monocle uses data plane
probing as the ultimate test for a rule’s presence in the
switch forwarding table. Probing involves instructing
an “upstream” switch to inject a packet toward the
switch that is being probed. The “downstream” switch
has a special catching rule installed which forwards the
probe packet back to the proxy. Upon the receipt of the
correctly modified probe packet coming from the appro-
priate switch, Monocle can confirm that the tested rule
behaves correctly in the data plane and can move to
monitoring other rules.

Before we let Monocle monitor the rules, it needs to
configure the network by assigning and installing the
catching rules. To reliably separate production and
probing traffic, the catching rule needs to match on
a particular value of a header field that is otherwise
unused by rules in the network; this value cannot be
used by the production traffic. In a network that re-
quires monitoring rules at multiple switches several such
catching rules are needed. It is therefore important to
minimize the number of extra catching rules that have
to be installed. We formulate this problem as a graph
vertex coloring problem and solve it.

Figure 2 outlines how the probe packets are created.
Monocle leverages its knowledge of the flow table at
the switch to create a set of constraints that a probe

2

Constraints:
1. match(R1)
2. ¬match(R2)
3. ….

SMT/SAT solver:
(x∨¬y)∧(¬z∨y) Probe packet

Packet crafting:
01100011100101101

Flow table:
R1: src=10.0.0.1 → fwd(1)
R2: dst=10.0.0.2 → drop

Figure 2: Steps involved in probe generation. Probes
for different rules can be generated in parallel.

packet should satisfy. Next, our system converts the
constraints into a form that is understood by an off-
the-shelf satisfiability (SMT/SAT) solver. Keeping con-
straint complexity low is important for the solving step.
For this reason, Monocle formulates constraints over an
abstract packet view [12, 24], structured as a collection
of header fields. As the final step, Monocle needs to con-
vert the SAT solution, represented in an abstract view,
into a real probe packet. Monocle leverages an existing
packet generation libraries to perform this task.

While we use OpenFlow 1.0 as a reference when de-
scribing and evaluating the system, its usefulness is not
limited to this protocol. Presented techniques are more
general and apply to other types of matches and actions
(e.g., multiple tables, action groups, ECMP).

3. STEADY-STATE MONITORING
During steady-state monitoring, Monocle tests

whether the control plane view of the switch forward-
ing state (constructed by observing proxied controller
commands) corresponds to the data plane forwarding
behavior. To ascertain the correspondence, Monocle
actively cycles through all installed rules and for each
rule it (i) generates a data plane packet confirming the
presence of the rule in data plane, (ii) injects this packet
into the network, and (iii) moves on to testing the next
rule as soon as the packet travels through the switch
and it is successfully received by Monocle. In this sec-
tion, we explain the creation of monitoring packets by
gradually looking at increasingly complex forwarding
rules.

3.1 Basic unicast rules
The presence of a given rule on a switch can be reli-

ably determined if and only if there exists a packet that
gets transformed by a switch differently depending on
whether the monitored rule is installed and working cor-
rectly. Therefore, the probe packet for monitoring the
rule has to: (i) hit the given rule, (ii) distinguish the
absence of the rule, and (iii) be collected by Monocle at
the downstream switch. We formulate these conditions
as formal constraints, and summarize them in Table 1.

Hitting a rule: Only packets that match a given
rule can be affected by this rule. Therefore, the header
of any potential probe packet P must be matching the

Rprobed rule. Additionally, Rprobed is seldom the only
rule on the switch and different rules can overlap (i.e.,
a packet can match multiple rules; switch resolves such
situation by taking rule priorities into account1). As
such, for a probe P to be really processed according to
Rprobed, P cannot match any rule with a priority higher
than the priority of Rprobed.

Distinguishing the absence of a monitored
rule: Even the rules with priority lower than the
probed rule Rprobed affect the probe generation. For ex-
ample, if the probe matches a low priority rule Rlow that
forwards packets to the same port as Rprobed, there is
no way to determine if Rprobed is installed or not. Thus
the probe has to avoid any such rule. Again, there is an
intricate difference between a packet matching a rule R
and being processed by R. Notably, if we just prevent
P from matching all lower-priority rules with the same
outcome, we may fail to generate a probe despite the
fact that a valid probe exists. Consider a following set
of rules (from lowest to highest priority):
• Rlowest := match(srcIP=∗, dstIP=∗) → fwd(1),

i.e., default forwarding rule
• Rlower := match(srcIP=10.0.0.1, dstIP=∗) →
fwd(2), i.e., traffic engineering diverts some flows
• Rprobed := match(srcIP=10.0.0.1, dstIP=10.0.0.2)→
fwd(1), i.e., override specific flow, e.g., for low
latency

If the constraint prevented P from matching
Rlowest (the same output port as Rprobed), we would be
unable to find any probe that matches Rprobed. How-
ever, there exists a valid probe P := (srcIP=10.0.0.1,
dstIP=10.0.0.2) as the behavior of the switch with and
without Rprobed is different (Rlower overrides Rlowest for
such a probe).

The provided example demonstrates that special care
should be taken to properly formulate the Distinguish
constraint listed in Table 1: In the case when Rprobed

is missing from the data plane, a lower priority rule
RLP with the same outcome cannot be distinguished
by probe P if and only if P matches RLP and there is
no other rule that matches P and has a priority higher
than RLP . To formalize the previous sentence, we de-
fine predicate IsHighestMatch(P,R,OtherRules) in-
dicating whether packet P will be processed according
to the rule R even if it matches some other rules on the
switch. Using IsHighestMatch we can now assert that
the probed rules must be distinguishable (e.g., have a
different outcome as Rprobed) from the rule which would
process P if Rprobed is not installed. For simplicity one
may think about DiffOutcome(P,Rule1, Rule2) sim-
ply as a test Rule1.outport 6= Rule2.outport, but we
later expand this definition to accommodate rewrite and

1 According to the OpenFlow specification, the behavior
when overlapping rules have the same priority is undefined.
Therefore, we do not consider such a situation.

3

Hit Matches(probe,Rprobed) ∧ ∀R ∈ HigherPriority(Rules,Rprobed) : ¬Matches(probe,R)

Distinguish

∀R ∈ LowerPriority(Rules,Rprobed) :
IsHighestMatch(probe,R,Rules)⇒ DiffOutcome(probe,Rprobed, R)

where IsHighestMatch(pkt,R,Rules) := Matches(pkt,R) ∧(
∀S ∈ HigherPriority(Rules,R) : ¬Matches(pkt, S)

)
Collect Matches(probe,Rcatch)

Table 1: Summary of constraints that probe packets needs to satisfy when probing for rule Rprobed.

multicast rules.
Collecting probes: Monocle decides if a rule is

present in the data plane based on what happens (re-
ferred to as probe outcome) to the probe packet. To
gather this information but not affect the production
traffic, we need to reserve a set of values of some header
field exclusively for probes and ensure that a production
traffic will not use these reserved values. We then pre-
install a special “probe-catch” rule on each neighboring
switch; this catching rule redirects probe packets to the
controller and needs to have the highest priority among
all rules. Naturally, as a last constraint, the probe P
has to match the probe-catch rule Rcatch.

3.2 Unicast rules with rewrites
On top of forwarding, certain rules in the network

may rewrite portions of the header before outputting
the packet. Accounting for header rewrites affects the
feasibility of probe generation for certain rules. Con-
sider a simple example containing two rules:
• Rlow := match(srcIP=∗)→ fwd(1) and
• Rhigh := match(srcIP=10.0.0.1)→ fwd(1).

It is impossible to create a probe for the high-
priority rule Rhigh because it forwards packets to
the same port as the underlying low-priority rule.
However, if Rhigh is replaced by a different rule
R′high := match(srcIP=10.0.0.1) → rewrite(ToS ←
voice), fwd(1) that marks certain traffic with a special
type of service, we can distinguish it from Rlow based
on the rewriting action. The outcome of the switch
processing a probe P := (srcIP=10.0.0.1, T oS 6= voice)
unambiguously determines if R′high is installed.

In general we can distinguish probes either based
on ports they appear on, or by observing modifi-
cations done by the rewrites. Therefore, we de-
fine DiffOutcome(P,R1, R2) := DiffPorts(R1, R2)∨
DiffRewrite(P,R1, R2). However, checking if two
rewrites are different requires more care than check-
ing for different output ports. A strawman solu-
tion that checks if rewrite actions defined in two
rules modify the same header fields to the same val-
ues does not work. Consider again rules Rlow and
R′high. While the rewrites are structurally different
(e.g., rewrite(None) 6= rewrite(ToS ← voice)), they
produce the same outcome if the probe packet happens
to have ToS = voice. Therefore, to compare the out-
come of rewrite actions, we need to take into account

not only the rewrites themselves but also the header of
the probe packet P and how it is transformed by the
rules in question. Formally, we say that the rewrites of
two rules are different for a given packet if and only if
they rewrite differently at least one bit of the packet,
i.e., DiffRewrite(P,R1, R2) := ∃i ∈ 1 . . . headerlen :(

BitRewrite(P [i], R1) 6= BitRewrite(P [i], R2)
)

where BitRewrite(P [i], R) is either 0, 1, or P [i] de-
pending if rule R rewrites the bit to a fixed value or
leaves it unchanged.

Finally, the rules in the network must not rewrite the
header field reserved for probing. This assumption is
required for two reasons: (i) if the probed rule rewrites
the probe tag value, the downstream switch will be un-
able to distinguish and catch the probes; and addition-
ally (ii) the headers of ordinary (non-probing) pack-
ets could be rewritten as well and afterward treated as
probes; this would break the data plane forwarding.

3.3 Drop rules
Since drop rules do not output any packets, we can

easily distinguish them from unicast rules based on
output ports — the downstream switch either receives
the probe or not. However, verifying that probes are
dropped (a situation we call negative probing) brings in
a risk of false positives: If the rule is not installed but
monitoring packets get lost or delayed for other reasons
(e.g. overloaded link, packets damaged during trans-
mission, etc.), Monocle is unable to determine the dif-
ference and assumes the rule itself drops the packets
and thus is correctly installed in the data plane.

While false positives should be tolerable in most cases
(e.g., the production traffic is likely to share the same
destiny as the probes and therefore the end-to-end in-
variant – traffic should be dropped – is maintained), we
present a fully reliable method useful mainly for moni-
toring of network updates in Section 4.3.

3.4 Multicast / ECMP rules
After discussing the rules that modify header fields

and send packets to a single port or drop them, the only
remaining rules are those that forward packets to sev-
eral ports (e.g., multicast/broadcast and ECMP). Both
cases can be easily incorporated into our formal frame-
work just by modifying the definition of DiffPorts.

These rules define a forwarding set of ports and send
a packet to all ports in this set (multicast/broadcast) or

4

a different port from this set at different times (ECMP).
For now, assume that rewriting actions are the same for
all ports in the forwarding set.

Moreover, note that drop and unicast rules are just
special cases of multicast with zero and one element
in their forwarding sets, respectively. This way we
only need to discuss three combinations of rules —
2×multicast, 2× ECMP, and multicast + ECMP. In
all of these cases, we can distinguish rules based on ei-
ther rewrites (i.e., DiffRewrite is True) 2 or based on
their forwarding sets (i.e., DiffPorts is True).

If both rules are multicast, a packet will appear on
all ports from one of the forwarding sets. Therefore,
if there exists any port that distinguishes these for-
warding sets, we can use it to confirm a rule. As such,
DiffPorts(R1, R2) := (F1 6= F2) where F1 and F2 de-
note forwarding sets of R1 and R2 respectively.

If both rules are ECMP, since each rule can send a
packet to any port in its forwarding set, we can dis-
tinguish them only if the forwarding sets do not inter-
sect (a probe appearing at a port in the intersection
will not distinguish the rules as both rules can send a
packet there). Thus, in this case DiffPorts(R1, R2) :=(
(F1 ∩ F2) = ∅

)
.

If only one of the rules (assume R1) is multicast, we
are sure that a packet will either appear on all ports in
F1, or on only one (unknown) port in F2. We can simply
capture the probe on any port that does not belong to
F2. Therefore, DiffPorts(R1, R2) :=

(
(F1 \ F2) 6= ∅

)
.

Finally, there is an additional way to distinguish an
ECMP rule from a multicast rule that is not unicast
(i.e.,|F1| 6= 1). We can differentiate them by counting
received probes (an ECMP rule always sends a single
probe). This way of counting the expected number of
probes on the output is applicable in general and can
extend the definitions of DiffOutcome, but since it
is practically useful only in the presented scenario, we
treat it as an exception rather than a regular constraint.

Now we analyze a situation when a rule may ap-
ply different rewrite actions to packets sent to different
ports. We again need to consider the three types of
combinations of rules R1, R2 with forwarding sets F1,
F2 and adjust the definition of DiffRewrite for each
of them. When considering DiffRewrite, we take into
account only actions that precede sending a packet to a
port that belongs to F1∩F2 since if a packet appears at
any other port, the location is sufficient to distinguish
the rules. Additionally, we will need a new predicate:
RewriteOnPort(pkt,R, port) defined as the outcome of
processing a packet pkt by rule R observed on port port.
With the aforementioned observations we consider pos-
sible cases.

2 Since drop rules do not output packets, their rewrites
are meaningless. We define DiffRewrite(P,Rdrop, R

′) :=
False to fit our theory.

If both rules are multicast, there is going to be a probe
packet at each output port in one of the forwarding
sets. Thus, it is sufficient if there is a single port in the
F1∩F2 on which the probe is different depending which
rule processed it. Therefore, DiffRewrite :=

(
∃probe :

∃x ∈ F1 ∩ F2 : RewriteOnPort(probe,R1, x) 6=
RewriteOnPort(probe,R2, x)

)
If both rules are ECMP, we need to be able

to distinguish them regardless of which out-
put port one of them chooses. This means
that in this case DiffRewrite :=

(
∃probe :

∀x ∈ F1 ∩ F2 : RewriteOnPort(probe,R1, x) 6=
RewriteOnPort(probe,R2, x)

)
.

Finally, if only one of the rules (assume R1) is
multicast, we still do not know which port will be
selected by R2. Thus, for the same reason as
in the previous case, DiffRewrite :=

(
∃probe :

∀x ∈ F1 ∩ F2 : RewriteOnPort(probe,R1, x) 6=
RewriteOnPort(probe,R2, x)

)
.

3.5 Unmonitorable rules
For some combinations of rules it is impossible to

find a probe packet that satisfies all the aforementioned
constraints, as can be seen in the following examples.

First, a rule cannot be monitored if it is completely
hidden by higher-priority rules. For example, one can-
not verify the presence of a backup rule if the primary
rule is actively forwarding packets. Similarly, a rule
is impossible to monitor if it overrides lower priority
rules but it does not change the forwarding behavior,
e.g., a high-priority exact match rule cannot be distin-
guished from default forwarding if the output port is
the same. Finally, it is impossible to monitor rules that
send packets to the network edge as the probes would
simply exit the network. While it is impossible to moni-
tor such egress rules, many deployments (e.g., typically
in a datacenter) use hardware switches only in the net-
work core and use software switches at the edge (e.g.,
at the VM hypervisor). This lessens the importance of
egress-monitoring — the software switches tend to up-
date their data plane instantly and hardware failures
are likely to manifest in the unavailability of the whole
machine; this would be promptly diagnosed by existing
server monitoring solutions.

4. MONITORING RECONFIGURATIONS
While monitoring steady-state network configuration

is important, it is during network updates when the
Monocle’s ability to quickly generate probes is put un-
der the test. In the dynamic monitoring mode, Mono-
cle focuses monitoring only to the rules being changed.
This allows it to confirm almost in a real time when the
switch updated the data plane Such knowledge is im-
portant for controllers trying to enforce consistent net-
work updates [11], as the controller cannot update “up-

5

stream” switch sooner than the “downstream” switch
finished updating its data plane. In this section we de-
scribe aspects of dynamic monitoring that differ from
its static counterpart.

4.1 Rule additions, modifications, deletions
Generating probes for monitoring rule updates is sim-

ilar to monitoring a static flow table. In particular, a
probe for rule addition is constructed the same way as
a steady-state probe assuming that rule was already in-
stalled. The only difference is that for some switches,
system should tolerate transient inconsistencies (e.g.,
monitored rule missing from the data plane) and should
not raise an alarm instantly. Instead, Monocle signals
to the controller that the rule is safely in the data plane
once the transient inconsistency disappears.

Similarly, a rule deletion is treated as the opposite
of installation. We look for a probe that satisfies the
same conditions. However, rule deletion is successful
only when the probe starts hitting actions of an under-
lying lower-priority rule. Next, rule modifications keep
the match and priority unchanged. This means that the
probe will always hit the original or the new version of
the rule, regardless of other lower priority rules in the
flow table. As such, we simply make a copy of the (ex-
pected) content of the flow table, adjust it by removing
all lower-priority rules, and decrease the priority of the
original rule. Afterward, we can use the standard probe
generation technique on this altered version of the flow
table to probe for the new rule version.

Finally, a single OpenFlow command can modify or
delete multiple rules. Probing in such a case is simi-
lar to probing for concurrent modification of multiple
overlapping rules at the same time. We describe the
complications of concurrent probing in the next section,
and leave reliable probe generation in the general case
for future work. However, by knowing the content of
switch flow table, it is possible (at a performance cost)
to translate a single command that changes many rules
to a set of commands changing these rules one by one,
and confirm them separately.

4.2 Monitoring multiple rules and updates si-
multaneously

In steady-state, generating a probe for a given rule
does not affect other probes. Therefore, Monocle gen-
erates and then uses the probes for multiple rules in
parallel. However, after catching the probe Monocle
still needs to match it to the monitored rule. To solve
this problem, we include metadata such as rule under
test and expected result to the probe packet payload
that cannot be touched by the switches. This allows
us to pinpoint which rule was supposed to be probed
by the received probe packet. We use this technique in
both steady-state and dynamic monitoring modes.

1. match(*,P) -> rewrite(“drop”), fwd(A)
2. match(*,*) -> fwd(B)

A

P

1. match(catch) -> ctrl
2. match(“drop”) -> drop
3. other rules ...

x
Figure 3: Illustration of drop-postponing method to re-
liably probe for drop rules.

Unfortunately, monitoring simultaneous updates re-
quires generating probes that work correctly for all al-
ready confirmed rules and at the same time for all sub-
sets3 of unconfirmed rules sent to the switch. This is
required because the probe must work correctly even in
case when the switch updates its data plane while other
probes are still traveling through the network. As long
as the unconfirmed updates are non-overlapping, the
updates do not interfere with each other (see Section
5.4) and we can generate probes and monitor the up-
dates separately. Unfortunately, in a general case the
problem is more challenging. As an example, consider
the controller issuing three rules (in this order):
• low priority R1 := match(srcIP =

10.0.0.1, dstIP = ∗)→ fwd(1)
• high priority R2 := match(srcIP = ∗, dstIP =

10.0.0.2)→ fwd(2)
• middle priority R3 := match(srcIP =

10.0.0.0/24, dstIP = 10.0.0.0/24)→ drop
After Monocle sees the rule R1, it sends it to

the switch, generates a valid probe (e.g., P1 :=
(10.0.0.1, 10.0.0.2)) and starts injecting it. Next, the
controller wants to install rule R2. On top of generat-
ing probe P2, Monocle also needs to re-generate P1 as
it is no longer a valid probe for R1 (if the switch in-
stalls R2 before R1, P1 will always be forwarded by R2,
and therefore become unable to confirm R1). In par-
ticular, this requires invalidating all in-flight probes P1.
Next, probing for R3 is impossible until R1 is confirmed
(assuming the default switch behavior is to drop). Fi-
nally, until rule R2 is confirmed, probe for R3 needs to
consider whether R2 has been installed. The number
of such combinations rises exponentially, e.g., 5 rules
require considering 25 outcomes.

Our current implementation handles unconfirmed
overlapping rules by queuing rules that overlap with
any yet unconfirmed rule until it is confirmed. We
leave probe generation under several unconfirmed over-
lapping rules as a potential future work.

4.3 Drop-postponing
The final improvement is a way to reliably monitor

3 According to the OpenFlow specification, a switch can
re-order multiple flow installation commands if they are not
separated by a barrier message. Moreover, some switches do
this even in case the commands are barrier-separated [16].

6

drop rules (rather than relying on negative probing) pre-
sented in Figure 3. Instead of installing a drop rule on
a switch, we can install a modified version of the rule
which matches the same packets but instead of drop-
ping, it rewrites the packet to a special header and for-
wards it to one of the switch’s neighbors. Switches need
to have a preinstalled drop rule which matches this spe-
cial header and drops all matching traffic. Moreover,
this drop rule has a priority lower than the priority of
probe-catching rule but sufficiently high that it dom-
inates other rules. This way, all non-probe traffic is
dropped one hop later while probe packets are still for-
warded to Monocle but with a modified header, which
allows it to realize when the drop rule is installed. Fi-
nally, after successfully acknowledging the “drop” rule,
Monocle can update the rule to be a real drop rule as
probing is no longer necessary; this change does not
modify the end-to-end network behavior for production
traffic.

While this method allows for most precise monitoring
of drop rule installation, it has the following drawbacks:
First, it (temporarily) increases the utilization of a link
to the neighboring switch because it forwards all to-be-
dropped traffic there for some time. Second, it adds
an additional rule modification to really drop packets
after acknowledging the temporary “drop” rule. De-
pending on the frequency of drop-rules issued by the
controller, this might result in up to 50% control-plane
performance degradation (if the controller is installing
only drop rules, the Monocle will double the number of
rule modifications).

5. SOLVING CONSTRAINTS AND
PACKET CRAFTING

As discussed in Section 3, probe generation involves
creating a probe packet that satisfies a given set of con-
straints. Here we describe how to perform this task by
leveraging the existing work on SMT/SAT solvers.

5.1 Abstracting packets
While constraints from Table 1 are relatively simple,

their complexity is hidden behind predicates such as
Matches(P,R) or DiffRewrite(P,R1, R2). In partic-
ular, when dealing with real hardware, the implemen-
tation of packet matching is performing more than a
simple per-field comparison. Instead, a switch needs to
parse respective header fields and validate them before
proceeding further. For example, a switch may drop
packets with a zero TTL or an invalid checksum even
before they reach the flow table matching step. As such,
it is important to generate only valid probe packets.

While the “wire-format” packet correctness can be
achieved by enforcing packet validity constraints, doing
so is undesirable as such constraints are too complex
(e.g., checksums, variable field start positions depend-

ing on other fields such as VLAN encapsulation, etc.) to
be efficiently solved by off-the-shelf solutions. Similarly
to other work in this field (e.g., [11, 12, 24]), we use an
abstract view of the packet — instead of representing a
packet as a stream of bits with complex dependencies,
we abstract out the dependencies and treat the packet
as a series of (abstract) fields where each field corre-
sponds to a well-defined protocol field (similarly to the
definition of OpenFlow rules).

By introducing abstracted fields, we can solve the
probe generation problem without dealing with the
packet wire-format details. As the final step we need
to “translate” the abstracted view into a real packet.
As we show in the rest of this section, this process con-
tains some technical challenges. While previous work
(e.g., ATPG [24]) uses a similar translation, its authors
do not go into the details of how to deal with this task.

5.2 Creating raw packets
The process of creating a raw probe packet given an

abstracted header can be handled by the existing packet
crafting libraries. The library can handle all relevant
assembly steps (computing protocol headers, lengths,
checksums, etc.). The only remaining task is providing
consistent data to the library. In particular, there are
two requirements on the abstract data that we provide
to the library: (i) limited domains of some fields and
(ii) conditionally present fields.

Limited domain of possible field values. Some
(abstract) packet header fields cannot have arbitrary
values because the packet would be deemed invalid by
the switch (e.g., DL TYPE or NW TOS fields in Open-
Flow). Therefore, we need to make sure that our ab-
stract probe contains only valid values. A basic solu-
tion is to add an additional “must be one of following
values” constraint on the abstract field. This solution
is preferred for small domains (e.g., input port). For
domains that are big, we have an alternative solution:
Assume that field fld can be only fully wildcarded or
fully specified. Moreover, assume that the domain of
fld contains at least one spare value, i.e., a valid value
which is currently not used by any rule in the flow table.
Then, we can run the probe generation step without
any additional constraints and look at the result probe.
If probe[fld] contains a valid value for the domain, we
leave it as is. However, if the probe[fld] contains an
invalid value, we replace it by the spare value.

Lemma: Previous substitution does not affect the va-
lidity of probe.

Proof: Assume probe[fld] contains an invalid (e.g.,
out-of-domain) value. As all rules in the flow table
can contain only valid values from the domain, it is
clear that for each rule R in the flow table either
probe[fld] 6= R.match[fld] or R.match[fld] = ∗. Set-
ting probe[fld] := spare does not change inequalities to

7

equalities and vice versa as we assume spare is a value
not used by any rule. Thus, the substitution does not
affect the Matches(probe,R) test and therefore it pre-
serves validity of the solution with respect to the given
constraints.

Some (abstract) packet header fields are in-
cluded only conditionally. For example, one cannot
include TCP source/destination port unless IP.proto=
0x06. We use a term conditionally-included to denote a
header field that can be present in the header only when
another field is present and has a particular value (e.g.,
TCP source port if the transport protocol is TCP). Sim-
ilarly, a field that cannot be in the header because of the
value of another field (e.g., UDP source port if trans-
port protocol is TCP) is called conditionally-excluded.
While it is easy to remove all conditionally-excluded
fields from the probe solution (e.g., by ignoring their
values), we need to make sure that the solution remains
valid. A particular concern is whether for any rule R the
value of Matches(probe,R) stays the same. We show
that the statement holds if rules are well-formed (i.e.,
they respect conditionally-included fields as required by
the OpenFlow specification ≥ 1.0.1).

Lemma: Eliminating all conditionally-excluded fields
from any valid solution does not change the validity of
Matches(probe,R) for any well-formed rule R.

Proof: We will eliminate all conditionally-excluded
fields one by one. For a contradiction, assume
that there exists a conditionally-excluded field exclfld
that during the elimination changes the validity of
Matches(probe,R) for some rule R. Clearly, exclfld
cannot be wildcarded in R otherwise the validity of
Matches(probe,R) would not change. Because rule
R is well-formed and there is an exact match for
exclfld, R has to also include an exact match for
parfld — a parent field of exclfld (i.e., the field which
determines conditional inclusion of exclfld). How-
ever, if probe[parfld] 6= R.match[parfld], value of
Matches(probe,R) is False regardless of the value
of probe[exclfld] which contradicts the assumptions.
Further, if probe[parfld] = R.match[parfld], field
exclfld is conditionally-included which also contra-
dicts the assumptions. Finally, parfld itself might be
conditionally-excluded in probe; in such case we per-
form the same reasoning leading to contradiction on its
parent recursively.

5.3 Solving constraints
Next, we show how to solve the constraints (listed

in Table 1) that the probe packet needs to sat-
isfy. As it turns out (see Appendix section of tech-
nical report [15]), the problem of probe generation
is NP-hard. Therefore, our goal is to reuse the ex-
isting work on solving NP-hard problems, in par-
ticular work on SAT/SMT solvers. While this re-

quires some work (e.g., eliminating for-all quantifiers
in Hit and Distinguish constraints), our constraint
formulation is very convenient for SAT/SMT conver-
sion. In particular, we convert the Hit constraint
to a simple conjunction of several ¬Matches terms
and the Distinguish constraint to a chain of if-then-
else expressions: If(m1, d1, If(m2, d2, If(m3, d3, ...)))
where mi and di are in the form of Matches(P,R)
and DiffOutcome(probe,Rprobed, R) for some rule
R; this effectively mimics priority-matching of a
switch’s TCAM. The only remaining part is a
way to model Matches and DiffOutcome predi-
cates. DiffOutcome consists of DiffRewrite and
DiffPorts. Basic set operations allow us to eval-
uate DiffPorts to either True or False before en-
coding to SAT. Both DiffRewrite and Matches are
similar in nature. Therefore, due to space limita-
tions, we use a simple example to present the encod-
ing only for Matches in context of the first three con-
straints. For example, assume that all header fields
are 2-bit wide (including IP source and destination).
The goal is then to generate a probe packet for a low-
priority rule Rlow := match(srcIP=1, dstIP=∗) →
fwd(1) while using probe-catching rule Rcatch :=
match(V LAN=3) and assuming a high-priority rule
Rhigh := match(srcIP=1, dstIP=2) → fwd(2). We
represent probe packet as a sequence of 6 bits p1p2 . . . p6
where bits 1-2 correspond to IP source, bits 3-4 to IP
destination and bits 5-6 to VLAN. Then, Hit and Dis-
tinguish constraints together are Matches(P,Rcatch) ∧
Matches(P,Rlow) ∧ ¬Matches(P,Rhigh) which field-
wise corresponds to (p5-6 = 0b11) ∧ (p1-2 = 0b01) ∧
¬ (p1-2 = 0b01 ∧ p3-4 = 0b10). (where prefix 0b means
binary representation). This can be further expanded
to (p5 ∧ p6) ∧ (¬p1 ∧ p2) ∧ (p1 ∨ ¬p2 ∨ ¬p3 ∨ p4), which
is a SAT instance.

5.4 Consider only overlapping rules
Probe packet generation involves generating a long

list of constraints which need to be satisfied. To in-
crease solving speed, we strive to simplify the con-
straints based on the following observation:

Lemma: Let R be a rule that does not overlap with
Rprobed. Then the presence/absence of R in a switch
flow table does not affect results of probe generation.

Proof: By definition, rules Rprobed and R overlap if
and only if there exists a packet x that matches both.
The negation (i.e., non-overlapping condition) is there-
fore ∀x : ¬Matches(x,Rprobed) ∨ ¬Matches(x,R). As
the expression holds for all packets, it must hold
for probe P as well, i.e., ¬Matches(P,Rprobed) ∨
¬Matches(P,R) holds. Combined with the assump-
tion Matches(P,Rprobed), it implies ¬Matches(P,R).
Therefore, parts of Hit and Distinguish constraints re-
lated to rule R are trivially satisfied for any probe that

8

matches Rprobed. As a corollary, all rules that do not
overlap with Rprobed can be filtered out before building
constraints. This is a powerful optimization, as typi-
cally rules only overlap with a handful of other rules.

6. NETWORK-WIDE MONITORING
Monocle design allows it to generate probes for, and

monitor each switch in the network separately. How-
ever, care must be taken to avoid interference among
catching rules of different Monocle instances. In par-
ticular, each monitored switch could be a downstream
switch for multiple other switches, each of them requir-
ing a catching rule on its own. At the same time, these
catching rules should not match on the probes used to
monitor the switch, otherwise the catching rules at the
monitored switch would intercept all probes instead of
letting them match the monitored rule.

We propose two solutions that overcome this diffi-
culty and offer a tradeoff between the number of header
fields that need to be reserved for monitoring and the
additional load imposed on the control channel. Ini-
tially, both strategies require assigning each switch i a
network wide unique identifier Si. We later explain a
possible optimization to both methods.

The first strategy reserves for monitoring one packet
header field H and a set Reserved of values of this field,
Reserved = {Si : i is a switch}. The assumption is
that real traffic never uses these values in the reserved
field and that no rule can rewrite this field.

Then, each switch i installs catching rules matching
on match(H = Sj) for each Sj ∈ Reserved\{Si}. Ac-
cording to Hit and Collect constraints in Table 1, the
value of field H in a probing packet has to be equal
Si — it cannot match any catching rule at the probed
switch, but must be intercepted by a catching rule at
the downstream switch. Unfortunately, in the recon-
figuration mode, this method causes all probes (except
for ones dropped at the probed switch) to return to the
controller even if they were forwarded by rules other
than the probed one. This increases control-channel
load as well as forces Monocle to analyze more returned
probes.

The second solution addresses the problem of over-
loading the control channel with probes at the cost of re-
serving two header fields H1 and H2 for probing. Switch
i preinstalls two types of rules used during probing:

1. a (high priority) probe-catch rule Rcatch :=
match(H1 = ∗, H2 = Si)→ fwd(controller), and

2. (slightly lower priority) rules Rfilter(j) :=
match(H1 = Sj , H2 = ∗)→ drop for all Sj ∈
Reserved\{Si}.

The generated probe needs to have H1 = Sprobed, H2 =
Snext where Sprobed and Snext are identifiers of the
probed and desired downstream switch, respectively.
Such a probe is not affected by any catching rule on

the probed switch but gets sent to the controller only
if it reaches the correct downstream switch. The probe
gets dropped by other neighbors of the probed switch
so the controller sees it only once4, which confirms the
rule modification.

Thus far, both presented solutions have a potential
downside: the number of reserved values of field(s) H
is equal to the number of switches in the network. Fur-
ther, each switch has to have as many catching rules
installed as well. However, what really matters for the
first method is that no two neighboring switches have
the same identifier. Finding an assignment of labels to
nodes in a graph such that no two connected nodes have
the same label value and the total number of values is
minimum is a well-known vertex coloring problem [18].
While finding an exact solution to this problem is NP-
hard, doing so is (as our evaluation in Section 8.3.2
suggests) feasible for real-world topologies. Our study
of publicly available network topologies [13, 20] shows
that at most 9 distinct values are required in networks
of up to 11800 switches. Moreover, the time required
is not crucial as it is a rare effort. Network topology
changes such as addition of new switches or links trig-
ger catching rule recomputation. Network failures do
not require recomputation; the setup may simply no
longer be optimal but it is still working.

The number of identifiers used by the second method
can also be reduced in a similar fashion. In this case,
however, it is not enough to ensure that two directly
connected switches have distinct numbers assigned. Ad-
ditionally, any pair of switches that have a common
neighbor must also have different identifiers. Otherwise
the method loses the guarantee that the controller does
not receive a probe until the probed rule is modified. As
such, the method works best on topologies which do not
contain “central” switches with high number of peers.
Algorithm-wise, we can reuse vertex-coloring solver —
we take original graph and for each switch, we add fake
edges between all pairs of its peers, essentially adding
a clique to the graph. Afterward we solve the vertex
coloring problem on this modified graph.

7. IMPLEMENTATION
We design Monocle as a combination of C++ and

Python proxies. Such proxy-based design enables chain-
ing many proxies to simplify the system and provide
various functionalities (e.g., improving switch behav-
ior by providing update acknowledgments). Moreover,
it makes system inherently scalable — each Mono-
cle proxy is responsible for intercepting only a single
switch-controller connection and can be run on a sepa-
rate machine if needed.

Monocle mainly consists of two proxies — Multi-

4 Unless there are many probes in flight or the modification
affect only rewrite actions, not the output port.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F
di

ffe
re

nt
 ru

ns

Time [s] to detect ≥x failures out of y failed rules

5 out of 102
3 out of 10

3 out of 5
1 out of 1

5 out of 5

Figure 4: Time to detect a con-
figured threshold of failures after a
rule/link failure with a probing rate
of 500 probes/sec and 1000 rules in
the switch flow table.

 0
 50

 100
 150
 200
 250
 300

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fl
ow

 ID

Time [sec]

= time when
a flow is broken

Barriers
 Upstream updated

Dataplane ready

Monocle
 Upstream updated

Dataplane ready

(a) HP 5406zl

 0
 50

 100
 150
 200
 250
 300

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fl
ow

 ID

Time [sec]
Barriers

 Upstream updated
Dataplane ready

Monocle
 Upstream updated

Dataplane ready

(b) PICA8 emulation

Figure 5: Time when flows move to an alternate path in an end-to-end ex-
periment. For both switches, Monocle prevents packet drops by ensuring
that the controller continues the consistent update only once the rules are
provably in data plane.

plexer and Monitor. Multiplexer connects to Moni-
tors of all monitored switches and is responsible for
forwarding their PacketOut/In messages to/from the
switch. Monitor is the main proxy and is responsible
for tracking the switch flow table, generating the nec-
essary probes, and sending update acknowledgments to
the controller. To reduce latency on the critical path,
Monitor forwards the FlowMod messages as soon as it
receives them, and delegates the probe computation to
one of its workers.

Monocle can use conventional SMT solvers for the
probe generation. In particular, we implement con-
version for Z3 [5] and STP [7] solvers. However, our
measurements indicate that these solvers are not fast
enough for our purposes (they are 3-5 times slower than
our custom-built solver in experiments presented in Sec-
tion 8.2). While we do not know the exact cause, it is
likely that (i) Python version of bindings is slow, and
(ii) SMT solvers often try too hard to reduce the prob-
lem size to SAT (e.g., by using optimizations such as
bit-blasting [7]). While such optimizations pay off well
for large and complex SAT problems, they might be an
overkill and a bottleneck for the probe generation task.
Thus, we wrote our own, optimized, conversion to plain
SAT (we use PicoSAT [1] as a SAT solver). The conver-
sion is written in Cython (to be on par with plain C code
speed) and we use the DIMACS format [4] to represent
the CNF formulas as one-dimensional vectors of inte-
gers. We use such a single-dimensional representation
instead of a more intuitive two-dimensional one (vector
of vectors of integers, inner vectors representing dis-
junctions) because such representation resulted in poor
performance – in particular, it necessitated malloc()-
ing of too many small objects, which was the major
bottleneck for the conversion.

Finally, since we do not have access to a real PICA8
switch for our evaluation, we create and use an addi-
tional proxy placed in front of an OpenVSwitch in one
of the experiments. This proxy intercepts and modifies
control plane communication between a controller and

a correctly working, fast switch to mimic the behavior
(rule reordering and premature barrier responses) and
update speeds of the PICA8 switch as described in [16].

8. EVALUATION
In our evaluation, we answer the following questions:

(i) How quickly can Monocle detect failed rules and
links? (in a matter of seconds), (ii) How quick and ef-
fective is Monocle in helping controllers deal with tran-
sient inconsistencies? (it ensures truly consistent net-
work updates by providing accurate feedback on rule in-
stallation with only several milliseconds of delay), (iii)
How long does Monocle take to generate probing pack-
ets? (a few milliseconds), (iv) How big is the overhead
in terms of additional rules and additional packets being
sent/received (typically small), (v) Does Monocle work
with larger networks (it does and delays an installation
of 2000 paths for only 350 milliseconds).

8.1 Monocle use cases
We start by showcasing Monocle’s capabilities in both

steady-state and dynamic monitoring modes.

8.1.1 Detecting rule and link failures in steady-state
To demonstrate Monocle’s failure detection abilities,

we conduct an experiment where we monitor the data
plane of an HP ProCurve 5406zl switch. We connect
this switch with 4 links to 4 different OpenVSwitch in-
stances mimicking a star topology with the switch in
the middle. We run OpenVSwitches and Monocle on
a single 48-core machine based on the AMD Opteron
8431 Processor. To detect failures, we configure Mono-
cle to monitor the switch with a conservative rate of 500
probes/s (Section 8.3), re-send each probe up to 3 times,
and raise an alarm if no probe is received after 150 ms.
In our first experiment, we install 1000 layer-3 forward-
ing rules on the HP switch, and let Monocle monitor
the switch. Afterwards, we fail (remove from the data
plane) a random rule and we measure the time it takes
for Monocle to detect the failure. We repeat the ex-

10

periment 1000 times and plot the CDF of the resulting
distribution. The results (blue line in Figure 4) suggest
that, depending on where the failed rule happens to be
with respect to the monitoring cycle (Monocle repeat-
edly goes through all the monitored rules), Monocle can
detect the failure in between 150 ms and 3 seconds.

Next, we study how fast Monocle detects failures that
affect multiple rules simultaneously. In this experiment,
we configure Monocle to raise an alarm only after de-
tecting a given threshold (number) of individual rule
failures. During the experiment, we fail multiple rules
simultaneously, or, in one case, fail a whole link to which
102 of the installed rules forward to. We again repeat
the experiment 1000 times and plot the CDF. As the
rest of links in Figure 4 show, Monocle quickly identifies
the link failure (on average in 200 ms, out of which 150
ms is the detection timeout). For smaller number of
failures and higher thresholds, Monocle requires more
time as it is unlikely that many (or, in the extreme
case, all) of the failed rules would be covered early in
the monitored cycle.

8.1.2 Helping controller deal with transient incon-
sistencies

Some OpenFlow switches prematurely acknowledge
rules installation [14, 16]. As Monocle closely monitors
flow table updates, it can help the controller to deter-
mine the actual time when the rules are active in the
data plane. This in turn allows the controller to perform
network updates without any transient inconsistencies.
We demonstrate this by using Monocle in a scenario
involving an end-to-end network update.

We setup a testbed consisting of three switches S1,
S2 and S3 connected in a triangle and two end hosts –
H1 connected to S1, and H2 connected to S2. Switch
S3 is the monitored switch exhibiting transient incon-
sistencies between control and data planes. Initially, we
install 300 paths that are forwarding packets belonging
to 300 IP flows from H1 to H2 through switches S1 and
S2. We send traffic that belongs to these flows at a rate
of 300 packets/s per flow. Then, we start a consistent
network update [19] of these 300 paths, with the goal of
rerouting traffic to follow the path S1-S3-S2. For each
flow, we install a forwarding rule at S3 and when it is
confirmed, we modify the corresponding rule at S1. We
repeat the experiments using two different switches in
the role of a probed switch (S3): HP ProCurve 5406zl,
and an OpenVSwitch with a proxy that modifies its be-
havior to mimic the Pica8 switch described in [16]. We
always use OpenVSwitch as S1 and S2.

Because both HP 5406zl and Pica8 report rule instal-
lations before they actually happen in the data plane,
a rule at the upstream switch S1 gets updated in the
vanilla experiment too soon and traffic gets forwarded
to a temporary blackhole. Figures 5a and 5b show

Data set avg [ms] max [ms] probes found
Campus 4.03 5.29 10642 / 10958
Stanford 1.48 3.85 2442 / 2755

Table 2: Time Monocle takes to generate a probe

when the packets for a particular flow stop following
the old path, and when they start following the new
path. The gap between the two lines shows the periods
when packets end in a blackhole. In the experiment, a
theoretically consistent network update led to 8297 and
4857 dropped packets at HP and Pica8 respectively. In
contrast, Monocle ensures reliable rule installation ac-
knowledgments so both lines are almost overlapping and
there are no packet drops. The total update time is
comparable to the elapsed time without Monocle.

8.2 Monocle performance
Here, we evaluate Monocle’s performance. First,

we answer the question whether Monocle can generate
probes fast enough to be usable in practice.

Having access to a dataset containing rules from an
actual Openflow deployment is hard. We observe that
rules in Access Control Lists (ACL) are the most simi-
lar to Openflow rules, since they match on various com-
binations of header fields. Hence we report the times
Monocle takes to generate probes for rules from two
publicly available data sets with ACLs: Stanford back-
bone router “yoza” configuration [11] (called Stanford,
with 2755 rules), and ACL configurations from a large-
scale campus network [21] (Campus, 10958 rules).

For each dataset we construct a full flow table and
then ask Monocle to generate a probe for each rule. In
Table 2 we report average and maximum per-rule probe
generation time. On average, Monocle needs between
1.44 and 4.13 milliseconds to generate a probe on a sin-
gle core of an 2.93-GHz Intel Xeon X5647. This time de-
pends mostly on the number of rules, and not on the rule
composition and header fields used for matching. This
is the case because the SAT solver is very efficient and
the most time-consuming part is to check for the rule
overlaps and to send all constraints to the solver. Fur-
ther, our solution can be easily parallelized both across
the switches (separate proxy and probe generator for
each switch) and across the rules sent to a particular
switch (each probe generation in SAT is independent).

Finally, we also show how many probes compared to
the number of rules Monocle is able to find (for reasons
why Monocle may fail to find a probe see Section 3.5).
In the measured scenarios, our system was able to gen-
erate probes for the majority of rules.

8.3 Overhead
Next, we show that the act of sending probes does

not overload the switches, and that the catching rules
occupy small amount of TCAM space in the switches.

8.3.1 PacketIn and PacketOut processing overhead

11

 0

 0.2

 0.4

 0.6

 0.8

 1

0:2 1:2 2:2 3:2 4:2 5:2 10:2 20:2 40:2N
or

m
al

iz
ed

 F
lo

w
M

od
 ra

te

PacketOut:FlowMod ratio
DELL 8132F

 HP
DELL S4810
DELL S4810**

Figure 6: Impact of PacketOut mes-
sages on rule modification rate nor-
malized to the rate with no Pack-
etOuts. Following each FlowMod
with up to 5 PacketOut messages has
small impact on switch performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 1000 5000N
or

m
al

iz
ed

 F
lo

w
M

od
 ra

te

PacketIn rate
 HP

DELL 8132F
DELL S4810
DELL S4810**

Figure 7: Impact of PacketIns on
rule modification rate normalized to
the rate with no PacketIns. Except
for Dell S4810 with all rules having
equal priority, PacketIns have negli-
gible impact on switches.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 500 1000 1500 2000

Ti
m

e
[s

ec
]

Flow ID

ProboScope Ideal
Figure 8: Batched update in a large
network. Monocle provides rule mod-
ification throughput comparable to
ideal switches.

While it is possible to inject/collect probes via data
plane tunnels (e.g., VXLANs) to and from a desired
switch, the approach we implemented relies on the con-
trol channel. Therefore, it is essential to make sure
that the switch’s control plane can handle the addi-
tional load imposed by the probes without negatively
affecting other functionality. To quantify the overhead,
we first measure the maximum switch PacketOut rate
by issuing 20000 PacketOut messages, and recording
when they arrive at the destination. To measure the
maximum PacketIn rate, we install a rule forwarding
all traffic to the controller, send traffic to the switch,
and observe the message rate at the controller. The
rates are 7006 PacketOut/s and 5531 PacketIn/s, av-
eraged over 5 runs on an older, HP ProCurve 5406zl
switch. The observed throughputs are 850 and 401 re-
spectively on a modern, production grade, Dell S4810
switch, and 9128 and 1105 on Dell 8132F with exper-
imental OpenFlow support (in all cases the standard
deviation is lower than 3%). If the packet arrival rate
is higher than maximum PacketIn rate available at a
given switch, both switches start dropping PacketIns.
These values assume no other load on the switch.

In the second experiment, we emulate in-progress net-
work updates by mixing PacketOut messages and flow
modifications using the k : 2 ratio (to keep the total
number of rules stable, the 2 modifications are: delete
an existing rule and add a new one). We vary k and
observe how it affects the flow modification rate.

The results presented in Figure 6 show that the per-
formance of all switches is only marginally affected by
the additional PacketOut messages as long as these mes-
sages are not too frequent. All switches maintain 85%
of their original performance if each flow modification
is accompanied by up to five PacketOut messages. Dell
S4810 with all rules having the same priority (marked
with ** in Figure 6) is more easily affected by Pack-
etOuts because its baseline rule modification rate is
higher in such a configuration.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

#T
op

ol
og

ie
s

(c
df

)

#Reserved
values

Coloring (1) Coloring (2) No coloring

Figure 9: Number of reserved values in the probing field
(also equal to a number of catching rules) for topologies
from Topology Zoo [13]. Coloring 1 and 2 correspond
to colorings for different type of catching rules.

Similarly, we perform an update while injecting data
plane packets at a fixed rate of r packets/s causing r
PacketIn messages/s and observe how they affect the
rule update rate. Figure 7 shows that all switches are al-
most unaffected by the additional load caused by Pack-
etIn messages. Again, Dell S4810 performance drops by
up to 60% when the baseline modification rate is high
(all rules have the same priority, ** in Figure 7).

8.3.2 Number of catching rules required
Recall that our approach for multi-switch monitor-

ing requires multiple probe-catching rules, and these
effectively introduce rule overhead. To quantify this
overhead, we compute the number of catching rules re-
quired for monitoring the network topologies from Inter-
net Topology Zoo [13] and Rocketfuel [20] datasets. To
assign probe-catching rules to different switches, we use
an optimal vertex-coloring solution computed using an
integer linear program formulation; solving takes only a
couple of minutes to compute the results for all 261+10
topologies.

The results presented in Figure 9 are for Topology
Zoo, and show how many topologies require a particular
number of IDs (number of reserved values of the probe-
catching field) in the basic version where each switch

12

has a distinct ID, as well as with coloring optimization
for the both previously explained strategies.

There are a couple of interesting observations. First,
both vertex coloring optimizations significantly de-
crease the number of the required values. Moreover,
the technique that requires just one reserved field works
with a very low number of IDs in practice. Up to 9 val-
ues are sufficient for networks as big as 754 switches.
The final, somewhat unexpected, conclusion is another
tradeoff introduced by the technique with two reserved
fields. Since the number of IDs it requires is at least
as large as the largest node-degree in the network, the
number is sometimes high (the maximum is 59). Rock-
etfuel topologies confirm these observations — for net-
works of up to 11800 switches, the technique with a sin-
gle reserved field requires at most 8 values while the sec-
ond technique needs to use up to 258 values (note that
we use greedy coloring heuristic for the second tech-
nique as our ILP formulation runs out-of-memory on
our machine). Taking these observations into account,
the most practical solution is the one that requires a
single reserved field for probing.

8.4 Larger networks
Finally, we show that Monocle can work in larger net-

works without prohibitive overheads. We do not have
access to a large network, therefore, we set up an ex-
periment that consists of a FatTree network built of 20
OpenVSwitches. As before, we add a proxy emulating
Pica8 behavior to each of these switches. Further, each
ToR switch has a single emulated host underneath, run-
ning a hypervisor switch that implements reliable rule
update acknowledgments (also implemented as a proxy
on top of OpenVSwitch). For comparison, we construct
the same FatTree, but consisting of 28 (ideal) switches
with reliable acknowledgments. We ignore the data-
plane traffic to avoid overloading the 48-core machine
we use for the experiment. Monocle is realized as a
chain of three proxies per switch. As already mentioned,
the proxies are highly independent and the problem can
be easily parallelized. Probe generation for each switch
is done in two threads.

We perform an experiment to show how Monocle
copes with high load and what is its impact on up-
date latency. In the experiment the controller issues an
update installing 2000 random paths in the network.
Each update has two phases: (i) install all rules except
for the ingress switch rule, and (ii) update the remain-
ing rule. In the first scenario, we modify all paths in
large batches, starting 40 new path updates (5-7 rule
updates each) every 10 ms. Figure 8 shows that Mon-
ocle performs comparably to the network built of the
ideal switches. Even though the probes have to compete
for the control plane bandwidth with rule modifications,
the entire update takes only 350 ms longer.

9. RELATED WORK
Ensuring reliable network operation is extremely im-

portant for network operators. As such, there exist a
large amount of previous work concentrating on differ-
ent aspects of the problem. In particular, systems like
Anteater [17], HSA/NetPlumber [10, 11], SecGuru [9],
VeriFlow [12], etc., focus on ensuring that the control
plane view of the network corresponds to the actual
policy as configured by the network operator. How-
ever, problems such as hardware failures, soft errors
and switch implementation bugs can still manifest as an
obscure and undetected data plane behavior. By sys-
tematically dissecting and solving the problem of probe
packet generation, Monocle, which is an extension of
our earlier short paper on RUM [14], closes the gap and
complements these other works. Monocle monitors the
packet forwarding done at the hardware level and en-
sures that it corresponds to the control plane view.

A tool most similar to Monocle is ATPG [24] that also
uses data plane probes to cross-check switch behavior.
However, there are some fundamental differences: (i) to
the best of our knowledge, ATPG generates probes tak-
ing into the account only Hit and Collect constraints.
It never checks whether the probes actually can Dis-
tinguish the rule from a lower priority one. (ii) More
importantly, ATPG takes a substantial time to gener-
ate the monitoring probes it needs. While this approach
works well for static networks, it has serious limitations
in highly dynamic SDN networks. In contrast, Monocle
copes easily with this case, down to the level that it can
observe the switch reconfiguring its data plane during
a network update.

Also working with a data plane, SDN traceroute [2]
concentrates on mechanisms that follow packets in an
SDN network. Traceroute aims to observe switch be-
havior for a particular packet. Our goal is to observe
switch behavior for a particular rule.

Our system is by no means the first to use a SAT
solver – other works [9, 17] demonstrate that checking
network policy compliance is feasible by converting the
problem into a Boolean satisfiability question. Monocle
tries to reduce the size and scope of the problem in order
to achieve much finer timescale.

Finally, many systems place a proxy between the con-
troller and the switches [10,12] to achieve various goals.
We take their presence as an additional confirmation
that such proxies are a viable design.

10. CONCLUSIONS
In this paper we address one of the key issues in ensur-

ing reliability in SDN: checking the correspondence be-
tween the network state that the SDN controller wants
to install, and the actual behavior of the data plane
in the network switches. We present a dynamic, non-
invasive approach that exercises rules in switches to as-

13

certain that they are functioning correctly. In particu-
lar, we show how data plane probe packets should be
constructed in a quick and efficient manner. Our sys-
tem, Monocle, can work on a millisecond timescale to
generate probe packets to check when rules are installed
in the data plane. In steady-state, it can detect misbe-
having rules in switches in a matter of seconds.

11. REFERENCES
[1] PicoSAT. http://fmv.jku.at/picosat.
[2] K. Agarwal, E. Rozner, C. Dixon, and J. Carter.

SDN traceroute: Tracing SDN Forwarding
without Changing Network Behavior. 2014.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine Grained Traffic Engineering for
Data Centers. In CoNEXT, 2011.

[4] D. Challenge. Satisfiability: Suggested Format.
DIMACS Challenge. DIMACS, 1993.

[5] L. De Moura and N. Bjørner. Z3: An efficient
SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems. 2008.

[6] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca,
and S. Krishnamurthi. Participatory Networking:
An API for Application Control of SDNs. In
SIGCOMM, 2013.

[7] V. Ganesh and D. L. Dill. A Decision Procedure
for Bit-Vectors and Arrays. In CAV, 2007.

[8] B. Heller, C. Scott, N. McKeown, S. Scott,
A. Wundsam, H. Zeng, S. Whitlock,
V. Jeyakumar, N. Handigol, J. McCauley,
K. Zarifis, and P. Kazemian. Leveraging SDN
Layering to Systematically Troubleshoot
Networks. In HotSDN, 2014.

[9] K. Jayaraman, N. Bjrner, G. Outhred, and
C. Kaufman. Automated Analysis and Debugging
of Network Connectivity Policies. Technical
Report MSR-TR-2014-102, MSR, 2014.

[10] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking using Header Space Analysis. In
NSDI, 2013.

[11] P. Kazemian, G. Varghese, and N. McKeown.
Header Space Analysis: Static Checking for
Networks. In NSDI, 2012.

[12] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. B. Godfrey. VeriFlow: Verifying Network-Wide
Invariants in Real Time. In NSDI, 2013.

[13] S. Knight, H. Nguyen, N. Falkner, R. Bowden,
and M. Roughan. The Internet Topology Zoo.
Journal on Selected Areas in Communications,
29(9), 2011.

[14] M. Kuźniar, P. Pereš́ıni, and D. Kostić. Providing
Reliable FIB Update Acknowledgments in SDN.
In CoNEXT, 2014.

[15] M. Kuźniar, P. Pereš́ıni, and D. Kostić. Monocle:

Dynamic, Fine-Grained Data Plane Monitoring.
Technical Report 208867, EPFL, 2015.
https://infoscience.epfl.ch/record/208867.

[16] M. Kuźniar, P. Pereš́ıni, and D. Kostić. What
You Need to Know About SDN Flow Tables. In
PAM, 2015.

[17] H. Mai, A. Khurshid, R. Agarwal, M. Caesar,
P. B. Godfrey, and S. T. King. Debugging the
Data Plane with Anteater. In SIGCOMM, 2011.

[18] E. Malaguti and P. Toth. A survey on vertex
coloring problems. International Transactions in
Operational Research, 17(1):1–34, 2010.

[19] M. Reitblatt, N. Foster, J. Rexford,
C. Schlesinger, and D. Walker. Abstractions for
Network Update. In SIGCOMM, 2012.

[20] N. Spring, R. Mahajan, and D. Wetherall.
Measuring ISP Topologies with Rocketfuel. In
SIGCOMM, 2002.

[21] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A.
Maltz. Towards Systematic Design of Enterprise
Networks. In CoNEXT, 2008.

[22] G. Tseitin. On the Complexity of Derivation in
Propositional Calculus. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning,
Symbolic Computation, pages 466–483. Springer
Berlin Heidelberg, 1983.

[23] M. N. Velev. Efficient Translation of Boolean
Formulas to CNF in Formal Verification of
Microprocessors. In Proceedings of the 2004 Asia
and South Pacific Design Automation Conference,
ASP-DAC ’04, pages 310–315, Piscataway, NJ,
USA, 2004. IEEE Press.

[24] H. Zeng, P. Kazemian, G. Varghese, and
N. McKeown. Automatic Test Packet Generation.
In CoNEXT, 2012.

14

http://fmv.jku.at/picosat
https://infoscience.epfl.ch/record/208867

APPENDIX
A. PROBE GENERATION IS NP-HARD

Lemma: Probe-generation is an NP-hard problem.
We prove this by providing a polynomial reduc-

tion from SAT problem, i.e., by producing a probe-
generation problem for a given SAT problem. In partic-
ular, let I be an instance of SAT problem, i.e., I is a for-
mula in conjunctive normal form. Let x1, x2, ..., xn be
variables of I. Our reduction uses exactly n header
fields (or, equivalently, n bits of a header field which can
use an arbitrary wildcard). The reduction is best illus-
trated on an example I = (x1 ∨ x2)∧ (¬x2 ∨ x3)∧¬x3.
We create three high-priority rules, one rule for each
disjunction in I. In particular, i-th disjunction logically
corresponds to Ri by requiring that the disjunction is
true if and only if the probe packet is not matching rule
Ri, i.e., header fields of rule must match bit 0 for each
positive variable, bit 1 for each negative variable and
contain wildcard for each variable not present in the dis-
junction. In our case, R1 := (0, 0, ∗), R2 := (∗, 1, 0) and
R3 := (∗, ∗, 1). Then, we ask for a probe packet match-
ing low-priority all-wildcard rule Rlow := (∗, ∗, ∗) ex-
cluding all higher-priority rules.

Lemma: A probe packet is a valid solution to the
aforementioned probe-generation problem if and only if
values of probe fields interpreted as values of variables
are a valid solution to the original SAT instance I.

We will leave the details of the proof as an exercise for
the reader – the only step required is to recognize that
the conversion from probe-generation to SAT described
in Section 5.3 yields exactly the original SAT problem.

B. ENCODING CONSTRAINTS AS CNF
EXPRESSIONS

In this section we briefly describe how to encode con-
straints into conjunctive normal form (CNF) which is
used as an input to all off-the-shelf SAT solvers.

Definition: A formula is in CNF form if it is a con-
junction of terms where each term is a disjunction of lit-
erals (variables and their negations). An example CNF
is ϕ := x1 ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2).

Let ϕ1, . . . , ϕn be formulas in CNF form. Then, we
can perform following operations and obtain CNF for-
mula as a result
• Conjunction ϕ := ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn: The formula

is already in CNF form (for math purists: we need
to eliminate implicit parentheses around each sub-
formula)

• Disjunction ϕ := ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn: One can re-
peatedly apply distribution theorem (ψ1 ∧ ψ2) ∨
ψ3 ⇔ (ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3) to expand the for-
mula into CNF. However, in general, such expan-
sion may lead to an exponential formula size mak-
ing it impractical. A better approach is to cre-

ate an equisatisfiable formula, i.e., a formula which
is satisfied under given valuation of variables if
and only if the original formula is satisfied. The
idea is to create a new formula by introducing
new fresh variables and is usually referred to as
Tseitin transform [22]. As an example, consider
ϕ := ϕ1 ∨ ϕ2 and a fresh new variable v. We
can write ϕ′ := (v ∨ ϕ1) ∧ (¬v ∨ ϕ2) and observe
that it is satisfied if and only if at least one of
ϕ1 and ϕ2 is satisfied. It should be mentioned
that while it looks that we only swept the prob-
lem of disjunctions one level deeper, disjunctions
v ∨ ϕi with v being a literal can be expanded to
CNF without an exponential blowup. For longer
disjunctions ϕ1 ∨ϕ2 ∨ · · · ∨ϕn, we use an extended
form ϕ′ := (v1 ∨ ϕ1) ∧ (v2 ∨ ϕ2) ∧ · · · ∧ (vn ∨ ϕn) ∧
(¬v1 ∧ ¬v2 ∧ · · · ∧ ¬vn)

• Implication: ϕ := ϕ1 → ϕ2 is equivalent to ¬ϕ1 ∨
ϕ2

• Substitution with variable ϕ := x ↔ ϕ1 is simply
(x→ ϕ1)∧(ϕ1 → x) or using previous point: (¬x∨
ϕ1) ∧ (x ∨ ¬ϕ1)

• Negation ¬ϕ: It turns out that we need to support
only several special cases of negation:

– negation of a literal: ¬(v) = ¬v, ¬(¬v) = v
– negation of a CNF consisting only of single dis-

junction: ϕ := ¬(l1∨l2∨· · ·∨ln) is equivalent to
¬l1 ∧¬l2 ∧ · · · ∧¬ln where l1, . . . , ln are literals

– negation of a CNF where each disjunction is
trivial: ϕ := ¬(l1 ∧ l2 ∧ · · · ∧ ln) is equivalent to
(¬l1 ∨ ¬l2 ∨ ... ∨ ¬ln)

• If-then-else chain substitution

ϕ :=
(
s = if(i1, t1, if(i2, t2, if(. . . , if(in,tn, else)) . . .))

)
First, we substitute all subexpressions as new fresh
variables. Then, we use the following construction
from [23]:

ϕ =
(
¬i1 ∨ ¬t1 ∨ s

)∧
(
¬i1 ∨ t1 ∨ ¬s

)∧
(
i1 ∨ ¬i2 ∨ ¬t2 ∨ s

)∧
(
i1 ∨ ¬i2 ∨ t2 ∨ ¬s

)∧
· · ·
∧

(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ ¬in ∨ ¬tn ∨ s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ ¬in ∨ tn ∨ ¬s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ in ∨ ¬else ∨ s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ in ∨ else ∨ ¬s

)

15

R[i] i-th bit of P matches R iff
0 ¬P [i]
1 P [i]
* True

Table 3: Converting Matches(P,R) to a CNF formula.
Resulting formula is a conjunction of per-bit terms and
is satisfied if and only if P matches R.

R1[i] R2[i] Bit rewrites are different iff
0 0 False
0 1 True
1 0 True
1 1 False
* 0 P [i] (e.g., bit needs to be set to 1)
* 1 ¬P [i] (e.g., bit needs to be set to 0)
0 * P [i]
1 * ¬P [i]
* * False

Table 4: Converting DiffRewrite(P,R1, R2) to a
CNF formula. Resulting formula is a disjunction of per-
bit terms and is satisfied if and only if R1 rewrites at
least one bit of P differently than R2.

Note that the construction is quadratic in size and
therefore very long if-then-else chains should be
split by repeatedly substituting some postfix of the
chain by a fresh variable.

• Predicate Matches(P,R) is simply a conjunction
per-bit terms defined in Table 3. When encoding
into SAT, we perform trivial simplification by ex-
cluding all True terms from the conjunction.

• Predicate DiffOutcome is a disjunction of
DiffRewrite and DiffPorts. Note that truth
value of DiffPorts can be determined in a pre-
processing step and as such we can simplify
DiffOutcome to either True or DiffRewrite.

• Predicate DiffRewrite(P,R1, R2) (which repre-
sents expression rewrite(P,R1) 6= rewrite(P,R2))
is a disjunction (over all bits of P) of expres-
sions from Table 4 (where P [i] represent the vari-
able holding the value of i-th header bit (see
Matches() definition) and R[i] is 0, 1 or * depend-
ing on whether rule R rewrites bit to 0, 1 or it does
not update the bit). Finally, we can perform triv-
ial simplifications on the returned disjunction —
remove all False sub-expressions as well as return
simply True if one of the sub-expressions is True.

16

Acknowledgments
The research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement 259110.

17

	Introduction
	Monocle design
	Steady-state Monitoring
	Basic unicast rules
	Unicast rules with rewrites
	Drop rules
	Multicast / ECMP rules
	Unmonitorable rules

	Monitoring Reconfigurations
	Rule additions, modifications, deletions
	Monitoring multiple rules and updates simultaneously
	Drop-postponing

	Solving constraints and packet crafting
	Abstracting packets
	Creating raw packets
	Solving constraints
	Consider only overlapping rules

	Network-wide monitoring
	Implementation
	Evaluation
	Monocle use cases
	Detecting rule and link failures in steady-state
	Helping controller deal with transient inconsistencies

	Monocle performance
	Overhead
	PacketIn and PacketOut processing overhead
	Number of catching rules required

	Larger networks

	Related work
	Conclusions
	References
	Probe generation is NP-hard
	Encoding constraints as CNF expressions

