Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Providing and Optimizing a Robotic Construction Plan for Rescue Operations
 
conference paper not in proceedings

Providing and Optimizing a Robotic Construction Plan for Rescue Operations

Ardiny, Hadi  
•
Witwicki, Stefan John  
•
Mondada, Francesco  
2015
The 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO 2015)

After a terrible disaster such as an earthquake or a nuclear accident, finding victims and isolating them from hazards are usually the first priorities for rescuers. As the security of rescuers and the stabilization of the environment are critical components of the first rescue phase, we assume that robots could be used to secure the environment by performing construction tasks, to stabilize large structures, and/or protect the victims. In this paper we suggest an approach consisting of using mobile robots to construct protective walls on a site affected by a nuclear disaster. Protective walls can help to block radiation from toxic sources and protect both victims and rescuers. On the other hand, the robot’s vulnerability to radiation restricts its freedom of movements into unsafe regions. Therefore, building protective walls needs a plan (construction plan) that involves three competing objectives: victim safety, rescuer safety, and robot safety. Weighting these factors is a societal choice, is not trivial, and impacts the whole system. In this paper, we provide and optimize the construction plan using a genetic algorithm based on three objectives. We analyze the construction plan performance with respect to execution time. We also analyze the trade-offs involved between these competing objectives in different environments with ranging physical complexity (e.g., a number of victims or sources).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper-arso.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

Copyright

Size

2.87 MB

Format

Adobe PDF

Checksum (MD5)

45a65a0c6a64e78ec06f37b67045cbd9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés