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Abstract—After a terrible disaster such as an earthquake or a
nuclear accident, finding victims and isolating them from hazards
are usually the first priorities for rescuers. As the security of
rescuers and the stabilization of the environment are critical
components of the first rescue phase, we assume that robots could
be used to secure the environment by performing construction
tasks, to stabilize large structures, and/or protect the victims. In
this paper we suggest an approach consisting of using mobile
robots to construct protective walls on a site affected by a
nuclear disaster. Protective walls can help to block radiation
from toxic sources and protect both victims and rescuers. On
the other hand, the robot’s vulnerability to radiation restricts its
freedom of movements into unsafe regions. Therefore, building
protective walls needs a plan (construction plan) that involves
three competing objectives: victim safety, rescuer safety, and robot
safety. Weighting these factors is a societal choice, is not trivial,
and impacts the whole system.

In this paper, we provide and optimize the construction plan
using a genetic algorithm based on three objectives. We analyze
the construction plan performance with respect to execution
time. We also analyze the trade-offs involved between these
competing objectives in different environments with ranging
physical complexity (e.g., a number of victims or sources).

I. INTRODUCTION
A. Motivation

With recent progress in the field of robotics, the potential
for rescue robots to help society is growing. Human operators
can employ rescue robots as assistants in hazardous and
restricted environments to access trapped victims. A terrible
disaster such as an earthquake or a nuclear accident destroys
city infrastructures and potentially hurts a number of people.
The goal of the search and rescue operation is to find and
isolate victims from the hazards in the shortest amount of
time. Obviously, search and rescue operations must avoid
creating additional risks to rescuers and victims (save lives).
For that reason, the rescue team must act quickly and securely
to get information and to save victims within the shortest
time in a potentially vast disaster area. These victims might
be threatened with several kinds of dangers such as falling
walls or exposure to toxic radiation. Accordingly, one of the
rescue services that mobile robots can contribute is to build
particular structures to stabilize the environment, especially
where human operators cannot easily or safely reach.
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The long-term goal of this research is to enable mobile
robots to autonomously secure hazardous environments using
various methods of construction. In this work, an indoor envi-
ronment is assumed to have toxic radiation after a radioactive
disaster, such as a nuclear laboratory incident. The idea is
to decrease victims’ exposure to toxic radiation by building
protective walls in the environment. We aim to identify where
robots can build protective walls efficiently. In fact, we deal
with two questions: where to build walls and in what order to
build. Answering these questions provides a construction plan
which directs robots for an efficient rescue operation. More
specifically, in this work, the construction plan is a 2D map
of protective walls which comprises protective walls shapes,
their positions, and directions.

Radiation can damage tissue and organs depending on the
effective radiation absorbed by the body. Moreover, some elec-
tronic components such as semiconductors are very sensitive
to radiation. Therefore, a construction plan directs robots to
build walls that satisfy the following objectives: victim safety,
rescuer safety, and robot safety. In other words, minimizing
cumulative exposure to radiation for victims, rescuers and
robots is the goal of the construction plan. We thereby frame
the construction planning problem as an optimization of three
competing objectives.

Towards solving this nontrivial optimization, we develop a
genetic algorithm (GA), which is an evolutionary algorithm
based on iterative randomized search. GAs have the potential
to find good approximate solutions for problems which are
not able to be solved with standard optimization methods.
Moreover, they can straightforwardly be applied to problems
in which the objective function is non-differentiable, complex,
discontinue, or highly non-linear. A strength of the GA is
the use of (1) stochastic search to well cover the solution
space, combined with (2) meta-heuristics that focus in on
promising regions of the space. Nevertheless, GAs do not
guarantee that an optimal solution will be found; we may
consider their application as an approximation method. In this
work, we thereby benefit from the GA to characterize our non-
trivial problem and find a solution close to the best one. Our
method can subsequently serve as a benchmark to compare
the performance of other construction plan methods.

Providing and optimizing the construction plan using a GA
will be the first contribution of this research. The second
contribution is to present the trade-offs involved between the
three objectives. We hope that our analysis can inform societal
choices about future adoption and operation of autonomous



mobile robots in rescue scenarios. Finally, we analyze how the
objectives are sensitive to the effects of physical complexity
(e.g., increasing the number of victims or sources).

Section II provides a description of the problem and as-
sumptions. Section III explains our proposed GA in more
detail. In Section IV, we discuss the results. Finally, we
conclude the research and propose future work.

B. Related work

We primarily review studies that develop algorithmic con-
struction plans, although most previous work on autonomous
construction has focused on other aspects. Previous research
on autonomous construction can be classified in terms of
the construction plan as follows: (1) entirely pre-specified
construction plan; (2) simple construction plan (e.g., straight
line) with the influence of environmental features; and (3)
construction plan influenced by environmental features without
any pre-specified shape to satisfy abstract goals.

Some researchers present the construction of specific struc-
tures in which the shape is fully pre-specified and requested by
a user [1]. Werfel [2] has demonstrated a simple simulation
in which a group of robots tries to rearrange blocks into a
2D shape based on a high level geometric shape. This shape
is given by the user and the robots try to build the structure.
Moreover, Werfel et al. [3] present a 3D collective construction
in which the system receives a high-level representation of a
desired structure and translates it into some rules based on
collective robotic behaviors. Similarly, a team of quadrotors
has been controlled to build 3D structures using blocks or
rods based on relatively complicated pre-specified shapes (e.g.,
block tower, truss) [4].

Some construction algorithms take input from both pre-
specified shapes and the influence of environmental features.
Melhuish et al. [5] report a simple 2D wall building by groups
of robots over linear strips pre-placed on the floor. The robots
used linear strips as markers by depositing material at a certain
distance from them. In [6], an organizer robot coordinated the
building activities of robots by generating a light-field pattern
that varied in space and time. This template was employed by
robots to build a loose linear wall according to the light-field
pattern. Soleymani et al. [7] have developed a construction
system in which robots build a protective barrier to fill a
rectangular area.

Conversely, some research presents construction plans that
may not need to be fully specified in advance, so they can
allow a certain amount of dynamic flexibility during the
construction process. Napp and Nagpal [8] propose algorithms
with amorphous materials that enable robots to build arbitrary
shapes. The idea has been described for an adaptive ramp
building by which robots fill a valley and provide access
to other sides. A compilation procedure efficiently encodes
a ramp structure to arbitrary shapes with a relatively small
number of markers. This method allows robots to build ramps
by locally reacting to markers. Werfel et al. [9] have proposed

an adaptive structures algorithm. In this case, no predefined
shape is considered and environmental features (e.g., chemical
spill shape) will determine it. In other words, a team of
robots would be tasked to build a protective barrier around
a hazardous chemical spill with a given thickness. They just
address a shape, although these construction plans are flexible
in construction. In fact, they do not comprise other issues
which can be important in construction for rescue operations
such as order and direction of each structure.

In conclusion, these three classifications span the range from
entirely pre-specified construction plans to those whose shapes
are determined by the influence of environmental features. In
this paper, we address a new construction plan influenced by
environmental features. In addition to shape of construction,
it comprises more information to build the walls to efficiently
reduce cumulative exposure for important elements such as
victim. For instance, the order and the direction of each pro-
tective wall that affects the cumulative exposure to radiation
for the victims are addressed. Moreover, another novelty of this
research is to optimize the construction plan based on multiple
objectives; thus, we also study the trade-offs involved between
the objectives. In the next section, we discuss the objectives
and their roles in more detail.

II. PROBLEM STATEMENT
A. Description

We consider rescuers who want to employ robots for rescue
in an environment which has toxic radiation after a disaster,
such as after a nuclear laboratory incident. The existence
of toxic sources makes the rescue operation dangerous and
restrictive to rescuers. In this situation, a spontaneous rescue
effort might result in compounded problems. Therefore, this
disaster area should be scanned and secured to avoid the
problems associated with an unsafe environment. Robots can
be useful in rescue operations by gathering facts about the
disaster area and then reducing the risks by building protective
walls, thereby blocking radiation from toxic sources for both
victims and rescuers. Building these walls provides safe paths
for victims and rescuers; rescuers can safely access victims to
retrieve them and administer treatment.

According to time limits and safety issues to save lives in
rescue operations, a plan is necessary to direct construction
tasks. We compute a construction plan which directs robots to
build walls that seek to balance three objectives (low radiation
exposure for victims, rescuers and robots). Victims have to
be protected as the first priority because cumulative toxic
radiation exposure can seriously damage tissue and organs.
Rescuers need safe paths to perform rescue tasks, although
providing completely safe paths need more time and robotic
effort. On the other hand, some electronic components such
as semiconductors are very sensitive to radiation and it might
cause the robots’ behaviors to fail. Therefore, the robot safety
objective tries to decrease cumulative radiation exposure on
robots (and hence the robots’ presence) in dangerous regions



for construction. As a result, we deal with competing ob-
jectives and the weights have to be chosen based on the
applications. For instance, if a robot is shielded against the
radiation, or if we make sure the radiation intensity does not
make any trouble for the robot according to the sensitivity test
were performed before its deployment [10], the related weight
could be lower than the others or even set to zero.

In this paper, we seek to compute and optimize the construc-
tion plan based on three competing objectives using the GA.
The encoded map is used by the GA as an input. In Section
III, we describe the proposed GA in more detail.

B. Assumptions

We assume a rectangular flat environment which is sur-
rounded by walls. It may also have internal walls. Victims and
safe regions are randomly placed on the environment for each
experiment. We assume that toxic radiation sources emit rays
from their centres, so they can be seen as points. Furthermore,
they have the same intensity, and emit linear and continuous
rays.

According to the inverse square law for radiation fields, the
radiation dose of a toxic source is inversely proportional to
the square of the distance from the toxic source. As a result,
the radiation dose of each point is given by adding up the
decreased dose of radiation sources[11, 12], as can be seen in

Eq. (1)
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Where

g(x,y) gives the dose of the cell (x,y)

I; is the intensity of the radiation source for the ith source

N, is the number of radiation sources

X,;, Y, is the position of the radiation source for the ith
source

In Eq. 1, we compute cell dosages for each radiation source
that is connected to the cell by an imaginary straight line
without any intersection with walls or obstacles. Victims are
modelled as filled rectangles and they are of the same size
and shape. We suppose the use of a wheeled autonomous
robot which is equipped with a 3-DOF robotic arm and a
gripper. The robot picks up and deposits a block made of a
particular material that blocks the radiation. The doors are
connected to safe regions, as illustrated in Fig. 1. Moreover,
various elements (victim, toxic source, and doors) are scattered
randomly with unknown positions.

The robotic construction tasks consist of four steps: move
towards the safe region, pick up a block from the depot, move
toward the deposition place, and release the block, as shown
in Fig. 1. We assume that robots spend significantly more
time depositing blocks than moving them; thus, we neglect
exposure to radiation for the robot during movement. their
exposure is also zero when the robots pick up the blocks
because depots are placed in safe areas. Therefore, cumulative
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Fig. 1. A schematic of an environment with four robotic activities: 1.
moves toward the safe region; 2. picks up the block; 3. moves toward to
the construction place; 4. deposits the block
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Fig. 2. A representation of an encoded environment which is shown in Fig.
1 as a grid-cell; O shows free cells and 1,2,3, and 4 show occupied cells with
the walls (or obstacles), toxic sources, victims, and doors respectively. We use
the encoded environment for the GA as an input to compute the construction
plan.

robot exposure is calculated based on the depositing block
task.

Without loss of generality, we assume that construction
speed (including all four tasks) is I block per time units (e.g.,
1 block/minute) and rescuer speed is also equal to 1 cell per
time unit (we envision the environment composed of grid-
cells, so the speeds are described based on cells per time unit).
Of course, if we change the construction speed, the range of
exposure for victims and robots will proportionally change.
For instance, the presence of obstacles makes the robot slower
to build the protective walls; in this case the construction speed
should decrease. Similarly, the range of rescue exposure is
proportional to the speed of the rescuer. This means that the
range of rescue exposure will decrease with an increase of
rescuer speed.

Calculating rescuer and robot exposure depends on pre-
specified paths between victims and safe areas. In fact, the
rescuers need a pre-specified path to access victims, so we
need to determine the shortest path between victims and the
nearest safe region. Fortunately, in past decades, many path



finding methods have been developed [13]. Accordingly, we
apply the wave-front path finding method, which is commonly
used in grid maps to find the shortest path.

III. GENETIC ALGORITHM APPROACH

Genetic algorithms (GAs) are global search and optimiza-
tion techniques taking inspiration from evolutionary theory.
We view the GA is also a powerful tool to optimize non-trivial
problems such as we face here. Building on several applica-
tions of GA in the field of robotics (e.g., robot navigation)
[14], we encode the map as a grid whose cells encode certain
features. As depicted in Fig. 2, cells’ values indicate which
elements (wall or obstacle, victim, toxic source, free) occupy
the corresponding cells.

Encoding the protective walls is another issue. Each pro-
tective wall is a segment, which is defined by its start and
end positions. Both the start and end positions are in an
array of integers that make up a chromosome. Inversely, each
chromosome contains genes which are start (xsj ,ys].) and end
positions (xe/. Ye; ). The chromosome k is of the form:

chromosomek = [‘xS] 7yS1 7-x81 ay€| axszaysza-xezayézv
"'7‘xsn7ySn7x€n7yen] (2)

where
ij7ij7xEj;yej S N, VJ S {1,,}’1}

The chromosome k consists of n genes, while each segment
(or protective wall) has been defined by four genes of this
chromosome.

After each evaluation, the GA removes the worst solutions,
and in place of these, breeds new ones from the best design
solutions. Each new solution must be evaluated by a fitness
function to indicate rank of each solution is (solutions are
sorted from best to worst). A fitness function generates a
fitness value from the corresponding chromosome. The fitness
function which comprises the three discussed objectives is
defined as:

fitness = (1+w) X VE +wy X RE
+w3 X RESE)™! (3)

(wi+wr+w3=1)

where:

o (w1,w2,w3) are corresponding weights,

o VE is the cumulative dose of radiation (e.g., Gray' units)

absorbed by victims during the whole process,

¢ RE is the that absorbed by robots during construction,

e RESE is that absorbed by rescuers.
Eq. (1) gives the exposure rate (Gy/time units) for each
position, and the integral of exposure rates over time are
cumulative exposure of elements (VE, RE, RESE). Moreover,

IThe gray (Gy) is defined as the absorption of one joule of radiation
energy by one kilogram of matter in SI

the exposure terms in the fitness function are inversely propor-
tional to the discussed objectives; for example, victim safety
objective is equal to victim_exposure™".

The genetic operations are as follows: algorithm selection,
crossover, and mutation. In algorithm selection, the solutions
(population) are ranked from highest fitness to lowest fit-
ness. Then, only a fraction of the population is selected to
survive, while the rest are removed. In the next step, we
assign probability for every chromosome to breed the next
generation according to a certain probability. The probability
assigned to a chromosome is proportional to its fitness. By
the crossover operator, two chromosomes are selected from
survival chromosomes to produce two new offspring based on
a random crossover point. By mutation operators, we replace
a certain percentage of the genes (integer numbers) in the list
of chromosome with new random integer numbers.

A GA maintains a population of candidate solutions. The
initial population is generated at random. The length of the
chromosome is assumed to be variable. The initial number of
genes is eight times greater than the number of toxic sources,
because in a worst-case scenario of the possible configuration
of elements on the environment, the toxic sources can be
isolated by a near shape with four lines (e.g., a square shape).
A termination condition stops the GA when the number of
generations reaches a threshold.

IV. EXPERIMENTAL RESULTS
A. Performance of GA for selected weights

Before starting the primary experiments, we studied the per-
formance of the GA. We assumed an environment with a fixed
arrangement of elements and repeated trials 10 times for each
point illustrated in Fig. 3. As described by Eq. (3), the fitness
function consists of three terms and corresponding weights.
By changing weights, we can manipulate the fitness function
to direct the construction plan to satisfy the objectives. For
instance, point P in Fig. 3 shows 0.25, 0.5, and 0.25 for wy,
wo, and ws, respectively. The results for performance of the
GA with a fixed arrangement of elements shows that the GA
converges to almost the same fitness value for each point (the
average relative deviation from the mean for fitness value is
equal to 5%).

We considered a type of environment after a disaster with
two different configurations of elements on the environment:
the first one is an environment with a victim, a toxic source,
and two doors as a simple environment (Fig. 4a); second one is
an environment with two victims, two radiation sources, and
two doors as a complex environment (Fig. 4b). Our results
thereby focus on only a small subset of scenarios so as to
enable a rigorous and systematic evaluation across several key
parameters.

Ten trials were carried out for each point illustrated in Fig.
3, while elements were scattered randomly in each trial. We
demonstrate the detailed results of one selected trial with the
following weights: w; = 0.3,w, = 0.35,w3 = 0.35. In Fig. 4
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Fig. 3. Weight balancing triangle; the blue points reflect used weights for the
experiments, point P shows a sample for the corresponding weights of each
point. For instance, point P shows 0.25, 0.5, and 0.25 for wy, wy, and wa,
respectively.

we show two construction plans from the GA. The protective
walls are shown in green in the environment. The paths,
sources, victims and entry doors to the safe area (or depot) are
illustrated by blue, yellow, red, and brown, respectively. For
this sample, the protective walls don’t completely protect the
path. If a construction plan considers longer walls, cumulative
robot exposure will increase while victims are completely
protected. This confirms that the two objectives are competing.

Fig. 5a illustrates the performance of the GA for the
construction plan. It shows that the proposed GA quickly
reaches a steady fitness.

The graph which is shown in Fig. 5b depicts the exposure to
radiation for victims versus time in the simple and complex en-
vironments. It starts when robots deposit the first block. As can
be seen, the construction plan tries to decrease the cumulative
exposure of the victims (integral of victims exposure graph)
quickly. Because the victims are exposed to radiation, the
robots must try to protect them quickly. Otherwise, cumulative
exposure will increase if the robots act slowly or perform un-
necessary tasks. Also, a comparison of the two configurations
(simple, complex) shows that cumulative exposure tends to
increase with an increase in the complexity. The graph shown
in Fig. 5c illustrates the exposure to radiation for robots versus
the time when robots start to build protective walls. It shows
that the radiation exposure of robots declines versus time
because constructed protective walls prevent further exposure.
On the other hand, these graphs are not smooth because
robots deposit blocks in several places with differing radiation
intensity. As a result, a construction plan tends to decrease
both victim exposure and robot exposure.

Fig. 6 shows that the execution time of the GA raises with
the complexity. We increase complexity by the number of
victims and sources at the same environment with random
arrangement of the elements. The execution time also depends

- Source jDoor [l Victim i Path [ Pfﬂm‘fe

(a) Dangerous environment with a victim and a toxic source
(simple environment)

* Source [ Door [l Victim [Jjj Path

] Protective
Wall

(b) Dangerous environment with two victims and two toxic
sources (complex environment)

Fig. 4. Two construction plans (wall shape shown) computed by the GA;
the green color depicts protective walls, the blue, yellow, red, and brown
colors depict the paths, toxic sources, victims, and entry door to the safe
areas, respectively. We predetermine shortest paths between doors and victims
because the construction plan is made based on these paths.

on the environment’s dimensions.2

B. Objectives trade-off

In this section, we study the trade-offs involved between
competing objectives (victim safety, robot safety, and rescuer
safety). As described by Eq. (3), the fitness function consists of
three terms and corresponding weights. By changing weights,
we can manipulate the fitness function to direct the construc-
tion plan to satisfy the objectives. For instance, point P in Fig.
3 shows 0.25, 0.5, and 0.25 for wy, wo, and w3, respectively,
so this construction plan intends to keep robots safer rather
than victims and rescuers.

Therefore, the trade-off of objectives is done by changing
the corresponding weights. To represent objectives’ trade-off,
we create a particular triangle to plot all possible weights.
Each point inside of this triangle gives us the value of the
corresponding weights. Each edge represents a systematic
variation of the weight between 0 and 1. It is divided into 20

2 A real-world disaster environment could be substantially larger than that
used in our experiments, and evaluating the efficiency of construction planning
in such environments is a topic of future work.
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sections, and then this triangle provides 231 points of possible
weights, as can be seen in Fig. 3.

The result of weight balancing is shown in Fig. 7. For
each point, the trials were carried out 10 times with a ran-
dom arrangement of the elements (victims, doors, sources).
Likewise, we assume two configurations, simple (one victim,
two doors, one toxic source) and complex (two victims, two
doors, two toxic sources). The graphs show the average values
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Fig. 6. The execution time of the GA versus the complexity. V and S indicate
the number of victims and sources respectively.
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of 10 trials for each point. Victim, robot and rescuer exposure
are cumulative exposure values.

The results report that victim exposure is more robust to
variations in the weight, except when the related weight is
close to zero. In contrast, rescuer exposure is more sensitive at
lower values of rescuer weight because most protective walls
are devoted to covering the linking paths.

Moreover, rescue exposure does not have a uniform dis-
persion. For instance, as you can see in the average rescue
exposure for the complex configuration in Fig. 7-C2, if the
rescue weight equals 0.2 and we decrease the robot weight
(or increase victim weight), the rescuer exposure decreases.
In other words, robots have to limit their presence in the
environment; thus, they decrease the building of protective
walls. This means that these objectives are correlated.

Furthermore, a comparison of simple and complex con-
figurations shows that exposure dispersion patterns stay the
same. It is an interesting point because we can potentially
define a particular region inside of the triangle to guarantee
the performance of the construction plan. The same imaginary
area is assumed inside the victim, rescuer, and robot exposures.
We call this a reliable area which provides users with a set
of reliable weights. These weights should guarantee a reliable
construction plan, while the three exposure values are less than
20 percent of the maximum value. Therefore, the reliable area
would keep its boundary versus increasing complexity because
the exposure dispersion patterns stay the same.

The values of the same point inside of the corresponding
triangles are not constant versus increasing complexity. The
range value of victim exposure has grown tremendously.
Maximum victim exposure increased seven times, while the
number of victims and number of sources have been multiplied
by two. However, maximum robot exposure was multiplied by
4 and maximum rescuer exposure increased twice in respect
to increasing complexity.
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In addition to the victims, doors, and rescuers exposures, the
protective wall lengths are shown in Fig. 7-D. The duration of
construction is a vital factor for the rescue operation because
victims have to be accessible in a short time by rescuer. We
assumed a constant speed of construction; therefore, the time
of construction is proportional to the protective wall lengths.
Fig. 7-D shows the total protective wall lengths. Its dispersion
pattern has been changed by increasing complexity. We also
expect that the growth rate of the walls is equal to four since
we increase the complexity, but the result demonstrates that
it increases less than twice. This shows that there is some
overlap between the protective walls, so some parts of the
protective walls are able to secure more of the environment
than we expected.

V. CONCLUSION

In this paper, we present a method to compute a construction
plan for mobile robots that would perform construction of
protective walls in a nuclear disaster scenario. This con-
struction plan takes into account three competing objectives:
victim safety, robot safety, and rescuer safety. By studying
the trade-offs between these objectives, we have shown the
impact of the chosen weighting approach, highlighting for
instance some correlations between victim and robot safety.
We also determined a set of weights ensuring 80 percent
for all three objectives. The experiments presented in this
paper demonstrate that this set of weights is not impacted
by a small variation of complexity. Finally, we analyzed the
impact of complexity (e.g., the number of victims or sources)
on the objectives, showing that rescue exposure is the first
and most significantly affected factor when the complexity
increases. According to time limits and safety issues to save
lives in disaster areas, we hope that this research opens new
approaches to enable rescue teams for faster and safer rescue
operations.

In future work, we would like to move to the execution
of these plans on simulated and real robots (a topic we have
already begun to investigate [15]). In addition, we are looking
for less time consuming methods, in respect to GAs, for the
creation of the construction plan.
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