
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. O. Martin, président du jury
Prof. J.-E. Moser, directeur de thèse

Prof. F. Nüesch, rapporteur 
Prof. C. Silva, rapporteur 

Prof. E. Vauthey, rapporteur 

Ultrafast dynamics of photoinduced charge separation in 
cyanine- and polymer-based organic photovoltaic systems

THÈSE NO 6627 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 JUIN 2015

 À LA FACULTÉ DES SCIENCES DE BASE
GROUPE DE DYNAMIQUE PHOTOCHIMIQUE
PROGRAMME DOCTORAL EN PHOTONIQUE 

Suisse
2015

PAR

Jelissa RISSE (née DE JONGHE)



1 

Abstract 
 

Organic photovoltaics (OPV) have the potential to provide low-cost solar-to-

electricity converting devices. Improving such devices requires a deeper 

understanding of the ultrafast photoinduced processes occurring after light 

absorption. We have performed femtosecond (fs) transient absorption 

spectroscopy, as well as time-resolved electroabsorption (Stark effect) on model 

OPV systems to follow electron and hole transfer dynamics, as well as charge 

carrier motion in the active layer to the electrodes.  

Solid-state cyanine borate (Cy3-B) films undergo intra-ion pair reductive 

quenching on the picosecond (ps) timescale. We have found that when 

intermixing Cy3-B with a fullerene acceptor (PCBM), photoexcitation leads to 

the appearance of oxidized Cy3 in less than 70 fs. We correlated the rate and 

yield of Cy3 oxidation to the PCBM loading. We then investigated a cyanine 

Cy3-P in a bilayer geometry with fullerene C60. In this case, ultrafast electron 

transfer in less than 100 fs is followed by slower dissociation of interfacial charge 

transfer states in the presence of an electric field. A photoinduced Stark effect 

observed in neat C60 enabled to identify an initially delocalized excited state, 

which localizes in 360 fs. Lastly, we analyzed how microstructural changes in 

polymer pBTTT:PCBM blends impact free charge carrier formation and motion. 

We identified that the intermixed phase efficiently produces charge carriers 

within 100 fs, and that pure fullerene and pBTTT domains attract the charge 

carriers separating them further apart. This is ascribed to an energy cascade 

toward the neat domains.  

This thesis reveals ultrafast charge transfer at donor-acceptor interfaces in such 

OPV systems by means of fs transient absorption spectroscopy. Results 

emphasize that a second step is needed for charge separation in order to 

successfully compete with charge pair recombination in these systems. An 
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electric field applied can act as a driving force to dissociate interfacial charge 

transfer states. Pure donor or acceptor domains attract holes or electrons, 

respectively, and reduce geminate charge recombination in blends. These second 

steps in charge separation were derived from photoinduced electroabsorption 

dynamics in transient absorption measurements, as well as time-resolved 

electroabsorption based on the Stark effect. 

 

Key-words: Organic semiconductor, cyanine, fullerene, pBTTT, charge transfer, 

transient absorption spectroscopy, electroabsorption, Stark effect. 
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Résumé 
 

Les systèmes photovoltaïques basés sur des semi-conducteurs organiques ont le 

potentiel de produire de l’électricité à bas coût. Afin d’améliorer cette 

technologie, l’étude des processus photoinduits ultrarapides après absorption de 

lumière est fondamentale. Nous avons entrepris des mesures d’absorption 

transitoire femtoseconde (fs) ainsi que d’éléctroabsorption résolue en temps (effet 

Stark) sur des systèmes photovoltaïques organiques modèles afin d’observer la 

dynamique du transfert d’électron et de trou, ainsi que le déplacement des 

charges au travers de la couche active jusqu’à l’électrode.  

Dans les couches solides de cyanine borate (Cy3-B) nous observons un 

quenching réductif dans la paire d’ions en quelques picosecondes (ps). En 

introduisant un accepteur d’électron, le fullerene PCBM, nous avons pu observer 

l’oxydation de la cyanine en moins de 70 fs. Nous avons corrélé le taux et le 

rendement d’oxydation à la concentration de PCBM. Nous nous sommes 

ensuite intéressés à la bicouche de cyanine Cy3-P avec le fullerene C60. Nous 

avons observé un transfert d’électron ultrarapide (<100 fs) suivi d’une 

dissociation lente des états de transferts de charge à l’interface en la présence 

d’un champ électrique. Un effet Stark photoinduit dans une couche de C60 pur a 

permis de déterminer un état excité initialement délocalisé qui se localise en 

360 ps. Finalement, nous avons analysé comment des changements de 

microstructure dans des mélanges de polymère pBTTT :PCBM affectent la 

formation de charges libres et leur déplacement. Nous avons identifié que les 

domaines intimement mélangés produisent des charges en moins de 100 fs, et 

que des domaines purs de fullerene et de pBTTT attirent et séparent les paires de 

charges géminées. Nous attribuons cet effet à une cascade énergétique vers les 

domaines purs.  

Ce travail de thèse révèle des transferts de charge ultrarapide à l’interface de 

donneurs et accepteurs dans de tels systèmes grâce à des mesures d’absorption 
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transitoire femtoseconde. Nous avons également identifié qu’une deuxième 

étape était nécessaire à la séparation de charges afin de rivaliser avec leur 

recombinaison. Une force motrice pour dissocier des états de transfert de charge 

à l’interface est par exemple un champ électrique appliqué. Des domaines purs 

de donneur ou d’accepteur d’électron dans des mélanges  (blends) attirent les 

trous et électrons, respectivement. Ils réduisent également la recombinaison 

géminale de paires électron-trou. Ces différentes forces motrices nécessaires à la 

dissociation de charges ont été révélées en suivant l’éléctroabsorption 

photoinduite dans les mesures d’absorption transitoire, ainsi que par des mesures 

d’éléctroabsorption résolue en temps (effet Stark). 

 

Mots-clés: Semi-conducteur organique, cyanine, fullerene, pBTTT, transfert de 

charge, absorption transitoire, electroabsorption, effet Stark. 
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1.1 Introduction 

 

 In 2015, no one can ignore the dramatic impacts on the environment and 

more globally life on earth caused by the use of non-renewable energy sources. 

Depletion of fossil fuels, natural gas and coal by industrial and developing 

countries is another evidence of the need for alternative renewable energy 

sources, which have luckily grown in interest and applicability over the past 

years. From a more political point of view, Switzerland chose to abolish nuclear 

energy by 2034 after the earthquake and subsequent nuclear incident at 

Fukushima, Japan in 2011. In Switzerland in 2013, 40 % of the energy 

consumption was provided by nuclear reactors. This non-renewable energy 

source is complemented by hydroelectricity to provide the 60 TWh needed. The 

latter is, however, almost at its full capacity, therefore solutions are required 

toward other renewable energies. One of them is photovoltaics, and has by far 

the largest potential to produce electricity. As a matter of fact, production costs 

can be kept low and incoming energy does not require extreme geographic 

location.1 Integrating photovoltaic (PV) panels in existing urban infrastructure is 

a major advantage of this technology over other renewable energies such as wind 

and hydroelectricity, which often have side effects on natural ecosystems.2  

The intriguing label “photovoltaics” actually covers intense activity from a very 

broad scientific community. The variety of photovoltaic devices offers multiple 

applications, suitable to large areas as well as semi-transparent windows or even 

flexible coatings on backpacks. While the former is based on inorganic materials 

such as silicon, the latter are designed from dyes and organic semiconductor 

materials, which are conjugated dye molecules and polymers. Those 

photovoltaic devices can again be split into two categories: either fully organic 

(OPV), or hybrid in dye-sensitized solar cells (DSSC).  

A large panel of organic optoelectronic materials have been designed for diverse 

functions: OPV, organic light emitting diodes (OLED), and organic field effect 

transistors (OFET). In addition to their multiple applications, they are low-cost 
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solutions and offer better recycling possibilities than the inorganic devices. As a 

comparison, very little material is needed for OPV devices, about 1g/m2, 

whereas silicon panels require in the order of 200g/m2. Fabrication procedures 

such as inkjet printing, and abundance of raw material, further makes OPV 

devices competitive. However, efficiency and stability issues still have room for 

improvement. State of the art organic photovoltaic devices have reached beyond 

11 % efficiency but they still lag silicon PV pushing fast forward with 25 % 

efficiency.3 Understanding the operating principles in organic photovoltaic 

devices is crucial for their optimization. Investigating the processes by which 

light is converted into electricity is challenging. Our aim is to identify and 

understand these steps in order to provide guidance for material engineering. Let 

us start from the beginning: what is an OPV device made from?  

 

1.2 Photochemistry basics 

 

The following section is based on several reviews and books, a PhD thesis 

as well as two courses: Photochemistry from Prof. J.-E. Moser and Organic 

semiconductors from Prof. F. Nüesch.1,4-10 

 

 What characterizes an organic semiconductor? 1.2.1

 

Organic materials are by definition metal-free. Carbon, a widely 

abundant material, is the basis of organic semiconductors. To understand where 

the electronic conducting properties come from, we need to look at the electronic 

scale of carbon atoms and see what makes electrons mobile. 

Carbon molecular orbitals can hybridize to three sp2 and one pz orbital. When 

bringing two carbon atoms close together, sp2 orbitals of different carbon atoms 

will overlap and create σ and σ* molecular orbitals. These create the structure of 

the C-C bond, therefore the backbone of the molecule. Now the pz orbitals will 

also overlap in another plane, creating π and π* molecular orbitals. The energy 
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gap between π and π* orbitals is the smallest available in the system, which is 

relevant for photochemistry. Indeed, the π orbital has two electrons and is the 

highest occupied molecular orbital (HOMO). π* does not contain electrons in 

the “relaxed” state, thus corresponding to the lowest unoccupied molecular 

orbital (LUMO). π electrons are responsible for a double bond between 

neighboring C atoms. They are delocalized, as they are shared on both carbon 

atoms. The length of the double C=C bond is reduced compared to the single C-

C bond. Alternation of single and double bonds when adding up several carbons 

leads to a delocalized system, which is at the origin of the semiconducting 

properties.6 We can relate the HOMO level to the valence band of a 

semiconductor, and the LUMO level to the conduction band. The HOMO-

LUMO energy difference is called band gap, and the conjugation length 

determines the band gap energy and thus the photon absorption.  

Organic semiconductors have a rather narrow absorption range compared to 

inorganic semiconductors. This is compensated by larger extinction coefficients, 

enabling the use of thin films on the nanometer size.  

The material can be molecular, or a repetition of the monomeric building-block: 

a polymer. A. Heeger, A. McDiarmid, H. Shirakawa (Nobel Prize in Chemistry, 

2000) and coworkers discovered that doped polymers with a fully conjugated 

backbone could separate and transport electrons and holes, with relatively high 

carrier mobility.11 Since then, interest has grown for the potentially cheap 

organic semiconductors to replace comparably more expensive silicon solar 

photovoltaics. We will now overview the steps from photon absorption to charge 

formation in an organic semiconductor.  

 

 Transitions in organic semiconductors 1.2.2

 

Upon light absorption in organic semiconductors, deactivation transitions 

occur on a range of timescales to finally recover the ground state, as summarized 

in the Jablonski diagram in Figure 1.1. When a photon triggers the HOMO-
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LUMO transition, an electron is placed in a higher electronic state for example 

S1: an excited state. This upper transition only occurs if it is allowed, and if the 

photon energy is larger or equal to the band gap. The Franck-Condon principle 

dictates the process of light absorption and states that the transition is vertical. A 

hot excited state can be generated if the photon energy is larger than the band 

gap, resulting in a high vibrational excited state. Vibrational relaxation (VR) to 

the lowest (relaxed) excited state occurs on a picosecond timescale (ps). 

Following Kasha’s rule, radiative transition back to the ground state occurs 

mostly from the lowest excited state with same multiplicity. Fluorescence 

(radiative transition) occurs typically on a nanosecond timescale (ns). Non-

radiative transitions such as internal conversion (IC) also lead to deactivation to 

the ground state. Intersystem crossing (ISC) by spin flip to the triplet state occurs 

on delayed time scales, and radiative decay from the triplet state, called 

Figure 1.1 Jablonski diagram 

Light absorption (within 10-16 s) creates an excited state. Vibrational relaxation to the lowest 
excited state occurs for high vibrationnally excited state by release of excess energy (VR, 10-12 s ). 
Following Kasha’s rule, only the lowest excited state will undergo radiative decay via 
fluorescence (10-9 s). Intersystem crossing (ISC) from singlet to triplet is a spin flip process (10-9 - 
10-6 s). Radiative decay from the triplet state is called phosphorescence (10-4 - 102 s). Internal 
conversion (IC) to the ground state is a non-radiative deactivation pathway. Sn depicts higher 
electronic states. 
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phosphorescence, typically spans over slower timescales.  

 

 Photoinduced electron transfer 1.2.3

 

 Photovoltaic semiconductors must achieve two roles: light harvesting and 

charge transport. In opposition to free charge carrier generation resulting from 

light absorption in inorganic semiconductors, light absorption in organic 

semiconductors produces a neutral excited state. This is due to the small 

dielectric constant typical of organic semiconductors (ε ≈ 3-4), resulting in 

coulombic attraction between the electron and the hole (empty electronic state in 

the HOMO/valence band) due to the lack of charge screening. This neutral 

excited state, called exciton, located on one molecule will undergo radiative or 

non-radiative decay as discussed in the previous section. To favor a proper 

charge separation and counteract excited state (exciton) binding energy, a 

donor/acceptor (D/A) interface was first introduced by Tang in 1986.12 The 

different position of HOMO and LUMO energy levels of those two materials 

now gives a driving force for the electron in the excited state to transfer to a 

lower LUMO level. Such a heterojunction is illustrated in Figure 1.2. A 

prerequisite for this process is that exciton diffusion to the interface takes place 

before it decays back to the ground state. Random exciton diffusion through the 

active layer is usually described by Förster energy transfer that typically lowers 

the excited state energy. Trap sites generated by defects or aggregates will lead to 

deactivation to the ground state. Too thick layers also prevent energy transfer to 

the D/A interface due to short excited state lifetime. Depending on the light 

absorption site, electron injection into the acceptor can occur from both hot and 

cold (relaxed) excited states. Excited state diffusion is thus tightly correlated to 

the microstructure, and we will see in more details how this has been improved 

toward more efficient charge photogeneration in section 1.3.1. 
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Electron transfer after donor excitation (eq. 1.1), and similarly hole transfer after 

acceptor excitation (eq. 1.2), form an interfacial electron-hole-pair 
 

D+ ⋅⋅⋅A−⎡⎣ ⎤⎦  as 

described by the following equations: 

 

  
D + A→

hυ

D∗+ A
kET

D+ ⋅⋅⋅A−⎡⎣ ⎤⎦
CS

D++ A−  (1.1) 

  
D + A→

hυ

D + A∗
kHT

D+ ⋅⋅⋅A−⎡⎣ ⎤⎦
CS

D++ A−  (1.2) 

The interfacial electron-hole pair is geminate and bound, and further separates 

into free charges. This geminate electron-hole pair is called an interfacial charge 

transfer (CT) state, and can recombine (geminate recombination, gCR) back to 

the ground state. This recombination is represented in Figure 1.2 by the second 

dotted arrow. Free charge carrier recombination after charge separation (CS) can 

also occur.  

 

Figure 1.2 Scheme of an organic photovoltaic (OPV) device (right): electron donor D and 
acceptor A layers sandwiched between two electrodes. Aluminium (Al) and Indium tin oxide 
(ITO) electrodes collect electrons and holes, respectively. On the left, an energy level diagram for 
a D/A interface in open circuit conditions. Green and blue arrows stand for transitions leading to 
electron and hole transfer, respectively. 1) light absorption, 2) exciton diffusion, 3) electron or 
hole transfer, 4) charge separation and transport to the electrodes (red arrows). Dotted arrows 
from left to right indicate exciton and charge recombination, respectively. 
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From equation 1.2, we see that the acceptor can also absorb light and enhance 

charge generation yield by hole transfer (Figure 1.2). Having donor and acceptor 

materials of different band gaps increases light harvesting. Typically, conjugated 

polymers or molecules are used as electron donors and light absorbers, electron 

acceptor being commonly a fullerene derivative. The different materials and 

components will be further described in section 1.3. 

 

  Terms and definitions 1.2.4

 

 Numerous terms describing photoinduced reactions in organic 

semiconductors flourish in the literature. To briefly restate the nomenclature, 

here is a concise description: 

• Excited state is the result of light absorption in a pure (pristine) organic 

semiconductor. This is also called an exciton. Two types of excitons can 

occur. The first one is intramolecular, localized on one molecule and 

called Frenkel exciton. The second type of exciton is intermolecular, 

where the distance between the electron in the excited state and its 

ground state (where now a hole remains) is larger than the Frenkel 

exciton. This delocalized excited state can only exist if the neighboring 

(similar) molecules have degenerate excited state energy levels. This state 

is thus accessible only in pure materials. Delocalization implies long-

range charge separation, which is also called a delocalized charge transfer 

state. It displays a static electrical dipole, which can be observed by Stark 

spectroscopy. This delocalized excited state can localize back on one 

molecule to the Frenkel exciton, or definitely separate into free charge 

carriers. 

 Finally, the Wannier-Mott exciton found in band semiconductors is a 

 completely delocalized exciton, which can be modeled as a hydrogenlike 

 system. These excitons typically exist in inorganic semiconductors.  
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• The product of electron/hole transfer (equations 1.1 and 1.2) can be an 

interfacial bound charge transfer state, or directly free charge carriers. We 

call the CT state interfacial to differentiate it from the delocalized excited 

(or CT) state. This is similar to a geminate electron-hole pair. 

• At first, the excited state (similarly the CT state) may be high in 

vibrational energy: hot state. Cooling down of this hot state by vibrational 

relaxation leads to a relaxed state, or cold state. We will further call the 

low lying states relaxed states. A relaxed CT state is also sometimes 

called charge transfer exciton.  

• Free charge carriers (as opposed to bound pairs, or CT states) have 

successfully dissociated from Coulombic attraction and are further 

spatially separated. These species are called free electrons and holes in 

organic semiconductors. Chemically, these are reduced and oxidized 

states.  

• A polaron is a charge carrier associated with the conformational change 

of the lattice, which shows vibrational signatures and can be Raman 

active. Although widely used in the scientific community, we will not use 

this term in this thesis, as the spectroscopic techniques involved in this 

work do not probe lattice interactions. Nevertheless, broad photoinduced 

signatures in transient absorption spectra are polaronic signatures.  

 

With this review of photoinduced processes occurring in OPV devices, we will 

take a deeper look at the type of materials used. 
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1.3 On the way to high efficiency 

 

 Tremendous efforts over the last years have demonstrated a steep rise in 

power conversion efficiency of OPV devices. This section summarizes the 

history of OPV, from the first discoveries of organic photovoltaics to current 

state of the art.  

 

1.3.1 A little bit of history 

 

 As we have already seen, the photoexcitation of organic semiconducting 

materials leads to a neutral excited state (exciton), and not directly to free charge 

carriers as opposed to inorganic semiconductors. The exciton binding energy is 

about 200-400 meV, much larger than kT (25 meV) or exciton binding energy in 

silicon inorganic semiconductor (14 meV).4 The built-in field resulting from the 

different potential of the metallic electrodes is a driving force that pulls the 

electron-hole pair further apart. This force depends on the active layer thickness, 

and therefore usually thin films of less than 100 nm are used.13 However, if the 

active layer consists of a single pure organic semiconducting material, a Schottky 

barrier forms at the metallic electrode which leads to low device performances.14 

A major breakthrough was introduced by Tang in 1986, where two organic 

semiconducting materials were deposited in a bilayer configuration between two 

electrodes to yield 1% power conversion efficiency.12 One material was p-type, 

conducting holes (phtalocyanine) whereas the other was n-type transporting 

electrons (perylene). The geometrical separation of electron and hole 

transporting materials enabled to avoid charge recombination impeding losses. 

Fullerene C60 was used as an electron acceptor for the first time in 1992 and 

evidenced ultrafast photoinduced electron transfer from polymer 

photoexcitation.15 For this reason and combined with its high electron mobility it 

is still used in state of the art devices today. Small exciton diffusion lengths on 

the order of 10-15 nm still hindered charge injection at the interface of bilayers. 
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Using bulk heterojunctions (BHJ) has solved this drawback, where both n- and 

p- type materials intermix on the nanometer scale, substantially increasing the 

D/A interface area.16 This microstructure favors charge generation, but can 

affect charge carrier mobility due to poor percolation pathways to the electrodes. 

Today, improvements are directed toward a microstructural control in order to 

efficiently generate free charges, as well as transport them to the electrodes. 

Recent developments have shown up to 11% efficiency for polymer solar cells, 

and up to 9% for small molecule solar cells in 2015.3,17  

  

1.3.2 Polymer-based organic photovoltaics 

 

 Polymer:fullerene blends offer the best power conversion efficiency 

amongst the organic photovoltaic devices, up to 11%.3 Polymers used are for 

example based on polyphenylenevinylene (PPV), polythiophene or 

polyfluorene.18 Besides organic photovoltaics, they are also used in OLED and 

OFET. Control of the molecular weight and polydispersity is a crucial factor 

compared to small molecules.8 Interpenetrated networks of donor and acceptor 

in BHJ blends have recently revealed to be quite complex.19 Indeed, the 

microstructure on the nanoscale is far from being understood and, as it governs 

charge photogeneration and transport, efforts are directed toward control of 

polymer:fullerene intercalation. Multiple studies have investigated the processing 

methods that influence microstructure, and enabled higher device 

performances.20,21 Fatty acid methyl ester compounds and diiodooctane are used 

as additives during the blend layer deposition in order to yield not only pure 

domains but also more intimately mixed polymer:fullerene domains.21-24 This 

intercalated region is responsible for ultrafast charge generation in poly(2,5-bis(3-

alkyl-thiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT):fullerene blends, and pure 

domains offer good percolation pathways for extracting charge carriers.25 This 

model system is suitable for the in-depth study of the first steps following light 

absorption, which is presented in Chapter 5. 
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1.3.3 Small-molecule organic photovoltaics: cyanine-case 

 

 Molecular semiconductors such as dyes and pigments are widely used in 

inks and photography, to only name a few. Compared to polymers, small 

molecules offer a large panel of advantages like ease of synthesis, monodisperse 

behavior as well as high purity.26-28 Amongst them, we can cite oligothiophenes, 

fullerenes, acenes, diketopyrrolopyrroles, and push-pull chromophores such as 

cyanines.28 Power conversion efficiencies have reached beyond 9% for single 

junction solar cells based on thiophene units.17,29,30 Although these reports are 

based on bulk heterojunction blends, bilayer heterojunction are rather common 

for small molecule PV due to processing methods. Indeed, vacuum processing of 

small molecules is relatively easy and allows for accurate control of the 

microstructure.31 Tandem cells of vacuum deposited small molecules have 

reached 12% and are commercially available at Heliatek (www.heliatek.com). 

Solar cells built from cyanine dye and fullerene electron acceptor are particularly 

interesting. Indeed, spontaneous phase de-mixing in blends of the two materials 

forms bulk heterojunctions characterized by a rich variety of phase 

morphologies.32 On the other hand, bilayer solar cells based on the cyanine dye 

Cy3 (1,1’-diethyl-3,3,3’,3’-tetramethylcarbocyanine) in particular, have shown 

competitive photovoltaic power conversion efficiency, reaching 3.7%.26,33-37  

Cyanines are positively charged polymethine dyes and are paired with a 

negatively charged counter-ion. The type of counter-anion dictates the 

photoinduced reactions.38 In this work, intra ion-pair reductive quenching is 

addressed for the specific case of a cyanine dye with borate counter-anion in 

Chapter 3.  

Cyanine absorption spectrum can be tuned from the ultra-violet to the near-

infrared, by increasing the number of double bonds. This provides not only the 

possibility for almost transparent devices, but also mixtures of different cyanine 

dyes for better solar harvesting efficiency.38,39 Their high extinction coefficient (as 

an example, Cy3-C is characterized by ε (sol, 553 nm) = 140 000 L/mol ⋅ cm) 
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enables the use of thin active layers, minimizing the drawback related to short 

exciton diffusion length.40 The solubility of cyanine dyes in various organic 

solvents renders them solution-processable and applicable for low-cost solar 

cells.34 

Fullerene C60 and its derivatives are widely used in OPV devices as electron 

acceptors.41 This class of materials shows high electron mobility combined with 

relatively easy processing methods.42  

Cyanine/fullerene bilayers (planar heterojunction) reveal a well defined 

donor/acceptor interface, which is of great interest for the study of charge 

transfer processes.43 The use of thin active layers is however crucial for efficient 

exciton diffusion toward the interface, much more than in bulk heterojunctions. 

Bilayers also offer the possibility for studying transport in pure materials. Optical 

investigations of charge transfer and transport in cyanine/fullerene bilayers are 

covered in Chapter 4.  

 

1.4 Ultrafast optical probing of photoinduced 

charge separation 

 

 Photogeneration of charge carriers in organic photovoltaic devices is 

determined by four major contributors. In sequence, they are efficiencies of (i) 

light absorption, (ii) exciton diffusion, (iii) charge formation and separation and 

finally (iv) charge transport and collection.9 The first limitation in light 

absorption is lifted by development of new low band gap materials. Second, the 

bottleneck of limited exciton diffusion has been considerably alleviated by the 

use of bulk heterojunction blends. Yet, the two last factors however are limiting 

device performances, and in particular consensus for a charge separation 

mechanism in OPV devices has not been attained as per today.  

We will first review the charge separation mechanism suggested from various 

investigations reported in the literature. Dynamics of charge generation are 
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revealed by transient absorption spectroscopy (TAS). This technique enables 

following the excited state dynamics and quenching in the presence of an 

electron acceptor. They also relate to a certain extent the efficiency of charge 

generation upon microstructure and donor:acceptor ratio in blends by comparing 

the relative amplitudes of charge absorption (at least qualitatively). In fact, 

Clarke et al. established that the charge separation efficiency is the major 

limiting factor in polymer:fullerene blends and they also correlate the internal 

quantum efficiency (IQE) to the charge absorption amplitude revealed by 

TAS.9,44 Typical transient absorption pump-probe setup is described in more 

details in Chapter 2. Other techniques revealing the ultrafast charge generation 

processes are briefly described in the next section. 

 

1.4.1 Charge generation mechanism 

 

 The ultrafast dynamics of a charge transfer process in about 45 fs was first 

reported by Brabec et al. in 2001.45 Since, numerous studies have investigated the 

charge generation and separation in polymer:fullerene blends. Grancini et al. 

reported generation of free charge carriers within 50 fs for PCPFTBT:PCBM 

blends due to hot CT states.46 Actually, it is not yet clear whether charge transfer 

states or directly free charge carriers are generated upon electron transfer. An 

interfacial charge transfer state results from the electron-hole binding energy due 

to Coulombic attraction. The charge pair needs to overcome this potential 

barrier to successfully separate. Most likely, both CT and free charge carriers are 

generated on ultrafast time scales.47 The CT dissociation in free charges is 

assumed to be field-dependent, in contrary to free charge carrier generation is 

not.48,49 Moreover, CT states are implied when very efficient exciton quenching 

is observed whereas charge generation yield is low.9 Dimitrov et al. clearly state 

that photoluminescence quenching should not be used as a unique tool to 

determine charge generation, as the yield of separated charges is not linked with 



 

25 

exciton quenching efficiency.9 Rather, the competing pathway of CT relaxation 

at the interface counteracts charge dissociation. 

Other studies reported a constant IQE across the absorbance spectra, which 

indicate that photon energy, hence hot excitations, are not the origin of free 

charge carrier generation.48,50 Instead, relaxed (cold) CT states are argued as the 

major source of charge generation as demonstrated by Vandewal et al.51  

The intricate issue of forming a relaxed CT state is that the electron-hole binding 

energy needs to be overcome, whereas hot CT states already contain excess 

energy to drive efficient charge separation. The Onsager-Braun model can be 

used to describe the CT state separation by considering its finite lifetime.7,47,52,53 

Several drawbacks arose from this model, especially when comparing it to 

Monte Carlo simulations. Disorder is not included in the Onsager-Braun model, 

but it has however been shown to help charge generation in 1995.54 More 

recently, Vithanage et al. evidenced that charge diffusion in a disordered 

medium governs the charge separation process in P3HT:PCBM blends.55 

The effect of the electric field on charge generation also indicates the existence of 

CT states.56 One method to investigate this, is time-delayed collection field 

(TDCF), which is also a pump-probe technique. A constant bias voltage is 

applied to the sample when a short excitation beam arrives. After some delay, 

the voltage is turned into collection bias in order to extract all free charge 

carriers.51 With such experimental method, Albrecht et al. demonstrated field 

dependence in free carrier generation.57 The drawback of this technique is the 

low time resolution, about 10 ns. Ultrafast methods include the transient Stark 

effect spectroscopy and time-resolved electric field induced second harmonic 

generation (TREFISH).42,55,58,59 These two techniques are sub-picosecond optical 

probes of the electric field dynamics within a sample. They are essentially 

employed for tracking charge transport through the active layer material, but 

they also give insight into the electric field dependent charge separation. We will 

address this in more details in Chapter 4 and 5.  

High local mobility has been suggested for efficient CT separation process by 

Burke et al.60 Terahertz mobility up to 11 cm2/V ⋅ s is sufficient to drive charge 
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separation, even without an energy cascade. Pranculis et al. also concluded that 

high electron mobility in fullerene was enough to explain charge separation in 

polymer:fullerene blends.61 

Charge delocalization has recently been suggested to play a crucial role in free 

charge photogeneration.62-64 Pump-push photocurrent (PPP) measurements 

provided by Bakulin et al. demonstrated that hot states are precursors for free 

charge generation due to their delocalization. Vibrational dynamics of polaron 

photogeneration have been followed by Provencher et al. by femtosecond 

stimulated Raman spectroscopy (FSRS).65 They demonstrated long-range charge 

separation significantly faster than 300 fs. These results indicate ultrafast polaron 

formation without access through a CT state.  

Fullerene and derivatives are commonly used as electron acceptors mostly due 

to their high electron mobility, up to 1 cm2/ V s. Pure fullerene domains are of 

fundamental importance in charge generation: an energetic driving force for 

electrons being induced by PCBM crystallization, as demonstrated by Jamieson 

et al.66 Selective PCBM excitation in blends has led to increased photocurrent 

values resulting from PCBM hole transfer.67 Gélinas et al. actually demonstrated 

for the first time that electron delocalization due to fullerene clusters is 

responsible for long-range ultrafast charge separation (4 nm in 40 fs).64  

 

We have seen that ultrafast techniques are needed for a clear understanding of 

the operating principles. But yet, photogeneration of charge pairs has not 

reached a consensus.68 Most ultrafast studies have focused on polymer:fullerene 

blends, and little is directed toward small molecule devices, even less toward 

bilayers.42,69-71 Molecular level engineering of organic semiconductors enrich the 

panel of chemical structures, crystallinity, microstructure and disorder to only 

name a few, enhancing the diversity of physical properties. This short review 

also emphasizes the importance of electric field dependent measurements, as 

bound interfacial charge transfer states and free charge carriers are likely formed 

upon charge transfer in organic solar cells.  

⋅
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A main approach to investigate ultrafast charge formation and separation is 

transient absorption spectroscopy. In this thesis work, we have observed 

oscillatory photoabsorptions in TA data on ultrashort timescales, which we 

assign to a Stark effect. We will shortly introduce this effect in the following 

lines. 

 

1.4.2 Photoinduced Electroabsorption: Stark effect 

 

 Local electric fields induced by photogenerated charge carriers and charge 

transfer states strongly affect the electronic transitions in the surrounding 

molecules.5,72-77 Electroabsorption corresponds to the change in absorption 

spectrum due to an electric field, be it applied externally or locally due to 

photogenerated transient species.78 This phenomenon is also called the Stark 

effect.79 An electric field will affect the change in dipole moment Δµ and/or the 

change in polarizability Δα of the ground to excited state transition. These 

changes can be determined from Stark measurements as electroabsorption (EA) 

is derived from first, second and higher order derivatives of the absorption 

spectrum:  

 

 
EA = A υ,E( )− A υ,E = 0( ) = − dA

dυ
Δµ ⋅E+ 1

2
d2A

dυ2
⋅E2 ⋅ Δµ2 − 1

2
dA
dυ

Δα ⋅E2  (1.3) 

where υ is frequency and E is the applied electric field. 

 

The first term is linear in the field and reaches zero for isotropic samples such as 

pure molecular systems, as the field vector orientation is averaging over all 

possible directions. Ordered materials, such as dyes anchored to TiO2 particles 

show linear electroabsorption with an external applied electric field.80,81  

The second term in eq. 1.3 shows that changes in dipole moment are associated 

with the second derivative of absorption, while the last term associates the 

change in polarizability to the first derivative of absorption. Both latter terms are 
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quadratic with the field and can therefore be observed even if the macroscopic 

field is zero.64  

Oscillatory features in transient absorption spectra can thus be associated with 

EA caused by free charge carriers, or electron-hole pairs (dipoles). The 

magnitude of the electric field generated is not trivial for photoinduced 

electroabsorption, as it depends on the geometry of the sample (planar or bulk 

heterojunction) and the position of the molecule affected by the electric field. 

Nevertheless, dynamics of electroabsorption can give further insight into charge 

separation and recombination. This technique is addressed in Chapter 4 and 5 

where we observe photoinduced EA of cyanine, fullerene and a polymer 

(pBTTT) in transient absorption spectra. 

 

1.4.3 Charge transport on the nanoscale 

 

 Charge transport and collection is the second limiting factor for organic 

photovoltaics, after charge photogeneration. Indeed, low carrier mobility is an 

intrinsic feature of organic semiconductors, on the order of 10-2cm2/(V s) and 

lower. Compared to typical inorganic semiconductors, this is several orders of 

magnitude smaller.4,82 Transport is tightly linked to material processing methods, 

microstructure, and thus disorder.83,84 Here we don’t go into a detailed 

description of charge transport in organic semiconductors, but references 82 and 

84 provide excellent reviews on this topic.  

We have to distinguish charge transport by diffusion from charge drift 

mechanism occurring under applied electric fields. In operating conditions, 

charges experience a built-in field which directs them toward the electrode, with 

a drift velocity v = µ E. We will only consider charge transport under electric 

fields. 

Charge transport characterized with conventional methods such as time-of-flight 

(TOF) is averaged over time, without dynamical information. It was however 

suggested using this method that the initial transport could be fast, though 

⋅

⋅
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limited by time resolution of about ns.85 Knowing that charge carriers are 

generated on ultrafast timescales, ns timescale is too slow. Above all, charge 

transport on the nanoscale would provide guidance on long-range charge 

transport which is thus applicable for OFET for example. 

Investigating charge transport on sub-picosecond timescales in organic 

photovoltaics was made possible by implementation of the transient Stark effect 

spectroscopy in 2002, and followed by time-resolved electric field induced 

second harmonic generation (TREFISH) in 2009.58,59 These pump-probe 

methods rely on the decrease of an externally applied electric field due to charge 

carrier drift toward the electrodes. The light pulse sets the time resolution, hence 

sub-picosecond timescales are accessible by using fs lasers. This allows to follow 

the dynamics of electron-hole separation with time. The actual average distance 

between charge pairs as well as their mobility can be extracted from the electric 

field dynamics, if charge carrier generation is prompt (< 100 fs). Results obtained 

for polymer and merocyanine blends with PCBM emphasize the time-dependent 

mobility, decreasing by several orders of magnitude during the first nanosecond 

after optical excitation.42,55,86 Increasing the fullerene content rises electron 

mobility on ultrafast timescales, which suggests that fullerene domains are by 

their nature sufficient to enhance charge separation.61 More technical details of 

the transient Stark effect spectroscopy in Chapter 2.  

We shall focus on ultrafast dynamics of charge transport (< 1 ns) to investigate 

both cyanine- and polymer-based photovoltaic devices. In fact, this thesis 

introduces charge dynamics followed by transient Stark effect spectroscopy in 

such devices for the first time. The results are presented in Chapter 4 and 5.  

 

With this introduction, we see that investigations and understanding of the 

elementary processes involved in organic semiconductors are of paramount 

interest. Kinetics of charge separation and transport to electrodes have to be 

faster than competing recombination and deactivation pathways to achieve high 

efficiencies. In the next chapter, we will go into more details of the optical 

techniques used in this thesis work for achieving our goals.  



Chapter 1 

30 

1.5 References 

(1) Moser, J.-E. Photochemistry, Lecture Notes, EPFL, 2006; pp. 1–51. 
(2) Puttgen, H. B. “Les défis énergétiques de la Suisse : les bâtiments au coeur du 

débat,” Lecture, Beaulieu, Lausanne 2014. 
(3) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. 

Prog. Photovolt: Res. Appl. 2015, 23, 1–9. 
(4) Nüesch, F. Organic Semiconductors, Lecture Notes, EPFL, 2012; pp. 1–

27. 
(5) Lanzani, G. The photophysics behind photovoltaics and photonics; Wiley-

VCH, 2012. 
(6) Hoppe, H.; Sariciftci, N. S. J Mater Res 2004, 19, 1924–1945. 
(7) Clarke, T. M.; Durrant, J. R. Chem. Rev. 2010, 110, 6736–6767. 
(8) Mazzio, K. A.; Luscombe, C. K. Chem Soc Rev 2015, 44, 78–90. 
(9) Dimitrov, S. D.; Durrant, J. R. Chem. Mater. 2014, 26, 616–630. 
(10) Devižis, A. Charge carrier transport in conjugated polymer films 

revealed by ultrafast optical probing, Thesis Vilnius University, 2011, pp. 
1–102. 

(11) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, 
A. J. J. Chem. Soc., Chem. Commun. 1977, 578. 

(12) Tang, C. W. Applied Physics Letters 1986, 48, 183. 
(13) Kirchartz, T.; Agostinelli, T.; Campoy-Quiles, M.; Gong, W.; Nelson, J. 

J. Phys. Chem. Lett. 2012, 3, 3470–3475. 
(14) Ghosh, A. K.; Feng, T. Journal of Applied Physics 1978, 49, 5982. 
(15) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 

1474–1476. 
(16) Yu G; J, G.; C, H. J.; F, W.; J, H. A. Science 1995, 270, 1789–1791. 
(17) Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, 

W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, 
M.; Russell, T. P.; Chen, Y. Nature Photon 2015, 9, 35–41. 

(18) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324–
1338. 

(19) Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Chem. Rev. 2014, 
114, 7006–7043. 

(20) Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45–61. 
(21) Zusan, A.; Gieseking, B.; Zerson, M.; Dyakonov, V.; Magerle, R.; 

Deibel, C. Sci Rep 2015. 
(22) Buchaca-Domingo, E.; Ferguson, A. J.; Jamieson, F. C.; McCarthy-

Ward, T.; Shoaee, S.; Tumbleston, J. R.; Reid, O. G.; Yu, L.; Madec, 
M. B.; Pfannmöller, M.; Hermerschmidt, F.; Schröder, R. R.; Watkins, 
S. E.; Kopidakis, N.; Portale, G.; Amassian, A.; Heeney, M.; Ade, H.; 
Rumbles, G.; Durrant, J. R.; Stingelin, N. Materials Horizons 2014, 1, 
270–279. 

(23) Westacott, P.; Tumbleston, J. R.; Shoaee, S.; Fearn, S.; Bannock, J. H.; 



 

31 

Gilchrist, J. B.; Heutz, S.; deMello, J.; Heeney, M.; Ade, H.; Durrant, 
J.; McPhail, D. S.; Stingelin, N. Energy Environ. Sci. 2013, 6, 2756–2764. 

(24) Miller, N. C.; Cho, E.; Junk, M. J. N.; Gysel, R.; Risko, C.; Kim, D.; 
Sweetnam, S.; Miller, C. E.; Richter, L. J.; Kline, R. J.; Heeney, M.; 
McCulloch, I.; Amassian, A.; Acevedo-Feliz, D.; Knox, C.; Hansen, M. 
R.; Dudenko, D.; Chmelka, B. F.; Toney, M. F.; Brédas, J.-L.; 
McGehee, M. D. Adv. Mater. 2012, 24, 6071–6079. 

(25) Scarongella, M.; Paraecattil, A. A.; Buchaca-Domingo, E.; Douglas, J. 
D.; Beaupré, S.; McCarthy-Ward, T.; Heeney, M.; Moser, J. E.; Leclerc, 
M.; Fréchet, J. M. J.; Stingelin, N.; Banerji, N. 2014, 2, 6218. 

(26) Lloyd, M.; Anthony, J. Materials Today 2007, 10, 34–41. 
(27) Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470–482. 
(28) Mishra, A.; Bäuerle, P. Angew. Chem. Int. Ed. Engl. 2012, 51, 2020–2067. 
(29) Meerheim, R.; Körner, C.; Leo, K. Applied Physics Letters 2014, 105, 

063306. 
(30) Liu, Y.; Chen, C.-C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H.; Dou, 

L.; Li, G.; Yang, Y. Sci Rep 2013, 3, 3356. 
(31) Riede, M.; Mueller, T.; Tress, W.; Schueppel, R.; Leo, K. Nanotechnology 

2008, 19, 424001. 
(32) Heier, J.; Groenewold, J.; Huber, S.; Nüesch, F.; Hany, R. Langmuir 

2008, 24, 7316–7322. 
(33) Fan, B.; Araujo De Castro, F.; Heier, J.; Hany, R.; Nüesch, F. Organic 

Electronics 2010, 11, 583–588. 
(34) Wicht, G.; Bücheler, S.; Dietrich, M.; Jäger, T.; Nüesch, F.; Offermans, 

T.; Tisserant, J.-N.; Wang, L.; Zhang, H.; Hany, R. Solar Energy 
Materials and Solar Cells 2013, 117, 585–591. 

(35) Jenatsch, S.; Hany, R.; Véron, A. C.; Neukom, M.; Züfle, S.; 
Borgschulte, A.; Ruhstaller, B.; Nüesch, F. A. J. Phys. Chem. C 2014, 118, 
17036–17045. 

(36) Malinkiewicz, O.; Grancha, T.; Molina-Ontoria, A.; Soriano, A.; Brine, 
H.; Bolink, H. J. Adv. Energy Mater. 2012, 3, 472–477. 

(37) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. 
Chem. Rev. 2000, 100, 1973–2012. 

(38) Heier, J.; Peng, C.; Véron, A. C.; Hany, R.; Geiger, T.; Nüesch, F. A.; 
Vismara, M. V.; Graeff, C. F. 2014, 918408–918408–10. 

(39) Véron, A. C.; Zhang, H.; Linden, A.; Nüesch, F.; Heier, J.; Hany, R.; 
Geiger, T. Org. Lett. 2014, 16, 1044–1047. 

(40) Hany, R.; Fan, B.; de Castro, F. A.; Heier, J.; Kylberg, W.; Nüesch, F. 
Prog. Photovolt: Res. Appl. 2011, 19, 851–857. 

(41) Guldi, D. M.; Prato, M. Accounts of chemical research 2000, 33, 695–703. 
(42) Devižis, A.; Hertel, D.; Meerholz, K.; Gulbinas, V.; Moser, J. E. Organic 

Electronics 2014, 15, 3729–3734. 
(43) Berner, E.; Jäger, T.; Lanz, T.; Nüesch, F.; Tisserant, J.-N.; Wicht, G.; 

Zhang, H.; Hany, R. Applied Physics Letters 2013, 102, 183903. 



Chapter 1 

32 

(44) Clarke, T. M.; Ballantyne, A.; Shoaee, S.; Soon, Y. W.; Duffy, W.; 
Heeney, M.; McCulloch, I.; Nelson, J.; Durrant, J. R. Adv. Mater. 2010, 
22, 5287–5291. 

(45) Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; 
Hummelen, J. C.; Sariciftci, S. Chemical Physics Letters 2001, 340, 232–
236. 

(46) Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H.-J.; 
Brida, D.; Cerullo, G.; Lanzani, G. Nat Mater 2013, 12, 29–33. 

(47) Gao, F.; Inganäs, O. Phys. Chem. Chem. Phys. 2014. 
(48) Zusan, A.; Vandewal, K.; Allendorf, B.; Hansen, N. H.; Pflaum, J.; 

Salleo, A.; Dyakonov, V.; Deibel, C. Adv. Energy Mater. 2014, 4. 
(49) Augulis, R.; Devižis, A.; Peckus, D.; Gulbinas, V.; Hertel, D.; 

Meerholz, K. J. Phys. Chem. C 2015, 150225165209008. 
(50) Lee, J.; Vandewal, K.; Yost, S. R.; Bahlke, M. E.; Goris, L.; Baldo, M. 

A.; Manca, J. V.; Van Voorhis, T. Journal of the American Chemical Society 
2010, 132, 11878–11880. 

(51) Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.; Widmer, J.; 
Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking, J. T.; Burkhard, 
G. F.; Sellinger, A.; Fréchet, J. M. J.; Amassian, A.; Riede, M. K.; 
McGehee, M. D.; Neher, D.; Salleo, A. Nat Mater 2014, 13, 63–68. 

(52) Onsager, L. Phys. Rev. 1938, 54, 554–557. 
(53) Braun, C. L. The Journal of Chemical Physics 1984, 80, 4157–4161. 
(54) Albrecht, U.; Bässler, H. Chemical Physics Letters 1995, 235, 389–393. 
(55) Amarasinghe Vithanage, D.; Devižis, A.; Abramavičius, V.; Infahsaeng, 

Y.; Abramavičius, D.; MacKenzie, R. C. I.; Keivanidis, P. E.; Yartsev, 
A.; Hertel, D.; Nelson, J.; Sundström, V.; Gulbinas, V. Nat Comms 2013, 
4, 2334. 

(56) Morteani, A.; Sreearunothai, P.; Herz, L.; Friend, R.; Silva, C. Phys. 
Rev. Lett. 2004, 92, 247402. 

(57) Albrecht, S.; Schindler, W.; Kurpiers, J.; Kniepert, J.; Blakesley, J. C.; 
Dumsch, I.; Allard, S.; Fostiropoulos, K.; Scherf, U.; Neher, D. J. Phys. 
Chem. Lett. 2012, 3, 640–645. 

(58) Gulbinas, V.; Kananavičius, R.; Valkunas, L.; Bässler, H. Phys. Rev. B 
2002, 66, 233203. 

(59) Devižis, A.; Serbenta, A.; Meerholz, K.; Hertel, D.; Gulbinas, V. Phys. 
Rev. Lett. 2009, 103, 027404. 

(60) Burke, T. M.; McGehee, M. D. Adv. Mater. Weinheim 2014, 26, 1923–
1928. 

(61) Pranculis, V.; Infahsaeng, Y.; Tang, Z.; Devižis, A.; Vithanage, D. A.; 
Ponseca, C. S.; Inganäs, O.; Yartsev, A. P.; Gulbinas, V.; Sundström, V. 
J. Am. Chem. Soc 2014, 136, 11331–11338. 

(62) Bakulin, A. A.; Rao, A.; Pavelyev, V. G.; van Loosdrecht, P. H. M.; 
Pshenichnikov, M. S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, 
R. H. Science 2012, 335, 1340–1344. 



 

33 

(63) Dimitrov, S. D.; Bakulin, A. A.; Nielsen, C. B.; Schroeder, B. C.; Du, J.; 
Bronstein, H.; McCulloch, I.; Friend, R. H.; Durrant, J. R. J. Am. Chem. 
Soc 2012, 134, 18189–18192. 

(64) Gélinas, S.; Rao, A.; Kumar, A.; Smith, S. L.; Chin, A. W.; Clark, J.; 
van der Poll, T. S.; Bazan, G. C.; Friend, R. H. Science 2014, 343, 512–
516. 

(65) Provencher, F.; Bérubé, N.; Parker, A. W.; Greetham, G. M.; Towrie, 
M.; Hellmann, C.; Côté, M.; Stingelin, N.; Silva, C.; Hayes, S. C. Nat 
Comms 2014, 5, 4288. 

(66) Jamieson, F. C.; Domingo, E. B.; McCarthy-Ward, T.; Heeney, M.; 
Stingelin, N.; Durrant, J. R. Chem. Sci. 2012, 3, 485–492. 

(67) Dimitrov, S. D.; Huang, Z.; Deledalle, F.; Nielsen, C. B.; Schroeder, B. 
C.; Ashraf, R. S.; Shoaee, S.; McCulloch, I.; Durrant, J. R. Energy 
Environ. Sci. 2014, 7, 1037–1043. 

(68) Few, S.; Frost, J. M.; Nelson, J. Phys. Chem. Chem. Phys. 2015, 17, 2311–
2325. 

(69) Shoaee, S.; Mehraeen, S.; Labram, J. G.; Brédas, J.-L.; Bradley, D. D. 
C.; Coropceanu, V.; Anthopoulos, T. D.; Durrant, J. R. J. Phys. Chem. 
Lett. 2014, 5, 3669–3676. 

(70) Kaake, L. G.; Zhong, C.; Love, J. A.; Nagao, I.; Bazan, G. C.; Nguyen, 
T.-Q.; Huang, F.; Cao, Y.; Moses, D.; Heeger, A. J. J. Phys. Chem. Lett. 
2014, 5, 2000–2006. 

(71) Peckus, D.; Devižis, A.; Augulis, R.; Graf, S.; Hertel, D.; Meerholz, K.; 
Gulbinas, V. J. Phys. Chem. C 2013, 117, 6039–6048. 

(72) Sebastian, L.; Weiser, G.; Bässler, H. Chemical Physics 1981, 61, 125–135. 
(73) Chekalin, S. V.; Yartsev, A. P.; Sundström, V. J. Exp. Theor. Phys. 2001, 

93, 706–716. 
(74) Chekalin, S. V.; Yartsev, A. P.; Sundström, V. Quantum Electron. 2007, 

31, 395–397. 
(75) Cabanillas-Gonzalez, J.; Grancini, G.; Lanzani, G. Adv. Mater. 2011, 23, 

5468–5485. 
(76) Drori, T.; Sheng, C.-X.; Ndobe, A.; Singh, S.; Holt, J.; Vardeny, Z. V. 

Phys. Rev. Lett. 2008, 101, 037401. 
(77) Dick, D.; Wei, X.; Jeglinski, S.; Benner, R.; Vardeny, Z.; Moses, D.; 

Srdanov, V.; Wudl, F. Phys. Rev. Lett. 1994, 73, 2760–2763. 
(78) Bublitz, G. U.; Boxer, S. G. Annu Rev Phys Chem 1997, 48, 213–242. 
(79) Stark, J. Nature 1913, 1–1. 
(80) Cappel, U. B.; Feldt, S. M.; Schöneboom, J.; Hagfeldt, A.; Boschloo, G. 

J. Am. Chem. Soc 2010, 132, 9096–9101. 
(81) Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. J Phys Chem B 2010, 

114, 14596–14604. 
(82) Bässler, H.; Köhler, A. In Unimolecular and Supramolecular Electronics I; 

Topics in Current Chemistry; Springer Berlin Heidelberg: Berlin, 
Heidelberg, 2011; Vol. 312, pp. 1–65. 



Chapter 1 

34 

(83) Pivrikas, A.; Sariciftci, N. S.; Juška, G.; Österbacka, R. Prog. Photovolt: 
Res. Appl. 2007, 15, 677–696. 

(84) Lanzani, G. Photophysics of molecular materials: from single molecules to single 
crystals; John Wiley and Sons, 2006. 

(85) Juška, G.; Genevičius, K.; Österbacka, R.; Arlauskas, K.; Kreouzis, T.; 
Bradley, D. D. C.; Stubb, H. Phys. Rev. B 2003, 67, 081201. 

(86) Melianas, A.; Pranculis, V.; Devižis, A.; Gulbinas, V.; Inganäs, O.; 
Kemerink, M. Adv. Funct. Mater. 2014, 24, 4507–4514. 

 



 

35 

 

 

 

Chapter 2 

Experimental methods 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

« An experiment is a question which science poses to Nature, and a measurement is the 

recording of Nature’s answer.» 

Max Planck 
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It is now necessary to understand how photoinduced processes such as 

those shown in Chapter 1 can be monitored. The fundamentals of the techniques 

used in this thesis are explained, as well as the experimental details and all those 

little things papers do not tell.  

Both the femtosecond transient absorption and electromodulated differential 

absorption measurements were based on the same laser source, which is 

described in the first section of this chapter. Data analysis is usually fitted 

globally, and the procedure for this is demonstrated here. Nanosecond flash 

photolysis is also briefly overviewed. 

 

2.1 Fundamentals of ultrafast spectroscopy 

2.1.1 Laser source 

 

The first pulsed light amplification by stimulated emission of radiation, or 

laser, was completed by Maiman in 1960 at Hughes Research Laboratories, 

Malibu, California.1 The flashlamp pumped solid-state Ruby laser could emit 

pulses at 694 nm. Since then, a lot of progress allowed to shorten the time 

window of the optical pulses up to femtoseconds.2 Lasers have proven their 

applicability in various domains including industry (cutting, welding, etc.), 

military, medicine (e.g. eye treatment), research and more related to this thesis, 

spectroscopy. The coherent light source of a laser enabled to dig more into the 

interaction between light and matter (spectroscopy) by looking at a defined time 

resolution, set by the light source.  

Lasers, as their name suggest, work due to stimulated emission. When a laser 

medium (gas, liquid or solid) is excited (pumped), a population inversion occurs 

where the upper state has a long excited state lifetime. As an electromagnetic 

radiation passes through the pumped medium, it will be amplified by stimulated 

emission, i.e. for one photon coming in, two photons will get out. This is called 

a gain. Optical pumping is achieved with a flashlamp or another laser. 
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Amplification becomes even more effective when the electromagnetic radiations 

can travel back and forth through the medium. Two reflective mirrors will 

ensure a suitable amplification, and they constitute what is called the laser cavity 

oscillator. Beyond the fact that lasers amplify light, they also do it in a coherent 

way. Only coherent modes will interfere constructively in the cavity, and acquire 

enough gain to become part of the laser output.  

In order to have some laser output, the cavity has to be opened with a semi-

reflective output coupler. Q-switching allows to create short pulses up to 

nanoseconds. The gain medium is pumped high enough, and the cavity is 

opened through a switch only when a sufficient population inversion is obtained. 

A strong stimulated emission comes out of this laser medium. Mode-locking is 

capable of producing very intense pulses up to several femtoseconds. Here, the 

phase of the modes is fixed by the cavity, causing them to interfere 

constructively.  

Due to the Heisenberg uncertainty principle, in order to allow ultrashort pulses 

to exist, the gain spectra must contain a broad range of frequencies. One 

example of lasing media is Ti:Sapphire, which is widely used in scientific 

research due to its tunability and ultrashort pulses. The Al2O3 doped with Ti3+ 

ions absorbs around 500 nm and emits in the near-infrared (nIR). The output 

wavelength is tunable from 650 to 1100 nm and the average pulse duration is 

100 fs. 

The laser source used in this thesis is a Ti:Sapphire femtosecond laser CPA-2001 

from Clark-MXR. An Er-doped fiber pumped by a diode laser constitutes the 

oscillator of the system, with a gain at 1550 nm. The output passes through a 

frequency doubler, converting it into a 775 nm beam. The pulse is stretched in 

time (first part of the Chirped Pulse Amplification, CPA) in order to avoid 

energy damages, and constitutes the seed for the Ti :Sapphire. The Ti :Sapphire 

rod is meanwhile pumped by the frequency-doubled output of a Nd :YAG laser 

(532 nm, 7.2 W) pumped by a flashlamp. The regenerative amplifier picks high 

intensity (amplified) pulses out of the Ti:Sapphire cavity, and sends them into a 
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pair of diffraction gratings to compress it back in time (second step of the CPA) 

to about 120 fs for an average peak power of 930 µJ at 1 kHz repetition rate.  

 

2.1.2 Wavelength tuning 

 

For pump-probe experiments, the laser output needs to be tuned to other 

wavelengths. This is commonly realized by taking advantage of nonlinear 

effects. Ultrashort laser pulses display high peak powers, which then affect the 

optical properties of a material in a nonlinear way. As a matter of fact, the 

dielectric polarization of the material is directly proportional to the electric field 

of the incoming light. At high intensities, the polarization is no longer linearly 

proportional to the electric field, as higher order effects appear. A short overview 

of the various processes is described here, but for more information other 

references can be consulted.2,3  

Second order effects include second harmonic generation (SHG) and optical 

parametric generation (OPG) and are based on three-wave mixing and energy 

conservation. Optical parametric amplifier (OPA) and optical parametric 

oscillator (OPO) are both based on OPG. Phase-matching conditions have to be 

fulfilled for high intensity output, i.e. the crystal orientation and the incoming 

polarization need to be properly adjusted so that the different waves in the 

crystal interact in a constructive manner. 

For SHG, a nonlinear crystal such as a BBO (β-BaB2O4) or BIBO (BiB3O6) 

showing high second order susceptibility is employed. Two collinear incoming 

photons of same energy E1 (usually nIR range) mix in the material and a photon 

of twice the energy E1 is emitted. SHG is typically used to excite the investigated 

sample at 390 nm, the doubled energy of the Ti:Sapphire output at about 775 

nm.  

OPG also makes use of a nonlinear crystal such that out of one incoming photon 

of energy E2 (typically 390 nm) two photons are emitted, for which the sum of 

the energies equals E2. They are called signal and idler (typically visible and nIR 
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range, respectively). Two-stages non-collinear OPA makes use of OPG and a 

second stage amplifying the desired beam. The process will be explained in more 

details in section 2.1.4. When the incoming beam passes many times through the 

crystal due to mirrors creating an optical cavity, we get an optical parametric 

oscillator (OPO). Rotation of the crystal enables to tune the output wavelength 

easily.  

 

2.1.3 Broad band white light generation 

 

Pump-probe experiments unravel transient species on ultrashort time 

scales. In these experiments, two pulsed beams are directed toward the 

investigated sample. The first one, pump pulse, will initiate a photoreaction such 

as excitation. The second pulse is a probe of the photoreaction change. Thanks 

to optical delays, the transient effect of a photoexcitation triggered by a pump 

pulse can be monitored with time. The probe can be monochromatic, and 

polychromatic probes are more and more used. Provided the detectors are 

arranged accordingly, the broad spectral range of a so-called white light 

continuum (or supercontinuum) probe enables to view a wide transient spectrum 

at a glance. Before going into the experimental details of the setup built during 

this work, let us understand the process of white light generation. 

White light generation is done thanks to third order nonlinear effects involving 

four-wave mixing. When an ultrashort pulse enters a material, the refractive 

index is not longer linear and has a second order term (Kerr effect). This latter 

depends on light intensity, and thus, time. As a consequence, the phase of the 

incoming optical pulse shows time dependence too, which directly affects the 

frequency inside the incident pulse. This frequency broadening due to self-phase 

modulation is increased further due to the group velocity dispersion in the 

material, which is also called optical Kerr effect. Dispersive media such as a 

sapphire plate or a CaF2 window are used to get broad spectra. The sapphire 

plate offers a narrower spectrum than CaF2, but has a higher damage energy 
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threshold. Both have been used during this thesis, see section 2.3 and 2.2, 

respectively. 

 

2.1.4 Pump pulses 

 

The pump excitation wavelength is tunable using a NOPA (Non-collinear 

Optical Parametric Amplifier), as mentioned in section 2.1.2. In this thesis, a 

two-stage NOPA designed by Prof. Riedle was used.3 With about 150 µJ/pulse 

of the Ti:Sapphire output, the NOPA can run up to 10 µJ/pulse at the desired 

wavelength between 450 nm and 1250 nm, with the maximum around 530 nm. 

Generation between 700 and 900 nm requires an additional white-light 

continuum generation unit. It is however chirped (about 200 fs) due to several 

optics and the white-light seed itself. The beam can be compressed by a pair of 

prisms leading to sub-50 fs pulses, as detailed further in the text.  

In the first stage, part of the incoming beam is converted into white-light in a 

sapphire plate, which we will call the seed. The rest of the beam is frequency-

doubled (SHG) to 390 nm in a BBO crystal and split into two parts, which 

constitute pump beams for the first and second stage. Part of the 390 nm beam 

Figure 2.1 White-light continuum spectra obtained from focusing the laser fundamental (775 nm) 
on a CaF2 and sapphire plate. The main difference is the onset in the UV part, increased by using 
a CaF2 plate. 
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and the seed are focused and mixed in a second BBO crystal for parametric 

amplification as explained in 2.1.2. The output wavelength is adjusted by the 

angle between pump and seed, the angle of the crystal itself and the delay time of 

the pump. A typical output wavelength located at 530 nm obtained after the first 

stage is shown in Figure 2.2. 

In the second stage, the seed - i.e. the output of the first stage - is focused on a 

third BBO with the remaining 390 nm pump beam. This amplification (up to 10 

times) is exactly as the one described in the first stage.  

The intensity and beam profile of the first and second stages are continuously 

monitored by a dual-channel spectrometer (Ocean Optics, S2000) and a 

powermeter (Lasermate-1, Coherent). 

Pulse compression is achieved by a pair of SF10 prisms to correct for GVD. The 

Brewster angle is set for both prisms in order to avoid reflective losses. Passing 

through the first prism, the different wavelengths constituting the pulse are 

dispersed and sent to the second prism. There, the red part of the pulse travels 

more SF10 media than the blue part, that is, it is slowed down. Now that all 

wavelengths travel at the same time, they need to be spatially collimated. This is 

done by reflecting the beam back onto the pair of prisms, slightly higher than the 

incoming beam. The distance between the prisms varies for the desired 

wavelength used, and the compression is checked with a portable autocorrelator 

(pulseCheck, APE) placed as near as possible to the sample position (in terms of 

optics, not distance). The pump size and intensity at the sample are measured by 

Figure 2.2 530 nm excitation pump pulse obtained after the 1st stage NOPA. 
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a beamprofiler (BC 106-Vis, Thorlabs) and an energy meter (Vega, Ophir), 

respectively.  

 

2.2 Transient absorption 

2.2.1 Fundamentals of TA 

 

Transient absorption (TA) is a pump-probe technique that allows to get 

spectral and time-resolved information of electronic states after pump excitation. 

Ultrafast TA is based on ultrashort laser pulses. The pump triggers a 

perturbation of the sample at time zero. This perturbation is monitored by the 

probe, and both pulses are delayed by varying the optical pathlength of the pump 

beam with a delay stage. This time delay allows to investigate changes in 

absorbance from the instrument response function (IRF) of about 70 fs to 2 ns. 

The broadband probe enables to monitor various wavelengths at the same time, 

which is explained in more detail below.  

The probe beam intensity transmitted through the sample depends on whether 

the sample has been “pumped” or not. Let’s call the intensity transmitted 

through the sample in the presence of the pump Ip and without pump Inp. The 

absorbance of the sample in the absence (A) and presence (A + ∆A) of the pump 

are shown in eq. 2.1 and 2.2, respectively. The resulting change in absorbance is 

then obtained as shown in eq. 2.3. 
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The ∆A signal holds a large amount of information. The intensity is mostly 

proportional to the number of excited molecules and the absorption coefficient 

of the transient species. The sign of the ∆A signal defines which particular 

species contributes to the signal: 

• The sign is negative. This is the case for ground state bleaching (GSB), 

i.e. within the absorption range of the ground state, where the pump is 

absorbed by the sample. Therefore Ip is larger than Inp resulting in a 

negative ∆A (see eq. 2.3). The second reason for negative ∆A is 

stimulated emission (SE), where the probe triggers the radiative decay of 

the excited state and thus increases Ip. Stimulated emission spectra are 

proportionnal to the fluorescence spectra with a factor of λ4. SE can occur 

from a hot state, which should be observed at very short timescales (a few 

fs) and possibly shifting to the red as the excited state cools down to the 

lowest excited state level.  

• The sign is positive, indicative for a new transient species originating 

from the sample excitation. This can be an excited state absorption (ESA) 

during its lifetime, typically a few picoseconds up to nanoseconds, or 

other states resulting from energy or electron transfer such as oxidized 

and reduced species.  

 

2.2.2 Experimental setup 

 

The transient absorption setup used in this thesis has been built originally 

by S. Pelet during his thesis.4 Further modifications have been introduced by B. 

Wenger.5 A two-stage (generation and amplification) white light continuum 

(WLC) probe built by J. Teuscher and A. Punzi was used for initial transient 

absorption experiments in this thesis.6  

A one-stage WLC setup has been implemented during this present work in 

collaboration with A. Marchioro and N. Banerji in order to obtain a more stable 

WL, even though less intense probe.7 The scheme of the transient absorption 
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setup used in this thesis is shown in Figure 2.3. The generation of the WLC was 

improved by changing the sapphire plate by a CaF2 crystal that gives a broader 

spectral range, with extended UV and IR part (about 350-1500 nm), as well as an 

increase in stability.8 About 20 µJ of the output of the Clark CPA laser beam 

passes through an iris and a variable neutral density filter and is directed onto a 

5 mm CaF2 crystal with a 5 cm focal length lens. The focal point position can be 

finely adjusted on the crystal with a translation stage parallel to the beam (and a 

burned crystal spot can be avoided by displacing it perpendicular to the beam via 

a second translation stage). The CaF2 is continuously moved by a vibration 

generator controlled by a function generator (djb microtech ltd, Scotland) as its 

damage threshold is lower than for the sapphire plate. The energy control of the 

incident beam enables a stable and broad WLC spectrum which is collimated by 

a second 5 cm focal length lens. The beam passes through a wire grid polarizer 

to discard any unwanted polarization residuals and bandpass filters are used to 

remove the remaining 775 nm from the white light. It is then directed toward a 

parabolic mirror and a beamsplitter (1 mm, OD 0.5). Half of the WLC is sent to 

the reference camera path while the rest is focused on the sample. Both beams 

are attenuated and directed towards their respective camera, reference and 

signal, with a three-axis 5 cm focal length achromatic lens.  

The signal and reference beams are detected with two spectrographs (Princeton 

instruments, SpectraPro 2500i) equipped with a 512×58 pixels back-thinned 

CCD (Hamamatsu S7030-0906) and assembled by Entwicklungsbüro Stresing, 

Berlin. The spectrographs have two gratings: 500 nm blaze and 800 nm blaze. 

The first one enables the analysis of 350-800 nm WLC (visible) and requires the 

implementation of 350-710 nm bandpass filters to discard the excess 

fundamental at 775 nm. The second grating ensures the analysis of 800-1050 nm 

(infrared) with the implementation of 750 nm and/or 850 nm long pass filters. 

The wire-grid polarizer is optimized routinely for visible and infrared WLC. 

Careful calibration of the spectrographs is done by placing an interferential filter 

in the common WLC beam and controlling the grating by the computer software 

Mono.  
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A shot-to-shot acquisition of the transmitted probe intensity triggers every event 

and the reference beam accounts for white-light fluctuations. Typically, 

3000 shots are averaged in order to obtain a good signal-to-noise ratio. A 

chopper on the pump beam at 500 Hz enables to distinguish a transient signal 

(with pump) from a signal without pump, as the WLC is running at 1 kHz. 

Therefore we distinguish Ip
s, the intensity transmitted in the signal camera with 

the pump; Is
np, the intensity transmitted in the signal camera without the pump; 

Ip
r, the intensity transmitted in the reference camera with the pump and Ir

np, the 

intensity transmitted in the reference camera without the pump. The absorbance 

change is then calculated via the following equation:  
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Polarizations of both pump and probe beams are set at magic angle (54.7°) with 

respect to each other, ensuring isotropic excitation. The dark counts on the 

cameras are acquired before each measurement and subtracted from the 

transmitted light intensity for each camera. The sensitivity is about 5.10-5 OD.  

CCD R

CCD S

ǻt

Mirror
Beam-splitter
Iris
ND filter

Bandpass filter

CaF2 window

Parabolic mirror
Half-wave plate
Lens

Spherical mirror

Wire-grid polarizer

Sample

NOPA

Clark output
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120 fs

Figure 2.3 Schematic of the transient absorption setup (not to scale). The green beam is the 
pump, while the red beam is the fundamental of the laser (775 nm) converted into white light 
continuum probe beam (orange). 
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A Labview software (National Instruments) is used for the data acquisition. A 

home-built chopper has been designed where the wheel sensor detects the on and 

off positions (by a transmitive photomicrosensor). The slight shift between the 

aperture for the sensor and the aperture for the laser beam is able to account for 

the jitter. The chopper wheel position is routinely checked. At first, the Labview 

software starts a measurement (“trig enable”) and enables the camera to 

synchronize with the laser trigger. As soon as this is done, two on/off events (4 

ms) are taken. The last event determines the “FLAG”, meaning the order on or 

off of the events. Each event is constituted of 512 pixels, which are then 

averaged at the end of the acquisition time.  

The Labview software shows the raw WLC spectrum in real time in both signal 

and reference cameras, as well as the calculated transient spectra averaged over a 

defined number of shots. The linear dependence between pixel and wavelength 

on the grating is calibrated. A background spectrum is acquired before each 

measurement in order to account for the dark counts. 

 

2.3 Time-resolved electroabsorption based on the 

Stark effect 

 

Transient absorption spectroscopy is very useful to optically monitor 

transient species on ultrafast timescales. Research in the OPV field relies on the 

understanding of charge carrier formation, as well as their subsequent separation 

and drift toward the electrodes. Without any applied external field though, 

diffusive transport of charge carriers is observed, i.e. there is no macroscopic 

direction of charge diffusion. It is only under an external applied field that 

charge carriers drift toward their corresponding electrode. The drift velocity is 

proportional to both the charge carrier mobility and the external applied electric 

field. In order to apply electric fields on real devices, the active layer is 

sandwiched between two electrodes. The first one is quite transparent such as 
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indium tin oxide (ITO), whereas the electron accepting electrode is opaque (Al, 

Ag,…) and therefore requires optical measurements to be carried out in 

reflectance mode. There are several time-resolved experiments capable of 

unraveling the mechanism of charge carrier separation and transport in OPV 

devices on ultrafast time scales. One of them is time-resolved electroabsorption 

based on the Stark effect. This technique also offers the possibility to investigate 

steady-state electroabsorption, which is sometimes observed in transient 

absorption spectra such as in this work (see Chapter 4).  

 

2.3.1 Fundamentals of electroabsorption based on the Stark effect 

 

Let us first understand the basics of electroabsorption. Electroabsorption 

of a molecular material is based on the effect of an electric field on the electronic 

transition from the ground to the excited state. This electric field shifts the 

absorption spectrum of the molecular material. This is called the Stark effect and 

is depicted in Figure 2.4. This change in transition frequency is classically 

written as shown in eq. 2.5. 

 

 
Δυ = −Δµ ⋅E− 1

2
Δα ⋅E2  (2.5) 

 

where Δµ is the change in permanent dipole moment and ∆α is the change in 

polarizability for the electronic transition. E is the applied electric field.  

The applied electric field E is obtained by applying a voltage V across the sample 

thickness. The latter being proportional to the former, they are considered the 

same throughout the text (eq 2.6). 

 
E = V

D
 (2.6) 
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where V is the applied voltage (V), and D the thickness of the sample layer.  

The change in absorbance due to an external applied electric field is of interest 

here, and the mathematical derivation is given in the following lines.9,10 A Taylor 

expansion of the absorbance as a function of the transition frequency (eq. 2.7) 

immediately gives the change in absorbance in eq. 2.8 after rearranging and 

substituting eq. 2.5 in eq. 2.7. The change in absorbance with and without field 

is also called electroabsorption, or EA. 

 

 
A υ,E( ) = A υ,E = 0( ) + dA

dυ
dυ+ 1

2
d2A

dυ2
dυ2 + ...  (2.7) 

  

 
EA = A υ,E( )− A υ,E = 0( ) = − dA

dυ
Δµ ⋅E+ 1

2
d2A

dυ2
⋅E2 ⋅ Δµ2 − 1

2
dA
dυ

Δα ⋅E2  (2.8) 

 

The first term is linear in the field and reaches zero for isotropic samples such as 

pure molecular systems, as the field vector orientation is averaging over all 

possible orientations. Ordered materials, such as dyes anchored to TiO2 particles 

show linear electroabsorption with applied field.9,11  

The second term in eq. 2.8 shows that changes in dipole moment are associated 

with the second derivative of absorption, while the last term associates the 

Ȟ

A
¨ν

Ȟ

ǻA

Figure 2.4 Schematics of the effect of an applied voltage (electric field) on the absorption spectrum 
of a dye. The black Gaussian function represents the zero field absorption spectrum, while red and 
blue Gaussian functions are the field-affected spectra. The resulting change in absorbance is shown 
in the lower part and in this case resembles the first order derivative of the original absorption 
spectrum. 
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change in polarizability to the first derivative of absorption. Both latter terms are 

quadratic with the field and can therefore be observed even if the macroscopic 

field is zero.12  

The linear and quadratic in the field terms can be distinguished by measuring the 

electroabsorption as a function of applied voltage, as shown in Figure 2.5. Here, 

the EA is quadratic with the applied voltage, which is emphasized as  EA  is 

proportional to the applied voltage. Moreover, by calculating the first and 

second order derivative of the steady-state absorbance spectra, one can assign the 

Stark effect to a change in dipole moment or polarizability of the ground to 

excited state transition according to equation 2.8. However a combination of 

both effects can take place and is solved by a linear combination of the first and 

second order derivatives.13 

 

2.3.2 Time-resolved electroabsorption 

 

When an organic semiconductor is sandwiched between two electrodes, it 

behaves like a capacitor. An external electric field loads the capacitor. Charge 

carriers generated by pump excitation will separate and eventually discharge the 

capacitor. The decrease of the electric field sensed by the material becomes a 

measure of charge transport and extraction in the dielectric medium that 

Figure 2.5 Electroabsorption as a function of applied voltage on the metal electrode for solid-
state C60, 80 nm. EA is quadratic versus V (red dots, right axis), which is emphasized here: √EA 
is linear with applied voltage (blue crosses, left axis). 
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constitutes the polymer or small molecule layer. Measuring the charge extraction 

electrically is limited by the resistance times capacitance RC constant circuit, 

which corresponds to a few nanoseconds. That is why ultrafast optical 

techniques such as time-resolved electroabsorption due to the Stark effect are 

necessary.  

In order to obtain the electric field dynamics in organic semiconductor devices, 

the photogenerated charges can be created by an ultrashort pump pulse and 

subsequently monitored by a probe pulse. The change in absorbance with and 

without external electric field applied can thus be investigated optically in a 

pump-probe way (eq. 2.9). For clarity of the discussion, the change in 

absorbance with a modulated external field is denoted as EDA(t), which stands 

for electromodulated differential absorption: 

 

 
EDA t( ) = A t,E( )− A t,E = 0( )  (2.9) 

 

The EDA spectrum obtained for a time t where the probe arrives before the 

pump is identical to the steady-state EA spectrum for the same applied voltage. 

The decay of electroabsorption with time is directly proportional to the electric 

field in the sample. This is mathematically calculated in Igor Pro software. First, 

the electroabsorption versus applied voltage is measured. This tells what electric 

field corresponds to which electroabsorption signal. The electroabsorption is 

then fitted with either a power law or a polynomial function. The EDA(t) 

dynamics is then converted using the fit of the electroabsorption into voltage, or 

electric field in the sample. 

The integrated photocurrent Iphoto (that is, over the first 10 µs) is measured with 

an oscilloscope before and after the pump-probe experiment and corresponds to 

the total number of extracted charges at the applied voltage and excitation 

fluence. The EDA dynamics monitor charges extracted from a few picoseconds 

to about 1.2 ns with the optical delay stage. When the electric field dynamics 

saturate, i.e. a plateau is observed, all photogenerated charges have been 
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extracted. This drop in the capacitor electric field is exactly the number of 

charges extracted measured by steady-state photocurrent measurements, 

provided space charge screening conditions are avoided. Indeed, when the 

number of photogenerated charges is too high, i.e. the pump fluence is too high, 

they will screen the applied electric field resulting in a reduced or absent drift of 

the photogenerated charge carriers.  

One advantage of time-resolved electroabsorption due to the Stark effect 

compared to time-resolved electric field induced second harmonic (TREFISH)14 

is that it is spectrally resolved, giving more insight into the dynamics of electrons 

and holes. This is valid for bilayers only, and such results are shown in Chapter 

4. 

The electric field dynamics are then normalized to the maximum number of 

extracted charges obtained via the following relation: 

 
ΔE

max
=

I
photo

(t)dt∫
C ⋅D

 (2.10) 

where C and D are the capacitance and the thickness of the sample, respectively. 

Iphoto(t) is the photocurrent. 

 

Electron-hole separation distance dynamics <l(t)> can be derived from electric 

field dynamics. In fact, the electric field dynamics are related to the number of 

charges extracted by the photocurrent:14-16  

 
ΔE(t) = Δq(t)

C ⋅D
= 1

C ⋅D
⋅ I

photo
(t)dt∫  (2.11) 

where Δq(t) is the number of charges extracted. 

We can also express the electric field ΔE(t) by the average drift distance <l(t)> 

and the density n(t) of photogenerated charge carriers: 

 
ΔE(t) = n(t) ⋅e ⋅ 〈l(t)〉

ε ⋅ ε
0

 (2.12) 

where ε is the relative permittivity of the organic layer, and ε0 the permittivity in 

vacuum. 
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We need to take into account charge carrier extraction, and we assume prompt 

charge generation, therefore: 

 
n(t) = n

max
⋅ 1− 〈l(t)〉

D

⎛
⎝⎜

⎞
⎠⎟

 (2.13) 

where nmax is the carrier concentration successfully extracted. 

We can express the photocurrent from equation 2.11, 2.12 and 2.13: 

 
I

photo
(t) = C ⋅D ∂ΔE(t)

∂t
= A ⋅e ⋅n

max
⋅ 1− 〈l(t)〉

D

⎛
⎝⎜

⎞
⎠⎟
∂l(t)
∂t

 (2.14) 

where capacitance is 
 
C =

A ⋅ ε ⋅ ε
0

D
 

Integration of the photocurrent gives the number of charges transported by the 

photocurrent: 

 
Δq(t) = I

photo
(t)dt∫ = A ⋅e ⋅n

max
〈l(t)〉 − 〈l(t)〉2

2 ⋅D
⎛

⎝⎜
⎞

⎠⎟
 (2.15) 

Solving this parabolic function for <l(t)> gives: 

 

〈l(t)〉 = D 1± 1− 4
2 ⋅D ⋅A ⋅e ⋅n

max

⋅ Δq(t)
⎛

⎝
⎜

⎞

⎠
⎟ = D 1± 1− Δq(t)

Δq
max

⎛

⎝
⎜

⎞

⎠
⎟  (2.16) 

For the simplification of equation 6, the maximum photocurrent Δqmax was 

calculated as: 

 
Δq

max
= 1

2
⋅C ⋅D ⋅ ΔE

max
= 1

2
⋅C ⋅D ⋅

n
max

⋅e ⋅ 〈l(t)〉 = D⎡⎣ ⎤⎦
ε ⋅ε

0

= 1
2
⋅A ⋅n

max
⋅e ⋅D  (2.17) 

The factor ½ arises from the fact that both electrons and holes contribute to the 

photocurrent. 

As Δq=C.D. ΔE, we finally obtain: 

 

〈l(t)〉 == D 1− 1− ΔE(t)
ΔE

max

⎛

⎝
⎜

⎞

⎠
⎟  (2.18) 

 

The pre square root sign was chosen negative, as the limits are: 

<l(t)> = D when ΔE(t)/ΔEmax = 1 
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<l(t)> = 0 when ΔE(t)/ΔEmax = 0 

 

The capacitance used in equations 2.10 and implied from equation 2.18 is 

calculated from the charges displaced by the externally applied electric field as 

follows: 

 
Q

dis
= α +C ⋅V

app
 (2.19) 

where α is a constant, Qdis is the displaced charges, Vapp is the applied bias. The 

slope of Qdis versus Vapp is the capacitance C of the sample.  

 

2.3.3 Experimental setup 

 

An EDA setup has been built in our laboratory by A. Devižis in 2013. 

This technique is based on the pump-probe setup with the ultrafast modulation 

of a voltage pulse. With the help of Figure 2.6, the technique can be explained 

easily. The pump beam is generated by a NOPA (see section 2.1.4), and the 

white-light continuum is obtained by self phase modulation in a 3 mm sapphire 

plate (see section 2.1.3). Polarizations of both beams are set at magic angle and 

they are focused on the sample after part of the white light continuum is sent to 

the reference camera. The samples are investigated in reflectance mode as a 

reflective counter-electrode is used, such as aluminium or silver. The Ti:Sapphire 

laser running at 1 kHz, the voltage pulse from a function generator (Tektronix 

AFG 2021) is set at 500 Hz, meaning that only one out of two successive pump 

pulses is in the presence of the applied voltage (see bottom Figure 2.6). The 

square voltage pulse has a typical duration of about 100 µs, making sure that 

when the pump pulse arrives, the electric field in the sample is present and 

stable. The probe is delayed and scanned over 1.2 ns in order to monitor the 

dynamics of electroabsorption. The signal and reference are detected with a pair 

of 163 mm spectrographs (Andor Technology, SR163) equipped with a 512×58 

pixels back-thinned CCD (Hamamatsu S07030-0906) and assembled by 
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Entwicklungs-Büro Stresing, Berlin. A similar shot-by-shot detection scheme as 

for the TA spectroscopy was implemented. An oscilloscope (Tektronix TDS 

3044 B) is used to measure the photocurrent on a 50 Ω load. 

 

2.4 Data treatment 

 

A Matlab procedure developed by N. Banerji has been implemented in the 

Photochemical Dynamics Group in order to correct for the group velocity 

dispersion and extract the corrected dynamics at different wavelengths, as well as 

the spectral profiles at different time delays. 

 

CCD R

CCD S

ITOGlass

PEDOT:PSS

Active layer

Al
Mirror
Beam-splitter

Pump

Probe

Voltage time

Function 
Generator

Iris
ND filter
Bandpass filter
Sapphire plate
Parabolic mirror
Half-wave plate
5cm lens
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Figure 2.6 Scheme of the experimental setup for EDA measurements (not to scale). The lower 
part illustrates the synchronization of the pump and probe pulses, as well as the voltage pulse 
(modulated at 500 Hz). The green beam is the pump, while the orange beam is the white light 
continuum probe. 
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2.4.1 Cross-correlation by Kerr gating 

 

The time resolution of the setup is measured by estimating the cross-

correlation of the pump and probe pulses at the sample position by the Kerr 

gating technique.6 The probe and pulse beams have a polarization set at 45° with 

respect to each other in order to increase the non-linear Kerr effect. Both are 

focused onto a Kerr medium, which is either a SF10 window or a glass 

microscopic slide for measurements on solid state samples, alternatively a 1 mm 

cuvette filled with solvent for studies in solution. The probe then passes through 

a Glan-Thompson polarizer that blocks it entirely. When both pulses are 

temporally overlapped, the birefringence induced by the pump in the medium 

rotates the polarization of the probe, which is then able to pass through the 

polarizer and is detected by the CCD camera. The WLC has a broad spectral 

width and therefore presents a large group velocity dispersion. The longer 

wavelengths travel ahead, whereas shorter wavelengths are slower. This results 

in the blue being seen at time zero while the red has already travelled for a few 

picoseconds, as shown in Figure 2.7. This configuration of the setup has a 

typical cross-correlation (corresponding to its instrument response function, IRF) 

of the order of 130 fs for solid-state samples measured in inert controlled 

Figure 2.7 Graphical view of the wavelength dependence of the time delay in the probe 
continuum. Due to the chirp of the white light the temporal overlap between pump and probe – or 
time zero – is wavelength dependent. The temporal overlap of a certain component of the 
continuum with the pump pulse results in a coherent artifact. 
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atmosphere through a home-made chamber with quartz windows. 

The chirp mathematical correction is routinely done for short time scales 

(typically less than 50 ps) and is performed by fitting every wavelength 

component by a Gaussian function, the width of each Gaussian providing the 

instrument response for each wavelength. The wavefront of all these Gaussian 

profiles can then be fitted with a monoexponential function as a function of 

time. Thus, the time zero for every wavelength is extracted from this function.  

 

2.4.2 Background subtraction 

 

A Matlab routine allows correcting the chirp but also subtracting the 

background spectra from the data. Typically, 20 to 30 spectra acquired before 

time zero are subtracted from the measurement in order to account for the 

spectral noise and for the pump beam up to a certain extent. Then, the corrected 

dynamics for different wavelengths and the spectral profiles at different time 

delays can be extracted from their initial matrix data file as data columns that are 

then treated separately in Igor Pro software. 

 

2.4.3 Data analysis 

 

 In order to disentangle various photophysical processes occurring on the 

same time scale, a global analysis can be performed. For this, a multiexponential 

fit of the dynamics at different wavelengths is performed (eq. 2.20): 

 

 
ΔA = y

0
+ A

1
e
− t
τ1 + A

2
e
− t
τ2 + A

3
e
− t
τ3  (2.20) 

 

where τn is the time constant and An the amplitude associated to the process n. 

Typically, two or three exponentials are needed to fit correctly the dynamics 
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taken every 5-10 nm. In general this procedure gives enough insight to the 

transient signals obtained. The time constants τn were linked together for each 

analyzed sample, meaning each process could be separated via the different 

times τn obtained. The amplitudes were left free. When plotting the amplitude An 

spectra as a function of wavelength for each τn, we can follow the spectral 

regions that undergo similar dynamics. The offset y0 was usually set to zero. The 

fitting was iterated until the standard deviation (2σ) for the time constants were 

10 % or less, with more than 20’000 fit points. 

This global fit enables to construct an associated spectra displaying the 

amplitudes, A1, A2 and A3 of the transient signal related to each time component 

τ1, τ2, and τ3, as a function of the wavelength. The signs of the amplitude and 

corresponding dynamics indicate whether the transient species is growing or 

decaying with time. If the signal is positive and the corresponding amplitude as 

well, the process probed is decaying to zero (by recombination for example). For 

the same signal, if the amplitude is negative, the transient species is still growing. 

For a negative signal, if the associated amplitude is negative, the transient 

species is decaying to zero. And at last, if the associated amplitude is positive, 

the negative signal is still growing, i.e. becoming even more negative (such as 

delayed SE for example). For more information about how to perform and 

analyze global analysis fittings, the reader is referred to van Stokkum et al.17 

 

2.5 Nanosecond Flash Photolysis 

2.5.1 Fundamentals of the technique 

 

Ultrafast pump-probe measurements are restricted in time by the delay 

stage used to vary the optical time delay, and therefore by space and stability. 

Longer time scales, up to microseconds, are more adequately monitored by 

nanosecond flash photolysis. Actually, this technique was invented before 
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femtosecond lasers came up for which Eigen, Norrish and Porter won the Nobel 

Prize in chemistry in 1967.  

A pump pulse excites the sample which is then probed by a continuous light 

beam, such as a xenon lamp. The transient signal is measured by a photo-

multiplier tube or photodiode, and recorded by an oscilloscope. The time 

resolution is set by the Q-switched laser source (a few ns) and the detectors. 

 

2.5.2 Experimental setup 

 

Two experimental setups are available in our laboratories and have been 

used during this thesis. Both rely on a frequency tripled Q-switched Nd:YAG 

laser pumping an OPO at 355 nm (see section 2.1.4). The first one is a 

Continuum Powerlite 7030, while the second is from Ekspla NT-342. Both run 

at 20 Hz repetition rate and the output wavelength can be tuned between 450 

and 650 nm for the Continuum, while the Ekspla offers excitation wavelengths 

going up to 2300 nm, and has a typical pulse duration of 4-7 ns FWHM. The 

pump beam is attenuated by grey filters depending on the fluence needed. The 

probe beam is constituted by the filtered output of a Xenon arc-lamp and is 

focused onto the sample. The signal is collected by a monochromator set at the 

proper probe wavelength. Depending on the probe wavelength, a 

photomultiplier tube (R9910 Hamamatsu) or an InGaAs photodiode 

(SM05PD5A, Throlabs) detects the transient signal, which is then recorded by 

an oscilloscope (Tektronix, DPO 7204 and DPO 7104C).  

An acquisition is averaged over typically 3000 laser shots with dynamics 

recorded over 10’000 points. A sensitivity of 10-4 ∆A is typically obtained. 

  



 

59 

2.6 Sample and device preparation 

 

The samples studied in this thesis were either made by the author or by 

collaborators. Sample preparation will be detailed in each chapter, as they are 

specific to the experimental technique used.  

All solid samples were made in an argon or nitrogen glovebox. The glovebox in 

our laboratory was set up, improved and maintained during this work. For that, 

oxygen and water detectors were installed, as well as a supplementary charcoal 

part for capturing the solvents. A spin-coater (Laurell Technologies, Spinner 

Assy) was placed in the glovebox.  

Evaporation of the metallic electrode was sometimes homemade with a Denton 

Benchtop Turbo vacuum thermal evaporator controlled by a quartz 

microbalance deposition controller (Inficon). 
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3.1 Introduction 

 

Ultrafast optical techniques such as pump-probe spectroscopy give 

valuable insight into photophysical processes leading to charge generation and 

recombination in organic solar cells. Nevertheless, in order to understand them 

correctly, one needs to figure out where the transient species absorb, and how 

the different species overlap in time, as well in energy. In this Chapter, we will 

go through the spectral features observed upon Cy3 light absorption in solution, 

which will then be used for the studied Cy3-B, the cyanine with 

tetraphenylborate counter-anion in the solid state. This latter section is adapted 

from the following publication: “Ultrafast charge transfer in solid-state films of 

pristine cyanine borate films and blends with fullerene” by J. De Jonghe-Risse, J. 

Heier, F. Nüesch and J. -E. Moser, Journal of Materials Chemistry A, 3, 10935-

10941, 2015.  

 

3.2 Cyanine dye in solution 

 

The photoinduced processes of cyanine dyes have been reported 

numerous times in the literature. They depend on the structure of the cyanine 

molecule, the aggregation (or dimerization), the environment and physical 

properties like temperature.1-7 The 1,1’-diethyl-3,3,3’,3’-tetramethylcarbocyanine 

(Cy3) molecular structure is shown in Figure 3.1. The counter-anion is 

abbreviated throughout the text by its first letter, such as P for 

hexafluorophosphate PF6
-, C for perchlorate ClO4

- and finally B for 

tetraphenylborate BPh4
-. In order to restrict the number of parameters, the 

investigation is mainly focused on methanol solutions at room temperature, and 

at low concentrations in order to avoid aggregation.  
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3.2.1 Steady-state measurements 

 

Let us first consider steady-state absorbance and fluorescence in solution. 

In dilute Cy3-C solutions (10-7 M), the vibronic structure of the first electronic 

transition displays absorbance peaks located at 470, 510 and 545 nm (Figure 

3.1 a). The absorption spectrum is dependent on the solvent and a red-shift is 

observed for chlorobenzene (less polar solvent) with the absorbance peaks 

located at 480, 525 and 560 nm. No aggregation is observed at these low 

concentrations.  

At equilibrium in solution, only the all-trans isomer of the cyanine dye Cy3-C 

monomer is present. This is inferred by the very similar shape of the excitation 

and absorption spectra in various solvents, as well as to the mirror image of the 

emission spectrum as compared to the absorption spectrum. (Figure 3.1 b). The 

Figure 3.1 Normalized absorption spectra for 10-7 M Cy3-C a) in various solvents, b) in 
methanol, with fluorescence and excitation spectra. The fluorescence spectra do not depend on 
the excitation wavelength. The Cy3 molecular structure is shown on the right with various 
counter-anions. 
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emission is normalized for the absorption of the sample at the excitation 

wavelength. The shape of the emission spectra does not depend on the excitation 

wavelength, which is consistent with only one isomeric form (all- trans) existing 

in solution.2 The spectral features do not change within four different solvents 

(acetonitrile, methanol, tetrafluoropropanol and chlorobenzene). 

The counter-anion does not affect the steady-state absorbance spectra, as the 

absorption is due to π-π* transitions through the Cy3 polymethine chain. 

Increasing the length of the polymethine chain shifts the absorption spectra to 

the red.8 

 

3.2.2 Transient absorption: from femtoseconds to microseconds  

 

 Transient absorption measurements were carried out in solution both on 

the femtosecond and nanosecond time scale. Figure 3.2 shows the transient 

absorption spectra (TAS) of the Cy3-C dye in methanol over a 200 fs to 1.2 ns 

timespan, together with the amplitude associated spectra resulting from a 

multiexponential global analysis. At first glance, the ground-state bleaching 

(GSB) and stimulated emission (SE) are observed between 500 and 700 nm, the 

same wavelengths characterizing ground-state absorption and fluorescence (see 

Figure 3.1 b). The maximum of the negative transient signal located at 550 nm at 

200 fs is due to an overlap of both GSB and SE. The excited state absorption 

(ESA) is found at wavelengths below 490 nm and well in accordance with the 

one reported in the literature for Cy3-P.2 The light absorbed upon laser 

excitation populates multiple excited states and the vibrationnally hot state likely 

relaxes to a lower lying excited state, as the growth of ESA and SE until 5 ps 

shows. This relaxation in the excited state is inferred by the amplitude spectrum 

associated with the 7.3 ps time constant: the negative amplitude below 490 nm 

and the positive amplitude for wavelengths above 540 nm with a shoulder at 

610 nm both indicate a growing lowest excited state absorption. Moreover, the 
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absence of GSB decay on the same timescale confirms the lack of excited state 

deactivation.  

All transient signals decay with the 150 ps time constant, which is similar to the 

fluorescence lifetime measured for various other cyanine dyes.9,10 At longer time 

delays, a positive transient absorption signal appears at 565 nm. As reported by 

Chatterjee et al., this photoabsorption is due to the cis-isomer (excited state) 

resulting from the rotation around one conjugated carbon-carbon bond of the 

Cy3 polymethine chain (trans-cis isomerization).2  

A deeper insight into the photoisomerization in solution is given by investigating 

the longer time delays with nanosecond flash photolysis. Results are shown in 

Figure 3.3. No signal is observed in the blue part of the spectrum below 500 nm, 

as the singlet excited state decays on the picosecond (ps) time scale. The positive 

signal due to the cis-isomer is still present around 550 nm. In addition, another 

photobsorption appears at longer wavelengths centered at 580 nm. It decays on a 

faster time scale than the cis-isomer, and is assigned to the triplet state as 

Figure 3.2 Transient absorption spectra at various time delays after 530 nm excitation for Cy3-C 
in methanol solution at 10-5 M. The lower graph is the amplitude spectra associated to the time 
constants resulting from the multiexponential global analysis.  
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reported by Jia et al.7 The triplet quantum yield is rather poor for cyanine dyes 

(Φ < 0.05), and the triplet-triplet absorption has a low extinction coefficient, 

making it difficult to observe.11 With the addition of CH3I in a degassed 

methanol solution, the triplet yield is increased due to the heavy-atom effect, and 

an increase in the photoabsorption at 580 nm is indeed observed (Figure 3.3). As 

a matter of fact, both signals at 550 and 580 nm are a mixture of cis-isomer and 

triplet state absorptions .  

The signal at 580 nm is fitted with a biexponential, and the results are shown in 

Table 1. The amplitude of the fast component decaying with 3 µs time scale is 

increased in the presence of CH3I from 88.6 % to 94.4 %, whereas the amplitude 

associated with the slow component (i.e. cis-isomer) decreases upon CH3I 

addition from 11.4 % to 5.6 % (Table 1).  

 

 

Table 1 Amplitudes, time constants and ratio of amplitudes as from data of Figure 3.3. 

 A1 τ1 (µs) A2 τ2 (µs) % A1 %A2 

MeOH, in air 1.21 2.5 0.155 16.3 88.6 11.4 

MeOH+CH3I (1:8) 

degassed 

3.33 3.0 0.197 14.9 94.4 5.6 

Figure 3.3 Dynamics recorded at various probe wavelengths after 530 nm excitation for two 
different Cy3-C solutions (10-5 M). The solid lines are the best fit of experimental data points. 
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It is also known that Cy3-I, the same cyanine with iodide as a counter-anion, 

shows no singlet excited state at 35 ps after excitation but rather a triplet excited 

state with nanosecond lifetime absorbing around 620 nm, again due to the 

heavy-atom effect and subsequent intersystem crossing.3 In the case of borate 

counter-anions, it has been shown that electron transfer from the borate to the 

excited state of the cyanine (reductive quenching) leads to a reduced cyanine 

species, which absorption is centered at a wavelength of 430 nm.1,2 Alkyl-

substituted borates undergo a carbon-boron bond cleavage upon oxidation, 

generally resulting in unstable product radicals. However, in the case of 

tetraphenylborate, which is a good electron donor,12,13 back-electron transfer 

from the reduced cyanine species is apparently sufficiently fast to regenerate the 

dye borate and prevent its decomposition. 

All photophysical processes described here depend on the solvent: timescales as 

well as spectral positions in energy (wavelength) are affected by the polarity and 

viscosity of the solvents.7,14 Nevertheless with these results, we now have a clear 

picture of the photophysical processes occurring in Cy3 solutions, and have 

reviewed the importance of their counter-anions with respect to the 

isomerization, intersystem crossing and intra ion-pair electron transfer. As our 

aim is to understand how charges are generated in cyanine based solar cells, 

solid-state samples were investigated. Let us now get through the 

photochemistry of cyanine borates Cy3-B. Cy3-P will be considered in 

Chapter 4.  
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3.3 Cyanine Borates in the solid-state: intra ion-

pair reductive quenching and oxidative quenching 

by PCBM 

 

Counter-anion migration under applied electric fields in solid-state 

cyanine layers has been observed and could be detrimental for small molecule 

solar cell applications, as the charges building up at the electrode interface would 

hinder charge extraction.6,15 In order to restrict ion migration, larger counter-

anions can be used such as borate and trisphat.16 As mentioned in the previous 

section, the Cy3 with tetraphenylborate counter-anion (Cy3-B) can undergo intra 

ion-pair reductive quenching. The photophysical processes for the cyanine 

tetraphenylborate salt that undergoes intra ion-pair electron transfer under light 

irradiation are shown in Figure 3.4 b (process 2). By adding an electron acceptor 

such as the fullerene [6,6]- phenyl C61-butyric acid methyl ester (PCBM), kinetic 

competition between electron transfer to PCBM (process 1) and reductive 

quenching by tetraphenylborate (process 2) is expected. Here we report transient 

absorption studies on solid-state pristine cyanine tetraphenylborate and various 

blends with PCBM. From the photoexcited Cy3, the kinetic competition 

between the reductive quenching by the tetraphenylborate moiety and the 

oxidative quenching by PCBM was monitored. Different blend ratios enabled to 

alter the yield of Cy3 oxidized species and indicate that intermixed phases are 

crucial for charge generation. 

 

The normalized absorption spectra of the pristine Cy3-B and bulk heterojunction 

blends with PCBM thin films are shown in Figure 3.4 a. The pristine Cy3-B 

ground state absorbs from about 450-600 nm and displays the monomer 

absorption maximum at 570 nm. This spectrum is similar to that of the ground 

state of the Cy3 cyanine dye with PF6
– as a counter-anion (Cy3-P).17 It is red 

shifted and broadened compared to the absorption spectrum measured in 
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solution (Figure 3.1 a). Hypsochromically shifted features are attributed to dimer 

and H-aggregate absorption (shoulder around 500 nm). Remarkably, this small 

amount of aggregated dye does not seem to increase in the presence of PCBM. 

Absorption of PCBM is quite weak in the visible but increases in the UV region,  

causing a slight blue shift of the apparent Cy3-B absorption maximum when 

blended with PCBM.  

 

Figure 3.4 Normalized steady-state absorption spectra for solid-state Cy3-B and various blends 
with PCBM. The scheme on the right represents the energy levels and electron transfer processes 
in Cy3-B and blends with PCBM after Cy3 excitation. (1) is electron transfer to PCBM, (2) is the 
reductive quenching by the borate counter-anion. Back-electron transfer and recombination are 
shown in dotted lines.  
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3.3.1 Pristine Cy3-B 

 

For clarity of the discussion, transient absorption results for the pristine 

Cy3-B are presented first. A large negative band located at 550-680 nm is readily 

observed upon pulsed excitation (Figure 3.5) and is attributed to the Cy3 ground-

state bleaching (GSB) due to the similarity with steady-state absorbance (Figure 

3.4 a). At early time delays, the negative maximum at 580 nm is an overlap of 

the GSB and a weak stimulated emission signal (SE) and is therefore blue-shifted 

to 570 nm as the SE vanishes. The positive transient absorption band located at 

420-500 nm is assigned to the singlet excited state absorption (ESA) on the first 

tenths of picoseconds, as already observed by Chatterjee et al. from time-

resolved flash photolysis studies on Cy3-P.1,18 This photoabsorption compensates 

the GSB (negative signal) below 550 nm. The fast quenching of the cyanine ESA 

by the tetraphenylborate counter-anion leads to the formation of a cyanine 

reduced species absorbing at about 420-470 nm and oxidized tetraphenylborate. 

This reductive quenching has been observed in solution.2 In thin solid films, a 

Figure 3.5 Transient absorption spectra at various time delays after 530 nm excitation for neat 
Cy3-B. The bottom graph shows the amplitude spectra associated to the time constants 
resulting from the multiexponential global analysis for neat Cy3-B. 
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red shift and a broadening of the absorption spectra compared to the same 

species in solution is commonly observed for molecules, which explains a 

maximum absorption peak for the cyanine reduced species located at 420-

470 nm in the neat film compared to 430 nm in solution. 

The associated spectra resulting from a multiexponential global fitting procedure 

are shown in Figure 3.5 and clearly demonstrate the mechanism of reductive 

quenching.  

The decay of the red part of the ESA between 460-500 nm is associated with a 

0.46 ps time constant and is mirrored by the decay of the SE at about 590-680 

nm. As the GSB does not decay on this time scale, it is reasonable to assume 

that not all the singlet excited state fully returns to the ground state, and this will 

be confirmed below. Looking more specifically at the positive transient feature 

located at 420-460 nm, assigned to both the ESA and the cyanine reduced 

species, it is clear that the ESA is converted into the cyanine reduced species 

partly with 0.46 ps. The reductive quenching of the excited state by the 

tetraphenylborate counter-anion is more clearly evidenced by the isosbestic point 

located at 460 nm (Figure 3.5) between the ESA and the reduced cyanine 

species. The latter still grows with a 11.7 ps time constant and displays a lifetime 

that is longer than the 1 ns optical time delay of our femtosecond setup. 

Application of nanosecond flash photolysis measurements to identical samples 

Figure 3.6 Dynamics recorded at 450 nm probe after 530 nm ns pulsed excitation for pristine 
Cy3-B solid-state film. The solid line is the best multiexponential fit of experimental data points. 
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(Figure 3.6) confirmed the formation of long-lived reduced cyanine species, 

whose decay by back electron transfer takes place in the microsecond time scale. 

Complete regeneration of the dye was achieved within 200 µs, which is then 

compatible with the 1000 Hz repetition rate of ultrafast transient absorption 

experiments.  

 

3.3.2 Blends with PCBM 

 

The morphology of PCBM:Cy3-B bulk heterojunction blend films 

depends on the PCBM loading and shows a qualitatively similar behavior as 

PCBM:Cy7-trisphat blend films which have been described by Heier et al.19 With 

the largest PCBM loading (15.5:1), films display only one fully intermixed 

phase, while lower PCBM amounts lead to both intermixed and a pure cyanine 

phases segregating at the surface. In the latter case, phase contrast AFM images 

reveal a spinodal phase pattern (i.e. demixing of Cy3-B and PCBM) at the 

surface (Figure 3.7 a). Dipping samples into tetrafluoropropanol selectively 

dissolves the pure dye phase. Remaining films contain intermixed Cy3-B with 

PCBM, none of the materials being selectively dissolved anymore. The 

topography reflects the inverse structure of the dye surface domains (Figure 

3.7 b). The different morphologies for different compositions can be explained 

with an asymmetry in the PCBM/dye/solvent ternary phase diagram and the 

nature of film formation during a solvent quench (Figure 3.7 c).19 At high PCBM 

loadings the system remains in the one-phase region (fully intermixed) for all 

solvent concentrations. For lower PCBM loadings, solvent evaporation brings 

the system into a two-phase region. It is however unclear how molecular 

intercalation of PCBM in the cyanine tetraphenylborate ion-pair occurs in the 

intermixed phase. 
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The lower the PCBM loading, the largest the pure cyanine layer. The close 

distance between Cy3 and PCBM in the intermixed phase leads to a direct 

competition between electron transfer to PCBM (Figure 3.4, process 1) and 

reductive quenching by the tetraphenylborate counter-anion (Figure 3.4, 

process 2) following light absorption by Cy3. As a pure Cy3-B phase exists in all 

blends except in the 15.5:1 blend, a transient photoabsorption signal 

corresponding to the cyanine reduced species obtained by reductive quenching is 

expected. Direct light absorption by PCBM can be neglected for blends with a 

low PCBM fraction (0.44:1) but higher PCBM fractions lead to about 20% of 

light absorption by PCBM alone at 530 nm excitation (Figure 3.4 a). However, 

the ground-, excited-, and reduced states of PCBM have rather low extinction 

coefficients and are, therefore, not responsible for the majority of the transient 

absorption signals observed in the probed spectral range.25 Oxidation of Cy3 

upon hole transfer from photoexcited PCBM molecules, however, cannot be 

excluded. 

The effect of the addition of PCBM on the dynamics observed at a probe 

wavelength of 440 nm, where both the Cy3 excited state and reduced species 

absorb, is shown in Figure 3.8 a. For all blends, the initial amplitude of the 

photoabsorption is reduced compared to that of the pristine Cy3-B. This suggests 

that ultrafast quenching of the Cy3 excited state by PCBM is taking place, 

Figure 3.7 AFM images of a 1:1 PCBM:Cy3-B blend a) phase contrast upon spin coating, and b) 
topography after dipping the sample in TFP. The schematic phase diagram of PCBM:Cy3-B 
blends is shown in c). Upon solvent evaporation, the blend will either be fully intermixed (high 
PCBM concentrations) or segregate into two phases (low dye concentrations).  
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successfully competing with the reductive quenching by tetraphenylborate and 

inhibiting the formation of the Cy3 reduced state.  

The dynamics recorded at 550 nm shown in Figure 3.8 b are assigned to both the 

GSB of the cyanine and to the cyanine oxidized species formed in blends.20 At 

this wavelength a local minimum is observed in the Cy3 ground state absorption 

spectrum (see Figure 3.4), which enables scrutinizing the formation of cyanine 

oxidized species. At high PCBM loadings, photoabsorption of the cyanine 

oxidized species is directly observed. The amplitude of the positive signal 

gradually increases with the PCBM content, indicating a higher amount of the 

oxidized species formed. The dynamics of cyanine oxidized state formation is 

extremely fast and could not be entirely resolved by our ultrafast setup. The time 

constant for Cy3 oxidized state formation yielded by the fitting procedure is, 

therefore, certainly overestimated. The amplitude values for the high PCBM 

Figure 3.8 Dynamics recorded at a) 440 nm (Cy3 excited and reduced state) and b) 550 nm probe 
wavelengths (Cy3 GSB and oxidized state) after 530 nm excitation for pristine Cy3-B and various 
PCBM loadings. Fluence: 45 µJ/cm2. The solid lines represent the result of the best 
multiexponential fit. 
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content blends (6.6:1 and 15.5:1) can not be compared quantitatively as 

absorption by PCBM can not be excluded. This explains the similar amplitudes 

measured at a wavelength of 440 nm for the 0.44:1 and 6.6:1 blends (Figure 

3.8 a). Signal amplitudes can be compared only for pristine Cy3-B and the 0.44:1 

blend.  

The fits shown in Figure 3.8 result from a global analysis of multiwavelength 

kinetic data. Figure 3.9 presents the transient absorption spectra for the blends 

together with the associated amplitude spectra (amplitudes associated to the 

three time constants) for the photophysical processes observed in pristine Cy3-B 

and blends with PCBM as depicted in Figure 3.4. The fluence of 45 µJ/cm2 was 

chosen as no intensity effect was observed (not shown) and a satisfying signal-to-

noise ratio was obtained.  

The first two associated time constants for the blends are shown in Table 2, the 

longer being outside of the time window allowed by our femtosecond setup (> 1 

ns). The shortest time constant (Figure 3.9 d and Table 2) is associated to the 

Cy3 excited state quenching and the concomitant growth of either the oxidized 

or the reduced cyanine species absorptions upon electron transfer (process 1) or 

reductive quenching (process 2), respectively. A large negative amplitude located 

between 500-600 nm is observed for all blends (Figure 3.9 d), which increases 

with increasing PCBM relative content and is directly related to the ultrafast 

formation of the cyanine oxidized species. When PCBM is added, the SE 

gradually disappears (Figure 3.9 a-c), but Cy3 ESA spanning over a wide range 

of wavelengths (420-500 nm) is still observed at early time delays. This indicates 

that ultrafast electron transfer to PCBM occurs from the cyanine emissive 

photoexcited state. For pure Cy3-B in either pristine Cy3-B dye films or in the 

segregated phase from blends, the cyanine reduced species, which absorbs 

around 420-470 nm, starts growing on a similar time scale. As a result, no 

decaying amplitude associated to the first time scale is observed at the blue side 

of the ESA. The intermediate timescale, shown in Figure 3.9 e, reveals the 

presence of reduced dye species (absorption in the region 420-460 nm) for all 

samples, except the one containing the highest PCBM load (15.5:1). This is an 
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expected result, as this is the only sample where both Cy3-B and PCBM are fully 

intermixed, thus resulting in a fast electron transfer to the fullerene competing 

successfully against the reductive quenching by tetraphenylborate. The oxidized 

state’s lifetime is associated to the intermediate time constant (Figure 3.9 e, 

picoseconds) whereas the reduced species lives for several microseconds  

 (Figure 3.6, 3.9 f and Table 2).  

Table 2 Time constants for Cy3 excited state quenching and approximate lifetimes (order of 
magnitude) of oxidized/reduced species in films of various compositions. 

 

In solution, reductive quenching of C60 triplet photoexcited state by a 

tetraphenylborate anion has been observed to yield the C60 anion.12 The PCBM 

anion absorbs around 1030 nm, outside of the spectral range covered by our 

setup.21 Moreover, intersystem crossing to the triplet state of PCBM is rather 

improbable in thin films, as other deactivation pathways become possible due to 

the close packing of fullerene molecules.22 

 The positive amplitude of the absorption change observed at longer wavelengths 

for 15.5:1 and 6.6:1 blends (Figure 3.9 b,c,e) could be due to PCBM ESA, 

although only 20% of the incoming light is absorbed by fullerene molecules. We 

are currently investigating the origin of this effect. Among various hypotheses, 

we could speculate that this photoabsorption originates from charge transfer 

states formed between cyanine and PCBM neighboring molecules.23 

Photoinduced Stark effect is excluded here, as the Stark shift observed elsewhere 

for Cy3-P is quite weak, and the one arising from PCBM typically displays 

narrow features, which do not appear here (see Chapter 4, Figure 4.13 a).24,25 

While the yield of electron transfer from Cy3 to the fullerene clearly increases 

with the acceptor’s concentration (Figure 3.8 b), its rate also appears to depend 

Film composition Cy3* quenching time constants Oxidized/Reduced species lifetime 

Pristine Cy3-B 462.1 fs ± 17.7  (52 %),11.7 ± 
1.4 ps (48%) 

Red. Cy3: 10–4 s 

PCBM:Cy3-B 0.44:1 261.1 fs ± 4.4 Ox.Cy3: 10–10 s 

PCBM:Cy3-B 6.6:1 132.0 fs ± 1.7 Ox. Cy3: 10–10 s 

PCBM:Cy3-B 15.5:1 77.5 fs ± 2.1 Ox. Cy3: 10–10 s 
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upon the PCBM molar ratio. Time constants measured for the cyanine excited 

state quenching are reported in Table 2. From the pure Cy3-B sample, we can 

conclude that the reductive quenching happens in a few picoseconds (0.46 and 

11.7 ps time constants). In the intermixed phase of blends, the cyanine oxidized 

species appears on time scales decreasing with the average distance between Cy3 

and PCBM molecules, reaching 77.5 fs for the 15.5:1 blend. As explained earlier 

in the text, the fit obtained for this sample probably overestimates the time-

constant (Figure 3.8 b), whose actual value must probably be shorter than 50 fs. 

Figure 3.9 a-c) Transient absorption spectra at various time delays after 530 nm excitation for the 
various PCBM:Cy3B blends. d-e) Associated amplitude spectra resulting from the 
multiexponential global analysis for the various investigated samples. d) is the excited state 
quenching, e) is the intermediate time scale (order of ps) and f) is the long time scale (> 1 ns). 
Time scales associated to Figures d and e are reported in Table 2. 
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The cyanine oxidized state lifetime does not exceed a few tenths of picoseconds 

as evidenced in Figure 3.8 b. Figure 3.9 f showing the long time component 

corroborates this as no transient signal assigned to the cyanine oxidized species 

around 550 nm is observed. Hole transfer from photoexcited PCBM in the 6.6:1 

and 15.5:1 blends is not ruled out, and could also be responsible for a faster 

appearance of Cy3 oxidized state. The 0.44:1 blend still shows a faster Cy3 

excited state quenching than pristine Cy3-B, whereas in this sample the 

absorption by PCBM is negligible. It is therefore clear that electron transfer from 

photoexcited Cy3 to PCBM is faster than the reductive quenching by 

tetraphenylborate, and that hole injection from photoexcited PCBM to Cy3 

could be even faster. 

It is likely that the reductive quenching by tetraphenylborate counter-anion of 

the Cy3 oxidized species obtained after Cy3 electron transfer to PCBM is also 

responsible for the decay of the Cy3 oxidized species photoabsorption. We 

expect that applying a voltage to the blend solar cell devices would prevent the 

unwanted charge recombination from the PCBM anion.  

 

3.3.3 Isomerization in the solid state 

 

It is speculated that Cy3 isomerization is responsible for the positive 

transient absorption feature located at 600 nm observed at long time scales in 

blends only (Figure 3.9 f). It is not observed in pristine Cy3-B, which leads to the 

hypothesis that the isomerization, which is a rather slow process (ns), occurs in 

the intermixed phase. Probably the ion pair with tetraphenylborate is too closely 

packed, resulting in inevitable reductive quenching upon light absorption by Cy3 

in pure Cy3-B layers, as this process is faster (ps). Pristine Cy3-P films and 

bilayers with C60 both also show signs of isomerization in the solid state (see 

Figures 4.4 and 4.6 in Chapter 4). In bilayers, the process probably occurs in 

excitons created in Cy3 molecules that are unable to reach the C60 interface. 

Isomerization of the Cy3 dye has been observed in this work in solution (section 
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3.2.1) and reported in the literature.2 In the solid-state, although the 

conformational change between the all-trans and cis state is inhibited due to film 

rigidity, the process has been observed in solid-state squaraines.26 De Miguel et 

al. indeed reported a sub-ns isomerization, which transient photoabsorption is 

located at red-shifted wavelengths compared to the trans state, with back-

isomerization occurring with a time constant of about 30 ns. Moreover, it has 

been shown that the addition of glycerol to methanol solution of cyanine dyes 

slows down the isomerization, but does not inhibit it.27 

 

3.4 Conclusions 

 

Results shown in this chapter depict the photoinduced processes of the 

cyanine dye Cy3. Investigations in solution enabled to scrutinize the transient 

absorption spectra of pure Cy3-C: ground state, singlet excited state, emission, 

cis-isomer and triplet excited state. These results are consistent with those 

reported in the literature and give more insight into the ultrafast dynamics 

(<10 ps), which have not been reported before. Upon excitation, the singlet 

excited state is formed, and vibrational relaxation occurs in less than 10 ps to the 

lowest level of the singlet excited state. Stimulated emission and excited state 

absorption are observed instantaneously and decaying with 150 ps time constant. 

The photo-isomerization occurs on less than 1 ns and decays after several µs. 

The triplet excited state has been observed by nanosecond flash photolysis upon 

addition of iodomethane (CH3I), enhancing the intersystem crossing due to the 

heavy-atom effect.  

In the second part of this chapter, we have shown that cyanine tetraphenylborate 

Cy3-B undergoes intra-ion pair reductive quenching in the solid state. The 

picosecond time scale for electron transfer from the tetraphenylborate moiety to 

the excited Cy3 suggested from the global analysis is in accordance with 

previous findings in solution.2 No evidence for tetraphenylborate radical due to 
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carbon-boron bond cleavage has been noticed as the cyanine reduced species 

absorbing at 420-450 nm recombines with the oxidized tetraphenylborate on the 

microsecond time scale. The widely used PCBM electron acceptor was blended 

with Cy3-B with different ratios and we found that the phase morphology drives 

charge injection in PCBM. High PCBM loadings consist of a fully intermixed 

phase where upon Cy3 excitation, oxidized Cy3 is observed on ultrashort time 

scales (< 160 fs). Low PCBM loadings lead to an intermixed phase and a pure 

Cy3-B segregated phase, therefore enabling the observation of both reduced and 

oxidized Cy3 species. Finally, we have shown that isomerization can occur in 

the solid-state, although more investigations, such as low temperature 

measurements, could give more insight into this process. 

 

3.5 Methods 

 

Materials 

The cyanine dye 1,1’-diethyl-3,3,3’,3’-tetramethylcarbocyanine perchlorate (Cy3-

C) was synthesized in the laboratory of Functional Polymers, EMPA.28 It was 

dissolved in methanol (Acros, 99.8 %, ACS reagent), tetrafluoropropanol 

(Synthon), acetonitrile (Acros, 99.9 %) and chlorobenzene (Acros, 99.6 %, ACS 

reagent). Iodomethane (Fluka, 99 %) was added to methanol solutions.  

The cyanine dye 1,1’-diethyl-3,3,3’,3’-tetramethylcarbocyanine 

tetraphenylborate (Cy3-B) was purchased from FEW chemicals, Germany. [6,6]- 

phenyl C61-butyric acid methyl ester (PCBM) was purchased from Solenne B.V., 

The Netherlands. Both Cy3-B and PCBM were dissolved at various 

concentrations in chlorobenzene purchased from Sigma-Aldrich. The films were 

fabricated by spin coating the blend solutions (molecular weight ratio) from 

chlorobenzene onto glass substrates. The glass substrates were cleaned with a 

brush in Hellmanex, and then sequentially sonicated in acetone and ethanol 

baths. Finally, they were placed in a plasma cleaner (in air) for 15 minutes. All 
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the samples were made in a nitrogen glovebox, and all chemicals were used 

directly without further purification. 

 

Steady-state  

Absorption and excitation spectra were recorded on a Perkin-Elmer Lambda 950 

spectrophotometer. Spectra were baseline-corrected and measured with a 

reference beam. Fluorescence spectra were recorded on a LS-50 from Perkin 

Elmer. 

 

Transient absorption spectroscopy 

Transient absorption spectra were recorded via femtosecond pump-probe 

spectroscopy based on the 778 nm output of an amplified Ti-sapphire laser 

(Clark-MXR, CPA-2001) with 150 fs pulses running at 1 kHz repetition rate. 

The pump beam was generated via a two-stage non-collinear optical parametric 

amplifier (NOPA), while the probe beam was a white light continuum (420-

720 nm) generated by a portion of the 778 nm passing through a sapphire plate. 

The pump wavelength was set at 530 nm and the fluence at the sample was 

45 µJ/cm2 for solid-state samples, whereas it was about 180 µJ/cm2 for Cy3 

solutions. No fluence dependence on the dynamics was observed in either cases. 

The probe beam was split before the sample into a signal and reference beam in 

order to account for intensity fluctuations. Both beams were recorded shot by 

shot with a pair of 163 mm spectrographs (Andor Technology, SR163) equipped 

with a 512 x 58 pixels back-thinned CCD (Hamamatsu S07030-0906).  

All spectra were corrected for the white-light chirp measured by Kerr gating and 

background noise. Global analysis by a multiexponential fit at different 

wavelengths (typically every 5 nm) enabled the dissociation of the various 

photophysical processes occurring. The associated spectra show the amplitude of 

the transient signal related to each time component.  
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Nanosecond flash photolysis 

Microsecond timescale dynamics were recorded using a frequency-tripled Q-

switched Nd:YAG laser (Ekspla NT-342) running at 20 Hz repetition rate. An 

optical parametric oscillator was used to generate 530 nm wavelength pump 

pulses (5 ns FWHM) with a fluence at the sample of 60 µJ/cm2. The continuous-

wave probe light from a xenon lamp was transmitted through the sample, 

various optics, and a grating monochromator before being detected by a fast 

photomultiplier tube. Transient signals were recorded by a digital oscilloscope 

Tektronix DPO 7104C. Averaging over typically 3000 shots yielded a 

satisfactory signal-to-noise ratio. A second-order Savitsky-Golay smoothing 

algorithm was applied (35 points).  

 

Samples for time-resolved spectroscopy 

Solid-state samples were analyzed in an argon water-free environment with a 

home-built chamber avoiding contact with ambient air (Quartz windows, UQG 

Optics). For femtosecond transient absorption, solutions were continuously 

bubbled under argon, in a 1 mm cuvette. For nanosecond flash photolysis, 

solutions were degassed prior to the measurement in 1 cm quartz cuvettes and 

maintained in argon atmosphere thanks to an argon overpressure provided by a 

balloon.  
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4.1 Introduction 

 

Organic solar cells based on small molecules have shown up to 10% 

efficiency in tandem solar cells, and above 8% in single junctions.1 They are 

more advantageous than polymer solar cells in terms of costs, as the batch-to-

batch reproducibility and purification processes are simplified.2 Efforts are 

currently pursued toward improved stability and device performances as they 

still provide lower power conversion efficiencies than state of the art 

polymer:fullerene blends.3 However, the photophysical processes in small 

molecule-based organic solar cells have been less studied than in 

polymer:fullerene blends, and only few studies involved time-resolved 

spectroscopical investigations of bilayers.4,5 Cyanine/C60 bilayers have 

demonstrated competitive photovoltaic power conversion efficiency, reaching up 

to 3.6 %.6-9 It is the purpose of this chapter to overview the dynamics of 

photophysical processes and charge carriers separation in cyanine/fullerene 

bilayers. In those planar heterojunctions, the interfacial area is smaller than in 

bulk heterojunction solar cells, the latter being specifically designed to avoid 

exciton loss in pure donor or acceptor domains. Bilayers however show their 

advantage by geometrically separating charge transport and avoiding efficiently 

charge recombination. Cyanine bilayers based on Cy3-P (see structure in Figure 

3.1, Chapter 3) have been employed rather than blends as phase separation in 

blends becomes critical.7 High extinction coefficient values in cyanine allow thin 

active layers, which is highly beneficial in planar heterojunction. The energy 

levels of the investigated bilayers are shown in Figure 4.1.10 

Scrutinizing both materials separately is of paramount interest to understand the 

dynamics of charge carrier separation in the bilayer. Ultrafast pump-probe 

techniques have been employed in this work to explore the photophysical 

processes, in addition to steady-state absorbance and electroabsorption 

measurements. Transient absorption on ultrafast time scales enables to monitor 

the change in absorption due to transient species such as excited states and 
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charge pairs. Electromodulated differential absorption is more sensitive to charge 

pairs and separated charges as they reduce the electric field applied during their 

drift toward the corresponding electrodes of the full solar cell device. 

Ultrafast transient absorption in solution for a cyanine dye is described in 

Chapter 3. Following excitation, the excited state decaying by stimulated 

emission back to the ground state is the major recombination process. 

Photoisomerisation of the Cy3 dye also occurs on longer time scales (ns). The 

cyanine with borate counter-anion (Cy3-B) undergoes intra ion-pair reductive 

quenching in the solid state as described in Chapter 3. Hexafluorophosphate 

counter-anion is not redox active. However, we will see that the cyanine 

hexafluorophosphate (Cy3-P) shows entangled excited state dynamics. 

Fullerenes are commonly employed as electron acceptor in organic solar cells, 

mainly due to the high electron mobility characterizing this material.11,12 Recent 

investigations have shown that access to either delocalized π-electron states or 

charge transfer (CT) states in crystalline fullerene regions enable efficient charge 

separation in polymer:fullerene blends, and that initial (40 fs) electron-hole pairs 

are separated by about 4 nm across the polymer:fullerene interface.13-15 Time-

resolved photophysical properties and energy levels involved upon light 

absorption in C60 thin films are described in detail in this work.  

The mechanism of charge separation at the Cy3-P/C60 interface has been 

investigated with both transient absorption spectroscopy, and time-resolved 

electroabsorption based on the transient Stark effect. This work reports the 

Figure 4.1 Energy levels vs vacuum for a Cy3-P/C60 bilayer, as well as the electrodes in full 
solar cell devices. 
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timescales of ultrafast electron and hole transfer, as well as interfacial charge 

transfer state dissociation in Cy3-P/C60 bilayers for the first time.  

This chapter is based on two publications: “Dissociation of charge transfer states 

and carriers separation in bilayer organic solar cells - A time-resolved 

electroabsorption spectroscopy study” by A. Devižis, J. De Jonghe-Risse, 

R. Hany, F. Nüesch, S. Jenatsch, V. Gulbinas and J.-E. Moser, submitted to 

Journal of the Amercian Chemical Society, 2015. All the transient absorption data 

presented here have been carried out by the author. Steady-state 

electroabsorption was partly measured by the author, and Marine Bouduban. 

Time-resolved electromodulated differential absorption were measured by Dr. A. 

Devižis. Samples were prepared by the author, Martina Causa’, Gaëtan Wicht, 

Sandra Jenatsch and Hui Zhang.  
 

4.2 Cy3-P absorbance and fluorescence in the solid 

state 

 

Let’s first consider the steady-state absorbance of a cyanine dye as shown 

in Figure 4.2. In chlorobenzene solution, the vibronic structure of the first 

electronic state displays absorption features located at 480, 525 and 560 nm. In 

the solid-state, Cy3–P absorbs in the visible range with maxima located at 

575 and 530 nm. The hypsochromically shifted shoulder located at about 485 

nm is attributed to the presence of a few H-aggregates.16 The morphology of the 

dye layer is amorphous, due to the spin-coating technique employed, and is 

evidenced by the red-shift as well as the broadening of the absorbance compared 

to the one in solution. The absorbance in the solid-state is weakly dependent on 

the counter-anion.17 For the rest of the chapter, the results shown are for solid-

state Cy3-P samples. 
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The fluorescence spectra displays a small Stokes shift and two maxima located at 

593 and 640 nm. The fluorescence spectra does not change upon excitation 

wavelength (not shown), which indicates that the same species is at the origin of 

the whole fluorescence spectra, which is the monomeric Cy3-P due to the 

resemblance with fluorescence in solution. 

In Figure 4.3 a, the absorption spectra of Cy3-P/C60 bilayers are shown. The 

fullerene C60 absorption onset is at about 530 nm and increases in the UV region. 

The fluorescence spectra of neat Cy3-P films and the quenching upon addition of 

fullerene C60 is shown in Figure 4.3 b. The increase in Cy3–P thickness yields a 

fluorescence spectra of similar amplitude but slightly red-shifted with respect to 

the 20 nm thick film. The latter is likely due to a reabsorption of the blue part of 

the fluorescence.18 The light penetration depth is probably about 20 nm, 

explaining the similar amplitudes. Efficient quenching is observed for bilayers 

compared to the neat Cy3-P films. The quenching is as high as 95.4% for 20 nm 

cyanine thickness (Table 1) and lowers to 78.0% for 45 nm cyanine layers when 

excited at 530 nm. This indicates that exciton diffusion through the Cy3-P is not 

a major issue in order to reach the interface with C60. However, a thinner Cy3-P 

layer shows a larger quenching value, indicating that part of the excited states 

formed further from the interface are still lost by deactivation to the ground state 

Figure 4.2 Normalized absorbance spectra of Cy3-P 20 nm film (spin-coated from 
chlorobenzene) and Cy3-P solution in chlorobenzene (5.10-7 M). The fluorescence spectra are 
shown in dotted lines (excitation wavelength: 500 nm for thin film, 525 nm for solution).  
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(radiative or non-radiative). We will discuss this also with respect to time-

resolved stimulated emission data (see section 4.3.2). The quenching values are 

similar for 575 nm excitation wavelength (where only Cy3-P absorbs), which 

shows that C60 absorption is minimal and does not contribute to a loss of 

fluorescence signal in bilayers (Table 1). Moreover, energy transfer to C60 is not 

possible energetically (Figure 4.1) implying that only electron transfer from Cy3-

P to C60 is responsible for the fluorescence quenching.  

 

 

 

Table 1 Time-integrated fluorescence quenching in Cy3-P/C60 bilayers for various Cy3-P 
thicknesses and two excitation wavelengths, defined as: 1 - I(bilayer)/I(neat cyanine) where I is 
the time-integrated fluorescence intensity. The time-integrated fluorescence intensity value is the 
area under the emission band (570 – 630 nm).  

 

 

  

 20 nm 35 nm 45 nm 

530 nm excitation 0.95 0.88 0.78 

575 nm excitation - 0.85 0.77 

Figure 4.3 Cy3-P thin film (20, 35 and 45 nm thickness) bilayers with C60 thickness 40 nm. a) 
absorbance spectra and b) fluorescence spectra (530 nm excitation, excitation from C60 side). The 
thickness was measured by profilometry with an accuracy below 1 nm. 
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4.3 Transient absorption: 540 nm excitation 

 

4.3.1 Neat Cy3-P solid-state films 

 

The transient absorption spectra for neat Cy3-P (45 nm) spin-coated from 

chlorobenzene on glass is shown in Figure 4.4 a. Although the overlap of various 

transient signals makes the analysis non trivial, a multiexponential fit helps for 

the understanding of the photoinduced processes. The result of the fit is shown 

in Figure 4.4 b for several wavelengths, as well as the amplitude associated 

spectra in the bottom of Figure 4.4 a.  

Following excitation at 540 nm, excited state absorption (ESA) spanning over 

350–460 nm, ground-state bleaching (GSB) over 450–520 nm, and stimulated 

emission (SE) over 580–730 nm are observed at the first time delay of 0.13 ps. 

SE is similar to steady-state fluorescence data (Figure 4.2) and the ESA 

resembles the ESA in solution (see Chapter 3, Figure 3.2). The excitation 

populates multiple levels in the electronic excited state, and the high lying states 

relax to a lower lying excited state, as indicated by the red-shift of stimulated 

emission around 640 nm on early time scales. 

Exciton-exciton annihilation at 20 µJ/cm2 fluence are minimized as the 

Figure 4.5 shows that higher fluences than the fluence used contain a faster 

decaying dynamics. The mechanism of exciton-exciton annihilation is a 

bimolecular process occurring at high exciton concentrations, and therefore 

quadratic with light intensity (fluence). Charge generation can occur from 

exciton-exciton annihilation, as the excess energy is used for driving the electron-

hole pair apart. In our case however, higher fluences only accelerate the 

dynamics of ground state recovery but do not affect the spectral shape of the 

transient absorption spectra, excluding charge generation via this secondary 

mechanism (not shown). 

The SE at 640 nm decays mainly with 0.37 and 3.8 ps time constants (Figure 

4.4 a and b). The GSB dynamics at 510 nm though, shows multiphasic 
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recombination with time constants of 41.4 ps and longer, but little on the early 

timescales. Actually, the fit is unable to follow the slight negative growing of the 

signal with 0.37 ps time constant, and instead a rather flat signal is observed 

(Figure 4.4 b). Even more surprisingly, the negative signal at 560 nm located 

near the maximum of Cy3-P GSB still grows more negative with 0.37 and 3.8 ps 

time constants (Figure 4.4 b). We can thus conclude that a transient species 

absorbing at 560 nm with a tail around 510 nm superimposes with the large non 

decaying GSB, resulting in a small negative signal growing over the first time 

constant of 0.37 ps. It is important to note that at 560 nm the GSB amplitude 

should be similar to 510 nm (see Figure 4.2). This is the case as the first time 

constant vanishes at about 1 ps. 

The GSB at 560 nm continues to grow more negative with 3.8 ps time constant, 

but not the GSB at 510 nm, which shows minor recovery on this time scale. 

Moreover, the blue part of the excited state represented by the 400 nm band 

decays mainly with 3.8 ps time constant, as well as the red-shifted SE. These 

various observations indicate that the excited state decay does not repopulate the 

ground state, but rather a lower lying energy state of non-emissive character. 

This state is probably in a neighboring molecule, resulting from electron 

injection, which ground state absorbance is located around 560 nm. The exact 

mechanism is however unclear, and could be due to the close proximity of 

neighboring molecules (in dimers for example). We tentatively ascribe this low 

lying state to an intermolecular charge transfer state, as this has been observed 

for merocyanine molecules.19  

 



 

93 

Moreover, the red part of the ESA represented by the dynamics at 440 nm does 

not decay with the first time constant (0.37 ps), therefore linked to the more 

relaxed excited state formed by both excitation and vibrational relaxation from 

the upper excited states, as the shift in SE already suggested. The dynamics 

actually decays first within 3.8 ps, which is either by SE or formation of the 

Figure 4.4 a) Transient absorption spectra of neat Cy3-P (45 nm) recorded for 540 nm excitation 
and various probe time delays, fluence: 20 µJ/cm2. The bottom graph is the decay-associated 
spectra resulting from a multiexponential fit. b) Shows the dynamics extracted from a). The solid 
lines superimposed on experimental data are the result of the best multiexponential fit.  
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lower lying energy state, but also with a 41.4 ps time constant. Actually, the 

amplitude spectra associated to the 41.4 ps time constant (Figure 4.4 a, bottom 

graph) is very similar in shape to the electroabsorption due to the Stark effect 

(EA) of Cy3-P (see Figure 4.13 a). Although various photoabsorptions overlap, it 

is quite striking how the global fit has extracted this EA spectra in the transient 

absorption data. EA originates from local electric fields induced by charge 

transfer states for example, as they have a strong associated electrical dipole, and 

perturb the electronic transitions of the surrounding molecules.20 This 

perturbation results in a shift in the ground state absorbance of neighboring 

molecules probed and affected by the electric field. EA in transient absorption 

data has been reported for different systems such as dye-sensitized solar cells, 

polymer:fullerene blend films and neat fullerene films.21-25 It is however not 

systematically assigned in transient absorption spectra, and could explain the 

oscillatory features observed in TA data. This EA has a dynamic character and is 

assigned to a bound electron-hole pair. The EA decay is an indication that the 

charge pairs recombine. In transient absorption, an ensemble of molecules is 

probed simultaneously, probing both molecules further away from the charge 

pair dipole as well as molecules in between the charge pair. The electric field 

intensity is different for those various positions, and will also vary upon distance 

between the charge pair. However, as it is unlikely that the charge pairs separate 

further into free charges in this case, we assume that the EA decay is due to 

recombination of the electrons and holes. This will be confirmed in time-

resolved electroabsorption measurements (see section 4.5). 

Residual SE is also observed in the 41.4 ps amplitude spectra, originating from 

the relaxed excited state. This is in accordance with the solid state Cy3 excited 

state lifetime of 50-120 ps measured by fluorescence decay (not shown).17 The 

charge transfer state resulting from electron injection into a neighboring Cy3-P 

shows EA, but no clear indication of oxidized and reduced Cy3 (thus, fully 

dissociated) species are observed, as their absorptions are located at 450 and 

550 nm, respectively (Chapter 3).6 We can however not fully exclude their 
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presence, but charge separation in neat small molecular films in the absence of 

external field is quite unexpected.26  

The Cy3-P triplet excited state is not observed, as its absorption is located 

around 600-650 nm in the film (see Chapter 3) and the quantum yield is rather 

low (0.03 in argon-saturated solution).27 At longer time delays, the cis-isomer 

absorbing at 590 nm becomes noticeable (Figure 4.4 a), and the reader is referred 

to Chapter 3 for more details on photo-isomerization. 

 

4.3.2 Cy3-P/C60 bilayers 

 

 The transient absorption spectra for the Cy3-P bilayer with the electron 

acceptor C60 is shown in Figure 4.6. Spectral and dynamical differences with 

respect to neat Cy3-P are observed. At first, it is very clear that the initial 

intensity for SE, thus at 0.13 ps, is a factor four lower than for neat Cy3-P. This 

indicates that electron injection from the Cy3-P excited state to the C60 occurs 

within the time resolution of the setup, with an efficiency of about 70%. 

Absorption by C60 at the excitation wavelength (530 nm) is weak, but could 

lower this apparent value by a few percent. Moreover, no vibrational relaxation 

in Cy3-P is observed as the SE does not red-shift over time (see 640 nm probe in 

Figure 4.6, 0.13 ps and 1 ps time delays). Residual SE decays with 0.88 and 5.46 

Figure 4.5 Transient absorption dynamics for Cy3-P (45 nm film) recorded at 640 nm probe 
wavelength after 540 nm excitation, for various excitation intensities. The intensity-dependent 
dynamics show minimal bimolecular annihilation at low fluences. 
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ps, but not on longer time scales as observed for neat Cy3-P. These statements 

indicate multiphasic electron transfer. The first one dominates on ultrafast 

(< 0.13 ps) timescales from hot excited states, while relaxed excited states also 

inject on the tenths of ps timescale.  

Secondly, a clear positive signal at 560 nm is now observed compared to neat 

Cy3-P. At early timescales in neat Cy3-P, only little GSB is observed, as a short 

lived transient species overlaps at this wavelength. The dynamics at 560 nm are 

shown in Figure 4.7 for several Cy3-P thicknesses and the corresponding bilayers 

with C60. While in all neat Cy3-P samples, the signal is negative, in the bilayers 

the signal is clearly positive up to a few ps. One explanation is that the transient 

species overlapping with GSB in neat Cy3-P is actually enhanced and its 

deactivation delayed in the presence of C60. The fluence being the same for all 

samples, the thickest Cy3-P layer displays a larger negative (maximizing around 

10 ps) value due to an increase of photons absorbed upon excitation. 

Figure 4.6 Transient absorption spectra of the bilayer Cy3-P (45 nm) / C60 (40 nm) recorded for 
540 nm excitation and various probe time delays, fluence: 20 µJ/cm2. The bottom graph is the 
decay-associated spectra resulting from the multiexponential global analysis. 

-2

0

∆A
 / 

10
-3

500400
Wavelength (nm)

-2

0

600

 0.88 ps
 5.46 ps
 79.4 ps
 long (> 2ns)

 0.13 ps
 1 ps
 10 ps
 100 ps
 1960 ps



 

97 

No intensity effect is observable in none of the four samples at the fluence used, 

and the dynamics at low fluence do not depend on the Cy3-P thickness. 

Moreover, the bilayers show the initial amplitude not being significantly 

different between both Cy3-P thicknesses (Figure 4.7 a). With these various 

statements, we can safely assume that the initial positive amplitude at 130 fs 

originates from the interface between Cy3-P and C60. C60 EA displays a 

maximum feature around 545 nm (see Figure 4.10), as well as two minor 

features at 505 and 450 nm. Those features are evidenced in Figure 4.6 in the 

0.13 ps spectrum. The origin of EA is either due to interfacial electron injection 

resulting in an interfacial CT state (bound electron-hole pair), or the CT states in 

Cy3-P which electric fields affect the absorbance of C60 ground state molecules. 

The overlap with GSB does not allow a clear picture of its origin and 

recombination. As no field is applied, it is unlikely that this CT state will split 

into free charge carriers but rather relax or recombine to the ground state. The 

C60 anion absorbs in the nIR around 1030 nm and 950 nm and is therefore 

located outside the spectral range investigated here.28 However, its extinction 

coefficient is quite low and rather difficult to observe, and data recorded over the 

nIR range did not show any transient data (not shown).  

The dynamics at 440 nm assigned to Cy3-P ESA and EA are strongly reduced 

(Figure 4.7 b) in the bilayers, and actually only the blue-side of ESA shows 

multiphasic recombination with a large amplitude associated with the 79.4 ps 

time constant (Figure 4.6). Probably the C60 GSB and EA, which are both 

negative, overlap with the positive Cy3-P relaxed excited state absorption at 

440 nm, but also vibrational relaxation from high lying excited states to lower 

lying states is suppressed in the bilayer with C60 due to ultrafast electron 

injection.  



Chapter 4 

98 

The amplitude spectra assigned to the long time scale (Figure 4.6) is similar to 

the one observed for neat Cy3-P (Figure 4.4) indicating that all the excited 

molecules have not returned to the ground state, and isomerization has likely 

occurred.  

Electron transfer from Cy3-P to C60 seems to occur mostly within 0.13 ps. 

Delayed electron transfer is also observed. However, spectral features and 

dynamics are strongly intricate in neat Cy3-P, and they are even more in the 

bilayer with C60. 

 

4.4 Transient absorption: 390 nm excitation 

 

 The origin of charge carriers in organic solar cells is twofold: both donor 

and acceptor absorb light. The internal photon to current efficiency (IPCE) is 

often reported as a function of excitation wavelength in order to characterize in 

which spectral region the solar cell works best. It is quite clear that most 

fullerene based devices do show pretty good IPCE values in the near UV region, 

where most of the time the donor does not absorb anymore.10 Therefore, 

selective excitation of the electron acceptor is of fundamental importance in 

order to understand the origin of charge generation in such OPV devices.  

 

Figure 4.7 Transient absorption dynamics recorded after 540 nm excitation (20 µJ/cm2) for neat 
Cy3-P layer (20 and 45 nm thick) and the corresponding bilayers with C60 (40 nm thick) at a) 
560 nm probe, and b) 440 nm probe wavelength. 
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4.4.1 Photoinduced processes in C60 thin films 

 

Transient absorption spectra of neat C60 and PCBM (fullerene derivative) 

thin films have been reported in the literature. The singlet excited state formed 

upon excitation absorbs in the IR range (above 700 nm), and recombination by 

fluorescence occurs on the ns time scale. 12,29 Intersystem crossing to the triplet 

state has been observed in solution with a near unity quantum yield with a 

significant absorbance located around 740 nm for C60.12,30 In compact pure 

fullerene films such as those evaporated or deposited from solution, the triplet 

yield is drastically reduced, as other decaying pathways become accessible.31 

Blends of P3HT:PCBM have shown ultrafast hole transfer (< 250 fs) upon 

390 nm excitation, and MDMO:PPV/PCBM blend films have shown hole 

transfer taking place on time scales as short as 30 fs.32,33 While hole transfer is 

ultrafast, exciton diffusion limits the charge transfer rate at the interface.34  

The absorbance spectrum of C60 in dilute solution features a sharp peak located 

at 334 nm (Figure 4.8). In thin evaporated films, the amorphous structure leads 

to a red-shift and broadening of the spectral features.35 Indeed, the maximum is 

located around 345 nm (3.6 eV) and a broad shoulder around 450 nm (2.8 eV) 

becomes visible. C60 are conjugated icosahedral molecules, which HOMO and 

LUMO levels are degenerate and very close in energy.36 This leads to a mixing 

of Frenkel and charge transfer (CT) states, which are intramolecular and 

Figure 4.8 Normalized absorbance spectra of a C60 dilute solution (≈10-6 M) and 80 nm evapora-
ted thin film. 
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intermolecular excited states, respectively. 

By doubling the frequency of the CPA Clark laser (775 nm) with a BIBO crystal 

(see Chapter 2 for more details on SHG), a 390 nm pump was used for selective 

C60 excitation. The beam was not compressed leading to a time resolution of 

300 fs. 

The transient absorbance spectra for a 40 nm thick C60 film is shown in Figure 

4.9 a. The singlet excited state (Frenkel intramolecular exciton) absorbing over a 

broad range of wavelengths and increasing in the nIR appears at 0.3 ps.12 

Overlaid we observe the C60 photoinduced Stark effect featuring distinct peaks at 

550, 505 and 455 nm in the 0.3 ps TA spectra as well. The steady-state 

electroabsorption under an applied external field was measured as a comparison, 

Figure 4.9 C60 (40 nm), recorded for 390 nm excitation: a) transient absorption spectra at various 
probe time delays at an excitation fluence of 180 µJ/cm2. The bottom graph is the amplitude 
associated spectra resulting from the global analysis. b) transient absorption dynamics 
normalized at 0.3 ps at various excitation fluences for 550 nm probe wavelength. 
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shown in Figure 4.10. It is quadratic with the applied voltage. Electroabsorption 

of C60 due to the Stark effect in transient absorption spectra has been reported in 

the literature and assigned to local electric fields induced by photogenerated 

charge carriers, delocalized excited states or even delocalized charge pairs.23,37-41 

Delocalization over several molecules of the excited state or charge pairs leads to 

a strong associated electrical dipole, which perturbs the electronic transitions of 

the surrounding molecules.20  

In C60, it is known that free charge carriers can be generated by exciting at 

wavelengths lower than 530 nm under an applied field.42
 Charge separation in 

neat C60 without external field applied is however not clear, and moreover the 

charge separated states show little absorption due to low extinction coefficients. 

We however speculate that the bands at 650 and 950 nm are due to geminate 

charge pairs (charge transfer states) on neighboring molecules.41 Actually, Figure 

4.9 b shows identical dynamics for various fluences corroborating the absence of 

bimolecular recombination that would be observed if fully charge separated 

species were created. The transient absorption at 650 nm is therefore an overlap 

of excited state and geminate electron-hole pair absorption. 

In order to understand the photophysical processes in C60, a multiexponential fit 

was performed and the resulting amplitude associated spectra is shown in the 

bottom of Figure 4.9 a. The dynamics at various wavelengths and result of the fit 

Figure 4.10 Electroabsorption spectra for 80 nm C60 thin film at various applied bias. The inset 
shows the quadratic dependence of the EA amplitude at 542 nm as a function of externally 
applied bias.  
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are shown in Figure 4.11. Figure 4.12 shows the energy levels in C60 thin films, 

which are derived from the following observations. 

The first two time constants (0.36 and 4.8 ps) are assigned to EA, as due to the 

similarity of the amplitude spectra (Figure 4.9 a, bottom graph) and EA in 

Figure 4.10. This EA is assigned to a delocalized (i.e. intermolecular) charge 

transfer state, as we observe the geminate charge pair signatures at 650 and 

950 nm. At 950 nm however, the absorbance is mostly assigned to the Frenkel 

exciton, which also absorbs up to 545 nm. As all EA features, as well as the 650 

nm band, recombine with 0.36 ps, we can conclude that the charge transfer state 

created upon excitation at 390 nm is delocalized over several molecules at first, 

and localizes back on one fullerene molecule in 0.36 ps. This localization can 

return to a Frenkel exciton, or a lower lying CT state. Therefore at 950 nm, the 

signal remains unaffected on this time scale, due to equal contribution of the 

growing Frenkel exciton and recombination of geminate electron/hole pair in 

the delocalized CT state. This conclusion is supported by the GSB signal at 475 

nm also decaying with 0.36 ps, due to the delocalized CT state affecting two 

molecules, localizing back on one molecule. The intramolecular CT and residual 

delocalized CT are responsible for the second decay of EA signals at 4.8 ps.  

Upon this time scale, the Frenkel exciton also starts to decay (dynamics at 

950 nm, Figure 4.11), as well as with 81 ps time constant.  

Figure 4.11 Transient absorption dynamics recorded at various probe wavelengths after 390 nm 
excitation for a 40 nm thick C60 film.  
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The Frenkel exciton, or self-trapped exciton as described by Ebbesen et al., can 

diffuse through the molecular thin film during its whole lifetime, but can be 

shortened when a recombination site is reached, such as an impurity, or any 

smaller band gap material, for example Cy3-P such as discussed in the next 

section.30  

No evidence of the triplet state absorbing at 740 nm could be found, in 

accordance with other reports investigating PCBM thin films which advance that 

the close packing of fullerene molecules induces other excited-state relaxation 

pathways hindering the triplet generation, as opposed to near unity triplet 

quantum yield in solution.43 

Clements et al. have studied both C60 colloids and solvated (single) molecules in 

solution.44 The C60 colloids consist of 100 nm size particles containing multiple 

C60 molecules. The difference in transient spectra is striking: while the single 

molecule shows ESA and intersystem crossing to the triplet state absorbing at 

740 nm, the colloid solution shows identical spectra to the one observed in thin 

films such as in Figure 4.9. Although the authors do not discuss further the 

details of the colloid TA spectra, the initial spectra at 0 ps decaying with 0.53 ps 

is obviously originating from a photoinduced Stark effect. As we have shown in 

Figure 4.12 Schematic representation of the energy levels in C60. The EA features are associated 
with delocalized charge transfer states that localize in 0.36 ps to so called intramolecular charge 
transfer states, or Frenkel excitons. Those localized CT states show less EA and recombine with 
4.8 ps to the ground-state.10 Finally the Frenkel exciton, or singlet excited state, is generated upon 
excitation but also by localization of the CT state. It recombines mostly with 81 ps but some 
excitons live for over a nanosecond, in accordance with fluorescence lifetimes reported in the 
literature of 1.2 ns.14 Free charges can be formed at excitation wavelengths < 530 nm in the 
presence of a field (see section 4.5). 
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this work, the photoinduced Stark effect does show a significant signal in 

transient absorption data, even at low fluences. This suggests that careful 

identification of the EA peaks by steady-state electroabsorption should be carried 

out in addition to femtosecond transient absorption data. 

 

4.4.2 Photoinduced processes in Cy3-P/C60 bilayers 

 

In the bilayer with Cy3-P, only C60 absorbs at 390 nm (Figure 4.2 and 4.3 

a) and neat Cy3-P does not show any transient signal upon 390 nm excitation 

(not shown). The steady-state electroabsorption for Cy3-P and the bilayer are 

shown in Figure 4.13 a. Cy3-P displays a positive peak at 450 nm, and a smaller 

negative peak at 590 nm. The small contribution is evidenced in Figure 4.13 b, 

as the EA amplitude corresponding purely to Cy3-P around 590 nm is low 

compared to the C60 EA main feature at 545 nm. To be noted, the samples used 

for steady-state electroabsorption were of different thickness compared to the 

ones measured by transient absorption. But by carefully changing the voltage 

and knowing that the electric field applied is inversely proportional to the 

thickness, the curves shown in Figure 4.13 a all correspond to about 0.4 

MV/cm. 

The transient absorption spectra of the bilayer is shown in Figure 4.14. C60 EA 

appears instantaneously along with the nIR band already identified as the lowest 

Figure 4.13 a) Electroabsorption spectra of the Cy3-P and C60 separately, as well as the bilayer. b) 
shows the quadratic dependence of the EA peaks on the applied bias.  
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singlet excited state in C60 (Frenkel exciton). However, the signal assigned to EA 

is more than a factor two higher in the bilayer compared to neat C60. This is valid 

for three different fluences as shown in Figure 4.15. This strongly indicates that 

the presence of Cy3-P enhances EA features in C60. 

Additionally, the negative feature around 590 nm assigned to Cy3-P EA is 

observed at 0.3 ps as well. Finally, the nIR band displays a similar amplitude as 

neat C60 for the same fluence, as Figure 4.14 and 4.9 a suggest. Similar to neat 

C60, the fluence does not impact the dynamics in the Cy3-P/C60 bilayer. 

Interestingly, they are essentially the same as those found in neat C60. Bulk 

excitations in C60 lead to similar spectral features and dynamics, independent of 

the presence of Cy3-P. However, several conclusions can be drawn from these 

observations. First, as the dynamics taken from 0.3 ps do not change when Cy3-

P is present, while the spectral shape indicates the Cy3-P EA, we tentatively 

ascribe this to ultrafast (< 0.3 ps) hole transfer to Cy3-P. As the dynamics do not 

change upon excitation fluence, the hole transfer results in an interfacial charge 

transfer state. The origin of the higher amplitude of the C60 EA in the bilayer is 

twofold: either a larger electron-hole distance in the bilayer compared to bulk C60 

CT leads to less screening between geminate charges and generation of higher 

Figure 4.14 Transient absorption spectra at various probe time delays recorded after 390 nm 
excitation (excitation fluence: 180 µJ/cm2) for a Cy3-P/C60 bilayer (45/40 nm). The bottom 
graph is the amplitude associated spectra resulting from the global analysis. The amplitude 
spectra associated with 0.32 ps time constant is divided by two for better comparison. 
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electric fields, which perturb the neighboring C60 and Cy3-P molecules; or the 

number of CT states is higher in the bilayer, as the energetically higher lying 

HOMO of Cy3-P favors interfacial HT versus CT in C60. The nIR band decays 

with same dynamics even when Cy3-P is present. However the spectral shape 

peaking at 950 nm is now more indicative of the presence of C60 electrons. The 

electrons in C60 (or reduced C60) should actually increase the absorbance further 

near 1030 nm. This is not obvious from Figure 4.14, but this is probably due to 

our detection limit. The decay of the nIR band is multiphasic, already on the first 

timescale of 0.32 ps as opposed to neat C60. This is assigned to hole transfer from 

the Frenkel exciton, which occurs on a multitude of timescales and is difficult to 

disentangle here. We thus conclude that hole transfer originates from high lying 

excited states, such as the delocalized CT state, but also from the more relaxed 

Frenkel state.  

The amplitude spectrum associated with the 105.4 ps time constant is 

substantially different from the 81 ps spectrum for neat C60 (Figure 4.14 and 4.9, 

respectively). Both contain the spectral signature of C60 Frenkel excitons and 

intermolecular CT. In the bilayer, however, a photoabsorption decaying with a 

105.4 ps time constant is observed at 450-600 nm. This absorption feature is 

associated to the oxidized cyanine resulting from hole transfer. Hole 

recombination dynamics are not accelerated with fluence (not shown), we can 

Figure 4.15 Amplitude at 545 nm probe recorded at 0.3 ps delay time after 390 nm excitation, for 
various fluences. Results for both neat C60 (40 nm) and the bilayer Cy3-P/C60 (45/40 nm) are 
shown. Dotted lines are a guide to the eye.  
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therefore exclude bimolecular recombination resulting from dissociated charge 

pairs. Rather, the interfacial charge transfer state created recombines to the 

ground state. On longer time delays, the ground state absorption of Cy3-P at 

575 nm is restored. Minor Cy3* isomerization is observed at long time delays. 

The back-isomerization occurs on the ns time scale.  

Multiphasic hole transfer is consistent with the bilayer morphology, where 

electron transfer occurs from neighboring molecules, whereas exciton/charge 

carrier diffusion to the interface occurs on a span of timescales depending on the 

exciton/charge carrier generation site. Energy transfer to Cy3-P is not excluded, 

however this process would drastically reduce the spectral signatures assigned to 

C60, which is not the case here.  

In order to clarify if either the distance between interfacial CT states or simply 

the increased number of CT states due to Cy3-P are at the origin of the increase 

in photoinduced Stark effect, the interface was modified by photopolymerizing 

C60 in the bilayer.  

 

4.4.3 Photopolymerization of C60 

 

UV light exposure of fullerene C60 irradiated by a xenon lamp in inert 

atmosphere induces dimerization, oligomerization, and 3D polymerization.45 

Covalent bonds are formed through a 2+2 cycloaddition reaction between 

neighboring molecules. The yield of dimerization attains 70% over the six first 

hours, and longer exposure increases the oligomerization only slightly further. 

The incident photon-to-current conversion efficiency (IPCE) of Cy3-P/C60 

devices decreases by about 25%. The exposed cross-linked film is subsequently 

insoluble in toluene, and the total volume of the film shrinks to about 90% of its 

initial volume.45 In bilayer devices, this results in a smaller contact area at the 

Cy3-P/C60 interface due to the formation of voids. No degradation of the Cy3-P, 

nor that of the Ag contact has been reported.45 In other systems, oligomerized 
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PCBM resulted in reduced macroscopic electron mobility and device 

performance losses, but increase in stability.46,47  

The effect of 16 h C60 photopolymerization is striking when looking at the 

absorbance spectra as shown in Figure 4.16. The absorbances around 320 nm 

and 400 nm are increased and globally the features flatten out. The maximum 

shifts slightly from 345 nm to 342 nm. This is attributed to a change in the band-

gap and possibly a shift of the HOMO level.45  

The steady-state electroabsorption spectra of the devices is shown in 

Figure 4.17 a. The spectral shape in the visible range does not change 

significantly whether the C60 is polymerized or not, whereas the amplitude is 

decreased upon polymerization. This may be ascribed to the formation of 

pinholes upon polymerization. Nonetheless, the C60 EA feature at 545 nm is still 

dominating the spectra, even if the C60 is polymerized.  

The transient absorption dynamics recorded at the maximum of photoinduced 

Stark effect are shown in Figure 4.17 b. Careful correction for the increase in 

absorbance at 390 nm upon photopolymerization has been done, and results in 

very similar amplitude and dynamics with respect to the non-polymerized 

sample. This result can be understood as follows: upon C60 photopolymerization, 

the interfacial distance between Cy3-P and C60 increases. According to Zhang et 

al., the root-mean square roughness of the C60 surface decreases from 1.6 nm to 

0.3 nm after photopolymerization and is accompanied by an increase in C60 

Figure 4.16 Absorbance spectra of C60 (40 nm), Cy3-P/C60 (40/40 nm), and the same samples 
photopolymerized under the xenon lamp (1 sun) in nitrogen atmosphere for 16h.  
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emission after photopolymerization, attributed to a loss of C60 excitons and thus 

poorer HT efficiency.45 For these reasons, we may assign the similar amplitude 

obtained in Figure 4.17 b to the fact that the increase in interfacial CT dipole 

distance (by photopolymerization) impacts the electric field they generate, 

compensating for the poorer hole transfer efficiency. It is thus not clear yet 

whether the longer interfacial CT distance or the number of charges increases the 

C60 EA in the bilayer compared to neat C60 as discussed in the previous section, 

but from this experiment we can conclude that a longer distance between 

geminate electron-hole pairs leads to an increase in amplitude of the 

photoinduced Stark effect. It is however challenging to scrutinize the volume 

affected by the electric field generated from the interfacial CT dipole. As the 

recombination dynamics are not affected by polymerization (Figure 4.17 b), we 

can safely assume that the increase in interfacial distance of about 1 nm does not 

inhibit recombination owing to Coulomb attraction of the electron-hole pair.  

By applying a voltage to the devices, the interfacial CT state could be dissociated 

and the mobility could be monitored. Although investigation of 

photopolymerized C60 has not been followed further in this work, due to 

shortings of the neat C60 polymerized devices, Cy3-P/C60 bilayers are discussed 

in the next section.  

 

Figure 4.17 Cy3-P/C60 (40/40 nm) and Cy3-P/C60 (40/40 nm) polymerized sandwiched 
between ITO/MoO3 and Alq3/Ag electrodes. a) Steady-state EA spectra at 4V applied bias and 
b) transient absorption dynamics averaged over 530-560 nm probe wavelengths (and corrected 
for different absorption) after 390 nm excitation at 10 µJ/cm2 in reflectance mode.  
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4.5 Electric field dynamics in Cy3-P/C60 bilayers 

 

Free charge carrier generation in organic solar cells is still under 

discussion, as different mechanisms yield substantially different time scales.15 

Ultrafast charge generation (< 1ps) has been suggested to originate from hot 

states, delocalized excited states, delocalized charges or to be due to high local 

mobilities.13,48-51 Slower charge generation via the charge transfer state is 

suggested from other investigations.52,53  

From transient absorption measurements on Cy3-P/C60 bilayers, no direct 

evidence of free charge generation is observed after Cy3-P excitation. 

Nonetheless, ultrafast Cy3-P stimulated emission quenching in bilayers with C60 

indicate that part of the interfacial charge transfer states are formed within 0.13 

ps. Without external electric field though, the CT state seems unable to separate 

even on longer time scales.  

Several time resolved techniques shed light into the charge carrier formation and 

transport in organic materials.39 One method built in our laboratory by 

Dr. Devižis is electromodulated differential absorption (EDA), based on the 

Stark effect. The Stark effect is described in more details in Chapter 2. In 

comparison to the photoinduced Stark effect that is observed in transient 

absorption spectroscopy, the EDA probes the dynamics of photoinduced charges 

shielding an externally applied electric field.54 In short, the applied voltage pulse 

is modulated at half the frequency of the pump and probe pulses, and the 

obtained differential absorption spectra is the difference at a certain probe delay 

between a biased and unbiased sample.55 The sample is thus a full solar cell, i.e. 

an organic bilayer sandwiched between two electrodes, such as shown in 

Figure 4.1. The interfacial charge transfer state will now be able to separate due 

to the external electric field, allowing separated charge carriers to drift toward 

the electrodes.  

To address the EDA measurements, steady-state electroabsorption 

measurements of Cy3-P and C60 are briefly summarized (Figure 4.13 a). C60 EA 
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displays narrow features located at 545, 505 and 455 nm. Cy3-P shows weaker 

features at 450 and 590 nm. In the bilayer, EA of both materials are observed 

(Figure 4.13 a) and spectrally separated. We can thus observe the electric field 

locally in the donor or acceptor layer by observing different probe wavelengths. 

590 nm is thus assigned to Cy3-P, and the major peak at 545 nm is assigned to 

C60. Moreover, the pump excitation can be tuned so that one of the two 

components is excited only, which gives more insight into the charge carrier 

formation.  

The hole mobility in Cy3-P is about 10-5-10-7 cm2/(V·s).10 This mobility 

corresponds to hole extraction in the bilayer on timescales longer than 1 ns. The 

fullerene C60 is a disordered organic semiconductor showing a rather high 

electron mobility, about 0.5 cm2/(V·s).11 A recent investigation of PCBM thin 

films (fullerene derivative) by electromodulated differential absorption indicate a 

zero-field electron mobility of 5.10.-2cm2/(V·s).55 For these reasons, the 

electroabsorption in the Cy3-P layer is not expected to vary over 1 ns, whereas 

electrons in C60 are likely to drift towards the corresponding electrode and thus 

decrease the electric field in the C60 layer. This is obvious from Figure 4.18, 

showing the EDA spectra at various time delays. EDA spectra taken at time 

delays before the pump arrives are identical to steady-state electroabsorption. At 

positive time delays, the free charges drifting toward the electrodes decrease the 

total electric field imposed on the sample. Drifting electrons in the C60 layer 

lower the EA assigned to C60 located under 560 nm. The negative feature at 

590 nm, assigned to Cy3-P EA, does not show any decaying dynamics on the 

probed timescale. This evidences that the hole in Cy3-P stays at the interface and 

drifts on longer timescales. At low fluences, such as the ones used here, no 

transient absorption signal were detected, and therefore the electric field 

dynamics integrated over 500-560 nm probe wavelengths shown in the next 

paragraphs are assigned to the drift of electrons in the C60 layer.  
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The electric field dynamics are reconstructed from the EDA data (see 

Chapter 2). The dynamics presented in the following sections were measured at 

reverse applied bias and were normalized to the maximum number of extracted 

charges obtained via the following relation: 

 

 (4.1) 

where C and D are the capacitance and the thickness of the sample, respectively. 

D was 50 nm. The capacitance was calculated for each sample from the ratio of 

the displacement current in the sample under an applied bias. The detailed 

derivation is found in Chapter 2, section 2.3.2 of this thesis. The number of 

charges extracted was determined from the integrated photocurrent over the first 

10 µs as 
 

I
photo

(t)dt∫ after the excitation pulse.56  

The amplitude of the electric field decay ΔE/ΔEmax at any time after pump 

pulsed excitation (time zero) can thus directly be related to a percentage of total 

number of extracted electrons. The larger the negative amplitude, the more 

electrons extracted. The signal should eventually reach -1, indicating all 

electrons are extracted.  

As mentioned in section 4.4.1, free charge carrier generation in neat C60 occurs 

for excitation wavelengths below 530 nm and an external applied field (see 

Figure 4.12).42 This is observed in photocurrent data shown in Figure 4.19, 

 
ΔE

max
=

I
photo

(t)dt∫
C ⋅D

Figure 4.18 EDA spectra of a Cy3-P/C60 (20/30) bilayer at different time delays after 575 nm 
excitation (Fluence:  0.2 µJ/cm2, for 4V applied bias).  
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where charge generation appears to be linear with the applied field. Cy3-P/C60 

bilayers on the other hand, show a diode behaviour with saturation of the 

photocurrent for a bias voltage larger than 2 V (0.4 MV/cm) at 575 nm pump 

excitation. At 390 nm excitation, free charge carrier generation in the bilayer is 

dominating the carrier generation. The different active layer thickness used in 

Figure 4.19 explain the different photocurrent values obtained. To be noted, in 

solar cell operating conditions, field assisted charge carrier generation in neat C60 

devices is poor due to smaller bias existing. 

 

390 nm excitation 

 

The electric field dynamics following 390 nm excitation in the various 

devices are shown in Figure 4.20. For neat C60, charge carriers are extracted 

from the 50 nm film within 4 ps. This is consistent with high charge carrier 

mobility for both electrons and holes. Bilayers show a similar ultrafast decay, 

assigned to free carrier generation in the bulk of C60 and subsequent electron drift 

to the electrode. The slower decay is assigned to interfacial charge separation, 

which expands over the C60 exciton diffusion lifetime of about 1.2 ns.29 Indeed, 

the C60 excitons can diffuse over 20-40 nm during their lifetime.57 Therefore, a 

thicker C60 layer yields a larger contribution of the slow decay.  

Figure 4.19 Integrated photocurrent as a function of applied bias voltage for a) C60 80 nm thin 
film and b) Cy3-P/C60 (20/30) bilayer at 575 nm and 390 nm excitation. (Fluence: 0.2 and 
0.7 µJ/cm2, respectively).  
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575 nm excitation 

 

When Cy3-P is selectively excited at 575 nm, the dynamics show an even 

slower decay displayed in Figure 4.21. The electrons drifting in C60 in this case 

originate from dissociation of interfacial charge transfer states created from the 

Cy3 exciton. The slower decay may at first glance be assigned to the exciton 

diffusion to the interface, as no field-assisted charge generation is observed at 

Figure 4.20 Electric field dynamics recorded after 390 nm excitation averaged over 60 nm probe 
wavelengths (500-560 nm), fluence = 0.7 µJ/cm2, applied bias voltage = 2 V. The total sample 
thickness is kept constant (50 nm) to ensure similar and homogeneous electric field applied.  
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Figure 4.21 Electric field dynamics recorded after 575 nm excitation averaged over 60 nm probe 
wavelengths (500-560 nm), fluence = 0.7 µJ/cm2, applied bias voltage = 2 V. 
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575 nm excitation. However, the exciton lifetime in bilayers is mostly quenched 

on ultrashort (fs) timescales compared to the tens of picoseconds decay observed 

here (see section 4.3). An increase in applied bias voltage leads to a faster decay 

in Figure 4.22 a, which further proves that exciton diffusion is not the rate-

limiting factor. Indeed, in small molecules like Cy3-P, excitons are neutral 

particles, that cannot be dissociated with a field. We already know that electrons 

in C60 drift through 50 nm within 4 ps under 2 V applied bias (Figure 4.20). In 

the bilayer, the electron drift is still fast (under 10 ps) even when the bias voltage 

is varied from 1 to 4 V as Figure 4.22 b shows. This indicates that the bias 

dependent electric field dynamics presented in Figure 4.22 a cannot be assigned 

to the electron drift in C60 neither. We can thus fully ascribe the slow decay 

observed in Figure 4.21 to the dissociation of a Coulombically bound interfacial 

CT state on tens to hundreds of ps. This bound interfacial CT state requires an 

applied electric field to separate into drifting free charges. As dissociation occurs 

on long time delays, we suggest that free charge separation occurs from relaxed 

interfacial CT states, even though creation of the CT state originated from hot 

Cy3-P excited states.  

  

Figure 4.22 Electric field dynamics in the C60 layer of a Cy3-P/C60 (20/30) bilayer device at 
different applied bias voltages for a) 575 nm excitation (0.2 µJ/cm2) and b) 390 nm excitation 
(0.7 µJ/cm2) wavelengths. 
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4.6 Conclusions 

 

Ultrafast photoinduced processes in Cy3-P and C60 have been investigated 

separately, as well as in the bilayer. For neat Cy3-P films, the photophysics differ 

substantially from that of Cy3-B described in Chapter 3. The borate counter-

anion reductively quenches the Cy3 excited state, which is not observed here in 

the Cy3-P ion pair. Instead, the excited state dynamics are entangled with 

ground state absorbance and we speculate that a low lying charge transfer state is 

populated on tens of picoseconds. It is very likely that the disordered structure of 

the film leads to dimers and H-aggregates, helping the charge transfer process. In 

neat C60 films, both the delocalized (intermolecular) charge transfer state and 

Frenkel exciton (intramolecular) are observed. We have shown that the 

delocalized CT state localizes mostly on 360 fs, to either an intramolecular CT, 

or the Frenkel exciton. This process is of major importance as electron 

delocalization fullerene has been suggested in ultrafast charge carrier generation 

in polymer:fullerene blends.13 

Dipoles due to photogenerated charge transfer states, which can be delocalized 

over neighboring molecules, affect the surrounding molecules in a non negligible 

way. They cause a shift or splitting of the absorbance spectra, which then 

appears as a transient effect. This photoinduced Stark effect can be verified by 

steady-state electroabsorption, where the organic material is sandwiched 

between two electrodes, and undergoes an external applied electric field. 

Obviously, this effect overlaps with other transient absorption signals. In C60, the 

photoinduced Stark effect shows very clear signals in TA spectra, even at low 

fluences. This has not been reported systematically in all time-resolved studies, 

therefore we suggest that steady-state electroabsorption measurements should be 

complementary to transient absorption investigations. 

In Cy3-P/C60 bilayers, electron transfer occurs mostly on ultrafast timescales 

(<130 fs) from Cy3-P hot excited state. Minor slower electron injection is also 

observed on tens of ps timescale, occurring from more relaxed excited states. 
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Electron transfer results in a bound interfacial CT state that does not dissociate 

even up to the ns timescale. The interfacial CT state is evidenced by EA 

signatures of C60 upon electron transfer.  

Hole transfer to Cy3-P from photoexcited C60 is observed on ultrashort 

timescales as well (<300 fs). The initial result of hole transfer is probably a 

bound interfacial CT, as we observe enhancement of C60 EA in the bilayer versus 

neat C60. Delayed hole transfer is not excluded. Oxidized Cy3-P is observed and 

has a lifetime of about 105 ps before its recombination back to the ground state. 

We speculate that the observation of oxidized Cy3-P upon hole transfer from 

photoexcited C60 could originate from electron delocalization in C60, accessed 

through high energy photons as observed in neat C60.  

Time-resolved electroabsorption measurements demonstrate that slow interfacial 

CT dissociation is the rate limiting process in charge separation for Cy3-P/C60 

bilayer solar cells. This is due to a large Coulomb attraction, which might be 

difficult to overcome in device operating conditions. Mainly, interfacial CT 

dissociation occurs due to electron drift in the fullerene C60. This takes place on 

several ps, in accordance with high mobility already reported.11 The hole in Cy3-

P however stays at the interface during the 1 ns probe delay time.  

Photopolymerization of C60 by controlled light exposure has shown that a larger 

distance between donor and acceptor in the bilayer of about 1 nm increases the 

EA features. The recombination dynamics are not affected by the 

polymerization though, indicating that 1 nm distance is not sufficient to avoid 

the Coulomb attraction. This is consistent with a Coulomb capture radius in 

organic materials of about 16 nm.  
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4.7 Methods 

 

Substrates 

Glass microscopic slides were cut (2x1.5 cm) and cleaned thoroughly prior to 

material deposition. After brush cleaning with Helmanex soap, the substrates 

were sonicated sequentially for five minutes with acetone, ethanol and finally 

isopropanol. The substrates were dried under compressed air, and placed in the 

plasma cleaner (Harrick Plasma) for 15 minutes.  

Indium tin oxide (ITO) was purchased at Ossila (20 Ω/cm2) and patterned in-

home with HCl 25%, protecting the ITO with capton tape. Further cleaning was 

done as described in the upper paragraph. Samples from EMPA followed the 

same cleaning procedure, but the ITO was patterned and purchased at 

Geomatec (20 Ω/cm2).  

10 nm of MoO3 (Alfa Aesar, 99.9995%) was deposited by sublimation in a 

vacuum chamber at a pressure <10−5 mbar on ITO substrates for EDA 

experiments.  

 

Materials 

Cyanine dyes (1-Ethyl-2-[3-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-

ylidene)-1-propen-1-yl]-3,3-dimethyl-3H-indolium hexafluorophosphate) Cy3-P 

and Cy3-C were purchased at FEW Chemicals or synthesized at the Laboratory 

of Functional Polymers, EMPA. They were dissolved in tetrafluoroproanol 

(TFP, Aldrich, 98%) or chlorobenzene (Sigma-Aldrich, 99.8%) in an argon or 

nitrogen glovebox. Spin-coating of the solutions on plasma-cleaned substrates 

was done on a Laurell spin coater, with different speeds and concentrations 

yielding various film thicknesses ranging from 20 to 55 nm. C60 was purchased 

from Bucky-USA (99.5%) or SES-Research (99.5%) and evaporated through a 

shadow mask at a pressure 10-5 mbar or lower. 
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For full solar cell devices, 10 nm of MoO3 (Alfa Aesar, 99.9995%) was deposited 

by sublimation in a vacuum chamber at a pressure <10−5 mbar on ITO substrates 

for EDA experiments. The active layers were deposited as descried above. A 

2 nm thick cathode buffer layer of tris(8- hydroxyquinoline) aluminium (Alq3, 

Sigma-Aldrich, 99.9995%) was deposited on top at a pressure <10−5 mbar. 

Finally, silver was evaporated through a shadow mask. 

The thickness of Cy3-P films were performed by profilometry (Ambios XP1) on 

samples coated on glass.  

Photopolymerization of C60 during 16h was performed under N2 atmosphere in a 

glovebox, where light from a Xe lamp adjusted to 1 sun with a powermeter 

(LOT Oriel) was directed from outside. 

Transient absorption spectroscopy 

Transient absorption spectra were recorded via femtosecond pump-probe 

spectroscopy based on the 778 nm output of an amplified Ti-sapphire laser 

(Clark-MXR, CPA-2001) with 150 fs pulses running at 1 kHz repetition rate. 

The pump beam was generated via a two-stage non-collinear optical parametric 

amplifier (NOPA), while the probe beam was a white light continuum (350-750 

and 790-1020 nm) generated by a portion of the 778 nm passing through a 

continuously moving CaF2 plate. The pump wavelength was set at 540 nm from 

the NOPA output, or 390 nm generated by second harmonic generation of the 

fundamental 778 nm beam passing through a BIBO. Visible and nIR probe 

wavelength were recorded in two different experiments, by changing the blaze 

grating from 500 to 800 nm and adapting the band pass filters accordingly. The 

probe beam was split before the sample into a signal and reference beam in order 

to account for intensity fluctuations. Both beams were recorded shot by shot 

with a pair of 163 mm spectrographs (Princeton instruments, SpectraPro 2500i) 

equipped with a 512 x 58 pixels back-thinned CCD (Hamamatsu S07030-0906) 

and assembled by Entwicklungsbüro Stressing, Berlin.  
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All spectra were corrected for the white-light chirp measured by Kerr gating and 

background noise. Global analysis by a multiexponential fit at different 

wavelengths (typically every 5 nm) enabled the dissociation of the various 

photophysical processes occurring. The associated spectra show the amplitude of 

the transient signal related to each time component.  

The samples were analyzed in an argon water-free environment with a home-

built chamber avoiding contact with ambient air (Quartz windows, UQG 

Optics).  

 

Time-resolved electroabsorption spectroscopy 

The EDA and EA spectra were measured in reflectance mode on full solar cell 

devices with a comparable setup as described for the TA experiments, with the 

probe beam passing through the ITO, the active layer and then being reflected 

off the silver electrode. The white light probe (400-700 nm) was generated in a 3 

mm sapphire disc from the 778 nm output of an amplified femtosecond laser (the 

same as described in the TA section). The probe beam was split before the 

sample into a signal beam (focused on the sample and reflected off the silver 

electrode into the detector) and a reference beam reaching a second detector. 

The signal and reference were detected with a pair of 163 mm spectrographs 

(Andor Technology, SR163) equipped with a 512×58 pixels back-thinned CCD 

(Hamamatsu S07030-0906) and assembled by Entwicklungsbüro Stresing, 

Berlin. The electric field was modulated with a function generator (Tektronix 

AFG 2021). A square voltage pulse in reverse bias (100 µs duration) was applied 

at half the probe frequency of 1 kHz, and the reflected probe light was measured 

shot-by-shot in the presence and in the absence of electric field, averaged over 

3000 shots. The photocurrent was measured with an oscilloscope through a 50 Ω 

load. 
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5.1. Introduction 

 

 Organic photovoltaics (OPV) have reached beyond 10 % efficiency lately, 

providing not only low-cost solutions but also diversified applications due to 

their flexibility and low-weight compared to inorganic solar cells.1,2 Among 

criteria that predict a good solar to energy conversion efficiency in OPV systems, 

we find good solution processing properties, enhanced light absorption, high 

charge carrier generation and high charge carrier mobility. The latter two are not 

trivial, as organic semiconductors such as polymers may photogenerate bound 

electron-hole pairs with smaller charge carrier mobility than inorganic 

semiconductors. Charge carrier generation has been improved by introducing the 

electron donor/acceptor concept, energetically driving the electron-hole pair 

apart against their binding energy. Interpenetrated networks of donor and 

acceptor called bulk heterojunctions (BHJ) increase the interfacial area for 

charge carrier generation. Nonetheless, the BHJ microstructure has recently been 

revealed to be quite complex, and the mechanism of charge generation is still 

unclear.3,4 Whether the charges are generated on ultrashort time scales by hot 

states, delocalized excited states, delocalized charges or due to high local 

mobility; 5-9 or slower via the charge transfer state10,11 is under thorough debate. 

Subsequent charge transport on the nanoscale toward the electrodes is also of 

interest. Recent investigations have shown that polymer charge carrier mobility 

is time-dependent on ultrafast time scales.12,13 It is thus of paramount interest to 

understand the fundamental mechanisms behind solar energy conversion by 

combining measurements in open circuit conditions and under an externally 

applied electric field. 

These various statements show the need for case studies. A way to achieve this is 

by controlling the microstructure of the donor/acceptor heterojunction, which in 

turn directly govern the charge generation mechanism and transport. Multiple 

studies have investigated the processing methods that influence microstructure, 
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and enabled higher device performances.14,15 Buchaca et al. employed fatty acid 

methyl ester additives to control the microstructure in polymer:fullerene blends 

from fully intercalated, to partially and predominantly non-intercalated 

systems.16 The polymer used is poly(2,5-bis(3-alkyl-thiophene-2-yl)thieno[3,2-

b]thiophene (pBTTT) and is mostly known for field effect transistors due to its 

high hole mobility.17-19 When blended with the fullerene [6,6]- phenyl C61-butyric 

acid methyl ester (PCBM) on a 1:1 weight ratio, the fullerene intercalates into 

the side chains of the polymer to form a co-crystal phase, as shown in Figure 

5.1 a.16 An excess of PCBM yields a PCBM rich region in addition to the co-

crystalline phase (1:4 sample, Figure 5.1 b). By using Me12 or Me14 in 1:1 

blends (structure shown in Figure 5.1), PCBM is successfully expelled out of the 

Figure 5.1 Microstructure scheme of the various pBTTT:PCBM blends: a) is a pure co-crystal 
phase, such as the 1:1 blend; b) is a co-crystal phase with excess PCBM, as in 1:4 blend; c) 
indicates de-intercalation yielding two mainly pure pBTTT and PCBM domains by the use of 
long additives such as Me12 and Me14 in the 1:1 blend; and finally d) is a three-phase 
microstructure achieved by the use of Me7 in the 1:1 blend. This picture is not to scale and serves 
as a basis for the understanding of photoinduced processes. More details about structural data 
can be found in Buchaca et al (ref 16). The molecular structures of the investigated materials are 
shown at the bottom of the Figure.  
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pBTTT side chains, leading to relatively pure phase regions as depicted in Figure 

5.1 c. A shorter alkyl chain, such as the additive Me7, leads to a three phase 

region: the co-crystal phase, neat pBTTT and PCBM clusters (Figure 5.1 d). 

With these well-defined microstructures, we aim to investigate the dynamics of 

electron and hole transfer, and the subsequent charge transport through the 

active layer on ultrafast timescales. We use ultrafast transient absorption and 

transient Stark shift spectroscopy and part of the results presented in this Chapter 

are taken from a publication: “A close look at charge generation in 

polymer:fullerene blends with microstructure control” by M. Scarongella, J. De 

Jonghe-Risse, E. Buchaca-Domingo, M. Causa’, Z. Fei, M. Heeney, J.-E Moser, 

N. Stingelin and N. Banerji, Journal of the American Chemical Society, 137, 2908-

2918, 2015. Transient absorption measurements were carried out by M. 

Scarongella, and they are used here with permission to introduce the transient 

Stark effect data.20 The author carried out electroabsorption and transient Stark 

effect spectroscopy measurements. Samples were prepared by E. Buchaca.  

 

5.2. Microstructure 

 

Grazing-angle incidence wide-angle X-ray scattering, among other 

techniques, has shed light into the intercalation of PCBM into pBTTT side 

chains.16 More routinely accessible, the change in steady-state absorption spectra  

in Figure 5.2 actually easily reflects the various microstructures obtained with 

the use of additives or excess PCBM. Neat pBTTT shows a featureless 

absorbance with a maximum around 525 nm. Neat PCBM shows little 

absorbance in the visible, and increasing in the UV region. The intercalation of 

PCBM into pBTTT side chains in the 1:1 blend is evidenced by the vibronic 

progression and red-shift in absorbance compared to neat pBTTT (see structure 

of the co-crystal phase in Figure 5.1 a).21,22 The excess PCBM in the 1:4 blend is 

indicated by an increase in the UV absorbance, assigned to the two-phase 
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system: intercalated co-crystal phase, and PCBM clusters (Figure 5.1 b).21 The 

use of Me7 additive in the 1:1 blend (sample called Me7 throughout the text) 

leads to partial fullerene intercalation into the pBTTT side chains, as depicted in 

the three phase microstructure in Figure 5.1 d. The co-existence of a neat pBTTT 

phase and co-crystal phase leads to an intermediate absorbance spectra between 

neat pBTTT and 1:1 blend for the Me7 sample (Figure 5.2). The use of longer 

additives such as Me14 in the 1:1 blend (sample called Me14 throughout the 

text) fully expelled the fullerene out of the polymer side chains, evidenced by a 

less structureled absorbance around 540 nm due to pBTTT pure domains. 

Therefore, Me14 is essentially phase separated (Figure 5.1 c). 

Figure 5.2 Steady-state absorption spectra for the various investigated samples (left axis) and 
corresponding electroabsorption spectra measured under 0.6MV/cm externally applied electric 
field (right axis).  
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The apparent decrease in PCBM absorption for the Me14 blend is assigned to 

long-range ordering of neat PCBM regions.23 These pure domains are larger than 

those obtained in Me7 sample, although exact values of domain sizes are not 

straightforward to obtain. Upon film dissolution in chlorobenzene, the fullerene 

absorption was recovered, excluding any fullerene loss during processing (not 

shown).24 

The corresponding electroabsorption (EA) spectra for the various samples was 

measured at 6V externally applied bias voltage and are shown on the right axis 

of Figure 5.2. EA of neat PCBM (C60 derivative) is very similar to the spectra 

obtained for C60 shown in Chapter 4.13 Neat pBTTT shows a rather flat EA 

spectra with a main peak at the absorbance edge, around 620 nm. All blends 

show a clear contribution of pBTTT EA between 620-630 nm, but more complex 

EA at wavelengths below 610 nm where both materials show EA in the pure 

devices.  

 

5.3. Charge generation in pBTTT:PCBM blends 

5.3.1. Excited state dynamics in pBTTT and blends with 

PCBM 

 

 Prior to investigating charge generation in pBTTT:PCBM blends, the 

transient absorption (TA) dynamics in neat pBTTT are discussed (Figure 5.3 a). 

The initial broad ground state bleaching (GSB) centered at 530 nm and excited 

state absorption (ESA) at wavelengths above 640 nm peaking toward 1000 nm 

are present in the 0.2 ps TA spectrum. They display multiphasic decay, 

attributed to the polydispersity of the polymer. Indeed, multiple polymer chain 

lengths induce disorder in the chromophore energy population. This is evidenced 

in the result of a multi-exponential global analysis (Figure 5.3 b) with a fast and 

a slower decay of 4.3 and 176 ps, respectively. Stimulated emission (SE) is also 

observed around 630 nm and causes an indent at 770 nm in the TA spectra. The 
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GSB already recovers with 4.3 ps time constant, indicating an ultrafast decay of 

pBTTT excitons. This is not due to high fluence effects (< 8 µJ/cm2), and is 

corroborated by time-resolved fluorescence measurements in Figure 5.4. Here, 

the shorter wavelength emission dynamics (700 nm) decay faster than the red-

side of the fluorescence spectrum (800 nm), indicating a red-shift in the emission 

on the ps timescale. This is also observed in the first (4.3 ps) amplitude spectrum 

in Figure 5.3 b with blue-sided SE. The 176 ps amplitude spectrum is more 

indicative of red-shifted SE. This emission shift is mostly assigned to energy 

transfer to low energy polymer chains. Long lived features in the weak 

amplitude spectra are assigned to charges and triplet states.25 

The fullerene acceptor PCBM, when intermingled with pBTTT, successfully 

achieves to compete with this early relaxation as ultrafast emission quenching is 

observed on 130 fs and 110 fs for the 1:1 and 1:4 blend, respectively (inset of 

Figure 5.4). Me14 shows a multiphasic and slower emission quenching with 

respect to the 1:1 blend, but still faster than neat pBTTT (Figure 5.4). This 

indicates that exciton diffusion through neat domains limits the charge 

separation rate, and most likely delayed charge generation occurs in this sample.  

Figure 5.3 a) Transient absorption spectra at various time delays after 540 nm excitation for neat 
pBTTT, b) shows the amplitude spectra resulting from the best multi-exponential fit. Smoothed 
thicker lines are overlaid to the experimental amplitude spectra. 
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5.3.2. Charge generation in intercalated pBTTT:PCBM 

blends 

 

TA of 1:1 and 1:4 blends are shown in Figure 5.5 and 5.6, respectively. 

The complete analysis can be found in the work published by Scarongella et al., 

and are used with permission as they will guide our analysis of additive 

samples.20 Two excitation wavelengths were used, in order to disentangle 

electron and hole transfer. While 540 nm excitation excites the polymer pBTTT 

only, 390 nm excitation is less selective but favors PCBM, as the absorption 

spectra indicates in Figure 5.2. Excitation fluences were adjusted to keep the 

number of absorbed photons constant (<1.7×1013photons/cm2). 

For both samples and excitation wavelengths, the structured GSB stems from 

excitation of the intercalated (co-crystal) phase, as already evidenced in the 

ground-state absorbance (Figure 5.2). The flat and broad absorbance above 

640 nm is assigned to positive charges on pBTTT, created instantaneously after 

light excitation, that is within ≈ 100 fs (Figures 5.5 a,c and 5.6 a,c).20,26,27 This 

explains the absence of ESA (absorbing toward 1000 nm) which is efficiently 

Figure 5.4 Time-resolved fluorescence dynamics recorded for 500 nm excitation for various 
samples, at probe wavelength as shown in the legend. Thicker lines represent the result of the 
best multi-exponential fit. Inset shows the early timescale dynamics for 1:1 and 1:4 blends. 
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quenched, as was already suggested by the time-resolved fluorescence 

measurements in Figure 5.4. The rise of PCBM GSB for wavelengths below 

450 nm with 100 fs timescale in the amplitude spectra further corroborates the 

ultrafast electron injection for 540 nm excitation (Figures 5.5 b and 5.6 b). 

Similarly, polymer GSB rises with 100 fs time constant as well as a result from 

hole transfer after 390 nm excitation (Figures 5.5 d and 5.6 d).  

A photoabsorption around 630 nm, associated to an oscillatory function in the 

2.4 ps amplitude spectrum, is observed in the TA data of 1:1 and 1:4 blends 

(Figure 5.5 and 5.6). From the EA spectra shown in Figure 5.2, it is 

straightforward that this early oscillatory signal observed in TA measurements is 

associated to local electric fields in the sample leading to photoinduced 

electroabsorption due to the Stark effect. Local electric fields are induced by 

photogenerated charge carriers, delocalized excited states or even delocalized 

charge pairs.28-33 We will come to the analysis of EA in TA data in more details 

in section 5.3.5, and we will for now focus our discussion on the charge 

generation dynamics.  

In the 1:1 blend, geminate charge recombination is associated with the 211 ps 

Figure 5.5 Transient absorption spectra for the 1:1 sample recorded at various time delays after 
a) 540 nm and c) 390 nm excitation. b) and d) are the corresponding amplitude spectra resulting 
from the multiexponential fit. Smoothed thicker lines are overlaid to the experimental amplitude 
spectra. 
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time constant in the amplitude spectra of Figure 5.5 b and d. Most charges 

generated recombine with this time scale for both excitation wavelengths. The 

weak signal at long time delays stems from a low fraction of free charges formed 

in this blend. 

PCBM excess in the 1:4 blend forms clusters where the can electron escape from 

the co-crystal phase by energy cascade, stabilizing the electron by about 100-

200 meV.7,34 Prompt charge generation in the intercalated domains is observed 

for both excitation wavelengths in the 1:4 sample, as indicated by the flat 

absorption of charges for wavelengths above 640 nm. The electron and hole 

transfer rates for prompt charge generation are both ≈ 100 fs as the rise of 

polymer and PCBM GSB suggest in the amplitude spectra of Figure 5.6 b and 

5.6 d, respectively. The amplitude associated to gCR is strongly reduced 

compared to the 1:1 sample due to PCBM clusters (Figure 5.5 and 5.6). Instead, 

long lived (free) charges are observed with delayed recombination rates (after 

1 ns). Slower and multiphasic charge generation is also present for 390 nm 

excitation. This is associated to exciton diffusion in PCBM clusters, whose 

Figure 5.6 Transient absorption spectra for the 1:4 sample recorded at various time delays after a) 
540 nm and c) 390 nm excitation. b) and d) are the corresponding amplitude spectra resulting 
from the multiexponential fit. Smoothed thicker lines are overlaid to the experimental amplitude 
spectra. 
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lifetime is about 1.2 ns.35,36 

 

5.3.3. Charge generation in a partially intercalated blend 

with the use of Me7 (three phase system) 

 

Processing the 1:1 blend with a fatty acid methyl ester additive such as 

Me7, whose structure is shown in Figure 5.1, yields a three-phase microstructure 

as depicted in Figure 5.1 d. While this could be observed in the steady-state 

absorbance spectra from Figure 5.2, this is also seen in the less structured GSB of 

TA data in Figure 5.7 a compared to the 1:1 blend (Figure 5.5 a). Obviously, 

multiphasic charge generation is expected for this sample at 540 nm excitation 

due to the presence of both intercalated and neat pBTTT domains. Indeed, 

prompt charge generation is observed as indicated by the flat absorption above 

640 nm wavelength in the 0.2 ps TA spectrum, but ESA from pBTTT neat 

domains peaking toward 1000 nm is also present (Figure 5.7 a). Delayed charge 

generation takes place with 0.3 and 6.8 ps time constants as the rise in PCBM 

Figure 5.7 Transient absorption spectra for the Me7 sample recorded at various time delays after 
a) 540 nm and c) 390 nm excitation. b) and d) are the corresponding amplitude spectra resulting 
from the multiexponential fit. Smoothed thicker lines are overlaid to the experimental amplitude 
spectra. 
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GSB for wavelengths below 450 nm suggests (Figure 5.7 b). Part of the pBTTT 

excitons are actually lost to the ground-state by recombination with 0.3 and 

6.8 ps time constants, as GSB recovery and SE (around 730 nm)/ESA decay in 

the corresponding amplitude spectra suggest. Geminate charge recombination is 

not completely avoided by the presence of neat domains, associated with the 168 

ps time constant due to spectral similarity with gCR in 1:1 and 1:4 blends. 

Nonetheless, at longer time delays, charge absorption is clearly larger than for 

the 1:1 blend (Figure 5.5 and 5.7), indicating that despite exciton loss and minor 

gCR, the charge recombination rate is slower thanks to the neat pBTTT 

domains. Actually, the dynamics probed at 850 nm shown in Figure 5.8 

represent the charge recombination dynamics in the various samples. They 

clearly show that the use of Me7 reduces gCR compared to the 1:1 sample. 

Accordingly, a higher yield for free charge generation was observed with the use 

of Me7 in the 1:1 blend in another study.16  

Similarly to 540 nm excitation, multiphasic charge generation due to exciton 

diffusion in PCBM is observed for 390 nm excitation in the amplitude spectra 

(Figure 5.7 d) with 0.3 and 6.8 ps time constants. Both pBTTT and PCBM are 

excited at this wavelength. Prompt charge generation is observed as the flat 

absorption above 640 nm implies, which recombination rate seems reduced 

Figure 5.8 Normalized transient absorption dynamics recorded after 540 nm excitation for the 
various investigated samples at 850 nm probe (mainly charges). Thick solid lines are the result 
from the best multi-exponential fit 
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compared to that observed at 540 nm excitation (Figure 5.7 a and c). Most likely 

the decaying ESA together with multiphasic charge generation overlap at 

wavelengths above 640 nm, resulting in a weakly decaying transient signal. Hot 

charge generation due to a higher excitation energy is excluded here, as the yield 

of free charge carriers at long time delays is similar for both 540 and 390 nm 

excitations.11,37 

 

5.3.4. Charge generation in a mainly phase-separated blend 

with the use of Me14 

 

Additive with a longer alkyl chain such as Me14 favors fullerene 

expulsion from pBTTT side chains, leading to a predominantly two-phase 

microstructure (Figure 5.1 c). 540 nm excitation in Figure 5.9 a shows mainly 

the presence of pBTTT excitons from neat domains, in accordance with the less 

structured GSB observed. Time-resolved fluorescence revealed multiphasic 

exciton decay in this sample (Figure 5.4) and this is observed as well in the 

Figure 5.9 Transient absorption spectra for the Me14 sample recorded at various time delays after 
a) 540 nm and c) 390 nm excitation. b) and d) are the corresponding amplitude spectra resulting 
from the multiexponential fit. Smoothed thicker lines are overlaid to the experimental amplitude 
spectra. 
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amplitude spectra of Figure 5.9 b. Unlike the previous samples, the amplitude of 

charge absorption is small in Figure 5.9 a. The 168 ps amplitude spectra, usually 

assigned to gCR in the other blends, now indicates ESA decay peaking toward 

1000 nm (Figure 5.9 b). The pBTTT domains are probably too large to avoid 

exciton loss. 

390 nm excitation yields very similar TA features in Figure 5.9 c, as in this 

sample mostly the pBTTT absorbs at this wavelength (see Figure 5.2). Still, a 

more structured GSB points toward a more selective excitation of the co-crystal 

phase, even if there is little intermixed phase present in this sample. We will 

come back to that later. 

The solar cell efficiency of Me14 sample is lower than for the Me7 sample, but 

still higher than the 1:1 blend. This is directly observed in the transient 

absorption dynamics at 850 nm (mainly charge absorption, Figure 5.8), where 

the 1:4 has the most long-lived charges, followed by Me7, Me14 and finally the 

1:1 sample. This result highlights that the recombination dynamics at early 

timescales impact the solar cell efficiency of pBTTT:PCBM blends.  

 

5.3.5. Electroabsorption (EA) dynamics 

 

The oscillatory feature observed in the early time delay spectrum after 

540 nm excitation of the 1:1 blend is due to EA of pBTTT as mentioned earlier. 

EA in transient absorption data has been reported several times for different 

systems such as dye-sensitized solar cells, polymer:fullerene blend films and neat 

fullerene films.6,30,38-40 Local electric fields are induced by photogenerated charge 

carriers, delocalized excited states or even delocalized charge pairs.28-33 Amongst 

various effects, the local electric fields induce a change in the transition dipole 

and/or polarizability of the surrounding molecules, which as a consequence 

shifts the transition energy of the investigated chromophore. This is called a 

Stark effect and is measured by tracking the change in absorbance upon voltage 

modulation. The resulting EA for the 1:1 blend is shown in Figure 5.2.  
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The oscillatory shape of EA is typical and can be decomposed into contributions 

from first and second order derivatives of the ground state absorbance (see 

Chapter 2 for more details). This goes beyond the scope of the work presented 

here, and we will concentrate on the origin of the EA in TA data for these 

particular pBTTT:PCBM blends. Figure 5.10 shows the striking similarity 

between EA, the 2.4 ps amplitude spectrum and first derivative of ground state 

absorbance of the 1:1 blend. 

The electric fields generated around electron-hole pairs (dipole) and free charges, 

are schematically illustrated in Figure 5.11 for diverse microstructures such as in 

the neat pBTTT domain, co-crystal phase, and PCBM cluster. 

In fully intercalated samples (co-crystal phase only, 1:1 sample), electron-hole 

pairs are generated mainly within 100 fs, and charge generation does not depend 

on excitation wavelength (i.e. polymer or fullerene excitation). The EA is 

observed in the 0.2 ps TA spectrum and decays weakly with a time constant of 

2.4 ps (Figure 5.5 a and b, respectively). The EA component is still present at 

longer time delays in the TA spectrum. According to the crystal structure of 1:1 

blends, the initial electron-hole pair is perpendicular to the polymer backbone 

(Figure 5.11).41 The polymer backbones around this dipole are close enough to 

contribute to the EA observed. According to the electrostatic picture, the 

Figure 5.10 Absorption first derivative, Electroabsorption (from Figure 5.2), and 2.4 ps 
amplitude spectrum (from Figure 5.5 a, 540 nm excitation) for the 1:1 blend. 
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polymer segments above and below the dipole (along the π-stacking axis) and 

along the same polymer chain of the hole are affected by the electric field 

generated by the dipole. The lamellar stacks are separated by about 3 nm, and 

therefore are much less affected by the dipole electric field. If we assume a 

reasonable charge separation of 1 nm at early time scales, the strong EA 

observed already at the 0.2 ps time delay can be explained by using simple 

electrostatic calculations. The complete electrostatic derivation is detailed in 

reference 24. The weak EA decay associated with a 2.4 ps time constant is 

assigned to charge migration within the co-crystal phase, or charge relaxation.24  

The initial EA signature is similar for the 1:4 blend for 540 nm excitation, as 

prompt charge generation occurs in the co-crystal region as in the 1:1 blend 

(Figure 5.6 a). But in this case, electron migration to PCBM clusters is favored 

due to an energy cascade toward higher electron affinity domains, and EA is still 

observed at long time delays (1 ns).7,34 We have derived a similar electrostatic 

picture involving an electron in the PCBM cluster, and the hole remaining on 

the co-crystal phase. In fact, the less bound charges are no longer oriented 

perpendicular to the polymer backbone, but more along the polymer backbones 

and/or π-stacking as the electron will follow the fullerene direction parallel to 

the polymer π-stacking toward pure PCBM clusters (Figure 5.11). Indeed, 

polymer side chains and backbones hinder electron diffusion in fullerene in the 

other directions. This orientation change in addition to the longer separation 

PCBM 
cluster

neat pBTTT

co-crystal

Figure 5.11 Schematic representation of the electric fields generated by charge pairs (dipoles) and 
free charges, depending on the microstructure: co-crystal phase, neat pBTTT and neat PCBM 
domains. The spacing between polymer backbones is 3 nm (lamellae). The π-stacking is above 
and below the plane shown here (see crystal structure in ref 41). 
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distance however yield very similar EA response to the initial dipole in the co-

crystal region, with a minor weak decay associated with the 2.4 ps amplitude 

spectrum in the 1:4 blend. We can thus conclude that the EA signature observed 

in intercalated systems is due to either bound or free charges on the polymer 

chains, with minor contribution from the electron position (bound in the 

intercalated phase, or free in the PCBM cluster).  

TA of Me7 sample at 540 nm excitation revealed prompt charge generation, but 

EA is less evident (Figure 5.7 a). The weak EA quickly decays and no 

oscillatory-like EA feature is observed in the corresponding amplitude spectrum 

for the first two time constants (Figure 5.7 b). As the yield of long-lived free 

charges is larger than for the 1:1 blend, we conclude that the charges generated 

at the interface of pure domains or in the co-crystal phase quickly migrate to neat 

pBTTT domains. Bound or free holes in neat pBTTT domains affect differently 

the surrounding polymer chains compared to pBTTT in the co-crystal phase. EA 

of pBTTT in neat domains has actually much lower amplitude than in the co-

crystal phase, as suggested by Figure 5.12 b. EA demonstrates quadratic 

dependence on applied bias voltage in both cases, but the EA amplitude is much 

lower in neat pBTTT sample. We assign this to a broader and more flat 

absorbance in neat pBTTT compared to the co-crystal phase, as Figure 5.2 

already indicates, leading to less effect of the electric field in neat pBTTT 

domains. Indeed, shifting a broad and unstructured absorbance gives rise to less 

sharp EA features compared to shifting a structured absorbance such as the co-

crystal phase. 

Delayed charge generation due to exciton diffusion in neat pBTTT to the 

interface with PCBM does not lead to a rise of EA in the TA data of Me7 sample 

(Figure 5.7 a and b), which corroborates that EA is fully assigned to the co-

crystal nature of the polymer. Me14 does not show significant EA in TA data, in 

fact it mostly shows SE from neat pBTTT domains at early time delays (Figure 

5.9 a). Delayed charge generation is not associated with a rise in EA as well 

(Figure 5.9 c). We thus assign the absence of EA to the nature of the pBTTT 
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domains where the hole is located: only co-crystal phase will show EA in TA 

data. 

At 390 nm excitation for both Me7 and Me14, the excitation is more selective to 

co-crystal regions as observed from TA measurements. This is implied from a 

more structure GSB in Figure 5.7 c and 5.9 c compared to 540 nm excitation. 

Accordingly, the EA feature is enhanced compared to 540 nm excitation in the 

initial 0.2 ps spectrum and appears notably in the 0.3 ps amplitude spectra 

(compare Figures 5.7 b and d, Figures 5.9 b and d). The initial EA dynamics are 

represented by the dynamics at 630 nm probe in Figure 5.12 a. While the yield of 

free charge generation at long time delays does not depend on excitation 

wavelength (Figure 5.7 and 5.9), the fast decay upon 390 nm excitation implies 

that prompt charge generation is followed by hole migration to neat pBTTT 

domains on a timescale of about 1 ps. This is supported by the lack of charge 

absorption recovery (around 850 nm) on ultrafast time scales in the 

corresponding amplitude spectra (Figure 5.7 d and 5.9 d).  

We can thus conclude that the EA observed in TA data stems from the position 

of the hole in the co-crystal regions, whose is more selectively excited at 390 nm.  

Gelinas et al. reported EA in TA data and assigned it to long-range separated 

charges by about 4 nm, and no EA was observed for bound charge pairs.6 This is 

in contrast to our results, which show EA from bound and less bound charge 

Figure 5.12 a) Transient absorption dynamics recorded for 540 and 390 nm excitation for Me7 
and Me 12 (similar to Me14) blends at 630 nm probe wavelength. Thick solid lines are the result 
from the best multi-exponential fit. b) Quadratic dependence of the EA (at 620 nm probe) versus 
externally applied bias voltage. Neat pBTTT has a much weaker EA signature than the 
intercalated pBTTT (1:1). 
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pairs in the co-crystal phase only. We relate this to the more ordered structure of 

pBTTT:PCBM samples compared to the more amorphous samples from ref. 6. 

 

In order to gain more insight into the charge carrier transport through the active 

layer on ultrafast timescales, time-resolved Stark measurements have been 

performed on the various samples. The results are shown in the next section. 

 

5.4. Electric field dynamics: charge carrier 

generation and transport 

 

High charge carrier generation yield followed by appropriate charge 

transport toward the electrodes are both crucial parameters for photovoltaic 

performance. Before going into the details of charge transport, we will overview 

the quasi steady-state charge collection efficiency. Photovoltaic devices were 

prepared by depositing the active layer between ITO and Al electrodes (see 

section 5.7 for details) and encapsulated by an epoxy resin.  

 

5.4.1. Photon to current efficiency 

 

 The numbers of charge carriers extracted as a function of applied bias are 

shown in Figure 5.13 for the various investigated samples, corrected for the 

number of absorbed photons:  

 
Photon-to-Current[λ

exc
,V]=

I
photo

(t)dt∫
e

⋅ hc
Fluence ⋅λ

exc
⋅A

ill
⋅(1− T)

 (5.1) 

where e is the elementary charge, h is Planck’s constant, c is the speed of light in 

vacuum, Aill is the illuminated active area, T is the transmittance of the sample at 

the excitation wavelength λexc and V is the reverse applied bias. The constant 
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values can be found in the list of abbreviations. The number of charges extracted 

was determined from the integrated photocurrent over the first 10 µs after the 

excitation pulse.42,43 The number of absorbed photons was calculated from the 

fluence and absorbance of the sample at the excitation wavelength. The 

absorbance was taken from transmittance measurements and taking into account 

the 45° angle of the pump beam with respect to the active layer (see EA setup in 

Chapter 2, Figure 2.6). This is a rough estimation, but serves well the discussion 

here as all samples were measured in the same way. The photon to current 

efficiency values obtained (Figure 5.13) are in general smaller than expected, but 

can be explained easily due to the configuration of the setup (see Chapter 2, 

Figure 2.6 for a scheme of the setup). The reflection losses by the glass were not 

accounted for, nor the exact absorption profile within the active layer. This 

would easily step up the values obtained, nonetheless this would not change the 

trend observed here.  

 

The 1:4 device definitely shows the highest efficiency in Figure 5.13, and this 

ratio is often the best for other polymer blends.34,37,44,45 540 nm excitation leads to 

quasi-saturation of charge carrier extraction after about 1 V of applied bias, with 

Figure 5.13 Photon to current efficiency under reverse bias voltage for different devices at two 
excitation wavelengths: 540 nm (mainly pBTTT) and 390 nm (pBTTT and PCBM). Neat 
pBTTT is shown as a comparison in pink round symbols. The excitation intensity was adjusted 
to have the same number of absorbed photons for both excitation wavelengths, 
<3.1011 photons/cm2. 
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a slower increase afterwards, reaching about 50% efficiency. This indicates that 

majority of the excitons are converted into extracted carriers. At 390 nm 

excitation, the efficiency is slightly lower over the bias scanned due to the 

exciton loss in the PCBM clusters.34 Indeed, exciton diffusion can not be affected 

by an externally applied bias. 

For the 1:1 blend, the slope is rather linear and the maximum does not reach 

more than about 30 %, indicating that high applied biases are needed to 

successfully dissociate bound charge pairs. The poor performance of the solar 

cell may be related to a prevailing geminate charge recombination mechanism. 

390 nm excitation leads to similar results than 540 nm excitation. We assign this 

to the presence of the co-crystal phase, where charge generation is prompt and 

independent of excitation wavelength, without exciton loss. Dissociation of 

charge pairs in the co-crystal phase is however not favorable, but can be 

enhanced with the applied electric field. The decrease in efficiency after 3 V 

applied bias with 390 nm excitation is unclear at the moment, but experiments 

are carried out in the group of Prof. N. Banerji for confirmation. Nevertheless, 

the difference is minor and probably indicates that excess photon energy does 

not impact the number of charges extracted, for example via hot states. 

The additive samples (Me7 and Me14) show a lower efficiency than 1:1 for 

540 nm excitation assigned to exciton loss in pure pBTTT domains, according to 

our TA and time-resolved emission data. At 390 nm excitation however, slightly 

higher efficiency values are obtained for Me7 sample compared to the 1:1 blend. 

We relate this to selective excitation of the co-crystal domains according to our 

TA measurements, which efficiently generate bound charge pairs that will 

dissociate under high applied electric fields, and effectively avoid exciton loss 

due to large pure domains. Exciton loss is however not completely avoided in 

Me14 samples, as the low efficiency in Figure 5.13 indicates. This is due to 

larger pure fullerene and pBTTT domains in this sample, compared to Me7.16,24 

As a comparison, neat pBTTT is also presented and indicates low photon to 

electron conversion efficiency, in good agreement with the poor photovoltaic 

performance of neat polymer solar cells.46  
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Bound charge pairs require electric fields to dissociate, as opposed to free charge 

carriers.15 Moreover, traps encountered during charge transport through the 

active layer can be pulled out by electric fields. Both effects can lead to linear 

photon to current efficiencies. Additionally, poor conversion efficiency 

originating from exciton losses in pure domains lead to lower amounts of 

extracted charges. To get more insight into the charge carrier dynamics, time-

resolved electroabsorption based on the Stark effect were performed on these 

samples. 

 

5.4.2. Electric field dynamics 

 

 Charge transport dynamics on the nanoscale were monitored with time-

resolved dynamic Stark shift spectroscopy. More details about the experimental 

setup can be found in section 5.7 and Chapter 2.3. Basically, the applied voltage 

pulse is modulated at half the frequency of the pump and probe pulses, and the 

obtained differential absorption spectra is the difference at a certain probe delay 

between a biased and unbiased sample.13 The sample is thus a full solar cell 

device, i.e. an organic layer sandwiched between two electrodes. The 

photogenerated charge pairs will drift under the applied electric field toward 

their respective electrodes.  

The steady-state electroabsorption (EA) spectra for the various investigated 

samples are shown in Figure 5.2. The obtained spectra for different blend ratios 

show mostly EA of the pBTTT polymer. The PCBM contribution is located for 

wavelengths below 610 nm, and therefore both PCBM and pBTTT contributions 

are intermixed for wavelengths below 610 nm. For this reason, the electric field 

dynamics calculated from time-resolved dynamic Stark shift spectroscopy shown 

in the next section are averaged over about 615-630 nm probe wavelengths, 

depending on the sample. The electric field in the device depends on the 

externally applied electric field at first, and the charge pairs’ average distance as 

well as to their concentration after pump excitation.  
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In principle, the time of charge extraction depends on the exciton diffusion time, 

the rate of charge pair dissociation and the transport mode. Insight into the 

exciton diffusion time has been revealed by time-resolved fluorescence and 

transient absorption (see section 5.3). Exciton diffusion in pBTTT is not affected 

by the electric field, as negligible electric field decay was observed for neat 

pBTTT (not shown). This is in contrast with Pranculis et al., but we tentatively 

attribute this to the different electronic properties of pBTTT polymer compared 

to APFO3.44 The electric field dynamics presented in the following were 

measured at 4V reverse applied bias and were normalized to the maximum 

number of extracted charges obtained via the following relation:43 

 

 
ΔE

max
=

I
photo

(t)dt∫
C ⋅D

 (5.2) 

where C and D are the capacitance and the thickness of the sample, respectively. 

Typically, C was 3 nF and D 100 nm. The capacitance was calculated for each 

sample from the ratio of the displacement current in the sample under an applied 

bias. The detailed derivation is found in Chapter 2, section 2.3.2 of this thesis.  

The amplitude of the electric field decay ΔE/ΔEmax at any time after pump 

pulsed excitation (time zero) can thus directly be related to a percentage of total 

number of extracted charges. The larger the negative amplitude, the more 

charges extracted. The signal should eventually reach -1, indicating all charges 

are extracted.  

The excitation intensity in the following dynamics was adjusted to have the 

same number of absorbed photons for both excitation wavelengths, 

<3.1011photons/cm2. 

 

Prompt charge generation 

 

We will first address the samples where pBTTT is intercalated with PCBM to 

form a co-crystal phase, leading to only prompt (<100 fs) electron and hole 
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transfer. This is the case for the 1:1 sample at both excitation wavelengths, and 

1:4 sample at 540 nm excitation, as derived from transient absorption data in 

section 5.3.  

In the 1:1 blend, identical electric field dynamics and amplitude for both 

excitation wavelengths are observed in Figure 5.14. As the microstructure in this 

sample is one-phase, charge drift is expected to be identical for both excitation 

wavelengths in this sample. This result emphasizes that excitation (photon) 

energy yields similar mobile charges. At 1 ns time delay, only about 10 % of the 

charges are extracted for both excitation wavelengths. This weak decay of the 

electric field dynamics indicates that most of the charge extraction occurs on 

slower timescales than our optical time delay of 1.2 ns, which is assigned to 

trapped electron-hole pairs at the pBTTT:PCBM interface. The voltage 

dependent electric field dynamics of this 1:1 blend, shown in Figure 5.15 a, 

clearly demonstrate the nature of prompt charge generation in a co-crystal phase: 

bound charge pairs (CT states) tend to dissociate more at higher voltages.37  

For the 1:4 device which contains both co-crystal regions and pure PCBM 

clusters, the dynamics at 540 nm excitation are faster than the 1:1 device, 

attributed to higher electron mobility in the PCBM clusters (Figure 5.14). 

Figure 5.14 Electric field dynamics for different devices (100 nm) at 540 and 390 nm excitation 
wavelength. The dynamics were normalized for the maximum number of extracted charges (see 
equation 5.2). The externally applied electric field is 0.4MV/cm. Solid lines represent the result 
of the best multi-exponential fit. 
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Devižis et al. reported PCBM mobility up to 0.33 cm2/V ⋅ s at similar field 

strength.13 In APFO3:PCBM blends studied by Pranculis et al., the 1:4 device 

also showed fast electric field dynamics assigned to electron mobility in 

enhanced percolation pathways.44 PCBM clusters allow for 35% charge 

extraction within 1.2 ns in the 1:4 device. 

The electric field dynamics are less dependent on externally applied electric field 

in the 1:4 sample compared to the 1:1 sample (Figure 5.15). As previously 

mentioned, both charge pair dissociation and transport are affected by bias 

voltage. However, we have seen from TA measurements that geminate 

recombination is prevented in the 1:4 sample, and we can therefore assume that 

charge carriers formed in the 1:4 device are free or loosely bound. The slight 

voltage dependence on electric field dynamics in Figure 5.15 b is thus mostly 

assigned to transport, which is assigned to poor percolation of holes in pBTTT 

due to PCBM clusters. Although poor hole mobility could be detrimental to the 

Figure 5.15 Electric field dynamics for a) 1:1 and b) 1:4, samples at 540 nm excitation 
wavelength. The dynamics were normalized for the maximum number of extracted charges (see 
equation 5.2). The externally applied electric field is varied from 0.25 to 0.6 MV/cm.  
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device, another work reported that high mobility of one of the two charge 

carriers is sufficient to efficiently dissociate charge pairs.44 Moreover, it is now 

well known that fullerene domains may act as a driving force for charge 

separation in polymer:fullerene blends. 7,34,37 

Further insight into charge transport is derived from the average electron-hole 

distance l(t) calculated from the electric field dynamics. In fact, an increased 

distance between electron-hole pairs will decrease the externally applied electric 

field by the following relation: 

 

 (5.3) 

 

where D is the sample thickness, and ΔE(t)/ΔEmax is the electric field dynamics 

as a function of time as presented in Figure 5.14. The derivation is found in 

Chapter 2, section 2.3.2, as well as in references of this Chapter.10,13,44 This 

equation takes charge extraction into account. 

l(t) corresponds to the average distance in the direction of the field across the 

sample. Only prompt charge generation (thus where pBTTT is in the co-crystal 

 

l(t) = D ⋅ 1− 1− ΔE(t)
ΔE

max

⎛

⎝
⎜

⎞

⎠
⎟  

Figure 5.16 Time-dependent average electron-hole distance after prompt charge generation. The 
distance is an average on the applied electric field axis (0.4 MV/cm) across the device. Devices 
thickness are about 100 nm. The excitation wavelength is shown in the legend. 
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phase only) can be modeled, as delayed charge generation can not be accounted 

for. Therefore, only data for the 1:1 and 1:4 samples are considered, at both 

excitation wavelengths for the former, and only 540 nm excitation for the latter. 

Results are shown in Figure 5.16. The noise at early time delays is assigned to 

small perturbation of the electric field.13 The small charge carrier displacement in 

the first ps after excitation is just above 1 nm for all samples, showing that the 

charge pairs in the co-crystal phase are rather close. Charge delocalization is 

prevented in the co-crystal phase of the 1:1 blend due to its geometry and 

absence of neat regions.47 This result also rationalizes our electrostatic picture in 

TA data, where we assumed initial charge separation of about 1 nm. In TA, 

dissociation of bound charge pairs has to compete with gCR (about 211 ps for 

co-crystal) to effectively separate. The initial bound charge pairs are randomly 

distributed around the electric field axis, and we probe only the charge pairs 

along the axis of the electric field. The smaller electron-hole distance at 1 ns for 

the 1:1 blend of about 5 nm strongly corroborates that bound charge pairs are 

essentially formed in the pure co-crystal regions. PCBM clusters in the 1:4 

sample efficiently separate the charges further to reach 15 nm at 1 ns after 

excitation. Results emphasize here the importance of fullerene clusters for charge 

separation in pBTTT:PCBM blends, in combination with prompt charge 

generation.  

 

Time-dependent mobility can be obtained from the average electron-hole 

distance as follows:44 

 
µ(t) = 1

E
⋅ ∂l(t)
∂t

 (5.4) 

 

This mobility is averaged for electrons and holes, and is shown in Figure 5.17. 

For the 1:1 sample, the initial mobility is about 0.1 cm2/V ⋅ s and decreases by 

about two orders of magnitude on 1 ns time delay, independent of excitation 

wavelengths. We can relate the decrease in initial mobility to the energetic 

charge relaxation due to disorder. This has been observed in other 
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polymer:fullerene systems.10,13 Buchaca et al. reported a hole mobility in the 1:1 

blend of about 0.015 cm2/V ⋅ s. This is similar to the value obtained at long time 

delays in Figure 5.17, indicating that time-resolved EA measurements probes 

mobility of charges before they reach equilibrium. 

The 1:4 sample has similar initial mobility to the 1:1 sample. This can be 

understood as follows: electron mobility in pure PCBM devices, or very large 

PCBM domains is rather high, up to but 0.33 cm2/V ⋅ s for an applied electric 

field of 0.7 MV/cm.13 In pBTTT:PCBM blends, holes also migrate toward the 

electrode, however the mobility is presumably lower than for electrons in 

PCBM, especially in the co-crystal phase. Indeed, holes in the co-crystal phase 

migrate along the chains, as transport along the π-stacks is prevented by fullerene 

intercalation. Therefore, the average carrier mobility is globally lower than for 

electrons in pure PCBM domains. The 1:4 device however shows less decrease 

in mobility than the 1:1 device. This is assigned to percolation pathways for 

electrons in PCBM clusters that are not found in the 1:1 blend.  

 

Multiphasic charge generation 

 

Additive samples excited at 540 nm display multiphasic (prompt and delayed) 

charge generation in TA data. Concerning the Me7 sample, the electric field 

Figure 5.17 Time-dependent charge carrier mobility averaged for electrons and holes from the 
experimental data of Figure 5.15 at 0.4MV/cm applied electric field.  
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dynamics at 540 nm excitation are complex, reflecting the three-phase 

microstructure (Figure 5.18 a). The electric field dynamics are faster than for the 

1:1 sample, indicating a better transport which we can safely assign to the neat 

domains. Indeed, as charge carrier generation is multiphasic in this sample, 

faster electric field dynamics than the 1:1 sample (where charge carrier 

generation is prompt) suggests the charge carriers migrate faster in Me7 sample. 

Similarly, the Me14 sample shows multiphasic electric field decay (Figure 

5.18 a). Exciton diffusion in large neat pBTTT domains such as those found in 

Me14 slow down the electron transfer event. Therefore charge formation is 

slower, and charge migration takes place on slower timescales. This yields 

intermediate charge drift dynamics between Me7 and 1:1 sample. 

Excited at 390 nm, the electric field dynamics in the 1:4 device are slower 

compared to 540 nm excitation, which is attributed to the exciton diffusion in 

the PCBM cluster and delayed charge generation, in agreement with TA 

Figure 5.18 Electric field dynamics for different devices (100 nm) at 540 and 390 nm excitation 
wavelength. The dynamics were normalized for the maximum number of extracted charges (see 
equation 5.2). The externally applied electric field is 0.4MV/cm. Solid lines represent the result 
of the best multi-exponential fit.  
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data (Figure 5.18 b). Photoinduced charge carrier generation in PCBM at 

390 nm excitation has been observed under the presence of an external field.48 If 

existing, this process is difficult to highlight, as holes in PCBM still may reach 

the pBTTT interface and further diffuse within pBTTT. 

Electric field dynamics at 390 nm excitation for additive samples (Me7 and 

Me14) demonstrate a major electric field decay within 2 ps in Figure 5.18 b. At 

this time scale, this invokes prompt charge generation combined with high hole 

mobility in and/or to the neat domains. 390 nm excitation is more selective for 

the co-crystal phase, as derived from TA data. As the ultrafast decay with 2 ps 

time constant is much weaker in amplitude for the 1:1 blend (about 14%) 

compared to the additive samples (Me14: 38% and Me7: 47%), we conclude that 

prompt generation in the co-crystal phase and at the interface of pure domains 

(no exciton diffusion necessary) are followed by ultrafast hole migration to or in 

the neat domain within 2 ps. This confirms our findings from TA data where we 

saw ultrafast hole migration from intercalated to pure pBTTT domains within 

1 ps.  

 

The dynamics in Me14 after 500 ps show a second decay time component which 

is not present in the dynamics of the Me7 sample (Figure 5.18 b). As fullerene 

domains are larger in Me14 compared to Me7, we can assign this to delayed 

charge generation following exciton diffusion in fullerene domains. The electric 

field dynamics in Me7 reach a plateau at 2 ps time delay, and no further 

dynamics are observed in this sample. We can relate this to the fact that Me7 

contains smaller pure fullerene domains compared to Me14, and is therefore 

more affected by traps at grain boundaries.16  

Charge transport in pBTTT under steady-state conditions has been studied 

extensively in field-effect transistors.49,50 Findings are that the mictrostructure 

plays an important role, and our results point out that early timescales are crucial 

for efficient charge collection efficiency. This early timescale behavior is even 

more important as organic photovoltaic devices are much thinner than field-

effect transistors. Limits in the microstructure are grain boundaries, combined 
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with small neat domain sizes as they act like traps.51 Hole transport along the π-

stacking (interchain) and polymer backbone (intrachain) are equally present in 

pBTTT.52 Probably these two transport modes are responsible for different 

timescales of electric field decay, they are, however, difficult to distinguish. 

Domain sizes in such pBTTT solid-state films are about 20-30 nm, and disorder 

in the π-stacking direction is about 7 nm.50 We therefore speculate that promptly 

generated holes in the co-crystal phase or at the interface of neat pBTTT 

domains migrate about several nm in the pure domains before reaching a grain 

boundary, and they do so within 2 ps. We can therefore set a lower limit of 

about 7 nm distance achieved within 2 ps. Over the same timescale, the charge 

pairs in the 1:1 sample are still tightly bound and do not separate further than 

1 nm as derived from Figure 5.16. We here have a clear confirmation that charge 

separation is favored with the presence of neat pBTTT domains in 1:1 blends 

processed with additives, and this is already observed at 2 ps after 

photoexcitation. 

 

5.5. Conclusions 

 

In this chapter, we have investigated the ultrafast dynamics of 

pBTTT:PCBM blends. Fatty acid methyl ester additives were used to accurately 

control the microstructure from fully intercalated, partially intercalated to 

predominantly de-intercalated blends.  

Results show that bound charge pairs are formed on ultrashort timescales 

(≈100 fs) in fully intercalated pBTTT:PCBM domains, resulting equally from 

electron and hole transfer. This is confirmed by field dependent charge 

dynamics. Dissociation of bound charge pairs in the intermixed phase involves 

applied electric fields and/or an energy cascade for the electron to PCBM 

clusters, which efficiently compete with geminate charge recombination. PCBM 
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clusters in the 1:4 blend are also responsible for delayed charge generation 

during selective PCBM excitation. 

The interface of neat domains in two and three phase systems such as Me7 and 

Me14 samples show prompt as well as delayed charge generation, depending on 

the exciton generation site. The short pBTTT exciton lifetime (≈150 ps) limits 

electron injection efficiency due to large neat pBTTT domain sizes. Geminate 

charge recombination is nevertheless reduced in these blends containing neat 

pBTTT domains (Me7 and Me14), increasing the charge yield of these samples 

compared to the 1:1 blend at 1 ns timedelay. 

Pure fullerene and polymer domains are responsible for faster charge migration 

than in the co-crystal phase. In the 1:4 sample, the electrons in PCBM clusters 

are likely responsible for the faster electric field decay. Pure polymer domains 

actually attract holes from the co-crystal phase, without help of externally 

applied electric field. This is most likely due to an energy cascade driving the 

hole from the co-crystal to the neat domains. This is confirmed by ultrafast 

electric field dynamics, and we estimate that electron-hole pairs are separated by 

about 7 nm within 2 ps thanks to neat pBTTT domains. Results emphasize the 

need for interconnected pure pBTTT domains for hole transport, or larger neat 

domains. On the same timescale in the 1:1 blend, the average electron-hole 

distance is about 1 nm, indicating poor percolation pathways for both electrons 

and holes.  

The use of additives enables to increase the amount of polymer in 

pBTTT:PCBM blends. This is of paramount interest, as 1:4 devices typically 

present better photovoltaic performance than lower containing fullerene blends. 

By using additives during film processing, the polymer to fullerene ratio could be 

increased and directly increase light harvesting. Indeed, fullerenes, despite their 

excellent electron mobility, are still poor light harvesters compared to conjugated 

polymers. Highly efficient blends have thus to be designed for the light 

absorption too, which implies either fullerene derivatives like C70 or newly 

developing polymers.53  
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Results presented in this chapter also demonstrate that transient absorption and 

Stark shift spectroscopies are valuable tools to shed light into the charge 

generation and transport mechanism of polymer:fullerene blends. They are both 

complementary and relate directly to the microstructure found in pBTTT:PCBM 

blends. 

5.6. Methods 

 

Sample preparation 

The pBTTT polymer (Mn = 34 kDa; Mw = 66 kDa) was synthesized as 

previously reported,  while PCBM was purchased from Solenne and used 

without further purification.19 Solutions were prepared by mixing pBTTT and 

PCBM (blends by mass) in 1,2-ortho- dichlorobenzene (1,2-oDCB, Aldrich) for a 

concentration of 20mg/mL. The additives (Me7, Me12 and Me14) were 

purchased from Aldrich and Fluka and added in 1 and 10 molar equivalents of 

the respective additive per monomer unit of the pBTTT polymer. All solutions 

were stirred for more than 4 hours at 100 °C to fully dissolve the active material.  

The hot (85-90°C) blend solutions were then deposited on glass (for TA and 

fluorescence up-converison) or patterned ITO (for transient Stark shift 

measurements) by wire-bar coating. The substrates were kept at 35°C for the 

formation of the co-crystal. The film thickness was about 100 nm. Aluminium 

counter-electrodes were evaporated on top of the active layer on ITO substrates.  

Oxygen was carefully removed by pumping the samples in vacuum for 24h. TA 

measurements were done in an argon home-made chamber. Otherwise, the 

samples were sealed with an epoxy resin (glovebox) for transient Stark shift and 

fluorescence up-conversion measurements. 

 

Fluorescence Up-Conversion Spectroscopy 

The setup for fluorescence up-conversion spectroscopy from Group Vauthey is 

described elsewhere.54 Briefly, it is based on a modified FOG100 system (CDP 
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Lasers & Scanning Systems), except that a Mai Tai HP (Spectra-Physics) mode-

locked Ti:sapphire laser system was used to have a tunable excitation 

wavelength. The 1000 nm output (100 fs pulse duration, 80 MHz repetition rate) 

was frequency doubled for sample excitation at 500 nm. The pump intensity per 

pulse was about 4 mW, yielding a fluence of 3 µJ/cm2 (with a spot diameter of 

50 µm). No significant intensity effects were observed, nor degradation. The 

sample was rotated during the measurement to avoid degradation, and three 

time scans were averaged. The fluorescence was enhanced by sum-frequency 

generation with a delayed gate pulse in a non-linear BBO crystal. The up-

converted signal was then dispersed in a monochromator and its intensity 

measured with a photomultiplier tube operating in the photon counting mode. 

The polarization of the pump beam was at magic angle relative to that of the 

gate pulses. The dynamics were reproduced with a Gaussian instrument 

response function (about 100 fs) with a sum of exponential terms. 

 

Transient absorption spectroscopy 

Transient absorption spectra were recorded via femtosecond pump-probe 

spectroscopy based on the 778 nm output of an amplified Ti-sapphire laser 

(Clark-MXR, CPA-2001) with 150 fs pulses running at 1 kHz repetition rate. 

The pump beam was generated via a two-stage non-collinear optical parametric 

amplifier (NOPA), while the probe beam was a white light continuum (350-750 

and 790-1020 nm) generated by a portion of the 778 nm passing through a 

continuously moving CaF2 plate. The pump wavelength was set at 540 nm from 

the NOPA output, or 390 nm generated by SHG of the fundamental 778 nm 

beam passing through a BIBO. Visible and nIR probe wavelengths were 

recorded in two different experiments, by changing the blaze grating from 500 to 

800 nm and adapting the band pass filters accordingly. The probe beam was split 

before the sample into a signal and reference beam in order to account for 

intensity fluctuations. Both beams were recorded shot by shot with a pair of 163 

mm spectrographs (Princeton instruments, SpectraPro 2500i) equipped with a 
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512 x 58 pixels back-thinned CCD (Hamamatsu S07030-0906) and assembled by 

Entwicklungsbüro Stresing, Berlin. Excitation fluence was adapted to have the 

same number of photons for both excitation wavelengths, typically 

<1.7×1013 photons/cm2. 

All spectra were corrected for the white-light chirp measured by Kerr gating and 

background noise. Global analysis by a multiexponential fit at different 

wavelengths (typically every 5 nm) enabled the dissociation of the various 

photophysical processes occurring. The associated spectra show the amplitude of 

the transient signal related to each time component.  

 

Time-resolved electroabsorption spectroscopy 

The EDA and EA spectra were measured in reflectance mode on full solar cell 

devices with a comparable setup as described for the TA experiments, with the 

probe beam passing through the ITO, the active layer and then being reflected 

off the aluminium electrode. The white light probe (400-700 nm) was generated 

in a 3 mm sapphire disc from the 778 nm output of an amplified femtosecond 

laser (the same as described in the TA section). The probe beam was split before 

the sample into a signal beam (focused on the sample and reflected off the silver 

electrode into the detector) and a reference beam reaching a second detector. 

The signal and reference were detected with a pair of 163 mm spectrographs 

(Andor Technology, SR163) equipped with a 512×58 pixels back-thinned CCD 

(Hamamatsu S07030-0906) and assembled by Entwicklungsbüro Stresing, 

Berlin. The pump excitation intensities at 390 and 540 nm were adjusted to have 

the same number of absorbed photons for both excitation wavelengths, 

<3.1011 photons/cm2. 

The electric field was modulated with a function generator (Tektronix AFG 

2021). A square voltage pulse in reverse bias voltage (100 µs duration) was 

applied at half the probe frequency of 1 kHz, and the reflected probe light was 

measured shot-by-shot in the presence and in the absence of electric field, 
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averaged over 3000 shots. At least three time scans were averaged. The 

photocurrent was measured with an oscilloscope through a 50 Ω load. 
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Concluding remarks and outlook 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The struggle for existence is the struggle for available energy.” 

Ludwig Boltzmann 
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 In this work, we used time-resolved pump-probe techniques to shed light 

into the charge formation, separation and transport on the nanoscale of organic 

photovoltaic (OPV) systems. Donor-acceptor mixtures investigated are based on 

cyanine small molecule or polymer pBTTT as donors combined with fullerene 

acceptor (C60 or PCBM). By studying the neat materials and different model 

systems, from small-molecule bilayers to polymer:fullerene blends, we can derive 

a picture of the various photoinduced processes leading to charge collection at 

the electrodes. Transient absorption spectroscopy gave valuable insight into rate 

and yield of charge injection after photoexcitation of the donor and/or acceptor 

material. Time-resolved electroabsorption spectroscopy revealed charge carrier 

drift dynamics. In all investigated systems, ultrafast electron transfer into 

fullerene acceptor following donor excitation is completed in less than 100 fs. 

Results in this work nevertheless emphasize that a driving force is needed for 

separation of the resulting charge pairs to compete with geminate 

recombination:  

• An externally applied electric field can act as this driving force. This is 

evidenced in cyanine (Cy3-P)/C60 planar heterojunctions (bilayers), 

where interfacial charge transfer (CT) states are created from Cy3-P 

electron transfer via hot excited states. The CT states dissociate only in 

the presence of an applied electric field and this takes place on timescales 

of tens to hundreds of picoseconds. We suggest that relaxed CT states are 

precursors for free charge carriers, even if electron transfer originates from 

the hot Cy3-P excited state. Subsequent electron drift in C60 takes place 

on several ps, whereas holes in Cy3-P do not drift on the nanosecond 

timescale. Without the application of an electric field, the interfacial 

charge transfer state does not dissociate and therefore recombines.  

• The presence of PCBM clusters is another possible driving force, which 

efficiently drives the electron away from the interface via an energy 

cascade stabilizing the electron. This is more evident in polymer 

pBTTT:PCBM (1:4) blends than for cyanine Cy3-B:PCBM blends, as for 
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the latter charge recombination is still fast (ps) while the former shows 

delayed charge recombination (> 1 ns). We attribute this to the special 

case of Cy3-B where the borate counter-anion can reduce the oxidized 

Cy3. Electron delocalization in C60 solid-state films was observed by 

monitoring photoinduced Stark shifts within transient absorption 

spectroscopy data. The result of the photoexcitation of C60 is an 

instantaneous (<300 fs) delocalized, i.e. intermolecular, charge transfer 

state, which localizes back on one molecule within 360 fs. These 

timescales are in accordance with electron delocalization found in PCBM 

clusters driving charge separation within 40 fs in polymer:fullerene 

blends.1 

• Finally, we have shown that neat pBTTT domains in pBTTT:PCBM 

blends attract holes from the co-crystal (fully intermixed) phase, and time-

resolved electroabsorption measurements revealed hole migration of 

about 7 nm in 2 ps. Without external field, the holes migrate from the co-

crystal phase to the neat domains within 1 ps. Therefore, we suggest that 

the driving force for dissociation of charge pairs in partially de-

intercalated pBTTT:PCBM blends is an energy cascade for holes from 

fully intermixed to neat domains. Neat pBTTT domains size however has 

to be controlled to avoid exciton loss due to its short lifetime. 

 

 We have gained much insight of the charge separation processes, 

however we lack understanding on a few aspects in these model systems. 

Therefore, we suggest several experiments that one could carry out: 

• Time-resolved emission measurements such as broadband fluorescence 

up-conversion would provide insight into ultrafast electron transfer 

processes. With this method, we could scrutinize excited state relaxation 

and losses prior to electron transfer. In Cy3-P/C60 bilayers, about 70% of 

Cy3-P excited states are quenched within 130 fs after excitation due to 

interfacial contact with C60. Knowing that typical Cy3-P layer thickness 
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of 45 nm is larger than the expected exciton diffusion length of about 

10 nm, this gives rise to a fundamental question: how fast is exciton 

diffusion?  

• To gain more insight in the charge dissociation when the charge pair is 

bound at the interface, such as in Cy3-P/C60 bilayers, one could perform 

pump-push-probe experiments.2 Bakulin et al. demonstrated that hot 

excitations either create delocalized charge transfer states that efficiently 

dissociate into free charge carriers within hundreds of fs; or they relax to 

the lowest interfacial charge transfer state. An IR push pulse with 

controlled time-delay re-excites the relaxed CT states to energetically 

higher states, giving a second opportunity for charge delocalization and 

thus, separation. Although this process has minor impact in efficient 

OPVs, poor photovoltaic systems where excess energy is lost to a relaxed 

charge transfer state showed an increase in photocurrent. The all-optical 

pump-push-probe was also performed and indicated a short lifetime of 

hot CT states. Probing in the THz range would allow for optical and 

therefore contactless observation of mobile charge carriers. 

• Bias-dependent charge separation is observed when interfacial charge 

transfer states are populated, instead of dissociation into free charge 

carriers. Measuring transient absorption with a constant applied bias 

would provide insight into device operating conditions of photovoltaic 

devices.  

• One should systematically study both planar and bulk heterojunction 

blends of the same materials to understand the photoinduced reactions, if 

material intermixing is possible. Planar heterojunctions as well as 

controlled microstructure obtained in pBTTT:PCBM blends processed 

with additives are both model systems that allow for investigating 

photoinduced charge separation processes. Also, varying the 

donor:acceptor ratio such as done in Cy3-B:PCBM blends has proven 

beneficial for studying kinetic competition between intra ion-pair (Cy3-B) 
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reductive quenching and Cy3 oxidation in the presence of PCBM. Last, 

investigating in more details hole transfer from fullerene to the donor 

material would allow for a complete picture of charge generation in OPV 

systems.  

• This work highlights that high temporal resolution is a key parameter for 

investigating donor-acceptor charge formation and separation in organic 

systems. Amongst that, the addition of spatial resolution in time-resolved 

measurements would be beneficial in complex systems such as bulk 

heterojunctions, where the degree of disorder is large due to morphology 

and molecular structure of donor and acceptor. Similarly to what has 

been done on InAs nanowires,3 we propose to scan across a device with 

an AFM probe with nanometer resolution, and perform local pump-

probe experiments using tip-enhanced signals on femtosecond timescales. 

This would take time-resolved experiments in OPV systems to a whole 

new level.  

 

 We finally suggest that ideal photovoltaic blend devices should be made 

by a gradient of donor:acceptor (D:A) ratio. A finely intermixed D:A phase 

should be sandwiched between pure donor and acceptor layers. Such a structure 

would be feasible by vapor deposition, allowing for precise control of small 

molecules and oligomers mixing and deposition. The gradient would prevent 

trapping of charge carriers at grain boundaries, and concomitantly increase the 

light harvesting. Indeed, most efficient OPV devices rely on intermixing with 

high amounts of fullerene, typically a ratio of 1:4. We believe a gradient solar 

cell could reduce the cost of photon absorption losses within the device and 

improve the overall efficiency.  
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List of Abbreviations and constants 
 

A  Absorbance 

Ag  Silver 

Al  Aluminium 

c  Speed of light in vacuum (2.99×10−8 m/s) 

C  Capacitance 

Cy3   1,1’-diethyl-3,3,3’,3’-tetramethylcarbocyanine 

Cy3-B  Cyanine Cy3 with tetraphenylborate counter anion BPh4
- 

Cy3-C  Cyanine Cy3 with perchlorate counter-anion ClO4
- 

Cy3-P  Cyanine Cy3 with hexafluorophosphate counter-anion PF6
- 

CB  Chlorobenzene 

C60  Buckminsterfullerene (or bucky-ball), also called fullerene 

CT  Charge transfer 

D  Sample thickness 

ΔA  Change in absorbance 

e  Elementary charge (1.602176565×10−19 C) 

E  Electric field 

EA  Electroabsorption 

EDA  Electromodulated differential absorption 

ESA  Excited state absorption 

GSB  Ground state bleaching 

h  Planck constant (6.62606957×10−34J ⋅ s) 

IC  Internal Conversion  

Iphoto  Photocurrent 

ISC  Intersystem Crossing 

ITO  Indium tin oxide 

IQE  Internal Quantum Efficiency 
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MeX  Fatty acid methyl ester additive with X carbon atoms, X between 

  [7-14] 

MoO3  Molybdenum oxide 

pBTTT poly(2,5-bis(3-alkyl-thiophene-2-yl)thieno[3,2-b]thiophene,  

  polymer 

PCBM [6,6]- phenyl C61-butyric acid methyl ester, fullerene derivative 

SE  Stimulated emission 

T  Transmission 

TA(S)  Transient absorption (spectroscopy) 

V  Voltage bias 

VR  Vibrational Relaxation 

λ  Wavelength (nm) 
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