
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Hébert, présidente du jury
Prof. P. De Los Rios, Dr A. Barducci, directeurs de thèse

Prof. G. Dietler, rapporteur 
Prof. D. Marenduzzo, rapporteur 

Prof. C. Micheletti, rapporteur 

Polymer-theory insights into biomolecular systems

THÈSE NO 6585 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 12 JUIN 2015

À LA FACULTÉ DES SCIENCES DE BASE
LABORATOIRE DE BIOPHYSIQUE STATISTIQUE

PROGRAMME DOCTORAL EN PHYSIQUE 

Suisse
2015

PAR

Salvatore ASSENZA





C’è una casetta piccola così...





Acknowledgements
An apology to the non-latin reader: sorry, but I prefer to write this section in languages

somehow fitting my idea of “home”, also partly due to the provenience of the main recipients

of my acknowledgements. Nevertheless, if you think you cannot live without knowing who

and why I am thanking, you can turn to Google Translate!

I miei primi ringraziamenti vanno evidentemente ai miei supervisori, Paolo e Alessandro. Dal

punto di vista accademico ho avuto modo di imparare tanto: Paolo mi ha introdotto al mondo

dei polimeri e ha provato a trasmettermi la passione per lo studio della biologia molecolare (da

fisico), riuscendo almeno parzialmente nel suo intento; Alessandro ha fortemente ampliato il

mio spettro di conoscenze spiegandomi con calma tutti i concetti per me nuovi che di volta in

volta si sono presentati e iniziandomi alla dinamica molecolare, sebbene le sue prime parole

al riguardo furono “è un mondo di dolore: fuggi finché sei in tempo!”. Dal punto di vista

umano, quello che era inizialmente un sereno rapporto di lavoro si è trasformato col tempo in

una vera e propria amicizia con entrambi, impreziosendo ulteriormente la mia esperienza in

questo dottorato.

Meritano dei ringraziamenti anche Duccio, uno dei miei dealer ufficiali di cialde di caffè;

Alessio, che sebbene lo scarso overlap mi ha portato una ventata di Sicilia a lavoro (lo ammetto,

un po’ rovinata dalla fastidiosissima cantilena catanese); Alberto, che a parte aver fatto buona

parte del lavoro del terzo capitolo mi ha anche fornito l’ottimo champagne con cui festeggiare

il buon esito della difesa privata. Più in generale ringrazio tutti i membri passati e presenti del

gruppo LBS per l’atmosfera conviviale in cui si è svolto il mio dottorato, che mi ha permesso

di andare a lavoro ogni giorno con la giusta dose di serenità e buon umore.

Grazie al puntese Simone, al rinascimentale Francesco e a tutti gli amici di Losanna per questi

fantastici quattro anni (o quasi). Grazie ai vari Christian, Laura e Oscar, Daniel y Pame, e a

tutti i vari amici zurighesi per avermi aiutato ad ambientarmi negli ultimi mesi.

Ovviamenti nu grazi speciali va a ma’ famigghia: Muorica è luntana, ma viautri siti sempri ’nto

ma’ cori. Se agghiu arruatu finu a stu puntu e se nu juonnu arrivu a cocca patti è soprattuttu

grazi a viautri. E i tri scugnizzi su’ a cosa ca mi manca ciu’ssai ammienzu e sbizziri. Grazi o’

Dutturi, pi nunni scuddarisi ri mia e rarimi na manu ogna vota ca mi sevvi, e grazi a tutt’amici

muricani.

Muchas gracias a la que siento también ser mi familia en Madrid: gracias Carmen y Antonio

por hacerme sentir como en casa cada vez que voy, y gracias a vosotros y a Angelines por

malcriarme tanto. Gracias a los amigos madrileños por la paciencia con que soportáis a este

italiano.

i



Acknowledgements

Gracias al gran maestro de ceremonias Javi. Hombre, no sabría ni por donde empezar si tubiera

que agradecerte todo lo que has hecho por mi. Me limitaré a darte las gracias por ayudarme

poniendo lavadoras y por todo el apoyo que me has dado en los inevitables momentos malos

durante estos cuatro años. Tu amistad es una de las cosas más preciadas que he ganado en

este periodo (sin embargo, lo siento: no la más preciosa!).

Y gracias a Cristina, que me ha enseñado que hay cosas mucho más importantes que el trabajo.

Ya sabes lo importante que eres para mi y habrá mejor lugar y momento para compartirlo

con los demás. Aquí te agradezco sólo por haberme estado tan cerca durante este doctorado

en general, y por haberme soportado mientras escribia mi tésis. Si veo el futuro con tanto

optimismo es sólo porque estoy seguro que formarás parte de él.

Y por fin gracias a Paco, cuya guitarra me ha acompañado durante toda mi escritura de tésis.

On the train, somewhere between Lausanne and Zürich, April 1st, 2015 S. A.

ii



Abstract
Boosted by the technological advances in experimental techniques, cellular biology is nowa-

days facing the need for quantitative approaches in order to rationalize the huge amount

of collected data. A particularly succesfull theoretical framework is provided by Polymer

Theory which, combined with molecular simulations, can capture the essential features of

biomacromolecules and describe the cellular processes they participate to. This thesis pro-

vides a compendium of works showing the strength of this combination. In a first project, we

model the twisting properties of amyloid fibrils by means of a simple coarse-grained approach,

based on the competition between elasticity and electrostatic repulsion of nearby portions

of the fibrils. The model quantitatively recapitulates the evolution of fibril periodicity as a

function of the ionic strength of the solution and of the fibril width. A universal mesoscopic

structural signature of the fibrils emerges from this picture, predicting a general, parameter-

free law for the periodicity of the fibrils which is validated on several experimental results. A

second work is focused on the role played by mitochondrial Hsp70 chaperone in the import

of cytoplasmic proteins. Particularly, we computed by means of molecular simulations the

effective free-energy profile for substrate translocation upon chaperone binding. We then used

the resulting free energy to quantitatively characterize the kinetics of the import process and

outline the essential role played by Hsp70 in this context. Finally, in a third project we studied

the shape properties of a polymer under tension, a physical condition typically realized both

in single-molecule experiments and in vivo. By means of analytical calculations and Monte

Carlo simulations, we develop a theoretical framework which quantitatively describes these

properties, highlighting the interplay between external force and chain size in determining

the spatial distribution of a stretched chain.

Key words: Polymer Theory | Coarse-Grained Modelling | Amyloid Fibrils | Hsp70 Chaperones |

Mitochondrial Import | Stretched Polymers
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Sommario
Sotto la spinta dei progressi tecnologici nelle tecniche sperimentali, la biologia cellulare mo-

derna si trova ad affrontare il bisogno di approcci quantitativi atti a descrivere l’immensa mole

di dati raccolti. La fisica dei polimeri fornisce un contesto teorico particolarmente efficace e, in

combinazione con simulazioni molecolari, è in grado di riprodurre le caratteristiche essenziali

delle biomacromolecole e di descrivere i processi cellulari a cui prendono parte. In questa

tesi riportiamo un compendio di lavori che mostrano la forza di questa combinazione. In un

primo progetto, costruiamo un semplice modello coarse-grained sulle proprietà torsionali

delle fibrille amiloidi, basato sulla competizione tra l’elasticità della fibrilla e la repulsione

elettrostatica tra porzioni di quest’ultima vicine tra loro. Il modello riproduce quantitativa-

mente l’evoluzione della periodicità della fibrilla in funzione della sua larghezza e della forza

ionica della soluzione. Da questa competizione emergono delle proprietà universali a scale

mesoscopiche, secondo cui le periodicità delle fibrille sono soggette a delle leggi generali

non dipendenti da parametri fenomenologici. Tali leggi universali sono quindi confermate

attraverso il confronto con diversi risultati sperimentali. In un secondo lavoro analizziamo il

ruolo giocato dal chaperone Hsp70 nell’importazione di proteine del citoplasma all’interno

dei mitocondri. Attraverso delle simulazioni molecolari calcoliamo l’energia libera efficace

che regola la traslocazione di tali proteine in presenza del chaperone. Questo profilo di energia

libera ci permette di caratterizzare a livello quantitativo le proprietà cinetiche del processo di

importazione, enfatizzando il contributo fondamentale del chaperone. Come terzo e ultimo

progetto studiamo le proprietà di un polimero sottoposto a una forza esterna, una condizione

tipicamente realizzata in esperimenti di singola molecola e in vivo, focalizzandoci sulla sua

forma tridimensionale. Attraverso calcoli analitici e simulazioni Monte Carlo riusciamo a deli-

neare un contesto teorico che descrive quantitativamente tali caratteristiche e illustra in che

modo la forza esterna e la taglia del polimero si bilanciano nel determinare la distribuzione

spaziale di una catena sotto tensione.

Parole Chiave: Teoria dei Polimeri | Modelli Coarse-Grained | Fibrille Amiloidi | Chaperone

Hsp70 | Importazione Mitocondriale | Tiraggio di Polimeri
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Introduction

The last century has witnessed the literal outbreak of our knowledge in biological systems.

Even restricting our focus to the subcellular realm, the rate of new achievements is so large

that standard textbooks such as Molecular Biology of the Cell by Alberts et al. [1] need to be

deeply revised every few years1. The wide range of different experimental techniques has led

to the accumulation of a large amount of data. To cite just a few notable examples, NMR-

retrieved structures nowadays provide information on the three-dimensional arrangement of

crystallized proteins with a precision on the order of Angstroms [2]; the Hi-C technique gives

access to a genome-wide contact map of eukaryotic chromatin [3]; the employment of green-

fluorescent proteins [4] permits to dynamically monitor several aspects related to protein

production, like e.g. genes activity bursts [5]; single-molecule techniques such as FRET [6, 7],

AFM [8, 9] or Optical Tweezers [10] have greatly enhanced our knowledge of conformational

and elastic properties of biological polymers.

This gargantuan production of data has led modern cellular biology to the possibility of and the

need for quantitative modelling approaches, as explicitely stated by Alberts and coworkers [1]:

The information we have [...] is largely qualitative rather than quantitative. Most

often, cell biologists studying the cell’s control systems sum up their knowledge

in simple schematic diagrams rather than in numbers, graphs, and differential

equations. To progress from qualitative descriptions and intuitive reasoning

to quantitative descriptions and mathematical deduction is one of the biggest

challenges for contemporary cell biology.

This call of duty has been responded to by many scientists from several fields. Attracted by the

increasing abundance of data and the wide variety of mechanisms and structures proposed

by biologists, they dedicated their research to investigating biosystems with the approaches

typical of their own disciplines. Particularly, both theoretical and experimental physicists

have strongly become interested in bio-related problems. From the experimental point of

view, physicists make large use of single-molecule techniques. The latter, as opposed to

traditional biochemical approaches, have the unique feature that they allow the researcher to

focus on individual agents acting in the cellular environment, which is more akin to how a

1This book is now at its sixth edition and was first published in 1983.
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Introduction

physicist usually works (for an introduction to single-molecule experiments, see e.g. [11] and

references therein). As a result, there are at present many in vitro studies which characterize

the conformational and mechanical properties of macromolecules. For example, the elastic

response of double-stranded DNA to an external force has been probed by means of Magnetic

Tweezers [12]; mechanical unfolding of single domains of multimodular proteins has been

analyzed by AFM-pulling measurements [13]; misfolding of multidomain proteins has been

directly observed in FRET experiments [14].

From the theoretical point of view, the typical energies characterizing biological processes [11]

(order of kB T ∼ 10−21 J) and their length scales (order of nanometers, thus larger than the

onset of quantum effects [15]) identify Classical Statistical Mechanics as the most suitable

framework to study biological macromolecules. In this regard, useful insight can be gained

from Polymer Theory [16]. The latter starts from the basic assumption that most of the

macroscopic2 properties of a polymer are mainly due to its wire-like structure, while the

microscopic details serve only to set the physical parameters - such as the linear charge

density, bending and twisting rigidities, etc. - describing it in the coarse-grained picture.

Since both proteins and nucleic acids are chains constructed by covalently binding some

basic bricks (amino acids and nucleobases respectively), they are expected to follow the

general laws predicted by Polymer Theory. As several works have shown, this is indeed the

case. For example, the force-vs-extension measurements on double-stranded DNA [12] are

quantitatively described by means of the so-called Wormlike Chain, a simple model from

Polymer Theory which depicts DNA as a continuous wire with a given bending rigidity [17].

In another work [18], it has been shown that the Stokes’ radius of denatured and intrinsically

disordered proteins closely follows the scaling relationship with their contour length predicted

by Polymer Theory. This result thus rationalizes the unfolding process as a coil-to-globule

phase transition, where according to the nature of the solvent the polymer is best described

as a swollen coil or a compact sphere [15]. It is worth mentioning that the benefits go also

the other way round. Indeed, while it is true that Biology has profited from the appearance

of biophysicists, it is also boosting further research in fundamental questions of Statistical

Mechanics. Particularly, biological macromolecules are suitable systems to benchmark recent

theories on the out-of-equilibrium thermodynamics [11].

Another important toolset to address the need for quantitative approaches in Biology is today

available thanks to the growth of computational power and to the development of simulation

algorithms. Molecular Dynamics (MD) and Monte Carlo (MC) simulations are nowadays

widely-used tools to explore the behavior of living matter at different levels of resolution. Just

to get a feeling for numbers, in [19] the authors observe that, in a time window covering the first

six months of 2002, the popular database ISI Web of Science [20] returned more than 250 results

under a query with keywords “Molecular Dynamics” and “protein”. A similar search conducted

in December 2014 returns more than 2,000 results3. To cite a few examples, all-atom MD

2In this context, “macroscopic” refers to global features of a polymer, while “microscopic” focuses onto atomic-
scale properties.

3In contrast, “only” ∼150 papers were found by using the keywords “Monte Carlo” and “protein”.
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simulations are successfully used to explore specific microscopic mechanisms not accessible

to experiments, such as the behavior of external atoms within folded proteins (e.g. oxygen in

myoglobin [19]) or particle transport through membrane pores [21]. Moreover, they are also

widely employed to refine the structures retrieved from NMR experiments [22,23]. Monte Carlo

simulations are used as well in a large variety of flavors, including e.g. sequence-alignment

algorithms [24], phylogeny inference [25] and simulation of subcellular processes [26].

Within Polymer Theory, MD and MC simulations provide complementary tools to explore

both conformational and dynamical coarse-grained properties of biological macromolecules.

Particularly, while MC samplings are tipically faster in encompassing the relevant regions of

the conformational space, MD simulations have the advantage of being usually more easily

adapted to increasing levels of complexity. Thus, if one wants to study the conformational

properties of simple polymer models such as the Freely-Jointed Chain (FJC), where the macro-

molecule is described as a chain of segments of fixed length with random orientations [27],

the best strategy is to use a suitable Monte Carlo approach. In contrast, if one seeks to explore

the phase space of chains described by more complicated Hamiltonians (like e.g. force-fields

developed for specific classes of polymers) or subjected to complicated constraints, then it

might be wiser to opt for MD simulations.

This Thesis provides an example of how theory and simulations can be fruitfully combined

to describe biological macromolecules. Though focusing on quite diverse systems, the take-

home message pervading the whole Thesis is that a coarse-grained description of a biopolymer

can give very useful insights, which in some instances can also quantitatively account for

experimental data. In Chapter 1, we present a simple model for the twisting properties of

amyloid fibrils. In this case, Polymer Theory is mostly used to justify the assumptions of

the model, which is based on the minimization of the total energy per fibril. The model

predicts a general, parameter-free law for the periodicity of the fibrils together with an explicit

formula based on the interplay between elastic and electrostatic contributions, which are

both in very good quantitative agreement with experimental results. In Chapter 2, we focus

on the chaperone-driven import of proteins into organelles. By means of coarse-grained MD

simulations, we compute the effective free-energy profile for the translocation process due to

the presence of Hsp70 chaperones. The resulting free energy is then used to quantitatively

assess the kinetics of the import process, highlighting the essential role played by Hsp70 in

importing cytoplasmic proteins. In Chapter 3, we focus on the shape of a stretched chain.

Though not being focused on a specific biomolecular system, our results are of biological

interest since biopolymers are subjected to mechanical stress in many cellular processes, and

their shape affects the way they interact with other molecules. Characterizing a stretched chain

by means of analytical calculations and MC simulations, we are able to develop a theoretical

framework which quantitatively captures all the essential features of both the shape and the

orientation of the polymer within the simple case of a FJC.
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1 Universal behavior in the mesoscale
properties of amyloid fibrils

1.1 Amyloid fibrils: the general picture

1.1.1 Protein folding depends on external conditions

Within the cellular microuniverse, proteins are the factotums, being involved in “virtually every

process taking place in a living organism” [28]. Their employment embrace the most disparate

functions, ranging from membrane structural support to targeting of specific molecules,

as well as molecular transport and signal transmission [1, 28]. The importance of proteins

is reflected in their relative abundance in the cellular environment as compared to other

molecules. Indeed, more than a half of the dry weight of a cell is typically due to polypeptides

[29] (a census of the relative quantities of various molecules in the bacterium E. Coli is reported

in Table 1.1).

A fundamental role in the correct functioning of a protein is played by its three-dimensional

shape [1], which emerges from the complex pattern of residue-residue and residue-solvent

interactions and is thus ultimately determined by the amino-acids sequence and the solvent

Molecule % of dry weight # of molecules
Protein 55.0 2.4 x 106

RNA 20.4 2.6 x 105

Phospholipid 9.1 22 x 106

Small Molecules 3.9 \
Lypopolysaccharide 3.4 1.2 x 106

DNA 3.1 2
Murein 2.5 1

Glycogen 2.5 4.4 x 103

Table 1.1 – Weight distribution and absolute quantities of the various molecules observed in
an E. Coli cell (data from [29]).
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

conditions. Roughly speaking, the final shape of a folded protein has a bulk formed by

hydrophobic residues and the solvent-exposed surface mainly made of polar or charged

amino acids [28]. This structure is stabilized by the presence of residue-residue interactions

such as H-bonds, the latter being responsible of the formation of typical local (e.g. α-helices)

and nonlocal (e.g. β-sheets) secondary structure.

From the point of view of Polymer Theory, a folded protein is entropically inconvenient, so

that the interactions mentioned above have to sum up to a strong enthalpic term U in order

to counterbalance the entropy loss. The relative strength of the two competing terms in the

free energy F depends on temperature T by means of the well-known formula F =U −T S,

where S is the entropy of the system. For low values of T , the interaction energy dominates

over the entropy, while for high temperatures S provides the main contribution to the free

energy. As a result, it comes as no surprise that by increasing the temperature a folded protein

can swell [28]. In Polymer-Theory jargon, in the low-temperature regime water behaves as a

poor solvent [27] and as a result the protein folds into a compact structure. In contrast, in the

high-temperature, entropy-dominated regime water behaves as a good solvent, and the typical

conformation of the protein is that of a random coil [27].

Since we are interested in biological environments, we normally focus on the so-called physio-

logical conditions, i.e. the typical solvent status found within a cell. Namely, for our purposes

such conditions consist in considering water at room temperature (typically in the range

20−40 °C) and at roughly neutral pH (6−8) [1]. It does then make sense to speak of native

structure of a protein, indicating with this term the minimum free-energy state at physiological

conditions or, in other words, the “working” conformation. According to whether in physio-

logical conditions water is a poor or good solvent for a given protein, its native structure is

folded or intrinsically disordered, respectively.

1.1.2 Protein destabilization can lead to aggregation

The three-dimensional features of a protein depend on its sequence as well as on solvent

conditions. The structure of a natively-folded protein can be destabilized by raising tem-

perature, as we mentioned in the previous section, or by adding chemical denaturants such

as guanidinium chloride or urea [30, 31]. Moreover, in vivo proteins live in a very crowded

environment, so that interactions with other molecules can contribute to their destabilization

as well [29].

Usually, in physiological conditions proteins are quite resistant to destabilization, and one

needs to put them through artificially-harsh conditions in order to cause their swelling. Never-

theless, in some instances the destabilization takes place even at physiological conditions [32].

In most cases, the affected proteins remain inert and are eventually eliminated by specific

cellular processes [28]. However, in some instances the destabilized proteins do interact with

each other or with other molecules, though not in the way they were intially conceived for.

Particularly, when many corrupted proteins are present in a system, they can undergo an

6



1.1. Amyloid fibrils: the general picture

uncontrolled aggregation process known as fibrillation [32]. Though the precise aggregation

pathways of many fibrillar systems are still under debate, one can generally say that this

process takes place when a destabilized protein shows on its surface a hydrophobic region,

which makes it prone to aggregation in a nucleation-like fashion [32]. The resulting products,

known as amyloid fibrils, have recently attracted a lot of attention in the clinical literature,

due to their involvement in neurodegenerative disorders such as Alzheimer’s, Parkinson’s or

Huntington’s diseases, together with the so-called prion-related diseases [32–36].

1.1.3 Amyloid fibrils are ubiquitous multiscale objects

Remarkably, there are many proteins which can serve as starting monomers for the fibrillation

process, and they do not share particular properties. They can be natively unfolded polypep-

tides or globular proteins. Their sequences have not significant statistical overlaps [33] and

have lengths spanning from tens to hundreds of residues [32]. Moreover, also their secondary

structure is strongly diversified [33].

In spite of the heterogeneity of the starting monomers, all fibrils share an invariant struc-

tural fingerprint at the Angstrom length scale. Particularly, independently of the specific

peptidic primary sequence composing them, the final fibril is very rich in β-sheets structure,

displaying a core formed by longitudinal sheets made of cross-β-strands [33, 37]. Moreover,

all fibrils are rope-like structures, where several protofilaments twist around each other. Still,

provided suitable solvent conditions, sometimes very far from the physiological ones [38–44],

amyloid fibrils have been formed in vitro from disease-associated as well as from disease-

unrelated proteins [45, 46]. This ubiquity, together with their relevance in biotechnology and

nanotechnology applications [47–49] and their uncommon set of physical and structural

properties [50–53], attracted the attention of scientist coming from disciplines as diverse as

structural biology, chemistry, physics and materials science.

While at the Angstrom length scale amyloid fibrils show undeniable universal properties (that

is, the β-sheets pattern mentioned above), at larger length scales their forms of polymorphism

diverge [54–57], as does the view on the main physical mechanisms ruling amyloid mesoscopic

structure [58–65]. It is the structural architecture at these length scales that controls some

of the ensemble physical properties, ranging from their persistence length to their liquid-

crystalline properties in three and two dimensions [66]. These features are epitomized by the

existence of a very regular structure in amyloid fibrils at a length scale in the order of tens to

hundreds of nanometers [43, 54–57].

For example, Adamcik et al. [43] have performed a detailed statistical analysis of Atomic

Force Microscopy (AFM) images of fibrils produced in vitro starting from β-lactoglobulin (βlg)

monomers, finding that they are organized as twisted ribbons formed by laterally attaching

single protofilaments, and that different populations of fibrils can be identified depending on

the number of protofilaments composing them.
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

In the present chapter, we introduce an original model [67] where the twisting structure

emerges as a compromise between opposing forces. As we will show, our approach not only

allows a faithful mapping of the amyloids structural features, but also highlights, for the first

time, a common universal behavior in their mesoscopic topological signature.

Before delving into the derivation of our model and its comparison with experimental data,

we will spend the next two sections in reviewing in some detail the findings in [43], where the

geometry of βlg fibrils was first unveiled, and the results in [44], where the key role played by

electrostatic interactions in determining the quantitative values of their twisting properties

was highlighted.

1.2 βlg fibrils are stiff twisting ribbons

The packing arrangement ofβlg fibrils was studied in [43] at the single-molecule level by means

of AFM measurements. From a statistical analysis of the height fluctuations of fibrils deposited

on mica, the authors show that these aggregates are composed by laterally-associated protofil-

aments with the packing arrangement of a flat ribbon, and propose a simple mechanism

responsible for the twisting structure.

1.2.1 Fibrils Preparation

The preparation of fibrils started from purified βlg powder, provided by Davisco Foods Inter-

national. The steps followed to obtain the fibrils were the following:

1. Dissolve the powder in Milli-Q water at room temperature in order to prepare a 2 wt%1

solution.

2. Centrifuge the solution for one hour at 20 °C and 10800g .

3. Adjust the solution at pH = 2.

4. Put the solution in flasks and heat at 90 °C for five hours, stirring it during heating.

5. Cool the flasks immerging them in ice-water mixtures in order to quench the aggregation

process.

6. Dilute the βlg fibrils solution at 0.1 wt% by using pH = 2 Milli-Q water.

The destabilization of a natively-folded βlg monomer is in this case achieved thanks to the

increase in temperature performed in step 4. As a final result, a 0.1 wt% acid solution of fibrils

was obtained.

1wt% indicates the percentage of solute mass with respect the total weight of the solution.
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1.2. βlg fibrils are stiff twisting ribbons

Afterwards, 10 µl of this solution were deposited onto freshly cleaved mica, incubated for two

minutes, rinsed with Milli-Q water and dried by nitrogen. In order to improve resolution, the

images used for the statistical analysis were taken on dried samples. However, in order to

rule out possible artifacts due to the drying process, a countercheck was done by performing

complementary experiments maintaining the wet environment.

1.2.2 Height distribution points towards a ribbon-like arrangement

After having deposited the βlg fibrils onto the substrate, the latter was scanned by means of an

AFM device working in tapping mode (for an introduction to AFM see [8]). In fig.1.1 we report

typical AFM images at different levels of magnification. The fibrils have contour lengths on the

order of microns. When compared to the typical size of a βlg monomer (around 2 nm), these

values stress the huge extent of the aggregation process. In contrast, the typical width falls in

the nanometer scale, thus outlining a strongly-elongated shape for the fibrils. Nevertheless,

due to the poor lateral resolution of AFM [8], all the subsequent analysis is based on height

measurements. In fig.1.2 we report the frequency distributions of fibrils contour lengths

(a) and heights (b). As anticipated, the typical length of a fibril is in the micron length scale,

ranging from 0.5 to 15 µm, with a single maximum around 5.5 µm. In contrast, the heights

follow a multimodal distribution, showing peaks at the quantized values 2, 4, 6, 8 and 10 nm

(the latter two are not easily distinguishable because of the lack of statistical populations).

It is worth noting that the height along each fibril shows fluctuations (corresponding to

periodic intensity changes in the AFM pictures in fig.1.3) which are localized in regions of the

former distributions corresponding to specific peaks, with the maximum heights recorded

in correspondence to the peaks. Furthermore, within each fibril these fluctuations were

systematically observed as long as the fibrils under inspection had maximum height above 3

nm.

All the previous observations strongly point towards a twisting structure of fibrils, and are

compatible with a flat-ribbon packing arrangement, where n protofilaments are laterally

associated (see fig.1.4). In this picture, the multimodal heights distribution emerges from

the presence of several fibrils populations corresponding to different values of n. The lowest

observed maximum height (2 nm) is relative to the case n = 1, for which no periodicity is

observed. Instead, the larger values are relative to fibrils with n > 1 and are multiples of 2 nm.

Therefore, the maxima corresponding to 4, 6, 8 and 10 nm highlight the presence of fibrils made

of n =2, 3, 4 and 5 protofilaments. Moreover, also the localization of the height maxima on the

peaks of the distributions can be rationalized into a ribbon-like arrangement. By extending

the analysis presented in [43], let θ be the angle formed by the substrate and the section of

a fibril made of n protofilaments. Since the fibril is a twisting object, the value of θ depends

on the position considered along the fibril itself. Particularly, assuming a homogeneous twist

the angle θ is expected to be uniformly distributed in the range [0,π/2]. Therefore, imposing

normalization gives for its probability distribution P (θ) = 2/π. If b = 2 nm is the diameter of a

protofilament, the fibril height h corresponding to a given value of θ can be easily computed
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.1 – AFM images of βlg fibrils on mica dried from a pH=2 solution at different levels of
magnification. Reprinted from [43].

as h = b + (n −1)b sinθ. By defining x = h −b, which corresponds to the difference between

the height of the fibril at the point under inspection and its minimum value (i.e. when the

fibril is adsorbed horizontally), we find x = (n −1)b sinθ. Inverting the previous formula gives

θ = arcsin

[
x

(n −1)b

]
. (1.1)

By operating a change of variable θ→ x, we finally find for the distribution P̄ (x) of the height

difference

P̄ (x)d x = P (θ)dθ = P (θ)
dθ

d x
d x = 2

π

1

(n −1)b

√
1−

[
x

(n−1)b

]2
d x . (1.2)

The previous formula shows that a homogeneous twist results in a monotonically increas-
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1.2. βlg fibrils are stiff twisting ribbons

Figure 1.2 – Contour length (a) and fibril height (b) statistical analysis. Adapted from [43].

ing distribution of heights. Intuitively, when the ribbon is closest to its maximum-height

configuration its variation in height slows down, so that a uniform sampling of the height

along the fibril contour length results into a richer population of almost-vertically-adsorbed

configurations. In fig.1.5a we plot eqn (1.2), while in fig.1.5b an example of the corresponding

histogram obtained from the experimental data is reported, restricted to the population cen-

tered around 6 nm in fig.1.2b. The qualitative agreement between the predicted distribution

and the experimental histogram gives a further argument in favor of a flat ribbon as the correct

packing arrangement of βlg fibrils.

1.2.3 Analysis of data: halfpitch and persistence length

In order to describe the geometric and mechanical properties of βlg fibrils, there are three

relevant length scales to consider: the diameter of a protofilament b = 2 nm, the period of
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.3 – Fibrils thicker than 3 nm show periodic height fluctuations. The thicker the fibril,
the larger the period. Reprinted from [43].

height fluctuations and the persistence length of the fibril as a polymer. While the first length

scale was already introduced in the previous section, we now focus on the remaining two.

The period of the height fluctuations can be measured as the distance between two consecutive

maxima and corresponds to the total length L travelled by the fibril before having twisted for

half a turn (total twist angle equal to π). We will refer to this quantity as halfpitch. The average

values corresponding to the different populations are reported on representative AFM images

in fig.1.3. In fig.1.6 these values are plotted as a function of the maximum height of the fibrils,

displaying an approximately linear behavior.

Again, the previous results can be rationalized by considering a ribbon-like packing arrange-

ment. In this regard, the authors in [43] proposed that the twisting of the fibrils emerges as a

compromise between their elasticity and the electrostatic repulsion between nearby portions

along the fibrils, the latter due to the large number of charges present on their surface [68]. Let
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1.2. βlg fibrils are stiff twisting ribbons

Figure 1.4 – Examples of twisting-flat-ribbons packing arrangements for n = 2 (a) and n = 3
(b).

us consider on a given fibril two transverse sections very close to each other. Because of the

twist, these sections are tilted by a certain angleφ. From the elastic point of view, the optimum

tilt angle would be φ= 0, corresponding to a relaxed ribbon. In contrast, the electrostatic re-

pulsion between the two sections would be minimized forφ=π/2. Therefore, an intermediate

equilibrium value of φ is expected. As a further ansatz, assume that the sections tilt until their

ends reach a distance d , independent of the width of the fibril. This distance can be thought

of as the threshold above which the structure of the fibril is disrupted. Assuming φ to be small,

for a fibril made of n protofilaments simple geometric arguments give d = (n −1)bφ/2. By

inverting the previous formula we thus find

φ= 2d

(n −1)b
(1.3)

If in a halfpitch there are m transverse sections, the relation mφ=π must hold. Substituting

(1.3) in the previous formula, we finally find

m = πb

2d
(n −1) (1.4)

Within this simple scheme, the halfpitch L of the fibril is proportional to m, so that the

proportion L ∝ n holds, in agreement with the results reported in fig.1.6. As we will see later, a

more refined model based on the same assumptions predicts that this relation is not exactly

linear, though the resulting functional form is in practice very close to it.

The third fundamental length scale in the system is the persistence length of the fibrils. This

quantity is a basic concept typically used in Polymer Theory to characterize the mechanical

properties of polymers. Roughly speaking, the persistence length lp provides the distance one
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.5 – Theoretical probability density (a) and experimental histogram (b, adapted from
[43]) for the difference between the local and minimum height of a given fibril. Data in b) are
restricted to the population relative to the peak at 6 nm in fig.1.2b.

has to travel along the polymer to observe appreciable bending due to thermal fluctuations.

In other words, at length scales much lower than lp the polymer behaves like a rigid rod, while

at very large scales a random coil conformation is observed [27]. Having a look at fig.1.1 and
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1.2. βlg fibrils are stiff twisting ribbons

Figure 1.6 – Experimental values of persistence length (circles) and halfpitch (squares) versus
fibril height. Although the number of points is quite restricted, both L and lp seem to be well
described by a straight line. Each value on the abscissa axis corresponds to a peak in fig.1.2.
Adapted from [43].

fig.1.3, we can expect values of lp ranging between hundreds to thousands of nanometers.

For a more precise definition, let us represent a given fibril as a smooth curve embedded in

a D-dimensional space (see the top panel in fig.1.7). For each arc length s, let θ(s) be the

angle formed by the tangent vectors of the polymer at two points separated by a contour

length s. By making a s-large window slide along the molecule, one obtains different values of

θ(s). According to Polymer Theory [27], the average value of the cosine of this angle 〈cosθ(s)〉
(that is, the scalar product between the considered tangent vectors) defines a correlation

function, which usually shows an exponential decay due to the Markovian character of the

polymer [15]. By definition, the persistence length lp is the length scale of this exponential

decay: 〈cosθ(s)〉 = exp(−s/lp ). Since it is related to the transverse fluctuations of a polymer,

the persistence length is expected to depend on the dimensionality of the system [69]. It is

customary to refer to its three-dimensional value as the persistence length of the polymer,

and to suitably correct the exponential decay according to the dimensionality of the system.

For example, in the present case the fibrils have been adsorbed onto a substrate, thus the

embedding space is two dimensional and a factor of 2 needs to be introduced in the correlation

function [69]:

〈cosθ(s)〉 = e
− s

2lp . (1.5)
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.7 – Top: Sketch of a semiflexible polymer where we show the arc length s and the angle
θ(s) between the tangents at points with contour distance s, used to define the correlation
function. Bottom: experimental data of the average values of the correlation function versus
the arc length s, and relative fits according to eqn (1.5). Blue, red and yellow points and lines
correspond to fibrils with average height 2,4 and 6 nm respectively. Adapted from [43].

In this way, by computing the average of the measured values of the angle, one can extract

the persistence length of the fibrils. Unfortunately, fibrils corresponding to n = 4,5 are not

sufficiently populated to provide reliable estimates of their lp . In the bottom part of fig.1.7 the

final average cosines are reported in log-lin scale for different values of the arc length s. The

blue, red and yellow points correspond to fibrils belonging to populations centered at 2,4 and

6 nm respectively. As expected, the three classes of points are well fitted by an exponential

decay, which in log scale becomes a straight line. From the slope of this line and making use of

eqn (1.5), it is finally possible to extract the values of lp , which are reported in fig.1.6. From the

theoretical point of view, some scaling arguments point towards a linear relationship between

lp and n. Indeed, assuming the fibril to be a homogeneous beam with Young’s modulus E , the
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1.2. βlg fibrils are stiff twisting ribbons

persistence length can be written as [27]

lp = E M

kB T
, (1.6)

where kB the Boltzmann constant, T the temperature and M the area moment of inertia of

the section of the fibril (see below). Note that lp is proportional to the Young’s modulus of the

polymer, which quantifies its intrinsic stiffness, and inversely related to temperature, since for

hotter baths the thermal fluctuations overcome more easily the bending rigidity of the fibril.

By modeling the section of the ribbon as a rectangle with sides b and nb and considering only

the lowest mode to be involved in the thermal bending, the area moment of inertia can be

easily computed as [70]

M =
∫ nb

2

− nb
2

d x
∫ b

2

− b
2

d y y2 = 1

12
nb4 (1.7)

Substituting (1.7) in eqn (1.6) we find

lp = Eb4

12kB T
n ∝ n , (1.8)

in agreement with the linear behavior of the experimental data (fig.1.6).

All the arguments reported thus far provide compelling evidence that the structure of βlg

fibrils is that of a twisting ribbon. Note that, by comparing the maximum and minimum

heights, it is possible to extract the number of strands forming the fibril under investigation.

1.2.4 The electrostatic properties of the fibrils determine the value of L

The mechanism proposed in [43], according to which the twisting structure of fibrils arises

as an interplay between elasticity and electrostatics, was experimentally tested in a subse-

quent work [44]. The basic idea was to measure the halfpitches of fibrils in different salinity

conditions, by means of the same analysis performed in [43] and reported in the previous

section. Indeed, adding salt into a solution increases the concentration of free ions, and as a

result the net electrostatic interaction between nearby sections of the fibril is weakened [71].

Therefore, if electrostatics is responsible for the twisting structure of the fibril, its screening

should lead to more relaxed ribbons. As a result, the halfpitch is expected to be an increasing

function of the concentration of salt added to the solution. In practice this was achieved by

forming fibrils with the same protocol as in [43] and adding salt at a later stage. This detail

in the protocol is of great importance, since the electrostatic interaction plays an important

role in fibril formation [55, 72, 73] and starting the aggregation process in different salinity

conditions would ultimately result into structurally-different fibrils. In contrast, adding the

salt only after the fibrillation has taken place affects only the twisting properties.

In [44], the authors added several concentrations of salt into solutions with preformed βlg
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

fibrils and let the system equilibrate for three weeks. In fig.1.8 we report the values of the

halfpitches obtained for the various fibril populations adsorbed on mica at different values of

salt concentration. Five different solution conditions were considered, where 0,25,50,75 and

100 mM of salt were added2. Considering that the experiments were carried at pH=2 (obtained

by dissolving 10 mM of HCl into the solution), the total concentration I of free ions, known as

ionic strength, was equal to 10,35,60,85 and 110 mM respectively.

In fig.1.8, panels belonging to the same column represent different fibris populations (i.e.

different n) for given salinity conditions. Particularly, the salt-free case reproduces the same

experimental conditions as in [43], and consequently the same values of the halfpitches are

retrieved. By focusing on the rows of the mosaic, we can explore the behavior of the halfpitch

for a given fibril population as a function of the ionic strength. As anticipated, L increases

monotonically with I , thus conclusively confirming that electrostatic effects affect the twisting

properties of the fibrils in the way qualitatively predicted in [43].

Finally, we note that for large ionic strength the fibrils appear more flattened. The periodic

behavior of height fluctuations is still present, but it is not as smooth as for lower values of I .

As a result, for wider ribbons a vertical adsorbed configuration is not anymore sustainable,

and the fibril ends up being practically smashed on the surface.

1.3 A coarse-grained model for the twisting properties of amyloid

fibrils

As we have seen above, the proposed mechanism responsible for the twisting of fibrils is

based on the competing interplay between elasticity and electrostatic repulsion [43]. From an

experimental perspective, the key role played by electrostatics was outlined by measuring the

halfpitch of several populations of fibrils at different concentrations of added salt, which con-

firmed that stronger electrostatic interactions lead to more twisted structures [44]. In [44], the

authors also propose a theoretical framework to rationalize the data, which captures the gen-

eral trend of the halfpitches as a function of salinity. However, the quantitative agreement with

data is not fully satisfactorily, and the dependence on fibrils populations has to be introduced

by adapting a fitting parameter, which takes different values for different populations [44].

Nonetheless, this work paved the way for a more accurate approach, ultimately leading to our

original model introduced and discussed in the present section [67].

1.3.1 Building up the model

As shown in fig.1.9, each protofilament in the ribbon (represented in the figure as a continuous

strand) is modeled as a chain of beads of diameter b connected by springs having center-

to-center equilibrium distance b(1+ ε), with ε > 0. The numerical value of b is obtained

2By definition, 1 M=1 mol/l [74].
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Figure 1.8 – Sample AFM images and corresponding halfpitches for fibrils with n = 2,3,4 fibrils
at 0,25,50,75,100 mM salt concentrations. Reprinted from [44].

directly from experiments as the height of individually adsorbed protofilaments, and is set to 2

nm [43]. Within our coarse-grained picture, the springs embody the elastic part of the energy,

while the electrostatic interaction is accounted for by assigning a charge z ·e to each bead (e

being the electron charge, and z the number of charges on the bead). A n-stranded ribbon is
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Figure 1.9 – Ideal steps leading to the coarse-grained picture of a fibril. A single protofilament
(top-left) is represented by a chain of beads (top-right). Several pre-formed protofilaments
associate laterally (medium-left) and the whole structure is subsequently twisted around its
longitudinal axis (bottom-left), thus obtaining the final fibril. Accordingly, in our model a
suitable number of chains are attached to each other (medium-right) and homogeneously
twisted (bottom-right), with consecutive transverse layers tilted by a certain angleφ. Reprinted
from [67].

formed by laterally associating n chains, so that transverse layers of beads are formed (one

such layer is highlighted in fig.1.9). The final structure is then obtained by twisting the ribbon

around its longitudinal axis, as shown in fig.1.9 for a n = 5 fiber (the final structures for n = 2,3

and 4 are also shown in fig.1.10). In what follows we assume each layer not to bend upon

twisting, so to store elastic energy primarily by torsion and not bending. This assumption

of perfectly-straight fibril axis is justified because the persistence lengths of fibrils are much

larger than the halfpitches (for example, comparing the data shown in fig.1.6 we see that lp

is at least 30 times larger than L). Moreover, in the present model only interactions between

consecutive beads within the same protofilament are taken into account. This is a reasonable

assumption because b is of the same order of the typical values of the screening length in

aqueous solutions [71], so that electrostatic interactions are negligible between non-adjacent

layers.

Because of the geometrical constraints and of the simultaneous action of the two competing

forces, we expect at equilibrium that two consecutive layers will be tilted with respect to each

other by a certain angleφ∗, which is assumed to be constant along the ribbon and small. Since

all energy terms in our derivation do not prefer any particular local handedness of the twist,

the interaction energy is an even function of the twist angle, so that its expected shape is that

of a double well, which is sketched in fig.1.11a. Nevertheless, the fibrils do show a uniform
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Figure 1.10 – Final structures obtained by following the procedure described in the text for
fibrils made of 2, 3 and 4 filaments. Reprinted from [67].

left handedness over the full fibril length [43, 44], which means that a symmetry-breaking

mechanism is at work, imposing an effective chirality on the system. In what follows, we

postulate this intrinsic feature to be responsible for giving a definite handedness, but to play a

negligible role for all other purposes.

1.3.2 Computation of the equilibrium angle

The (still unknown) small value of φ∗ allows to set up a perturbative scheme to compute the

energy of the full fibril, which eventually leads to a very powerful formula for the half-pitch L.

The present section is devoted to the computation of φ∗, thus it may be skipped if the reader

is not interested in the detailed calculations.
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Figure 1.11 – a) due to the competition between elasticity and the repulsive electrostatic
interaction, the interaction energy between two consecutive layers as a function of φ has a
double-well shape, where the minima ±φ∗ are obtained as a compromise between a perfectly
relaxed (φ= 0) and a strongly twisted (φ=π/2) conformation. b) the variable x is defined as
the displacement of the distance between two consecutive beads with respect to the untwisted
case. Adapted from [67].

Let us consider two consecutive layers on the fibril. As mentioned above, assuming chirality

not to play a relevant role in quantitatively determining the twist of the ribbon, the total

(elastic + electrostatic) interaction energy between two consecutive layers V r
I (φ) (where the

subscript stresses its dependence on the ionic strength I of the solution) is expected to be an

even function of the angle φ, so that the point φ= 0 is stationary (i.e. maximum or minimum).

However, such an equilibrium point corresponds to an unstable configuration. Indeed, the

φ = 0 state coincides with a perfectly relaxed ribbon, which must still choose the twisting

handedness as driven by chirality. Now, let UI (x) be the total interaction energy between

two beads having a distance equal to x + b(1+ ε) (we will refer to x as displacement, see

fig.1.11b). If we denote by xi (φ) the displacement of the distance between two beads on the i th

protofilament belonging to two consecutive layers tilted by φ, by definition we have

V r
I (φ) =∑

i
UI (xi (φ)) . (1.9)

Since we assumed φ to be small, the distance xi is expected to be very small when compared

to the spring equilibrium distance b(1+ ε): xi (φ) ¿ b(1+ ε). Therefore, we can perform a

second-order Taylor expansion of the right-hand side of equation (1.9), thus obtaining (up to

an additive term independent of φ)

V r
I (φ) 'U ′

I (0)
∑

i
xi (φ)+ 1

2
U ′′

I (0)
∑

i
x2

i (φ) . (1.10)

In order to compute the displacement xi (φ), we first need to address the calculation of the

center-to-center distance di (φ) between the centers of two interacting beads on the i th fila-

ment, which by definition satisfies di (φ) ≡ xi (φ)+b(1+ε). In order to do so, let us consider

two consecutive layers on the fibril. By construction, such layers are tilted with respect to
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1.3. A coarse-grained model for the twisting properties of amyloid fibrils

each other by an angle φ. Let us consider the reference frame having as x axis the axis of

the fibril and as y axis the direction of the first layer (i.e. the line connecting the centers

of the beads belonging to it). Finally, let the z axis be suitably chosen in order to obtain a

left-handed orthonormal reference frame. If we consider a bead belonging to the first layer,

by construction its x and z coordinates are equal to zero. Moreover, apart from a sign the y

coordinate corresponds to its distance with respect to the fibril axis. If we label the filaments

as −(n −1)/2,−(n −1)/2+1, . . . , (n −1)/2 starting from the filament more shifted towards the

negative values of y , we then easily obtain that the y coordinate of the bead belonging to the

i th filament is simply i b , where b is its diameter. As for the second layer, by construction all

its beads have x = b(1+ε). As for the y and z coordinates, by following the same reasoning

as above and remembering that the second layer is rotated around the x axis by φ, we find

y = i b cosφ, z = i b sinφ. Putting together the previous results, we can thus straightforwardly

compute the distance di (φ) separating two consecutive beads belonging to the i th filament as

di (φ) =
√

(b(1+ε)−0)2 + (i b − i b cosφ)2 + (0− i b sinφ)2 , (1.11)

which gives for the displacement

xi (φ) = b
√

(1+ε)2 +2i 2 −2i 2 cosφ−b (1+ε) . (1.12)

By Taylor expanding xi (φ), we finally find

xi (φ) =αi 2φ2 +βi 2φ4 +γ i 4φ4 +O
(
φ6) , (1.13)

where α= b/[2(1+ε)],β=−b/[24(1+ε)] and γ=−b/[8(1+ε)3].

Substituting the previous result into equation (1.10) and neglecting all the terms O
(
φ6

)
, we

find

V r
I (φ) 'U ′

I (0)
∑

i

(
αi 2φ2 +βi 2φ4 +γ i 4φ4)+ 1

2
U ′′

I (0)
∑

i
α2i 4φ4 , (1.14)

that is, by rearranging

V r
I (φ) 'U ′

I (0)
(
αφ2 +βφ4)∑

i
i 2 +

(
U ′

I (0)γ+ 1

2
U ′′

I (0)α2
)
φ4

∑
i

i 4 . (1.15)

By making use of the formulas

n−1
2∑

i=− n−1
2

i 2 = 1

12
n(n2 −1) (1.16)

n−1
2∑

i=− n−1
2

i 4 = 1

240
n(n2 −1)(3n2 −7) (1.17)
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the previous expression becomes

V r
I (φ) 'U ′

I (0)
(
αφ2 +βφ4) n(n2 −1)

12
+

(
U ′

I (0)γ+ 1

2
U ′′

I (0)α2
)
φ4 n(n2 −1)(3n2 −7)

240
=

= 1

12
n(n2 −1)

{
U ′

I (0)αφ2 +
[

U ′
I (0)β+ 3n2 −7

20

(
U ′

I (0)γ+ 1

2
U ′′

I (0)α2
)]
φ4

}
. (1.18)

As we anticipated, within our assumptions the potential is an even function of the angle φ. By

minimizing the previous expression with respect to φ, we end up with the following equation:

2U ′
I (0)αφ+4

[
U ′

I (0)β+ 3n2 −7

20

(
U ′

I (0)γ+ 1

2
U ′′

I (0)α2
)]
φ3 = 0. (1.19)

A trivial solution is obviously φ = 0. However, we note that, because of the simultaneous

presence of the attractive elastic term and the electrostatic repulsion, the function UI (x)

is expected to present a single minimum for some 0 < x ¿ b(1+ ε), so that U ′
I (0) < 0 and

U ′′
I (0) > 0. Since U ′

I (0) < 0 we easily obtain

d 2V r
I

dφ2 (0) = 1

6
n(n2 −1)U ′

I (0)α< 0, (1.20)

so that this point corresponds to a maximum, as we had already anticipated by physical

arguments. As for the other two solutions, because of the parity of the potential they have the

same absolute value φ∗ given by

1

φ∗ =
√√√√−2

[
U ′

I (0)β+ 1
20 (3n2 −7)

(
U ′

I (0)γ+ 1
2U ′′

I (0)α2
)]

U ′
I (0)α

. (1.21)

By substituting α= b/[2(1+ε)],β=−b/[24(1+ε)],γ=−b/[8(1+ε)3] and rearranging, we thus

find

1

φ∗ =
√√√√1

6
+ 3n2 −7

40(1+ε)2 − 3n2 −7

40

U ′′
I (0)

U ′
I (0)

b

1+ε . (1.22)

An explicit computation of the second derivative in these points confirms that they are minima

of the potential V r
I (φ). The stable equilibrium point is given by the minimum corresponding

to the correct chirality.

Since we assumed φ¿π/2, we expect the right-hand side of the previous formula to be much

greater than one. However, the first two terms in the square root do not justify 1/φ∗ À 1

(remember that n is on the order of unity and ε> 0), so that we expect the third one to be the

leading term. The final formula for the equilibrium angle is thus (below we will countercheck

the correctness of the previous statement by computing the neglected terms within the explicit
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1.3. A coarse-grained model for the twisting properties of amyloid fibrils

model)

1

φ∗ =
√√√√−3n2 −7

40

U ′′
I (0)

U ′
I (0)

b

1+ε . (1.23)

1.3.3 A universal blueprint in the twisting properties of fibrils

The halfpitch L of the fibril can be obtained by computing how many layers are necessary to

accumulate a π twisting angle. Since the distance between two consecutive layers is set to

b(1+ε), the proportion L :π= b(1+ε) :φ∗ holds. By substituting equation (1.23), we thus find

L(n, I ) =πb

√√√√−3n2 −7

40

U ′′
I (0)

U ′
I (0)

b (1+ε) . (1.24)

The previous formula has some remarkable features. Indeed, we note that in our model the

population to which the particular fibril under study belongs to is identified by means of the

variable n. Intriguingly, equation (1.24) depends on n by means of a multiplicative factor

which is completelely independent of the other relevant quantities of the system. In other

words, our model leads to a net separation of the mesoscale properties of the system (that is,

the n-dependence) and its microscopic details, such as the ionic strength I of the solution,

the elastic properties, and the basic geometrical features (b and ε) at the level of single beads.

Apart from being physically sound, this observation leads to some new important insights in

the mesoscopic structure of fibrils. Indeed, because the details of the electrostatic and elastic

interactions are concealed in the multiplicative n-independent terms in equation (1.24), the

ratio between halfpitches of fibrils composed of different numbers n2 and n1 of protofilaments

depends only on n1 and n2:

L(n2, I )

L(n1, I )
=

√√√√3n2
2 −7

3n2
1 −7

, (1.25)

which is a remarkable parameter-free prediction. We leave to later the discussion on the

explicit form of the interaction potential, and turn first to the noteworthy predictive power of

the L(n2, I )/L(n1, I ) expression in equation (1.25).

In order to benchmark our predictions against experimental data, in collaboration with the

group of Prof. Mezzenga at ETHZ we considered a set of βlg fibrils produced with the same

protocol as in the previous sections. After the aggregation process, fibrils were immersed in

solutions with different salinities as in [44] and let equilibrate for one year. When deposited

on mica, they displayed periodicities in quantitative agreement with the experimental values

in [44]. Since the latter were performed on fibrils which had rested in salty solutions for three

weeks, this agreement confirms that the structures we observe correspond to the thermody-

namic equilibrium. Moreover, the statistical populations of wide fibrils were rich enough to
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

enable us obtain data on fibrils made of up to 5 protofilaments for all the ionic strength values

considered (I = 10,35,60,85 and 110 mM). Furthermore, in order to rule out strong effects

due to the interaction with the substrate, the same measurements were repeated on fibrils

adsorbed on HOPG. While the interaction responsible for adsorption on mica is mainly of

electrostatic nature, HOPG is a strongly hydrophobic surface. Therefore, the observation of

compatible values for the halfpitches between the two cases suggests that substrates effects

do not strongly alter the bulk periodic features of the fibrils (nevertheless, as we show below,

by addressing these effects even at the simplest level leads to an even better quantitative

agreement between theory and experiments).

Figure 1.12 – AFM images of fibrils composed of a different number of protofilaments (A,B,C,D
correspond respectively to n = 2,3,4,5), incubated on a 10 mM solution and adsorbed on
mica (left image) and HOPG (right image) surfaces. By performing a proper rescaling of the
scale-bar according to the formula given in the main text, for both substrates the half-pitches
appear to have the same physical length. In the central column, we compare the experimental
values of the ratios L(n, I )/L(2, I ) for n = 3,4,5 (points) with the corresponding theoretical
predictions (straight lines) for several values of ionic strength I in the case of both mica and
HOPG substrates. Reprinted from [67].

In fig.1.12 we show AFM mosaic images giving the half-pitch of multistranded βlg fibrils with

n = 2,3,4 and 5 constitutive protofilaments without added salt (ionic strength of pH 2 pure

water, i.e. 10 mM) acquired on mica (left image) and HOPG (right image) substrates. The scale

bar has identical physical length in each case, but indicates rescaled dimensions of 100 nm

x (3n2
2 −7)1/2/(3n2

1 −7)1/2 for each multistranded case, respectively n2 being the number of

protofilaments composing the fibril under inspection and n1 = 2 serving as a reference. After
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1.3. A coarse-grained model for the twisting properties of amyloid fibrils

operating the above-mentioned rescaling, all the pitches become identical, consistently with

our predictions. Because the predicted behavior is universal, i.e. independent of the physical

parameters and in particular of the ionic strength, in fig.1.12 we further show the comparison

between theory and experiments at different ionic strengths (central column). Particularly, we

plot L(n, I )/L(2, I ) for the sets of data for the two surfaces (data corresponding to the various

values of n have been horizontally shifted in order to improve visualization), and horizontal

lines correspond to our theory. The agreement between theory and experimental data is very

good, given the total absence of fitting parameters in the predictions.

Figure 1.13 – Universal prediction vs experimental data. In this graph we plot the rescaled ratio√
3n2

1 −7L(n2)/L(n1) of the periodicities of fibrils made from three different proteins, but all
arranged in a twisting ribbon: i) a set of βlg fibrils considered in the present work (I =10 mM),
whose periodicity was measured by means of AFM and using HOPG as substrate (red squares,
n1 = 2); ii) cryo-TEM data on lysozyme fibrils from [75] (blue circles, n1 ' 6); and iii) TEM data
of human amylin fibrils from [76] (green diamonds, n1 = 2). The data nicely collapse on the

curve
√

3n2
2 −7 (solid line) as predicted by our model. Reprinted from [67].

The level of coarse grain of our model and the separation of scales in the formula for the

halfpitch make the prediction given by equation (1.25) very general. Indeed, no particular

information of the microscopic details of βlg fibrils is needed in order to arrive at this formula.

Therefore, one may wonder whether it is applicable also to other systems, provided that their

geometry is that of a flat ribbon. Strikingly, this is exactly the case. Particularly, we now focus on

two other ribbon-shaped amyloid systems studied in literature, namely lysozime fibrils, which

were studied by means of AFM and cryo-TEM in [75], and human amylin fibrils, characterized

by TEM in [76]. By rearranging equation (1.25), independently of the microscopic details of
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

the system and the reference value n1, the following relation holds:

L(n2)

L(n1)

√
3n2

1 −7 =
√

3n2
2 −7. (1.26)

In other words, by multiplying the ratio of the half-pitches by
√

3n2
1 −7, where n1 is the number

of protofilaments composing the reference fibril, according to our model all the data collapse

on the universal curve
√

3n2
2 −7. In fig.1.13, we report the results found by considering the

data in [75] (blue circles) and [76] (green diamonds), together with a set of data considered

in the present work (red squares). The agreement with our parameter-free law (solid line) is

strikingly good, and confirms the goodness of our approach in describing different systems

arranged in the same geometrical packing.

1.3.3.1 Different geometries result into new universal laws

Figure 1.14 – Threefold structure proposed as possible packing arrangement for Aβ1−40 amy-
loid fibrils [59]. Each protofilament is obtained by stacking onto each other the Aβ1−40 pep-
tides, represented in the picture as the C-shaped units formed by a red and a blue β strands
connected by a green linker. The three protofilaments are then arranged in a triangular fashion
and twist around each other. Reprinted from [59].

Equation (1.25) was derived by considering a flat-ribbon packing arrangement. Naturally, this

is not the only possible geometry for fibrils. For example, based on STEM and NMR data, it

was proposed [59] that Aβ1−40 amyloid fibrils can exist in polymorphic states, which include

ribbon-like arrangements and the threefold symmetric structure shown in fig.1.14. Though

our calculations have been performed for the specific geometry of a flat ribbon, the approach

can be straightforwardly generalized to other packing arrangements. By following the same

steps performed to find equation (1.25), we now derive as an example a new parameter-free
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law in the case of protofilaments arranged in a twisting hollow-tube geometry, i.e. when in the

section of a fibril made of n protofilaments the latter are located on a regular n-sided polygon.

For example, in the top panels of fig.1.15 we show the cartoons of two fibrils packed according

to this geometry with n = 3 (which corresponds to the model for Aβ1−40 mentioned above)

and n = 5.

Figure 1.15 – Examples of twisting hollow-tube geometry. Left: cartoon of a twisting fibril
made of n = 3 protofilaments arranged on an equilateral triangle (top) and basic geometrical
features of a layer (bottom). Right: as in left column, but with n = 5. In both cases, the arbitrary
protofilament chosen to fix the y axis (corresponding to i = 0) is depicted in red. Reprinted
from [67].

By proceeding as in section 1.3.2, we focus on two consecutive layers on the fibril. By con-

struction, such layers are tilted with respect to each other by an angle φ. Let us consider the

reference frame having as x axis the axis of the fibril and as y axis the line connecting the

center of the polygon to the center of an arbitrarily selected bead (bottom panels of fig.1.15).

Finally, let the z axis be suitably chosen in order to obtain a left-handed orthonormal reference

frame. Within this arrangement, let us label the protofilaments as 0, . . . ,n −1 starting from

the one chosen to define the y axis. If we consider a bead belonging to the first layer, by

construction its x coordinate is equal to x1 = 0, while the other two coordinates can be found

by simple trigonometric considerations to be equal to

y1 = b

2sin π
n

cos
2πi

n
z1 = b

2sin π
n

sin
2πi

n
. (1.27)

Indeed, the side of the polygon corresponds to the center-to-center distance b between beads

belonging to two consecutive protofilaments, while the distance separating any bead from the

center of the polygon corresponds to the radius of the circumscribed circle of the polygon,

and is equal to b/2sin(π/n).
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As for the second layer, its x coordinate is equal to x2 = b(1+ε), while the y and z coordinates

can be found rotating by φ the ones found for the first layer:

y2 = b

2sin π
n

cos

(
2πi

n
+φ

)
z2 = b

2sin π
n

sin

(
2πi

n
+φ

)
. (1.28)

The distance di between two consecutive beads belonging to the i -th protofilament is then

equal to

di =
√

(x2 −x1)2 + (y2 − y1)2 + (z2 − z1)2 , (1.29)

which results, after some manipulations, in

di (φ) = b

√
(1+ε)2 + 1−cosφ

2sin2 π
n

. (1.30)

As expected from the symmetry of the system, the distance di is independent of i . At this

point, we can Taylor-expand xi = di −b(1+ε) and find

xi (φ) = x(φ) = b

8(1+ε)

φ2

sin2 π
n

− b

96(1+ε)

φ4

sin2 π
n

− b

128(1+ε)3

φ4

sin4 π
n

+O(φ6) , (1.31)

where by introducing x(φ) we wanted to stress the independence of xi on i . The total energy

of a layer V h
I can be computed by summing the contributions coming from each filament:

V h
I (φ) 'U ′

I (0)
n−1∑
i=0

xi (φ)+ 1

2
U ′′

I (0)
n−1∑
i=0

x2
i (φ) = nU ′

I (0)x(φ)+ 1

2
nU ′′

I (0)x2(φ) , (1.32)

that is, after substituting the formula for x(φ), retaining only the terms up to φ4 and rearrang-

ing,

V h
I (φ) ' b

8(1+ε)

n

sin2 π
n

{
U ′

I (0)φ2 +
[

U ′′
I (0)b

16(1+ε)sin2 π
n

− U ′
I (0)

12
− U ′

I (0)

16(1+ε)2 sin2 π
n

]
φ4

}
. (1.33)

By minimizing V h
I with respect to φ, we find the equilibrium twisting angle φ∗:

1

φ∗ =
√√√√1

6
+ 1

8(1+ε)2 sin2 π
n

− b

8(1+ε)

U ′′
I (0)

U ′
I (0)

1

sin2 π
n

. (1.34)

Arguments similar to the ones used in section 1.3.2 lead to recognize the third term in the

square root of the previous expression as the leading one, thus giving as a final formula for φ∗

1

φ∗ =

√
− b

8(1+ε)
U ′′

I (0)
U ′

I (0)

sin π
n

(1.35)
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which results into a half-pitch equal to

L(n, I ) =πb(1+ε)

√
− b

8(1+ε)
U ′′

I (0)
U ′

I (0)

sin π
n

. (1.36)

Exactly as in the case of a ribbon, we can recognize two multiplicative terms coming from

the micro- and mesoscopic scales. This results into a new parameter-free law, qualitatively

different from equation (1.25), which holds for a hollow-tube geometry: taking fibrils of

different populations (i.e. different n) and computing the ratio of the half-pitches, we find

L(n2, I )

L(n1, I )
=

sin π
n1

sin π
n2

. (1.37)

Unfortunately, the packing arrangement presented in [59] cannot be used to directly test this

prediction, since at least two distinct architectures are needed in order to compute this ratio.

The present derivation has thus to be intended only as an example to show how different

arrangements result into new parameter-free laws.

1.4 Explicit model for βlg fibrils

1.4.1 An explicit formula for the halfpitch

Having established the correctness and universality of our findings, we turn to the explicit form

of the interaction energy UI (x). The elastic contribution to the energy is captured by Hookean

springs between consecutive beads, with spring constant ke . To estimate the electrostatic

part of the energy, we use the Poisson-Boltzmann approximation, where the electrostatic

interaction energy between two spherical surfaces of diameter b and charge z ·e at a minimum

approach distance x, immersed in a solution of ionic strength I , can be written as [71]

U electrostatic
I = 1

4
bZ (I )e−k(I )x . (1.38)

Here, k(I ) is the inverse of the Debye length, which describes how well the ions in solution

screen the Coulomb repulsion, and is equal to

k(I ) =
√

2NAe2I

ε0εr kB T
, (1.39)

where εr ' 78 is the dielectric constant of water and I the ionic strength of the solution

measured in mM. Moreover, apart from the Yukawa-like exponential term, the electrostatic

potential in equation (1.38) is further screened by the I -dependent interaction parameter Z ,
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which is equal to

Z (I ) = 64πε0εr

(
kB T

e

)2

tanh2 eψ0(I )

4kB T
. (1.40)

In this formula, ψ0(I ) is the electrostatic potential generated by a charged sphere on its

surface, and has to be determined by solving the equation σ0 =
√

8ε0εr kB T NA I sinh eψ0(I )
2kB T ,

where σ0 = ze/πb2 is the surface charge density. The previous formulas can be written in a

simpler form by considering the Bjerrum length, which by definition is equal to the distance at

which two elementary charges have an interaction energy equal to kB T and has formula

lB ≡ e2

4πε0εr kB T
. (1.41)

In water at room temperature the Bjerrum length has a value roughly equal to 7 Å. Plugging in

the expression of lB into the previous formulas we easily find

k(I ) =
√

8πNAlB I (1.42)

and

Z (I ) = 16kB T

lB
tanh2 eψ0(I )

4kB T
, (1.43)

while the equation defining ψ0(I ) now reads
√

2πNA I /lB sinh(eψ0(I )/2kB T ) = z/b2, where

we have substituted the formula for σ0. Note that the interior of the fibrils is essentially

dry, and that it is mostly through the exterior that fibrils interact via a screened electrostatic

potential. Thus, equation (1.38) approximates the screened electrostatic interaction between

nearby portions of the fibril surface, in order to provide a coarse-grained picture of the twisting

properties of fibrils.

The total interaction energy between two consecutive beads on a given protofilament can be

thus written as

UI (x) = 1

2
ke x2 + 1

4
bZ (I )e−k(I )(x+bε) . (1.44)

By computing the derivatives of UI (x) we easily find (to ease the notation we drop out the I

dependence in k(I ) and Z (I ))

U ′
I (x) = ke x − 1

4
kbZ e−k(x+bε) , (1.45)

U ′′
I (x) = ke + 1

4
k2bZ e−k(x+bε) . (1.46)
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In this way, we have

U ′
I (0) =−1

4
kbZ e−kbε , (1.47)

U ′′
I (0) = ke + 1

4
k2bZ e−kbε . (1.48)

As expected, U ′
I (0) < 0 and U ′′

I (0) > 0. Substituting in equation (1.23), we obtain

1

φ∗ =
√√√√3n2 −7

40

ke + 1
4 k2bZ e−kbε

1
4 kbZ e−kbε

b

1+ε =
√

3n2 −7

10

ke ekbε

k Z (1+ε)
+ 3n2 −7

40

kb

1+ε . (1.49)

Now, in the range of I values considered in the experiment, the largest value of kb is attained

for the largest concentration of counterions (equal to 110 mM) and is roughly equal to 2.2. By

following the same reasoning as in section 1.3.2, we can thus neglect the second term within

the square root, obtaining as a final formula

1

φ∗ =
√

3n2 −7

10

ke ekbε

k Z (1+ε)
. (1.50)

Thus, plugging this expression in equation (1.24), we finally find

L(n, I ) =πb

√
3n2 −7

10

ke ekbε

k Z
(1+ε) . (1.51)

1.4.2 Fitting the raw data

Many of the parameters present (implicitly or explicitly) in equation (1.51) can be directly

determined from the experiments. The ones making exception are the empirical parameters

ke and ε, which describe the elastic part of the potential, and the total charge z present on each

bead. By tuning the parameters ke and ε, in the present section we fit the raw experimental

values of the halfpitches by means of equation (1.51). Note that for each substrate all the 20

experimental data points are used simultaneously in the fit (i.e. for each substrate a single

pair of ke : ε allows fitting simultaneously all the 20 experimental observations), thus as we

show below a single choice of ke and ε is capable of quantitatively describing the twisting

periodicities of the fibrils.

Before performing the fit, we need to deal with the total charge of a bead z. Since in the native

state a βlg unit has a roughly spherical shape of diameter 2 nm, one could assume that each

bead corresponds to roughly one monomer, and consequently assign to it a charge z = 20 [43].

However, physical arguments based on Manning theory of counterion condensation [77] point

towards z = 6 as the most suitable value. Indeed, after the aggregation has taken place, a value

33



Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.16 – Mean spacing between two unit charges on each filament as a function of the
bead charge. For any given value of z, we performed the fit and computed ∆x = b(1+ε)/z
by substituting the given value of ε found. The blue circles and red squares correspond
respectively to the data obtained on mica and HOPG. The horizontal line sketched corresponds
to the Bjerrum length, so that the chosen z is the one for which the corresponding ∆x lies
closest to it. Reprinted from [67].

of z = 20 would result in a densely charged filament, which according to Manning’s theory [77]

would result in a partial condensation of counterions on it. More specifically, within our model

the average spacing between two unit charges is given by ∆x ≡ b(1+ε)/z. Given that b = 2 nm

and the fact that ε has always a value around unity (see below), a value of z = 20 would imply a

mean spacing ∆x ' 2 Å. According to Manning’s theory, the counterion condensation takes

place whenever the mean spacing falls below the Bjerrum length lB , which in the experimental

conditions considered in this work is equal to roughly 7 Å. The theory further states that such

condensation is only partial, and involves a suitable number of counterions in order to obtain

a mean spacing equal to lB after it has taken place.

Based on the previous remarks, we can thus conclude that the more physically-reliable z

is the one which results in a mean spacing ∆x ' lB . However, since ∆x depends on ε, its

value can be determined only a posteriori with respect to the fit. We thus performed the fit of
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1.4. Explicit model for βlg fibrils

Figure 1.17 – Fit parameters as a function of z. Top: dependence of the fitted value for the
spring constant ke on the charge z. Bottom: dependence of ε on z. The blue circles and red
squares correspond respectively to the data obtained on mica and HOPG. In both cases, the
values of the parameters change very slightly when varying z, reaching in practice a plateau
for z > 10. Reprinted from [67].

the experimental data by means of equation (1.51) for several values of z, and subsequently

computed the mean spacing ∆x. In fig.1.16 we show the results obtained for both mica (blue

circles) and HOPG (red squares) for values of z in the range 4 ≤ z ≤ 12. The horizontal line

corresponds to an ordinate equal to lB , so that the most physically suitable value of z is the

one leading to a ∆x as much close as possible to this line, which from the graph we deduce to

be z = 6.

In fig.1.17 we report the values of the fitting parameters ke and ε which would be obtained

by considering different values of z. As we can see from the graph, these values are virtually

independent of the actual value of z, that as a consequence does not affect our conclusions.

Mathematically speaking, this can be explained by looking carefully at the formulas describing

the electrostatics. Indeed, the value of z only appears in the equation defining the potential

ψ0, and thus ultimately appears in the formula of the pitch by means of the interaction
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Chapter 1. Universal behavior in the mesoscale properties of amyloid fibrils

Figure 1.18 – Comparison between the experimental values of the halfpitches and theory after
fit for fibrils adsorbed on mica and HOPG surfaces. In each case, all the 20 experimental points
were fitted simultaneously by tuning the parameters b and ε. Reprinted from [67].

parameter Z (I ). More in detail, the potential is an increasing function of z, since it is basically

its hyperbolic arcsinus. The interaction parameter Z depends on ψ0 by means of a hyperbolic

tangent, so that it is a monotonically increasing function which eventually reaches a plateau.

Thus, there is a saturation effect, which as shown in fig.1.17 is already reached for relatively

modest values of z.

The best fits obtained for z = 6 lead to the curves reported in fig.1.18. The final values of

the parameters are ke = (0.39± 0.03) N/m, ε = 0.96± 0.05 for mica, and ke = (0.35± 0.02)

N/m, ε = 1.05±0.04 in the case of HOPG. From the fitted value of ke it is possible to give

an estimate of the torsional elastic properties of fibrils. In particular, apart from numerical

prefactors which depend on n and ε (both of order unity), the shear modulus G is given

by G ∼ ke /b ∼ 10−1 GPa, in agreement with previously reported experimental results [50].

Moreover, the fact that the best-fit values of the ke : ε pair differ by 10% or less between the
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1.4. Explicit model for βlg fibrils

two substrates, which have very different surface energies, conclusively demonstrates that

surface adsorption effects do not strongly affect the measured values of fibrils periodicity.

These effects are relevant only at large values of ionic strength. Indeed, as already noticed

in [44], for large I and n the fibrils appear as smashed on the surface due to adhesion forces.

Though being always within the error bars, in this region the theoretical prediction seems to

systematically underestimate the values of the halfpitch. In the next section we consider a

refined model where the interaction with the surface is explicitly taken into account. Within

this model, we show for HOPG, where no additional eletrostatic interactions play a role, that

this allows to further improve the accuracy of the model in the regime of high pitches (large I

and n).

Before delving into the modelling of fibril-substrate interactions, we note that the fitting

parameters within the explicit model can be used to perform a sanity check of our calculations.

In this regard, we now address the validity of some of the approximations done in order to

arrive at equation (1.51) for the halfpitch. Particularly, based on a self-consistency argument,

in section 1.3.2 we recognized a leading term in the exact perturbative result and discarded

the remaining ones, finally obtaining equation (1.23). In a similar fashion, in section 1.4.1

we neglected one term in order to obtain equation (1.50). To further check the validity of

such approximations, we now compute the discarded quantities within the explicit model and

compare them with the leading term. In particular, by making use of the expression under

square root in equation (1.50), we define the following ratios:

r1(n, I ) ≡
1
6

3n2−7
10

ke ekbε

k Z (1+ε)

= 5

3

1

3n2 −7

k Z (1+ε)

ke ekbε
,

r2(I ) ≡
3n2−7

40(1+ε)2

3n2−7
10

ke ekbε

k Z (1+ε)

= 1

4

1

1+ε
k Z

ke ekbε
, (1.52)

r3(I ) ≡
3n2−7

40
kb

1+ε
3n2−7

10
ke ekbε

k Z (1+ε)

= 1

4
kb

k Z

ke ekbε
.

We note that, for each value of I , the ratio r1 as a function of n takes its largest value for n = 2,

so that we will limit our analysis to this case. By substituting the values for ke ,ε obtained

from the fit, we find the curves shown in fig.1.19. From the plot, both for mica and HOPG the

largest value of such ratios is around 2 ·10−2, thus providing an a posteriori validation of our

assumptions. Finally, as a further check we fitted the data by using the formula for the pitch

we would have obtained by not discarding any of the terms above. The results obtained are

ke = (0.38±0.03) N/m, ε= 0.97±0.05 for mica, and ke = (0.34±0.03) N/m, ε= 1.05±0.05 for

HOPG, which are practically the same as the ones obtained with the approximated formula

(compare with the numerical values provided above).
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Figure 1.19 – Check on the validity of the approximations done. Top: plot of the ratios defined
in equation (1.52) after the fitting values of ke ,ε found for mica have been substituted. Bottom:
plot of the ratios in the case of HOPG fitting parameters. Reprinted from [67].
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1.4.3 Toy model of fibril-substrate interactions.

In this section, we introduce a model that mimicks the effect of the interaction of the system

with the substrate on the pitch of the fibrils. This interaction is introduced in the simplest way

possible, namely through a harmonic potential between beads and substrate, here represented

as a homogeneous plane. This approach is naturally too simplistic to capture the details of the

complex interaction between fibrils and substrates (in particular in the case of mica, where

this interaction is of electrostatic nature), but gives useful insights on how the presence of a

substrate influences the bulk values of the pitch.

In what follows, we will assume each bead to interact independently with the surface via a

potential dependent only on the distance substrate-bead. By introducing this interaction, the

system is no more symmetric with respect to the longitudinal axis of the fibril. From a local

perspective, the net interaction between two consecutive layers is now expected to depend

not only on the twist angle φ, but also on the orientation of the layers with respect to the

surface. Nevertheless, the system still presents a symmetry with respect to the configuration of

a vertically adsorbed ribbon, so that from now on we will restrict our analysis to the portion of

the pitch between a horizontally and a vertically adsorbed fibril, i.e. to half of the halfpitch L.

Let us assume that each bead interacts harmonically with the surface, i.e. it is subject to a

potential k̄e h2/2, where h is the closest approach distance between the bead and the surface

(from now on we will refer to h as height of the bead). Assuming that each layer has exactly

one3 contact point with the substrate (apart from the horizontally adsorbed configuration),

if we label the beads belonging to it as 0, . . . ,n − 1 the height hi of the i th bead is given by

hi = i b sinΘ, where Θ ∈ [0,π/2] is the angle formed by the layer and the plane. Now, let us

consider two consecutive layers twisted by an angle φ and let θ be the angle formed by the

fibril and the surface at the mid-point between them. Therefore, the two layers are oriented

with angles θ−φ/2 and θ+φ/2 with respect to the substrate. The total interaction between

layers and plane thus reads

1

2
k̄e

n−1∑
i=0

(i b)2 (
sin2(θ−φ/2)+ sin2(θ+φ/2)

)
. (1.53)

By making use of the formulas

sin2 x = 1−cos2x

2
, (1.54)

cos x +cos y = 2cos
x + y

2
cos

x − y

2
, (1.55)

3From a geometrical perspective, such an assumption is incompatible with a perfectly straight fibril axis, which
now will cover a sinusoidal trajectory along one period. However, given the values of n, b and L the length of such
a sine is practically that of the corresponding end-to-end straight line, so that to our purposes the axis can be still
considered as perfectly straight.
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n−1∑
i=0

i 2 = 1

6
n(n −1)(2n −1) (1.56)

the previous result can be rewritten as

1

12
n(n −1)(2n −1)k̄e b2 2−cos

(
2θ+φ)−cos

(
2θ−φ)

2
=

= 1

12
n(n −1)(2n −1)k̄e b2 2−2cos2θcosφ

2
. (1.57)

By Taylor-expanding cosφ and neglecting the additive φ-independent terms, we finally obtain

1

12
n(n −1)(2n −1)k̄e b2 cos2θ

(
1

2
φ2 − 1

24
φ4

)
. (1.58)

The potential V r
I (φ) in equation (1.18) can be rewritten within the explicit model as (by

retaining only the leading terms)

V r
I =−n(n2 −1)

kb2Z e−kbε

96(1+ε)
φ2 +n(n2 −1)(3n2 −7)

ke b2

1920(1+ε)2φ
4 . (1.59)

By defining ρI ≡ kb2Z exp(−kbε)/96(1+ε) and η≡ ke b2/1920(1+ε)2, the previous formula can

be rewritten as V r
I =−n(n2 −1)ρIφ

2 +n(n2 −1)(3n2 −7)ηφ4. Note that the unperturbed equi-

librium angle φ∗ can be written in terms of these new parameters as φ∗ =
√
ρI /2η(3n2 −7).

Moreover, as such formula for φ∗ suggests, ρI is always sensibly smaller than η. Finally, by

further defining λn ≡ 1/288(2n −1)/(n +1)k̄e b2, the total energy Uθ of the two-layers system

with surface effects can be obtained as the sum of (1.58) and (1.59) and reads

Uθ

n(n2 −1)
= (−ρI +12λn cos2θ

)
φ2 + [

η(3n2 −7)−λn cos2θ
]
φ4 . (1.60)

By minimizing the previous formula with respect to φ and rearranging, we find, apart from the

trivial solution φ= 0,

φ̄2 =
1−12λn

ρI
cos2θ

1− λn

η(3n2−7) cos2θ
φ∗2 , (1.61)

that is, remembering that φ∗2 = ρI /2η(3n2 −7),

φ̄2 =
1−12λn

ρI
cos2θ

1− 2λnφ∗2

ρI
cos2θ

φ∗2 '
(
1−12

λn

ρI
cos2θ

)
φ∗2 . (1.62)
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By extracting the square root of both sides in the previous equation, we are thus finally able to

write the formula for φ̄:

φ̄=φ∗
√

1−12
λn

ρI
cos2θ . (1.63)

From equation (1.63) we can already draw an important conclusion: according to our model,

for θ < π/4 the perturbed equilibrium angle φ̄ is smaller than φ∗, i.e. the fibril twists more

slowly with respect to the unperturbed case. In contrast, θ > π/4 ⇒ φ̄ > φ∗, i.e. the twist is

fastened. In other words, the qualitative picture emerging from this result is that of a fibril

which twists slowly while being close to a horizontally adsorbed configuration (θ <π/4), but

increases its φ̄ once it gets close to the vertically adsorbed one (θ >π/4), in agreement with

the empirical observations in ref. [44].

Starting from equation (1.63), in order to compute the pitch we have to find a set of angles

φ̄ j , j = 0, . . . , N̄ −1 such that:

1.
∑N̄−1

j=0 φ̄ j =π/2;

2. φ̄ j = φ̄(θ j );

3. θ0 = 0 and θ j = θ j−1 +φ j−1/2+φ j /2 for j > 0.

Notice that the number N̄ is not fixed a priori. Quite the contrary, the final aim of this

calculation is the very computation of N̄ , since the half-pitch will then simply be L̄ = 2N̄ b(1+ε),

where the factor of two comes from the fact that in order to get a halfpitch we have to consider

twice the portion of fibril under inspection. Therefore, in the very end the effect of the

presence of the surface on the pitch can be understood by comparing N̄ with its analogue in

the unperturbed case N∗ ≡π/(2φ∗).

By looking at points 2. and 3. above, we note that once θ j−1 is known, in order to find θ j we

need to solve a transcendental equation, so that the problem cannot be solved analitically.

Nevertheless, we can still get some qualitative insight into the behavior of the pitch with some

simple arguments.

First of all, by defining a ≡ 12λn
ρI

, we notice that the average value of φ̄(θ) over the interval

[0,π/2] is equal to

〈φ̄〉cont =φ∗ 2

π

∫ π
2

0
dθ

p
1−a cos2θ =φ∗ 2

π

∫ π
2

0
dθ

√
1+a −2a cos2θ =

=φ∗ 2

π

∫ π
2

0
dϕ

√
1+a −2a sin2ϕ=φ∗ 2

p
1+a

π
E

(√
2a

1+a

)
≡φ∗ f (a) , (1.64)
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where we have performed the change of dummy variable ϕ≡π/2−θ,

E(x) ≡
∫ π/2

0
dϕ

√
1−x2 sin2ϕ (1.65)

is the complete elliptic integral of the second kind and we have defined the function

f (a) ≡ 2
p

1+a

π
E

(√
2a

1+a

)
. (1.66)

The function f (a) monotonically decreases in the range [0,1] (the only interval allowed for

the surface effects not to disrupt the fibril, see below), thus it attains its maximum value for

a = 0, which is equal to f (0) = 1. Therefore, the largest value attained by 〈φ̄〉cont is in absence

of surface effects, where as expected 〈φ̄〉cont = φ∗. Now, assume to have found a set of φ̄ j

fulfilling the requirements summarized in points 1,2,3 above. By definition, their average 〈φ̄〉
is such that N̄ 〈φ̄〉 =π/2. Since φ̄ j ¿ 1, at a first approximation we can assume that the average

of such a discrete set is equal to its continuous version, i.e. 〈φ̄〉 ' 〈φ̄〉cont. At this point, the

computation of N̄ becomes straightforward:

N̄ 〈φ̄〉cont =π/2 = N∗φ∗ ⇒ N̄ = N∗ φ∗

〈φ̄〉cont
= N∗

f (a)
. (1.67)

Finally, remembering that L̄ = 2N̄ b(1+ε) and L = 2N∗b(1+ε), we obtain for the half-pitch

L̄(a) = L

f (a)
. (1.68)

Since f (a) < 1 for a 6= 0, from Equation (1.68) we argue that as a net effect the surface effects

result into an increase of the half-pitch. Moreover, because of the monotonicity of f (a) such

an increase is more marked for larger values of a. Remembering that a = 12λn/ρI , and

substituting λn and ρI by means of their definitions, we obtain the explicit dependence of a

on n, I :

a(n, I ) = 4
2n −1

n +1

k̄e (1+ε)ek(I )bε

k(I )Z (I )
. (1.69)

The formula above is an increasing function of both n and I , so that we conclude that within

this simple model the surface effects on the pitch are to be stronger for wider fibrils (i.e. larger

n) and more salty solutions, which can qualitatively explain the discrepancy between theory

and experiments found in the framework of our model.

Though simplistic, the present approach is thus able to take into account the slight under-

estimation of the pitch in the unperturbed model, and qualitatively predicts the observed

dependence of such differences upon the ionic strength. Interestingly, a fit of the HOPG

data performed by tuning ke ,ε and k̄e and considering the proper computations made by

following points 1, 2, 3 above leads to a better agreement between theoretical predictions and
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experimental data, as we show in fig.1.20 (compare fig.1.18 bottom). The final values for the

parameters are ε = 0.95,ke = 0.38 N/m, k̄e = 3.7 ·10−4 N/m. A comparison with the values

obtained in the unperturbed case shows that the parameters are not strongly affected by the

introduction of the new interaction. In spite of the good agreement between theory and data,

we want to stress that, due to the strongly oversimplified picture introduced in the present

treatment, the value of the fitting parameter k̄e is not quantitatively reliable, but serves more

as a rough measure of the expected strength of fibril-surface interactions.

Figure 1.20 – Half-pitches of fibrils adsorbed on HOPG as a function of the ionic strength I for
n = 2,3,4,5 and corresponding fitted prediction in the presence of fibril-substrate interactions.
Reprinted from [67].

As a final remark, it is interesting to observe that the present model predicts the existence

of a critical value of ionic strength I beyond which the interaction with the substrate leads

to the disruption of the fibril. Indeed, let us consider again equation (1.63): as long as a =
12λn/ρI < 1 the argument of the square root will be positive for any values of θ, so that all

our considerations above apply. However, once a becomes larger than the critical value

ac = 1 (corresponding to a certain value Ic of the ionic strength), for small enough θ we get

1−a cos2θ < 0, so that the only extremal point of the free energy will be φ= 0, which switches

from being a maximum to a minimum of the system4. In other words, in this situation the

4This is a well-known behavior in statistical physics, where a Landau expansion of the free energy like the one
we did in equation (1.60) can be seen as the behavior of the order parameter - φ in our case - in the vicinity of a
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interaction fibril-substrate is too strong, and the minimum of the free energy of the system

is obtained by completely relaxing the fibril, i.e. by disrupting the twist. The stronger the

interaction, the larger the range of values of θ resulting in the disruption of the fibril.

1.5 Conclusions

We have shown here that the trade-off between the competing energetic contributions of

electrostatics and elasticity governs the mesosopic architecture of amyloid fibrils. Our model

quantitatively predicts the dependence of the pitch of the twist of the fibers upon the number

of protofilaments and on the physical parameters, and in doing so demonstrates the existence

of hitherto unknown universal, parameter-free features, bringing an unprecedented new

description on the physical mechanisms controlling amyloid fibrils self-assembly. More gener-

ally, our results should apply whenever two different competing interactions, not necessarily

of elastic and electrostatic nature, destabilize the flat architecture of the ribbon, so to give rise

to twisted fibrils. From an even broader perspective, our findings suggest that there might be

a number of yet undiscovered universal laws governing several mesoscale features of protein

fibrillar aggregates.

continuous phase transition.
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2 Coarse-grained modelling of Hsp70

2.1 A primer on Hsp70

Molecular chaperones are very versatile proteins that assist other proteins in various cellular

processes [78]. Among them, the 70-kDa heat-shock protein (Hsp70) is probably the most

eclectic one, being involved in a wide variety of cellular processes both in prokaryotes and

eukaryotes [78–80]. Historically, Hsp70s were given this name since they were overexpressed

when putting bacterial cells in very harsh conditions, such as high-temperature baths [81].

Since then, Hsp70 molecules were systematically found to assist other proteins in a plethora

of cellular processes [79]. For example, Hsp70s prevent the aggregation of proteins [82]

and supervise the disaggregation of stable protein aggregates [83]; they assist proteins in

de novo folding, particularly when the latter have large size [84] or in the case of mutants

[85]. Hsp70 chaperones also interact with many signal-transduction proteins [86], intervene

in protein-complexes remodeling such as the disassembly of clathrin cages [87] and drive

posttranslational import of cytoplasmic proteins into eukaryotic organelles [88–90]. Moreover,

it has been recently outlined that they may also be involved in preventing translation stalling

in ribosomes [91, 92].

From a structural point of view, Hsp70s are among the most conserved proteins throughout

evolution [95]. Because of this, results found on a particular member of the Hsp70 family are

usually extended to all of them [78]. As a consequence, the scientific literature has become

more and more focused on DnaK, the Hsp70 chaperone of E. coli, which has thus been

appointed as the model case for this class of molecules [78]. DnaK is an ATP-consuming

protein made of 600 amino acids [78]. Its structure rougly consists of two large domains

connected by a small flexible linker (see fig.2.1). Specifically, the N-terminal Nucleotide

Binding Domain (NBD) is the ATPase unit of the chaperone, while the Substrate Binding

Domain (SBD) directly interacts with specific sites on the target protein. These binding sites

are frequently found in protein sequences [96], so that multiple chaperones are likely to bind

the same substrate.

According to the current view of the Hsp70 biochemical cycle [98], DnaK can be typically found
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Chapter 2. Coarse-grained modelling of Hsp70

Figure 2.1 – Cartoons of ADP-, substrate-bound E. coli DnaK (top panel, PDB: 2KHO [93]) and
ATP-bound chaperone in the absence of the substrate (bottom panel, PDB: 4B9Q [94]).

in two distinct states, depending on whether NBD is hosting ATP or ADP. As shown in table

2.1, the two states have very different affinities for the substrate, with the ATP-bound state
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KD kon
(
M−1s−1

)
koff

(
s−1

)
ADP 63 nM 9.3 x 103 0.004
ATP 2.2 µM 4.5 x 105 1.8

Table 2.1 – Dissociation constant and kinetic rates for substrate binding by ATP- and ADP-
bound Hsp70. Data taken from [78, 97].

showing a dissociation constant equal to roughly 35 times that of its ADP counterpart [97].

The kinetic constants show even larger differences. The ATP-bound state has a large binding

rate when compared to the ADP-bound case, while the latter has a much lower value of koff.

It has been proposed that Hsp70 exploits this large difference in time scales by means of a

mechanism called ultra-affinity [99]: the energy released by ATP hydrolysis is used to maintain

the chaperone in a nonequilibrium steady-state cycle which takes advantage of the kon of the

ATP-bound state and the koff of the ADP-bound state. In doing so, DnaK shows an effective

dissociation constant orders of magnitude lower than the Kd of both the two equilibrium

states [99].

The ultra-affinity mechanism is intimately related to the experimentally-observed increase

in ATP hydrolysis upon substrate binding [99]. Since the two events are spatially localized in

regions having a mutual distance of more than 50 Å [78] (the former takes place in the NBD,

while the latter involves the SBD), it does not come as a surprise that the presence of allosteric

mechanisms has been observed [78]. In this regard, many experiments have been performed

using several approaches, including (but not limited to) NMR spectroscopy [100, 101] and

fluorescence techniques [102, 103]. To summarize, substrate binding catalyzes ATP hydrolysis,

which in turn stabilizes the former. Moreover, ATP binding in the NBD induces substrate

release [78]. From this picture, one concludes that the key conformational states are the

ADP-, substrate-bound DnaK and the ATP-bound state in absence of the substrate. The

structures of DnaK in these two states have been recently unveiled [93, 94] and are reported

as ribbon cartoons in fig.2.1. In the ADP-bound state (fig.2.1 top), the two domains can

move independently, apart from the constraint imposed by the presence of the flexible linker

[78]. The bound substrate (not shown in fig.2.1) is localized between the two β-sheets of

the SBD, while the C-terminal α-helices (called LID) shield it from interactions with the

environment [78]. In the ATP-bound state, the surfaces of the NBD and the SBD are constantly

in contact, while the linker is stably docked within the core of the NBD, where it interacts

with its subdomains. As a result, the domains are strongly constrained to each other, and the

chaperone behaves approximately as a rigid body [78]. Moreover, the LID and the β-sheets

subdomain of the SBD are well apart from each other, so that the binding region of the latter is

exposed to the solvent. These observations provide a molecular explanation to the different

scales in the kinetic constants reported in table 2.1: on the one hand, in the ATP-bound state

the solvent exposure of the binding site eases the interaction with the substrate, resulting

in fast kinetics; on the other hand, in the ADP-bound state the binding region is hindered

from the solvent, and both substrate release and binding are rather unlikely events. In a more
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pictorial way, the chaperone “bites” the substrate, and the ATP-ADP exchange mechanism

acts as a switch between the open and closed states.

Finally, it is worth mentioning that Hsp70 is assisted by other two classes of co-chaperones,

namely the J-domain proteins (JDP) and the Nucleotide Excange Factors (NEF), which in

E. Coli are named DnaJ and GrpE. A JDP, also known as Hsp40 [78], is characterized by the

presence of a J-Domain, which interacts with Hsp70, and other domains with similar substrate

preferences to DnaK [78, 104, 105]. Moreover, it has been shown that it also catalyzes the

hydrolysis of the ATP molecule in the NBD [104]. As a net result, JDPs act therefore as recruiters

of Hsp70, further increasing their binding rate. Analogously, the NEFs affect the koff of the

chaperones by inducing the release of ADP from the NBD, which is promptly substituted by an

ATP molecule thanks to the high affinity of NBD for nucleotides and to the relative large in vivo

concentration of ATPs with respect to ADP molecules. Interestingly, thanks to ist elongated

shape NBD-bound GrpE also competes with the substrate to establish an interaction with the

SBD, thus facilitating its release [106].

The omnipresence of Hsp70 in a huge variety of cellular processes suggests that this chaperone

works by means of a general mechanism. In this regard, based on excluded-volume effects,

the entropic pulling mechanism proposed in [107] provides for a simple way to explain the

role played by Hsp70 in this myriad of processes [80]. In this chapter, we focus on a specific

case, namely the posttranslational import of cytoplasmic proteins into organelles. Starting

from the entropic-pulling mechanism, we compute by means of MD simulations the effective

free-energy profile for substrate translocation induced by the presence of Hsp70. This free

energy is then used to quantitatively characterize the import process, thus outlining the key

role of Hsp70 in protein import into mitochondria.

2.2 Hsp70 as translocase

2.2.1 The entropic-pulling mechanism

Though mitochondria have their own DNA, the majority of mitochondrial proteins are actually

encoded in nuclear DNA, synthesised in the cytosol and only post-translationally imported

into the organelles [88]. Protein import takes place through a proteinaceous pore that spans

the two mitochondrial membranes by way of the outer (TOM) and inner (TIM) membrane

pore complexes [88]. According to the current view, an ATP-consuming import motor located

into the mitochondrial matrix drives the inward translocation of nuclear-encoded proteins.

Mitochondrial Hsp70 (mtHsp70) is the central element of this motor: it is recruited by the

TIM complex on the matrix side through interactions with the TIM44 protein, which is part

of the pore, and with the pore-associated PAM16/18 proteins. The latter contain a J domain,

therefore they act as recruiters and increase by orders of magnitude the affinity of chaperones

for substrates. The ATP-driven binding of Hsp70s to incoming proteins ultimately drives their

translocation.
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The precise mechanism by which Hsp70 exerts its pulling action has been debated in the

literature and several models have been proposed [88, 107, 108]. The Brownian ratchet [88]

assumes that, thanks to the chaperone large size, Hsp70 binding prevents the retrotransloca-

tion of the substrate into the pore, thus biasing the random fluctuations toward the matrix.

Alternatively, according to the power stroke [108] the chaperone actively pulls the incoming

protein by using TIM as a fulcrum. Later, according to the entropic pulling model [107], it

was shown that an active force naturally emerges from a realistic physical description of the

Brownian ratchet, thus reconciling the two views [80]. Indeed, the excluded volume of the

chaperone, besides preventing retrotranslocation, reduces the conformational space available

to the incoming protein, thus decreasing its entropy. This reduction depends on the length of

the imported fragment of the substrate, therefore resulting in a free-energy gradient which

favors the import.

Figure 2.2 – Effect of the excluded volume of Hsp70 on the import process of a substrate. The
substrate-bound chaperone is depicted in its ADP-bound state with the same color code as in
fig.2.1, while the substrate is represented as a structureless red tube. The inner mitochondrial
membrane is described as a horizontal flat plane. In the absence of chaperone, both the
substrate conformations reported are sterically allowed. In contrast, with a bound Hsp70 the
right one would result in a clash between Hsp70 and membrane.

This mechanism is best explained with the aid of fig.2.2, where we sketch a simplified de-

scription of the system under study. The chaperone is represented at the secondary-structure

level in its ADP-bound state, with the same color code as in fig.2.1. The substrate, depicted
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as un unstructured red tube, is being imported through the mitochondrial pore, represented

here as a straight tunnel carved into the inner mitochondrial membrane, described as a flat

plane. The effect of the size of the chaperone is two-fold. On the one hand, bound Hsp70

prevents the retrotranslocation of the substrate beyond its binding point (Brownian ratchet

model [88]). On the other hand, the size of the chaperone leads also to a reduced number of

sampled conformations (entropic pulling [107]), an effect not accounted for by the Brownian

ratchet as it was originally conceived, but nonetheless intimately related to the same physical

mechanism. For example, in the absence of Hsp70 the two substrate conformations shown in

fig.2.2 are both sterically allowed. However, upon chaperone binding the conformation on the

right would result into an overlap between the membrane and Hsp70, and it is therefore never

sampled by the substrate when the chaperone is present.

To get a more quantitative insight, we now report the analytical computations performed

in [107], where the authors consider a strongly simplified version of the system. Specifically,

the chaperone is represented as a sphere with radius Rchap = 20 Å, while the substrate is

modelled as a Freely-Jointed Chain (FJC) starting from the exit of the pore. The latter provides

the simplest representation of a polymer, which is described as a random walk with step

length l [27]. Though simplistic, this approach can be successfully used whenever one can

neglect the interaction between monomers separated by large contour lengths (due e.g. to

excluded volume, electrostatics or hydrophobicity). Indeed, in this case only local interactions

are important, and for long enough chains one can remap the statistical properties of more

complicated polymers onto equivalent FJCs with a renormalized step size, called Kuhn length

[27]. In the present case, a Kuhn length equal to l = 12 Å is used [109]. In the case of an

unrestricted FJC made of n monomers (that is, n−1 bonds), the probability distribution of the

end-to-end vector Re is a three-dimensional Gaussian function [16]:

PG
n (Re ) =

(
3

2π(n −1)l 2

) 3
2

e
− 3R2

e
2(n−1)l 2 (2.1)

However, this function is not suitable to describe the present system, since both Hsp70 and

the membrane have to be considered. In this regard, the chaperone is centered on the last

monomer of the FJC and no Hsp70-substrate interactions are considered. The mitochondrial

membrane is represented as a flat wall corresponding to the x y plane, which is impenetrable

to both the substrate and the chaperone. By considering a reference frame with the z axis

perpendicular to the membrane and directed towards the mitochondrial matrix, when the

chaperone is absent the conformational space encompassed by the substrate can be obtained

by rejecting all the conformations having at least one monomer with z < 0 (because of the

presence of the wall). In this case, it can be shown that the following modification to equation

(2.1) holds [16]:

Pn (Re ) ∝
(

3

2π(n −1)l 2

) 3
2 6z

(n −1)l 2 e
− 3R2

e
2(n−1)l2 , (2.2)

where the proportionality constant can be fixed by imposing normalization. Integrating over
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x and y , we can thus retrieve the distribution probability for z:

Pn(z) = 1

Z (n)

(
3

2π(n −1)l 2

) 1
2 6z

(n −1)l 2 e
− 3z2

2(n−1)l2 , (2.3)

where Z (n) is the partition function of the system along the coordinate n in absence of the

chaperone. An easy calculation shows that

Z (n) =
∫ ∞

0

(
3

2π(n −1)l 2

) 1
2 6z

(n −1)l 2 e
− 3z2

2(n−1)l2 =
(

6

π(n −1)l 2

) 1
2

. (2.4)

Within the present assumptions, the effect of the chaperone can be straightforwardly included

by furtherly restricting the conformational space. Specifically, all the conformations which are

sterically allowed also in the presence of Hsp70 are those whose end-to-end vector satisfies

z ≥ Rchap. This restriction of the conformational space leads to a corresponding increase

in entropy, which is in turn reflected in a quantitatively smaller partition function for the

substrate in presence of Hsp70, Z70(n) < Z (n). A direct computation gives

Z70(n) =
∫ ∞

Rchap

(
3

2π(n −1)l 2

) 1
2 6z

(n −1)l 2 e
− 3z2

2(n−1)l 2 =
(

6

π(n −1)l 2

) 1
2

e
−

3R2
chap

2(n−1)l2 . (2.5)

As a result, chaperone binding leads to a net increase in the conformational free energy of the

substrate equal to

∆Fc (n) =−kB T ln

(
Z70(n)

Z (n)

)
, (2.6)

which, after substitution of equation (2.4) and equation (2.5), gives

∆Fc (n) = 3R2
chap

2(n −1)l 2 kB T . (2.7)

As one could have expected, the increase in free energy is largest for the lowest values of n. It is

important to notice that it is not this increase per se that generates a net thermodynamic force

facilitating protein import. Instead, the key point is that ∆Fc depends on n. In other words,

the chaperone introduces a net free-energy gradient, which provides the driving force for the

import.

It is worth noting that, in a general perspective, the presence of chaperones introduces an asym-

metry between the interior and the exterior of the mitochondrial membrane. Traditionally,

polymer translocation between asymmetric environments has been studied by introducing

a chemical-potential difference µ between the two sides [110]. In the present case, however,

since the typical size of a protein is around 300 amino acids [111] and since on average there is

a binding site for Hsp70 every 35 residues [96], the number of chaperones that can bind simul-

taneously a substrate is on average about ten, making the mean-field picture not appropriate.
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At the same time, the small number of bound Hsp70s makes the explicit contribution of the

chaperones to the import process directly accessible. This level of detail enriches the picture

of the system with non-trivial results such as the free-energy dependence on the number of

imported residues, which is a natural consequence of the finite size of chaperones that in

a mean-field picture should be artifically introduced in the model. Moreover, as stressed in

equation (2.7), this size tunes the extent of the introduced free-energy gradient, which depends

quadratically on Rchap. Again, this result has not a natural counterpart in the mean-field

approach, where it should be artificially introduced. Equation (2.7) suggests that increasing

the size of the chaperone would lead to more dramatic effects, speeding up the import process.

As a final remark, the generality of the proposed mechanism suggests that Hsp70 is not strictly

needed for the import process, and it could be substituted by other large molecules. This is in

line with the experimental results in [89], where it was shown that replacing Hsp70 with an

antibody in ER import still leads to a successfull translocation.

2.2.2 Free energy computation from MD simulations

We now propose to compute the entropic-pulling free energy by considering a more detailed

molecular model, where the conformational space of the substrate is explored by taking

into account both the main structural features of Hsp70 and the local elastic properties of a

protein [112]. To this aim, for each value of n we compute the effect of chaperone binding

on the free energy of the system by means of coarse-grained Molecular Dynamics (MD)

simulations. In the next section, this result is then used to devise a simplified yet quantitative

analysis of the import, described as a one-dimensional diffusion process on the computed

free-energy landscape.

Here, we compute the free energy difference ∆Fc (n) by estimating the ratio Z70(n)/Z (n) for

n in 8 ≤ n ≤ 30 with multiple coarse-grained MD simulations. The substrate was modeled

as a n-residues flexible chain with the position of the nth residue constrained on the inner

mithocondrial membrane, represented here as a flat wall acting only on the substrate residues.

As a consequence, the system could sample configurations involving an overlap between the

membrane and the chaperone (see right panel in fig.2.3). With this strategy, we could estimate

the ratio Z70(n)/Z (n) as the fraction of time spent by the system in physically-acceptable, i.e.

non-overlapping, configurations.

The MD simulations were performed coarse-graining both the substrate and the chaperone

by considering one interaction site per residue centered on the Cα atom (compare fig.2.2

and fig.2.3). Residue-residue excluded-volume interactions were modeled with a repulsive

Lennard-Jones potential with parameters σ= 3.8 Å and ε= 3kB T . The substrate was modeled

by using the local flexible potential introduced in [113]. Within this force field, the elastic

properties of an unfolded protein are described by means of harmonic Cα-Cα bonds and

sequence-specific bending and torsional potentials. Particularly, the sequence dependence is

introduced by considering a simplified three-letters description, where the eventual presence
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Figure 2.3 – Examples of coarse-grained structures, representing the same snapshots as in
fig.2.2. While in the absence of Hsp70s both conformations contribute to Z (n), upon chap-
erone binding the one on the right is not taken into account in Z70(n) due to sterical clash
with the wall. The nth residue of the substrate, which in our MD simulations is constrained
on the wall, is colored in cyan. The shaded beads inside the channel are here drawn only for
representative purposes. Adapted from [112].

of glycine or proline amino acids is explicitly accounted for, while all the other residues

are considered equivalent. In this context, for simplicity we focus on glycine- and proline-

free substrates, thus making use of the functions denoted as O-X-Y and X-X in [113] for the

bending and torsional contributions, respectively. The experimental structure of ADP-bound

Hsp70 [93] (PDB: 2KHO) was used to model the chaperone. In particular, the NBD (residue 4

to 387) and SBD (residue 397 to 603) were treated as rigid bodies, while the flexibility of the

interdomain linker was accounted for by means of the potential described above. In order to

reproduce a correct chaperone-substrate arrangement, we took advantage of the substrate-

bound X-ray structure of DnaK SBD (PDB: 1DKX [114]). MD simulations were performed using

LAMMPS code [115] at constant temperature (T = 300 K) by means of a Langevin thermostat

with damping parameter equal to 100 fs and using an integration timestep of 20 fs. For each

value of n in the range 8 ≤ n ≤ 30 we performed 16 independent MD simulations of 9 ·108

timesteps (examples of the convergence of the ratio Z70(n)/Z (n) are reported in fig.2.4), and
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Figure 2.4 – Evolution of the ratio Z70(n)/Z (n) as a function of MD timesteps, for n = 8 (top
panel, red continuous curve), n = 19 (bottom panel, blue dotted curve) and n = 30 (bottom
panel, black dot-dashed curve).

the error on the free-energy profile was estimated by computing the standard deviation on the

final values of the ratios.

From the computed values of Z70(n)/Z (n), we could retrieve ∆Fc (n) as a function of n by

means of equation (2.6). The resulting free-energy landscape is reported in fig.2.5. As expected,
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Figure 2.5 – Free-energy profile due to chaperone binding as a function of n (red circles). Error
bars are smaller than the size of the symbols. The black dot-dashed line is obtained fitting the
MD data with a power-law function q(n − s)−t by tuning the parameters q, s and t . The final
values for the parameters are q = 16.7±0.9, s = 5.2±0.1, t = 0.85±0.02. The dashed blue line
depicts the free-energy landscape predicted by the original Brownian ratchet, where the only
effect of the chaperone is to prevent retrotranslocation beyond the binding site (infinite wall).

shorter imported fragments resulted into a larger fraction of rejected conformations, i.e. larger

values of ∆Fc , thus leading to a free-energy gradient favoring the import of the protein. For

comparison, we report the corresponding free-energy landscape predicted by the Brownian

ratchet as it was originally proposed (blue dashed line). In that case, a flat profile was expected,

with an infinite wall in correspondence of the binding site (this wall is located at n = 8 since

we found no sterically-allowed conformations for lower values of n).

From the prediction based on more simplified assumptions, equation (2.7), it seems natural

to wonder whether the free-energy landscape retrieved from MD simulations can be as well

described by a power law. To this aim, we fitted the data by considering the function q(n −
s)−t and adjusting the parameters q, s and t . The resulting function is plotted as a black

dot-dashed line in fig.2.5 and describes very well the simulation data. The values of the

parameters minimizing the squared displacement from the data are q = 16.7±0.9, s = 5.2±
0.1, t = 0.85±0.02. Interestingly, these numbers are qualitatively in line with the “spherical

cow” prediction given in equation (2.7). Indeed, the exponent t is not far from the predicted

value 1, though definitely not in quantitative agreement with it. Moreover, by comparing the
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value of q with the prefactor in equation (2.7), we can compute the equivalent chaperone

radius, which results equal to about 40 Å. This value is twice the quantity used above, in

agreement with the deliberate underestimation made in [107] and with the typical large

values of the excluded volume of anisotropic objects when compared to spheres of similar

size [27]. The qualitative agreement between the two different levels of description suggests

that comparable thermodynamic forces could be obtained by the same entropic pulling

mechanism for macromolecules of similar size.

2.2.2.1 Measuring the thermodynamic force

From the free-energy landscape reported in fig.2.5, we can give an estimate of the typical

pulling force. Specifically, since the import of a bead increases by σ= 3.8 Å the contour length

of the imported substrate, a simple approximation of the force exterted by the chaperone fep

is given by considering the change in ∆Fc upon the import of a bead:

fep

(
n + 1

2

)
=−∆Fc (n +1)−∆Fc (n)

σ
. (2.8)

In the previous formula, the independent variable on the left-hand side is chosen to be equal

Figure 2.6 – Comparison between the force computed from the free-energy landscape fep (red
circles), equation (2.8), and the postprocessed force fdyn retrieved directly from the second
set of MD simulations (black triangles). In both cases the error bars are about the same size as
the symbols.
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to the midpoint between n and n +1, since (looking at n as a continuous variable) the right-

hand side is equal to the two-points approximation of the derivative of∆Fc in n+1/2 [116]. The

resulting force is reported in fig.2.6 (red circles). As shown in the plot, fep is in the piconewton

range, starting from around 22 pN and decreasing as n increases.

MD simulations give also the possibility to more directly probe the thermodynamic effect of

Hsp70 on the substrate, e.g. by measuring the average force acting on the fixed bead of the

substrate (bead depicted in cyan in fig.2.3). To this aim, we measured the average force exerted

on the fixed bead in a second set of MD simulations, where both the substrate and DnaK feel

the presence of the wall. In other words, conformations such as the one shown in the right

panel in fig.2.3 are not explored anymore by the system. The other simulation details were

the same as in the previous section. Moreover, we performed analogous simulations where

only the substrate was present (see below). In fig.2.7 we report some examples showing the

convergence of the average value of the measured forces as a function of simulation time.

Figure 2.7 – Evolution of the force fc acting on the fixed bead in the presence of the chaperone
as a function of MD timesteps, for n = 8 (red continuous curve), n = 19 (blue dotted curve)
and n = 30 (black dot-dashed curve).

How do the measured forces relate with fep? We note that the latter refers to the import process

along the coordinate n. As for the former, a net average force is naturally expected to act on

the fixed bead in the direction perpendicular to the wall due to the asymmetry of the system,

both in presence ( fC ) and absence ( f0) of chaperone. However, this force corresponds to the

derivative of the free-energy (with fixed n) as a function of the coordinate x that measures

the minimum distance between the fixed bead and the wall (x = 0 in all our MD simulations).

More precisely, let us consider an extended ensemble where both the number of imported

residues n and the minimum distance between the fixed bead and the wall x can be tuned. Let

FC (n, x) be the free energy corresponding to a given couple of values of n, x in the presence of
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the chaperone, and let F0(n, x) be its counterpart without DnaK. The average forces fC and f0

are thus given by

fC (n) ≡−∂FC (n, x)

∂x

∣∣∣∣
x=0

, f0(n) ≡−∂F0(n, x)

∂x

∣∣∣∣
x=0

. (2.9)

Moreover, by construction ∆Fc (n) =FC (n,0)−F0(n,0). The force fC − f0 is thus not exactly

equal to the import thermodynamic force fep, which corresponds to the variation in the

chaperone free-energy contribution ∆Fc (n) upon the import of a residue. Nevertheless, we

note that the conformational space explored by a substrate made of n residues and having

the fixed bead at a minimum distance x =σ from the wall is approximately the same as the

conformational space of a substrate with n+1 residues, x = 0 and the last two beads fixed. It is

reasonable to assume that the conformational free energy in this case is approximately equal

to the one of the “normal” substrate of length n +1, i.e. when x = 0 and only the last bead is

frozen. Within the extended ensemble, the previous statement can be written as

FC (n,σ) 'FC (n +1,0) , (2.10)

with a similar formula holding for F0. Within this approximation, we can thus compute

∆Fc (n +1) starting from ∆Fc (n) and integrating the force difference fc − f0 along x:

∆Fc (n +1) =FC (n +1,0)−F0(n +1,0) 'FC (n,σ)−F0(n,σ) =

=
[
FC (n,0)−

∫ σ

0
fc (n, x)d x

]
−

[
F0(n,0)−

∫ σ

0
f0(n, x)d x

]
=

=∆Fc (n)−
∫ σ

0

[
fc (n, x)− f0(n, x)

]
d x (2.11)

Substituting the previous formula in equation (2.8), we thus conclude that fep is approximately

equal to the path-averaged force fC − f0:

fep

(
n + 1

2

)
' 1

σ

∫ σ

0

[
fc (n, x)− f0(n, x)

]
d x . (2.12)

Nevertheless, in our simulations we have access only to the quantities fc (n,0) and f0(n,0).

Therefore, we further approximate the right-hand side of the previous formula by considering

the arithmetic mean between the forces in n and n +1. As a final result, we thus have

fep

(
n + 1

2

)
' fdyn

(
n + 1

2

)
, (2.13)

where we have defined

fdyn

(
n + 1

2

)
≡ fc (n,0)+ fc (n +1,0)

2
− f0(n,0)+ f0(n +1,0)

2
. (2.14)
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In fig.2.6 we check the goodness of the approximation provided by equation (2.13) by plotting

fep (red circles) and fdyn (black triangles) as a function of n. The comparison shows that the

two quantities are in good agreement with each other, though for low values of n the value of

fep results slightly larger than the corresponding fdyn.

2.2.3 Stochastic simulations of the import process

The entropic-pulling free energy computed in the previous section enables us to address

the problem of protein import into organelles as a diffusion of a particle on a n-dependent

free-energy landscape. Protein import into organelles has been previously modeled as a

one-dimensional stochastic process in the space of the imported residues [26, 117, 118]. In

the present context, this protocol is justified by the timescale separation among substrate

conformational dynamics, chaperone binding/unbinding and overall import. Indeed, the

typical reconfiguration time of an unfolded protein (∼ 100 ns [119]) is extremely fast com-

pared to the experimentally-determined timescale for protein import into mitochondria

(order of minutes [120]). Effects arising from substrate conformational dynamics, such as

the chaperone-induced entropy reduction, can be thus conveniently represented as effective

free-energy profiles influencing the import dynamics. Moreover, the import timescale is also

significantly slower than chaperone binding but faster than chaperone unbinding at physi-

ological conditions. Indeed, combining the Hsp70-peptide association rate of a chaperone

in the ATP-bound state reported in table 2.1 (4.5×105 M−1s−1 [97]) with the concentration of

mtHsp70 found in vivo (70 µM [121]), we obtain a timescale for association equal to ∼ 10−2

s. Moreover, dissociation takes place from the ADP-bound state, over timescales ∼ 103 s (see

table 2.1 and references [78, 97, 122]). In the mitochondrial matrix there are nucleotide ex-

change factors that prompt the release of ADP and the ensuing rebinding of ATP, resulting in

an acceleration of the dissociation of the substrate. Nonetheless, this likely applies to Hsp70s

that are bound to the translocating polypeptide far from the pore, whose contribution to the

free-energy profile is anyway negligible (compare fig.2.5). In the proximity of the pore, instead,

the concomitant binding of the chaperones to TIM44 and the fast hydrolysis rate due to the

presence of a pore-associated J-domain protein ensure fast, strong and, on average, long-lived

chaperone binding. This suggests that, to our purposes, we can assume that a chaperone

immediately and irreversibly binds each exposed binding site as soon as it is imported.

As a consequence, for the present purposes the number nin of substrate residues that have

been imported into the mitochondrial matrix is a convenient coordinate to describe the system,

whose dynamics can be modeled as a diffusion process on the corresponding free-energy

landscape1. The effective free-energy profile guiding the system evolution, Fimport, results

from protein unfolding [123] and active chaperone pulling [120]. As for the former, assuming

a two-states folding behavior, a convenient choice to model the unfolding contribution to the

1The use of a different notation is due to an important difference with respect to the coordinate n used in the
previous section. While nin is the total number of imported residues, and is then used to monitor the translocation
process, the coordinate n is related to a specific chaperone and gives the contour distance between the binding
point and the membrane pore.
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free-energy landscape is a tunable sigmoidal function Fu(nin)

Fu(nin) = F max
u

1+exp
[
5−10(nin −10)/δn

] , (2.15)

where nin is the total number of imported residues, and F max
u and δn are tunable parameters.

In fig.2.8 we report the plots of some representative examples of equation (2.15). As can be

seen from the graph, the two parameters measure the total unfolding free energy (F max
u )

and the cooperativity of the unfolding process (δn), with smaller values of δn corresponding

to higher cooperativity. By tuning these parameters, the formula can account for the wide

variety of imported proteins [124]. The pulling action of the chaperone was modeled taking

Figure 2.8 – Influence of the parameters F max
u and δn on the unfolding free energy. Reprinted

from [112].

advantage of the free-energy profile determined from the molecular simulations reported

in the previous section. Particularly, we assumed here that: i) Hsp70s associate with each

binding site as soon as it emerges from the pore, since they are targeted at the TIM pore exit

by specific interactions [88]; ii) we considered only the contribution arising from the Hsp70

closest to the pore, taking into account the relatively fast decrease of the slope of ∆Fc (see

fig.2.5) and the average frequency of binding sites (one every 35 amino acids [96]). Therefore,

we added to the unfolding free-energy Fu(nin) the chaperone contribution∆Fc (nin−nB ), with

nB corresponding to the position of the binding site closest to the pore, measured from the

matrix terminus of the substrate.
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The import process was simulated by means of a Monte Carlo (MC) algorithm driven by the

free-energy landscape Fimport. For a system at position nin, a trial move was attempted to ei-

ther nin+1 or nin−1 with equal probability and accepted according to the Metropolis criterion

based on the free energy Fimport. To capture the sequence heterogeneity of the proteome, for

each choice of F max
u and δn we generated 25 independent binding-site distributions, with the

sole prescription that the average distance between consecutive binding sites was 35 residues

as indicated by experiments [96]. For every distribution we performed 10 independent real-

izations of the import process. Average import times were estimated by counting the total

number of MC timesteps needed for the translocation process to be completed. This protocol

is justified by the fact that MC simulations correspond to overdamped Langevin dynamics

when only local moves are considered [125, 126]. Rescaling the obtained import times by the

acceptance rate, as proposed in [127], did not affect the results, because of the large fraction of

accepted moves observed in all the simulations (> 95%).

Figure 2.9 – Evolution of the total free-energy Fimport in a representative import process.
Reprinted from [112].

As an example, in fig.2.9 we illustrate the evolution of the free-energy landscape during the

import process of a protein with F max
u = 5kB T , δn = 100 and two binding sites at nB = 0 (i.e.

at the matrix terminus) and nB = 28. At the beginning of the import process, no chaperone is
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Chapter 2. Coarse-grained modelling of Hsp70

bound to the substrate and the import free energy is simply given by Fimport(nin) = Fu(nin)

(red dashed curve). As soon as the first binding site is imported, a chaperone molecule binds

the substrate and its contribution ∆Fc is added to Fu(nin) starting from the binding site

nB = 0: Fimport(nin) = Fu(nin)+∆Fc (nin) (purple continuous curve). Finally, after the second

binding site (nB = 28) is imported, another chaperone binds and the resulting free energy is

Fimport(nin) = Fu(nin)+∆Fc (nin −28) (orange dot-dashed curve).

Figure 2.10 – Top: average import times in the absence of chaperone (τ0) as a function of F max
u

for different cooperativities (values for F max
u ≥ 12kB T were extrapolated by fitting the data in

the range 4kB T ≤ F max
u ≤ 11kB T with exponential functions). Bottom: average import times

in the presence of Hsp70 (τC ) for the same cases as in the top panel. Reprinted from [112].

Following this approach, we computed the average import time of 300-residue proteins [111]
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2.2. Hsp70 as translocase

for different values of δn and a range of F max
u corresponding to the stability of a large fraction

of the proteome [128]. In absence of Hsp70 assistance, the system must invariably overcome

a free-energy barrier, and the average import time τ0 increases exponentially with F max
u ,

independently of cooperativity (fig.2.10 top). In all the considered cases, the average import

time for the chaperone-assisted process, τC , is sensibly smaller than τ0 (fig.2.10 bottom).

The chaperone pulling force reduces but does not completely eliminate the unfolding free-

energy difference for stable proteins (large F max
u ), as in the case of the representative process

shown in fig.2.9. In this regime, the import is still an activated process, and the average times

increase exponentially with F max
u . Conversely, the pulling action of Hsp70 dominates over the

unfolding contribution for marginally stable proteins (small F max
u ), thus resulting in values of

τC comparable to what found for the extreme case F max
u = 0. The import kinetics is further

modulated by δn, with high cooperativity (small δn) resulting in longer translocation times.

Figure 2.11 – Acceleration of the process due to the assistance of Hsp70, expressed as the ratio
τ0/τC for the same cases as in fig.2.10. Reprinted from [112].

In fig.2.11 we illustrate the chaperone-induced kinetic advantage by reporting the ratio τ0/τC .

This ratio ranges from a 10-fold gain for marginally stable proteins to 103 for extremely stable

and noncooperative substrates, with the majority of the proteome (F max
u ≥ 8kB T [128]) accel-

erated at least 100 times. If we take into account that protein import into mithocondria has

been measured to happen in the timescale of several minutes [120], our model indicates that

the translocation process in the absence of chaperones would probably extend to hours or

days. Since such a slow process would clearly be incompatible with the average lifespan of

proteins and the duration of the cell cycle, our results provide a molecular basis to support the

essential role of chaperones in the in vivo import process.
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2.3 Conclusions

To summarize, in this chapter we derived a free-energy profile for the import process based on

a molecular description of Hsp70 that rationalizes the requirement for chaperone assistance in

mitochondrial protein import observed in experiments. The present results can be applied to

other cases of Hsp70-driven translocation, namely protein import into ER [89] and chloroplasts

[90]. In the ER case, in particular, the pore is much simpler than in mitochondria, as it spans

just a single membrane. The presence of Sec63, a pore-associated protein containing a J

domain, ensures also in this context that the extended ATP-driven Hsp70 ultra-affinity prevails

in the competition against other translocation counterproductive interactions [129]. Moreover,

this approach based on the combination of molecular simulations and kinetic modeling can

be easily extended to other Hsp70-mediated cell processes. In particular, this free-energy

picture could help to understand some recent results pointing towards a fundamental role of

Hsp70 in preventing the stalling of translation at ribosomes [91, 92]. Owing to the universality

of the interaction responsible for the effects studied here, namely excluded volume, the same

principles could apply to similar processes driven by other biomolecules.
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3 The shape of a stretched polymer

3.1 Polymers in a good solvent have anisotropic shapes

3.1.1 Polymers adapt their shape to the external conditions

Polymer chains are by definition strongly-fluctuating objects. Due to their soft nature, they

do not have well-defined shapes, but rather adapt their conformational ensembles to the

environment surrounding them. At the same time, the shape of a polymer affects the way it

interacts with other molecules in solution, e.g. quantitatively determining the excluded volume

of the chain, thus ultimately influencing the thermodynamic properties of the solution [27].

In a poor solvent, where monomer-monomer and monomer-solvent interactions result into

a net attraction between different parts of the chain [27], polymers collapse into a roughly

spherical shape, as seen for example in the case of single-chain globular proteins [130].

In the case of θ- or good-solvent conditions, where the free energy is dominated by confor-

mational entropy [27], conformations can fluctuate more wildly and the shape of a polymer

is more sensitive to the environment. In the last two decades, many theoretical and experi-

mental works have investigated how the shape depends on several factors such as confine-

ment [131–133], topology [134–136] or crowding [130, 137–139], which are relevant to many

cellular processes.

In vivo biopolymers are often subjected to mechanical forces. For example, during replication

DNA is repeatedly pulled and twisted by enzymes [140]. Although it is expected that a highly-

stretched chain behaves as a stiff rod, a proper account for the effect of an external pulling

force on the shape of a polymer has been lacking, even at the simplest level. Here we compute,

by means of both analytical calculations and Monte Carlo (MC) simulations, some key global

quantities characterizing the shape of a stretched chain. Before deriving and discussing our

findings, we dedicate the next two sections to some basic results on unperturbed FJCs. Apart

from being instructive about the physics underlying polymers anisotropy, they will also serve

to introduce the toolbox which will be used to characterize the shape properties of stretched

chains.
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Chapter 3. The shape of a stretched polymer

3.1.2 Random walks and symmetry breaking

Strikingly, when it comes to shape properties even the simplest models for polymers give

non-trivial results. For example, let us consider the Freely Jointed Chain (FJC) model1, a useful

representation of a polymer in a good solvent where the conformation of a chain made by N+1

monomers is described as a three-dimensional random walk {Ri }N
i=0, where the segments

ri ≡ Ri −Ri−1 have all equal length l [27]. As already noticed in an early work by Kuhn [141],

in spite of the spherical symmetry of the system, the typical shape of an unperturbed FJC

is an elongated ellipsoid, whose random orientation preserves the overall symmetry. This

finding can result a little awkward at first sight, but can be easily rationalized analyzing the

basic features of the FJC. In this regard, let us focus on the end-to-end vector Re , which is

defined as

Re ≡ RN −R0 =
N∑

i=1
ri . (3.1)

The FJC can be mapped on a random walk where the chain length N plays the role of time [16].

The end-to-end vector is therefore distributed according to a Gaussian formula

PN (Re ) =
(

3

2πN l 2

) 3
2

e−
3R2

e
2N l 2 (3.2)

Because of the spherical symmetry of the system, one has 〈Re〉 = 0, where 〈· · · 〉 denotes

averaging over the conformational ensemble [27]. However, its squared average gives

〈R2
e 〉 = N b2 . (3.3)

Moreover, this value also corresponds to the most probable length of Re . Therefore, it is only

due to an average over all the orientations that one obtains a null end-to-end vector. Thus, one

may already suspect that for a given orientation of Re the spatial distribution of monomers is

on average more elongated in the direction of the end-to-end vector.

To get a better insight, let us focus on a typical realization, i.e. let us restrict the conformational

ensemble to the walks satisfying with R2
e = N b2. Since we are interested in the shape properties

of the FJC, we select an arbitrary orientation of Re and choose a reference frame with the

origin on the first monomer and whose z axis is oriented along the end-to-end vector. For a

walk with a fixed Re , it can be shown that the probability distribution P k
N (Rk ) for the position

vector of monomer k is equal to [27]

P k
N (Rk ) =

(
3

2πσ2
k

) 3
2

e
− 3(Rk− k

N Re )2

2σ2
k , (3.4)

1We have already introduced the FJC in section 2.2.1, but we repeat here its definition for convenience.
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where

σ2
k ≡ k(N −k)

N
l 2 . (3.5)

In other words, the partial end-to-end vector is still distributed according to a Gaussian

formula, but with renormalized average and variance. Note that substituting k = 0, N we

retrieve the fixed ends of the polymer with null variance. We now compute the mean squared

radius of gyration 〈R2
g 〉 of the constrained FJC, which is a widely-used estimator of the size of a

polymer [27]. Assuming all monomers to have equal mass, by definition we have

R2
g ≡ 1

N +1

N∑
i=0

(Ri −Rcm)2 , (3.6)

where Rcm ≡∑
i Ri /(N +1) is the position of the center of mass of the chain. By rearranging the

sum in the right-hand side of equation (3.6), it can be easily shown that the Lagrange formula

holds [27]:

R2
g = 1

2(N +1)2

N∑
i=0

N∑
j=0

(
Ri −R j

)2 . (3.7)

For long chains, the sums in the previous formula can be approximated as integrals. As a

result, the average of R2
g can be written as

〈R2
g 〉 '

1

2N

∫ N

0
di

∫ N

0
d j 〈(Ri −R j

)2〉 = 1

N

∫ N

0
di

∫ i

0
d j 〈(Ri −R j

)2〉 . (3.8)

We recognize in the integral the squared average of the end-to-end vector of the subchain

connecting monomers j and i > j . In an unconstrained chain, thanks to the statistical

independence of different segments, one could directly substitute for the formula of a chain

of length i − j [27]. However, in this case the calculation is more involved, since because of the

constraint nonoverlapping parts of the chain are coupled to each other and one has to use

suitably-adapted versions of equation (3.4) according to the values of i and j . The detailed

derivation is beyond our present purposes, and can be found in [142]. The final result is

〈R2
g 〉 =

1

12

(
1+ R2

e

N l 2

)
. (3.9)

Note that, by averaging over all the possible choices of the end-to-end vector, we retrieve the

known result for linear chains

〈R2
g 〉 =

1

6
N l 2 , (3.10)

while imposing Re = 0 gives the radius of gyration of a ring polymer 〈R2
g 〉 = N l 2/12 [27].

To our aim, it is more instructive to consider the contributions to 〈R2
g 〉 coming from the single
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directions. Particularly, defining

〈z2
g 〉 ≡

1

N

∫ N

0
di

∫ i

0
d j 〈(zi − z j

)2〉 (3.11)

and considering similar formulas for the x and y directions, by construction we have

〈R2
g 〉 = 〈x2

g 〉+〈y2
g 〉+〈z2

g 〉 . (3.12)

The results from the single contributions are [142]

〈x2
g 〉 = 〈y2

g 〉 =
N l 2

36
(3.13)

and

〈z2
g 〉 =

N l 2

36

(
1+ 3R2

e

N l 2

)
. (3.14)

Comparing equation (3.13) and equation (3.14) shows that on average the radius of gyration

receives the largest contribution from the direction along the end-to-end vector, thus suggest-

ing a breaking of the spherical symmetry. Particularly, in the “typical” case where R2
e = N l 2,

〈z2
g 〉 is four times 〈x2

g 〉, thus pointing towards a rather elongated shape for the polymer.

Nevertheless, the present analysis catches only approximately the actual extent of anisotropies

of the chain and thus serves only as an intuitive argument explaining their origin. A proper

quantitative description of these features requires more refined methods, which are introduced

in the next section.

3.1.3 Inertia tensor and asphericity

The radius of gyration is a useful quantity to measure the spatial extent of a macromolecule.

Nevertheless, it cannot capture the presence of anisotropies, which ultimately determine

the overall shape of the polymer. In this respect, a more suitable tool is its natural extension

provided by the inertia tensor T , whose elements are by definition [143]

Tαβ ≡
1

N +1

N∑
i=0

(αi −αcm)
(
βi −βcm

)
, α,β ∈ {x, y, z} . (3.15)

The analogue of equation (3.7) reads in this case

Tαβ =
1

2(N +1)2

N∑
i=0

N∑
j=0

(
αi −α j

)(
βi −β j

)= 1

(N +1)2

N∑
i=0

i∑
j=0

(
αi −α j

)(
βi −β j

)
. (3.16)

The eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 of T are proportional to the square of the semiaxes of

the ellipsoid which best approximates the shape of the polymer, while the corresponding
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eigenvectors describe its orientation. Moreover, by definition

R2
g =λ1 +λ2 +λ3 . (3.17)

Numerical computations have shown that the ensemble averages of the eigenvalues of an

unperturbed FJC are in the ratios 〈λ1〉 : 〈λ2〉 : 〈λ3〉 = 11.8 : 2.7 : 1 [143]. According to these

results, the actual spatial distribution of the monomers is even more asymmetric than what

expected from the analysis performed in the previous section: not only the symmetry is broken

in all the three directions (i.e. also the cylindrical symmetry suggested by equation (3.13) is

broken), but also the elongation is more pronounced than expected.

A useful index to quantify this anisotropy is provided by the asphericity [143, 144]

A ≡
∑

s 〈
(
λs − λ̄

)2〉
6〈λ̄2〉 = 3〈Tr

(
T 2

)〉
2〈(TrT )2〉 −

1

2
, (3.18)

where λ̄ = ∑
s λs/3 is the arithmetic mean of the eigenvalues. For a perfectly symmetric

distribution, all the eigenvalues have equal magnitude λs = λ̄, so that A = 0. In the opposite

limit of a rod-like chain, one eigenvalue dominates over the others (λ1 Àλ2,λ3) and as a result

A = 1. The asphericity of an unperturbed FJC can be computed exactly, and it has been shown

that A = 10/19 ' 0.53, independently of N [143]. The original derivation in [143] implied the

construction of a suitable generating function, which let the authors find some elegant and

general results for an unrestricted random walk in D dimensions. However, for our present

purposes it suffices to approach the problem in a simpler way. According to equation (3.18),

in order to compute A we need to calculate the averages 〈Tr
(
T 2

)〉 and 〈(TrT )2〉, which can

be written explicitly as a combination of quadratic terms of T . Such terms can always be

decomposed as sums of end-to-end distances of independent subportions of the chain, whose

average can be computed by means of equation (3.3).

More in detail, let us start by writing explicitly 〈Tr
(
T 2

)〉 as

〈Tr
(
T 2)〉 = 〈T 2

xx〉+〈T 2
y y 〉+〈T 2

zz〉+2〈T 2
x y 〉+2〈T 2

xz〉+2〈T 2
y z〉 . (3.19)

The spherical symmetry of the system implies that 〈T 2
xx〉 = 〈T 2

y y 〉 = 〈T 2
zz〉 and 〈T 2

x y 〉 = 〈T 2
xz〉 =

〈T 2
y z〉, so that only two independent terms are present in the previous formula, which can be

rewritten as

〈Tr
(
T 2)〉 = 3〈T 2

xx〉+6〈T 2
x y 〉 . (3.20)

In order to compute explicitly the right-hand side of equation (3.20), we proceed as in the

previous section. Particularly, for large N we can consider the continuum limit of equation

(3.16) and write

Tαβ '
1

N 2

∫ N

0
di

∫ i

0
d j

(
αi −α j

)(
βi −β j

)
, α,β ∈ {x, y, z} . (3.21)
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We thus have

〈T 2
x y 〉 =

1

N 4

∫ N

0
di

∫ i

0
d j

∫ N

0
di ′

∫ i ′

0
d j ′ 〈(xi −x j

)(
yi − y j

)(
xi ′ −x j ′

)(
yi ′ − y j ′

)〉 (3.22)

and

〈T 2
xx〉 =

1

N 4

∫ N

0
di

∫ i

0
d j

∫ N

0
di ′

∫ i ′

0
d j ′ 〈(xi −x j

)2 (
xi ′ −x j ′

)2〉 . (3.23)

The averages in the previous equations can be computed by properly taking into account the

overlap between the subchains of the polymer lying between j , i and j ′, i ′. As a consequence,

several cases have to be considered (obviously performing the swap j ↔ j ′ and i ↔ i ′ results

into equivalent cases). Before delving into their explicit treatment, it is convenient to introduce

the quantities

ci j ≡ xi −x j , fi j ≡ yi − y j . (3.24)

Recognizing xi − x j and yi − y j as the x- and y-component of the end-to-end vector of the

subchain connecting monomers j and i , starting from equation (3.2) it is straightforward to

show that

〈ci j 〉 = 〈 fi j 〉 = 0,

〈c2
i j 〉 = 〈 f 2

i j 〉 =
( j − i )l 2

3
,

〈c3
i j 〉 = 〈 f 3

i j 〉 = 0,

〈c4
i j 〉 = 〈 f 4

i j 〉 =
( j − i )2l 4

3
.

Moreover, we note that ci j has the following property

ci j = ci k + ck j ,

as a direct substitution in equation (3.24) shows (an analogous formula holds for fi j ).

Let us consider the integrand in equation (3.22). Because of the mutual independence of

different projections of a random walk, we can write

〈(xi −x j
)(

yi − y j
)(

xi ′ −x j ′
)(

yi ′ − y j ′
)〉 = 〈(xi −x j

)(
xi ′ −x j ′

)〉〈(yi − y j
)(

yi ′ − y j ′
)〉 ,

which thanks to the spherical symmetry of the system can be rewritten as

〈(xi −x j
)(

xi ′ −x j ′
)〉2 . (3.25)

In order to compute the previous average, we have to consider three different cases:
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• j < i < j ′ < i ′

In this case no overlap is present, thus

〈(xi −x j
)(

xi ′ −x j ′
)〉 ≡ 〈ci j ci ′ j ′〉 = 〈ci j 〉〈ci ′ j ′〉 = 0 (3.26)

• j < j ′ < i < i ′

In this case the two subchains overlap in the region between monomers j ′ and i . How-

ever, we note that we can rearrange the average as

〈ci j ci ′ j ′〉 = 〈(ci j ′ + c j ′ j
)(

ci ′i + ci j ′
)〉 = 〈ci j ′ci ′i + c j ′ j ci ′i + c2

i j ′ + c j ′ j ci j ′〉 = i − j ′

3
l 2 , (3.27)

where in the third step we took advantage of the statistical independence of all the

factors involved in each term.

• j < j ′ < i ′ < i

In this case the two subchains overlap in the region between monomers j ′ and i ′.
Proceeding as above, we can write

〈ci j ci ′ j ′〉 = 〈(ci i ′ + ci ′ j ′ + c j ′ j
)

ci ′ j ′〉 = 〈ci i ′ci ′ j ′ + c2
i ′ j ′ + c j ′ j ci ′ j ′〉 = i ′− j ′

3
l 2 . (3.28)

Plugging equations (3.26), (3.27) and (3.28) into equation (3.22) finally gives

〈T 2
x y 〉 =

1

810
N 2l 4 . (3.29)

A similar computation can be performed to calculate 〈T 2
xx〉, whose final result is

〈T 2
xx〉 =

1

180
N 2l 4 . (3.30)

Substituting equations (3.30) and (3.29) into equation (3.20), we find

〈Tr
(
T 2)〉 = 23

540
N 2l 4 . (3.31)

By following the same procedure, we can also compute 〈(TrT )2〉. The final result is

〈(TrT )2〉 = 19

540
N 2l 4 . (3.32)

Plugging equations (3.31) and (3.32) into equation (3.18), we finally find that the asphericity of

an unperturbed FJC is independent of N and is equal to

A = 10

19
' 0.53, (3.33)

in agreement with the result reported in [143].
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3.2 The shape of a polymer under tension

3.2.1 Basic properties of a stretched chain

In the present section, we make use of the tools introduced above to characterize the shape of

a stretched FJC. We first address the exact computation of the probability distribution of its

end-to-end vector [145], since many subsequent results are derived from it. At equilibrium,

the conformations of the chain are distributed according to the stretching energy − f ·Re =
− f ·∑i ri , where f is the applied external force. Since the force is coupled independently to

each segment, the joint probability distribution of {ri } can be factorized as
∏

i p(ri ), where

p(ri ) = eβ f ·riδ (|ri |− l )

q
. (3.34)

In the previous formula β≡ 1/kB T , where kB is the Boltmann’s constant and T the tempera-

ture, and

q =
∫

dr eβ f ·riδ (|ri |− l ) = 4πl 2 sinh(β f l )

β f l
(3.35)

is the partition function of a single segment. Starting from q and choosing a reference frame

with the z axis oriented along the force, a straightforward computation leads to the well-known

result [27]

〈r 〉 = lL (ν)êz , (3.36)

where êz is the unitary vector along z, ν≡β f l and

L (ν) ≡ coth(ν)− 1

ν
(3.37)

is the Langevin function. Analogously, the variances along the directions of the three axes are

σ2
x =σ2

y = l 2g , σ2
z = l 2a , (3.38)

where (from now on, to ease notation we drop out the explicit ν-dependence)

g ≡ L

ν
, a ≡ 1−2g −L 2 . (3.39)

Moreover, all the covariances involving different directions are zero, as expected from a random

walk. Since Re is the sum of independent identically-distributed variables, in the limit of large

N we can apply the Central Limit Theorem and conclude that Re is distributed according to a

Gaussian. Moreover, from equation (3.36) we can argue that

〈Re〉 = N lL (ν)êz , (3.40)
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while the variances along the three directions are given by Nσ2
x = Nσ2

y = N l 2g and Nσ2
z =

N l 2a. The probability distribution Pν(Re ) can thus be written as

Pν(Re ) = P⊥(Rx )P⊥(Ry )Pz (Rz ) , (3.41)

where

P⊥(Rα) = e
− R2

α
2N l 2 g√

2πN l 2g
(3.42)

and

P (Rz ) = e−
(Rz−N lL )2

2N l 2 ap
2πN l 2a

. (3.43)

For ν→ 0, we obtain L → 0, g → 1/3, a → 1/3, so that the result for unstretched chains

provided by equation (3.2) is retrieved. In the opposite limit of an almost rod-like chain

(ν→∞), we find g ' 1/ν, a ' 1/ν2, i.e. the variances tend to zero, as expected. It is worth

noting that the fluctuations along the direction of the force tend to zero faster than the ones

in the transverse direction, in agreement with known asymptotic results on other models of

polymer chains [17].

From the exact distribution of Re , several quantities of interest can be computed. Among

these, the average squared end-to-end distance 〈R2
e 〉 can be straightforwardly evaluated to be

equal to

〈R2
e 〉 = N l 2(1−L 2)+N 2l 2L 2 . (3.44)

Analogously, by considering equation (3.7) and proceeding as in the section 3.1.3, we can also

easily compute the radius of gyration, which is equal to

〈R2
g 〉 =

1

6
N l 2(1−L 2)+ 1

12
N 2l 2L 2 . (3.45)

As expected, we find the unperturbed results 〈R2
e 〉 = N b2,〈R2

g 〉 = N b2/6 when ν→ 0, and the

typical values of a rod 〈R2
e 〉 = N 2b2,〈R2

g 〉 = N 2b2/12 in the limit of infinite forces. Remarkably,

for intermediate forces the squared end-to-end distance and radius of gyration are exactly

given by the average of these two limits, weighted according to the monotonical function L 2.

Moreover, for any fixed N , the rod-like term is the leading one for forces above the scale

νc ∼ 1/
p

N . (3.46)

For ν< νc , the relative fluctuations of the end-to-end vector are larger than 〈Re〉, thus pointing

towards the presence of important finite-size effects in this regime, in agreement with previous

perturbative results [146].
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3.2.2 Details of MC simulations

The main features of the shape of a stretched FJC were investigated by means of both analytical

computations and MC simulations. The latter were performed extracting the orientation of

each tangent vector directly from the distribution p(r ). More in detail, thanks to the cylindric

symmetry of the problem, the azimuthal angle φ could be simply extracted uniformly in the

range [0,2π]. As for the polar angle θ, a little workaround was needed in order to map its

distribution onto uniform sampling. Let x be a random number uniformly distributed in the

range [0,1]. By construction, the infinitesimal probability to find a number in the interval

[x, x +d x] is simply given by d x. As for the angle θ, by considering only the polar contribution

to equation (3.34), we easily find for the distribution of its cosine

p̃(cosθ) = ν

2sinhν
eνcosθ . (3.47)

Since the mapping has to preserve the infinitesimal probability of corresponding values of θ

and x, the following condition has to be satisfied:

p̃(cosθ)d cosθ = d x . (3.48)

Integrating both sides, we thus get

1

2sinhν

[
eνcosθ−e−ν

]
= x , (3.49)

where the integration constant was fixed by imposing θ(x = 0) =−π. Therefore, for each step

the polar angle θ was computed by inverting

cosθ = log(eν−2x sinhν)

ν
. (3.50)

For each value of N and ν, the mean values of the several quantities considered in this

chapter are obtained by averaging 104 different realizations. Statistical error is estimated by

normalizing the standard deviation of the results and, when not shown, is always smaller than

the size of symbols in the figures.

3.2.3 The shape of a stretched chain

In order to characterize the shape of a stretched chain, we evaluated the eigenvalues of the

inertia tensor and the corresponding eigenvectors by means of Monte Carlo simulations,

according to the algorithm presented above. In fig.3.1 we show a schematic picture recapitu-

lating the evolution of the polymer as the tension is increased. Particularly, we sketch typical

enveloping ellipsoids obtained for a chain of size N = 200 and for several values of ν. As the

picture qualitatively shows, the effect of an external force on a chain is twofold. For low values

of ν, the tension mostly affects the orientation of the enveloping ellipsoid [147], aligning it

along its direction (bottom-left region in fig.3.1). In this regard, in fig.3.2 we show the av-
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3.2. The shape of a polymer under tension

Figure 3.1 – Schematic illustration of the effect of an external force on a FJC. The arrow indicates
the direction of the external force. All the ellipsoids shown have axes ratios corresponding
to the average values of the eigenvalues for a chain made of N = 200 segments and for the
values of ν reported in the figure. Particularly, we show the projection corresponding to the
two largest eigenvalues. To ease visualization, the absolute size of the ellipsoids was chosen
arbitrarily, thus relative sizes of ellipsoids drawn for different values of ν do not reflect the real
values.

erage value of cosψs , where ψs is the angle between the applied force and the eigenvector

corresponding to the eigenvalue λs . Starting from the typical value of random orientations

(1/2), the cosine rapidly approaches 1 in the case of λ1 (top) and 0 for λ2 and λ3 (bottom and

inset), which corresponds to an ellipsoid with the principal axis oriented along the force. It

is worth noting that the cosine approaches its large-ν value more fastly for larger sizes of the

chain. After this dipole-like regime, the tension strongly deforms the polymer, thus leading

to an increase in the anisotropy of its shape (top-right region in fig.3.1). However, we note

that, due to the monotonicity of L 2, R2
g increases monotonically from its unperturbed value

to the rodlike limit (see equation (3.45)), thus a weak streching is present also at low forces.

After the ellipsoid has been aligned, the largest eigenvalue λ1 is expected to give the leading

contribution to the squared radius of gyration R2
g , thus a scaling dependence λ1 ∼ N 2 can
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Chapter 3. The shape of a stretched polymer

Figure 3.2 – Orientation of the ellipsoid enveloping a stretched FJC as a function of the adi-
mensionalized force ν. In the plot we report for several values of N the average cosine of the
angle ψs between the external force and the eigenvector corresponding to each eigenvalue for
s = 1 (top), s = 2 (bottom) and s = 3 (inset). Adapted from [145].

already be anticipated. In fig.3.3 top we show λ1/N 2l 2 as a function of the adimensionalized

force ν for several values of N . As expected, the various data sets collapse onto the same curve,

though small but systematic displacements are observed for smaller chains. Since λ1 gives the
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3.2. The shape of a polymer under tension

Figure 3.3 – Normalized eigenvalues λ1/N 2b2 (top), λ2/N b2 (bottom) and λ3/N b2 (inset) as a
function of the adimensionalized force ν, for several values of chain size N . The continuous
curves are the corresponding fitting functions reported in equations (3.51), (3.52) and (3.53).
Adapted from [145].

main contribution to the radius of gyration, in particular for large ν, the data are described
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Chapter 3. The shape of a stretched polymer

very well by the rodlike term in the formula for the radius of gyration (equation (3.45))

λ1

N 2l 2 ' 1

12
L 2 , (3.51)

which is reported as a continuous red line in fig.3.3 top. The two remaining eigenvalues show

more interesting features. For large forces, they are expected to behave as the transverse

contributions of R2
g , which in turn are led by the fluctuations of the chain on the plane

perpendicular to the force2. As a result, λ2 and λ3 are expected to behave as N g (compare

the formula for P⊥, equation (3.42)). This ansatz is confirmed in fig.3.3, where we show that,

for large enough ν, λ2/N l 2 (fig.3.3 bottom) and λ3/N l 2 (fig.3.3 inset) collapse onto universal

curves well described by the functions

λ2

N l 2 ' 1

10
g (3.52)

and

λ3

N l 2 ' 1

30
g , (3.53)

which are plotted as red continuous lines in fig.3.3. Interestingly, the simulation data for λ2

Figure 3.4 – Ratio between the average values of the two smallest eigenvalues. In the inset we
report the shape of the transverse section of the chain for ν= 1,10,100, where the axes are
proportional to

√
λ2 and

√
λ3. The arrow indicates the direction of increasing ν.

2An explicit calculation performed by following the same approach as in section 3.1.3 shows that 〈x2
g 〉 = 〈y2

g 〉 =
N l 2g /6, which has the same N− and ν−dependence of the fluctuations of the end-to-end vector in the transverse
directions, as can be argued from equation (3.42).
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3.2. The shape of a polymer under tension

and λ3 show a non-monotonical behavior for small forces, which is not captured by equations

(3.52) and (3.53). More in detail, starting fromν= 0 they increase up to a maximum, after which

they decrease according to the universal behavior. A comparison with the corresponding

values of 〈cosψs〉 shows that the range of forces with increasing λ corresponds to a regime

where the ellipsoid has still to align with the force. Therefore, an intuitive explanation of this

phenomenon is that, due to the random orientation of the polymer (see bottom-left corner

in fig.3.1), on average in this regime the force deforms the ellipsoid almost isotropically, thus

leading to an increase of all the eigenvalues. In contrast, after a perfect alignment has been

achieved (top-right corner in fig.3.1), only λ1 keeps growing, while the two smaller eigenvalues

shrink due to the smaller and smaller fluctuations in the directions perpendicular to the

force. Notably, equations (3.52) and (3.53) suggest that at large forces the ratio between the

two smaller eigenvalues is a constant. In this regard, in fig.3.4 we report the ratio 〈λ2〉〈/λ3〉
as a function of the external force for several values of N . Starting from the unperturbed

value 2.7 [143], the ratio increases with ν until a plateau is reached. The stationary value is

independent of N and is in good agreement with (though a bit lower than) the prediction

obtained taking the ratio between equations (3.52) and (3.53), 〈λ2〉/〈λ3〉 = 3. We note that the

increasing regime corresponds to the range of values of ν where the alignment is taking place,

as a direct comparison with fig.3.2 shows. The existence of a plateau outlines an intriguing

picture of the evolution of a chain as the force is increased. After the ellipsoid has been

aligned with the external force, as the latter increases the polymer becomes more and more

elongated, while the size of the two smaller axes decreases. The constant ratio of the smallest

eigenvalues shows that this shrinking is isotropic, thus the section maintains a universal shape

independent of the force, as we sketch in the inset of fig.3.4.

We now focus on the computation of the asphericity. In this regard, we note that the approach

introduced in section 3.1.3 can be straightforwardly extended to the case of a stretched chain.

Indeed, equation (3.19) (and its analogue for 〈(TrT )2〉) is valid for any chain. Moreover,

formulas like equation (3.22) and (3.23) show that, as long as the chain maintains its Markovian

character, the key quantity to compute the moments of the inertia tensor is the squared average

of the end-to-end vector. Therefore, in the present case we already have all the necessary tools

to compute A . The explicit calculation was performed in [142, 145] and is similar to what we

did in section 3.1.3, thus we will not repeat it here. We limit ourselves to report the final results

for the moments of T of interest, which are

〈T 2
xx〉 = 〈T 2

y y 〉 =
g 2N 2l 4

20

〈T 2
x y 〉 =

g 2N 2l 4

90

〈TxxTy y 〉 = g 2N 2l 4

36

〈T 2
zz〉 =

N 2l 4

720

(
5L 4N 2 +44L 2N a +36a2)
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Chapter 3. The shape of a stretched polymer

Figure 3.5 – Comparison between Monte Carlo data and exact formula (equation (3.54)) for
the aspericity A as a function of the adimensionalized force ν, for several values of N (top). If
the data are plotted as a function of NνL , all the sets collapse onto a universal curve (bottom
and inset). Reprinted from [145].

〈T 2
xz〉 = 〈T 2

y z〉 =
g N 2l 4

360

(
4a +3L 2N

)
〈TxxTzz〉 = 〈Ty yTzz〉 = g N 2l 4

72

(
2a +L 2N

)
.
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3.2. The shape of a polymer under tension

Note that some of the terms are equal because of the cylindric symmetry of the system. These

terms can be used to compute both 〈Tr
(
T 2

)〉 and 〈(TrT )2〉, whose substitution in equation

(3.18) finally gives

A = 1− 72ag +36g 2 +24N gL 2

36a2 +80ag +112g 2 +4L 2(11a +10g )N +5N 2L 4 . (3.54)

In fig.3.5 top we plot Equation (3.54) as a function ofν for different values of N . For comparison,

we also show the average values of asphericity retrieved from our Monte Carlo simulations.

Theoretical curves and simulation data perfectly agree with each other, providing a sanity

check to the correctness of our calculations. Moreover, an interesting result comes from

focusing on the coordinates x, y , i.e. on the plane orthogonal to the external force. Particularly,

we can define the two-dimensional version of equation (3.18) as [143]

A2d ≡ 2〈Tr
(
T 2

)〉
〈(TrT )2〉 −1 (3.55)

and compute the asphericity of the two-dimensional projection of the chain onto the x y plane.

In the present case, we have

〈Tr
(
T 2)〉 = 〈T 2

xx〉+〈T 2
y y 〉+2〈T 2

x y 〉 =
11

90
g 2N 2l 4 (3.56)

and

〈(TrT )2〉 = 〈T 2
xx〉+〈T 2

y y 〉+2〈TxxTy y 〉 = 7

45
g 2N 2l 4 . (3.57)

Substitution in equation (3.55) finally gives

A2d = 4

7
' 0.57. (3.58)

Noticeably, the asphericity in the plane x y is independent of N and ν, and has exactly the

same value as the asphericity of an unperturbed two-dimensional FJC [143]. This result comes

as no surprise, since it is due to the independence of the three directions of a random walk,

and suggests that the conformations on the x y plane are the same as an unperturbed FJC

where, in order to take into account the overall shrinking of the chain on this plane, the length

of a segment has been properly renormalized. Nevertheless, at first sight it may seem that

this result is not compatible with the ratio 〈λ2〉/〈λ3〉 plotted in fig.3.4. Indeed, computing the

two-dimensional asphericity corresponding to λ2,λ3 outlines a more spherical shape with

A2d ' 0.33. These values are found for large ν, long way after the alignment has taken place,

thus the plane identified by considering the eigenvectors relative to λ2,λ3 should roughly

correspond to the x y plane. How do we explain this apparent contradiction? Qualitatively,

the key point is that, though the main axis of the ellipsoid becomes more and more aligned

with the external force, the value of λ1 increases with ν, therefore its projection onto the

x y plane could be comparable to the contributions coming from λ2 and λ3. If this is the
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Chapter 3. The shape of a stretched polymer

case, one cannot properly identify the projection of the FJC on the x y plane with the section

perpendicular to the main axis of the ellipsoid, which would explain the apparent paradox

reported above. In the next section, this observation will be addressed on a more quantitative

level.

Though quite involved, equation (3.54) results very instructive when its limiting behavior is

considered. Particularly, as long as NL 2 À 1, the contributions coming from the size of the

polymer dominate the behavior of the asphericity, which approaches unity as

A ' 1− 24

5NνL
. (3.59)

For sufficiently large N , the previous condition can be rewritten as Nν2 À 1, which points

again to a force scale νc ∼ 1/
p

N below which non-trivial finite-size effects are present (com-

pare equation (3.46)). Furthermore, a Taylor expansion around ν= 0 gives

A ' 10

19
+ 25

1083
Nν2 . (3.60)

Since at low forces NνL ∼ Nν2, we can conclude that the asphericity depends on N and ν by

means of the combination NνL in both the limiting cases, which suggests this to be the case,

at the leading order, in the whole range of forces. As we show in fig.3.5 bottom, the data nicely

collapse onto the same curve if A is plotted as a function of NνL , thus confirming our ansatz

(a better insight on the large-force behavior is given in the inset of fig.3.5 bottom, where we

plot 1−A in log-log scale).

3.2.4 A dipole approximation captures the orientational behavior of the FJC

The results reported in the previous section show that at the leading order the interplay

between external force and polymer size affects the shape of the chain by means of the

combination NνL . At this point, a natural question is whether also the orientation of the

ellipsoid shows the same behavior. To answer this question, we considered again the average

cosines reported in fig.3.2 and plotted them as a function of NνL . As we show in fig.3.6 and

fig.3.7, this rescaling results again in a collapse of the data onto a universal curve in the whole

range of explored values of the force. The alignment of the ellipsoid to the external force has a

strong resemblance with the behavior of an electric dipole in the presence of an external field,

with the important difference that in the former a 180◦ rotation results in the same physical

state. It is therefore tempting to describe the observed curves for 〈cosψs〉 in terms of the

dipole analog, with ν as external field. In this regard, the dipole moment is epitomized by

the elongation of the chain, thus we can interpret the factor NL as being proportional to the

polarization response of the dipole: larger values of N result into a more responsive chain,

though at large forces the dipole moment saturates to an asymptotic value. In other words, we

assume the dipole to have a moment equal to αNL , where α is a proportionality constant.

Within this assumption, the interaction energy is equal to αNνL cosψ1, and the average

82



3.2. The shape of a polymer under tension

Figure 3.6 – Collapse of the average value of cosψ1 (top, compare fig.3.2 top) when plotted as
a function of NνL . In the bottom panel the collapses of the other two angles are shown. The
three continuous curves are obtained by globally fitting the data within the electric-dipole
analog, with α' 0.84.

cosines are equal to

〈cosψ1〉 =
∫ 1

0 cosψeαNνL cosψd cosψ∫ 1
0 eαNνL cosψd cosψ

= 1

1−e−αNνL
− 1

αNνL
(3.61)
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Chapter 3. The shape of a stretched polymer

Figure 3.7 – Same data as in fig.3.7 plotted in logscale. Note that in the top panel we report
1−〈cosφ1〉 in order to better analyze how the cosine approaches its asymptotic value.

and

〈cosψ2,3〉 =
∫ 1

0 cosψeαNνL sinψd cosψ∫ 1
0 eαNνL sinψd cosψ

. (3.62)

By tuning the parameter α, we performed a global fit of 〈cosψs〉, s = 1,2,3, for the set of data

corresponding to N = 1000, and we found the continuous curves showed in fig.3.6 and fig.3.7.
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3.2. The shape of a polymer under tension

The remarkable agreement between our ansatz and the simulation data shows that the dipole

analog can capture even quantitatively the orientational behavior of the ellipsoid.

Figure 3.8 – Average value of r12 (equation (3.63)) as a function of ν for several values of N .
The theoretical prediction for the asymptotic value (3.69) is shown as a continuous red line.

As a final comment, we can now address quantitatively the apparent paradox mentioned in

the previous section. As we already mentioned, in order to properly identify the projection of

the ellipsoid onto the x y plane with the section transverse to the eigenvector corresponding

to λ1, the x− and y− component of the major axis have to be negligible when compared to

the corresponding values in the case of the minor ones. On a quantitative base, we thus have

to evaluate e.g. the ratio

r12 ≡
√
λ1 sinψ1√
λ2 sinψ2

. (3.63)

In order for the two projections to match each other, the condition

r12 ¿ 1 (3.64)

needs to be satisfied. Our results enable us to evaluate the average value of each factor

appearing in equation (3.63). At large forces, equation (3.61) can be written as

〈cosψ1〉 ' 1− 1

αNνL
, (3.65)

which thus gives

〈sinψ1〉 '
√

2

αNνL
. (3.66)
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As for 〈sinψ2〉, we note that at large forces 〈cosψ2〉 is very small, thus the largest contribution

to the integrals appearing in equation (3.62) is expected to come from low values of cosψ. We

can thus write

〈cosψ2〉 =
∫ 1

0 cosψeαNνL
p

1−cos2ψd cosψ∫ 1
0 eαNνL

p
1−cos2ψd cosψ

'
∫ 1

0 cosψe−
1
2αNνL cos2ψd cosψ∫ 1

0 e−
1
2αNνL cos2ψd cosψ

=

'
∫ ∞

0 cosψe−
1
2αNνL cos2ψd cosψ∫ ∞

0 e−
1
2αNνL cos2ψd cosψ

=
√

2

παNνL
. (3.67)

Therefore, we have

〈sinψ2〉 ' 1− 1

παNνL
' 1. (3.68)

Substituting equations (3.51), (3.52), (3.66) and (3.68) into equation (3.63), we finally get

r12 '

√
N 2L 2

12

√
2

αNνL√
N g
10

=
√

5

3α
' 1.4, (3.69)

independently of N and, more importantly, of ν. In fig.3.8 we report the results from our

Monte Carlo simulations for 〈r12〉 as a function of the external force for several values of chain

size. As predicted by equation (3.69), at large forces this ratio saturates to a value independent

of the size N . The theoretical prediction, which is plotted in fig.3.8 as a red continuous line,

is in good agreement with the simulation data, though it slightly overestimates the actual

values. In this regard, we note that our approach completely neglected the possible presence

of correlations between the various factors appearing in equation (3.63), which are thus likely

to be responsible for the small quantitative disagreement between theory and simulations. To

our purposes, the important point is that 〈r12〉 reaches a plateau for large forces, so that the

condition given by equation (3.64) is not satisfied. Therefore, λ1 plays a non-negligible role in

determining the shape properties of the FJC projection onto the x y plane, which solves the

apparent contradiction between the values of the two-dimensional asphericities computed in

the previous section.

3.3 Conclusions

In this chapter, starting from the exact distribution of the end-to-end vector, we have char-

acterized in detail the properties of a stretched FJC. Our results show that both the shape

(A ) and the orientation (〈cosψs〉) of the polymer are due to finite-size effects. In the case

of infinite N , any non-zero value of the force would result in a rod-like chain aligned with

the external force. This behavior is in line with the linear-response “entropic spring” result,

according to which for small ν the relative elongation of the polymer along the direction of the
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force follows a Hooke-like formula f = 3kB T Re /N b2 [27], which in the limit of infinite chain

length suggests the polymer to be infinitely soft. Here, we have also quantitatively addressed

the corrections introduced by finite values of N , showing that at the leading order both shape

and orientation depend on N and ν only through their combination NνL . Moreover, for

increasing forces the chain shrinks in the plane orthogonal to the main axis of the ellipsoid,

and it does so by maintaining a universal shape which has different features than those of an

unperturbed two-dimensional FJC. Though derived on a FJC, our results for small forces can

be directly applied to a wide variety of models, such as e.g. the Wormlike Chain in the case of

double-stranded DNA [17], provided that the contour length of the chain is much larger than

its Kuhn length [27].
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In this thesis we faced three different problems involving biomacromolecules. Particularly,

the first two chapters have dealt with the study of specific biological systems, while the third

one was focused on a more theoretical topic. These works give some examples of how biology

can provide problems of great interest to physicists, and in turn how the latter can help

understanding molecular mechanisms.

For example, inspired by some experiments on βlg fibrils, in chapter one we developed a

model for the twisting properties of amyloid fibrils. Apart from being successfull in providing

a quantitative description of the experimental results, the model goes beyond it and outlines

the existence of universal laws governing the twisting properties of amyloid fibrils, which

was confirmed in the case of flat-ribbon geometries by testing the universal predictions on

sets of data involving different kinds of fibrils and different experimental techniques. Even

more interestingly, as we explicitly showed by considering hollow-tube packing arrangements,

different geometries are expected to result into different universal laws, thus highlighting

the presence of “universality classes” of amyloid fibrils. This work shows how “old-style”

physics can give some very deep insights on biomacromolecules, thus providing a useful

complementary tool for their study.

In this regard, the coarse-grained analysis performed in chapter two is also quite significative.

Apart from highlighting in a quantitative framework the fundamental role played by Hsp70

in the import of protein into mitochondria, it provides an instructive example of how coarse-

grained simulations can help in understanding biological problems. Indeed, based on a

mechanism proposed in the literature, we could show that basic ingredients such as the local

flexibility of unfolded proteins and the excluded volume of amino acids can already result

in import free energies leading to quantitatively-significant thermodynamic forces and gain

in import times. Therefore, simple descriptions like the one we used can be very useful to

identify the main players in biological processes. Naturally, more faithful representations

would be needed in order to precisely fix the quantitative details.

In contrast with the previous chapters, the results derived in chapter three are not focused

on a specific biological system, but they are rather more of theoretical interest. As already

mentioned above, they are nonetheless insightful for biomolecular systems, since biopolymers

are stretched in many instances within the cell, and their spatial distribution is important in
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quantitatively determining the way they interact with other molecules. Our work fills a gap

in the literature on this matter and paves the way for more detailed studies. Following the

typical trend of basic results in polymer theory, our results outline the presence of universal

functions capable of describing the behavior of chains of different size when subject to external

forces. These results could be tested by performing experiments combining fluorescence and

single-molecule techniques, though at present we are not aware of any such works aimed at

investigating the shape of stretched chains.

In conclusion, we hope that after reading this thesis Alberts and coworkers would share our

feeling that, within the microuniverse of the systems studied here, we have satisfactorily

responded to their call, making a small further step in our understanding of cellular biology.
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