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Abstract
All computing platforms, from mobile to supercomputers, are becoming more and more

heterogeneous and massively parallel. While they can provide higher power efficiency and

computation throughput, effective and confident use of these systems always requires knowl-

edge about low-level programming. The average time necessary to develop and optimize a

design on heterogeneous platforms is higher and higher compared to typical homogeneous

systems. Dataflow models of computation (MoC) are quickly becoming the common practice

in heterogeneous systems development. In domains such as signal processing and multimedia

communication, dataflow MoCs have become accepted as standard. However, the shift from a

sequential and architecture-specific MoC to a dataflow MoC still uncovers several program-

ming and development challenges. The Cal Actor Language (CAL) is a recently-specified

dataflow and actor-based language capable of concisely expressing complex and general pur-

pose parallel applications. However, design tools supporting this language are generally not

adequate to fully exploit its features and expressiveness power. In fact, they generally restrict

its MoC in order to reduce the design space exploration (DSE) effort. The objective of this

thesis is to provide a DSE methodology where all the features of CAL and dynamic dataflow

MoCs can be exploited in a more general and effective manner. This dissertation illustrates a

novel profiling, analysis and performance estimation methodology for the DSE of dynamic

dataflow programs. The main research contributions of this thesis are: the formalization

of a graph-based representation of the program execution called an execution trace graph

(ETG); the formalization of a systematic methodology for profiling generic dynamic dataflow

programs through their code interpretation; the formalization of a complete DSE methodology

for dynamic dataflow programs in order to efficiently identify close-to-optimal design points

according to various and tailored performance merit functions. In particular, the following de-

sign space optimization problems for dynamic dataflow programs are addressed: the analysis

of the hotspots and the algorithmic bottlenecks of a parallel program; the bounding and opti-

mization of the buffer size configuration for complex designs; the dynamic power dissipation

minimization of programs implemented in multi-clock domain architecture. Furthermore,

theoretical concepts like the design space critical path and the potential speedup of a dataflow

application have been defined and revisited, respectively. The thesis also presents a DSE

framework developed in order to demonstrate the effectiveness of this design methodology.

Key words: dynamic dataflow, design space exploration, heterogeneous computing, CAL
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Résumé
De nos jours, des mobiles aux super-ordinateurs, toutes les plates-formes informatiques

deviennent de plus en plus hétérogènes et massivement parallèles ce qui les rend très ef-

ficaces en termes de puissance et de calcul. Pour obtenir une très bonne utilisation de

ces systèmes, il est nécessaire d’avoir toujours plus de connaissances de programmation

bas niveau. De plus, le temps moyen nécessaire pour développer et optimiser ce type de

système est de plus en plus élevé par rapport aux systèmes typiquement séquentiels. Les

modèles de calcul flux de données deviennent rapidement la pratique la plus courante dans

le développement des systèmes hétérogènes. Dans des domaines, tels que le traitement

du signal et le multimédia, ces modèles de calcul flux de données sont devenus un stan-

dard largement accepté. Cependant, le passage d’une méthode séquentielle et spécifique à

l’architecture à une méthode flux de données, montre que plusieurs défis de programmation

et de développement sont encore à découvrir. Pour répondre à ce passage, un langage de

programmation flux de données, récemment spécifié, a été développé. Ce langage, appelé Cal

Actor Language (CAL), est capable d’exprimer de manière concise des applications parallèles

complexes avec un formalisme simple et générique. Malgré cela, les outils de conception

basés sur ce langage ne sont généralement pas suffisants pour exploiter entièrement toutes

ses caractéristiques, surtout sa puissance d’expression. En général, les outils actuellement

disponibles limitent énormément son modèle de calcul afin de réduire l’effort de l’exploration

de l’espace de conception. L’objectif de cette thèse est donc de fournir une méthodologie

d’exploration de l’espace de conception où toutes les fonctionnalités du CAL et de son modèle

de calcul peuvent être exploitées d’une manière plus générale et plus efficace. Elle démon-

tre aussi une nouvelle méthodologie d’estimation et d’analyse des performances pour les

applications flux de données dynamiques. Les principales contributions à la recherche de

cette thèse sont: la formalisation d’une représentation de l’exécution du programme basée

sur la théorie des graphes et appelée "graphe de trace d’exécution"; la formalisation d’une

méthodologie systématique pour le profilage des programmes flux de données dynamiques

génériques à travers l’interprétation de haut niveau de leur code source; la formalisation d’une

méthodologie complète de l’exploration de l’espace de conception pour des programmes flux

de données dynamiques. En outre, les problèmes d’optimisation de l’espace de conception

du design pour les programmes flux de données dynamiques abordés sont: l’analyse des

goulets d’étranglement algorithmiques d’un programme; la sélection et l’optimisation de la

configuration de la taille de mémoire pour des applications complexes; la minimisation de

la dissipation de puissance dynamique des programmes mis en œuvre dans une architec-
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Résumé

ture multi-horloges. De plus, les concepts théoriques comme l’espace du chemin critique et

l’accélération potentielle d’une application flux de données ont été respectivement définis et

revisités. La thèse présente, également, un logiciel d’exploration de l’espace de conception

développé afin de démontrer l’efficacité de cette méthode.

Mots clefs: flux de données, exploration de l’espace du design, computation parallèle, plates-

formes hétérogènes, CAL
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1 Introduction

This thesis addresses the problem of analyzing complex design applications modeled with

emerging dataflow programming languages. In the last decades, there has been a great deal of

activity and advancement in the field of dataflow programming languages. The motivations of

such interest are related to the fact that the increasing demand of computing power can be

coped difficultly only by the improvement of device technology. Nowadays, the availability of

heterogeneous parallel platforms, that combine the processing features of FPGAs with multi-

core CPUs, offer in a single silicon die a potential amount of computing power that exceeds

by far what was available in the past years. However, the programming experience of these

platforms becomes more and more complex. Consequently, designers have to implement

increasingly complex applications for increasingly complex and networked platforms. The

potential power of those platforms can only be exploited if existing design flows are able to

support the new heterogeneous architectures. Designs capable of efficiently exploiting the

architecture characteristics must encompass both hardware and software design concepts,

which are currently expressed by using completely different abstractions. This thesis defines a

complete design flow, supported by a software tool environment, such that the designer can

be efficiently and easily guided during the entire application development process.

1.1 Heterogeneous systems development

All computing platforms, from mobile to supercomputers, are becoming more and more

heterogeneous and massively parallel. In a time when new hardware meant higher clock

frequencies, old programs almost always ran faster on more modern equipment. However,

this is not the case anymore when programs written for single-core systems will have to

execute, as an example, on multi-core platforms at possibly lower clock speeds on low-power

platforms. While these heterogeneous and massively parallel platforms can provide higher

power efficiency and computational throughput, their effective and confident use always

requires knowledge about low-level programming. Hence, the average time necessary to

develop and optimize a design on heterogeneous platforms is higher and higher compared

to typical homogeneous systems. A common practice is to choose "a-priori" partition of the
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design. Each part of the design is specifically developed for the assigned computing element.

This typical design flow is depicted in Figure 1.1 which starts with a behavioral description of

the application. This description is generally made using a plethora of different programming

language. Application parts that are implemented in hardware (HW) are generally specified

using parallel languages (e.g. VHDL, Verilog), and application parts that are implemented in

software (SW) are generally specified using sequential languages (e.g. C/C++, CUDA, OpenCL)

that sometimes make use of parallel pragmas (e.g. OpenMP) specified by the designer. This

initial choice can affect all the development stages. In fact, if the design requirements and

constraints are not satisfied, then the design should be optimized. If the modification requires

that the partitioning configuration should be changed, then part of the (or the entire) design

should be rebuilt from scratch. This can be frustrating for the designer, but it also increases

the time-to-market of the application. As a consequence, this typical design flow cannot

be considered as an adequate and productive methodology for the design development on

heterogeneous platforms.

Behavioral
description

Software porting

Procedural 
optimization

Compilation
Interfaces
synthesis

HDL 
synthesis

Latency/Area/Power 
minimization

Hardware
porting

Co-Simulation
performance estimation

Optimization 
up until satisfying 
system constraints

Implementation

Iteration loop

Figure 1.1: Simplified typical design flow of a heterogeneous hardware and software system.
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1.1. Heterogeneous systems development

1.1.1 Requirements for effective design development

The main requirements for effective design development on heterogeneous platforms can be

summarized in terms of:

• Design abstraction: one of the most important questions that a designer faces during

the early stage of the development is which level of abstraction should be used. The

response is not always trivial by the diverse nature of platforms. Different degrees of

abstraction may be employed depending on the amount of details needed to describe

the requirements.

• Modularity: design abstraction should make opportunities for a more flexible and

modular implementation. The functionalities of a program should be separated into

independent and interchangeable modules, where each module contains everything

necessary to execute only a specific functionality.

• Composability: design abstraction should make opportunities to provide recombinant

components implementation. These components should be selected and assembled in

various combinations in order to satisfy specific design requirements.

• Reuse: design abstraction and the modularity of an application should make opportuni-

ties for the reuse of program components. As an example, several audio codecs share

part of the same functional units, which makes modularity a necessity.

These requirements are essential for an unified computation abstraction for HW and SW that

requires the application programming with a model of computation that is modular and, at

the same time, abstracts out platform specific details.

1.1.2 Models of computation

One of the main obstacles that may prevent the widespread usage of heterogeneous parallel

platforms is the fact that serial models of computations (MoC) and programming methods are

still adopted. The vast majority of existing software is written in sequential form. However,

efficient parallel implementations are challenging and arduous to achieve using sequential

MoCs. In fact, sequential languages are notoriously difficult to parallelize in general, so

efficient parallel implementations will usually require significant guidance from the user.

Consequently, serious problems are arising for porting existing technologies and applications

on the new performing heterogeneous and massively parallel platforms. The understandabil-

ity, predictability, and determinism properties of purely-sequential MoCs remain the crucial

requirement for parallel MoCs. Hence, a shift to a new programming paradigm that exploits

the parallelism and diversification interested in heterogeneous systems development is clearly

becoming a necessity. In application areas characterized by the use of highly parallel com-

puting platforms, the use of a dataflow MoC to describe the algorithms creates opportunities
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for more flexible implementation and also for more extensive analysis. One of the reasons for

this is that a dataflow program describes an algorithm as a, possibly hierarchical, network of

communicating computational kernels, also called actors. Actors are connected by directed,

lossless, order-preserving point-to-point channels. This makes the flow of data explicit be-

tween actors, which are not permitted to share data in any other way than by sending each

other messages, called tokens. Furthermore, this MoC also exposes the application-internal

parallelism between actors. As actors are forbidden to share state, implementation tools have

a great range of freedom in mapping dataflow programs to hardware and software imple-

mentations, or mixtures thereof. Dataflow programs are being analyzed in different ways

for different purposes. The subclass of statically schedulable programs, also called static

dataflow programs, is amenable to pure compile-time analysis that yields not only a static

schedule, but also things such as exact minimal bounds for buffer sizes, exact predictions for

throughput and latency, and a guarantee of the absence of deadlocks and so forth. However,

for many complex applications (e.g. signal processing), it is not possible to represent all of the

functionality in terms of a purely statical schedulable program. Functionality that involves

conditional execution or dynamically varying token production and consumption rates can

only be directly expressed through a dynamic dataflow representation. Intuitively, in dynamic

dataflow programs the production and consumption rates of actors can vary in different ways

that are not entirely predictable at compile time. As a consequence, compile-time analysis

may provide inconclusive results.

1.1.3 Design space exploration

Design space exploration (DSE) refers to the activity of evaluating and exploring the different

design alternatives during the system development of an application. For large and complex

designs, implemented in heterogeneous and massively parallel platforms, the number of de-

sign alternatives easily becomes too big and error-prone for a manual and efficient exploration.

For this reason, several DSE methodologies have been investigated in the last decades. Each

DSE methodology generally makes use of the following functionalities:

• Rapid prototyping: DSE is used to generate a set of prototypes prior to implementation.

Validating and testing the design before its final implementation may reduce the cost

and the time required for solving problems that can arise in the late production cycle

of an application. Furthermore, it can increase understanding of the impact of design

decisions during the implementation process.

• Optimization: even though validation is an important part of the design process, it is

possible that the application does not satisfy the requirements. Consequently, feasible

design configuration should be explored in order to meet the requirements. If any of

those exist, the design should be modified. Consequently, clear and precise refactoring

directions should be provided to the designer.

• System integration: when heterogeneous platforms are used as target architecture of
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the application, the system integration can become one of the most tedious and error-

prone stages of the development. System integration requires a working assembly and

configuration of multiple components. DSE can be used to find feasible assemblies

configurations that satisfy the design constraints and requirements.

Therefore, a designer must have a formal method, supported with a computer-aided frame-

work for finding a feasible set of design alternatives, also referred to as design points, that

meet the specification requirements. However, general and structured methodologies are

lacking for designing application-specific architectures that are sufficiently modular and pro-

grammable. In fact, the current practice is to design application-specific architectures at a

detailed level. The level of detail involved limits the number of design points that can be

explored effectively. As a consequence, this may limit the freedom to make trade-offs between

programmability, resource utilization and achievable performances. For this reason, a generic

and DSE environment should encompass the following main components:

• Application model: a suitable representation of the design space is essential. This

should be: formal (automated analysis and exploration techniques can be performed),

general (the application should be platform-independent and retargetable), expressive

(constraints imposed by the target platform can be captured and enforced).

• Exploration and analysis: the environment should provide a collection of computer-

aided techniques for discovering potential design configuration candidates. Moreover,

the framework should be able to tackle the challenge of solving, in a reasonable time

frame, a large number of complex design constraints. As far as the user is concerned,

the framework must provide a method for navigating through the set of interesting and

distinctive solutions.

• Performance estimation: the environment should be able to estimate the application

performance and directly test the different candidate solutions. As far as the user is

concerned, testing the different configurations one by one without the possibility of

estimating the performance can be an error-prone procedure since this may require

several partial implementations of the application. Furthermore, good estimation also

mean that the DSE analysis provides reliable results.

1.2 Motivation of this thesis

Dataflow MoCs are a promising practice in heterogeneous systems development. It has

already been demonstrated how they can be efficiently used to support the portability by

itself and the portability of the parallelism of an application. In domains such as signal

processing and multimedia communication, where the scalability is also growing in interest

as a fundamental requirement, dataflow MoCs have already become an accepted standard.

However, the shift from a sequential and architecture-specific MoC to a dataflow MoC still
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uncovers several programming and development challenges. The Cal Actor Language (CAL)

is a recently specified dataflow and actor-based language capable of concisely expressing

complex and general purpose parallel applications. A subset of this language has also been

standardized within the MPEG Reconfigurable Video Coding framework (RVC) where it is

used to specify the standard Video Tool Library (VTL). However, design tools that support

this language are generally not adequate to fully exploit its features and capabilities. Current

design methodologies, where this language is used, severely restrict its MoC in order to reduce

the DSE effort. The objective of this thesis is to provide a DSE methodology where all the

features of CAL, and dynamic dataflow MoC, more generally, are completely exploited.

1.3 System development design flow

In this thesis the system development design flow and methodology illustrated in Figure 1.2

is used. The program functional behavior is taken separately from the architecture model.

Program behavior is expressed using the CAL dataflow language, which is based on dataflow

processing network principles. The architecture, together with its constraints, are modeled

with a high-level abstraction used to describe the platform where the design is implemented.

The architecture model is based on the notion of processing elements, media and links. A

processing element defines the kind of platform, a medium defines the way that this platform

is communicating, and a link defines a connection between processing elements and media.

Constraints are applied within the architecture and the program and are used to define, for

example, the maximal clocking frequency of each operator. The six different stages of this

design flow are respectively:

• Compiler infrastructure: transforms the source code of a CAL program to an equivalent

intermediate or representation. The compiler should provide the possibility of verify-

ing the program behavioral correctness directly from the intermediate representation,

without requiring any partial implementation or prototyping.

• Profiling and analysis: the design alternatives of the application are explored such that

constraints and performance requirements can be satisfied. The design can also be

statically or dynamically analyzed in order to evaluate its computational and commu-

nication costs. In the case where a design point satisfies the requirements, this is then

used to drive the compiler infrastructure through a set of compiler directives. Otherwise,

in the case where requirements cannot be satisfied, refactoring directions should be

provided to the designer. These highlight which part of the design requires modification

to allow requirement satisfaction.

• Performance estimation: performance of a given design point is evaluated without

requiring any partial implementation of the program: only the high-level models of

both the program and architecture are used. Results of the estimation are analyzed in

order to reduce the design points that can satisfy requirements.
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• Code generation: the CAL program is transformed to a low-level code representation.

Software and/or hardware code is generated according to the mapping of the program

to the target architecture.

• Synthesis or compilation: the software or hardware code is compiled or synthesized,

respectively. Standard tools are used in order to obtain the software executables and the

hardware binary files and netlists of the implementation.

• Implementation: when both the performances and constraints are satisfied, the design

is implemented in the hardware or/and software architecture. If the implementation

contains both hardware and software parts, then interfaces provided by the architecture

should be automatically integrated into the design.
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Figure 1.2: Heterogeneous system development design flow for CAL dataflow programs.
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1.4 Research contributions of this thesis

This dissertation focuses on the profiling and analysis, and the performance estimation stages

of a CAL program development design flow illustrated in Section 1.3. Those stages represent

together the DSE of a CAL program. In this context, the main contributions of this thesis are:

(i) Execution Trace Graph [1, 2, 3, 4]: a graph-based representation of the program execu-

tion is formalized. This mathematical formalism can be used to model the execution

of static, cyclo-static and dynamic dataflow programs. A collection of analysis and

transformations are illustrated. As an example, it is demonstrated how it is possible to es-

timate the design performance by scheduling the execution trace graph post-mortem, or

how this representation can be transformed to an event-driven system where advanced

control technique methods can be used to explore the design points of the application.

(ii) Profiling of dynamic dataflow programs [1, 2]: a systematical methodology for pro-

filing generic dynamic dataflow programs is formalized. This is based on the code

interpretation, which does not require any partial implementation of the program. It

is demonstrated how this methodology can be effectively used to extract the execution

trace graph through a serial code interpretation.

(iii) Design space exploration methodology: a collection of heuristic methods, based on the

analysis of the execution trace graph, is formalized for exploring the different design

points of a generic dynamic dataflow program. In particular, the following problems

have been addressed and solved:

• Design space critical path formalization [1, 5]: the concept of design space crit-

ical path is formalized and used to bound the design points of an application.

Furthermore, with this notion, the concepts of potential speedup, defined in the

well known Amdahl’s law, have also been revisited and adapted to the domain of

dataflow programs.

• Hotspots analysis [1, 5, 6, 7, 8, 9]: a methodology for highlighting the bottlenecks

of the program and providing clear code refactoring directions is formalized.

• Buffer size configuration dimensioning [1, 10, 11, 12]: a systematic methodology

for solving the problem of bounding and optimizing the buffer size configuration of

complex dynamic dataflow programs has been formalized and solved.

• Dynamic power dissipation minimization [13, 14, 8, 15]: a systematic method-

ology for reducing the dynamic power dissipation of complex dynamic dataflow

programs, implemented in multi-clock domain architecture, has been formalized

and solved.

(iv) Design space exploration environment [16, 17, 18, 19, 20]: a computer-aided framework

for exploring the design space of dynamic dataflow program has been implemented. This

framework, called TURNUS, has been released as an open-source project that has already
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been integrated with other open-source CAL HW synthesis and SW code generation tools

(i.e. called Xronos and Orcc, respectively). Its integration with these tools provides

a complete systems design environment for CAL applications. The TURNUS’s main

functionalities and structure are discussed in this dissertation and used to prove the

effectiveness of the illustrated design methodology and its heuristics algorithms.

1.5 Thesis organization

This dissertation is organized as follows:

• Chapter 2 provides an overview of the main concepts of dataflow programming. An

overview concerning the taxonomy classification and the different models of computa-

tion that can be defined is presented. General discussion about static, cyclo-static and

dynamic dataflow programs are presented. Furthermore, an introduction to the CAL

actor language is presented with a collection of examples.

• Chapter 3 summarizes the possible profiling options of a dataflow program. Two main

profiling axes are illustrated: computational load and memory utilization. Furthermore,

a discussion concerning static and dynamic analysis of the code is presented. A focus is

given on profiling the CAL actor language and how well-known profiling metrics, such

as the Cyclomatic complexity and the Halstead metrics, are used in the context of this

language.

• Chapter 4 defines the design space of an application. It summarizes the concept of

orthogonalization of concerns. In this direction, it is illustrated how the application

can be modeled with a high-level of abstraction by defining the model of computation

and the model of architecture. Furthermore, the concept of mapping configuration is

defined together with the definition of design points. Different design space exploration

strategies are presented. In this chapter the space for improvement on the context

of CAL application exploration and optimization, that this thesis tries to gap, are also

discussed.

• Chapter 5 defines the concept of execution trace graph of a dataflow program. The

main properties of this graph-based representation are illustrated and used to provide a

formal definition of the design space of an application. Furthermore, how a dynamic

dataflow program can be handled is demonstrated by the use of guard enable and

disable dependencies concepts.

• Chapter 6 illustrates the main functionalities and the design flow of the TURNUS

dataflow exploration framework. This represents the tool implementation of the heuris-

tic proposed throughout this thesis. The main software engineering structure, together

with the formal design methodology, are presented.
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• Chapter 7 focuses on the TURNUS dataflow profile functionalities. The main advance-

ment and improvement, compared to state of the art tools, are presented.

• Chapter 8 focuses on the TURNUS design exploration and optimization functionalities.

Design performance is estimated by the use of a post-mortem execution trace scheduler.

It is illustrated how estimation results are used in order to guide the optimization

heuristic during the exploration phases. Furthermore, the concept of design space

critical path is defined and used as a primary metric of the optimization heuristics

that are illustrated in this chapter. These are: the hotspots analysis, the buffer size

dimensioning (i.e. minimization and optimization) and the partitioning (i.e. with

a particular focus on the problem of minimizing the dynamic power dissipation on

reconfigurable platforms).

• Chapter 9 presents a collection of experimental results for video codec applications.

More precisely, results obtained during the different stages of the design space explo-

ration of video and image decoders (i.e. such as a MPEG4-SP, HEVC and JPEG) are

presented and discussed.

• Chapter 10 concludes the dissertation, highlighting possible future works and illustrat-

ing the open problems that this thesis has not yet solved.

Furthermore, some additional in-depth material is available in the appendixes of this disserta-

tion. This additional material represents a quick reference guide for the reader. Appendixes

are structured as follows:

• Appendix A illustrates the main concepts of discrete event systems and simulation. The

formal definition of a Petri net is introduced. This is used in Section 5.5.3 when trans-

forming the execution trace graph to an event-driven system is formalized. Furthermore,

the formalism behind the concept of discrete event system specification and simulation

is presented.

• Appendix B illustrates the main concepts and functionalities of the model predictive

control. This receding horizon control technique is used in Section 8.4.3 where the

problem of buffer size dimensioning is solved.
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2 Dataflow programming

Stream processing is a widely used term in literature to describe a variety of systems. In fact,

streaming applications are programs that process continuous data streams. These applica-

tions have become ubiquitous due to increased automation in signal and video processing,

telecommunications, health care, transportation, retail, science, security, emergency response

and finance. As a result, various research communities have independently developed pro-

gramming models for streaming applications. While there are differences both at the language

level and at the system level, each of these communities ultimately represent streaming appli-

cations as a graph of streams and operators, generally called dataflow programs. This chapter

provides an overview about dataflow programming. Starting from the definition of dataflow

program, different models of computations are illustrated. Successively, an overview about the

Cal Actor Language is presented, as this language is used as a reference dataflow programming

language in the remaining chapters of this dissertation.

2.1 Dataflow programs

In the context of this dissertation, a dataflow program is defined as directed graphs whose

vertices are operators, called actors, and whose edges are streams. In general, stream graphs

might be cyclic, though some systems only support acyclic graph. Dataflow programs im-

plement streams as FIFO (first-in, first-out) queues, called buffers, sometimes with limited

capacity, sometimes not. Conceptually, streams are infinite sequence of atomic data items,

called tokens, and each actor consumes data items from incoming streams and produces

data items on outgoing streams. The token is the atomic unit of communication in a dataflow

program. One of the main properties of dataflow programs is that they have a data-driven

semantic: it is the availability of tokens that enables an actor. One of the principal strengths

of dataflow programs is that they do not over-specify an algorithm by imposing unnecessary

sequencing constraints between actors. Instead, they only specify a partial order, where

sequencing constraints are imposed only by data dependence and, since actors can run

concurrently, dataflow programs inherently expose the application parallelism [21, 22].
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In the following parts of this section, an overview of the different dataflow models of compu-

tations (MoCs) used within this dissertation is presented. These are: the Kahn Process Net-

works [23] that represent the underpinning representation for dataflow graphs, the Dataflow

Process Networks [24] that are closely related to the Kahn Process Networks, and the Actor

transition system [25] that extends Dataflow Process Networks with the notions of atomic step,

priority and actor internal variables.

2.1.1 Kahn process networks

A Kahn process network (KPN) [23] is a network of processes that can communicate only

through unidirectional and unbounded buffers. Each buffer carries a possible infinite se-

quence of tokens. Using the notation formalized in [24], each token’s sequence is denoted

with X = [x1, x2, x3, . . .] where each xi represents a token drawn from some set. A token is con-

sidered as an atomic data object that is written (produced) exactly once and read (consumed)

exactly once. Writes to the buffers are non-blocking, in the sense that they always succeed

immediately. Reads from buffers are blocking, in the sense that if a process attempts to read a

token from a buffer and no data is available, then it stalls (waits) until the buffer has sufficient

tokens to satisfy the read. Consequently, it is not possible to test the presence of input tokens.

Kahn process

Let Sp denotes the set of p-tuples of sequences as in X = {X1, X2, . . . , Xp } ∈ Sp . A Kahn process

is then defined as a mapping from a set of input sequences to a set of output sequences such as:

F : Sp → Sq (2.1)

The KPN process F has an event semantic instead of state semantics as in some other do-

mains such as continuous time. Moreover, the only technical restriction is that F must be a

continuous mapping function.

Monotonicity and continuity

Considering a prefix ordering of sequences, the sequence X precedes the sequence Y (written

X v Y ) if X is a prefix of (or is equal to) Y . For example, if X = [x1, x2] and Y = [x1, x2, x3] then

X v Y and it is common to say that X approximates Y , since it provides partial information

about Y . The empty sequence, denoted with ⊥, is a prefix of any other sequence.

The increasing chain (possibly infinite) of sequences is defined as χ = {X0, X1, . . .} where

X1 v X2 v . . .. Such an increasing chain of sequences has one or more upper bounds Y , where

Xi v Y for all Xi ∈ χ. The least upper bound (LUB) tχ is an upper bound such that for any

other upper bound Y , tχv Y . The LUB may be an infinite sequence.
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Given a functional process F and an increasing chain of sets of sequencesχ, as defined in Equa-

tion (2.1), F maps χ into another set of sequences that may or may not be an increasing chain.

Let tχ denote the LUB of the increasing chain χ. Then F is said to be Scott-continuous [26] if

for all such chains χ, tF (χ) exists and:

F (tχ) =tF (χ) (2.2)

Networks of Scott-continuous processes have a more intuitive property called monotonicity.

A process F is said to be monotonic if:

X v Y ⇒ F (X ) v F (Y ) (2.3)

Remark. Monotonicity can be thought of as a form of causality that does not invoke time, in

that "future input concerns only future output".

A continuous process is monotonic. However, a monotonic process may be not continuous.

A key consequence of this property is that a process can be computed iteratively [27]. This

means that given a prefix of the final input sequences, it may be possible to compute part

of the output sequences. In other words, a monotonic process is non-strict (its inputs need

not be complete before it can begin computation). In addition, a continuous process will not

wait forever before producing an output (it will not wait for completion of an infinite input

sequence). Networks of monotonic processes are determinate.

2.1.2 Dataflow process networks

Dataflow process networks (DPN) [24] formally establish a special case of KPNs, where the

computational blocks are called actors. As for the KPN process, actors can communicate only

through unidirectional and unbounded buffers which can carry possible infinite sequences of

tokens. As for KPN, writes to buffers are non-blocking. On the contrary, reads from buffers

are non-blocking, in the sense that an actor can test the presence of input tokens. If there are

not enough input tokens, then the read returns immediately and the actor does not need to be

suspended when it cannot read. This could introduce non-determinism, without requiring

the actor to be non-determinate.

Actor with firings

DPN networks are a special case of KPN where each process consists of repeated firings of an

actor [28]. An actor firing can be defined as an indivisible (atomic) quantum of computation.

The firings themselves can be described as functions, and the invocation of these firings is

controlled by some firing rules. Sequences of firings define a continuous Kahn process as

the least-fixed-point of an appropriately constructed functional mapping, therefore formally

establishing DPN as a special case of KPN [29].
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An actor with m inputs and n output is defined as a tuple ( f ,R), where:

• f : Sm → Sn is a function called the firing function.

• R ⊆ Sm is a set of finite sequences called the firing rules.

• f (ri ) is finite for all ri ∈ R.

• no two distinct ri r j ∈ R are joinable, in the sense that they do not have an LUB.

The Kahn process F defined in Equation (2.1) based on the actor { f ,R} has to be interpreted

as the least-fixed-point function of the functional φ : (Sm → Sn) → (Sn → Sm) defined such as:

(φ(F ))(s) =
 f (r )⊕F (s′) if there exist s ∈ R such that s = r ⊕ s′ and s v s′

⊥ otherwise
(2.4)

where ⊕ represents the concatenation operator and (Sm → Sn) the set of functional mapping

Sm to Sn . It is possible to demonstrate that φ is both a continuous and monotonic function.

The firing function f need not be continuous. In fact, it does not even need to be monotonic.

It merely needs to be a function, and its value must be finite for each of the firing rules [29].

2.1.3 Actor transition systems

Actor transition systems (ATS) [25] describe actors in terms of labeled transition systems (LTS).

The ATS extends the notion of actor with firings by introducing the notions of atomic step,

internal state, and priority. In an ATS, a step makes a transition from one state to another.

An actor maintains and updates its internal variables: these are not sequences of tokens, but

simple internal values that cannot be shared among actors. Moreover, the notion of priority

allows actors to ascertain and react to the absence of tokens. This notion can make actors

harder to be analyzed, and it may introduce unwanted non-determinism into a dataflow

application.

Remark. The state of an actor depends upon the value (state) of its internal variables, and not

just on the sequence of tokens it has received.

Let Σ denote the non-empty actor state space, u the universe of tokens that can be exchanged

between actors and U n a finite and partially-ordered sequence of n tokens over u. An n-to-m

actor is an LTS (σ0,τ,Â) where:

• σ0 ∈Σ is the actor initial state.

• τ⊂Σ×U n ×U m ×Σ defines the transition relation.

• Â⊂ τ×τ defines a strict partial order over τ.
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Any (σ, s, s′,σ′) ∈ τ is called a transition, where σ ∈Σ is its source state, s ∈ Sn its input tuple,

σ′ ∈ Σ its destination state and s′ ∈ U m its output tuple. It must be noted that Â is a non-

reflexive, anti-symmetric, transitive and partial-order relation on τ, also called its priority

relation. An equivalent and more compact notation for the transition (σ, s, s′,σ′) is σ
s→s′−−−→σ′.

As for any LTS, in ATS each transition can be labeled and referred to as an action λ such as:

λ :σ
s→s′−−−→σ′ (2.5)

In summary, a step makes a transition from one state to another, each transition can be labeled

as an action and the execution of a step is defined as firing, in which tokens may be consumed

and produced, and the internal variables may be updated.

Enabled transition and step of an actor

Intuitively, the priority relation determines that a transition cannot occur if some other tran-

sition is possible. This can be seen as the definition of a valid step of an actor, which is a

transition such that two conditions are satisfied:

• The required input tokens must be present.

• There must not be another transition that has priority.

Given an n-to-m actor (σ0,τ,Â), a state σ ∈Σ and an input tuple v ∈ Sn , a transition σ
s→s′−−−→σ′

is enabled if and only if:v v s

6 ∃σ r→r ′
−−−→σ′′ ∈ τ : r v v ∧σ s→s′−−−→σ′ Âσ r→r ′

−−−→σ′′ (2.6)

Hence, a step from state σ with input v is defined as any enabled transition σ
s→s′−−−→σ′.

Actors composition

For any transition relation τ its set of input ports P i n
τ and its set of output ports P out

τ are de-

fined as the ports in which at least one transition consumes input from or produces output to:

P i n
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ(p) 6=⊥}

P out
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ′(p) 6=⊥}

(2.7)

where P is the set of input and output ports names. It is assumed that an input port with name

p and an output port of the same name are in no way related. In order to express complex

functionality, actors are composed into a dataflow network. As an example, Figure 2.6 depicts
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a dataflow network composed of five actors interconnected with five buffers. The structure

of a network can be represented by a partial function from (input) ports to (output) ports,

mapping each input port in its domain to the output port that connects to it. It must be noted

that, this assumption implies the absence of fan-in (as every input port is connected to at

most one output port), and it permits unconnected (open) input (and output) ports.

2.2 Dataflow paradigm

The emergence of massively parallel architectures, along with the difficulties to program

these architectures, makes dataflow paradigm a more appealing alternative to an imperative

paradigm [22, 30, 31, 32, 33, 34, 35]. The main advantages of this paradigm are related to

the ability of expressing concurrency without complex synchronization mechanisms. This

is made possible by the internal representation of the program as a network of processing

blocks that only communicate through communication channels. As a matter of fact, blocks

are independent and do not produce any side-effects. This removes the potential concurrency

issues that could arise when the programmer is asked to manually manage the synchronization

between parallel computations [36, 37]. Moreover, this paradigm explicitly exposes all the

natural parallelism of a program [36, 22].

2.2.1 Modular programming

The decomposition of the program into processing blocks improves its maintainability by

enforcing the encapsulation of the components. Such a decomposition naturally makes the

program description modular. The main capabilities of a modular description are:

• Reusability: a single processing block can be used multiple times in the same dataflow

network.

• Reconfigurability: a processing block can be easily replaced by another one when their

input and output ports are (strictly) identical.

• Hierarchical representation: a processing block of the dataflow network may represent

another dataflow network.

In the rest of this dissertation, a processing block that represents a hierarchical composition of

processing blocks is referred to as a sub-network, otherwise it is simply referred to as an actor.

2.2.2 Parallelism flavors

It is worth summarizing the specific terminology for the various kinds of parallelism flavors

among actors of a dataflow program. These are:
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2.2. Dataflow paradigm

• Pipeline parallelism is inherent to a streaming execution model in case of a chain of

actors. Pipelining does not enhance the throughput on one calculation, but the pro-

cessing of a sequence of calculations. As an example, Figure 2.1 depicts the concurrent

execution of a producer actor A with a consumer actor B. This parallelism flavor can

be considered as a mixture of task and data parallelisms. Pipelining represents the

separation of a computation in several stages that can be executed in parallel.

A B

(a) Dataflow network

A A A

B B B

(b) Parallel execution

Figure 2.1: Pipeline parallelism.

• Task parallelism refers to the parallelism between independent parts of an application.

In a dataflow context, it appears when two or more actors do not have any dependency

constraints. As an example, Figure 2.2 depicts the concurrent execution of different

actors B and C, respectively, that do not constitute a pipeline.

A D

B

C

(a) Dataflow network

A A

B B

C C

D D

(b) Parallel execution

Figure 2.2: Task parallelism.

• Data parallelism refers to a unique computation performed on different sets of data. It

can be applied by duplicating an actor when it processes several sets of data successively

with no dependencies between them. Data parallelism is also sometimes characterized

as SPMD (single program, multiple data). As an example, Figure 2.3 depicts the con-

current execution of multiple replicas of the same actor B on different portions of the

same data.

17



Chapter 2. Dataflow programming

A C

B

B

(a) Dataflow network

A A

B B

B B

C C

(b) Parallel execution

Figure 2.3: Data parallelism.

2.3 Dataflow classes

Since the representation of a dataflow program does not over-constrain the order of operations,

a scheduler of the program has the freedom it needs to adequately exploit the different

parallelism kinds, to maximize the re-use or simply reduce the limited hardware resources

available on the implementation platform. Figure 2.4 illustrates the three main dataflow MoC

classes. The respective actor behavior that can be represented for each of them is discussed in

this section.	  

DDF	  

CSDF	  

SDF	  

Figure 2.4: Dataflow MoCs classes.

2.3.1 Static dataflow programs

Static dataflow (SDF), sometimes also referenced as synchronous dataflow, is a special class of

dataflow MoC where the number of tokens consumed and produced by each actor is fixed

and known at compile time. Repeated firing of the same actor respects the same behavior.

This is the less expressive class of dataflow programs, but it is also the one that can be more
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easily analyzed. In fact, its main property is its total compile time predictability, with respect

to scheduling, memory consumption, and execution termination.

Static scheduling

In order to build a statical schedule, the compiler should construct a single cycle of a periodic

schedule. The first step is then evaluating how many invocations of each actor should be

included in each cycle. This can be easily obtained using the number of produced and

consumed tokens for each actor firing. As depicted in Figure 2.5, the number of tokens

consumed at each firing by the i − th actor from the n − th buffer is denoted by ci ,n ∈N, the

number of tokens produced at each firing by the i − th actor on the n− th buffer is denoted by

pi ,n ∈N, and the number of times the i − th actor is invoked (i.e. repeated) in each cycle of the

iterated schedule is denoted by ri ∈N. Hence, in order to have a feasible periodic schedule, it

must be ensured that for each n − th buffer of the dataflow graph the following condition is

satisfied:

pi ,n ri = c j ,n r j (2.8)

In other words these equations ensure that in each cycle of the iterated schedule the number

of tokens produced on each buffer is equal to the number of tokens consumed on that buffer.

Indeed, the first step in finding a schedule for an SDF graph is to solve a set of Equation (2.8)

for the unknowns ri .

ai aj

bnpi,n cj,n

Figure 2.5: A dataflow graph with two actors, ai and a j , connected through the buffer bn . pi ,n

defines the number of tokens produced on bn during each firing of ai . c j ,n defines the number
of tokens consumed from bn during each firing of a j .

Since for SDF programs the number of consumed and produced tokens for each actor firing is

fixed and known at compile time, the set of equations can be concisely written by constructing

a topological matrix Γ. The entry [Γ]i ,n contains the integer pi ,n when the i − th actor pro-

duces pi ,n tokens on the n − th buffer, and it contains the integer −ci ,n when the i − th actor

consumes ci ,n tokens from the n− th buffer. In general, this matrix does not need to be square.
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For example, the dataflow graph shown in Figure 2.6 has the following topological matrix:

Γ=


p A,1 −cB ,1 0 0 0

p A,4 0 0 −cD,4 0

0 pB ,2 −cC ,2 0 0

0 0 pC ,3 0 −cE ,3

0 0 0 pD,5 −cE ,5

 (2.9)

The system of equations to be solved can be formulated such as:

Γ −→r = −→
0 (2.10)

where −→r is the repetition vector containing the ri value for each i − th actor, and
−→
0 is a

zero-vector. Equation (2.10) is usually referred to as the balance equation of the dataflow

program.

Remark. If an actor has a connection to itself (i.e. a self-loop) then only one entry in Γ describes

this buffer. This entry gives the net difference between the amount of tokens produced on this

buffer and the amount of tokens consumed from this buffer each time the actor is invoked.

This difference needs to be zero for a correctly constructed graph. Hence, the entry describing a

self-loop should be zero [38].

A E

B

D

C

b2cB,1b1

b4 b5

b3

pA,1

pA,4 pA,5

pB,2 pC,3cC,2

cE,3

cE,5cD,4

Figure 2.6: Dataflow graph example.

Existence of an admissible schedule

An admissible sequential schedule φs is defined as a non-empty ordered list of actors such

that if the actors are executed in the sequence given by φs , then the number of tokens stored

in each buffer will remain non-negative and bounded. Each actor must appear in φs at least

once. A periodic admissible sequential schedule (PASS) is a periodic and infinite admissible

sequential schedule. In [38] it has been demonstrated that, for any connected SDF graph, a

necessary condition to be able to construct a PASS is that the rank of Γ should be:

r ank(Γ) = s −1 (2.11)
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where s is the number of actors in the graph. In other terms, the null space of Γ should have

dimension one. It is shown in [38] that when the rank is correct, there always exists a repetition

vector −→r that contains only integers and relies in this null space. This vector defines how

many times each actor should be invoked in one period of a PASS. In other words, the rank

of the topology matrix indicates a sample rate in consistency in the graph. SDF graphs that

have a topology matrix such that r ank(Γ) = s are said to be defective: any schedule for this

graph will result either in a deadlock or unbounded buffer size configuration.

The use of a PASS scheduler requires using a single processing unit implementation: this

does not exploit the parallelism advantages of a dataflow application. Clearly, if a workable

schedule for a single processing unit can be generated, then a workable schedule for a multi-

processing units system can also be generated. The objective is then to find a periodic

admissible parallel schedule (PAPS) defined as a set of listsΨ= {ψi , i = 1, . . . , M } where M is

the number of processing units, and ψi specifies a periodic schedule for the i − th processing

unit. For single processing unit targets, some reasonable scheduling objectives might include

minimization of data or program memory requirements. For multi-processing unit targets,

minimizing the throughput or maximizing flow-time are more likely objectives [38, 39, 40].

2.3.2 Cyclo-static dataflow programs

Cyclo-Static Dataflow (CSDF) generalizes the SDF MoC by defining cyclically-changing firing

rules. It must be noted that, CSDF extends SDF with the notion of state, while maintaining

the same compile-time properties concerning scheduling and memory consumption. CSDF

programs allow the number of tokens consumed and produced by an actor to vary from one

firing to the next in a cyclic pattern: unlike the scalar consumption and production parameters

for SDF, in CSDF programs ci ,n and pi ,n are integer vectors both defined as −→
γ i ,n . Because

these patterns are periodic and predictable, it is still possible to statically construct periodic

schedules using techniques based on those developed for SDF. State can be represented as an

additional argument to the firing rules and firing function: in other words, it is modeled as a

self-loop [41, 42].

Static scheduling

The topological matrix entries are defined such as:

[Γ]i , j = ti , j
σi , j

di , j
(2.12)

where di , j = di m(−−→γi , j ) is the length or period of the token production/consumption pattern

for the i − th buffer connected to the j − th actor. If there is no connection, then di , j = 1. The

j − th actor fires in a cycle with period t j = lcm(di , j ,∀i ), the least common multiple of the

consumption and production periods for all the buffers connected to that actor. Finally, σi , j is

the sum of the elements in −→
γ i , j . As done for SDF, it is also possible for the CSDF programs to
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solve the balance equation (2.10) and verify the existence of an admissible schedule. However,

in CSDF programs the repetition vector −→r does not represent the number of actor firings, but

the number of cycles. In this case, the number of firings of each i − th actor is defined as ri ti .

2.3.3 Dynamic dataflow programs

Although SDF and CSDF are adequate models for representing parts of many algorithms, they

are rarely sufficient for expressing entire complex programs since they are not adequate to

express data-dependent iterations, conditionals and recursion. For example, functionality

that involves conditional execution of dataflow subsystems or actors with dynamically-varying

production and consumption rates cannot be expressed in decidable dataflow models [43, 44].

The dynamic dataflow (DDF) MoC defines actors with a number of produced and consumed

tokens that is not statically specified. In a DDF program, an actor may have both firing rules

and firing functions that are data-dependent. In other words, the token production and

consumption rate can vary according to the program input sequence.

Analysis techniques

The increased modeling flexibility and expressiveness power make DDF programs much

harder to be analyzed. Due to their Turing-complete nature, many analysis problems may be-

come undecidable [43]. For example, DDF analysis techniques may succeed in guaranteeing a

bounded buffer size execution and deadlock avoidance only for a significant subset of specifi-

cations (e.g. input streams in the context signal processing systems) [1, 11, 12]. Similarly, DDF

scheduling is generally a run-time operation. However, some or all of the scheduling decisions

can be predicted at compile-time by either describing the program with a more restricted

programming model or by analyzing the program to find if parts of it can be described in a

more restricted way [45, 46, 47, 48]. A systematical and effective analysis methodology for

DDF programs is illustrated in the following chapters of this dissertation.

2.4 Code interpretation and generation

The portability support of dataflow program onto different HW and SW platforms is provided

by a compiler infrastructure capable to generate low-level from the high-level program rep-

resentation at a system level. As illustrated in Figure 1.2, the compiler infrastructure is an

essential part for enabling an effective DSE exploration and implementation of a dataflow

program. In this section, the basic components of a dataflow compiler infrastructure are

illustrated. These are extensively used in the rest of this dissertation when the profiling of a

dataflow program is presented. Interpreters and compilers have much in common [49]. As

illustrated in Figure 2.7, both have the source code of the input program as input. Moreover,

both analyze and validate the input program and build an internal (i.e. intermediate) rep-

resentation of it. However, the main difference is that a compiler generates a stand-alone
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machine code program, while an interpreter performs the actions described by the high-level

input program description.

Source
Program

Compiler
Target

Program

(a) Compiler flowchart

Source
Program

Interpreter Results

(b) Interpreter flowchart

Figure 2.7: Code compiler and interpreter flowcharts.

2.4.1 Abstract syntax tree

An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure of the

source code. Each node of the tree denotes a construct occurring in the source code. The

syntax is abstract in the sense that it is not representing every detail appearing in the real

syntax. An AST is usually the result of the syntax analysis phase of a compiler or an interpreter.

It often serves as an intermediate representation of the program through several stages that the

compiler requires, and has a strong impact on the final output of the compiler. After verifying

correctness, the AST serves as the base for code generation. The AST is used to generate the

intermediate representation for the code generation or interpretation.

2.4.2 Intermediate representation

Intermediate representation (IR) is a representation of a program partway between the input

source and output target code. A well-structured IR is one that does not depend on both the

input source code and the target architecture, so that it maximizes its ability to be re-used in a

retargetable compiler.

2.4.3 Control flow graph

The control flow graph (CFG) is a graph-based representation of the program control flow,

which is generally used for making analyses from the IR representation of the input pro-

gram [50]. The CFG of a function is a connected, directed graph where the set of nodes

represents the sequences of program instructions and the set of directed edges (i.e. ordered

pairs of nodes) represents the flow of control. More precisely, a node represents a basic block

which is a maximal sequence of consecutive statements with a single entry point, a single exit

point, and no internal branches.
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2.5 The Cal Actor Language

The Cal Actor Language (CAL) [51] is a domain-specific language that provides useful abstrac-

tions for dataflow programming with actors. CAL directly captures the features of ATS actors

adding the notion of atomic action firings, also called steps. Figure 2.8 illustrates the basic

concepts of a CAL program. This is a dataflow network composed of a set of actors and a

set of first-in first-out (FIFO) buffers. Each CAL actor is then defined by a set of input ports,

a set of output ports, a set of actions, and a set of internal variables. CAL also includes the

possibility of defining an explicit finite state machine (FSM). The FSM captures the actor state

behaviour and drives the action selection according to its particular state, to the presence

of input tokens and to the value of the tokens evaluated by other language operators called

guard functions. Each action may capture only a part of the firing rule of the actor together

with the part of the firing function that pertains to the input/state combinations enabled by

that partial rule defined by the FSM. An action is enabled according to its input patterns and

guards expressions. Input patterns are defined by the amount of data that are required in

the input sequences, whereas guards are boolean expressions on the current state and/or on

input sequences that need to be satisfied for enabling the execution of an action. In the rest of

this section, a basic overview is presented of the main concepts concerning the syntax, the

semantics and the different MoC that can be represented with this language.

actions

internal
variables

FSM

Pin
Pout

B C
D

E

b1
b2

b3

b4b5

A

Figure 2.8: CAL network and actors structure.

24



2.5. The Cal Actor Language

2.5.1 CAL program

A CAL program network N is defined as a tuple (K , A,B) where:

• K = {κ1,κ2, . . .κnκ
} is a finite set of actor-classes.

• A = {a1, a2, . . . , anA } is a finite set of actors.

• B = {b1,b2, . . . ,bnB } is a finite set of buffers.

A CAL actor-class κ defines the program-code-template and the implementation behaviors of

the actor (i.e. the CAL source code). Different actors can instantiate the same class, however

each actor corresponds to a different object with its own internal states that cannot be shared.

A CAL actor a is defined as a tuple (κ,P i n ,P out ,Λ,V ,FSM) where:

• κ is the actor-class.

• P i n = {p i n
1 , p i n

2 , . . . , p i n
nI

} is the finite set of input ports.

• P out = {pout
1 , pout

2 , . . . , pout
nO

} is the finite set of output ports.

• Λ= {λ1,λ2, . . . ,λnΛ} is the finite set of actions.

• V = {v1, v2, . . . , vnV } is the finite set of internal variables.

• FSM is the internal finite state machine.

A CAL buffer b is defined as a tuple (as , ps , at , pt ) where:

• as ∈ A is the source actor (i.e. the one that produces the tokens).

• ps ∈ P out
as

is the output port of the source actor.

• at ∈ A is the target actor (i.e. the one that consumes the tokens from the buffer).

• pt ∈ P i n
at

is the input port of the target actor.

It is important to note that each input port can be connected at most to one buffer. On the

contrary, there are no limitations on how many buffers can be connected to an output port.

2.5.2 Execution model

For the purpose of this thesis, it is assumed that the firing of an action is performed by following

the serial execution of the stages summarized in Figure 2.9. These are:
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• Wait for tokens Qbr : the firing is waiting that all the required input tokens are available

from the corresponding buffers.

• Consume input tokens Qr : the firing is consuming the input tokens.

• Action execution Qe : the firing performs the execution of its algorithmic part.

• Wait for space Qbw : the firing is waiting that all the required output tokens can be

accommodated in the corresponding buffers.

• Write output tokens Qw : the firing is producing the output tokens.

where the transition conditions are the following:

• hasTokens: the number of required input tokens is available from each corresponding

input buffer.

• hasSpace: the number of output tokens space is available on each corresponding output

buffer.

Qbrstart Qr Qe Qbw Qw end

! hasTokens

hasTokens

! hasSpace

hasSpace

Figure 2.9: Action execution model according to Equation 5.10.

2.5.3 CAL syntax and semantics

In the following section, an overview concerning CAL is provided. The syntax and the semantic

of this dataflow program are illustrated through simple but effective examples. The interested

reader can refer to [51].

Lexical tokens

Lexical tokens help the user to understand the functionality provided by any language. A

lexical token is a string of indivisible characters known as lexemes. The CAL lexical tokens,

also summarized in Table 2.1, are described in the following:

• Keywords Keywords are a special type of identifiers. They are already reserved in the

programming language by default. These keywords can never be used as identifiers

in the code. Some of these keywords are action, actor, begin, else, if, while,

true and false.
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• Operators Operators usually represent mathematical, logical or algebraic operations.

Operators are written as any string of characters !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜ and |.

• Delimiters Delimiters are used to indicate the start or the end of this syntactical element

in the CAL. The following elements are used as delimiters: (, ), [, ], { and }.

• Comments Comments in CAL language are the same as in Java and C/C++. Single-line

comments start with // and multiple-line comments start with /* and end with */.

Table 2.1: CAL lexical tokens.

Keywords action, actor, procedure, function, begin, if, else, end,
foreach, while, do, procedure, in, list, int, uint, float,
bool, true, false

Operators !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜, |
Delimiters (, ), [, ], {, }, ==>, ->, :=
Comments //, /* . . .*/

Actions, input patterns and output patterns

The simplest actor that can be described using CAL is the Inverter actor defined in Listing

2.1. This actor consumes a token from its input port and produces a token on its output

port. The actor header is defined in line 1, which contains the actor name, followed by a list

of parameters contained inside the () construct (empty, in this case), and the declaration

of the input and output ports. The input ports are those in front of the ==> construct and

the output ports are those after it. In this case the input and output port sets are defined

as P i n
Inverter = {I} and P out

Inverter = {O} respectively. For each parameter and port, the data

type is specified before the name (all defined with an int data type, in this case). This actor

contains only one action, labeled as invert as defined in line 3. In this case, the action

set is defined as λInverter = {invert}. Action invert demonstrates how to specify token

consumption and production. The part in front of the ==>, which defines the input patterns,

specifies how many tokens to consume, from which ports, and what to call those tokens in the

rest of the action. In this case, there is one input pattern: I:[val]. This pattern indicates

that one token is to be read (i.e. consumed) from the input port I, and that the token is to

be called val in the rest of the action. Such an input pattern also defines a condition that

must be met for this action to fire: if the required token is not present, this action will not be

executed. Therefore, input patterns do the following:

• They define the number of tokens (for each port) that will be consumed when the action

is executed (fired).

• They declare the variable symbols by which tokens consumed by an action firing will be

referred to within the action.
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• They define a firing condition for the action, i.e. a condition that must be met for the

action to be able to fire.

The output patterns of an action are those defined after the ==> construct. They simply

define the number and values of the output tokens that will be produced on each output port

by each firing of the action. In this case, the output pattern O:[-v] says that exactly one

token will be generated at output port O, and its value is -v. It is worth noting that although

syntactically the use of v in the input pattern I:[a] looks the same as the one in the output

expression O:[-v], their meanings are very different. In the input pattern the name v is

declared: in other words, it is introduced as the name of the token that is consumed whenever

the action is fired. By contrast, the occurrence of v in the output expression uses that name.

Listing 2.1: Inverter.cal
1 actor Inverter() int I ==> int O :
2

3 invert: action I:[val] ==> O:[-val] end
4

5 end

Guards

So far, the only firing condition for actions was that there be sufficient tokens for them to

consume, as specified in their input patterns. However, in many cases, it is possible to specify

additional criteria that need to be satisfied for an action to fire. Conditions, for instance, that

depend on the values of the tokens, the actor internal variables, or both. These conditions can

be specified using guards, as for example in the Split actor, defined in Listing 2.2. This actor

defines one input port I, two output ports O1 and O2, and two actions A and B. Those actions

require the availability of one token in I, however their selection is guarded by the value of the

input token val read from I, and respectively defined in line 4 and line 7. In this example, if

val >= 0 then action A is selected, otherwise action B is selected.

Listing 2.2: Split.cal
1 actor Split() int I ==> int O1, int O2 :
2

3 A: action I:[val] ==> O1:[val]
4 guard val >= 0 end
5

6 B: action I:[val] ==> O2:[val]
7 guard val < 0 end
8

9 end
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Actor parameters and internal variables

Using CAL, it is possible to define a set of actor parameters. These can be used when the same

actor definition is used more then once in the same program definition. For example, the

ParametrizedProducer actor, defined in Listing 2.3 uses the parameter maxCounter.

This parameter, defined in line 1, is used as a guard condition by the (only) action produce

as defined in line 7. This actor also defines the internal variable counter that is used and

updated during each firing of the action as described in line 9.

Listing 2.3: ParametrizedProducer.cal
1 actor ParametrizedProducer(int maxCounter) ==> int O :
2

3 int counter := 0;
4

5 produce: action ==> O:[counter]
6 guard
7 counter < maxCounter
8 do
9 counter := counter + 1;

10 end
11

12 end

Priorities and State Machines

In the PingPongMerge actor, reported in Listing 2.4, a finite state machine schedule is used

to force the action sequence to alternate between the two actions A and B. The schedule

statement introduces two states s1 and s2. On the contrary, in the BiasedMerge actor,

reported in Listing 2.5, the selection of which action to fire is not only determined by the

availability of tokens, but also depends on the priority statement.

Listing 2.4: PingPongMerge.cal
1 actor PingPongMerge() T In1, T In2 ==> T O :
2

3 A: action In1:[val] ==> O:[val] end
4

5 B: action In2:[val] ==> O:[val] end
6

7 schedule fsm s1:
8 s1(A) --> B;
9 s2(B) --> A;

10 end
11

12 end
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Listing 2.5: BiasedMerge.cal
1 actor BiasedMerge() T In1, T In2 ==> T O :
2

3 A: action In1:[val] ==> O:[val] end
4

5 B: action In2:[val] ==> O:[val] end
6

7 priority
8 A > B
9 end

10

11 end

2.5.4 An example of a CAL program

In CAL it is possible to define a network of interconnected actors. Figure 2.10 depicts a

CAL program composed by three actors Producer, Filter and Consumer, and by two

buffers b1 and b2. Two different representation approaches are supported for defining the

CAL network structure: the first one is based on a functional programming language called

Functional unit Network Language (FNL), the second one is based on eXtensible Markup

Language (XML) known as XML Dataflow Format (XDF).

As an example, the XDF and FNL network representations illustrated in Listings 2.8 and

2.7, respectively, both define a CAL program where the Producer actor instantiates the

ParametrizedProducer actor-class defined in Listing 2.3, the Filter actor instantiates

the Inverter actor-class defined in Listing 2.1, and the Consumer actor instantiates the

TokenConsumer actor-class defined in Listing 2.6. It must be noted that, in this particular ex-

ample, the Producer actor instantiates its actor-class using the parameter maxCounter=3.

Supposing executing this program in a single-core processing unit, with an unlimited buffer

size configuration (i.e. it is always possible to produce tokens in a buffer), the corresponding

action firings are those summarized in Table 2.2.

ConsumerProducer
b1 b2

Filter

Figure 2.10: Basic dataflow program.

Listing 2.6: TokenConsumer.cal
1 actor TokenConsumer() int I ==> :
2

3 consume: action I:[val] ==> end
4

5 end
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Listing 2.7: BasicNetwork.nl
1 network BasicNetwork () ==> :
2

3 entities
4

5 Producer = ParametrizedProducer(maxCounter = 3);
6 Filter = Inverter();
7 Consumer = TokenConsumer();
8

9 structure
10

11 Producer.O --> Filter.I
12 Filter.O --> Consumer.I
13

14 end

Listing 2.8: BasicNetwork.xdf
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xdf name="BasicNetwork">
3 <instance id="Producer">
4 <class name="ParametrizedProducer"/>
5 <parameter name="maxCounter">
6 <expr kind="literal" literal-kind="integer" value="3"/>
7 </parameter>
8 </instance>
9 <instance id="Filter">

10 <class name="Inverter"/>
11 </instance>
12 <instance id="Consumer">
13 <class name="TokenConsumer"/>
14 </instance>
15 <connection src="Producer" src-port="O" dst="Filter" dst-port="I"/>
16 <connection src="Filter" src-port="O" dst="Consumer" dst-port="I"/>
17 </xdf>

Table 2.2: Firing of the CAL program described in Section 2.5.4.

Firing Actor Actor-class Action

s1

Producer ParametrizedProducer produces2

s3

s4

Filter Inverter inverts5

s6

s7

Consumer TokenConsumer consumes8

s9
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2.5.5 RVC-CAL

CAL language has been expressly designed in order to be fully analyzable and thus to support

different forms of code analysis. Such an opportunity makes it possible to look for a variety

of optimization techniques that can be applied before and during the synthesis from the

dataflow program to the implementation code. A subset of the more general CAL language,

called RVC-CAL, has been standardized by the ISO/IEC SC29WG11 committee also known as

MPEG [52, 53, 54, 55]. This subset restricts the data-types, operators, and features that can

be used when describing a CAL actor. RVC-CAL is used within the MPEG community as a

reference software language for the specification of the MPEG video-coding technology under

the form of a library of components (i.e. the actors) that are configured and instantiated into

networks to generate standard MPEG video decoders (e.g. MPEG4-SP, AVC, HEVC).

2.5.6 Compiler infrastructure

The RVC-CAL compiler infrastructure used in the context of this thesis is summarized in

Figure 2.11. This is called open RVC-CAL compiler infrastructure (Orcc) [56, 57, 58]. It provides

the necessary tools for the design, simulation and code generation of different targets for

RVC-CAL programs. During the compilation flow, the RVC-CAL program is translated into

a code intermediate representation (IR). The IR is built using a model-driven engineering

(MDE) meta-model. More precisely, it makes use of the MDE technologies available on

the Eclipse IDE [59] such as the Eclipse modeling framework (EMF) [60, 61], Xtext [62] and

Xtend [63]. The Orcc compilation flow can be summarized as follows:

• Front-end: the RVC-CAL code is parsed and translated into an Abstract Syntax Tree

(AST). The AST is successively transformed into an IR. At this stage the semantic valida-

tion, the type inference and the expression evaluation are performed.

• Core: a meta-model of the IR is created and serialized. The serialization allows the

possibility of incremental compilations and analysis.

• Interpreter: the IR can be directly interpreted from its meta-model generated by the

back-end. The code interpretation is type-accurate and it permits a first high-level and

behavioral verification of the program.

• Back-end: target specific optimization (i.e. IR to IR transformations) are performed

before the code low-level code generation. Successively, the IR is translated into a

general purpose programming language (e.g. C/C++, Java) or to a register transfer

language (RTL) (e.g. VHDL, Verilog).

For the purposes of this dissertation, the framework taken in charge of generating RTL de-

scriptions from a CAL code representation is Xronos [8, 64, 65]. This is the evolution of work

presented in [66, 67] and it is fully integrated into the Orcc environment.
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Figure 2.11: The RVC-CAL compiler and Xronos infrastructure integrated in the design flow
presented in Figure 1.2.

2.6 Conclusions

In this chapter the notion of dataflow programming has been illustrated. Three different

classes of dataflow graphs have been investigated. Those are notably the Kahn process network

(KPN), the dataflow process network (DPN) and the actor transition system (ATS). For each

one of these classes the main mathematical formalization has been provided and discussed.

The notion of monotonicity has been introduced and used to illustrate the main analysis

problematics that can arise when an operator (or actor) is not monotonic. Successively, the

main features of modularity and the different parallelism flavors exposed by the dataflow MoC

has been illustrated. Successively, the discussion has covered the taxonomic classifications

of dataflow programs. The main properties of static (SDF), cyclo-static (CSDF) and dynamic

dataflow (DDF) programs has been illustrated. It has been shown why the analysis of dynamic

dataflow programs is considered a challenging task. Finally, the Cal Actor Language (CAL)

has been introduced. Concepts like actor-class, actor, action, procedure, internal variable,

ports, guards, internal state machine and priority have been illustrated through a collection

of source code examples. Furthermore, the RVC-CAL standardized subset and its compiler

infrastructure has been illustrated. It has been shown how starting from a CAL source code

representation of the program it is possible to generate a low-level code representation suitable

for implementing the program both in software and in hardware.
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An appropriate complexity analysis stage is a fundamental step for any methodology aiming at

the implementation of today’s complex applications [68, 69]. Such a stage may have different

final implementation goals such as defining a new architecture dedicated to a specific applica-

tion under study, defining an optimal instruction set for a selected processor architecture, or

guiding the software optimization process in terms of control-flow and dataflow optimization

targeting a specific architecture. In this context, the term complexity is intended in a broader

and more intuitive sense than its strict mathematical definition only considering the size of

the minimal algorithm descriptions. More precisely, the various aspects and results of the

run-time algorithm complexity metrics are investigated. Such metric results can hardly be

evaluated from the algorithm code itself, because of its size or because the program behavior

is data-dependent and therefore a more sophisticated analysis methodology should be used.

In the following chapter, some methods to classify the behavior of an actor and successively

different static and run-time analyses are illustrated.

3.1 Actor classification

Actor classification determines the behavior of a given actor in terms of production/consump-

tion of tokens, patterns that may govern token exchanges, and possible acceptable token

values. The final goal of this analysis is the detection of the class of each actor composing

the network. Restricted dataflow classes represent different trade-offs between algorithmic

expressiveness and execution predictability (see Section 2.3). In the simplest case, struc-

tural information of an actor is sufficient for the classification (e.g. the rules for an actor to

be considered SDF only depend on the input and output patterns of actions). However, in

more general cases, it is necessary to gather information from an actual execution of the

actor [70, 71, 72, 73].

Using the set of dataflow classes illustrated in Section 2.3, it is possible to classify dynamic

actors into a restricted dataflow class as follows:
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• Static behavior: the classification tries to classify each actor within classes that are in-

creasingly expressive and complex. The rationale behind this is that the more expressive

(powerful) a class is, the more difficult it is to analyze. If an actor cannot be classified as

a static actor, the method will try to classify it as CSDF. An actor is classified as static if

and only if it conforms to the SDF class, which means that all its actions have the same

input and output patterns. A one-action actor is by definition static.

• Cyclo-static behavior: an actor has to meet two conditions to be a candidate for CSDF

classification: it must have a state and there must be a fixed number of data-independent

firings that depart from the initial state, modify the state, and return the actor to its

original state. Once the actor was identified as a valid CSDF candidate, abstract inter-

pretation can be used to determine the sequence of actions characterizing its behavior,

as well as its production and consumption rates [71, 72].

• Dynamic behavior: if not classified as SDF or CSDF, the actor is defined as DDF.

After being classified, the actors, as well as the network they compose, may be subject to

additional analysis and optimizations that require the respect of more restricted dataflow

classes.

3.2 Static analysis

The methods based on a static analysis of the source code range from simply counting the

number of operations up to defining dependencies among the basic blocks. This informa-

tion can be used during different optimization stages. For example, the lower and upper

run-time of a given program on a given processing element can be directly evaluated from

the operator count analysis [74, 75]. While this simple counting technique provides a very

accurate evaluation of the operations, it cannot handle loops, recursion, conditional state-

ments and data-dependent applications except for some particular cases. Explicit or implicit

enumeration of program paths can handle loops and conditional statements and can yield

bounds on best and worst case run-time [74, 75, 50]. The main drawback of these techniques

is that the typical real processing complexity of many algorithms heavily depends on the

input data statistics while static analysis can only detect upper and lower bounds. Restricted

programming styles such as absence of dynamic data structures, recursion, and bounded

loops are required in order to correctly perform a static analysis [74].

3.2.1 Source lines of code

Source lines of code (SLOC) is one of the most-used metric when dealing with program

development complexity and maintainability. Using the definition proposed in [76], a line of

code is a line of program text that is not a comment or blank line, regardless of the number of

statements or fragments of statements in the line. This specifically includes all lines containing
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program headers, declarations, and executable and non-executable statements. However, the

SLOC of a program can be strongly dependent on how the counting procedure is interpreted.

For this reason, the number of lines of code should be used only as a crude complexity

measure [77].

3.2.2 Operators count

As for the SLOC metric, the occurrence of each operator can be used as a crude complexity

measure of the program. Table 3.1 reports the set of unary, binary, data handling and flow

control operators available for the CAL language. However, basing the program complexity

on the number of operator occurrences can be misleading as conditional blocks (e.g. if and

while) are taken into account only once.

3.2.3 Cyclomatic complexity

The cyclomatic complexity analysis [78] is a quantitative measure of the complexity of pro-

gramming instructions. It directly measures the number of linearly independent paths through

the program source code. In other words, this is a software metric that equates complexity to

the number of decisions in a program. Developers can use this measure to determine which

modules (i.e. network, actor, action, procedure) of a program are overly complex and need

to be re-coded. For each module, the metric can be calculated either from evaluating the

CFG of the module (i.e. see Section 2.4.3) or from evaluating the program’s statements. The

cyclomatic complexity is defined as:

v = e −n +2p (3.1)

where e is the number of edges, n is the number of nodes, and p is the number of modules.

It must be noted that this equation is based on the assumption that the CFG is a strongly-

connected graph. The cyclomatic complexity of a module also gives the maximum number

of linearly independent paths through it. In other words, it can be evaluated by counting the

branch conditions in a module. Hence, Equation (3.1) can be redefined such as:

v = b +1 (3.2)

where b represents the number of simple branch conditions. The formulation defined in

Equation 3.2 is convenient because it allows developers to calculate the cyclomatic complexity

of a program without having to use graph analysis. However, this only applies to individual

modules in such that they only contain single-entry and single-exit, structured, blocks of

code [79].
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Table 3.1: Profiled executed operators and statements.

Kind Symbol Name

Unary

~ binary not
! logical not
− unary minus
# number of elements

Binary

& bit and
| bit or
∧ bit xor
== equal
! = not equal
≥ greater than or equal
> greater than
≤ less than or equal
< less than

&& logical and
‖ logical or
− minus
+ plus
∗ times
/ division

di v integer division
∗∗ exponentiation
% modulo
<< shift left
>> shift right

Data Handling

ASSIGN assign
CALL call
LOAD load
STORE store

LIST_LOAD list load
LIST_STORE list store

Flow Control
if if then else statement

while while, do while and for statements
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3.2.4 Halstead metrics

Halstead metrics [80] are used to deduce a program production and quality based on the

numbers of operands and operators used in the source code. Halstead metrics are based on

the following set of parameters:

• n1 the number of distinct operators present.

• N1 the total number of operators present.

• n2 the number of distinct operands present.

• N2 the total number of operands present.

In the context of a dataflow program, these parameters can be defined with different levels of

granularity: they can be defined for the overall program or for each actor, action and procedure.

Some of the most-used Halstead metrics are the following:

• Program length: describes the size of the abstracted program obtained by removing

everything except operators and operands from the original source code. It is defined as:

N = N1 +N2 (3.3)

Contrarily to the SLOC metric (see Section 3.2.1), Halstead length gives a clearer ac-

counting of the overall statement complexity. In fact, SLOC does not tell anything about

how complex the lines of code are.

• Program volume: models the number of bits required to store an abstracted program

of length N . It is defined as:

V = N log2(n1+n2) (3.4)

With this formulation, it is supposed that both the operators and the operands are

encoded as binary strings of uniform (and potentially non-integral) length.

• Program level: describes the ratio between the volume V of the current program and

the most compact volume of the same algorithm implementation [80]. It is defined as:

L = 2

n1

n2

N2
(3.5)

In other words, a longer implementation of an algorithm has a lower program level than

a shorter implementation of the same algorithm.
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• Program difficulty: is defined as the inverse of the program level, such as:

D = 1

L
(3.6)

In other words, a longer implementation of an algorithm has a higher difficulty com-

pared to a shorter implementation of the same algorithm.

• Programming effort: defines the effort required to develop (or understand) a program.

It is defined as:

E = D V (3.7)

In other words, the programming effort is proportional to both the difficulty and the

volume of the program.

• Programming time: defines the time in seconds required to develop the program. It is

defined as:

T = E

S
(3.8)

where the S value is the Stroud number, defined as the number of elementary discrimi-

nations performed by the human brain per second [81]. S ranges from 5 to 20 and its

value for software scientists is generally set to 18.

3.3 Data-dependent analysis

The execution of DDF programs can vary according to a particular input stimulus (see Section

2.3.3). For this reason, complexity of a DDF program cannot be defined only through a static

code analysis as the one illustrated in the previous section. In other words, in order to identify

the program’s basic structure and complexity with different levels of abstraction, the DDF

program should be executed considering a statistically meaningful set of input sequences [1].

The different approaches that are generally used are:

• Binary-code execution: where a low-level code representation of the dataflow program

is generated and successively profiled through an instrumented platform-dependent

(host-)execution [33, 82, 83, 84, 85].

• Code interpretation: where the dataflow program IR is executed through a platform-

independent code interpretation [1, 73, 86].

The main difference between these two approaches is how the program execution abstracts

from the platform and how results are biased by low-level code optimizations. The complexity

measure obtained through a binary code-execution can be dependent on the particular
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platform where the program is executed and can be biased by low-level code optimizations

performed by the compiler. Contrarily, with a IR-code interpretation, the complexity measure

is totally platform-independent and not biased by low-level code optimizations. During a

data-dependent analysis it is possible to identify the program’s basic structure and complexity

with different levels of abstraction, independently of the approach. Two main axes are typically

recognized: the computational load and the data-transfers and storage load.

3.3.1 Computational load

The computational load is expressed in terms of executed operators and control statements

(i.e. comparison, logical, arithmetic and data movement instructions). It is possible to model

the firing time of an action firing based on the number of its executed operands and control

statements retrieved during the program code interpretation. For each action firing si this is

defined such as:

w(si ) =∑
j

c j o(si ) j (3.9)

where o(si ) j represents the number of executions of the j − th operator or control statements

performed by the action firing si and c j a weight for the respective operator or control state-

ments. It must be noted that c j can be defined according to a desired target architecture. As for

the static analysis discussed in Section 3.2, Table 3.1 reports the set of operators and control

statements that can be retrieved interpreting a CAL program.

3.3.2 Data-transfers and storage load

The data-transfers and storage load are expressed in terms of internal actor variable utilization,

input/output port utilization, buffer utilization and token production/consumption. During

the program code interpretation, some statistical information concerning the actor internal

variables and the buffer utilization can be stored to evaluate the memory load and utilization.

Internal actor variables

During the program code interpretation, for each firing and each actor internal variable the

following information can be collected:

• Writes: number of writes that each firing has made on an internal actor variable.

• Reads: number of reads that each firing has made on an internal actor variable.

• List writes: number of writes that each firing has made on an internal actor list variable.

• List reads: number of reads that each firing has made on an internal actor list variable.
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Tokens and buffers

During the program code interpretation, the following information can be collected for each

firing and each buffer:

• Writes: number of tokens written on a buffer.

• Reads: number of tokens read from a buffer.

• Peeks: number of peeks (i.e. test of tokens presence) made by each firing on the respec-

tive input buffers.

• Read miss: number of unavailable tokens on the input buffers that made the selected

action not fireable.

• Write hit: number of unavailable token places on the output buffers that made the

selected action not fireable.

Furthermore, for each buffer, the maximal occupancy can be considered as a measure of an

initial space estimation of the buffer size requirement.

3.4 Conclusions

In this chapter the main requirements of the profiling of a dataflow program have been

summarized. It has been shown how actors can be analyzed and their behavior classified as

static, cyclo-static and dynamic. Successively, the different static code analysis metrics have

been illustrated. These are the elementary count of source lines of code, the operator count

but also the more complex cyclomatic and Halstead metrics. Successively, data-dependent

analysis for DDF programs has been discussed. The concepts of computational load and

data-transfer and storage load have been introduced.
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dataflow programs

Complex software systems may have many design points in terms of selection of software

components and hardware architectures for implementation. These point choices create a

large space of possible design solutions called the design space. The design process requires

exploring through this design space to find design solutions before the actual implementation.

The aim of the design space exploration (DSE) is to find design solutions that satisfy functional

performance constraints and/or optimize portions of the system. In addition, the heterogene-

ity of modern parallel architectures and the diverse requirements of target applications greatly

complicate modern systems design. Developing efficient programs for this kind of platform re-

quires design methodologies that can deal with system complexity and flexibility. This has lead

to the notion of system-level design, where key roles are played by aspects such as high-level

modeling and simulation, and separation of concerns [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97].

In this context, the exploration of the design space becomes an essential step when implement-

ing applications to heterogeneous and parallel platforms. This is due to the combinatorial

explosion of design options when dealing with multiple concurrent processing units. In

order to have an efficient implementation and integration process, the design has to be suffi-

ciently modular and portable, without the need of any or partial implementation and manual

rewriting.

4.1 Orthogonalization of concerns

Orthogonalization of concerns is a well-established design paradigm [98]. Alternative solutions

of the design space can be efficiently evaluated through design performance estimations. One

of the main features of this design methodology is the separation between:

• Functional behavior and architecture.

• Communication and computation.

According to [89, 91], a formal model of a design is defined by the following components:
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• A functional specification, given as a set of explicit or implicit relations which involve

inputs, outputs and possibly internal state information.

• A set of properties that the design must satisfy, given as a set of relations over inputs,

outputs, and states, that can be checked against the functional specification.

• A set of performance indexes that evaluate the quality of the design (e.g. in terms of cost,

reliability, speed, size) given as a set of equations involving inputs and outputs.

• A set of constraints on performance indexes, specified as a set of inequalities.

The functional specification fully characterizes the operation of a system, while the perfor-

mance constraints bound the cost. In other words, target points of the design space can be

formulated in terms of minimization problems where the objective functions are defined as

performance indexes and constraints as inequalities of the problem. In the following, the

concept of orthogonalization of concerns is illustrated using the formalism described in [98],

where the notions of model of computation, model of architecture and mapping are used.

4.1.1 Model of computation

The Model of Computation (MoC) is a formal representation of the operational semantics of

networks of functional blocks describing computation [99, 98]. Depending on the modeling

perspective, MoCs can be classified as an abstract or executable description [100]. Abstract

models are used to define the application workload without executing the specification. On

the other hand, executable specifications allow different abstraction levels: it can directly rep-

resent the application or, for example, a discrete-event performance model of the application

itself. In the context of this thesis, only abstract dataflow MoCs are analyzed; more precisely,

MoCs where the taxonomy can be described as illustrated in Section 2.3.

4.1.2 Model of architecture

The Model of Architecture (MoA) is a formal representation of the operational semantics of

networks of functional blocks describing architectures [90, 98, 101, 102]. Depending on the

modeling perspective, a MoA can be classified as an abstract or an executable architecture

description [100]. Abstract models are used to represent performance in a symbolical manner.

For example they associate the required latency in clock cycles with each operation without

actually executing any hardware description. On the other hand, executable specifications

allow to more precisely model state-dependent behavior, such as the timing of caches and

pipelines. In the context of this thesis, only abstract dataflow MoCs are analyzed as the ones

illustrated in [101, 102].
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Application Architecture

Model of Computation Model of Architecture

Constraints

Figure 4.1: Mapping from an application to an architecture. Constraints represent the feasible
regions of the design space.

4.1.3 Mapping

The mapping involves defining which part of the program is executed on a particular process-

ing element, and which part of the communication structure is assigned to a particular media.

In the context of hardware-software co-design the problem to be solved is coordinating the

design of the parts of the system to be implemented as SW and the parts to be implemented

as HW blocks [103]. The main requirement is to avoid HW/SW integration problems that

can arise when heterogeneous platforms are used. As such, a set of constraints should be

imposed and respected. Figure 4.1 depicts this process: the application is mapped into a target

architecture if the set of constraints is fully satisfied. Constraints can be defined in terms of

data type [90, 98] (e.g. an application that makes use of floating points can be mapped only

in an architecture that supports this numeric representation) but also in terms of memory

allocation, power utilization or clock frequency.

4.2 The design space of a dataflow program

The design space describes the different mapping configurations that can be defined among

the application and the target architecture. However, there may exist many design alternatives

that implement a given system specification. Each of these expose the design to different

qualities of the design itself [104]. As such, these different implementations have to be explored

and judged for their quality so that a designer can make a decision on which configuration has

to be implemented. Consequently, during DSE many design alternatives have to be evaluated.

Each design alternative may consist of different configuration choices with different levels

of parameters: for example from the choice of the partitioning of an application block to a

processing element, to a lower-level design parameter such as clock frequency or bus widths.

Hence, the DSE objective is to evaluate one or more mapping configuration so that design

objectives are satisfied. These objectives can be formulated in terms of real-time constraints,

throughput, resource efficiency and utilization. This list can easily be extended by, for example,

introducing requirements on the power consumption and silicon area utilization. The problem

can be defined as efficiently finding a feasible design configuration so that requirements are

fully satisfied.
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Figure 4.2: The design space M = Cρ ×Cσ×Cβ = {m1,m2, . . . ,mnM } and the corresponding
performance T(m) and estimated performance T̂(m).

4.2.1 Design space and design points

The evaluation of design points is one of the fundamental steps of the DSE. Its objective is to

define the design space in terms of a set of independent parameters so that performance and

requirements can be evaluated. The set of parameters is defined according to the abstraction

level used for modeling both the application and the architecture. As such, when dealing with

an abstract MoC and MoA, these parameters are defined in terms of partitioning, scheduling

and buffer size configurations. In the following, the set of available partitioning, scheduling

and buffer size configurations are referenced as Cρ , Cσ and Cβ, respectively. Hence, a mapping

configuration point is defined as a 3-tuple m = (ρ,σ,β) where:

• ρ ∈ Cρ defines a partitioning configuration of the network (i.e. actors and buffers

mapped on the available processing elements and media, respectively).

• σ ∈Cσ defines a scheduling configuration of each partition.

• β ∈Cβ defines a size configuration of each buffer.

The design space of a dataflow program is then defined as the set of those independent

configurations such as:

M = {m1,m2, . . . ,mnM } ⊆Cρ×Cσ×Cβ (4.1)

Consequently, the DSE problem is to efficiently find a mapping configuration point m∗ ∈ M

so that the design objectives are met. As an example, let’s consider the dataflow program

presented in Section 2.5.4. Its network configuration is depicted in Figure 2.10 and it is com-

posed of 3 actors: Produce, Filter and Consume. Supposing executing this program with

the different mapping configurations illustrated in Table 4.1, hence corresponding execution

Gantt charts are depicted in Figure 4.3.
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Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(a) Mapping configuration m1

Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(b) Mapping configuration m2

Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(c) Mapping configuration m3

Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(d) Mapping configuration m4

Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(e) Mapping configuration m5

Producer s1 s2 s3

Filter s4 s5 s6

Consumer s7 s8 s9

(f) Mapping configuration m6

Figure 4.3: Platform independent simulation of the CAL network depicted in Fig. 2.10 with
the mapping configurations described in Table 4.1. The execution of each action is supposed
to take at least one (abstract) clock cycle (when there are no blocking output buffers), the
overhead introduced by the action selection and buffer access overheads are both neglected.
In gray the actor execution with the corresponding action firing. In striped-gray the actor
execution is postponed due to the unavailability of a token (i.e. blocking reading).
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Table 4.1: Mapping configurations for the dataflow network illustrated in Figure 2.10. For
brevity, the actors Producer, Filter and Consumer are denoted with P, F, C, respectively. The
partitioning of the buffers is not considered.

Mapping mi Partitions ρi (static) Scheduler σi Buffer size βi

m1 ρ1
1 = {P,C ,F } σ1

1 = {P,P,P,C ,C ,C ,F,F,F }
β1

1 = 512
β2

1 = 512

m2 ρ1
2 = {P,C ,F } σ1

2 = {P,F,C ,P,F,C ,P,F,C }
β1

2 = 512
β2

2 = 512

m3
ρ1

3 = {P,F } σ1
3 = {P,F,P,F,P,F } β1

3 = 1
ρ2

3 = {C } σ2
3 = {C ,C ,C } β2

3 = 1

m4
ρ1

4 = {P,F } σ1
4 = {P,F,P,F,P,F } β1

4 = 512
ρ2

4 = {C } σ2
4 = {C ,C ,C } β2

4 = 512

m5

ρ1
5 = {P } σ1

5 = {P,P,P } β1
5 = 1

ρ2
5 = {F } σ2

5 = {F,F,F } β2
5 = 1

ρ3
5 = {C } σ3

5 = {C ,C ,C }

m6

ρ1
6 = {P } σ1

6 = {P,P,P } β1
6 = 512

ρ2
6 = {F } σ2

6 = {F,F,F } β2
6 = 512

ρ3
6 = {C } σ3

6 = {C ,C ,C }

4.2.2 Exploration methods

Different DSE methodologies can be classified according only if single or multiple design-

objectives are taken into account. In the latter, optimality is usually defined using the notion

of Pareto-dominance [105]: a design point dominates another one if it is equal or better in

all criteria and strictly better in at least one. In a set of design points, these are called Pareto-

optimal which are not dominated by any other. With this notion in mind, the different DSE

approaches can be characterized, as summarized in [106], so that:

• Exploration by hand: the selection of design points is done by the designer himself.

The major focus is on how design performance can be efficiently estimated [107].

• Exhaustive search: all design points of a specified region are evaluated. Generally, this

approach is combined with local optimization heuristics where one or multiple design

parameters are evaluated in order to reduce the size of the design space [108].

• Reduction to a single objective: design points are selected by reducing the DSE problem

to a set of single criterion problems. Manual or exhaustive sampling is done in one

or several directions of the search space and a constraint optimisation (e.g. iterative

improvement or analytic methods) is done in the other [109, 110, 111, 112].

• Black-box randomized search: design points are evaluated using a black-box optimisa-

tion approach. The design space is iteratively analyzed, where at each iteration the new

design point is computed based on the priory information and by defining an appropri-

ate neighborhood function. The properties of these new design points are estimated.
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Examples of sampling and search strategies are Pareto-simulated annealing [113] and

Pareto-tabu search [114] evolutionary multi-objective optimization [115, 116] or Monte

Carlo methods improved by statistical estimation of bounds [117]. These black-box

optimizations are generally combined with local search methods [118].

4.2.3 Performance estimation

Performance analysis always involves three issues: a modeling effort, an evaluation effort

and the accuracy of the obtained results [119, 120, 121]. Very accurate performance numbers

can be achieved, but at the expense of a lot of detailed modeling and long evaluation times.

However, performance numbers can be achieved in a shorter time with modest effort for

modeling but at the expense of loss of accuracy. Independently from the abstraction level used

to model the application and the architecture, the objective for efficiently exploring the design

space is to find an appropriate performance estimation of the application for each mapping

configuration point. If the performance of each mapping configuration point m = (ρ,σ,β) ∈ M

of the design space is defined in terms of application throughput as:

T(m) = f (m) (4.2)

the approximated model can be defined as:

T̂(m) = f̂ (m) (4.3)

hence, the objective is to reduce the accuracy error defined as:

ε= ||T− T̂||2 =
(∑

{|T(mi )− T̂(mi )|2 : mi ∈ M }

) 1
2

(4.4)

where ||.||2 is the 2-norm operator.

4.3 Related work

In the following section, an overview of some design space exploration tools and frameworks

is presented. For each one, the main functionalities and limitations are discussed.

CAL Design Suite

The CAL Design Suite [122, 33] is a set of tools for exploring and optimizing the design space of

RVC-CAL applications. It represents the first functional attempt to provide a complete design

flow for optimizing RVC codec specification to multi-core and heterogeneous platforms [30]. It

is based on the analysis of the execution trace graph (ETG) of the program (i.e. see Section 7.1).

However, their definition is limited since only internal variables and tokens dependencies

are supported. Furthermore, the CAL design suite provides a very basic architecture model
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for heterogeneous platforms. A detailed discussion on how CAL programs are profiled is

presented in Section 7.1.

COMPA

The COMPA project [123, 46] provides an analysis and optimization framework for RVC-CAL

applications. The design space exploration is performed through a static analysis of the source

code. Different trade-offs between parallelism, communication traffic cost, and memory size

requirement are implemented as source to source transformations.

Daedalus

Daedalus [124, 125, 126] provides a unified environment for rapid system-level architectural

exploration, high-level synthesis, programming and prototyping of multimedia MPSoC ar-

chitectures. The Daedalus framework is an automatic design flow for KPN networks. The

application is modeled using a C/C++ imperative specification which is then automatically

converted into a KPN using the KPNgen tool [127]. Because of the nature of KPN models,

modeling of interrupts is difficult and inefficient. The design space exploration is performed

using the Sesame system-level simulation framework.

MAPS

The MPSoCs Application Programming Studio (MAPS) [93, 94, 95, 97] is a DSE framework for

KPN programs. Both the performance estimation and the design space is performed through

an ETG analysis. ETGs are obtained by profiling and are augmented with timing information

via performance estimation. However, their definition is limited since only internal variables

and tokens dependencies are supported. Several heuristics for buffer sizing, mapping, and

scheduling are available within the framework. For fast and functional validations, MAPS

is fully integrated with the High-Level Virtual Platform (HVP) simulator [128]. Furthermore,

MAPS is equipped with a pioneering multi-application analysis component that performs

composability analysis in order to assess if a set of applications may run simultaneously, on

the same platform, without interfering with each other.

Mescal

Mescal project [129, 130] aims at designing heterogeneous, application-specific, programmable

(multi) processors. The goal is to allow the programmer to describe the application in any

combination of models of computation that is natural for the application domain. The goal

is also to find a disciplined and correct by construction abstraction path from the underly-

ing micro-architecture to an efficient mapping between application and architecture. The

micro-architecture description including the memory subsystem is based on an architecture
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description language.

Metropolis

Metropolis [131] is a framework allowing the description and refinement of a design at dif-

ferent levels of abstraction and integrates modeling, simulation, synthesis, and verification

tools. It provides an infrastructure based on meta-modeling with precise semantics that are

general enough to support various model of computations. This meta-model can capture

the functionality, the architecture and the mapping between the two different abstraction

levels. The function of a system, such as the application, is modeled as a set of processes that

communicate through media. Architectural building blocks are represented by performance

models where events are annotated with the costs of interest. A mapping between functional

and architecture models is determined by a third network that correlates the two models by

synchronizing events (using constraints) between them. Non-deterministic behavior can be

modeled and constraints can restrict the set of possible executions.

PeaCE

The PeaCE Environment [132] specifies the system behavior with a heterogeneous compo-

sition of three models of computation. These are an extended SDF model (called SPDF) for

computation tasks, an extended FSM model (called fFSM) for control tasks, and a task model

to describe the task interactions, respectively. The PeaCE environment provides seamless

co-design flow from functional simulation to system synthesis, utilizing the features of the

formal models maximally during the whole design process. This framework is based on the

Ptolemy project [133]. However, when dealing with C/C++ specifications, the PeaCE approach

does not provide an automatic procedure to transform this specification into dataflow graphs.

Preesm

Preesm [134, 135] is a rapid-prototyping framework for static dataflow applications that has

been inspired by the algorithm architecture adequation matching methodology (AAM, also

sometimes called AAA) [136]. Preesm makes uses of a parameterized and interfaced dataflow

meta-model (PiMM) [137] representation of the application, together with a System-Level

Architecture Model (S-LAM) for the high-level architecture description. It automatically

generates functional code for heterogeneous multi-core embedded systems, optimizing the

application scheduler by using the throughput as an optimization requirement.

Ptolemy

Ptolemy [133, 99] is a component-based heterogeneous modeling environment. It allows the

hierarchical combination of different models of computations with a high level of abstraction.
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It uses tokens as the underlying communication mechanism. Controllers regulate how actors

fire and how tokens are sent between each actor. This mechanism allows different models of

computation to be combined within the Ptolemy framework. The design space exploration is

performed with third party environments (e.g. the PeaCE framework [132]).

SDF3

SDF3 [138] is a dataflow analysis tool that supports SDF and CSDF dataflow models of com-

putations. SDF3 is oriented towards model analysis and simulation without generating an

executable prototype of the application.

Sesame

The Sesame system-level simulation framework [139] addresses the problem of finding a

suitable and efficient target MP-SoC platform architecture. Sesame deploys separate appli-

cation and architecture models: the application model describes the functional behavior

of an application, while the architecture model defines architecture resources and captures

their performance constraints. Sesame maps application models onto architecture models

for cosimulation by means of trace-driven simulation, while using an intermediate mapping

layer for scheduling and event-refinement purposes. This allows for evaluation of the system

performance of a particular application, mapping, and underlying architecture. Essential in

this methodology is that an application model is independent from architectural specifics and

assumptions on hardware/software partitioning. The main disadvantage in this methodology

is that only KPN application models can be used and analyzed.

Space Codesign

Space Codesign [140, 141] is a design environment that provides an interface for user-written

SystemC modules that models application software to make calls to a real-time operating

system kernel. It provides a cosimulation environment for user-written SystemC hardware

modules. The environment also facilitates successive refinement through three software

abstraction layers for hardware-software codesign suitable for embedded-system design. The

first level focuses on the system design: the application is specified and functionality validated

through the SystemC simulator. In the second layer the application is partitioned among

different software and hardware modules. The hardware is modeled and emulated via the

SystemC simulator, while the software is encapsulated in the SystemC-RTOS interface via

an RTOS emulation process. At the third level, a more sophisticated architecture model is

emulated with the support of cycle accurate simulation at a chosen processor frequency.

52



4.3. Related work

SPADE

The Stream Processing Application Declarative Engine (SPADE) [142, 143] is a stream process-

ing application development framework for System S [144], which is a large-scale, distributed

datastream processing middleware. As a front-end for rapid application development for Sys-

tem S, SPADE provides an intermediate language for composition of parallel and distributed

dataflow graphs, together with a toolkit of type-generic, built-in stream processing operators,

that support scalar as well as vectorized processing and can seamlessly inter-operate with user-

defined operators. It provides a code generation framework to create optimized applications

that run natively on the Stream Processing Core (SPC), the execution and communication

substrate of Systems. Successively, an optimizing compiler automatically maps applications

into appropriately-sized execution units in order to minimize communication overhead, while

at the same time exploiting available parallelism.

SynDEx

SynDEx [145] is a graphical and interactive software implementing the Algorithm Architecture

Adequation Matching methodology (AAM, also sometimes called AAA) [136]. Within this

environment, the designer defines an algorithm graph, an architecture graph and system

constraints. SynDEx is a Computer-Aided-Design software aiming at mapping an algorithm

into an architecture. The architecture taken into account is only composed of several proces-

sors, and hardware logic, like FPGA, cannot be taken into account in this flow. The design

space exploration is done according to one unique criteria: the application throughput. It

provides the possibility of low-level code generation, but it is not actually provided within the

distributed tools.

SystemCoDesigner

SystemCoDesigner [146, 147, 148] is an actor-oriented approach using a high-level language

named SysteMoC, which is built on top of SystemC. It generates HW-SW SoC with automatic

design space exploration techniques. The model is translated into a behavioral SystemC

model as a starting point for HW and SW synthesis. During DSE, the design space is explored

using state of the art multi-objective optimization algorithms. For each design alternative,

performance is estimated by using performance models (which are generated automatically

from the SystemC behavioral model) and the behavioral synthesis results. The HW synthesis

is delegated to Forte Cynthesizer [149], a commercial tool which generates RTL code from a

SystemC intermediate model.
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4.4 Advances in design space exploration of CAL programs

In the previous sections it has been discussed how the design space of an application can

be modeled and explored. Moreover, a list of available design exploration tools has been

presented. In the following section the main improvement and advancements concerning the

exploration and optimization of CAL dataflow programs are illustrated.

4.4.1 Space for improvement

• Dynamic program analysis: dynamic program analysis is not supported by the tools

available for CAL programs. They limit their analysis to static and cyclo-static MoC

classes. Even though they can provide guarantees on the system performance and

requirements (e.g. deadlock-free execution), complex dynamic programs (e.g. video

codecs) can be analyzed only under strong assumptions and limitations on the design

cases.

• Design space modeling: as mentioned before, the design space can be modeled only

for restricted classes of dataflow programs. Moreover, performance estimation method-

ologies are specifically targeted for restricted sets of architectures.

• Bottlenecks and refactoring directions: except for the CAL design suite, bottleneck and

design refractory directions are not provided. As such, the designer should implement its

application on the target architecture and profile with an additional third-party profiler

for the resulting implementation. Relations between profiling results of the application

and the corresponding CAL source code is done by hand. However, sometimes this

relation cannot be univocally obtained (e.g. due to code-inlining optimization done by

compilers).

• Automatic mapping and code generation: automatic mapping and code generation is

partially driven over a limited set of architectures. Moreover, tools does not provide a

uniform and interoperable methodology to provide the mapping configuration.

4.4.2 New requirements

Consolidated design space exploration methodologies for static and cyclo-static dataflow pro-

grams are hardly extensible to dynamic dataflow programs. In fact, they make use of analytical

models of the application MoC. For dynamic programs, this leads to possible non-linear and

difficult-to-solve formulation. Consequently, this formalism should be extended in order to

make the design exploration and performance analysis possible using a unique mathematical

tool-set. For this reason, the concept of an execution trace graph of a dataflow program has

been formalized. This is a graph-based representation of the program where nodes represent

a single action firing and directed arcs represent dependencies among couples of actions

firing. In the next chapter it is demonstrated how using this formalism is possible to efficiently
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explore the design space of dynamic dataflow applications (and also by consequence, in the

case of static and cyclo-static programs).

4.5 Conclusions

In this chapter the main requirements for a design space exploration (DSE) environment have

been summarized. The notion of orthogonalization of concerns has been introduced. The

main features of these design methodologies are the separation between functional behavior

and architecture and between communication and computational load. Furthermore, the no-

tions of high-level models of computation (MoC) and models of architecture (MoA) have been

presented. The design space and design points (i.e. design alternatives) of an application have

been formalized. Each design point has been defined as a particular mapping configuration

of the design defined in terms of partitioning, scheduling and buffer size configuration. Suc-

cessively, different DSE analysis and performance estimation methods have been illustrated

together with an overview of the current available frameworks. A discussion about possible

space for improvements of the methodology and tools in the context of dynamic dataflow

programming, and more precisely for the CAL dataflow language, has been presented at the

end of the chapter.
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In Chapter 3 we discussed how the execution of a dataflow program consists of a sequence

of action firings. In this chapter how those firings can be correlated in a novel graph-based

representation, called the execution trace graph, in order to model the execution behaviour of

the program is illustrated. The graph is an acyclic directed graph where each node represents

an action firing and each directed arc represents either a data or a logical dependence between

two different action firings. A partial order of the fired actions can be obtained from the

topological order of the graph. Hence, using the notions of partially-ordered space and

directed-path developed in [150, 151, 152, 153], the effectiveness of analyzing a dataflow

program starting from its behavioural execution is demonstrated.

5.1 Geometry of execution

Without the ambition to be complete, this section provides a brief introduction to the trace

space theory formalized in [150, 151, 152, 153]. Looking at the geometry of dataflow program

executions, it is possible to think of a concurrent execution of two actors A and B on two

processing units pu1 and pu2 as a curve in R2. Points on this space have the local time on

pu1 taken to execute A on pu1 as abscissa, and the local time on pu2 taken to execute B on

pu2 as ordinate. Figure 5.1 depicts a possible execution path along the execution space of

the program. The execution space of a program can be considered as the set of all possible

increasing paths (as far as the time flow cannot be inverted) included in the square delineated

by the interleaving of A and B.

5.1.1 Partially-ordered space

The geometric model which has already been implicitly used in Figure 5.1 is a partially-ordered

space, also called a po-space. This is a topological space equipped with a partial order. In

other words, a po-space is a topological space in which points are ordered globally through

time. Formally, a partial order ≤ on a set U is a reflexive, transitive and antisymmetric relation.
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A

B

B

A

Figure 5.1: Execution space in R2 of two actors A and B mapped on two processing units pu1

and pu2, respectively. The dashed arrow represents a possible execution path of the program.

A partial order ≤ on a topological space X is said to be closed if ≤ is a closed subset of X ×X in

the product topology. In that case (X ,≤) is called a po-space.

5.1.2 Execution trace

The dashed arrow that has already been intuitively used in Figure 5.1 represents an execution

trace of the two actors A and B. In other words, it represents a directed path, also called d-path,

in the execution space. Formally, a d-path −→p in a po-space (X ,≤) is defined as:

−→p :
−→
1 → X (5.1)

that is continuous and order-preserving, where
−→
1 = [0,1] ⊆ R represents the closed and

directed unit interval. A d-path that is up to monotone reparametrizations is called trace and

it is represented as X (x1, x2), where x1, x2 ∈ X such that x1 ≤ x2. A po-space equipped with a

notion of direction is defined as a directed topological space, also called a d-space. A d-space

if formally defined as (X ,d X ) consists of a po-space X together with a set of d X of paths in

X . In this case, it is possible to define a new partial order ≺ on X such that x1 ≺ x2 if there is

a d-path from x1 to x2 in X . This is a sort of reachability relation that is antisymmetric and

coarser than the relation ≤ in the sense that x1 ≺ x2 ⇒ x1 ≤ x2.

5.1.3 Execution trace space

The concurrent execution of actors A and B depicted in Figure 5.1 might have several feasi-

ble traces. In other words, some equivalent traces might exist such that the corresponding

executions end with the same result. Formally, two d-paths −→p 1 and −→p 2 are considered as

equivalent when −→p 2 can be obtained by continuously deforming −→p 1 (or vice versa). This

equivalence relation is called dihomotopy. Given two points x1 and x2 of a d-space (X ,d X ),

then E(X ,d X )(x1, x2) identifies the execution trace space obtained from X (x1, x2) by identi-

fying all the dihomotopic equivalent paths. In particular, E(X ,d X )(x1, x2) 6= ; if and only if

there exists at least one directed path in X going from x1 to x2.
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5.2 Execution trace graph

The execution of a dataflow program can be modelled as a directed acyclic graph (DAG) where

each node represents a single action firing and each directed arc represents either a data or a

logical dependence between two different action firings [1, 2, 33, 94, 154]. In Section 2 it has

been shown how during each firing, an action can consume a finite number of input tokens,

produce a finite number of output tokens, and modify the actor’s internal variables. Hence,

it can be observed that it is possible to identify the dependencies that arise among different

firings. For example, if during a firing an action consumes some tokens, then it must rely

on the execution of the action that produced those tokens. The same can be stated if the

action, in the processing part of the firing, makes use of some of the internal actor variables

that were previously modified or used by another action. Several other types of dependencies

can be identified and used to characterize the execution of a dataflow program: these are

summarized in Table 5.1 and presented in Section 5.2.2.

An execution trace graph (ETG) is formally defined as a DAG(S,D), where:

• S is the set of single action firings, defining the nodes of the graph.

• D = S ×S is the set of dependencies, defining the directed edges of the graph.

Defining dependencies between action firings establishes a precedence order. If the firing

s2 ∈ S depends on firing s1 ∈ S, then s1 has to be executed and completed before s2 can be

started. The dependency is then defined as (s1, s2) ∈ D . The transitive hull of the dependencies

is the precedence relation ≤. So, S can be defined as a po-space (S,≤) and the precedence

constraint among s1 and s2 can be expressed as s1 ≺ s2.

Remark. In this work it is assumed that the number of firings in S and the number of depen-

dencies in S are finite and they will be denoted by the notation |S| <∞, |D| <∞ respectively.

5.2.1 Firings

Each si ∈ S represents a single action firing occurring during the execution of a dataflow

program. In other words, if an action is fired n times, thus n nodes in S are used to represent

each single firing.

A single action firing s ∈ S is formally defined as a 3-tuple s(a,λ,η), where:

• a ∈ A is the actor.

• λ ∈Λ is the action.

• η ∈N is the action execution index, that identifies two different firings of the same action

during the entire program execution.
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5.2.2 Dependencies

Each (si , s j ) ∈ D represents dependence between two fired actions si and s j , such that si 6= s j .

Several kinds of dependencies can be defined during the execution of a dataflow program.

As summarized in Table 5.1, these are: internal variable, finite state machine, guard, port

and tokens. As illustrated in the following, each of these can be defined by a sub-kind and

enhanced with some profiling parameters useful for a post-mortem analysis. Hence, more

than one dependence can be defined between each couple si , s j .

A dependency (si , s j ) ∈ D is formally as a 5-tuple (si , s j ,µ,d), where:

• si ∈ S is the source action firing.

• s j ∈ S is the target action firing.

• µ is the dependence kind. As illustrated in the following, the kind can be: internal

variable, finite state machine, guard, port or tokens.

• d is the dependence direction. As illustrated in the following, the direction can be:

read/read, read/write, write/read, write/write, enable, disable or undefined.

The incoming dependencies set of a firing si is defined such as:

δ(si )−E = {(sn , sm) : ∀(sn , sm) ∈ D, sm = si } (5.2)

The set of firings which are the source of an incoming dependencies of si is called the prede-

cessor, and is denoted as:

δ(si )−S = {s j : ∃(s j , si ) ∈ D} (5.3)

Firings that do not have any predecessors are called sources of the ETG. The set of sources is

defined as:

S;− = {si : δ(si )−S =;} (5.4)

Similarly, the outgoing dependencies set of a firing si is defined as:

δ(si )+E = {(sn , sm) : ∀(sn , sm) ∈ D, sn = si } (5.5)

The set of firings which are the target of an outgoing dependencies of si is called the successors

of si , and is denoted as:

δ(si )+S = {s j : ∃(si , s j ) ∈ D} (5.6)

Firings that do not have any successors are called sinks of the ETG. The set of sinks is defined as:
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S;+ = {si : δ(si )+S =;} (5.7)

Internal variable

An internal variable dependency (si , s j ) ∈ D occurs when two actions of the same actor share

the same internal variable v ∈V . More precisely, four different directions can be defined:

• write/read: when the action firing s j reads the internal variable v without an intervening

write operation and si is the last action firing, previous to s j , who wrote on v .

• write/write: when the action firing s j has an intervening write operation on the internal

variable v and si is the last action firing, previous to s j , who wrote on v .

• read/read: when both the action firings si and s j read the internal variable v without

an intervening write operation and si is the last action firing, previous to s j , who read

from v .

• write/write: when both the action firings si and s j wrote on the internal variable v and

si is the last action firing, previous to s j , who wrote on v .

Only the write/read is a data dependency. By contrast, the read/write, read/read and write/write

express only memory utilization precedence between the two actions and such information

could be useful if a memory optimization of the design is applied. The parameter that can be

stored in this kind of dependency is variable v on which the dependency is related. Additional

attributes retrieved from the profiling are the initial and final value of such a variable. In the

following, the set of dependencies of this kind are denoted with Dv ⊆ D .

Finite state machine

An internal state machine dependency (si , s j ) ∈ D connects two executed actions belonging

to the same actor and related via its internal state scheduler. In other words, a dependency

of this kind is defined when both the execution of the action firings si and s j is driven by the

actor internal FSM and si is the last action firing, previous to s j , scheduled by the FSM. In the

following, the set of dependencies of this kind are denoted with D f ⊆ D .

Guard

A guard dependency (si , s j ) ∈ D occurs when an action firing si modifies the value of the

guard which conditions the action firing s j . The guard condition, which may be defined as a

combination of state variable and token value, can be defined enabled or disabled by si by

61



Chapter 5. Execution trace graph

the modification of its variables or the production of particular token values. For this kind of

dependency, two different directions can be defined:

• enable: when the modification of an internal variable or the production of a token

performed by si makes the action firing s j executable (i.e. enabled).

• disable: when the modification of an internal variable or the production of a token

performed by si makes the action firing s j not-executable (i.e. disabled).

The parameters that can be stored are the guard identifier on which the dependency is related

and the appearance order on which this guard was enabled or disabled. In the following,

the set of dependencies of this kind are denoted with Dg ⊆ D. It must be noted that in

some design cases, uncovering these dependencies might have the side effect of letting the

trace be dependent on both the buffer size and the scheduler configuration used during the

program execution. A more detailed discussion about this kind of dependency is presented in

Section 5.3.6.

Port

A port dependency (si , s j ) ∈ D connects two action firing of the same actor that share an input

or an output port p. It defines in which order tokens must be consumed or produced over this

port. More precisely two different directions can be defined:

• read/read: when both the action firings si and s j retrieved some tokens from the input

port p and si is the last action firing, previous to s j , who retrieved at least one token

from p.

• write/write: when both the action firings si and s j sent some tokens to the output port

p and si is the last action firing, previous to s j , who sent at least one token to p.

The parameter that can be stored in this kind of dependency is the port p (input of output)

on which the dependency is related. In the following, the set of dependencies of this kind is

denoted with Dp ⊆ D .

Tokens

A tokens dependency (si , s j ) ∈ D connects the action firing that produces some tokens to

the one that consumes at least one of them. In such cases, these actions may be in different

actors, or they may be part of the same actor (i.e. in case of a direct dataflow feedback loop).

The parameters that can be stored in this kind of dependency are the number of tokens

that the consumer firing s j consumed among the tokens produced by the producer firing si .

Additional attributes retrieved from the profiling are the token values. In the following, the set

of dependencies of this kind are denoted with D t ⊆ D .
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Table 5.1: Dependencies kinds, directions, parameters and additional attributes.

Name Direction Parameters Additional attributes

Dv internal variable

read/read

variable id
write/write initial value
read/write final value
write/write

D f finite state machine

Dg guard
enable guard id
disable appearance order

Dp port
read/read

port id
write/write

D t tokens
output port id

token values
number of tokens

5.2.3 Example of an execution trace graph

The dataflow program described in Section 2.5.4 is used in order to show the main structure of

an ETG. The firing set S contains nine action firings s = {s1, s2, . . . , s9} which are summarized

in Table 2.2. The firing set S can be divided in three sub-sets, one for each actor of the

network, SP = {s1, s2, s3}, SF = {s4, s5, s6} and SC = {s7, s8, s9}, such that S = SP ∪SF ∪SC and

San ∩Sam = ; for each couple of actors am 6= an . Sets SP , SF and SC contain the firings of

Producer, Filter and Consumer respectively. The dependencies set D contains sixteen

dependencies D = {e1,e2, . . . ,e16} which are summarized in Table 5.1.

Even though the firing sequence of this program has already been illustrated in Section 2.5.4,

it is worth re-describing part of it, and highlighting how the ETG of Figure 5.2 can be obtained.

In this context, let’s suppose the mapping configuration m1 described in Table 4.1 is used.

This particular mapping configuration defines a single partition configuration σ1 = {P,F,C }

(i.e. all the actors are assigned to the same processing element), the scheduler configuration

σ1 = {P,P,P,F,F,F,C ,C ,C } (i.e. predefined and static) and the buffer size configuration β1
1 =

β2
1 = 512. The execution Gantt chart is depicted in Figure 4.3a, where each action firing takes

one (abstract) clock cycle to conclude its execution. At time t = 0, the scheduler imposes

to execute the actor Producer which fires the action produce. This single action firing is

denoted with s1. During its execution, s1 updates the internal actor variable counter: the

initial value iscounteri = 0 and the final value iscounter f = 1. Finally, the firing concludes

by writing an output token τ1 = 1 on the output portO. At time t = 1 the scheduler selects again

the actor Producer which fires again the action produce. This second firing is denoted

with s2. Also s2 updates the internal actor variablecounter: the initial value iscounteri = 1

and the final value is counter f = 2. Finally, the firing concludes by writing an output token

τ1 = 2 on the output port O. During the firing s1 the internal state variable counteri has the

value previously written by the firing s1: hence an internal variable dependency between s1

and s2 can be defined. This is denoted with e1. As both the firings wrote this variable, the
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Figure 5.2: Execution trace graph obtained after the execution of the CAL program described
in Section 2.5.4. The firing set S is summarized in Table 2.2, and the dependencies set D is
summarized in Table 5.2.

dependency direction is write/write. Moreover, both s1 and s2 wrote a token on the same

output port: hence a port variable, with direction write/write, can be defined. This is denoted

with e2. The same happens at time t = 2, when the same action is fired for the third time in

a row. This new firing is denoted with s3. Also in this case an internal variable and a token

dependency can de defined with the previous step s2: these are e3 and e4 respectively. At

time t = 3, the scheduler imposes the execution of the actor Filter which fires the action

invert. This action firing is denoted with s4. During the firing, s4 consumes the token τ1

from its input port I and produces an output token τ4 on its output port O. As the input token

τ1 was previously produced by the firing s1, a token dependency between s1 and s4 can be

defined: this is denoted with e5. At time t = 4, the second execution of the actor Filter,

imposed by the scheduler, again fires the action invert. This action firing is denoted with s5.

Also this firing read the token τ2 from the input port I and wrote the token τ5 on the output

port O. As τ2 was previously produced by s2, a new token dependency can de defined: this is

denoted with e8. Furthermore, as the firing s5 read and wrote tokens from and to the same

ports as the firing s4, two new port dependencies can be defined: these are denoted with e6

and e7 which have as direction read/read and write/write respectively. The execution of the

entire program continues till t = 9 and the same considerations can be made in order to build

the remaining dependencies of the ETG.
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Table 5.2: Dependencies set S of the execution trace graph depicted in Figure 5.2.

(si , s j ) Source Target Kind Direction Parameter Attribute

e1 s1 s2 Variable Write/Write variable=counter initial=1
final=2

e2 s1 s2 Port Write/Write port=O
e3 s2 s3 Variable Write/Write variable=counter initial=2

final=3
e4 s2 s3 Port Write/Write port=O
e5 s1 s4 Token - count=1

source-Port=I
source-Port=O

value=1

e6 s4 s5 Port Read/Read port=I
e7 s4 s5 Port Write/Write port=O
e8 s2 s5 Token - count=1

source-Port=I
source-Port=O

value=2

e9 s5 s6 Port Read/Read
e10 s5 s6 Port Write/Write port=O
e11 s3 s6 Token - count=1

source-Port=I
source-Port=O

value=3

e12 s4 s7 Token - count=1
source-Port=I
source-Port=O

value=-1

e13 s7 s8 Port Read/Read port=I
e14 s7 s8 Token - count=1

source-Port=I
source-Port=O

value=-2

e15 s5 s8 Port Read/Read port=I
e16 s8 s9 Token - count=1

source-Port=I
source-Port=O

value=-3
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5.3 Properties

The aim of this section is to illustrate and demonstrate the main properties of an ETG. In fact,

as demonstrated in Chapter 6, these properties can be successfully exploited when exploring

and optimizing the design space of a dataflow program.

5.3.1 Topological order

As the ETG is a DAG(S,D) it is possible to define a partial order on the firings set S. This

topological order can be defined with a mapping function l : S →N such that:

si ≤ s j ⇒ l (si ) < l (s j ) (5.8)

It must be noted that a DAG can have different valid topological orders. In other words,

given two valid topological mapping functions l1 and l2 it is possible that l (s)1 6= l (s)2. As

demonstrated in the following of this section, an ETG can express the maximum potential

parallelism of the program. This property is strictly related to the fact that a DAG generally

admits several valid topological mapping functions.

Execution trace space

By recalling the notation introduced in Section 5.1, (S,≤) and (S,d X ) represent the po-space

and the d-space, respectively, of the program execution defined by the firings set S and the

dependencies set D. The po-space (S,≤) refers to the collection of firings ordered by their

dependencies. Similarly, the d-space (S,d X ) refers to the collection of directed paths that can

be defined among the firings by following their outgoing dependencies. Consequently, the

ETG defines what is called the execution trace space of a program that has been formalized in

Section 5.1.3.

5.3.2 Mapping independence

The mapping independence property can be demonstrated using the same example dataflow

program described in Section 5.2.3 and analyzing the ETGs that are obtained using the different

mapping configurations defined in Table 4.1. It must be noted that those considerations are

valid only for deterministic actors, in the sense that the execution is not time dependent.

Scheduling independence

Let’s consider the two mapping configurations m1 and m2, which differ only on how the

scheduling configuration has been defined. The first was used in Section 5.2.3 to illustrate

how the ETG depicted in Figure 5.2 has been obtained. In this case the firings set S has

been obtained with the following order S(m1) = {s1, s2, s3, s4, s5, s6, s7, s8, s9} as depicted in the
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Gantt chart in Figure 4.3a. Using the scheduler configuration defined in m2, the firing steps

order changes. In this case, S(m2) = {s1, s4, s7, s2, s5, s8, s3, s6, s9} as depicted in the Gantt chart

in Figure 4.3b. Following the considerations made in Section 5.2.3, the two dependencies

sets D(m1) and D(m2), respectively, remain the same. This leads to the same ETG as the

one depicted in Figure 5.2, since the partial order of the firings defined on both S(m1) and

S(m2) is the same. This demonstrates that the partial order of the firings set S defined only

using the dependencies set D does not give any information about the scheduling policy

used for constructing the ETG. Hence, the ETG does not depend on the scheduling policy.

Additional edges should be introduced in the ETG in order to make it possible to define

a more strict ordering of S and defining the scheduling configuration. If the objective is

to model S(m1) and S(m2) such as S(m1) = {s1 < s2 < s3 < s4 < s5 < s6 < s7 < s8 < s9} and

S(m2) = {s1 < s4 < s7 < s2 < s5 < s8 < s3 < s6 < s9}, some additional edges should be introduced

as depicted in Figure 5.3a and Figure 5.3b, respectively. Those additional edges are depicted

with dashed arrows as they should not be confused with the dependencies defined in the

previous section. In fact, those additional edges on the ETG are only used to model the

constraints imposed by the scheduler.

Partitioning independence

The same considerations about the ETG scheduling independence can also be done for

the partitioning configuration. Let’s consider the two mapping configurations m2 and m4

defined in Table 4.1. In m1 all the actors are mapped in one partition, contrary to m4 where

two partitions are defined. The scheduling and buffer size configurations of m2 andm4 are

the same. Considering m4, the firings set S has been obtained with the following order

S(m4) = {s1, s4, s2, s7, s5, s3, s8, s6, s9} as depicted in the Gantt chart in Figure 4.3d. Following the

same considerations made in Section 5.2.3, since the dependencies set D(m4) is the same as

D , in this case the corresponding ETG is also the one depicted in Figure 5.2. If the objective is

to model the additional constraints imposed by the scheduling configuration, some additional

edges should be introduced as depicted in Figure 5.3d. Those additional edges are depicted

with dashed arrows as they should not be confused with the dependencies defined in the

previous section. In fact, those additional edges on the ETG are only used to model the

constraints imposed by the scheduler defined in each partition: σ1
4 and σ2

4, respectively. This

leads to the following partial ordered set S(m4) = {s1 < s4 < s2 ≤ s7 < s5 < s3 ≤ s8 < s6 < s9}.

When dependencies are satisfied, firings of actors mapped on ρ1
4 can be executed in parallel

to firings mapped on ρ2
4. For example, s2 ≤ s7 means that both s2 and s7 can be fired during

the same clock cycle, as depicted in Figure 4.3d.

Buffer size independence

The same considerations about the ETG scheduling and partitioning independence can also

be done for the buffer size configuration. Let’s consider the two mapping configurations m3

and m4 defined in Table 4.1. In m3 the buffer size configuration is defined as β1
3 = β2

3 = 1,
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contrary to m4 where the buffer size configuration is defined asβ1
3 =β2

3 = 512. The partitioning

and scheduling configurations of m3 andm4 are the same. Considering m3, the firings set S

has been obtained with the following order S(m3) = {s1, s4, s2, s7, s5, s3, s8, s6, s9} as depicted

in the Gantt chart in Figure 4.3d. Following the same considerations made in Section 5.2.3,

since the dependencies set D(m3) is the same as D , in this case the corresponding ETG is also

the one depicted in Figure 5.2. This is because tokens are produced and consumed by the

same firings. Hence no additional dependencies should be considered for D(m3), and as a

consequence D = D(m3) = D(m4). As such, changing the buffer size of a program (i.e. that is

not time dependent) does not change the partial order of S imposed by D . This demonstrates

that the ETG is independent from the buffer size used during the program execution.

5.3.3 Untimed

The ETG does not contain any information about timing of fired steps and dependencies.

The only information that can be obtained is a partial ordering about firings. In other words,

the dependency (si , s j ) ∈ D defines only that s j can only be fired after the complete firing

of si . Let’s consider the two mapping configurations m5 and m6, which differ only on how

the buffer size configuration has been defined. As can be seen from the two Gantt charts

depicted in Figure 4.3e and 4.3f, respectively, the firing of s2 takes 2 clock cycles using the

mapping configuration m5 and 1 clock cycle using the mapping configuration m6. However,

this information is not defined in the ETG. Section 5.4 discusses how the ETG can be extended

in order to define timing information for both the firings and dependencies.

5.3.4 Maximum parallelism

The ETG defines the maximum parallel execution that can be performed by the dataflow

program. In fact, as described previously, it is completely independent from the mapping con-

figuration. In other words, precedence relations about firings is imposed only by precedence

about how data should be processed. For example a token dependency defines that the firing

that consumes tokens can only be executed after the firing that produced those tokens has

been fired. The same is for the other kind of dependencies. As such, the dependencies set D

defines only a minimal information based on the data processing (i.e. tokens, internal vari-

ables) and resource utilizations (i.e. ports, guards) that should be respected in order to obtain

a correct program execution. The constraints imposed by a particular mapping configuration

can only be modeled by introducing additional edges as discussed in Section 5.3.2. The ETG

without additional edges can be seen as the execution of the program using a fully-parallel

mapping configuration (i.e. where each partition contains only one actor). Let’s consider for

example the mapping configuration m6, where each actor is mapped in a separate partition.

In this case the resulting ETG is depicted in Figure 5.3f where the additional edges imposed

by the internal scheduler of the partition do not restrict the partial order of the ETG. This

demonstrates that the ETG defined by S and D expresses the maximum parallelism of the

application.
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Figure 5.3: Execution Trace Graphs of the CAL network depicted in Fig. 2.10. Dashed lines
represent additional edges that model a particular scheduling configuration defined within
the mapping configurations described in Table 4.1.
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5.3.5 Data dependent

The ETG can vary between two different program executions if this program contains at least

one actor that is data dependent. For example, let’s consider the CAL actor Split defined in

Listing 2.2. This is composed of 2 actions: A and B, respectively. The firing conditions of both

actions define that one input token should be available in the input port I. However, action A

is fireable only if the token value is val≥ 0 and action B if val< 0. Let’s suppose that two

input sequences are available in the input port I: I1 = {0,1,−10,−5} and I2 = {−1,−1,0,−1}

respectively. Hence, the firing sequence S = {s1, s2, s3, s4} of this actor defines different action

firings as illustrated in Table 5.3. It must also be noted that the dependencies set D can change

too. In this case, the program should be analyzed using different data sequences for generating

representative ETG on which statistical analysis can be obtained (i.e. see Chapter 9 for an

example on how stream applications that are data dependent are analyzed).

Table 5.3: Firings sequence of the CAL actor Split defined in Listing 2.2 when two input se-
quences are available in its input port I: I1 = {0,1,−10,−5} and I2 = {−1,−1,0,−1}, respectively.

Firing Action

I1 I2

s1 A B
s2 A B
s3 B A
s4 B B

5.3.6 Modeling a dynamic program execution

The execution of dynamic actors such that the execution is mapping dependent can be

modeled using the ETG. The CAL actor used to prove this property is the GuardedInverter

actor which is illustrated in Listing 5.1. This actor is composed of 2 actions A and B, an input

port I, an output port O and an internal actor variable m. The priority condition B > A is

defined: this lead the action A to be fireable each time that the action B is not. It is important

to note that action B is fireable each time there is at least one input token in its input port

I and the guard condition m > 0 and m <3 is satisfied. The state variable on which this

guard is defined is modified only by the action A: consequently, only A can enable or disable

the guard. Two possible execution paths are illustrated in Figure 5.4a and Figure 5.4b. The axis

of abscissae defines the time flow for action B, similarly the axis of ordinates defines the time

flow for action A. It is supposed that each firing of both A and B requires the same amount of

time. The list of firings and the respective value assumed by the internal variable m and the

guard condition are reported in Table 5.4a and Table 5.4b, respectively. For this example, two

regions where the guard of B is enabled can be identified along the A-axis of the execution

path: these are called the guard enable window n = 1 and n = 2 respectively. In those regions,
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B can be executed if there is at least one input token in its input port B. It is now clear how

the execution path of a dynamic program can vary according to the mapping configuration

used for the execution. In the following it is clarified how it is possible to model such kinds of

enabling and disabling windows and make the entire analysis process unaware of the mapping

configuration.

Listing 5.1: GuardedInverter.cal
1 actor GuardedInverter() int I ==> int O :
2

3 int m := 0;
4

5 A: action ==>
6 do
7 m := m + 1;
8 if m = 5 then m := 0; end
9 end

10

11 B: action I:[val] ==> O:[-val]
12 guard m > 0 and m < 3
13 end
14

15 priority:
16 B > A;
17 end
18

19 end

Using guard enable and disable dependencies

Even though the two previous paths are equivalent (i.e. they end at the same internal actor

state configuration as illustrated in Table 5.4), not considering the enable and disable guard

dependencies makes the ETG dependent to the mapping configuration used during the

execution. This can be seen from the ETG obtained from the two execution paths depicted in

Figure 5.4c and Figure 5.4d, where both guard enable and guard disable dependencies are not

considered. Considering for example the first ETG depicted in Figure 5.4c, the firing s3 can be

executed when the guard is enabled. In other words it is possible to fire s3 after the execution

of s1 and before the execution of s5, but also after the execution of s8 and before the execution

of s13. This can be argued for each firing of B. In other words, it is possible to identify two

equivalent constraints on the partial order of the ETG: s1 < sb < s5 and s8 < sb < s13 where sb

identifies any firing of B. These two conditions can be modeled with the guard enable and

disable dependencies as illustrated in Figure 5.5. Each guard enable and disable dependency

is coupled with an appearance order that identifies which guard enabling window is modeled.

Removing cyclic paths

However, this kind of dependency cannot be considered as strict dependency, otherwise

it would potentially cause the graph to become cyclic. Consequently, the ETG would not

represent a po-space and by consequence a trace space. This happens when we consider a
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(a) A first possible execution path.
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(b) A second possible execution path.
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(c) The execution trace graph corresponding to the execution path of Figure 5.4a without considering the guard
enable and disable dependencies.
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(d) The execution trace graph corresponding to the execution path of Figure 5.4b without considering the guard
enable and disable dependencies.

Figure 5.4: Two possible execution paths of the GuardedInverter actor illustrated in
Listing 5.1. The corresponding execution trace graphs do not take into account the guard
enable and disable dependencies.
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Table 5.4: Firings with the corresponding internal variable and guard values for the execution
trajectories and graphs depicted in Figure 5.4.

(a) Firings for the execution trajectory and graph depicted in Figure 5.4a and 5.4c, respectively.

Firing Action
m value Guard status

initial final initial final

s1 A 0 1 disabled enabled
s2 A 1 2 enabled -
s3 B 2 - - -
s4 B - - - -
s5 A - 3 - disabled
s6 A 3 4 disabled -
s7 A 4 0 - -
s8 A 0 1 - enabled
s9 B 1 - enabled -
s10 B - - - -
s11 B - - - -
s12 A - 2 - -
s13 A 2 3 - disabled
s14 A 3 4 disabled -

(b) Firings for the execution trajectory and graph depicted in Figure 5.4b and 5.4d, respectively.

Firing Action
m value Guard status

initial final initial final

s1 A 0 1 disabled enabled
s2 B 1 - enabled -
s3 A - 2 - -
s4 A 2 3 - disabled
s5 A 3 4 disabled -
s6 A 4 0 - -
s7 A 0 1 - enabled
s8 A 1 2 enabled -
s9 B 2 - - -
s10 B - - - -
s11 B - - - -
s12 B - - - -
s13 A - 3 - disabled
s14 A 3 4 disabled -
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Firings of B
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sb
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Figure 5.5: Guard enable and disable dependencies couples that model the guard enable
windows n = 1 and n = 2 depicted in Figure 5.4. The firing sb represents a generic firing of the
action B.

path with a (n +1) guard enable and a n guard disable (i.e. where n represents the appearance

order of the enabling window). Consequently, when analyzing the dependency graph for each

executed guarded action B only one of the available guard enable and disable couples with

the same appearance order shall be taken into account (i.e. the others are discarded). For the

previously described example, the two ETGs that model the two execution paths illustrated in

Figure 5.4 are depicted in Figure 5.6.

It must be noted that, using this formalism lets the two ETGs illustrated in Figure 5.6 be defined

as equivalent. In fact, both ETGs can model the first or the second execution path by choosing

the appropriate guard enable and disable couple.

5.4 Timed execution trace graph

Time information is added to an ETG by defining for each firing and each dependency a

corresponding time value. For this purpose, the ETG is transformed to a weighted graph

which is a special type of labeled graph where labels are numbers (for this specific case, always

positive) called weights.

The timed execution trace graph (TETG) is formally defined extending the notation of the

ETG as a DAG(S,D,ΨS ,ΨD ) where:

• ΨS : S →R+ is the firings weight mapping function.

• ΨD : D →R+ is the dependencies weight mapping function.

In other words, for each firing si ∈ S is assigned a time value called firing weight and defined

as w(si ) ≥ 0. Similarly, the dependency weight w(si , s j ) ≥ 0 is defined for each dependency

(si , s j ) ∈ D .
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Firings of A

Firings of B

s1 s2 s5 s6 s7 s8 s12 s13 s14

s3 s4 s9 s10 s11

e1 e2e3 e4 e5 e6e7 e8e9
e10

(a) The execution trace graph corresponding to the execution path of Figure 5.4a considers a couple of the guard
enable and disable dependencies for each firing. The guard enable and disable couples (e1,e2) and (e3,e4) are
used to model the firing of s3 and s4, respectively, on the guard enable window n = 1. The guard enable and disable
couples (e5,e6), (e7,e8) and (e9,e10) are used to model the firing of s9, s10 and s11, respectively, on the guard enable
window n = 2.

Firings of A

Firings of B

s1 s3 s4 s5 s6 s7 s8 s13 s14

s2 s9 s10 s11 s12

e1 e2 e3 e7e4 e8e5
e9e6

e10

(b) The execution trace graph corresponding to the execution path of Figure 5.4b considers a couple of the guard
enable and disable dependencies for each firing. The guard enable and disable couple (e1,e2) is used to model the
firing of s2 on the guard enable window n = 1. The guard enable and disable couples (e3,e4), (e5,e6), (e7,e8) and
(e9,e10) are used to model the firing of s9, s10, s11 and s12, respectively, on the guard enable window n = 2.

Figure 5.6: The ETGs related to the execution paths depicted in Figure 5.4a and Figure 5.4b
where for each firing of B a couple of guard enable and disable has been considered in order
to model the guard enabled windows n = 1 and n = 2.

5.4.1 Firing weight

The firing weight w(si ) models the time required for entirely executing the action firing si . In

other words, using the action execution model discussed in Section 2.5.2, w(si ) should model

the time required not only for executing the algorithmic part of the fired action, but also the

time required for reading and writing the input and output tokens. Therefore, w(si ) can be de

defined as the combination of five terms, that are respectively:

• Wait for available input tokens: models the waiting time of si for the availability of all

its input tokens (i.e. blocking reading).

• Read input tokens: models the time required by si for reading all its input tokens.

• Algorithmic part execution: models the time required by si for executing the action

algorithmic part.

• Wait for available output space: models the waiting time of si for the availability of the
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necessary output token places (i.e. blocking writing).

• Write output tokens: models the time required by si for writing all its output tokens.

These terms can vary according to the mapping configuration chosen for the application imple-

mentation. Using the formalism illustrated in Section 4.2.3 where the mapping configuration

has been defined as a 3-tuple (σ,ρ,β), w(si ) can be defined as:

w(si ) = f (si ,ρ,β) (5.9)

where f is only a function of the partitioning and the buffer size configurations.

Linear model

The firing weight model of Equation 5.9 can be simplified as a linear combination of terms as:

w(si ) = w(si )r d +w(si )r +w(si )e +w(si )wd +w(si )w (5.10)

where the meaning of each term is summarized on Table 5.5. Some examples of different

techniques that can be used to measure or estimate these terms are discussed in Section 8.1.

Table 5.5: Firing weight parameters for the linear model of Equation 5.10.

Parameter Description

w(si )r d Wait for available input tokens waiting time of si for the availability of all its
input tokens (i.e. blocking reading)

w(si )r Read input tokens time required by si for reading all its input
input

w(si )e Algorithmic part execution time required by si for executing the action
algorithmic part

w(si )wd Wait for available output space waiting time of si for the availability of the
necessary output token places (i.e. blocking
writing)

w(si )w Write output tokens time required by si for writing all its output
tokens

5.4.2 Dependency weight

The dependency weight w(si , s j ) models the time required to make the dependency (si , s j ) ∈ D

available to the target firing step s j after the execution of the firing si has been completely

performed. Consequently, this value may depend on the particular mapping configuration
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m = (σ,ρ,β) ∈ M and it is defined as:

w(si , s j ) = f (si ,m) = f (si ,σ,ρ,β) (5.11)

where f is a function of the scheduling, the partitioning and the buffer size configurations.

Depending on the kind of (si , s j ), this weight may model different factors. For example, if

(si , s j ) ∈ D t is a token dependency then w(si , s j ) can model the time required by the buffer to

receive and make the corresponding tokens available. The same considerations can be made

for state variable dependencies (si , s j ) ∈ Dv where the token is now a state variable and the

buffer a local memory region. So, considering a read/write internal variable dependency, the

weight corresponds to the time required for reading and storing the updated value of that

internal variable. Similarly, if (si , s j ) ∈ D f is a finite state machine dependency then w(si , s j )

defines the time required by the internal actor scheduler to select the specific action firing.

Furthermore, when additional fictitious dependencies are introduced to model the scheduling

configuration ρ, the weight of these fictitious dependencies models the time required for the

partition scheduler to select the corresponding actor, as discussed in Section 8.1.

5.5 Transformations

In the following some ETG transformations are discussed. These represent an overview of the

main graph-based transformations that can be applied to an ETG. These are extensively used

in the rest of this dissertation when the ETG is used to explore the design space of a dataflow

program.

5.5.1 Firing expansion

The firing expansion of an ETG is a new DAG(V ,E) where the set of vertexes is evaluated

defining for each firing si ∈ S two new vertexes πsi

2i−1 ∈V and πsi

2i ∈V , respectively, connected

by a directed edge (πsi

2i−1,πsi

2i ) ∈ E . Moreover, each dependency (si , s j ) ∈ D is transformed to a

new directed edge (πsi

2i ,π
s j

2 j−1) ∈ E . As an example, Figure 5.7 depicts the transformation of an

ETG. It can be seen how, for each firing si ∈ S, the corresponding πsi

2i−1 ∈V inherits the incom-

ing dependencies, similarly the corresponding πsi

2i ∈V inherits the outgoing dependencies.

Furthermore, it is possible to define two new fictitious vertexes πs and πt called the source

and sink vertex of G(V ,E), respectively. For each vertex such that δ(πsi

2i−1)−S =; (i.e. that has

no incoming edges) a new fictitious edge (πs ,πsi

2i−1) ∈ E is defined. Similarly, for each vertex

such that δ(πsi

2i )+S = ; (i.e. that has no outgoing edges) a new fictitious edge (πsi

2i ,πt ) ∈ E is

defined.
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(a) Initial execution trace graph.
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(b) Expanded version.

Figure 5.7: Firings expansion of an execution trace graph.

5.5.2 Dependency amalgamation

When analyzing the ETG, it is possible that the only requirement is to know which are the

set of predecessors and successors given firing (i.e. see Equation (5.3) and Equation (5.6), re-

spectively). Consequently, all the information contained in the dependencies set D can

be redundant as two firings si and s j are related with more than one dependence. Let

D A = {e1,e2, . . .en} ⊆ D any subset of dependencies having the same endpoints. The multi-

dependency amalgamation (i.e. also called multi-edge amalgamation [155]) corresponding

to D A is an ETG that results from merging (amalgamating) all of the dependencies in D A into

a single and unlabeled dependency generally denoted with e• = e1 • e2 • . . . • en . The set of

amalgamated dependencies is denoted as D•. Informally, the amalgamation can be see as a

non-minimal transitive reduction of a graph.

As an example, the ETG depicted in Figure 5.2, e1 and e2 have the same endpoints s1 and s2.

Hence, e1 and e2 can be amalgamated as e• = e1 •e2. In the same ETG other dependencies can

be amalgamated as illustrated in Figure 5.8.

5.5.3 Event-driven system representation

This section illustrates a methodology for converting the ETG of a dataflow program into a

discrete event system in the form of a Petri net (PN) [156, 157]. This conversion supports a

more systematic development of design space exploration heuristics based on the application

of automatic control methodologies (in this regard, see Chapter 6).
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s1

s2

s3

s4

s5

s6

s7

s8

s9

e1 •e2

e2 •e3

e6 •e7

e9 •e10
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e12
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e16

Figure 5.8: Amalgamation of the execution trace graph illustrated in Figure 5.2.

Petri nets

A PN is a particular kind of bipartite directed graph made up of three types of objects: places,

transitions, and directed arcs (for a complete overview about PN see Appendix A.1). Directed

arcs connect places to transitions or transitions to places. Each place can contain tokens: the

presence or the absence of a token can indicate whether a condition associated with this place

is true or false. Formally, a PN is defined as a tuple N (P,T, I ,O, M0), where:

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions.

• I : P ×T is the pre-incidence matrix that defines directed arcs from places to transitions.

• O : T ×P is the post-incidence matrix that defines directed arcs from transitions to

places.

• M0 is the initial marking of places.

The execution of a PN is controlled by the number and distribution of tokens over the places.

Similarly to the DPN with firings dataflow model, a PN also executes by firing transitions

governed by enabling and firing rules. In a PN a transition t can be enabled if all its input

places contain at least a number of tokens equal to the weight of the respective directed arcs.

The firing of an enabled transition removes from each input place the number of tokens equal

to the weight of the respective input directed arc and deposits in each output place a number

of tokens equal to the weight of the respective directed output arc. Mathematically, firing the

transition t at event k yields a new marking:

M(p,k) = M(p,k −1)− I (p, t )+O(t , p), ∀p ∈ P (5.12)
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for any p ∈ P at each firing instant k ∈N.

Why not transform the dataflow program directly to a PN?

When a dynamic dataflow program belonging to the DPN class is translated into a PN represen-

tation, it is in general required that the MoC of the resulting PN is modified accordingly [158].

This may imply, for instance, the use of a colored PN that allows tokens to carry values and that

preserves the order in their respective places (see, in this regard, [159, 160]). However, a more

effective approach is to directly transform the ETG into a PN. In such cases, the objective is to

obtain a mathematical description of the behavior of an ETG similar to the one provided by

Equation (5.12). A systematic approach to reach such objectives is to correlate the dependency

constraints defined in the ETG with the firing rules of the PN.

ETG to PN transformation

Intuitively, an ETG action firing si ∈ S can be represented as a PN transition ti ∈ T that can be

fired only if there are enough input tokens at its incoming places p ∈ P . Similarly, each ETG

dependency (si , s j ) ∈ D can be represented as a PN place p ∈ P , for which the place weight

W (p, t) is defined as the number of tokens nt (i.e. expressed by the tokens dependency) if

(si , s j ) ∈ D t or unitary otherwise (i.e. (si , s j ) ∈ D\D t ). Furthermore, defining T;− ⊆ T as the set

of transitions such that the respective ETG action firings are contained in S;− (i.e. sources of

the ETG, as defined in Equation (5.4)), an additional fictive incoming place with unitary weight

must be defined for each of those transitions. The set of fictive transitions is referred to as P;− .

In order to model the fact that only the transitions contained in S;− are initially enabled (i.e.

they do not depend on the firing of any other transition), one token is defined as the initial

marking only for the places contained in P;− (i.e. M0(p) = 0,∀p ∈ P and M0(p) = 1,∀p ∈ P;−).

It must be noted that the ETG amalgamation transformation illustrated in Section 5.5.2 can be

applied in order to reduce the number of equivalent PN places. The only requirement is that

token dependencies should not be amalgamated.

In conclusion, an ETG is formally transformed to its equivalent PN as follows:

T : si 7→ ti ∈ T ∀si ∈ S

P : (si , s j ) 7→ p ∈ •ti ∪ t•j ∀(si , s j ) ∈ D

P;− : p ∈ •ti ∀ti ∈ T;−

(5.13)

where for each PN place the weight is defined such as:

W (p, ti ) =
nt if (si , s j ) ∈ D t

1 otherwise

where nt is the number of tokens defined in the token dependency. The initial PN marking is
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defined as:

M0(p) =
1 if p ∈ P;−

0 otherwise
(5.14)

The just-introduced transformation allows the representation of the behavior of a dataflow

program by means of an event-driven system. In this regard, Equation (5.12) can be revisited

in order to describe the evolution of the variable of interest of the Petri net and, in turn, of

the program. More precisely, introducing the incidence matrix of the net defined as A(t , p) =
O(t , p)− I (t , p), i.e. A =O − I , Equation (5.12) can be rewritten in the following more compact

form (see e.g. [157]) as:

M(k +1) = M(k)+ Au(k) (5.15)

where u(k) is a n×1 column vector with 1 as its i -th entry and 0 in the remaining n−1 positions

denoting that only the i -th transition ti fires at event k and M(k) and M(k+1) are, respectively,

the marking vectors of the net before and after the firing occurrence. Equation (5.15) is usually

referred to as the state equation of the net and can be augmented by an output relation of

the form:

y(k +1) =C M(k +1) (5.16)

in order to highlight suitable variables of interest which can be expressed as (linear) functions

of the tokens actually in the net places. The state equation description of a Petri net and,

more generally, of an event-driven system is needed when performance optimization of such

systems has to be achieved through theoretic control approaches [161]. Thus, the use of the

above-defined transformation can be regarded as an effective and systematic way to extend

the use of such approaches to all the signal processing applications that can be casted within

the considered dataflow programming framework.

Example

As an example, the just-introduced ETG to PN transformation can be applied to the ETG

of Figure 5.8. The PN structure depicted in Figure 5.9 is obtained. It must be noted that,

as required by Equation 5.13, token dependencies of the ETG have not been amalgamated.

More over, the only fictitious place is p1 ∈ P;− where the initial marking is one token. Places

that correspond to a token dependency (i.e. p4, p5, p6, p9, p10, p11) are denoted with a grey

background.
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Figure 5.9: Petri net obtained from the execution trace graph depicted in Figure 5.2.

In this case, the incidence matrix A in Equation (5.15) is given by:

A =



−1 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0

0 1 0 0 −1 0 0 0 0

0 0 1 0 0 −1 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0 0

0 0 0 1 0 0 −1 0 0

0 0 0 0 1 0 0 −1 0

0 0 0 0 0 1 0 0 −1

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 1 −1


and the initial marking, according to Equation (5.14), is defined as:

M0 =
[

1 0 0 0 0 0 0 0 0 0 0 0 0
]′

where [·]′ denotes the matrix transpose operator. Moreover, supposing that the variable of

interest is the number of tokens stored in each buffer of the considered dataflow network

(i.e.from Figure 2.5.4, b1 and b2, respectively), matrix C describing the output relation (5.16) is

defined as:

C =
[

0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0

]
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5.6 Conclusions

In this chapter the notion of execution trace graph (ETG) of a dataflow program has been

formalized. It has been shown how the ETG represents a graph-based structure of the exe-

cution of a dataflow program. The execution of a dataflow program has been modeled as a

directed acyclic graph where nodes represent single action firings and edges represent (data

or functional) dependencies between two different action firings. Notions of partially-ordered

sets (i.e. po-sets) and directed paths (i.e. d-paths) have been adapted to this execution model.

Different dependency kinds have been defined, notably the finite state machine dependencies,

the internal variable dependencies, the port dependencies, the tokens dependencies and the

guard dependencies. The importance of the guard (enable and disable) dependencies in the

context of dynamic dataflow programs has been discussed. In fact, by the use of this kind of

dependency it has been demonstrated how different execution trajectories can be modeled by

using the ETG obtained through a serial program exception. Furthermore, the main properties

of the ETG have been illustrated with some examples demonstrating how this graph-based

representation is totally mapping independent and can be used to effectively estimate the

design performance through a post-mortem analysis. Finally, some ETG transformations have

been illustrated. For example, the transformation of the ETG to an event-driven system has

shown how the DSE can be made by the use of advanced control techniques.
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6 TURNUS: a design space exploration
environment for CAL programs

In this section the main functionalities and the iterative design flow of TURNUS [16, 17, 19, 20]

are presented. This is a DSE environment for dynamic dataflow programs. Compared to the

state of the art exploration tools illustrated in Section 4.3, the novel features include both

the possibility to estimate the design performance and to explore and optimize the design

space based on the analysis of the ETG presented in Chapter 5. Moreover, it provides an

application programming interface (API) to profile CAL programs that is usable by third-party

dataflow compilers. In the following, the design flow together with the high-level models of

the dataflow program and the architecture are illustrated. Furthermore, it is illustrated how

this environment can be integrated with already existing dataflow environments.

6.1 Design flow features and capabilities

An overview of the TURNUS iterative design flow is depicted in Figure 6.1. This DSE en-

vironment is composed of two main blocks: the TURNUS profiler, and the TURNUS ETG

post-mortem scheduling and analysis. The TURNUS profiler is used in the first stages of the

DSE for evaluating both the ETG and the high-level profiling information of a CAL program.

Successively, the ETG is post-mortem scheduled in order to estimate the design performance

and explore and optimize the design space of the program. Results of the DSE can be used by

the designer that is informed of which parts of the CAL program should be restructured, and

by third-party tools that implement the program on the mapped target architecture.

6.1.1 Profiler

The TURNUS profiler is used on top of a CAL compiler infrastructure where the source code is

interpreted. It provides a set of application programming interfaces (API) that are used to make

a high level profiling analysis of the code. The profiler API is illustrated in Section 7.4. The only

input of the profiler is the CAL program description. This contains the CAL program input

description, which is defined by the CAL project and its collection of source code files. After
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the profiled simulation, a high-level profiling data file is generated. This contains profiling

information concerning the workload and the buffer size utilization. Furthermore, using the

high-level profiling information, the ETG file is generated. The collection of profiling data and

how these are used to evaluate the ETG is illustrated in Section 7.2.

6.1.2 Execution trace graph post-mortem scheduling and analysis

The iterative DSE is performed by analyzing the ETG generated by the profiler. The ETG is

used for both the design performance estimation and the exploration of the design space. At

this step both the program and architecture model (i.e. defined as illustrated in Section 6.2)

are used in order to estimate and define the possible design points. The performance estima-

tion can be enhanced by using clock-accurate profiling information retrieved by third-party

profilers (e.g. GnuProf, Valgring, ModelSim). The design space can be constrained using the

constraints information provided by the designer. Examples of available design space opti-

mization are the possibility to minimize and optimize the buffer size configuration, partition

the program on many-cores, and reduce the dynamic power dissipation. At this stage, the

following analysis can be done:

• Performance estimation: illustrated in Section 8.1, is used to estimate the design per-

formance for a given mapping configuration. The ETG post-mortem scheduler is based

on a discrete event simulator. The main functionality is to assign timing weight to

each firing and dependency of the ETG. The timed ETG is then used by the underlying

analysis provided by the framework.

• Critical path evaluation: illustrated in Section 8.2, is used to evaluate the critical path

of an application. It defines what is called design space critical path, which is used to

define bounds on the design space of the application.

• Impact analysis: illustrated in Section 8.3, is used to provide the code refactoring

directions to the designer. It provides a list of actor and actions where code refactoring

should be concentrated.

• Buffer dimensioning: illustrated in Section 8.4, provides a collection of heuristic al-

gorithms for estimating a feasible bounded buffer size configuration. Furthermore, a

solution for the problem of maximizing the application throughput and, at the same

time, minimizing the buffer size configuration is presented.

• Partitioning: illustrated in Section 8.5, provides a collection of heuristic algorithms

tailored for partitioning the application on multi-clock domains architectures. The

main requirements are that the application throughput is maximized and, at the same

time, the dynamic power dissipation is minimized.

The design space can be iteratively explored. For each iteration a mapping configuration file

is generated. This is used to drive third-party dataflow tools (e.g. low-level code generators)
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during the design implementation stages. Section 6.3 illustrates a list of tools already integrated

with this framework.
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Figure 6.1: TURNUS design flow.
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6.2 High-level models

In the following, the high-level models used in the framework to represent the CAL dataflow ap-

plication, the target architecture, the ETG and the program profiling information are illustrated.

These are presented using a (simplified) unified modeling language (UML) representation

that respects the framework APIs available in [16].

6.2.1 CAL dataflow program

The CAL dataflow program model describes the basic structure of the program. A specific

meta model representation is used in order to extend the interoperability of CAL tools al-

ready available. A CAL code compiler infrastructure that wants to make use of the TURNUS

framework should wrap its intermediate representation and generate a consistent program

model. The basic components of this representation are described in the following section.

The formalism that is used is the same as the one illustrated in Section 2.5.

Network

The Network object is used to model a dataflow program network N (A,B). As depicted in

Figure 6.2, this object is defined by the following elements:

• id: String element that identifies the network under analysis.

• sourceFile: String attribute that contains the relative source file path of the network

(i.e. the .xdf or .nl file name).

• version: Version element that contains the versioning information of the source file.

• project: String attribute that contains the name of the CAL project where the source

file is stored.

• classes: list of ActorClass elements contained in the network.

• actors: list of Actor elements contained in the network.

• buffers: list of Buffer elements contained in the network.

Actor-class

The ActorClass object is used to model an actor-class κ ∈ K . As depicted in Figure 6.3, this

object is defined by the following elements:

• name: String attribute that identifies the actor-class.
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Network
+ id : String
+ sourceFile : String
+ project : String

Version

ActorClass

Actor

Buffer

classes
1..n

buffers
1..n

version
1

actors
1..n

Figure 6.2: The Network object.

• nameSpace: String attribute used to represent the level of hierarchy of the source

file.

• sourceFile: String attribute that contains the relative source file path of the actor-

class.

• version: Version element that contains the versioning information of the source file.

• Actions: list of Action elements contained in the actor-class.

• inputPorts: list of input Port elements contained in the actor-class.

• outputPorts: list of output Port elements contained in the actor-class.

• variables: list of Variable elements contained in the actor-class.

• procedures: list of Procedure elements contained in the actor-class.

It must be noted that the concatenation of the name space and the name cannot be shared

among actor-classes defined on the same Network.

Actor

The Actor object is used to model an actor a ∈ A. As depicted in Figure 6.4, this object is

defined by the following elements:

• id: String attribute that identifies the actor. It must be noted that the same id cannot

be shared among actors of the same network.

• actorClass: ActorClass element that is instantiated by the actor.
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ActorClass
+ name : String
+ nameSpace : String
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Figure 6.3: The ActorClass object.

Actor
+ id : String

ActorClassactorClass
1

Figure 6.4: The Actor object.

Action

The Action object is used to model an action λ ∈Λ. As depicted in Figure 6.5, this object is

defined by the following elements:

• id: String attribute that identifies the action. It must be noted that the same id cannot

be shared among actions of the same actor.

• label: Qid element that contains the qualifier identifier of the action.

• guards: list of the Guard elements used by the action.

• procedure: list of Procedure elements used by the action.

• variables: list of Variables elements used by the action.

It must be noted that, even though actions are defined in the ActorClass, these are always

considered by the framework as a tuple (Actor,Action) when analyses are performed.
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Action
+ id : String

Quid

Guard

Procedure

Variable

label
1

guards

0..n

procedures

0..n

variables
0..n

Figure 6.5: The Action object.

Qid

The Qid object is used to model a qualifier identifier, which is a sequence of identifiers

separated by a dot. As depicted in Figure 6.6, this object is defined by the following elements:

• ids: array of String elements that contains the ordered sequences of identifiers.

• size: Integer attribute that defines the size of the identifier in terms of elements in

the ids array.

Quid

+ id : String[]
+ size : Integer

Figure 6.6: The Quid object.

Procedure

The Procedure object is used to model a procedure (or a function) defined in an actor-class

and called by an action. As depicted in Figure 6.7, this object is defined by the following

elements:

• name: String attribute that identifies the procedure. It must be noted that the same

name cannot be shared among procedures of the same actor-class.

• variables: list of Variable elements used by the procedure.
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It must be noted that, even though procedures are defined in the ActorClass, these are

always considered by the framework as a tuple (Actor,Procedure) when analyses are

performed.

Procedure
+ name : String

Variablevariables
0..n

Figure 6.7: The Procedure object.

Internal actor variable

The Variable object is used to model an internal variable. As depicted in Figure 6.8, this

object is defined by the following elements:

• name: String attribute that identifies the actor internal variable. It must be noted

that the same name cannot be shared among variables of the same actor-class.

• type: Type element that contains the variable type.

It must be noted that, even though variables are defined in the ActorClass, these are always

considered by the framework as a tuple (Actor,Variable) when analyses are performed.

Variable
+ name : String

Typetype

1

Figure 6.8: The Variable object.

Guard

The Guard object is used to model an action guard. As depicted in Figure 6.9, this object is

defined by the following elements:

• id: String attribute that identifies the guard. It must be noted that the same id cannot

be shared among guards of the same action.

• variables: list of Variable elements used by the guard.

• ports: list of input Port elements used by the guard.

It must be noted that, even though guards are defined in the Action, these are always con-

sidered by the framework as a tuple (Actor,Action,Guard) when analyses are performed.

92



6.2. High-level models

Guard
+ id : String

Port

Variable
variables

0..n

ports

0..n

Figure 6.9: The Guard object.

Port

The Port object is used to model an input port p i n
i ∈ P i n

a or an output port pout
j ∈ P out

a . As

depicted in Figure 6.10, this object is defined by the following elements:

• name: String attribute that identifies the port. It must be noted that the same name

cannot be shared among ports of the same kind (i.e. input or output) and of the same

actor-class.

• type: Type element that contains the port type.

It must be noted that, even though ports are defined in the ActorClass, these are always

considered by the framework as a tuple (Actor,Port) when analyses are performed.

Port
+ name : String

Typetype

1

Figure 6.10: The Port object.

Buffer

The Buffer object is used to model a buffer b ∈ B . As depicted in Figure 6.11, this object is

defined by the following elements:

• sourceActor: Actor element that contains the source actor.

• sourcePort: Port element that contains the source output port.

• targetActor: Actor element that contains the target actor.

• targetPort: Port element that contains the target input port.

Type

A basic type system is modeled using the Type object. As depicted in Figure 6.12, this object

is defined by the following elements:
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Buffer

Actor

sourceActor
1

PortsourcePort
1

Port

targetPort

1

Actor

targetActor

1

Figure 6.11: The Buffer object.

• name: String attribute that identifies the type.

• size: Integer attribute that defines the number of elements contained in a complex

data type (e.g. elements of a list of elements of the same type).

• bits: Integer attribute that defines the number of bits required to represent the

variable of the given data type.

• subType: Type element that contains the sub-type of a type, if any. This attribute is

used to model complex data types (e.g. elements of a list of elements of the same type).

Type

+ name : String
+ size : Integer
+ bits : Integer

subType
1

Figure 6.12: The Type object.

Version

The Version object is used to define a unique identifier of a file. It is used, for example,

to track the code modification and refactoring that could be made on a network or in an

actor-class. TURNUS supports a Git versioning system [162] and, as depicted in Figure 6.13,

for this object defines the following elements:

• date: String attribute that contains the time stamp of the last local file modification.
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• revision: String attribute that contains the commit hash identifier of the file.

• repository: String attribute that contains the Git repository URL of the file.

Version
+ date : String
+ revision : String
+ repository : String

Figure 6.13: The Version object.

6.2.2 Architecture and constraints

The platform model describes the structure of the architecture where the dataflow program is

implemented. A basic meta model representation is used in order to represent the available

processing elements where actors are mapped and the media where buffers are mapped. The

platform is modeled as a graph G(PU , ME ,L) where:

• PU = {pu1, pu2, . . . , punPU } is the set of processing elements.

• ME = {me1,me2, . . . ,menME } is the set of media.

• L = {l1, l2, . . . , lnL } is the set of links between processing elements and media.

As an example, Figure 6.14 depicts the Xilinx Zynq-7 ZC702 evaluation-board [163] architec-

ture model defined with this formalism. In this case, the set of processing elements PU is

composed of three components: two ARMs and an FPGA, respectively. Each ARM has its own

L1 memory. The two ARMs share a L2 memory between them and a DDR3 memory with

the FPGA. Furthermore, the bus-interfaces AXI-HP, AXI-GP and AXI-ACP are modeled with

three different media. Each one of these memories is modeled with a medium mei ∈ M and

each interconnection between a processing element and a medium with a link li ∈ L. The

basic components of this architecture high-level representation are described in the following

section.

Platform

The Platform object is used to model a platform G(PU , ME ,L). As depicted in Figure 6.15,

this object is composed of the following elements:

• name: String attribute that contains an identifier of the platform.

• media: list of Medium elements available in the platform.
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(a) Xilinx architecture model.

ARM

FPGA

ARM

L2

L1

L1

AXI-HP

AXI-GP

AXI-ACP

DDR3

(b) TURNUS architeture model.

Figure 6.14: Xilinx Zynq-7 ZC702 evaluation-board architecture model.

• processingElements: list of ProcessingElement elements available in the plat-

form.

• links: list of Links elements available in the platform.

Platform
+ name : String

ProcessingElement

Medium

Link

processingElements

1..n

media
1..n

links
1..n

Figure 6.15: The Platform object.

Processing element

The ProcessingElement object is used to model a processing element pu ∈ PU . As

depicted in Figure 6.16, this object is defined by the following elements:

• name: String attribute that contains an identifier of the operator. Operators of the

same platform cannot share the same name.

• family: String attribute that contains the operator family identifier.
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• clock: Double attribute that defines the period (in ns) of the operator clock cycle.

• schedulers: list of Scheduler elements available in the processing element.

• supportedTypes: list of Type elements supported by the processing element.

ProcessingElement

+ name : String
+ family : String
+ clock : Double

Scheduler

Type

schedulers
1..n

supportedTypes

1..n

Figure 6.16: The ProcessingElement object.

Medium

The Medium object is used to model a medium me ∈ ME . As depicted in Figure 6.17, this

object is defined by the following elements:

• name: String attribute that contains an identifier of the medium. Media of the same

platform cannot share the same name.

• family: String attribute that identifies the medium family name.

• schedulers: list of Scheduler elements available in the medium.

• inputClock: Double attribute that defines the period (in ns) of the medium input clock

cycle.

• outputClock: Double attribute that defines the period (in ns) of the medium output

clock cycle.

• maxSize: Integer attribute that defines the maximum size (in bi t ) of the medium.

• maxPush: Integer attribute that defines the maximum number of bits that can be

consumed by the medium during each input clock cycle.

• maxPop: Integer attribute that defines the maximum number of bits that can be

produced by the medium during each output clock cycle.
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Medium
+ name : String
+ family : String
+ inputClock : Double
+ outputClock : Double
+ maxSize : Integer
+ maxPop : Integer
+ maxPush : Integer

Schedulerschedulers
1..n

Figure 6.17: The Medium object.

Link

The Link object is used to model a link l ∈ L. As depicted in Figure 6.18, this object is defined

by the following elements:

• medium: Medium element that defines the medium end-point of the link.

• operator: Operator element that defines the operator end-point of the link.

Link

Medium

Operator

medium
1

operator

1

Figure 6.18: The Link object.

Scheduler

The Scheduler object is used to model a scheduling policy of an operator or a medium. As

depicted in Figure 6.19, this object is defined by the following elements:

• name: String attribute that contains an identifier of the scheduler. Schedulers of the

same medium or operator cannot share the same name.

• selectionTime: Double attribute that defines the time required for making a schedul-

ing choice.
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Scheduler
+ name : String
+ selectionTime : Double

Figure 6.19: The Scheduler object.

6.2.3 Execution trace graph

The ETG model describes the graph-based structure illustrated in Chapter 5. A basic meta

model representation is used in order to represent both the firings and dependencies sets. The

basic components of this representation are described in the following section.

Trace

The Trace object is used to model an ETG G(V ,E). As depicted in Figure 6.20, this object is

defined by the following elements:

• firings: list of Firing elements contained in the ETG.

• Dependencies: list of Dependency elements contained in the ETG.

Trace

Firing

Dependency

firings

1..n

dependencies

0..n

Figure 6.20: The Trace object.

Firing

Each firing si ∈ S of the ETG is represented by a Firing object. As depicted in Figure 6.21,

this object is defined by the following elements:

• id: Long attribute that defines the firing identifier i . Firings of the same trace cannot

share the same id.

• actorClass: String attribute that contains the name of the ActorClass.

• actor: String attribute that contains the id of the Actor.

• action: String attribute that contains the id of the Action.
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Firing

+ id : Long
+ actorClass : String
+ actor : String
+ action : String

Figure 6.21: The Firing object.

Dependency

Each dependency (si , s j ) ∈ D of the ETG is represented by a Dependency. As depicted in

Figure 6.22, this object is defined by the following elements:

• sourceFiring: Long attribute that contains the source Firing identifier i .

• targetFiring: Long attribute that contains the target Firing identifier j .

• kind: String attribute that identifies the dependency kind k. Valid values are: variable,

fsm, guard, port and tokens.

• count: Integer attribute that contains the number of tokens (required only for token

dependencies).

• port: String attribute that contains the Port name (required only for port dependen-

cies).

• sourcePort: String attribute that contains the source Port name (required only for

token dependencies).

• targetPort: String attribute that contains the target Port name (required only for

token dependencies).

• direction: String attribute that identifies the direction of a dependency. Valid names

are: read/read, read/write, write/read, write/write, enable and disable. (required only for

port, internal variable and guard dependencies).

• variable: String attribute that contains the Variable name (required only for inter-

nal variable dependencies).

• guard: String attribute that contains the Guard identifier (required only for guard

dependencies).

• appearance: Integer attribute that contains the appearance order of a guard en-

able/disable window (required only for guard dependencies).
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Dependency

+ sourceFiring : Long
+ targetFiring : Long
+ kind : String
+ count : String
+ port : String
+ sourcePort : String
+ targetPort : String
+ direction : String
+ variable : String
+ guard : String
+ appearance : Integer

Figure 6.22: The Dependency object.

6.2.4 Profiling information

The profiling information represents the data collection provided by third-party profiles. This

data set denoted with Θ contains clock-accurate profiling information for each actor and

action of the dataflow program. The basic components of this data set are described in the

following section.

Network profiling data

The NetworkProfilingData object contains the profiling information of a Network

implemented and profiled on a specific Operator. As depicted in Figure 6.23, this object is

defined by the following elements:

• network: String attribute that contains the Network name.

• operator: String attribute that contains the Operator name.

• actionsData: a list of ActionProfilingData elements that contains the profiling

data for each tuple (Actor,Action) of the network.

Action profiling data

TheActionProfilingData object contains the profiling information of each tuple (Actor,Action).

As depicted in Figure 6.23, this object is defined by the following elements:

• actor: String attribute that contains the Actor identifier.

• action: String attribute that contains the Action identifier.

• max: Double attribute that contains the maximum number of clock cycles.
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• min: Double attribute that contains the minimum number of clock cycles.

• average: Double attribute that contains the average number of clock cycles.

ActionProfilingData

+ actor : String
+ action : String
+ average : Double
+ max : Double
+ min : Double

NetworkProfilingData

+ network : String
+ operator : String

actionsData
1..*

Figure 6.23: The NetworkProfilingData and ActionProfilingData objects.

6.3 Integration with third-party CAL dataflow environments

The Orcc compiler and the Xronos framework illustrated in Section 2.5.6 are two examples of

CAL dataflow environments that are integrated into the TURNUS design flow. As depicted in

Figure 6.24, both are used as compiler infrastructures. Additional CAL dataflow environments

have been successfully integrated within the TURNUS design flow as illustrated in [164, 165,

166, 167, 168, 169, 170, 171]. In the following, it is discussed how both Orcc and Xronos interact

with the TURNUS environment, as these two frameworks have been extensively used for the

purpose of this dissertation.

Orcc

As depicted in Figure 6.24, the Orcc and the TURNUS design flow are integrated in the following

parts:

• Code interpretation: TURNUS Orcc RVC-CAL profiler [172] provides an extension of

the basic Orcc CAL interpreter functionalities, where the TURNS APIs illustrated in

Section 7.4 have been integrated. This extended code interpreter and profiler is used

both to generate the ETG and the high-level profiling data of the CAL program under

analysis.

• Profiling data: Orcc supports the generation of C/C++ code where the performance

application programming interface (PAPI) [173, 174, 175] is integrated. During the

program execution, clock-accurate profiling information is retrieved and used, during

the DSE performed by TURNUS, to enhance the architecture model.

• Mapping: mapping configuration file generated with TURNUS can directly be used in

Orcc. In fact, for each Orcc back-end it is possible to drive the code compilation using

the buffer size and partitioning configurations evaluated by TURNUS.
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Xronos

As depicted in Figure 6.24, the Xronos and the TURNUS design flow are integrated in the

following parts:

• Profiling data: Xronos provides a test-bench platform where it is possible to retrieve the

exact number of clock cycles required for executing a CAL action. This clock-accurate

profiling information is then used during the DSE performed by TURNUS to enhance

the architecture model and the performance estimation.

• Mapping: mapping configuration file generated with TURNUS can directly be used in

Xronos. It is possible to drive the code synthesis using the buffer size and partitioning

configurations on multi-clock domain platforms.

6.4 Conclusions

In this chapter the DSE environment developed and used for demonstrating the effectiveness

of the design methodology discussed in this dissertation has been introduced. Its main func-

tionalities and structure have been illustrated. This DSE environment provides a complete

DSE solution for dynamic dataflow programs implemented in heterogeneous and massively

parallel architectures. The main functionalities are a collection of application programming

interfaces (APIs) for profiling dataflow programs during their code interpretation. The main

features of this profiler are the capability to generate an ETG and provide high-level profiling

information both retrieved during a high-level code interpretation of the program. Further-

more, the main design space analysis and performance estimation capabilities have been

illustrated.
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Figure 6.24: The open RVC-CAL compiler (Orcc) and Xronos infrastructure integrated in the
TURNUS design flow.
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The TURNUS CAL profiler, as every program profiler, provides a statistical summary of the

execution complexity of a CAL program. Information that can be retrieved is, for example, the

number of operators (i.e. see Table 3.1) that each procedure, action and actor executed, the

number of tokens produced and consumed by each action and actor and the buffer utilizations.

Moreover, it provides a complete Java application programming interface (API) that can be

plugged in a CAL code interpreter. One of its most powerful functionalities is the possibility to

generate the ETG illustrated in Chapter 5 without generating any partial implementation of

the code. Moreover, it does not depend on any third-party profilers and it can be integrated

into an existing CAL code interpreter. At the time of writing this thesis, an integrated version

of the TURNUS profiler is provided for the Orcc CAL code interpreter [56] and available as

an open source product [16]. In this chapter the main functionalities and novelties that have

been introduced are highlighted. Successively, the set of data that can be collected during the

program interpretation is illustrated. Finally, it is described how this set of profiling data is

used when building the ETG of the program execution.

7.1 Advances in profiling CAL programs

The DSE exploration based on the ETG post-processing can be effectively performed only

if the ETG satisfies the requirements illustrated in Chapter 5. CAL profilers that are able to

generate an ETG are available on both the CAL Design Suite [122, 33] and the Caltoopia [176]

framework. However, as illustrated in Table 7.1, the ETG that these two profilers are able to

evaluate does not completely satisfy all requirements. For example, the CAL Design Suite is

not able to identify the internal variables and port dependencies. Caltoopia, on the other

hand, can identify only tokens dependencies. Furthermore, its ETG is not untimed. Moreover,

as illustrated in Figure 7.1, both profilers require a partial C/C++ implementation of the CAL

program. Consequently, the ETGs are evaluated through a binary execution of the program.

The CAL Design suite makes use of the Intel Pin tool [82, 177] in order to obtain a dynamic

binary code instrumentation, while Caltoopia makes use of its native libraries. However,

in both cases, the high-level profiling data can be biased by low-level code optimizations
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performed by the compilers (e.g. GCC [178], ICC [179]). Table 7.1 provides a summarized

overview of the new functionalities introduced by the TURNUS CAL profiler. Contrary to

the other two environments, the TURNUS CAL profiler provides a collection of APIs (i.e. see

Section 7.4) that can be integrated in the available CAL code interpreters. Furthermore, the

profiling of the CAL program is performed directly through a CAL code interpretation, without

requiring any partial low-level implementation and binary code execution. The profiling

information can be obtained with different levels of granularity. In fact, it is possible to obtain

information for each actor-class, actor, action, procedure and buffer. It must be noted that the

profiling data information is provided as a set of statistical data (i.e. see Section 7.2) where

the call of each operator, the load and write of each variable and token are reported. The ETG

generated by the TURNUS CAL profiler fully satisfies the requirements illustrated in Chapter 5.

CAL code interpreter

TURNUS Profiler

Execution 
Trace Graph

High-level 
profiling 

data

CAL 
program

API

(a) TURNUS CAL profiler.

Orcc CAL code back-end

C/C++ code

Execution 
Trace Graph

Profiling
data

CAL 
program

.bin

Intel Pin tool

Dynamic binary code instrumentation

Binary code execution

(b) CAL Design Suite.

Caltoopia CAL code back-end

C/C++ code

Tokens 
Trace

CAL 
program

.binBinary code execution

(c) Caltoopia.

Figure 7.1: CAL profilers design flow.
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Table 7.1: CAL profilers features.

(a) Environment and main features.

Tool Environment Static analysis Dynamic analysis API Notes

TURNUS Java 1.7 Code interpretation
Cal Design Suite Java 1.6 C/C++ executable - (1)
Caltoopia Java 1.6 - C/C++ executable -

(b) Profiling granularity.

Tool Actor-class Actor Action Procedure Buffer

TURNUS
Cal Design Suite - -
Caltoopia -

(c) Profiling information.

Tool Statistical data Operator calls Internal variables Tokens Buffers

TURNUS
Cal Design Suite - - -
Caltoopia - - -

(d) Profiling information.

Dependencies
Tool Untimed FSM Internal variables Port Tokens Guard Notes

TURNUS (2)
Cal Design Suite - - -
Caltoopia - - - - - (3)

Notes: (1) requires Intel Pin [82, 177] as a third-party tool for instrumenting the binary
program; (2) guard enable and disable dependencies analysis is an under-development
functionality; (3) token production/consumption is logged during the program execution and
successively used to build the ETG.
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7.2 Data collection

In the following section, the set of profiling data that is collected during the code interpretation

of a CAL program is illustrated.

7.2.1 Firing data

For each action execution, the TURNUS profiler generates a unique firing identifier (FID)

stored in aLong variable. During the firing execution, the profiling information is stored in the

FiringData object. As depicted in Figure 7.2, this object contains the following elements:

• scheduledByFsm: Boolean attribute that indicates if the firing has been scheduled by

the internal actor FSM.

• readVariables: key-value map element that has a Variable as a key and an Integer

as a value. It indicates how many times the firing has read the actor internal variable. In

other words, depending on the variable Type, the value corresponds to the number of

Load or LoadList operations that has been performed.

• writeVariables: key-value map element that has aVariable as a key and anInteger

as a value. It indicates how many times the firing has written the actor internal variable.

In other words, depending on the variable Type, the value corresponds to the number

of Store or StoreList operations that has been performed.

• calledOpcodes: key-value map element that has an Opcode as a key and an Integer

as a value. It indicates how many times the firing has called a specific operation code.

• calledProcedures: key-value map element that has a Procedure as a key and an

Integer as a value. It indicates how many times the firing has called a specific

Procedure.

• enabledGuards: list of Guard elements that contains the list of guards that has been

enabled by the firing.

• disabledGuards: list of Guard elements that contains the list of guards that has been

disabled by the firing.

• consumedTokens: key-value map element that has a Buffer as a key and a list of

Token elements as a value. It contains the list of consumed tokens for each buffer.

• consumedTokens: key-value map element that has a Buffer as a key and a list of

Token elements as a value. It contains the list of produced tokens for each buffer.
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FiringData

+ firing : Long
+ scheduledByFsm : Boolean

Guard

enabledGuards
0..*

disabledGuards
0..*

Map

+ value : Integer

Variablekey

1
writeVariables

0..*

readVariables
0..*

Map

+ value : Integer
Opcodekey

1

callOpcodes

0..*

Map

+ value : Integer

Procedurekey

1

callProcedure
0..*

Map Fifo

Token

key

1
value

1..*

consumedTokens
0..*

producedTokens

0..*

Figure 7.2: The FiringData object.

7.2.2 Action data

For each action λ ∈Λ a set of statistical data is collected during the entire program execution.

This set of data is defined by the ActionData object. As depicted in Figure 7.3, this object

contains the following elements:

• readVariables: key-value map element that has aVariable as a key and aStatistics

object as a value. It contains the statistical information concerning the number of read-

ings of a variable performed by all the firings of the action.

• wroteVariables: key-value map element that has aVariable as a key and aStatistics

object as a value. It contains the statistical information concerning the number of writ-

ings of a variable performed by all the firings of the action.

• calledOpcodes: key-value map element that has anOperand as a key and aStatistics

object as a value. It contains the statistical information concerning the number of calls

of an operation code performed by all the firings of the action.

• calledProcedures: key-value map element that has a Procedure as a key and a

Statistics object as a value. It contains the statistical information concerning

the number of calls of a procedure performed by all the firing of the actions.
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• consumedTokens: key-value map element that has aBuffer as a key and aStatistics

object as a value. It contains the statistical information concerning the number of tokens

consumed by all the firings of the action.

• producedTokens: key-value map element that has aBuffer as a key and aStatistics

object as a value. It contains the statistical information concerning the number of tokens

produced by all the firings of the action.

This data set is updated each time that a firing ends its execution: the firing’s data is merged in

the corresponding action’s data.

ActionData

Map

Variable

Statistics

key

1
value

1writeVariables
0..*

readVariables
0..*

Map

Opcode

Statistics

key

1
value

1

callOpcodes

0..*

Map
Procedure

Statistics

key

1
value

1

callProcedure
0..*

Map
Fifo

Statistics

key

1
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1

consumedTokens
0..*

producedTokens

0..*

Figure 7.3: The ActionData object.

7.2.3 Actor data

For each actor a ∈ A a set of statistical data is collected during the entire program execution.

This information is stored in the ActorData object. As depicted in Figure 7.4, this object

contains the following elements:

• firedActions: key-value map element that has an Action as a key and an Integer as

a value. It contains the number of firings of each action contained in the actor.
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• readVariables: key-value map element that has aVariable as a key and aStatistics

object as a value. It contains the statistical information concerning the number of read-

ings of a variable performed by all the firings of the actor.

• wroteVariables: key-value map element that has aVariable as a key and aStatistics

object as a value. It contains the statistical information concerning the number of writ-

ings of a variable performed by all the firings of the actor.

• calledOpcodes: key-value map element that has anOperand as a key and aStatistics

object as a value. It contains the statistical information concerning the number of calls

of an operation code performed by all the firings of the actor.

• calledProcedures: key-value map element that has a Procedure as a key and a

Statistics object as a value. It contains the statistical information concerning

the number of calls of a procedure performed by all the firings of the actor.

• consumedTokens: key-value map element that has aBuffer as a key and aStatistics

object as a value. It contains the statistical information concerning the number of tokens

consumed by all the firings of the actor.

• producedTokens: key-value map element that has aBuffer as a key and aStatistics

object as a value. It contains the statistical information concerning the number of tokens

produced by all the firings of the actor.

Furthermore, an additional set of data is used to track which was the last action firing that

used a resource (e.g. internal variable, input or output port). This information is stored in

the ActorTracingData object. As depicted in Figure 7.5, this object contains the following

elements:

• lastFsmScheduled: Long attribute that contains the FID of the last firing scheduled by

the actor state machine.

• lastVariableReader: key-value map element that has a Variable as a key and a Long

as a value. For each variable, it contains the FID, if it exists, of the last action firing that

read the variable.

• lastVariableReader: key-value map element that has a Variable as a key and a Long

as a value. For each variable, it contains the FID, if it exists, of the last action firing that

wrote the variable.

• lastGuardEnabler: key-value map element that has a Guard as a key and a Long as a

value. For each guard, it contains the FID, if it exists, of the last action firing that enabled

the guard.

• lastGuardDisabler: key-value map element that has a Guard as a key and a Long as a

value. For each guard, it contains the FID, if it exists, of the last action firing that disabled

the guard.
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Figure 7.4: The ActorData object.

• lastBufferReader: key-value map element that has a Buffer as a key and a Long as

a value. For each buffer, it contains the FID, if it exists, of the last action firing that

consumed a token from this buffer.

• lastBufferWriter: key-value map element that has a Buffer as a key and a Long as

a value. For each buffer, it contains the FID, if it exists, of the last action firing that

produced a token on this buffer.

This data set is updated each time that a firing ends its execution: the FiringData are

merged in the corresponding actor data. It must be noted that the data merging can be done

only after the computation of the ETG dependencies has been performed as described in

Section 7.3.

7.2.4 Buffer data

For each buffer b ∈ B the following set of statistical data is collected during the entire program

execution.This information is stored in the BufferData object. As depicted in Figure 7.6,

this object contains the following elements:
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Figure 7.5: The ActorTracingData object.

• consumedTokens: Statistics element that contains the statistical information

about the number of tokens that has been consumed from the buffer.

• producedTokens: Statistics element that contains the statistical information about

the number of tokens that has been produced from the buffer.

• maxOccupancy: Integer attribute that contains the maximum number of stored

tokens in the buffer.

• readMisses: Integer attribute that contains the sum of read misses.

• readHits: Integer attribute that contains the sum of read hits.

• writeMisses: Integer attribute that contains the sum of write misses.

• writeHits: Integer attribute that contains the sum of write hits.

BufferData
+ readMisses : Integer
+ readHits : Integer
+ writeMisses : Integer
+ writeHits : Integer
+ maxOccupancy : Integer

StatisticsproducedTokens

0..*

Statistics
consumedTokens

0..*

Figure 7.6: The BufferData object.
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7.2.5 Statistical data

Summary statistics for a stream of data values are collected in a Statistics object. As

illustrated in Figure 7.7, this object contains the following information:

• min: Double attribute that contains the minimum value of the data stream.

• max: Double attribute that contains the maximum value of the data stream.

• average: Double attribute that contains the average of the data stream.

• variance: Double attribute that contains the variance of the data stream.

• count: Long attribute that contains the number of elements stored in the data stream.

Statistics
+ min : Double
+ max : Double
+ average : Double
+ variance : Double
+ count : Long

Figure 7.7: The Statistics object.

7.2.6 Profiled token

During the program execution each Token is treated as an object that contains, as depicted

in Figure 7.8, both of the following information:

• producer: Long attribute that contains the FID of the firing that produced the token.

• value: generic Object attribute that contains the encapsulated value of the token.

It must be noted that, as illustrated in the next Section 7.3, the information concerning the

producer is indispensable in order to evaluate the tokens dependencies of an ETG.

Token
+ produced : Long
+ value : Object

Figure 7.8: The Token object.
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7.3 Building of the execution trace graph

At the end of each action firing, a Firing object is created by analyzing the corresponding

FiringData. Each Firing object represents a single action firing si ∈ S, where the FID

is evaluated such as i =FiringData.firing. Furthermore, it is possible to compute the

incoming dependencies set δ(si )−S . This set is evaluated immediately after si ends its execution.

The respective firing data and actor data contained in the FiringData and ActorData,

respectively, are analyzed. In the following, it is illustrated how for each dependency kind

described in Section 5.2.2, these data objects are be analyzed. By using this methodology, the

ETG can be immediately streamed and stored in a file during the simulation process. It must

be noted that the memory requirement of the profiler is limited and predictable: in fact, the

size of the data sets is limited and predictable too.

Internal variable dependencies

The set of variable dependencies is evaluated by analyzing both the FiringData and the

ActorData sets. For each Variable that has been read by the firing si , a read/read de-

pendency (s j , si ) ∈ Dv is defined if the read variables map of the ActorData contains an

FID for the given Variable. Similarly a read/write dependency (s j , si ) ∈ Dv is defined if

the written variables map of the ActorData contains an FID for the given Variable. For

each Variable that has been written by the firing si , a write/read dependency (s j , si ) ∈ Dv is

defined if the read variables map of theActorData contains an FID for the givenVariable.

Similarly a write/write dependency (s j , si ) ∈ Dv is defined if the written variables map of the

ActorData contains an FID for the given Variable.

Finite state machine dependency

The internal state machine dependency is evaluated by analyzing both the FiringData and

the ActorData sets. In fact, (s j , si ) ∈ D f can be defined if the firing si has been scheduled

by the actor state machine and if the ActorData contains an FID j of a firing that has been

previously scheduled by the internal state machine.

Guard dependencies

The set of guard dependencies is evaluated by analyzing bothFiringData and theActorData

set. For each Guard that has been enabled by the firing si , an enable dependency (s j , si ) ∈ Dg

is defined if the last guard disabler map of the ActorData contains an FID for the given

Guard. Similarly, a disable dependency (s j , si ) ∈ Dg is defined if the last guard enabler map

of the ActorData contains an FID for the given Guard.
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Port dependencies

The set of port dependencies is evaluated by analyzing both the FiringData and the

ActorData sets. For each Buffer, where at least one token has been consumed by the

firing si , a read/read dependency (s j , si ) ∈ Dp is defined if the last buffer reader map of the

ActorData contains an FID for the given Buffer. Similarly, a write/write dependency

(s j , si ) ∈ Dp is defined if the last buffer writer map of the ActorData contains an FID for the

given Buffer.

Tokens dependencies

The set of token dependencies is evaluated by directly analyzing the FiringData set. In

fact, for each Token contained in the map of consumed tokens it is possible to identify a

(s j , si ) ∈ D t where j is the Token.producer (i.e. which identifies the token producer).

7.4 Application programming interface

The collection of profiling APIs provided by TURNUS is evaluated in the following. These

methods are used by a third-party CAL code interpreter. It must be noted that this API can

be used under the assumption of a serial code interpretation. In other words, the code

interpretation can be performed only by taking into account one single action firing at a time.

Long startFiring(Actor actor, Action action, Boolean sbfm)
This method is called when a new action can be fired. A new and empty FiringData object

is created and associate to this new firing. The TURNUS profiler generates a new firing

identifier.

Void endFiring()
This method is called when the current action firing has terminated its execution. After the call

of this method the current firing is added to the ETG as illustrated in Section 7.3. Furthermore,

both the ActionData and the ActorData data are updated as illustrated in Section 7.2.

Void read(Variable variable, Object value)
This method is called each time a Variable is read by the current action firing. The

readStateVariable map defined in the FiringData is updated accordingly.

Void write(Variable variable, Object value)
This method is called each time a Variable is written by the current action firing. The

writeStateVariable map defined in the FiringData is updated accordingly.

Object[] produce(Buffer buffer, Object[] tokens)
This method is called each time the current action firing writes a collection of tokens on the

Buffer. It must be noted that the TURNUS profiler internally wraps each token Object
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in a ProfiledToken object as discussed in Section 7.2. Both the FiringData and the

BufferData are updated accordingly.

Object[] consume(Buffer buffer, Integer numTokens)
This method is called each time the current action firing consumes numTokens from aBuffer.

It must be noted that the code interpreter receives the Object and it is unaware of the

ProfiledToken object used to store the producer identifier (i.e. see Section 7.2). In other

words, only the TURNUS profiler extends, internally, the concept of profiled token. Both the

FiringData and the BufferData are updated accordingly.

Void enable(Guard guard)
This method is called each time the current action firing enables a Guard. The FiringData

is updated accordingly.

Void disable(Guard guard)
This method is called each time the current action firing disables a Guard. The FiringData

is updated accordingly.

Void call(Procedure procedure)
This method is called each time the current action firing calls (i.e. enter in) a Procedure.

The FiringData is updated accordingly.

Void endProcedure()
This method is called each time the current action firing ends (i.e. exit from) a Procedure.

Void call(Opcode opcode)
This method is called each time the current action firing calls an OpCode. The FiringData

is updated accordingly.

Boolean hasTokens(Buffer buffer, Integer numTokens)
This method is called each time the scheduler checks if there are enough tokens in the given

Buffer. If the result is true, then a readHit is stored in the respective BufferData,

otherwise it is a readMiss.

Boolean hasSpace(Buffer buffer, Integer numTokens)
This method is called each time the scheduler checks if there is enough space in the given

Buffer. If the result is true, then a writeHit is stored in the respective BufferData,

otherwise it is a writeMiss.

7.5 Conclusions

In this chapter, the main functionalities and structure of the CAL dataflow profiler available

in the framework illustrated in Chapter 6 have been discussed. Compared to the available

profiling tools for this dataflow language, the new functionalities are the possibilities to
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generate a complete ETG and to obtain statistical profiling information with different levels

of abstraction. The number of executed and called operators and procedures as well as the

internal actor variables and token utilization (i.e. read/write) for each actor-class, actor, action

and procedure can be analyzed. Furthermore, buffer utilization statistics are provided in

terms of token production/consumption rates, maximal occupancy, read hits and misses, as

well as write hits and misses. Finally, the APIs that can be used by a generic third-party CAL

code interpreter has been illustrated. An example of integration with an already-available CAL

compiler has been discussed.
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mization with TURNUS

In this chapter different DSE strategies are illustrated based on the analysis of the ETG. First

of all, it is discussed how design performance can be estimated through a post-mortem

scheduling of the ETG. How timing information are estimated and assigned both for each

firing and each dependency is also illustrated. Then, some DSE analyses are illustrated and

discussed. These heuristics are all based on the analysis of the design space critical path.

Different problems, such as evaluating the design refactoring directions, minimizing and

optimizing the buffer size configuration and minimizing the dynamic power dissipation of a

design are also discussed.

8.1 Performance estimation

Performance of a program is estimated by an ETG post-mortem scheduling that takes into

account a particular mapping configuration. Using the notions of architecture modeling,

enhanced with clock-cycle accurate profiling information, Equation (4.3) can be defined as:

T̂(m) = f (m, ETG(S,D), G(PU , ME ,L), Θ) (8.1)

where m = (ρ,σ,β) ∈ M is a mapping configuration point of the design space, ETG(S,D) is the

ETG of the program, G(PU , ME ,L) is the target architecture model andΘ is the set of clock-

accurate profiling information retrieved by third-party profilers. Performance, in terms of

throughput, is estimated introducing the timing information illustrated in Section 5.4 for each

action firing si ∈ S and each dependency (si , s j ) ∈ D . Recalling Equation (5.10), the algorithmic

part execution time w(si )e can be obtained by third-party HW and SW profilers (e.g. GNU

gprof, Valgrind, ModelSim). On the contrary, the other terms contained in w(si ) (e.g. the

action selection time, read and write delays) and the dependencies weights w(si , s j ) should

be estimated. Furthermore, as discussed in Section 5.3.2, additional mapping dependencies

might be introduced in D according to the particular mapping configuration. It must be

noted that the partial order represented by the ETG should remain the same even after the

post-mortem scheduling (i.e. locally in each actor and globally over the entire design network).
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Following this section, the structure and the main functionalities of the ETG post-mortem

scheduler used to estimate the design performance are discussed. Furthermore, it is clarified

how the timing information can be estimated and used by the underling analyses that are

illustrated in this chapter.

8.1.1 Post-mortem scheduler models

The ETG post-mortem scheduler is based on a discrete event system specification (DEVS)

formalism [180, 181]. This is a modular, hierarchical and timed-event system which makes

possible, among other things, the modeling and the analysis of discrete-event systems. The

two basic elements that describe a DEVS model are the following:

• AtomicModel: the basic building blocks of a DEVS model. The behavior of an atomic

model is described by its state transition functions (internal, external, and confluent),

its output function, and its time advance function.

• PortValue: makes the communication possible between a pair of atomic models.

Moreover it defines the template argument for the types of objects that can be accepted

as input and produced as output.

The state of an atomic model is realized by the attributes contained in the object that im-

plements the model. The evolution of the state is modeled through the combination of the

following functions and events:

• Internal transition function δext : describes the model autonomous behavior (i.e. how

its state evolves in the absence of input). These types of events are called internal events

because they are self-induced (i.e. internal to the model).

• Time advance function δa : schedules these autonomous changes of state.

• Output function δout : describes the output of the model when an internal event occurs.

• External transition function δext : describes how the model changes state in response

to the input.

• Confluent transition function δcon f : handles the simultaneous occurrence of both an

internal and an external event.

In this section how the dataflow program and the target architecture are modeled using the

DEVS formalism is described. See Appendix A.2 for a complete overview about DEVS.

120



8.1. Performance estimation

IN_DATA

REQUEST_SPACE

READY_TO_CONSUME

IN_DATA_DONE

OUT_DATA

REQUEST_TOKENS

BufferActor Output Port

OUT_DATA

ASK_SPACE

OUT_DATA_RECEIVED

HAS_SPACE

IN_DATA

ASK_TOKENS

Actor Input Port

(a) DEVS model of a buffer, actor input port and actor output port.

Partition B

Producer Filter Consumerb1 b2

Partition A

Scheduler

STATUS ENABLE STATUS ENABLE STATUS ENABLE

ENABLE ENABLE

Scheduler

(b) DEVS model of the dataflow application, discussed in Section 2.5.4, mapped on two separate operator partitions.

Figure 8.1: Execution trace graph post-mortem scheduler: simulation models.

Actor model

Each actor a ∈ A is modeled as an AtomicActor element which describes a DEVS atomic

model. Each actor atomic model contains the subset of the actor firings Sa ⊆ S. Each actor

output port pout
i ∈ P out

a is modeled, as illustrated in Figure 8.1a, with the following four

PortValue elements:

• OUT_DATA: used to send the produced tokens to the output buffer.

• ASK_SPACE: used to send the number of tokens that should be produced.

• HAS_SPACE: used for receiving an acknowledgment signal when the requested token

space is available.

• OUT_DATA_RECEIVED: used for receiving an acknowledgment signal when all the

produced tokens have been successfully received.

Similarly, each actor input port p i n
i ∈ P i n

a is modeled with the following two PortValue

elements:

• IN_DATA: used to receive the input tokens from the input buffer.

• ASK_TOKENS: used to send the number of tokens that should be consumed.
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It must be noted that an input event is associated with each input PortValue. Similarly,

an output event is associated with each output PortValue. Furthermore, as illustrated

in Figure 8.1b, the additional ENABLE input PortValue element and the STATUS output

PortValue element are defined for each actor. Both ports are used by the partition scheduler

(i.e. see the following part of this section) to enable and disable the actor and to retrieve its

status.

Buffer model

Each buffer b ∈ B is modeled as an AtomicBuffer which describes a DEVS atomic model.

Each buffer atomic model is modeled as an asynchronous receiver/transmitter (Rx/Tx). The

following four PortValue elements, as illustrated in Figure 8.1a, are used to model the Rx

interface with the source actor:

• IN_DATA: used to receive the tokens produced by the actor.

• IN_REQUEST_SPACE: used to receive the number of tokens that the actor wants to

produce.

• READY_TO_CONSUME: used to send the acknowledgment signal when the requested

token space is available.

• IN_DATA_DONE: used to send the acknowledgment signal when all the tokens pro-

duced by the actor have been received.

Similarly, the following two PortValue elements are used to model the Tx interface with the

target actor:

• OUT_DATA: used to send the tokens requested by the actor.

• REQUEST_TOKENS: used to receive the number of tokens required by the actor.

It must be noted that an input event is associated with each input PortValue. Similarly,

an output event is associated with each output PortValue. Furthermore, as illustrated

in Figure 8.1b, the additional ENABLE_RX and ENABLE_TX input PortValue elements

are defined for each buffer. These are used by the partition scheduler (i.e. see below) to

asynchronously enable and disable the Rx and Tx interfaces, respectively, of the buffer.

Mapping model

Each partition is modeled as an AtomicPartition which describes a DEVS atomic model.

As illustrated in Figure 8.1b, the scheduler of each actor and buffer partition is modeled as a

controller that enables or disables the corresponding atomic objects. Each actor is enabled by
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sending a signal to theENABLE port according to its status provided thought theSTATUS port.

Similarly, each buffer is enabled by sending a signal to the ENABLE_RX and ENABLE_TX

ports. These ports can be used asynchronously in order to model buffers that are on the

boundary of two actor partitions or buffers that are used in a multi-clock domain architecture.

As an example, Figure 8.1b illustrates the post-scheduler model for the dataflow program

discussed in Section 2.5.4. In this case the Producer and Filter actors are partitioned in

the same partition PartitionA, and the Consumer actor is partitioned in partition PartitionB.

Each of these partitions have an actors scheduler and a buffers scheduler. It must be noted

that the buffer b1 is modeled as a synchronous buffer (i.e. input and output interfaces are

activated at the same time), and contrary to the buffer b2, which is modeled as a asynchronous

buffer (i.e. the activation of the input and the output interfaces is decoupled).

8.1.2 Execution trace graph post-mortem scheduling

Performance of a program is estimated by a post-mortem scheduling of the ETG using the

DEVS simulator previously described. For each firing si ∈ S, the timing information illustrated

in Section 5.4 is estimated. Additional dependencies are introduced in D according to the

particular mapping configuration. Figure 8.2 illustrates how each firing si ∈ S is post-scheduled

by performing six different stages. These are respectively: schedule firing, ask tokens, consume

tokens, execute firings, ask space, produce tokens. The starting and ending time of each stage is

used, as described below, to evaluate both the firings and dependencies weights.

Schedule firing

During this stage the actor is selected by the partition scheduler by using the ENABLE signal.

A new unprocessed firing si ∈ Sa is selected. Considering s j as the last firing already processed

in the given partition, the additional dependency (s j , si ) should be added to the original

dependencies set D as discussed in Section 5.3.2. The time required for performing this stage

defines the dependency weight as:

w(s j , si ) = t (si )end
schedul e − t (si )st ar t

schedul e (8.2)

Time required for performing this step is estimated according to the architecture model and

the scheduling policy.

Ask tokens

This stage is performed if there is at least one incoming token dependency of si that should be

processed, hence the actor sends a token request to each corresponding input buffer through

the corresponding ASK_TOKENS port. The time required for performing this stage defines
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Figure 8.2: Sequence diagram for the DEVS atomic implementation of an actor.

the input wait time of the firing defined as:

w(si )r d = t (si )end
askTokens − t (si )st ar t

askTokens (8.3)

The time required for performing this step is estimated according to the architecture model.

Consume tokens

During this stage the incoming token dependencies are processed and the corresponding

tokens are consumed. Each token is retrieved from the corresponding IN_DATA port. The

time required for performing this stage defines the read input token time of the firing defined

such as:

w(si )r = t (si )end
consumeTokens − t (si )st ar t

consumeTokens (8.4)
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Furthermore, for each tokens dependency, the time when this stage is performed is associated

and defined as t (si )consume . The time required for performing this stage is estimated according

to the architecture model.

Execute firing

During this stage the algorithmic part of the firing is executed. The time required to perform

this stage defines the algorithmic part execution time of the firing defined as:

w(si )r = t (si )end
execute − t (si )st ar t

execute (8.5)

It must be noted that the time required for performing this step can be obtained by third-party

profiling information.

Ask space

This stage is performed if at least one outgoing tokens dependency of si that should be

processed exists. In this case, the actor sends a space request to each corresponding output

buffer through the corresponding ASK_SPACE port. The time required for performing this

stage defines the output waiting time of the firing defined as:

w(si )wd = t (si )end
askSpace − t v st ar t

askSpace (8.6)

Furthermore, for each token dependency, the time when this stage is performed is associated

and defined as t (si )askSpace . The time required for performing this step is estimated according

to the architecture model.

Produce tokens

During this stage the outgoing token dependencies are processed and the corresponding

tokens are produced. Each token is produced in the corresponding OUT_DATA port. The time

required for performing this stage defines the write output token time of the firing defined as:

w(si )w = t (si )end
pr oduce − t (si )st ar t

pr oduce (8.7)

Furthermore, for each token dependency, the time when this stage is performed is associated

and defined as t (si )pr oduce . Consequently, the token dependency weight can be defined as:

w(s j , si ) = t (si )consume − t (s j )pr oduce (8.8)

The time required for performing this step is estimated according to the architecture model.
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8.1.3 Execution statistics

As initial computational load statistics, the overall network workload of the entire dataflow

program is defined as:

w =∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−S } : si ∈ S} (8.9)

For each actor-class κ ∈ K , the corresponding actor-class workload is defined as:

w(κ) =∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sκ} : si ∈ Sκ} (8.10)

Similarly, for each actor a ∈ A the actor workload is defined as:

w(a) =∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sa

} : si ∈ Sa} (8.11)

where δ(si )−Sa
defines the incoming dependencies set that has a source firing that belongs to

the same actor a. For each action λ ∈Λ of the actor, the action workload is defined as:

w(λ) =∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sλ} : si ∈ Sλ} (8.12)

8.1.4 Analysis of a collection of execution trace graphs

As discussed in Section 2.3.3, the execution behavior of a dynamic dataflow program can

change according to the input sequence. Hence, the analysis and the exploration should be

performed using a collection of ETGs generated with different input sequences.

Considering a finite set of input sequences I = {I1, I2, . . . , InI }, the corresponding ETGs collec-

tion is defined as:

ET Gs = {ETG(S1,D1),ETG(S2,D2), . . . ,ETG(SnI ,DnI )} (8.13)

8.2 Design space critical path

Many metrics for dataflow programs have been developed with the aim of supporting designers

to reduce the running time of their applications. The main requirement of such metrics is to

provide a clear optimization objective by highlighting both problematic actors (or actions)

and buffers that may reduce the design performance. Such possibilities are fundamental for

applications whose complexity falls beyond the guess that a designer can make with success.

The widest-used metric is the makespan which is defined as the start-to-end execution time

of an application [182, 183]. Using the formalism of the ETG, the makespan can be seen as

the execution critical path length: this can be defined as the longest, time-weighted sequence

of events from the start of the program to its termination [1, 2]. In the context of RVC-CAL, a

first attempt in defining a critical path analysis methodology was introduced in [33]. However,

this approach makes the simplified assumption that all actors are executed in parallel with
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an unbounded buffer size configuration. As a result, only the computation load of each

action is taken into account, whereas both the scheduler overhead and the buffer latencies are

neglected. In other words, only the fully serial code portion of the program can be identified

as the design bottleneck. Consequently, this approach severely restricts the design space

exploration. In the following section, this methodology is improved defining the concept of

design space critical path.

8.2.1 Critical path length

The critical path length (CPL) can be evaluated in different ways [32, 33, 184, 185]. Indeed,

as demonstrated in [1, 2] the technique provided in [185] seems to be the most convenient

both for the reduced complexity of the algorithm and for the additional profiling information

that could be retrieved. The latter is illustrated herein below. For each action firing si ∈ S, four

parameters should be evaluated. These are:

• Early Start time ES(si ) which defines its earliest possible starting execution time.

• Latest Start time LS(si ) which defines its latest possible starting execution time without

extending the overall program completion time.

• Early Finish time EF (si ) which defines its earliest possible ending execution time.

• Latest Finish time LF (si ) which defines its latest possible ending execution time with-

out extending the overall program completion time.

Moreover, an additional parameter called slack is introduced both for each action firing si ∈ S

and each dependency s(si , s j ) ∈ E represented by SL(si ) and SL(si , s j ), respectively. This is

used in order to define the maximum delay that a fired action or a dependency can tolerate

without impacting the overall completion time. The evaluation of the CP can be done in

O(|S| + |D|) by performing the Algorithms 1, 2 and 3, respectively. This evaluation can be

summarized as follows. Firstly, for each si ∈ S the early start time ES(si ) and the early finish

time EF (si ) are evaluated by following any valid increasing topological order of S. It must be

noted that for each source firing s j ∈ S;− (i.e. see Equation (5.4)) the preconditions ES(s j ) = 0

and EF (s j ) = 0 have been imposed. Secondly, for each si ∈ S the latest start time LS(si )

and latest finish time LF (si ) are evaluated by following any decreasing topological order of

S. It must be noted that for sink firings s j ∈ S;+ (i.e. see Equation (5.7)) the preconditions

LS(s j ) = ES(s j ) and LF (s j ) = EF (si ) have been imposed. Hence, the slack value for both action

firings si ∈ S and dependencies (si , s j ) ∈ D are evaluated. The set of critical action firings is

defined as:

Sc = {si : SL(si ) = 0} ⊆ S (8.14)
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Similarly, the set of critical dependencies is defined such as:

Dc = {(si , s j ) : SL(si , s j ) = 0} ⊆ D (8.15)

Finally, the
−→
C P is evaluated by walking back the ETG as illustrated in Algorithm 3. At each

iteration a new action firing is selected by following one of the incoming critical edges such

that δ(si )−Sc
= {s j : ∃(s j , si ) ∈ Dc }. The sets SC P ⊆ Sc and DC P ⊆ Dc contain respectively the fired

actions and dependencies along this path. Similarly, the sets KC P ⊆ K , AC P ⊆ A andΛC P ⊆Λ
contain respectively the actor-classes, actors and actions that have at least one action firing

along this path. The CP can be considered completely determinate only when one of the

source firings si ∈ S;− is reached. It must be noted that one such path always exists [186]. As a

result, the critical path length is defined such as:

|−→C P | = f (σ,ρ,β) =∑
{w(si ) : si ∈ SC P }+∑

{w(si , s j ) : (si , s j ) ∈ DC P )} (8.16)

where w(si ) and w(si , s j ) represent the action firing and dependency weights, respectively, as

discussed in Section 5.4. For this reason the |−→C P | can be see as a function f of the scheduling,

partitioning and buffer size configuration. This can be also evaluated as:

|−→C P | = max{LF (si ) : si ∈ S} (8.17)

As mentioned above, the main advantage of evaluating the critical path in such a way is that

this can be done in linear time (i.e. O(|S|+ |D|)). Moreover, all the critical actions or critical

dependencies that are not along the CP can be highlighted through their slack value.

Remark. More then one CP may exist for each weighted ETG. In this case each CP contains

different action firings. However, the length of these paths is always |−→C P |.

Statistical distribution

The profiling clock weights illustrated in Section 6.2.4 makes it possible to model the execution

time as a statistical value. In fact, for each action, it is possible to specify the average, the

minimal and the maximal number of clock cycles required for the execution. Hence, it is

possible to model the execution weight w(si )e as a statistical variable in the sense of a normal

distribution with expected value and variance, respectively, defined as:
E [w(si )e ] = 1

α2

(
min(si )+α1mean(si )+max(si )

)
V ar (w(si )e ) =

(
max(si )−min(si )

α2

)2 (8.18)

where mean(si ), min(si ) and max(si ) are the average, minimal and maximal execution time,

respectively, defined in Figure 6.23. It must be noted that α1 and α2 are used to model the

distribution shape and they are generally defined as α1 = 4 and α2 = 6 [187]. Furthermore,

making the assumption that the execution time of each firing is independent and uncorrelated
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Algorithm 1: Compute the set of parameters ES(si ),EF (si ),LS(si ),LF (si ) for each si ∈ S.

Input: (S,≤) the firings po-set with size Hs = |S|
Result: ES(si ),EF (si ),LS(si ),LF (si ) for each si ∈ S

// Initialize the source firings S;−

for si ∈ S;− do
ES(s j ) ← 0
EF (s j ) ← 0

end

// Iterate S with an increasing topological order
i ← 1
while i ≤ Hs do

if si ∉ S;− then
ES(si ) ← max{EF (s j )+w(s j , si ) : (s j , si ) ∈ δ(si )−D }
EF (si ) ← ES(si )+w(si )

end
i ← i +1

end

// Initialize the sink firings S;+

for si ∈ S;+ do
LS(s j ) ← ES(s j )
LF (s j ) ← EF (s j )

end

// Iterate S with a decreasing topological order
i ← Hs

while i ≥ 1 do
if si ∉ S;+ then

LF (si ) ← min{LS(s j )−w(si , s j ) : (si , s j ) ∈ δ(si )−D }
LS(si ) ← LF (si )−w(si )

end
i ← i −1

end
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Algorithm 2: Compute the slack value SL(si ) for each si ∈ S and SL(si , s j ), and the set of
critical firings set Sc and critical dependencies set Dc .

Input: S the firings set
Input: D the dependencies set
Result: Sc the critical firings set and Dc the critical dependencies set
Data: ES(si ),EF (si ),LS(si ),LF (si ) for each firing si ∈ S evaluated using Algorithm 1
Data: Sc =; and Dc =;
// Compute the critical firings set Sc

for si ∈ S do
SL(si ) ← LF (si )−EF (si )
if SL(si ) = 0 then

Sc ← Sc ∪ {si }
end

end

// Compute the critical dependencies set Dc

for (si , s j ) ∈ D do
SL(si , s j ) ← LS(s j )−EF (si )−w(si , s j )
if SL(si , s j ) = 0 then

Dc ← Dc ∪ {(si , s j )}
end

end

Algorithm 3: Critical path extraction.

Input: S the firings set

Result:
−→
C P the critical path

Data: EF (si ) for each firing si ∈ S evaluated using Algorithm 1
Data: Sc the critical firings set evaluated using Algorithm 2

Data:
−→
C P =;

// Find the last CP firing
s ← argmax{si : LF (si ) ≥ LF (s j ),∀s j ∈ S}
while s 6=⊥ do−→

C P ← s ⊕−→
C P

s ← getCriticalPredecessor (s);
end

begin getCriticalPredecessor(si)
for s j ∈ δ(si )−S do

if s j ∈ Sc then
return s j

end
end
return ⊥

end
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to the others [188], it is possible to redefine the |−→C P | such as:E [|−→C P |] =∑
{E [w(si )] : si ∈ SC P }

V ar (|−→C P |) =∑
{V ar (w(si )) : si ∈ SC P }

(8.19)

where E [.] and V ar (.) are the expected value and the variance operators, respectively. In this

context, the variance value is used to define the accuracy of the
−→
C P .

8.2.2 Algorithmic critical path

The algorithmic critical path (ACP) is evaluated neglecting for each action firing the time spent

in waiting for the availability of input tokens and output space, and additional scheduling

dependencies (i.e. see Section 5.3.2). In other words, the ACP is evaluated supposing that the

outgoing dependencies of an action firing are immediately made available to its successors.

Consequently, for each action firing s ∈ S the corresponding weight is evaluated as:
w(si ) =

w(si )e for heterogeneous architecture

w(si )r +w(si )e +w(si )w for homogeneous architecture

w(si , s j ) = 0

(8.20)

taking into account only the algorithmic part execution weight w(si )e (i.e. see Table 5.5) of

each action firing. Other weights, both for firings and dependencies, are neglected. After that,

the CPL is evaluated as illustrated in Section 8.2.1 and denoted as |−→C P |al g o . This value can be

considered as the lower bound for the CPL value of the entire design space such as:

|−→C P |al g o ≤ |−→C P |(m), ∀m ∈ M (8.21)

It must be noted that in Equation (8.20) the write and read token times, denoted respectively

as w(si )r and w(si )w , have been neglected when a heterogeneous architecture is considered.

This choice is motivated by the fact that the writing and reading time of tokens in hetero-

geneous architectures may depend on the particular mapping configuration of the buffers.

Contrarily, if these values are also considered then Equation 8.21 cannot be considered as a

lower bound for the entire design space M .

Remark. Neglecting the time spent in waiting for the availability of input tokens and output

space and neglecting the additional scheduling dependencies corresponds to post-scheduling

the ETG considering an unbounded buffer size configuration and a partitioning configuration

where for each processing unit is assigned only one actor (i.e. fully-parallel execution).
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8.2.3 Throughput and design space critical path

An interesting property concerning the CP length |−→C P | is that it can be easily related to the

application throughput T defined in Equation (4.2) as:

T ∝ 1

|−→C P |
(8.22)

In other words, by reducing the execution critical path length (or makespan) the throughput

of the application increases [183]. This makes it possible to explore the design space in terms

of |−→C P | in order to find trade-offs between performance and resource configuration and usage.

From Equation (8.21) it is possible to define an upper bound of the potential achievable

performance of the design as:

T ∝ 1

|−→C P |
≤ 1

|−→C P |al g o

(8.23)

This latter equation defines what is called the design space critical path (DSCP) of an appli-

cation, which is represented in Figure 8.3a. It must be noted that evaluating |−→C P |al g o can

be considered as the first starting point of a design space exploration. In fact, in the event

that performance does not meet established requirements with this optimistic design con-

figuration, the computational load of the actions (or actors) along this critical path should

be reduced. Successively, the design DSCP should be explored in order to find trade-offs be-

tween performance and resource configuration and usage as illustrated in Figure 8.3b. Several

purpose-driven design optimization analyses can be performed in this direction as illustrated

in the next sections of this chapter.

Remark. Sometimes the throughput of a system is referred to as the production or execution

rate of (a particular set of) actors. Throughput is usually measured in terms of bits per second

or, for a dataflow program, in tokens per second. However, in a DDF program this rate can vary

according to the input stimulus. Consequently, in order to compare its execution with different

input stimuli, the throughput should be referred to as the rate at which each input stimulus is

completely processed.

8.2.4 Potential speedup

The theoretical speedup of a program is a widely-used metric in the domain of parallel com-

puting. This metric is used to predict the theoretical speedup for a program when parallel

processing units are used (e.g. cores, threads of execution). The theoretical speedup is de-

fined as:

S(n) = t (1)

t (n)
(8.24)
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|C P |

T

Tmax

|−→C P |al g o

(a) The relationship between T and the design throughput and the critical path length |C P | as defined in Equation
(8.23). The maximum achievable throughput Tmax is evaluated with the algorithmic critical path length |C P |al g o .

(ρ,σ,β)

|C P |

|−→C P |al g o

c1

c2

c3

c4 c5 c6

(b) The design space critical path. Points {c1,c2, , . . .c6} represent different mapping configuration points.

Figure 8.3: Design space critical path.
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where t (1) and where t (n) are the program finishing times when mapped in one and n process-

ing elements, respectively. Its value is generally estimated using the theoretical formulation

proposed in [189], also known as Amdahl’s law, defined as a relationship between parallelized

implementation of an algorithm and its sequential implementation. Even though this formu-

lation is widely used in computer science engineering, it has always been criticized for the

assumption under which it has been formalized [190, 191]. The main criticisms are that it is

assumed that the problem size remains the same when parallelized, that parallel portions of

a program can hardly be estimated. Furthermore, this law is formulated assuming that the

program MoC is sequential. In the context of dataflow programming, the theoretical speed

S(n) can be formulated in terms of network workload w and critical path length |−→C P |, defined

in Section 8.1.3 and Section 8.2.1, respectively. In fact, it is possible to define as t (n) = |−→C P |(ρn),

hence t(1) = |−→C P |(ρ1) = w in the case of one processing unit. Consequently, Equation (8.24)

can be redefined as:

S(n) = w

|−→C P |(ρn)
(8.25)

It must be noted that, as discussed in Section 8.2, |−→C P |(ρn) could be a non-linear function of

the application mapping configuration. A lower bound can be evaluated using a simplified

linear model, such as the one depicted in Figure 8.4 and defined as:

|−→C P |(ρn) =
w − w−|−→C P |al g o

nA−1 (n −1) if n ∈ [1,nA]

|−→C P |al g o if n ≥ nA

(8.26)

where nA is the number of actors a ∈ A. It must be noted that the model of Equation (8.26)

only makes the assumption that the communication cost between different actor partitions

remains constant and does not dominate the program execution. Consequently, defining as

n

|C P |(ρn)

|−→C P |al g o

w

1 nA

Figure 8.4: Critical path length linear model |C P |(ρn).
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n

S(n)

h = 0.3

h = 0.5

h = 0.8

1 2 3 4 5 6 7 8 9 10 11 12
1

1.5
2

2.5
3

3.5
4

Figure 8.5: Theoretical speedup S(n) defined in Equation (8.27) for different values of h =
|C P |al g o/w ∈ [0,1] when nA = 10.

h = |−→C P |al g o

w ∈ [0,1], the maximal theoretical speedup of a dataflow program can be defined as:

S(n) =
w − 1

1+ h−1
nA−1 (n−1)

n if n ∈ [1,nA]

1
h if n ≥ nA

(8.27)

As an example, Figure 8.5 depicts this relation for different values of h when nA = 10.

8.3 Hotspot analysis

When performance requirements in terms of |−→C P |al g o cannot be satisfied, the design should

be refactored. In other words, the designer should reduce the algorithmic complexity of the

actions that most contribute to the most serial part of the design. In the following, two different

refactoring direction metrics, useful for the designer, are presented. The first, called critical

actions ranking, is an ordered list of actions that most contribute to the overall |−→C P |al g o . The

second, called impact analysis, estimates which improvement margins can be obtained by

refactoring a critical action.

8.3.1 Critical actions ranking

For each actor-class κ of the program, w(κ)c and w(κ)C P define the actor-class critical work-

load and the actor-class workload along the
−→
C P , respectively. These values are evaluated as:

{
w(κ)c = ∑

{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sc,κ
} : si ∈ Sc ∩Sκ}

w(κ)C P = ∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−SC P,κ

} : si ∈ SC P ∩Sκ}
(8.28)

where, for a given firing si , δ(si )−Sc,κ
and δ(si )−SC P,κ

represent the critical incoming edges and the

incoming edges along the CP where source firings belong to the same actor-classκ, respectively.

Similarly, for each actor a of the program, w(a)c and w(a)C P define the actor critical workload

135



Chapter 8. Design space exploration and optimization with TURNUS

and the actor workload along the
−→
C P , respectively. These values are evaluated as:{

w(a)c = ∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sc,a

} : si ∈ Sc ∩Sa}

w(a)C P = ∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−SC P,a

} : si ∈ SC P ∩Sa}
(8.29)

where, for a given firing si , δ(si )−Sc,a
and δ(si )−SC P,a

represent the critical incoming edges and the

incoming edges along the CP where source firings belong to the same actor a, respectively.

Similarly, for each action λ of an actor, w(λ)c and w(λ)C P define the action critical workload

and the action workload along the
−→
C P , respectively. These values are evaluated as:{

w(λ)c = ∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−Sc,λ

} : si ∈ Sc ∩Sλ}

w(λ)C P = ∑
{w(si )+max{w(s j , si ) : (s j , si ) ∈ δ(si )−SC P,λ

} : si ∈ SC P ∩Sλ}
(8.30)

where, for a given firing si , δ(si )−Sc,λ
and δ(si )−SC P,λ

represent the critical incoming edges and the

incoming edges along the CP where source firings belong to the same action λ, respectively.

Actor-classes, actors and actions can be ranked according to their value of critical workload

and workload along the
−→
C P . Consequently, it is possible to define the actor-class κ∗, the actor

a∗ and action λ∗ that most contribute to the overall |−→C P | as:
κ∗C P = argmax{κi : w(κi )C P ≥ w(κ j )C P ,∀κ j ∈ KC P }

a∗
C P = argmax{ai : w(ai )C P ≥ w(a j )C P ,∀a j ∈ AC P }

λ∗
C P = argmax{λi : w(λi )C P ≥ w(λ j )C P ,∀λ j ∈ΛC P }

(8.31)

8.3.2 Impact analysis

If the maximum achievable design throughput Tmax does not satisfy the design requirements

(see Figure 8.3a), the exploration process should initially concentrate on the reduction of

the algorithmic complexity of the design, and successively on finding an optimal mapping

configuration. In [1, 2] it has been demonstrated how, when dealing with parallel designs,

the information obtained exclusively from the evaluation of the
−→
C P (e.g. the critical ranking

previously described) does not provide a reliable direction for refactoring. Hence, the analysis

should be concentrated on estimating, and highlighting the action λ which requires the less

refactoring effort in order to maximally reduce the |−→C P |al g o (i.e. maximally improve Tmax ,

consequently). This estimation can be obtained using the impact analysis technique, which

is summarized in Algorithm 4. The
−→
C P al g o and the set SC P of actions along this path are

initially evaluated as illustrated in Section 8.2.2. After that, for each single action λ ∈ΛC P (i.e.

that has at least one action firing along the CP) it is estimated how much the |−→C P al g o | can be

reduced by reducing the algorithmic complexity of this action. The algorithmic complexity

reduction-factor is defined as a value such that r ∈ Rw = [1,2, . . . ,100]. In other words, the

|−→C P al g o | is iteratively computed for each λ ∈ΛC P and r ∈ Rw considering at each evaluation
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step the following weight configuration:
w(si )r =



100−r
100 w(si )e if si ∈ Sλ

w(si )e ifsi 6∈ Sλ
for homogeneous architecturew(si )r + 100−r

100 w(si )e +w(si )w if si ∈ Sλ

w(si )r +w(si )e +w(si )w ifsi 6∈ Sλ
for heterogeneous architecture

w(si , s j )r = 0

(8.32)

In other words, r estimates the percentage of how much the algorithmic execution time w(si )e

should be reduced in order to reduce the ACP length. For each iteration, the corresponding

ACP length is denoted as |−→C P |(λ,r )al g o and the percentage decrease as:

∆|−→C P |(λ,r )al g o = 100

(
1− |−→C P |(λ,r )al g o

|−→C P |al g o

)
∈ [0,100] (8.33)

Finally, it is possible to clearly identify on which action the refactoring should be concentrated

in order to reduce the |−→C P |al g o and, consequently, improve the maximum achievable design

throughput Tmax . As an example, Figure 8.6 depicts an example of impact analysis for three

actions λ1, λ2 and λ3, respectively.

Algorithm 4: Impact analysis for the set of critical actionsΛC P .

Input: S the firings set

Input:
−→
C P al g o the initial algorithmic critical path

Result: ∆|−→C P |(Λ,Rw )al g o the ACP length reduction set

Data: ∆|−→C P |(Λ,Rw )al g o =;
for λ ∈ΛC P do

for r ∈ Rw do
// Set the action firing weights
for s j ∈ S do

w(s j ) ← Equation (8.32)
end

// use Algorithms 1,2,3
−→
C P (λ,r )al g o ← computeCpLength()

// evaluate the CP length reduction ratio

∆|−→C P |(λ,r )al g o ← 100

(
1− |−→C P |(λ,r )al g o

|−→C P |al g o

)
∆|−→C P |(Λ,Rw )al g o =∆|−→C P |(Λ,Rw )al g o ∪ ∆|−→C P |(λ,r )al g o

end
end
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Figure 8.6: Example of impact analysis for three actions λ1, λ2 and λ3.

8.4 Buffer size dimensioning

The total memory size requirement of an application implemented by a dataflow program

consists of the sum of two contributions: the code size and the data buffer size. Minimizing

the total buffer size can be a very important optimization objective in order to reduce cost

of today’s FPGAs that have severe embedded-memory limitations. In the domain of SDF,

CSDF and DPN designs, which are typically implemented in memory-constrained hardware

platforms, the buffer minimization problem is an NP-complete problem [192, 193, 194, 47, 45]

which necessitates the use of heuristic algorithms.

8.4.1 Related work

One of the pioneering works on buffer minimization was presented in [195] where an algorithm

for scheduling a KPN in-bounded memory was illustrated: while simulating the design using

any scheduler and imposing an initial buffer size configuration, the buffer capacity is increased

in case of system deadlock caused by buffer overflow. However, this approach is not guaranteed

to find the minimum buffer size requirement. Since SDF is a special case of KPN (i.e. see

Section 2.1.2), in [196] this approach has also been extended for SDF programs, where a

backtracking search is added to the initial algorithm. Some other authors provides model-

checking based techniques in order to obtain a close-to-optimal solution [197, 40, 196] by

exploring the entire state space. However, the scalability of these techniques is limited by the

capabilities of the state space exploration stage and can fail for large-scale systems. All of these

heuristic algorithms are suitable only for SDF and CSDF designs and cannot be applied in a

DDF context.
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8.4.2 Deadlock and feasible regions

From the knowledge of the minimum buffer size configuration, guarantees on the minimum

achievable throughput Tmi n of the design can be obtained. As depicted in Figure 8.7, for a

given configuration of partitioning and scheduling (π∗,σ∗) the critical path design space can

de divided in two different regions according to the buffer size configuration β. These two

regions are the deadlock region and the feasible region, respectively. These are separated by

the minimum buffer size configuration βmi n . An upper and a lower bound for the
−→
C P length

can be defined as:

|−→C P |(βmi n) ≤ |−→C P |(β) ≤ |−→C P |al g o (8.34)

where |−→C P |(βmi n) defines the critical path length evaluated with the minimal buffer size

configuration βmi n .

β

|−→C P |(β)

|−→C P |al g o

|−→C P |(βmi n)

βmi n

c1

c2

c3 c4

Figure 8.7: Critical path design space given different buffer size configurations.

8.4.3 Minimization by the use of a model predictive control approach

As previously discussed, the problem of bounding and minimizing the buffer size configuration

of a dataflow program, without impacting the performance and guaranteeing at the same time

a deadlock-free execution, has been proven to be an NP-complete problem. Consequently,

it requires the use of heuristic algorithms. In this section, this problem is solved using ETG

transformation and treating the program like a linear-discrete event system as illustrated

in Section 5.5.3. Considering an ETG with nS = |S| firings, the problem of bounding (and

minimizing) the buffer size configuration, guaranteeing at the same time a deadlock-free
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execution, can defined as:

minimize
u(k),u(k+1),...,u(k+nS )

J =
nS∑
k

b∑
j

y(k) j

subject to Equation (5.16)

y(k) j ≥ 0,∀k ∈ {1,2, . . . ,nS},∀ j ∈ {1,2, . . . ,b}
nS∑
i

u(k)i = 1,∀k ∈ {1,2, . . . ,nS}

nS∑
k

u(k)i = 1,∀i ∈ {1,2, . . . ,nS}

(8.35)

where y(k) j represents the j -th component of y(k), i.e. the number of tokens available on

the j -th buffer, the constraint
∑nS

i u(k)i = 1,∀k ∈ {1,2, . . . ,nS} requires that a firing si ∈ S is

executed at each event k, while the constraint
∑nS

k u(k)i = 1,∀i ∈ {1,2, . . . ,nS} requires that

a step must be fired only once (i.e. the deadlock condition is avoided because all the steps

in S must be fired). In other words, executing only one firing at each event k, can also be

seen as finding a topological order of S for which the sum of all the available tokens along the

dataflow network is minimized during the entire execution. However, the problem defined

in Equation (8.35) is an integer linear programming (ILP) problem, where the number of

optimization variables and constraints can grow significantly according to the ETG size nS .

Consequently, a heuristic algorithm should be applied. For instance, find a feasible scheduling

sequence of the ETG such that the buffer size is kept bounded and, if possible, minimized,

guaranteeing a deadlock-free execution for all the action firings in S. When dealing with large-

data graphs some well-known heuristics, such as graph-cutting or pattern recognition, can be

successfully used to reduce the problem size. The heuristics that are illustrated in the following

rely on both the formalism of the graph and automatic control theory to minimize the size and

to find a sub-optimal solution to Problem (8.35). Model predictive control (MPC) [198, 199]

is a receding horizon-control technique where at each event, an optimization problem is

solved by predicting the future system behavior (i.e. see Appendix B). Bearing in mind the

transformations discussed in Section 5.5.3, it is possible to define an MPC approach that makes

use of the ETG, and where the prediction and control horizons are related to the graph-cut

used for reducing the problem size.

Deadlock avoidance

As discussed in Section 5.3, one of the main properties of an ETG is that it is completely inde-

pendent from any buffer size configuration. Moreover, an ETG can have different topological

orders with different minimal buffer size requirements for admitting a deadlock-free execution.

Therefore, the initial problem can be relaxed: sorting at each event k ∈ {1,2,3, . . .nS} only one

firing, then the optimization problem of Equation (8.35) can be solved iteratively only for a

limited set of firings. Consequently, this problem can be solved using the receding horizon

control technique through the use of an MPC controller. In this case, the prediction horizon
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Hp defines the number of firings of each ETG-cut. At each event k an ETG-cut S(k)′Hp
⊆ S

is evaluated so that it contains only Hp unscheduled firings of S with the lowest available

topological order. Then, according to the procedure just described, the optimization problem

can be formulated as:

minimize
u(k|k),u(k+1|k),...,u(k+Hc−1|k)

J (k) =
Hp∑
i

b∑
j

y(k + i |k) j

subject to y(k + j |k)i ≥ 0, ∀ j , i ∈ {1,2, . . . Hp }

Hp∑
i

u(k + j |k)i = 1, ∀ j ∈ {0,1,2, . . . Hc −1}

Hp∑
i

u(k + j |k)i = 0, ∀ j ∈ {Hc , Hc +1, . . . Hp }

(8.36)

where Hc (i.e. the control horizon) is the number of firings that can be executed (i.e. ordered)

inside S(k)′Hp
. At each event k only the first selected firing defined by u(k)∗ = u(k|k) is

executed. When firing the step defined by u(k)∗ the number of tokens inside each buffer is

updated accordingly. The minimal buffer size configuration can be defined as the maximal

token capacity of each buffer obtained during the entire execution only when all the firings

have been executed. In other words, the bounded buffer size configuration is evaluated as:

β(bi )mi n = max{y(k)i , ∀k ∈ {1,2,3, . . . ,nS}} (8.37)

Whereβ(bi )mi n defines the minimal bounded size of each buffer bi ∈ B required for scheduling

the ETG. Consequently, the minimal buffer size configuration which defines the borders

between the deadlock region and feasible region depicted in Figure 8.7 can be defined as:

βmi n = {β(b1)mi n ,β(b2)mi n , . . . ,β(bnB )mi n} (8.38)

The flowchart of this approach is depicted in Figure 8.8. It must be noted that, if this analysis is

performed on a collection of ETGs, then the minimal size value of each buffer is the maximal

value obtained within the ETGs collection.

Deadlock recovery

In the previous approach, the problem of Equation (8.36) should be solved nS times. Another

approach, that reduces the number of time that this problem should be solved, is to schedule

post-mortem the ETG using a dynamic buffer size configuration that is modified each time

that a deadlock condition arises (i.e. the ETG has not action firing that cannot be scheduled

because some buffers are full). This second approach can be considered as an improvement

of the one introduced in [195], where the key idea is to recover only a blocked action from

a deadlock execution that produces the highest number of tokens that could resolve the

deadlock condition. However, it must be noted that in [195] any minimization cost function
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can be used based on the prediction of the program execution and buffer utilization. On

the contrary, with this second approach, when a deadlock condition arises, a trace sub-

graph S(k)′Hp
is evaluated as previously described. Successively, the problem of Equation

(8.35) is solved in order to identify the next schedulable firings as done for the approach that

avoids deadlocks. Hence, the found fired action is scheduled supposing, only at this time, an

unbounded buffer size configuration. The new maximum token capacity of each buffer is then

used from the successive scheduling, as a new buffer size configuration. It is worth noting that,

initially the size of all the buffers can be set as 0 tokens. Only when all the action firings have

been scheduled can the bounded buffer size configuration be defined as the maximal token

capacity of each buffer obtained during the entire ETG post-mortem scheduling, as defined in

Equation (8.37). The flowchart of this approach is depicted in Figure 8.9.

8.4.4 Optimization by the exploration of the design space critical path

When design performance in terms of throughput are not met by using the minimal buffer size

configuration, the problem becomes how to increase the size in order to reduce the |−→C P (β)|.
The problem of exploring the design space, for a given scheduling and partitioning config-

uration, in order to find a suitable buffer size configuration that guarantees the throughput

requirements, is depicted in Figure 8.7. This can be formulated such as:

minimize J =
{

|−→C P |(β)

β(bi ), ∀bi ∈ B

subject to β(bi )mi n ≤β(bi ) ≤β(bi )max , ∀bi ∈ B∑
{β(bi ), ∀bi ∈ B} ≤β(B)max

(8.39)

where J is a multi-objective cost function over the critical path length |−→C P (β)| and the size

β(bi ) of each buffer bi ∈ B . The constraints β(bi )mi n ≤β(bi ) ≤β(bi )max impose that for each

buffer the size should be equal or larger to the minimal size β(b)mi n evaluated in the previous

section. Moreover, an upper bound on each buffer size β(bi ) and on the overall buffer size

configuration β(B) = ∑
{β(bi ), ∀bi ∈ B} can be imposed. These additional constraints are

necessary when the program is implemented in a severe memory-constrained platform (e.g.

DSP, FPGA). Problem (8.39) can be demonstrated to be an NP-complete [10] and, therefore, it

needs the use of efficient heuristics in order to find good approximate solutions.

Reducing the critical path length

From Equation (5.10) it can be seen how the overall execution time of each firing si ∈ S

is affected by the blocking writing overhead w(si )wd introduced by a buffer that cannot

accommodate enough tokens. Hence, the objective becomes reducing |−→C P | by increasing

the size of buffers that are responsible for introducing the highest total amount of writing

overhead along the
−→
C P . This can be formulated as an iterative procedure as illustrated in
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load the ETG

are there
some not
yet post-
mortem

scheduled
action
firings?

compute an ETG
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yet post-mortem
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MPC controller
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post-mortem
schedule the se-

lected action firing

label the post-
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update
buffers utilization

END!

yes
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Figure 8.8: Bounded buffer scheduling with deadlock avoidance approach.
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Figure 8.9: Bounded buffer scheduling with deadlock recovery approach.
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Algorithm 5. At each iteration k, the
−→
C P (β(k)) is evaluated by scheduling post-mortem the ETG

according to the buffer configuration β(k). At k = 0, the minimal buffer size βmi n is used as

the starting point of the algorithm. Successively, for each firing si along the
−→
C P (β(k)), a tuple

(si ,bi ,d ,τ) is computed for each buffer bi that introduced a write delay (i.e. w(si )(k)wd > 0).

Each tuple contains the write delay time d ≤ w(si )(k)wd introduced during the firing of si by

the buffer bi and the corresponding number of blocked tokens τ (i.e. that caused the delay of

the execution because they could not be accommodated in bi ). Each tuple is then stored in

the set B(k)C P . When B(k)C P has been completely determinate, it is possible to obtain the

following information for each buffer b ∈ B :{
d(bi ,k) = ∑

{d : n = i ,∀(s,bn ,d ,τ) ∈ B(k)C P }

τ(bi ,k)max = max{τ : n = i ,∀(s,bn ,d ,τ) ∈ B(k)C P }
(8.40)

where d(bi ,k)d and τ(bi ,k)max define the overall write blocking delay and the maximal num-

ber of tokens for each buffer bi . Successively, the buffer that needs to be increased in size is

defined as follow:

b∗
k = argmax{bi : d(bi ,k) > d(b j ,k)∧β(bi ,k)+τ(bi ,k)max ≤β(bi )max ,∀b j ∈ B} (8.41)

Once b(k)∗i has been found, the new buffer size configuration is modified as:

β(bi ,k +1) =
β(bi ,k)+τ(bi ,k)max if bi = b∗

k

β(bi ,k) otherwise
(8.42)

A new iteration is then made following the same approach. The heuristic can conclude when

the desired critical path length reduction has been achieved (or the maximal number of

iterations k has been performed). It must be noted that, if this analysis is performed on a

collection of ETGs, then the optimal size value of each buffer is the maximal value obtained

within the ETGs collection.

8.5 Dynamic power dissipation minimization

Even though technological improvements in current VLSI design have led to higher clock

frequencies, larger dies, and higher transistor density, they have created significant design chal-

lenges as a result of power consumption and the need for synchrony at higher speeds [200, 201].

As a result, the performance of applications does not necessarily increase at the same pace.

The two main limiting factors are: the technological constraints (e.g. clock frequency caps

imposed by wire delays and clock skew) and the requirement constraints (e.g. power con-

sumption, low-noise and robustness). In order to address these issues, previous work has

demonstrated that asynchronous circuits have the potential of achieving substantially higher

performance compared to their synchronous equivalents. In addition to the elimination of

clock skew and lower interconnection delays, asynchronous circuits have other advantages
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Algorithm 5: Critical path length reduction by increasing the size of critical buffers.

Input: S the firings set
Input: βmi n the minimal buffer size configuration evaluated as discussed in Section 8.4.3

Input: |−→C P |al g o the algorithmic critical path length
Result: βopt the optimal buffer size configuration
Data: k = 0 the iteration number
Data: β(k) buffer size configuration at iteration k

// Find the last CP firing
β(k) ←βmi n do

tracePostProcess(β(k))

// use Algorithms 1,2,3

|−→C P (β(k))|← computeCpLength()

B(k)C P ← getCriticalBuffers(
−→
C P (β(k)))

β(k) ← Equation (8.42)
k ← k +1

while B(k)C P 6= ;∧ |−→C P (β(k))|
|−→C P |al g o

> ε
βopt ←βk

begin getCriticalBuffers(
−→
C P)

BC P ←;
for si ∈ SC P do

if w(si )wd > 0 then
(si ,bi ,d ,τ) ← getBlockingBuffers(si)
BC P ← BC P ∪ (si ,bi ,d ,τ)

end
end
return BC P

end
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such as a higher tolerance to the influence of the external environment. On the other hand,

the main drawbacks are the complexity of the implementation and the overall power con-

sumption. In an asynchronous design process, performance evaluation, optimization and

implementation are complicated by the presence of complex dependencies among concur-

rent events. While performance estimation for synchronous systems is based mainly on the

static analysis of the critical path, the performance of an asynchronous design is related to

several dynamic factors [201]. Moreover, performance estimation and design optimization

of asynchronous systems are not supported by efficient and comprehensive automatic syn-

thesis and optimization tools. An interesting trade-off between complete synchronous and

asynchronous methodology is the globally asynchronous locally synchronous (GALS) clocking-

style, supported by multiple-clock domain (MCD) architectures. The key features of a GALS

system are the use of distinct local and independent clocks (i.e. with different frequencies and

phases), rather than a global timing reference. In a typical GALS configuration, a GALS module

(also called synchronous island) consists of a synchronous module, a clock generator and

an asynchronous wrapper (i.e. that encapsulates the synchronous module). GALS modules

communicate with each other through asynchronous interfaces. For GALS-based applications

implemented on MCD architectures, the design objective is to optimize the mapping of the

application into multiple clock domains, subsequently assigning a clock frequency to each

clock domain in order to reduce the overall power consumption, while at the same time,

meeting the design performance requirements.

8.5.1 Related work

The idea of using the dataflow representation for GALS-based applications was introduced

in [202] where advantages and disadvantages of this approach are discussed. In the fol-

lowing, a one-to-one correspondence between hardware resources in the architecture and

actors is assumed. Dataflow design modeling, exploration and optimization for GALS-based

designs have been studied previously by several authors. For example in [203] a GALS design-

partitioning method for high performance and very large VLSI systems is illustrated. The

system is partitioned into an optimal configuration of synchronous blocks by exploring rela-

tionships between power consumption and the number of synchronous blocks which define

the granularity of this approach. In this case, the main limitation is that the synchronous

blocks have fixed sizes that cannot be changed during the optimization process. Moreover, this

approach does not take system performance during the optimization process into account.

In [202], a design and evaluation framework is provided for modeling application-specific

GALS-based dataflow architectures for CSDF, where system performance (e.g. throughput)

during optimization is taken into account. Similarly, in [204, 200], a method for automatic

synthesis of asynchronous digital systems is discussed. However, both the approaches are

developed for fine-grained dataflow graphs, where actors are primitives or combinational

functions.
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8.5.2 Multi-clock domain partitioning

The problem of partitioning an isomorphic GALS dataflow application into MCD architectures

can be defined as finding a suitable actor-clock mapping configuration that employs the lowest

clock frequencies that meet the overall design performance requirements. If F = { f1, f2, . . . , fnF }

defines the set of available clock frequencies of a platform and A = {a1, a2, . . . , anA } the set of

actors (i.e. see Section 2.5), then the mapping (i.e. partitioning) function can be defined as:

ρ : A → F (8.43)

Consequently, the problem can be formulated as follows:

minimize J =∑
{caρ(a),∀a ∈ A}

subject to T(ρ) ≥ Tmi n
(8.44)

where ca is a generic objective function weight and T(ρ) is the design performance function

in terms of throughput. In other words, the goal is to find a partitioning configuration ρ that

reduces the total dynamic power dissipation of the design without degrading the performance.

8.5.3 Linear programming formulation

Using the notion of ETG and critical path length, the problem of Equation (8.44) can be

formulated as a linear programming (LP) [14, 13]. For this purpose, weights w(si ) of each

firing si ∈ S and w(si , s j ) of each dependency (si , s j ) ∈ E are evaluated by scheduling post-

mortem the ETG where each actor has been mapped with the highest available clock frequency

fmax = max{ fi ∈ F }. Successively, the ETG dependency amalgamation transformation is used

(i.e. see Section 5.5.2). For each amalgamated dependency e1 •e2 • . . .•en the corresponding

weight is evaluated as w(e1 • e2 • . . . • en) = max{w(e1), w(e2), . . . , w(en)}. Successively, the

critical path
−→
C P and its length |−→C P | are computed as described in Section 8.2.1. Successively,

the firing extension graph G(V ,E) of the ETG is computed (i.e. see Section 5.5.1). For each

edge e ∈ E , weights are assigned such that w(e) = w(si ) if e corresponds to a firing si ∈ S,

and w(e) = w(si , s j ) if e corresponds to a dependency (si , s j ) ∈ D. It must be noted that for

each fictitious edge (πs ,πsi

2i−1) ∈ E and (πsi

2i ,πt ) ∈ E weights are defined as w(πs ,πsi

2i−1) = 0 and

w(πsi

2i ,πt ) = 0, respectively. Finally, the clock domains partitioning problem of Equation (8.44)
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can be defined as follows:

maximize
∑

{caγ(a),∀a ∉ AC P }

subject to ϕ(πt )−ϕ(πs) = |−→C P |
ϕ(πsi

2i )−ϕ(πsi

2i−1) = w(si ), ∀si ∈ SC P

ϕ(π
s j

2 j−1)−ϕ(πsi

2i ) = w(si , s j ), ∀(si , s j ) ∈ DC P

ϕ(πsi

2i−1)−ϕ(πs) = 0, ∀si ∈ {si ∈ SC P : δ(si )−S =;}

ϕ(πt )−ϕ(πsi

2i ) = 0, ∀si ∈ {si ∈ SC P : δ(si )+S =;}

ϕ(πsi

2i )−ϕ(πsi

2i−1) ≥ γ(a)w(si ), ∀si ∉ SC P

ϕ(π
s j

2 j−1)−ϕ(πsi

2i ) ≥ w(si , s j ), ∀(si , s j ) ∉ DC P

ϕ(πsi

2i−1)−ϕ(πs) ≥ 0, ∀si ∈ {si ∉ SC P : δ(si )−S =;}

ϕ(πt )−ϕ(πsi

2i ) ≥ 0, ∀si ∈ {si ∉ SC P : δ(si )+S =;}

γ(a) = 1, ∀a ∈ AC P

γ(a) ≥ 1, ∀a ∉ AC P

(8.45)

where ϕ(π) and γ(a) are the unknown variables of this problem. One of the well-known LP

techniques can be used to solve this problem. Once Problem (8.45) has been solved, the MCD

mapping (i.e. partitioning) function defined in Equation (8.43) is obtained as follows:

ρ(a) =


fmax

γ(a) , if a∉ AC P

fmax , if a∈ AC P

(8.46)

In other words, the clock can be reduced only for non-critical actors. Additional constraints

can be added in order to impose clock partitions among actors. The solution of this LP

problem provides an optimal clock domain partition configuration. However, the number of

constraints is at least |S|+ |D|. Hence, the use of a heuristic algorithm must be considered

when dealing with complex dataflow designs that require the exploration of "large" ETGs.

8.5.4 Heuristic approach

The following sections describe a heuristic approach, where the only assumption made

is that the number of available clock frequency domains is known a-priori as F = { f1 =
fmax , f2, . . . , fnF } where fi > f j : ∀i < j , i = 1,2, . . . ,nF . The heuristic is illustrated in Algo-

rithm 6, where ρ( fi )−1 defines the set of actors such that ρ(a) = fi . Initially, all the actors are

assigned the highest available clock frequency (i.e. ρ( f1)−1 = A = {a1, a2, . . . , anA } and ρ( fi )−1 =
;,∀i > 1). The |−→C P | is then calculated with respect to the performance constraints. Iteratively,

at each k-step the maximum reduction set Rk is defined as Rk = {a : a ∉ Ak−1
C P ∧ a ∈ ρ( fk−1)−1}.

ρ( fk )−1 ⊆ Rk is then calculated so that the |−→C P | does not increase. It must be noted that this

approach does not claim to find the optimal solution, but provides a practical approach to

be applied to complex dataflow programs [13, 14]. It must be noted that, if this analysis is
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performed on a collection of ETGs, then the clock domain of each actor is the one with the

highest frequency obtained within the ETGs collection.

Algorithm 6: Heuristic algorithm for solving the problem of the multi-clock domain partition-
ing defined in Equation (8.45).

Input: G(S,D) the execution trace graph
Result: ρ(a) the clock-actor mapping function
Data: k = 0 iteration number
Data: ρ( f0)−1 = A and ρ( fi )−1 =;,∀i > 1

// use Algorithms 1,2,3

|−→C P (0)|← computeCpLength(ρ( f1)−1)

do
for a ∈ Rk do

ρ( fk−1)−1∗ ← ρ( fk−1)−1 \ {a}
ρ( fk )−1∗ ← ρ( fk )−1 ∪ {a}
// use Algorithms 1,2,3

|−→C P (k)|← computeCpLength(ρ( f1)−1,ρ( f2)−1, . . . ,ρ( fk−2)−1,ρ( fk−1)−1∗ ,ρ( fk )−1∗ )
// if this is a feasible configuration

if |−→C P (k)| = |−→C P (0)| then
ρ( fk )−1 ← ρ( fk )−1∗

end
k ← k +1

end
while ρ( fk )−1 6= ;

8.6 Conclusions

In this chapter, different DSE functionalities based on the analysis of the ETG of a dataflow

program have been illustrated. Firstly, it has been shown how the ETG can be processed

(i.e. scheduled) post-mortem in order to evaluate the performance estimation for a given

mapping configuration of the program. The methodology has been illustrated for modeling

the target architecture and scheduling post-mortem accordingly the ETG in order to assign

a timing information (i.e. weight) for each action firing and each dependency of the ETG.

Secondly, the concept of design space critical path (DSCP) has been formulated and related

with the throughput of a design. This formalism has been used to effectively restring the

design space that should be analyzed. Furthermore, by considering the CP of the program, the

definition of potential speedup formulated in the Amdahl’s law has been revisited and adapted

to dataflow programs. Based on the CP analysis of a program, the hotspots analysis has been

introduced. This can be used to highlight to the designer which part of a CAL program should

be refactored in order to meet performance throughput. The problem of bounding the buffer

size configuration of a dynamic dataflow program has been solved by using advanced control

techniques such as a model predictive controller. A heuristic, based on the analysis of the CP,

150



8.6. Conclusions

has been used to evaluate a reasonable trade-off between design throughput and buffer size

configuration. Lastly, the problem of reducing the dynamic power dissipation of a dataflow

execution has been studied for multi-clock domain architectures. A linear problem (LP)

formulation and a heuristic approach have been illustrated to find partitioning configurations

such that the energy consumption is minimized by guaranteeing at the same time the same

throughput performance of the design.
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9 Experimental results

In this chapter, a collection of experimental results based on the analysis of image and video

codec applications is presented. These applications are JPEG, MPEG4-SP, and an HEVC

decoders. Applications have been implemented in different target architectures. These are

a multi-core i7 desktop CPU, an SThorm many-core platform and a Xilinx Virtex-5 FPGA. In

the following, the critical path design exploration and the code refactoring assisted by the

impact analysis is illustrated using an HEVC video decoder implemented in a multi-core i7

desktop CPU as a design case. Successively, the bounded buffer size heuristic, based on the

use of an MPC controller, is illustrated using both a JPEG and an HEVC decoder as design

cases. The optimal trade-off between buffer size dimensioning and throughput performance

is then discussed for an MPEG4-SP decoder implemented on an SThorm many-core platform.

Finally, the dynamic power dissipation minimization heuristic is illustrated on an MPEG4-SP

decoder implemented on a Xilinx Virtex-5 FPGA.

9.1 Design cases

In the following, three multimedia applications specified using the RVC-CAL formalism [52,

53, 54, 55] are illustrated and used in the rest of this chapter. These are respectively a JPEG

image decoder, an MPEG4-SP video decoder and an MPEG HEVC video decoder.

9.1.1 JPEG decoder

The first example is a JPEG decoder described using the RVC-CAL formalism [205]. The top-

level network of this design is depicted in Figure 9.1. This is composed of 8 subnetworks

(actor/network composition), 8 actor-classes, and 8 actors. The main functional components

are a JPEG Parser, Huffman decoder, inverse quantization (IQ) and inverse discrete cosine

transform (IDCT) block, respectively. Input to the decoder is a compressed 4:2:0 bit-stream

and output is the decoded image.
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JPEG Parser Huffman IQ IDCTinput bitstream
010011010...

video output
1110010101...

Figure 9.1: JPEG decoder.

9.1.2 MPEG4-SP decoder

The second design example is an MPEG-4 simple profile (SP) decoder described using the

RVC-CAL formalism [31]. The top-level network of this design is depicted in Figure 9.2. This is

composed of 8 subnetworks (actor/network composition), 27 actor-classes and 42 actors. The

main functional components are a bit-stream parser, and for each deconding component (i.e.

Y, U, V) a reconstruction, 2D-IDCT, frame buffer, and motion compensation block, respectively.

The merging block makes a composition of the Y, U and V parts. Input to the decoder is a

compressed 4:2:0 bit-stream and output is the decoded video sequence.

Texture V

Texture U

Texture Y

Parser
input bitstream

010011010...
video output
1110010101...

Motion V

Motion U

Motion Y

Merger

Figure 9.2: MPEG4-SP decoder.

9.1.3 MPEG-HEVC decoder

The third example is an MPEG-HEVC decoder described using the RVC-CAL formalism [9].

The top-level network of this design is depicted in Figure 9.3a. The basic version of this

design is composed of 9 subnetworks (actor/network composition), 16 actor-classes and 32

actors. The main functional components are a bit-stream parser, moving prediction (MovPred),

intra-prediction (Inra), inter-prediction (Inter), IDCT, reconstruct coding unit (RecCU), select

coding unit (SelCU), deblocking filter (DebFilter), sample adaptive offset filter (SaoFilter) and

decoding picture buffer (DecPicBuff) block, respectively. Input to the decoder is a compressed

4:2:0 bit-stream and output is the decoded video sequence.

9.2 CAL source code static and dynamic profiling

This section presents the experimental results on the high-level design profiling, illustrated

in Chapter 3 and 7 respectively, for an MPEG-HEVC decoder. The design under study is the

RVC-CAL standardized version [206] of the decoder illustrated in Section 9.1.3. The complete
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(a) Top-level network with 9 subnetworks.

(b) RVC-CAL standardized version (without subnetworks).

Figure 9.3: HEVC decoder.

network topology (without subnetworks) is depicted in Figure 9.3b. This design is composed

of 32 actors, 26 actor-classes and 112 buffers. In the following, this initial design configuration

is referred to as Ref-Standard.

9.2.1 Source code static analysis

The first step of a high-level design profiling is the static source-code analysis illustrated in

Section 3.2. Results of this analysis performed on the HEVC Ref-Standard design are summa-

rized in Table 9.1 where the overall number of SLOC and Halstead metric values are reported.
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Table 9.1: Static code complexity of the MPEG-HEVC decoder.

(a) Network composition in terms of actors, buffers, internal variales, actor-classes and SLOC.

Actors Buffers Internal variables Classes SLOC

Ref-Standard 32 112 745 26 1.46 104

Shared-Memory 13 96 800 13 1.37 104

(b) Halstead complexity metric results.

n1 n2 n N1 N2 N

Ref-Standard 3.20 102 2.35 103 2.67 103 3.29 104 3.33 104 6.62 104

Shared-memory 4.25 102 2.45 103 2.87 103 3.19 104 3.36 104 6.55 104

V D E T B I

Ref-Standard 7.54 105 2.24 103 1.69 109 9.38 107 3.33 10−4 3.37 102

Shared-memory 7.52 105 2.76 103 2.07 109 1.15 108 3.33 10−4 2.73 102

Table 9.2: Actor memory requirements for the initial HEVC design.

Internal variables Bit size

Ref-Standard 745 12.25MB
Shared-memory 800 732.0kB

The overall design SLOC is 14658, which is smaller compared to the approximatively 110000

C/C++ SLOC of openHEVC implementation [207, 208]. According to Halstead development

time T, the HEVC Ref-Standard design is a 37.8 man-months (i.e. T = 9.38 109s) project when

developed using RVC-CAL as the programming language.

9.2.2 Memory requirements and utilization

The overall memory requirements, in terms of internal variables and buffer utilization, of a

design can be estimated through a static and dynamic high-level code analysis. The overall

amount of bits required for the actors’ internal variables can be evaluated through a static

code analysis. In fact, in RVC-CAL the dimension of each internal variable should be known at

compile-time, as such no dynamic memory allocations can be made. This makes it possible

to estimate exactly the static memory requirement for each internal variable. As summarized

in Table 9.2, the memory requirement for the HEVC Ref-Standard design is 12.25MB. On the

contrary, a dynamic code analysis is required for estimating the memory requirements in

terms of tokens passed on each buffer because of the dynamic dataflow MoC of this design. As

illustrated in Section 3.3, this analysis can be performed with a high-level code interpretation

of the CAL source code. Table 9.3a summarizes the buffer utilization and requirement when
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Table 9.3: Buffer utilization profiling data of the MPEG-HEVC decoder.

(a) Tokens passed through the network (i.e. produced and sucessively consumed).

Total Bits

Ref-Standard 1000824 16.91MB
Shared-Memory 213586 1.37MB

(b) Buffer bandwidth in terms of produced and consumed tokens for each firing.

Produced-tokens/Firing Consumed-tokens/Firing
Average Min Max Average Min Max

Ref-Standard 49.74 1 4096 49.75 1 4096
Shared-Memory 3.16 1 8192 3.16 1 8192

(c) Write and read hits on each buffer.

Write hits Read hits
Total Average Min Max Total Average Min Max

Ref-Standard 1000824 8935.9 8 400210 1052894 9400.8 8 400210
Shared-Memory 213586 2224.8 8 16082 235764 2455.8 8 16694

the 8-frame 416x240 MERGE_B_TI_3 HEVC conformance bit-stream [209] is used as input

for the design. In this case, the number of tokens passed through the design buffers is approx-

imatively 106 which require 16.91MB to be represented. Furthermore, during the dynamic

code interpretation it is possible to evaluate the number of write and read accesses that are

performed on each buffer. Table 9.3b and 9.3c illustrate, respectively, the number of tokens

produce/consumed each time a firing makes use of a buffer and the number of write/read

accesses that have been performed on each buffer.

9.2.3 Execution trace graph

The structure of the ETG evaluated during the high-level code interpretation described in

the previous section is summarized in Table 9.4. This is composed of approximatively 2 106

firings (nodes of the graph) and 2.2 107 dependencies (directed arcs). As can be seen from

Table 9.6b, the ETG is (in general) a low-connected graph. In fact, for this particular case the

incoming and outgoing degree is approximatively 11.64. Figure 9.4 depicts the rendering of a

small portion (i.e. approximatively 80000 action firings and 350000 dependencies) of this ETG

made with the Gephi graph-visualizer [210, 211].

9.2.4 Initial design-refactoring directions

From the high-level profiling information obtained during the analysis described in the pre-

vious sections, it is possible to identify the buffer utilization as a critical point of the HEVC
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Table 9.4: Execution trace graph configuration of the Ref-Standard MPEG-HEVC decoder.

(a) Size.

Action firings Dependencies

1932226 22490814

(b) Action firings incoming and outgoing degree.

Average Min Max Var

|δ(si )−| 11.64 0 200 54.63
|δ(si )+| 11.64 0 61530 12143.96

(c) Dependencies set.

Direction
Kind Total input output rr rw wr ww

FSM 8.2% - - - - - -
Port 8.6% 54.2% 45.8 % - - - -
Internal variable 77.8% - - 34.4% 16.2% 32.6% 16.8 %
Tokens 5.4% - - - - - -

Ref-Standard design. In fact, the overall number of exchanged tokens between actors is ap-

proximatively 16.91MB. This issue can be effectively coped with an extension of the CAL MoC

by introducing the notion of shared-memory between actors. If correctly used, this insight

enables reducing the overall number of exchanged tokens, without introducing (possible)

race-conditions. In other words, the shared-memory approach should only be used if an actor

modifies the value of an internal variable where the values are used without any modification

(i.e. read only access) by a second actor. Without this approach, each time that the first actor

modifies an internal variable then the new value should be sent as a token to the second actor.

In the case where the processing result of an actor does not depend on the arrival time of the

token and its value is not locally modified, then the shared-memory approach can be used.

The consumption of a token is transformed to a read-access of a variable. This is the case, for

example, for the DecPicBuffer actor. This actor receives the decoded picture as a stream of

tokens. However, the decoded picture can be shared among actors without requiring the use

of tokens by the use of a shared-memory approach. More over, additional internal variables,

necessary to store the token data values, can be removed. Following these considerations,

the HEVC Ref-Standard design has been modified by supporting the shared-memory MoC.

This new design configuration, summarized in Table 9.1 and referred to as Shared-Memory,

is composed of 13 actors and actor-classes and 96 buffers. The same static and dynamic

code analysis illustrated before has also been performed for this new design configuration.

Table 9.5 summarizes the internal variables that can be shared among the actors of the HEVC

Shared-Memory design. It is possible to see how the overall size of the shared-memory is
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Figure 9.4: The rendering of a small portion (i.e. approximatively 80000 action firings and
350000 dependencies) of the execution trace graph described in Table 9.4. Action firings are
colored according to the corresponding actor.

22kB, However, the real memory requirement reduction is obtained by removing internal

actor variables that store redundant data and by reducing the overall number of exchanged

tokens. In Table 9.3a and 9.3, respectively, it can be seen how the overall internal memory of

the Shared-Memory design is 732kB (94% smaller compared to the Ref-Standard version) and

the overall amount of exchange tokens is 1.37MB (92% smaller compared to the Ref-Standard

version). The ETG structure obtained with this new design configuration is summarized in

Table 9.6. This ETG is used in the following, where the hotspots analysis is performed.
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Table 9.5: Memory requirement for the actor internal variables of the Shared-Memory MPEG-
HEVC decoder.

Shareable
Internal variables Bit size Variables Bits size

811 754KB 11 22.0kB

Table 9.6: Execution trace graph configuration of the Shared-Memory MPEG-HEVC decoder.

(a) Size

Action firings. Dependencies

493551 6124379

(b) Action firings incoming and outgoing degrees.

Degree Average Min Max Var

|δ(si )−| 12.40 0 84 146.02
|δ(si )+| 12.40 0 38643 9180.69

(c) Dependencies set.

Direction
Kind Total input output rr rw wr ww

FSM 8.0% - - - - - -
Port 6.0% 63.2% 36.8 % - - - -
Internal variable 82.0% - 0 31.4% 18.9% 27.7% 22.0 %
Tokens 4.0% - - - - - -
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9.3 Design refactoring

This section presents the experimental results of the design space critical path exploration

and hotspots analysis, illustrated in Section 8.2 and 8.3 respectively, for an MPEG-HEVC

decoder. The design under study is the decoder illustrated in Section 9.2.4, referred to as

HEVC Shared-Memory, specified using the RVC-CAL dataflow formalism extended with the

notion of shared-variables. The target platform for this implementation is a desktop computer

equipped with an Intel i7-3770 3.40GHz processor and 8GB of memory. The objectives of this

analysis are two-fold: improve the throughput performance of the initial design, increase the

potential speedup S(n) in order to fully exploit the 4 cores. To achieve both objectives, the

designer has reduced the algorithmic critical path length |−→C P |al g o following the refactoring

directions provided by the DSE framework.

Inter

(a) Initial version

Inter Inter
n

(b) Pipeling recplication

Demux

Inter

Inter

Inter

Mux

n

(c) Data parallelism

Figure 9.5: Refactoring strategies for the Inter-Prediction actor.
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9.3.1 Critical action ranking

As illustrated in Table 9.8b, the initial maximal speedup (i.e. achievable with n = nA process-

ing elements) of this design is 2.43. The first step of the refactoring phase was to evaluate

the critical action ranking. As illustrated in Section 8.3, the objective is to identify which

actions contribute the most to the serial part of the design. Table 9.7a summarizes the list of

the first 5 actions which contribute the most to the overall |−→C P |al g o . It can be seen how the

interpolation action, contained by the Inter actor, contributes by 45% to the overall

|−→C P |al g o . Hence, this action should be considered as the refactoring starting point. As summa-

rized in Figure 9.5, this actor can be split in order to exploit task or data parallelism. In this

case, as illustrated in Figure 9.5c, the actor has been replicated for each video component (i.e.

Y, U, V). In this new design configuration, reported as code optimization in Table 9.8b, both the

overall design complexity and the |−→C P |al g o have been reduced by 52%. However, the maximal

potential parallelism has decreased to 2.23%. Consequently, a second round of this analysis

has been performed in order to highlight the new most serial parts of the design. In this new

design configuration, the new 5 most critical actions are summarized in Table 9.7b, where the

|−→C P |al g o contributions of the interpolation action, contained by the InterLuma200

actor, and the addResAndClip action, contained by the SelCU actor, are around 12.38%

and 11.14%, respectively.

Table 9.7: Critical action ranking analysis of the MPEG-HEVC decoder. Results are for the
initial and the full-parallel version, summarized for 5 different actions in Table 9.7a and 9.7b
respectively.

(a) Critical action ranking for the initial version of the decoder.

Actor Action w(a)C P

Inter interpolation 45.86%
Inter applyWeights 11.14%
DecPicBuff expandBorders 6.68%
SaoFilter getSaoTypeIdxDone 4.58%
DebFilter filterEdges 4.00%

(b) Critical action ranking for the full parallel version of the decoder.

Actor Action w(a)C P

InterLuma200 interpolation 12.38%
SelCU addResAndClip 11.14%
SaoFilterLuma getSaoTypeIdxDone 7.42%
DebFilter filterEdges 7.28%
SaoFilterLuma getSaoMerge 6.85%
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Table 9.8: Description of different configurations of the HEVC decoder design and correspond-
ing speedup, computational complexity and critical path length values.

(a) Design configurations.

Design version Notes

1 Shared-memory Initial version
2 Code optimization Reducing impacts of critical copies
3 InterPred Comp Splitting luma and chroma
4 CompPipeline The inter-prediction actors are pipelined
5 CompPipeline2x1 Splitting first part of the pipeline of the luma inter-prediction
6 Sao Comp Splitting luma and chroma computation in the Sao filter
7 DPB Optim Optimization of the action which expand the borders
8 Sao Split Optimization of the Sao and parallelization of the luma part

(b) Potential speedup, computational complexity and critical path length.

Design version S(nA) ∆w ∆|−→C P |
1 Shared-memory 2.43 - -
2 Code optimization 2.23 -52% -57%
3 InterPred Comp 2.84 -55% -47%
4 CompPipeline 3.65 -58% -39%
5 CompPipeline2x1 3.84 -60% -38%
6 Sao Comp 4.05 -60% -36%
7 DPB Optim 4.18 -60% -35%
8 Sao Split 4.46 -58% -31%

9.3.2 Impact analysis

In this case the critical action ranking does not provide any clear direction as to what is the

first action that should be refactored and what is the potential |−→C P |al g o reduction. Conse-

quently, the impact analysis illustrated in Section 8.3 has been used. Results of this analysis,

summarized in Figure 9.6, show that the two most critical actions highlighted in Table 9.7b

are not the best refactoring candidates. In fact, by refactoring one of these two actions, the

|−→C P |al g o can potentially be reduced by a maximum of 5%, compared to 7% by refactoring the

filterEdge action, contained in the DebFilter actor, or the geatSaoMerge action,

contained in SaoFilterLuma actor. According to this result, the filterEdge action has

been refactored. Successively, other iterations have been performed in the same manner.

Results are summarized in Table 9.8. At the end, the maximal potential speedup that has been

obtained has been around 4.46% and the throughput improvement (i.e. in terms of |−→C P |al g o)

around 31%.
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Figure 9.6: Impact analysis for the initial version of the Shared-Memory MPEG-HEVC decoder.

9.4 Bounded buffer size configuration

This section presents the experimental results on bounding and minimizing the buffer size

configuration, illustrated in Section 8.4.3, for the JPEG decoder and the MEPG-HEVC decoders

illustrated in Section 9.1.1 and 9.1.3, respectively. The number of actors and buffers of each

specific design configuration is summarized in Table 9.9, together with the number of fired

actions Hs contained in each ETG used for the analyses. Tables 9.10 and 9.11 report the results

obtained using the deadlock avoidance and deadlock recovery approaches for the JPEG and

HEVC decoders, respectively. The results have also been compared with what was obtained

using a well-known state of the art method [195]. In the comparison ∆bits% and ∆tokens%

represent the difference obtained with the new approach, respectively in terms of bits and

token size savings. Moreover, for each configuration, the average time required for solving

at each iteration, the problem formulated in Equation (8.36), is reported in terms of ms. The

results have been obtained using a standard desktop PC with an i7-3770 3.40GHz processor

and 32GB of memory. It can be observed that even with very small trace sub-graphs, such

that Hp = 1 and a single, optimized fired step such as Hc = 1, the approach leads to a bounded

buffer size configuration that is about 15% smaller compared to the well-established solution

introduced in [195] (i.e. both in terms of tokens and bit savings). It is interesting to observe

that if a buffer can contain only tokens of the same type (e.g. unsigned/signed integer, floats)

where the number of bits for a single token is known (as in the case of these two examples)

then the optimization objective J(k) of Equation (8.36) can easily be formulated in terms of

tokens by introducing a cost value for each component of the vector y .
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Table 9.9: Design sizes: numbers of actors, buffers and action firings.

Actors Buffers Action firings

JPEG 6 10 181739
HEVC (see Table 9.4a) 32 112 1932226

Table 9.10: Bounded buffer size configurations of the JPEG decoder using the MPC approach.
Results are compared to state of the art approaches.

(a) Deadlock avoidance.

Hp 1 2 2 4 4 4
Hc 1 1 2 2 3 4

|S′| 6 12 12 24 24 24
bits (kB) 2.08 2.08 2.08 2.09 2.09 2.09
tokens 1961 1961 1961 1963 1963 1963
∆bits% -15.8 -15.8 -15.8 -15.7 -15.7 -15.7
∆tokens% -8.9 -8.9 -8.9 -8.8 -8.8 -8.8
solver (ms) 2.9 3.4 6.0 8.4 13.1 18.7

(b) Deadlock recovery.

Hp 1 2 2
Hc 1 1 2

|S′| 6 12 12
bits (kB) 2.07 2.07 2.07
tokens 1950 1950 1950
∆bits% -16.2 -16.2 -16.2
∆tokens% -9.4 -9.4 -9.4
deadlocks% 0.9 0.9 0.9
solver (ms) 3.0 3.5 4.7
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Table 9.11: Bounded buffer size configurations of the MPEG-HEVC decoder using the MPC
approach. Results are compared to state of the art approaches.

(a) Deadlock avoidance.

Hp 1 2 4 2
Hc 1 1 1 2

|S′| 32 64 128 64
bits (kB) 122.73 123.17 125.19 122.98
tokens 86411 86405 88285 86238
∆bits% -14.1 -13.8 -12.4 -13.9
∆tokens% -15.4 -15.4 -13.6 -15.6
solver (ms) 5.7 10.7 25.3 27.6

(b) Deadlock recovery.

Hp 1 2 2 1
Hc 1 1 2 2

|S′| 32 64 64 32
bits (kB) 110.77 111.88 111.78 113.56
tokens 77663 78605 78554 80407
∆bits% -22.5 -21.7 -21.8 -20.5
∆tokens% -24.0 -23.0 -23.1 -21.3
deadlocks% 0.5 0.6 0.6 0.5
solver (ms) 8.2 12.5 29.0 15.2

166



9.5. Buffer size optimization

9.5 Buffer size optimization

This section presents the experimental results on finding a trade-off between the buffer size

configuration and the throughput performance, as illustrated in Section 8.4.4, of the MPEG4-

SP decoder illustrated in Section 9.1.2. The target architecture is the ST Microelectronics

STHorm platform [212]. This is an area and power-efficient, many-core platform based on

multiple globally asynchronous, locally synchronous (GALS) clusters of processing elements.

Clusters feature up to 16 processors and one control processor with independent instruction

streams sharing a multi-banked L1 data memory (256 kB), multi-channel DMA engine, and

specialized hardware for synchronization and scheduling. The fabric can be programmed in

either OpenCL or standard C with the integration of a specific API, called native programming

model (NPM), which is closely coupled to the platform and provides the highest level of con-

trol on application-to-resource mapping, at the expense of abstraction. For the purpose of

this work, a C/NPM implementation of the RVC-CAL network synthesized using an STHorm

specific extension of Orcc has been used. The results reported in the following are obtained

using a software emulator running on Linux. In all the tests, the CAL actors composing the

MPEG4-SP decoder were mapped into one processing element each, and a single STHorm

cluster was used. Furthermore, the results presented here have been obtained with four differ-

ent 10-frame QCIF bit-streams, which are commonly-used video test sequences also known

as Akyio, Foreman, Suzie and News. Figure 9.7 illustrates both the estimated and the

experimental results where the Akiyo test sequence has been used as a reference for evaluating

both the minimal buffer size using the heuristic approach introduced in Section 8.4.3 and the

different buffer size configuration using the heuristic algorithm described in Section 8.4.4. The

other test sequences have only been used to validate this approach. Figure 9.7b depicts the

estimated results (i.e. obtained post-processing the causation trace as illustrated in Section 8.1

and using the clock-accurate profiling information retrieved from the STM System Trace

Module) and the experimental results (i.e. obtained from a cycle-accurate, but slower, design

simulation). In the picture, the results obtained with the Akiyo test sequence are reported.

It must be noted that the CP length with a minimal buffer size is roughly 35% higher com-

pared to algorithmic critical path length |−→C P |al g o . As it can be seen, a good trade-off can be

achieved between performance improvement and resource utilization (i.e. in terms of memory

utilization). In fact, increasing the buffer size from the minimal configuration by 6% leads

to an overall throughput improvement of 30%. Compared to the experimental results, the

performance estimation has 5% of inaccuracy in terms of absolute throughput and execution

time values. This is probably related to the low precision of the STHorm scheduler model

implemented in the DSE performance estimation engine used during the ETG post-mortem

scheduling phase.
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Figure 9.7: Buffer size optimization of the MPEG4-SP decoder implemented on an ST Micro-
electronics STHorm platform.
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9.6 Dynamic power dissipation minimization

This section presents the experimental results on the dynamic power minimization, illustrated

in Section 8.5, for the MPEG4-SP decoder illustrated in Section 9.1.2. The design under test

contains 41 actors and it has been implemented on a Xilinx Virtex-5 FPGA. Performance

profiling and low-level code synthesis has been performed with Xronos synthesizer. Two

different MCD configurations have been tested: the first presents 2-clock domains with

F = {50.0,6.25} MHz; the second has 4-clock domains with F = {50.0,25.0,12.50,6.25} MHz.

In order to reduce the power dissipation related to memory access, the minimal buffer size

configuration illustrated in Section 8.4.3 has been used. With this configuration, the results

of the heuristic approach illustrated in Section 8.5.3 for the two MCD configurations are

summarized respectively in Table 9.12 and Table 9.13. For each of these two configurations,

the overall power consumption has been measured using the Xilinx XPE [213], enhanced

with information retrieved during a post-place and route simulation using 10-frame QCIF

bit-streams as input stimulus. Results of the different power contribution terms for both

the 2-clock and 4-clock domain configurations are summarized in Table 9.12 and Table 9.13,

respectively. Compared to the MCD configuration, where all the domains use the maximal

available frequency, a significant overall power reduction can be achieved partitioning the

design using the approach illustrated in this work. In fact, the overall power reduction ranges

between 4% and 10% in the two cases.

Table 9.12: 2-Clock domains dynamic power minimization results of the MPEG-4 SP decoder
implemented in a Xilinx Virtex-5 FPGA. Nominal: all the domains use the maximum available
frequency; Optimized: with the clock frequencies illustrated in Table 9.12a. ∆% defines the
percentage reduction between the nominal and optimized case of each contribution.

(a) Clock domains and partitioning.

Clock Domain Actors

f1 50.0 MHz 21
f2 6.25 MHz 20

(b) Experimental results.

Contribution Nominal W Optimized W ∆%

Clocks 0.328 0.282 -14.0
Logic 0.069 0.06 -13.0

Signals 0.079 0.083 5.1
BRAMs 0.1 0.082 -18.0

Input/Output 0.005 0.005 0.0
Leakage 1.051 1.05 -0.1

Total 1.632 1.562 -4.3
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Table 9.13: 4-Clock domains dynamic power minimization results of the MPEG-4 SP decoder
implemented in a Xilinx Virtex-5 FPGA. Nominal: all the domains use the maximum available
frequency; Optimized: with the clock frequencies illustrated in Table 9.13a. ∆% defines the
percentage reduction between the nominal and optimized case of each contribution.

(a) Clock domains and partitioning.

Clock Domain Actors

f1 50.0 MHz 12
f2 25.0 MHz 5
f3 12.5 MHz 8
f4 6.25 MHz 16

(b) Experimental results.

Contribution Nominal W Optimized W ∆%

Clocks 0.436 0.357 -18.1
Logic 0.07 0.041 -41.4

Signals 0.095 0.053 -44.2
BRAMs 0.106 0.075 -29.2

Input/Output 0.005 0.004 -20.0
Leakage 1.053 1.05 -0.3

Total 1.765 1.58 -10.5
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9.7 Conclusions

In this chapter a collection of experimental results based on the analysis of video codec

applications has been illustrated and discussed. The results obtained during the different

stages of the design space exploration of video decoders, such as JPEG, MPEG4-SP, and HEVC

decoders, have been presented and discussed. More precisely, the following cases of use

have been discussed: the critical path design exploration and the code refactoring assisted

by the impact analysis have been illustrated for the HEVC video decoder, implemented in

a multi-core i7 desktop CPU. Successively, the bounded buffer size heuristic, based on the

use of an MPC controller, has been used for both a JPEG and HEVC decoder. An optimal

trade-off between buffer size dimensioning and throughput performance has been discussed

for an MPEG4-SP decoder implemented on an SThorm many-core platform. Finally, the

dynamic power dissipation minimization heuristic has been used for an MPEG4-SP decoder

implemented on a Xilinx Virtex-5 FPGA.
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10 Conclusions

This thesis addressed the problem of defining a DSE methodology for complex designs appli-

cations modeled with dynamic dataflow MoCs. Despite the increasing interest in massively

and heterogeneous parallel platforms, a unified methodology for the specification and de-

velopment of (complex) applications is far from being uniformly adopted. There are still too

many approaches and methodologies: some give more emphasis to the re-use of legacy code

and IP blocks, others require specific methodologies constrained to a given type of platform

or technology. Very few approaches have as main objective the achievement of a true unified

methodology capable to abstract from SW and HW. The work proposed in this thesis has tried

to demonstrate how a unified HW and SW design methodology for complex designs can be

successfully adopted. One of the major contributions of this work has been the formalization

of DSE methodology for dynamic dataflow programs. In fact, dynamic dataflow MoCs have

always been criticized with the argument that their behavior is hardly analyzable. The general

approach for the implementation of dataflow programs has always been using expressive

limited MoCs (e.g. static and cyclo-static) under the assumption that run-time performance

can be guaranteed at compile-time. However, this approach severely limits the scalability

of an application when a wide set of features is required (e.g. multimedia application). This

work has shown how it is possible to efficiently explore the design space and estimate the

performance of an application through the analysis of the ETG. The main advantage of this

approach is that it does not limit the program expressiveness. In fact, it can be independently

adopted from the dataflow MoC class (i.e. static, cyclo-static and dynamic). The effectiveness

of this design methodology has been proven through the development and use of a DSE

framework called TURNUS. The main research contributions of this thesis are:

(i) Execution Trace Graph: a graph-based representation of the program execution has

been formalized and illustrated in Chapter 5. It has been shown how this mathematical

formalism, called execution trace graph (ETG), can be used to model the execution of

static, cyclo-static and dynamic dataflow programs as a directed acyclic graph (DAG).

Nodes and edges of this DAG represent a single action firing and a (data or functional) de-

pendency between two different action firings, respectively. Notions of partially-ordered
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sets (i.e. po-sets) and directed paths (i.e. d-paths) have been adapted to this execution

model. Different dependency kinds have been defined, notably the finite state machine

dependencies, the internal variable dependencies, the port dependencies, the tokens

dependencies and the guard dependencies. Compared to similar graph-based execution

models, the ETG model defines the concept of guard enable and disable dependencies.

By the use of these kinds of dependencies it has been demonstrated how different execu-

tion trajectories can be modeled using the ETG. This can be obtained through a serial

high-level program execution. The guard enable and disable dependencies also make

it possible to model the execution of dynamic dataflow programs without requiring an

MoC expressiveness reduction (i.e. to a static or a cyclo-static MoC) as done by previous

approaches. Two interesting properties of the ETG are that design performance can be

efficiently estimated through post-mortem scheduling (i.e. see Section 8.1) and that

different analysis approaches can be used to find design configuration points that satisfy

trade-off requirements between performance and resource utilization. As an example,

LP methods (e.g. see 8.5.3) and advanced control technique approaches (e.g. see Section

8.4.3) can be efficiently used for every class of dataflow MoC.

(ii) Profiling of dynamic dataflow programs: a systematical methodology for profiling dy-

namic dataflow programs has been formalized and illustrated in Chapter 7. It has been

shown how static and dynamic information concerning the program complexity can be

retrieved during a high-level code interpretation of the program. Compared to previous

approaches that mainly required a low-level code generation and binary-execution of

the program, the proposed methodology is completely based on a serial and high-level

code interpretation of the program. Furthermore, it has been shown how the profiling

information is systematically used to evaluate the different dependency kinds of an ETG.

(iii) Design space exploration methodology: a unified SW and HW DSE methodology based

on the post-mortem scheduling and analysis of the ETG has been formalized and il-

lustrated in Chapter 8. A collection of heuristic methods used for efficiently exploring

different design configurations of a dynamic dataflow program has been illustrated.

Compared to previous approaches, this methodology makes the analysis of dynamic

dataflow programs possible without limiting MoC expressiveness. The main research

contributions are:

• Performance estimation: a unified performance estimation approach for both

HW and SW, based on ETG post-mortem scheduling, has been introduced and

illustrated in Section 8.1. Compared to other approaches that requires several

partial low-level implementations and integrations of the program, the proposed

approach makes use of a DEVS simulator. Additional dependencies and timing

information are evaluated and enhanced by cycle-accurate profiling data obtained

by third-party profilers. The use of the ETG makes the analysis of the application

parallelism by itself and exploration of its available levels of parallelism possible.

Furthermore, SW and HW platforms are modeled with a unified approach.
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• Design space critical path: the concept of design space critical path has been

formalized and illustrated in Section 8.2. This concept has been used to bound

and limit the design configuration of an application that should be considered by

the DSE optimization heuristics. Furthermore, the concept of potential speedup

defined in terms of critical path length has been formalized using the notion of ETG

critical path. Contrary to the state of the art, this definition clearly states what are

the serial and parallel parts of a program by using the ETG’s graph-based formalism.

• Hotspots analysis: the concept of hotspots of a dataflow program has been formal-

ized and illustrated in Section 8.3. This metric provides clear source code refactoring

information to the designer that can be employed to reduce the algorithmic com-

plexity and improve the throughput of a program. Compared to previous methods,

this metric takes data or functional dependencies defined by the ETG directly into

account.

• Buffer size configuration dimensioning: a buffer size dimensioning approach for

dynamic dataflow programs has been formalized and illustrated in Section 8.4. The

design space of the program has been split into a deadlock and feasible region.

These regions are separated by what is called minimal buffer size configuration.

This thesis has proposed a methodology, based on the use of advanced control

techniques, to find a close-to-minimal buffer size configuration and successively

evaluate different trade-offs between throughput and memory usage. Compared to

previous approaches that are suitable only for static or cyclo-static dataflow MoCs,

this methodology is suitable for dynamic dataflow MoCs and it does not require

any behavioral limitation of the program’s MoC. It must be noted that for dynamic

dataflow programs, the minimal buffer size configuration can vary according to the

input sequence used. As such, a deadlock-free execution can be guaranteed only

for the tested set of input sequences. In other words, a deadlock-free execution can

be guaranteed only if representative input sequences are tested. This is a common

practice in multimedia processing.

• Dynamic power dissipation minimization: a dynamic power dissipation mini-

mization approach for dynamic dataflow programs as been formalized and illus-

trated in Section 8.5. It has been shown how the program can be mapped on a

multi-clock domain architecture reducing its dynamic power dissipation without

impacting the throughput performances. Compared to previous approaches that

are suitable only for static or cyclo-static dataflow MoCs, this methodology is also

suitable for dynamic dataflow MoCs.

(iv) Design space exploration environment: a DSE environment, called TURNUS, suitable

for the analysis and optimization of CAL applications has been developed and provided

as an open source project. The structure and main functionalities of this framework have

been illustrated in Chapter 6. Along this thesis it has been shown how TURNUS has been

integrated with other open-source CAL HW synthesis and SW code generation tools (i.e.

called Xronos and Orcc, respectively). Its integration with these tools has provided a
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complete system design environment for CAL applications that was not available before

this work.

A collection of experimental results based on the analysis of image and video codec applica-

tions has been illustrated and discussed in Chapter 9. The results obtained during the different

stages of the design space exploration of video decoders, such as JPEG, MPEG4-SP, and HEVC

decoders, have been presented and discussed. More precisely, the following cases of use

have been discussed: critical path design exploration and code refactoring assisted by impact

analysis have been illustrated for the HEVC video decoder, implemented in a multi-core i7

desktop CPU. Successively, the bounded buffer size heuristic based on use of an MPC con-

troller has been used for both a JPEG and HEVC decoder. An optimal trade-off between buffer

size dimensioning and throughput performance has been discussed for an MPEG4-SP decoder

implemented on an SThorm many-core platform. Finally, the dynamic power dissipation

minimization heuristic has been used for an MPEG4-SP decoder implemented on a Xilinx

Virtex-5 FPGA. It must be noted how these results have been obtained using the same CAL

programs implemented on a wide variety of parallel architectures. Although the unified SW

and HW methodologies illustrated in this thesis has been validated, several challenging issues

are still unsolved. These open problems are discussed in the following section.

10.1 Future work

Since we used the term orthogonalization of concerns, in this section the term orthogonaliza-

tion of effort is forged. By orthogonalization of effort it is assumed that both theoretical and

implementation works should be concentrated in order to improve the DSE methodology and

the supporting framework.

Open theory problems

The following problems, as far as what concerns the theory behind the DSE methodology,

need more investigation:

• Hardware and algorithmic critical path: the relation between the program algorithmic

critical path and the hardware critical path should be investigated. The objective is to

verify if it is possible to provide further information to the designer in order to scale the

design over higher frequency.

• Many-core partitioning: the problem of many-core partitioning of dynamic dataflow

programs is a must-do problem. This should also be provided within the DSE framework

in order to provide a fully-functional co-design environment. Initial, but still unpub-

lished, work has been concentrated on finding effective partitioning heuristics based on

the analysis of the design space critical path. However, further investigation is required

to validate and prove the effectiveness of this approach.
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• Pipelining analysis: initial, but still unpublished, work is the identification through the

ETG analysis of actions where execution can be pipelined. If these actions are along the

algorithmic critical path, pipelining their execution would directly provide improvement

of the design performance without requiring any program modifications.

• Scheduling optimization: another must-do problem is the analysis and optimization of

the scheduling of dynamic dataflow programs. Solving this problem is essential in order

to fully explore the design space defined as the configuration points of partitioning,

scheduling and buffer size configurations.

• Performance estimation: the performance estimation methodology based on the post-

mortem processing of the ETG should be verified and validated on a wider set of het-

erogeneous parallel platforms. An example of a not-yet tested platform is the emerging

many-core Parallella platform [214].

Open implementation problems

The following problems, as far as what concerns the improvement of the TURNUS DSE

framework, need more investigation:

• Complex guard conditions: guard enable and disable dependencies are the key roles to

model different execution trajectories with a single ETG. Guard conditions, where more

than one internal actor variable is involved, require the use of a satisfiability modulo

theories (SMT) problem solver [215]. Currently, the detection of enabled and disabled

guard conditions is required to be made by the code interpreter. As future work, a

new functionality that should be integrated within the DSE framework is the possibility

to model such complex guard conditions and directly detect when a guard has been

enabled or disabled. In other words, enabling and disabling guard conditions should

be directly identified when post-processing the ETG by analyzing the internal variable

modifications performed by the firings.

• Big data: the size of an ETG rapidly grows as the number of action firings increase. For

complex designs and where big input sequences are used as program stimulus, the

corresponding ETG can contain millions, even billions of nodes and dependencies. This

could become a problem if effective methods for handling such big data are not used. An

initial experimental approach that has been tested within the DSE framework is the use

of a graph database integrated in a Blueprints graph interface ecosystem [216, 217, 218].

However, further investigation is required to consolidate and improve the performance

of this approach
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A Discrete event system and simulation

A.1 Petri nets

A Petri net [156, 157] (PN) is a bipartite directed graph with two kinds of nodes, called tran-

sitions and places, where arcs are either from a place to a transition or from a transition to a

place. Using the concept of conditions and events, places represent conditions, and transitions

represent events. A transition (an event) has a certain number of input and output places repre-

senting the pre-conditions and post-conditions of the event, respectively. Contrary to KPN and

DPN, where tokens are atomic data objects, in a PN, tokens are used to simulate the dynamic

and the concurrent activity of the system. The presence of a token in a place is interpreted

as holding the truth of the condition associated with the place. In another interpretation, n

tokens are put in a place to indicate that n data items or resources are available.

A PN is formally defined as a tuple {P,T,E ,W, M0}, where:

• P = {p1, . . . , pm} is a finite set of places.

• T = {t1, . . . , tn} is a finite set of transitions.

• E ⊆ (P ×T )∪ (T ×P ) is a finite set of directed arcs connecting transitions to places and

places to transitions.

• W : E →N is a weight function which defines the weight assignment for each arc.

• M0 : P →N0 is the initial marking.

• P ∩T =; and P ∪T =;.

According to the weight function W , arcs are labeled with positive integer numbers W (pi , t j )

and W (ti , p j ), representing respectively the weight of an arc from a place to a transition and

the weight from a transition to a place. The two sets •t = {p ∈ P : (p, t) ∈ E } and t• = {p ∈ P :

(t , p) ∈ E } define respectively the pre-set and post-set of a transition t .
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Remark. PN transitions are like KPN processes or DPN actors: they fire when sufficient input

is available. However, tokens have no value and firing of a transition does not involve any

computation on tokens. For a PN, a firing is just the act of moving tokens from one place to

another. Moreover, contrary to KNP and DPN buffers, places do not preserve the token ordering.

A.1.1 State

The state of a PN is described by a marking function M : P →N0, which assigns a non-negative

integer representing the number of tokens residing in that place to each place. Typically, the

marking function M is described as a column vector M = [M(p1), . . . , M(pm)]′ ∈ Nm
0 whose

generic entry M(pi ), i = 1, . . . ,m represents the number of tokens present in place pi , and the

symbol [·]′ is the matrix transpose operator.

A.1.2 Transition firing

Each firing (or occurrence) of a transition produces an update of the net marking vector M . In

order to be able to occur, a transition has to be enabled. A transition t is said to be enabled if it

satisfies the following firing rule:

∀p ∈ •t : M(p) ≥W (p, t ) (A.1)

Roughly speaking, the occurrence of a transition removes tokens from the pre-set of a transi-

tion and adds tokens to its post-set, according to the weights of the arcs connecting the places

to the transition. The firing of a transition t in M results in a new marking M̃ defined as:

M̃(p) : p 7→



M(p)+W (t , p)−W (p, t ) for p ∈ •t ∩ t•

M(p)+W (t , p) for p ∈ t• \ •t

M(p)−W (p, t ) for p ∈ •t \ t•

M(p) otherwise

(A.2)

The marking transition from M to M̃ can be concisely represented using the notation M [t〉M̃ .

Note that an enabled condition of Equation (A.1) guarantees that the resulting marking can

never assign a negative number to a place. By this, the run of a PN can be defined as the

marking sequence M k
0 = {Mi , i = 0, . . . ,k} obtained by firing the enabled transition sequence

t k
1 = {ti , i = 1, . . . ,k, ti ∈ T }, such that Mi−1[ti 〉Mi for i ∈ {1, . . . ,k}. It must be noted that the run

of a PN is non-deterministic: when multiple transitions are enabled at the same time, any

one of them may fire. A run of a PN can be effectively computed by means of elementary

matrix operations (i.e. multiplications and additions) using the pre-incidence matrix I and
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the post-incidence matrix O, respectively defined as:

I = [qi , j ]i=1,...,m
j=1,...,n

, qi , j =
W (pi , t j ) for (pi , t j ) ∈ E

0 otherwise

O = [ri , j ]i=1,...,m
j=1,...,n

, ri , j =
W (t j , pi ) for (t j , pi ) ∈ E

0 otherwise

(A.3)

In this way, the marking Mk (p) obtained by firing transition t at event k, can be expressed as:

Mk (p) = Mk−1(p)− I (p, t )+O(t , p), ∀p ∈ P (A.4)

A.2 Discrete event system specification

Discrete event system specification (DEVS) [180, 181] is a conceptual framework for specifying

modular, hierarchical and timed event systems. Its formalism makes it possible to model

and analyze general systems that can be discrete event systems (i.e. described by state tran-

sition tables), continuous state systems (i.e.described by differential equations), and hybrid

continuous state and discrete event systems.

Discrete event systems are a generalization of discrete time systems that allow time to be

continuous. The trajectories of a discrete-event system are functions from the time base R×N
to its sets of input, output, and state. These trajectories change value only a finite number of

times in any finite interval. This is the defining characteristic of a discrete event system: the

events that cause these discrete changes give the class of systems its name.

A.2.1 The atomic model

An Atomic DEVS model is defined as a tuple M = (X ,Y ,S, ta ,δext ,δi nt ,λ) where

• X is the set of input events.

• Y is the set of output events.

• S is the set of sequential states (or also called the set of partial states).

• ta : S →T∞ is the time advance function which is used to determine the lifespan of a

state.

• δext : Q × X → S is the external transition function which defines how an input event

changes a state of the system.

• δi nt : S → S is the internal transition function which defines how a state of the system

changes internally (i.e. when the elapsed time reaches the lifetime of the state).
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• λ : S → Y φ is the output function where Y φ = Y ∪φ and φ ∉ Y is a silent event or an

unobserved event. This function defines how a state of the system generates an output

event (when the elapsed time reaches the lifetime of the state).

where Q = {(s, te ) : s ∈ S, te ∈ (T∩ [0, t a(s)])} is the set of total states, te is the elapsed time since

the last event, T∞ = [0,∞] defines the extended time base that is the set of the non-negative

real number plus infinity [180].
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The key aspects of the Model Predictive Control (MPC) are presented in the following. However,

for a more complete presentation, the interested reader can refer to [198, 199] where different

domains of application are also illustrated. MPC, also known as receding horizon control,

is a model-based form of control in which the control action is obtained by solving, at each

sampling time, a finite-horizon open loop optimal control problem. Using the current state of

the plant as the initial state of the problem, the optimization solution yields an optimal control

sequence. The control loop is then closed by using the first control move obtained from the

optimized sequence. This is the main difference from conventional control strategies (e.g.

Proportional Derivative Integrator, Linear-Quadratic Regulator) which use a pre-computed

control law.

One of the main features of MPC is the possibility to take hard system constraints directly

into account in the optimization problem. The system evolution is predicted over Hp (i.e.

prediction horizon) events k. During event k, using the standard notation of discrete event

systems (e.g. see Equation (5.16)) the actual output is represented as y(k), the predicted

output and optimized output for the event k + i are represented respectively as y(k + i |k) and

u(k + i |k). At each event k, the MPC strategy calculates a set of Hc ≤ Hp (Control Horizon)

values of the input U (k)Hc
o = {u(k + i |k),∀i ∈ {0,1, . . . , Hc −1}}. The input is evaluated so that

that the predicted outputs Ŷ (k)
Hp
o = {y(k + i |k),∀i ∈ {1,2, . . . , Hp }} reach the target point in an

optimal manner. U (k)Hc
o is obtained by optimizing a linear or quadratic constrained objective

function such as:

J (k) = f (x(k|k),u(k|k),u(k +1|k), . . . ,u(k +Hc −1|k)) (B.1)

In other words, at each event k the objective is to minimize an objective function subject to
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additional constraints as:

minimize
u(k|k),u(k+1|k),...,u(k+Hc−1|k)

J (k)

subject to ymi n ≤ y(k + i |k) ≤ ymax , ∀i ∈ {1,2 . . . Hp }

umi n ≤ u(k + i |k) ≤ umax ,∀i ∈ {0,2 . . . Hc −1}

u(k + i |k) = 0,∀i ∈ {Hc , Hc +1. . . Hp }

g (u(k|k),u(k +1|k), . . . ,u(k +Hc |k)) ≤ 0

(B.2)

It must be noted that during the prediction, the control is held constant after Hc control moves

(i.e. u(k + i |k) = 0). As mentioned before, a remarkable feature of MPC is its receding horizon

approach: after evaluating the optimal input set U (k)Hc
o only the first move u(k)∗ = u(k|k) is

actually implemented. Then, a new sequence is calculated at the next event and only the first

input move is implemented again.
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C A CAL esoteric example

This appendix is a fun dissemination example that can be used to explain to people without

any notion of dataflow programming (and parallel programing, in general) what a dataflow

program is. The example that follows does not want to be strictly scientifically correct. An

example based on a chocolate cake recipe is presented. This is a tribute to my parents, Patrizia

and Andrea, who are both hotel-keepers and usually prepare homemade cakes for their guests’

breakfast [219]. Unfortunately for the reader, the recipe presented in the following is not

the original chocolate cake that my parents prepare. This is because the original recipe can

potentially be used by their competitors when they read this thesis.

C.1 A Chef chocolate cake

TheHello World Cake with Chocolate sauce [220] is an open source recipe. This

recipe, reported in Listing C.1, is written using the Chef esoteric programming language [221].

Within the Chef formalism, a program looks like a recipe. A Chef program is composed by

ingredients, mixing bowls and baking dishes. According to the definition presented in [221],

the ingredients hold individual data values and a program has access to an unlimited number

of mixing bowls and baking dishes. These contain ingredient data values. The ingredients

in a mixing bowl or baking dish are ordered, like a stack of pancakes. New ingredients are

placed on top, and if values are removed then they are removed from the top. If the value

of an ingredient changes, its old value in the mixing bowl or baking dish does not change.

The values in the mixing bowls and baking dishes also retain their dry or liquid designations.

Considering the Chef recipe reported in Listing C.1 it can be seen in this case how the program

is composed of two methods: the first (i.e. see line 18) describes how the cake is baked; the

second (i.e. see line 47) describes how the chocolate sauce used to serve the cake is made.

Inside each method how ingredients, mixing bowls and baking dishes are used is defined. For

each method, a set of input ingredients is defined (i.e. see lines 3 and 40, respectively).
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Listing C.1: Cake.chef
1 Hello World Cake with Chocolate sauce.
2

3 Ingredients.
4 33 g chocolate chips
5 100 g butter
6 54 ml double cream
7 2 pinches baking powder
8 114 g sugar
9 111 ml beaten eggs

10 119 g flour
11 32 g cocoa powder
12 0 g cake mixture
13

14 Cooking time: 25 minutes.
15

16 Pre-heat oven to 180 degrees Celsius.
17

18 Method.
19 Clean the mixing bowl.
20 Put chocolate chips into the mixing bowl.
21 Put butter into the mixing bowl.
22 Put sugar into the mixing bowl.
23 Put beaten eggs into the mixing bowl.
24 Put flour into the mixing bowl.
25 Put baking powder into the mixing bowl.
26 Put cocoa powder into the mixing bowl.
27 Stir the mixing bowl for 1 minute.
28 Combine double cream into the mixing bowl.
29 Stir the mixing bowl for 4 minutes.
30 Liquify the contents of the mixing bowl.
31 Pour contents of the mixing bowl into the baking dish.
32 Bake the cake mixture.
33 Wait until baked.
34 Serve with chocolate sauce.
35

36

37

38 chocolate sauce.
39

40 Ingredients.
41 111 g sugar
42 108 ml hot water
43 108 ml heated double cream
44 101 g dark chocolate
45 72 g milk chocolate
46

47 Method.
48 Clean the mixing bowl.
49 Put sugar into the mixing bowl.
50 Put hot water into the mixing bowl.
51 Put heated double cream into the mixing bowl.
52 Dissolve the sugar.
53 Agitate the sugar until dissolved.
54 Liquify the dark chocolate.
55 Put dark chocolate into the mixing bowl.
56 Liquify the milk chocolate.
57 Put milk chocolate into the mixing bowl.
58 Liquify contents of the mixing bowl.
59 Pour contents of the mixing bowl into the baking dish.
60 Refrigerate for 1 hour.
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C.2 From a sequential to a dataflow program specification

A Chef program can be seen as a sequential collection of operations made of ingredients,

with mixing bowls and baking dishes used as containers. Now suppose that the cake must

be prepared before a given time and in the least time possible. For example, my parents

want to make the breakfast cake in no more than one hour. So, my parents can decide to

cooperate together in the baking process. However, which part of the cake should be prepared

by my mother and which part by my father? Furthermore, which part of the cake should be

prepared before the other parts? The problem here is how to effectively find which parts of the

cake can be made at the same time and which parts need to be made before the other parts.

Considering the Hello World Cake with Chocolate sauce illustrated before, it

can be very hard to identify which parts of the recipe can be prepared at the same time. For

example, the fact that the chocolate sauce can be prepared at the same time with other parts of

the cake and that this sauce is used for dressing the cake is not implicitly defined by the recipe.

This problem can be solved by using a dataflow formalism for defining the cake recipe. Using

a dataflow approach, reading the cake recipe becomes much more understandable. A basic

dataflow representation of this recipe is depicted in Figure C.1. This is what is called a dataflow

network where boxes are actors (i.e. computational kernels) interconnected by buffers that

handle unbounded sequences of tokens (i.e. atomic data objects). As a consequence, each

actor contains a single Chef method and each buffer models how ingredients flow from

different mixing bowls or baking dishes. Each dataflow token represents a single ingredient

unit (e.g. 1g of sugar). Using this formalism it is immediately clear which are the single parts

of the recipe, how they are related and which part should be prepared before others.

Chocolate
Sauce

ChocolateSauce

Cake

ChocolateChips

Butter

BeatenEggs

Flour

BakingPowder

CocoaPowder

DoubleCream

ChocolateCake

Sugar

Sugar

Water

Cream

DarkChocolate

MilkChocolate

Figure C.1: A dataflow representation of the Hello World Cake with Chocolate
sauce Chef program illustrated in Listing C.1.
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C.3 The first CAL chocolate cake

In the previous section it has been shown how the recipe can be modeled as a dataflow

program. However, it has not been described how the syntax and the semantic (i.e. how the

program is written and what it describes) of Chef program can be translated to a dataflow

program. This section provides a possible translation of a Chef recipe to an "equivalent" CAL

dataflow program. Basically, each method is translated as an actor and each unitary quantity

of an ingredient as a token. As described before, Figure C.1 illustrates the CAL dataflow

representation of the Chef recipe reported in Listing C.1. This CAL program is composed by

two actors: the Cake actor and the ChocolateSauce actor. The CAL code of these two

actors is reported in Listing C.2 and C.3, respectively. For each actor the input tokens represent

the required ingredients, while the output tokens represent the amalgamation result of the

prepared (input) ingredients. The Cake actor is composed of seven actions, an actor internal

state machine (FSM), and two action priority conditions are defined. Inputs and outputs of

this actor are defined in Lines 3 and 4, respectively. Similarly, the ChocolateSauce actor is

composed of six actions and an actor internal FSM. Inputs and output of this actor are defined

in Lines 2 and 3, respectively. In both actors the respective Chef mixing bowl is modeled as

an internal variable: the cakeMixture in the Cake actor, and the chocolateSauce in

the ChocolateSauce actor. Activities like liquify, stir, agitate and refrigerate are modeled

as CAL functions that can aggregate, modify or define the status of a single or a collection of

ingredients.

Exploiting dataflow properties

The CAL program illustrated before can be used to show the powerfulness of a dataflow

approach when dealing with parallel programs. As an example, lets consider the two actions

liquifyDarkChocolate and liquifyMilkChocolate defined in Lines 25 and 35,

respectively, of the ChocolateSauce actor. It is easy to see how liquefying (i.e. melting)

both the dark and milk chocolate can be performed at the same time if there are at least two

chefs (e.g. my parents). The dataflow approach allows to easily and explicitly model this

condition as illustrated in Figure C.2: the Chef liquify activity can be modeled as a single

CAL actor where the input is the solid ingredient and the output is the liquefied ingredient

as illustrated in Listing C.4. Similarly, this approach can also be done for the other Chef

activities like stir, agitate and refrigerate. In computer science, the fact that these activities

can be performed at the same time by different chefs, is called parallelism (or more precisely

task parallelism). Furthermore, it must be noted that this actor can be used for both milk

and dark chocolate: in computer science this is called code-reusability. In order to exploit

these properties the ChocolateSauce actor should be modified as illustrated in Listing C.5.

Consequently, the new dataflow network representation is the one depicted in Figure C.3. In

computer science, the property that an actor can be represented as a network of actors is called

modularity. Furthermore, inside the actors network depicted in Figure C.3, the refrigerate

Chef activity has been modeled with the RefrigerateCAL actor defined in Listing C.6. This
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C.3. The first CAL chocolate cake

Listing C.2: Cake.cal
1 actor Cake()
2 ChocolateChips Cc, Butter B, DoubleCream Dc, BakingPowder Bp, Sugar S, BeatenEggs Be,
3 Flour F, CocoaPowder Cp, Cs ChocolateSauce
4 ==> CakeMixture Cm :
5
6 CakeMixture cakeMixture;
7
8 int stirMinutes;
9 int stirstirMaxMinutesutes;

10
11 clean: action ==>
12 do
13 // initialize mixing bowl
14 cakeMixture := 0;
15 // set the stir timer
16 stirMinutes := 0;
17 stirMaxMinutes := 1;
18 end
19
20 add: action B:[butter] repeat 100,
21 S:[sugar] repeat 114,
22 Cc:[chocoChips] repeat 33,
23 Be:[btnEggs] repeat 111,
24 F:[flour] repeat 119,
25 Bp:[bakingPwd] repeat 2,
26 Cp:[cocoaPwd] repeat 32 ==>
27 do
28 cakeMixture := butter+ sugar + chocoChips + btnEggs + flour + bakingPwd + cocoaPwd;
29 end
30
31 stir1m: action ==>
32 guard stirMinutes< stirMaxMinutes
33 do
34 stir1minute(cakeMixture);
35 stirMinutes := stirMinutes+ 1;
36 end
37
38 combineCream: action Dc:[doubleCream] repeat 54 ==>
39 do
40 cakeMixture := cakeMixture + doubleCream;
41 // set the stir timer
42 stirMinutes := 0;
43 stirMaxMinutes := 4;
44 end
45
46 liquify: action ==>
47 do
48 while(!isLiquified(cakeMixture)) do
49 liquify(cakeMixture);
50 end
51 cakeMixture := mixingBowl;
52 while(!isBaked(cakeMixture)) do
53 bake(cakeMixture);
54 end
55 end
56
57 bake: action ==>
58 do
59 while(!isBaked(cakeMixture)) do
60 bake(cakeMixture);
61 end
62 end
63
64 serve: action Cs:[sauce] ==> Cm:[cakeMixture]
65 do
66 cakeMixture := cakeMixture + sauce;
67 end
68
69 schedule fsm s0 :
70 s0(clean) --> s1;
71 s1(add) --> s2;
72 s2(stir1m) --> s2;
73 s2(combineCream) --> s3;
74 s3(stir1m) --> s3;
75 s3(liquify) --> s4;
76 s4(bake) --> s5;
77 s5(serve) --> s0;
78 end
79
80 priority
81 stir1m > combineCream;
82 stir1m > liquify;
83 end
84
85 end
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Listing C.3: ChocolateSauce.cal
1 actor ChocolateSauce()
2 Sugar S, HotWater Hw, HeatedDoubleCream Hdc, DarkChocolate Dc, MilkChocolate Mc
3 ==> ChocolateSauce Cs :
4
5 ChocolateSauce chocolateSauce;
6
7 clean: action ==>
8 do
9 chocolateSauce := 0;

10 end
11
12 add: action Hw:[water] repeat 108, Hdc:[cream] repeat 108 ==>
13 do
14 chocolateSauce := water + cream;
15 end
16
17 dissolveSugar: action S:[sugar] repeat 111 ==>
18 do
19 chocolateSauce := chocolateSauce + sugar;
20 while(!isDissolved(chocolateSauce)) do
21 agitate(chocolateSauce);
22 end
23 end
24
25 liquifyDarkChocolate: action Dc:[darkChocolate] repeat 101 ==>
26 var
27 MeltedDarkChocolate mdc := 0
28 do
29 while(!isLiquified(darkChocolate)) do
30 mdc := mdc + liquify(darkChocolate);
31 end
32 chocolateSauce := chocolateSauce + mdc;
33 end
34
35 liquifyMilkChocolate: action Mc:[milkChocolate] repeat 72 ==>
36 var
37 MeltedMilkChocolate mmc := 0
38 do
39 while(!isLiquified(milkChocolate)) do
40 mmc := mmc + liquify(milkChocolate);
41 end
42 chocolateSauce := chocolateSauce + mmc;
43 end
44
45 refrigerate: action ==> Cs:[chocolateSauce]
46 do
47 foreach int t in 0 .. 60 do
48 refrigerate1minute(chocolateSauce);
49 end
50 end
51
52 schedule fsm s0 :
53 s0(clean) --> s1;
54 s1(add) --> s2;
55 s2(dissolveSugar) --> s3;
56 s3(liquifyDarkChocolate) --> s4;
57 s4(liquifyMilkChocolate) --> s5;
58 s5(refrigerate) --> s0;
59 end
60
61 end
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C.4. A dynamic refrigerator

actor models a refrigerator where the number of minutes required for refrigerating a product

is specified as a parameter. This parameter is specified along the recipe: for the chocolate cake

example this value is 4 minutes. In computer science, specifying parameters in such a way is

referred to as compile-time configuration of the program.

Liquify SolidSolid

Liquify SolidSolid

Figure C.2: The Liquify CAL actor defined in Listing C.4.

Listing C.4: Liquify.cal
1 actor Liquify(type Solid, type Liquid) Solid S ==> Liquid L :
2
3 liquify: action S:[solid] ==> L:[liquid]
4 var
5 Liquid liquid := 0
6 do
7 while(!isLiquified(solid)) do
8 liquid := liquid + liquify(solid);
9 end

10 end
11
12 end

Sauce

Water

Cream

ChocolateSauce

Refrigerate ChocolateSauce

Liquify
MeltedMilkChocolate

DarkChocolate Liquify
MeltedDarkChocolate

MilkChocolate

Sugar

Figure C.3: The modified version of the ChocolateSauce CAL actor.

C.4 A dynamic refrigerator

Since the topic of this dissertation is the analysis of dataflow programs, this section illustrates

a very basic example of a dataflow actor. Let’s consider the Refrigerate actor defined in

Listing C.6. The number of minutes required for refrigerating the input program is defined as

a parameter. In other words, its value is specified before starting to prepare the recipe and

cannot be changed (i.e. compile-time configuration as previously discussed). However, it is
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Listing C.5: ModifiedChocolateSauce.cal
1 actor ModifiedChocolateSauce()
2 Sugar S, HotWater Hw, HeatedDoubleCream Hdc, MeltedDarkChocolate Dc, MeltedMilkChocolate Mc
3 ==> ChocolateSauce Cs :
4
5 ChocolateSauce chocolateSauce;
6
7 clean: action ==>
8 do
9 chocolateSauce := 0;

10 end
11
12 add: action S:[sugar] repeat 111,
13 Hw:[water] repeat 108,
14 Hdc:[cream] repeat 108,
15 DCc:[darkChocolate] repeat 101,
16 Mc:[milkChocolate] repeat 72 ==>
17 do
18 chocolateSauce := sugar + water + cream + milkChocolate + darkChocolate;
19 end
20
21 dissolve: action ==> Cs[chocolateSauce]
22 do
23 while(!isDissolved(chocolateSauce)) do
24 agitate(chocolateSauce);
25 end
26 end
27
28 schedule fsm s0 :
29 s0(clean) --> s1;
30 s1(add) --> s2;
31 s2(dissolve) --> s0;
32 end
33
34 end

Listing C.6: Refrigerate.cal
1 actor Refrigerate(type Product, int minutes) Product H ==> Product C :
2
3 refrigerate: action H:[product] ==> C:[product]
4 do
5 foreach int t in 0 .. minutes do
6 refrigerate1minute(product);
7 end
8 end
9

10 end
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possible that chef can decide to increase the number of minutes required for refrigerating

a product. This functionality of a refrigerator can be modeled as illustrated in the modified

Refrigerate CAL actor described in Listing C.7. The number of minutes that the product

should stay in the refrigerator is specified as an input token of the actor and can be modified

while making the cake (i.e. program execution). In other words, (part of) the recipe can

be prepared according to some chef’s choices that are not predictable. In this example the

number of minutes can vary according to the refrigerating status of the cake. In computer

science, the execution of an actor that varies according to some input stimulus (i.e. the chef’s

choices) is referred to as dynamism.

Listing C.7: Refrigerate.cal
1 actor DynamicRefrigerator(type Product) Product H, int T ==> Product C, int R :
2
3 Product product;
4 int remainingTime := 0;
5
6 setTimer: T:[time] ==> R:[remainingTime]
7 do
8 remainingTime := remainingTime + time;
9 end

10
11 place: action H:[product] ==>
12 do
13 place := product;
14 end
15
16 refrigerate: action ==> R:[remainingTime]
17 guard
18 remainingTime > 0
19 do
20 refrigerate1minute(product);
21 remainingTime := remainingTime - 1;
22 end
23
24 ready: action ==> P:[product], R:[remainingTime] end
25
26 schedule fsm s0 :
27 s0(place) --> s1;
28 s1(refrigerate) --> s1;
29 s1(ready) --> s0;
30 end
31
32 priority
33 refrigerate > ready;
34 setTimer > place;
35 setTimer > refrigerate;
36 setTimer > ready;
37 end
38
39 end

C.5 Design space exploration of a kitchen

The design space exploration (DSE) of a dataflow program is one of the topic of this dissertation.

Ok, but what is the DSE of a dataflow program? In order to easily explain what the DSE is,

a similarity of a dataflow program implementation and the recipe is made in the following

section. First of all, the recipe corresponds to a program. As illustrated in the previous

sections, a dataflow program can be see as a cake recipe. Similarly, the kitchen corresponds to

the target platform, where each processing unit can be seen as a chef. Thence, a massively

parallel platform can be considered as a collection of chefs and commis chefs. So chefs are

like processing units that can execute all kinds of complex operations, and commis chefs are
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like processing units that can execute a limited set of operations. Furthermore, the difference

between a chef and a commis chef is how much they are payed per hour. So it is convenient

to assign simple tasks of a recipe to a commis chef and complex task to a chef. In this

way, constraints of an application implementation can be defined as the maximum time for

cooking a cake and the maximum amount of money that should used to pay chefs and commis.

Consequently, the design space of an application is the collection of design alternatives (i.e.

mapping configuration) that define which parts of a recipe should be assigned to a chef or a

commis chef (i.e. partitioning), the size of each mixing bowl and baking dish that should be

used (i.e. buffer size configuration) and the operation order that each chef or commis chef

should follow (i.e. scheduling). In this way, the DSE of a program can be seen as the analysis of

a recipe and the results as the collection of rules for each available chef and commis chef in

order to bake a cake with the given constraints. With these definitions, analysis and heuristics

that have been presented in this dissertation can easily be adapted to the cooking domain.

For example, the throughput of a system defined in terms of bit per second can be defined as

cakes per hour, energy minimization can be see as money minimization.

Remark. As an interesting similar example about the critical path analysis, that has been

illustrated in this dissertation, and the cooking process of a recipe can be found in one of the

Numb3rs TV series episode [222].
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