
How to Allocate Tasks Asynchronously

Dan Alistarh

EPFL
Lausanne, Switzerland
dan.alistarh@epfl.ch

Michael A. Bender

Stony Brook University
and Tokutek, Inc.
New York, USA

bender@cs.stonybrook.edu

Seth Gilbert

NUS
Singapore

seth.gilbert@comp.nus.edu.sg

Rachid Guerraoui

EPFL
Lausanne, Switzerland

rachid.guerraoui@epfl.ch

Abstract—Asynchronous task allocation is a fundamen-
tal problem in distributed computing in which p asyn-
chronous processes must execute a set of m tasks. Also
known as write-all or do-all, this problem been studied
extensively, both independently and as a key building block
for various distributed algorithms.

In this paper, we break new ground on this classic
problem: we introduce the To-DoTree concurrent data
structure, which improves on the best known random-
ized and deterministic upper bounds. In the presence
of an adaptive adversary, the randomized To-DoTree
algorithm has O(m + p log p log2 m) work complexity.
We then show that there exists a deterministic vari-
ant of the To-DoTree algorithm with work complexity
O(m+p log5 m log2 max(m, p)). For all values of m and p,
our algorithms are within log factors of the Ω(m+p log p)
lower bound for this problem.

The key technical ingredient in our results is a new
approach for analyzing concurrent executions against a
strong adaptive scheduler. This technique allows us to
handle the complex dependencies between the processes’
coin flips and their scheduling, and to tightly bound the
work needed to perform subsets of the tasks.

I. INTRODUCTION

How do we efficiently allocate a set of tasks to a set

of processes? This is one of the foundational questions

in multiprocessor computing.

The question is particularly challenging when there

is irregularity, e.g., when different compute nodes vary

in their speed, memory, and level of robustness. As

the workload changes, processes may end up with

uneven loads, which can throttle performance. For large

systems, irregularity is the common case.

Another challenge for task allocation is decentralized

scheduling. In some situations, centralized scheduling

proves too expensive, either because the system is too

large or the granularity of the tasks is too small. In either

case, the system needs a decentralized scheduler.

In this paper, we consider asynchronous task alloca-
tion, a general form of the problem in which processes

are asynchronous—and thus behave irregularly—and

process scheduling is distributed. A set of p processes

cooperates to execute all m tasks, ending up with

some “certificate” that all work is completed. Tasks are

idempotent, meaning that a task may be executed more

than once. Process speeds are governed by an adaptive
adversary, who knows everything about the current state

of the system, but cannot predict the outcome of fu-

ture coin tosses. We assume the standard asynchronous
shared-memory model, in which processes communicate

by reading and writing to atomic registers. There is

no centralized scheduler. Instead processes coordinate

through shared memory to distribute the tasks.

Two metrics are important: the total work, that is, the

number of steps (reads, writes, and random coin flips)

summed over all p processes, and the number of tasks
executed.

A brief history. Asynchronous task allocation (also

called write-all, do-all, or certified do-all) has been

recognized as one of the central problems in distributed

computing for decades; the book by Giorgiou and

Shvartsman [17] gives a detailed history of this problem.

The shared-memory version was introduced over twenty

years ago by Kanellakis and Shvartsman [19] in the

context of fault-tolerant PRAM computation. In this

formulation, tasks are abstracted as shared registers in

an array; each register is initially set to 0 and must be

flipped to 1. There have been many subsequent papers

on the topic, e.g. [4], [14], [16], [23], [25], [26]. Asyn-

chronous task allocation is also related to distributed
collect [2], in which p processors need to aggregate

values from m registers. Both task allocation and collect

have been used for solving other fundamental dis-

tributed problems, such as dynamic load balancing [18],

mutual exclusion [11], atomic snapshots [1], consen-

sus [7], renaming [13], distributed phase clocks [9], and

PRAM simulation [21].

The last twenty years have seen a long-standing quest

to establish the complexity of asynchronous task alloca-

tion [4], [14], [16], [23], [25], [26]. Various structures

such as low-contention permutations [4] and expander-

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.41

331

based progress graphs [16] were developed to this

end. This line of work has continually improved the

bound on total work, yielding beautiful and technically

sophisticated results.

Results. In this paper, we break new ground on this

classic problem by taking an alternative approach. We

view the algorithm as a randomized protocol from

beginning to end. We follow the simple idea that when

a process selects a task to execute, it should select

randomly and nearly uniformly from the set of tasks

not yet executed. This strategy is natural and appears

periodically in the literature [8], [10], [12], [27]. We

build a distributed data structure to perform the selection

efficiently, and first analyze its randomized behavior.

We then ask whether this task selection process can

proceed without randomization. The main challenge is

showing that the randomness can be isolated to the

beginning of the execution. In fact, the adversary does

get nontrivial extra power from knowing the coin-flip

outcomes in advance prior to the execution, but we show

that this power is limited. Moving all randomness to the

beginning implies, via the probabilistic method, that a

deterministic solution exists.

The main results of this paper are the following:

• We give a randomized algorithm for an adaptive

adversary, which we call the To-DoTree algo-

rithm. To-DoTree task allocation performs O(m+
p log p log2 m) work, with high probability.

• We show that there exists a deterministic variant

of the To-DoTree algorithm that performs work

O(m+ p log5 m log2 max(m, p)).

The To-Do Tree algorithm improves on existing al-

gorithms in both randomized and deterministic settings;

see Table I. In the worst-case, previously existing al-

gorithms perform a polynomial factor more work than

is optimal. By contrast, the To-Do Tree algorithm runs

within a polylogarithmic factor of optimal for all values

of m and p. The algorithm is optimized both for

m ≥ p, the common case in most real systems, and

p > m, a case arising in sublogarithmic shared-memory

distributed algorithms; see e.g., [11].

Another advantage of our approach is its relative

simplicity. Our deterministic algorithm is precisely the

To-Do Tree with the random choices determined in

advance. Each process gets its own string of heads

and tails that it reads whenever it needs a coin flip.

We prove that that we can find good strings, thus

demonstrating the existence of a deterministic To-Do

Tree algorithm. In fact, if the strings are chosen ran-

domly, the probability that we do not end up with

a deterministic algorithm is polynomially small in m

and exponentially small in p. Waxing philosophical,

this means that for a sufficient choice of constants,

the probability that any given random bit string does

not yield a deterministic solution is vanishingly small

compared to the probability that this (or nearly any other

paper) contains an unrecoverable bug [28].

To-Do Tree task allocation applies both to the case

where tasks are small and scheduling overhead is crit-

ical, and to the case where tasks are large. Indeed,

even modest-size tasks (e.g., of size polylog(m)) may

dominate the scheduling cost; see [8] for a theoretical

discussion of such instances.

For larger tasks it makes sense to consider the number

of tasks executed as a metric—recall that tasks may get

executed redundantly. (This metric is related to work

sharing with at-most-once semantics [22].) The lower

bound of [14] still applies here, meaning that number

of tasks executed has an Ω(m+ p log p) lower bound.

Our randomized and deterministic algorithms execute

O(m + p log p) and O(m + p log5 m log2 max(m, p))
tasks, respectively. Thus, our randomized algorithm ex-

ecutes an optimal number of tasks, and our deterministic

algorithm executes a number of tasks which is within

poly-logarithmic factors of optimal.

Intuition Behind To-Do Trees. Consider an algorithm

in which processes randomly choose tasks to perform.

The adaptive adversary can “block” a task j from

getting executed by deciding to stop any process that

tries to run it. Thus when there is only one task left

to be executed, that task is executed only once all p
processes are poised over it; at that point, the adversary

has no choice but to let some process proceed. As long

as there is no data structure to guide the choice of task

(i.e., if processes simply choose tasks at random), and

p = Ω(logm), a process will need Ω(m) trials to reach

this last task. Based on this strategy, the adversary can

build an interleaving in which processes require Ω(mp)
work to execute all tasks.1

Motivated by this example, we use a concurrent data

structure, the To-Do Tree, to guide processes towards

incomplete tasks. A To-Do Tree is a complete binary

tree, where tasks reside in the leaves. The internal nodes

of the tree record the number of descendent leaves

having unexecuted tasks; see Figure 1.

To select its next task, a process starts at the root

and walks down the tree, deciding randomly whether

to turn left or right at every internal node based on the

1This example also illustrates the difference in capabilities between
the adaptive and oblivious adversaries. This randomized strategy
works well against an oblivious adversary, because the oblivious
adversary can do little to block progress, and after O(m logm)
random choices, all tasks are completed.

332

setting
deterministic deterministic randomized

(general m, p) (p = m) (strong adversary)

previous bounds O(m+ p2+ε) [23] O(m log18 m/ log3 logm) [16] O(m logm) [4]

this paper O(m+ p log5 m log2 max(m, p)) O(m log7 m) O(m+ p log p log2 m)

lower bounds Ω(m+ p log p) [14] Ω(m logm) [14] Ω(m+ p log p) [14]

Table I
SUMMARY OF THE TOTAL WORK BOUNDS AND RELATION TO PREVIOUS WORK.

number of unexecuted descendant leaves of each of the

two children. Specifically, if an internal node records

that there are x unexecuted leaves in the left subtree

and y in the right subtree, then the walk goes left with

probability x/(x+y) and right with probability y/(x+
y). Once the leaf is executed, the process walks back

up the tree, updating the counters in the internal nodes.

Structurally, the To-Do Tree is built in the same

manner as the shared-memory counter from [5]. Unlike

a counter, however, it supports a random-leaf-search

operation. The counters at internal nodes of the To-Do

Tree are maintained using the “max-register” construc-

tion from [5].

The To-Do Tree can also be seen as an augmented

progress tree. The biggest distinction is that we choose

leaves based on a biased root-to-leaf walk rather than,

say, choosing a random leaf. What we find surprising

about the To-Do Tree is that, despite its similarity to

other structures, it delivers much better work bounds

and task-executed bounds than have previously appeared

in the literature.

The technically most involved result in this paper is

the analysis of the deterministic To-Do Tree. In a rough

sense, we want to prove that a deterministic algorithm

exists by bounding the randomized algorithm’s error

probability (at most 1/2Θ(p polylog m)), despite all the

random choices being made in advance (i.e., prior to

the beginning of the execution), and then multiplying

by the total number of possible schedules. We then use

the probabilistic method to show that a deterministic

algorithm must exist.

There are serious obstacles with this approach. The

first obstacle is that there are simply too many possible

schedules, which overwhelms the error probability. The

second more threatening obstacle is that the same set

of coin flips can guide processes to different leaves,

depending on the adversary’s decisions. The adversary

therefore has nontrivial power to govern the algorithm

dynamics. Moreover, the dependencies among the ran-

dom choices are wrong for optimistically using some

kind of balls-and-bins argument to show that in some

number of operations, a given number of tasks have

been executed. In summary, the challenge is to find

a way to make this argument go through even though

there are too many schedules and the adversary can use

its knowledge of the coin flips to affect the execution

of the algorithm.

Prior Approaches. Deterministic solutions to the task

allocation problem are generally based upon several

common ideas. To certify when all tasks have been

executed, the processes collectively maintain a so-called

progress tree [4], [14] or some other kind of data

structure for tracking work. Each process maintains its

own permutation of the m tasks and executes these tasks

in the permutation order. One can view this approach as

generalizing the simple case where p = 2: one process

executes the tasks in order 1, 2, 3, . . ., while the other

executes the task in order m,m − 1,m − 2, . . ., and

at some point in the middle, the two processes meet.

When there are p > 2 processes, the trick is to choose

permutations to cover all the tasks, regardless of how

the operations interleave, while simultaneously avoiding

too much redundant work. More recently, researchers

have used expanders to give algorithms with better work

complexity.

The most efficient deterministic task allocation al-

gorithm for general m and p, given by Kowalski and

Shvartsman [23], uses O(m+p2+ε) total work. It uses a

collection of permutations with low contention; to date,

it is not known how to construct such permutations

in polynomial time, therefore their algorithm is not

explicit. The most efficient explicit algorithm was given

by Malewicz [25], using O(m+ p4 logm) work.

For the special case when p = m, Chlebus and

Kowalski [16] gave a non-explicit deterministic algo-

rithm with complexity O(m log18 m/(log logm)3) and

an explicit variant with complexity m2O(log3 logm). This

algorithm and its explicit variant are based upon ex-

pander constructions. When applied to m > p their

approach yields O((m + p) polylogm) work. Earlier

deterministic algorithms for the task allocation problem

appear in [4], [19], [25]. In contrast to these upper

333

bounds, there is a Ω(m + p log p) lower bound [14],

which holds for deterministic algorithms and for ran-

domized algorithms with a strong adversary.

Randomized solutions to the task allocation problem

are based upon the idea of having processors select

tasks randomly from the entire set of tasks or from

the subset of tasks that remain to be executed. Most

previous randomized algorithms for the task allocation

problem assumed that the adversary is oblivious; an

oblivious (weak) adversary knows the system state when

the algorithm begins, but in contrast to the adaptive

adversary, cannot see the outcomes of coin tosses.

Anderson and Woll [4] gave a randomized algo-

rithm that works against an adaptive adversary. The

algorithm assumes p processes, m = p2 tasks, and

runs in O(m logm) work. The algorithm is based on

random permutations on a special kind of progress tree;

derandomized variants have been studied in [15]. Their

strategy, as written, does not extend to general m and

p. Since the algorithm has complexity Θ(m logm) and

m = p2, it runs within a log factor of optimal. The

randomized algorithm of Martel et al. [26], which runs

against an oblivious adversary, performs work O(m)
with high probability, using p = m/ logm processes.

Thus, it achieves optimal work for this choice of p
and a weak adversary. Other randomized algorithms for

the oblivious adversary include [9], [20]. For a detailed

overview of research on this problem, we refer the

reader to the book by Giorgiou and Shvartsman [17].

Outline. Section II formalizes the model and definitions

used in the paper. Section III presents our To-Do Tree

algorithm for asynchronous task allocation. Sections

IV and V analyze the randomized and derandomized

versions of the To-Do Tree algorithm. Full proofs and

pseudocode appear in the full version [3].

II. DEFINITIONS AND NOTATIONS

Model. We assume the classic asynchronous shared-

memory model [6], [24] with p processes 1, 2, . . . , p,

where up to t < p processes may fail by crashing.

Each process i has a distinct initial identifier i. Processes

communicate through atomic read and write operations

on registers. The scheduling of the processes’ steps and

crashes is controlled by a strong adaptive adversary. At

all times the adversary knows the state of the entire

system, including the results of random coin flips,

and can adjust the schedule and the failure pattern

accordingly. Algorithms that are correct in this setting

are called wait-free.

Problem Statement. Asynchronous task allocation
means enabling p processes to execute m distinct tasks,

labeled {1, . . . ,m}. The traditional work complexity
metric measures the total number of shared-register

operations that processes perform during an execution.

We also analyze the tasks executed metric, counting the

total number of times that tasks are executed. Note that

all m tasks must be executed at least once, but some

tasks may get executed redundantly.

III. THE TO-DO TREE ALGORITHM

In this section, we describe the To-DoTree, a ran-

domized algorithm that solves the asynchronous task

allocation problem. In Section IV, we prove its cor-

rectness in the presence of an adaptive adversary. In

Section V, we discuss a variant in which all the random

choices are made in advance, and show that there exists

a deterministic To-Do Tree algorithm.

Min-Registers. A basic building block of our To-Do

Trees is a min-register, a shared-memory object that

supports two operations: read and write-min. When the

execution begins, each min-register stores a default ini-

tial value. As the execution proceeds, the value v stored

by the min-register only decreases. A write-min(v′)
operation writes value v′ ≥ 0 only if v′ < v; otherwise,

it leaves the min-register unchanged. A read operation

returns the value currently stored by the min-register. A

min-register can be implemented in the same manner as

a max-register, as described in [5], where every value

read and written is simply subtracted from the default

initial value. (Note that we do not rely on min-registers

being linearizable, only that every read operations re-

turns a value no greater than every “preceding” write-

min operation.)

To-Do Trees. A To-Do Tree is a complete binary tree

in which each leaf represents a fixed number of tasks.

Initially, we analyze a To-Do Tree with m leaves and

one task per leaf; for the final result, we use a To-Do

Tree with m/ logm leaves and logm tasks per leaf. (We

assume, without loss of generality, that m or m/ logm
is a power of 2, as is convenient.)

Each node in the To-Do Tree contains a min-register.

At the start of the execution, a min-register at node v
is initialized with the number of leaves in the sub-tree

rooted at v, i.e., with the value 2height(v).

Work on a To-Do Tree. When a process is available to

do work, it performs a treewalk. It begins the treewalk

by reading the min-register at the root. If the value

returned is 0, then all the work is complete, and the

process returns success.
Otherwise, the process begins a descent at the root,

in which it repeatedly performs the following steps: (i)

it reads value x from the min-register of the left child

334

 log m

3

2 1

101/01

Figure 1. A simple example of a tree-walk operation on a To-
Do Tree. The walk descends to reach the red leaf, and then
marks up, updating the node min registers. The second red
leaf has been counted at the root, as the corresponding min
registers have already been updated.

of the current node; (ii) it reads value y from the min-

register of the right child of the current node; (iii) it

flips a random coin r ∈ [0, 1); and (iv) it proceeds to

the left child if r < x/(x + y) and to the right child

otherwise.

The descent procedure terminates either when the

treewalk reaches a leaf, or when the process reads both

x = 0 and y = 0 at an internal node. If the descent

reaches a leaf, the process performs all the tasks at that

leaf, and sets the min register at that leaf to 0, marking

the fact that the leaf’s tasks have been performed. Then

the process begins a mark-up procedure from the last

node reached during the descent, and repeatedly takes

the following steps: (i) it moves to the parent of the

current node; (ii) it reads value x from the min-register

of the left child of the current node; (iii) it reads value

y from the min-register of the right child of the current

node; and (iv) it performs a write-min(x+ y) operation

on the min-register of the current node. The mark-up

procedure terminates when the root has been reached

and updated.

IV. RANDOMIZED ANALYSIS

It is easy to see that the To-Do Tree ensures that

eventually every task is completed. We now analyze

its performance, showing that, on termination, the total

number of steps taken is O(m+p log p log2 m) and the

number of tasks executed is O(m + p log p). Here, we

give an overview of the analysis in case where m ≥ 2p;

see the full version for details. The case where m < 2p
follows from a nearly identical analysis.

A. Preliminaries

Fix an arbitrary execution. A leaf is marked when a

treewalk first reaches it; otherwise it is unmarked, or

available. A leaf is completed, or counted at the root,
when the knowledge that it has been marked has been

propagated to the root by some treewalk. The number

of remaining leaves is the value most recently read

or written from the min-register at the root by some

complete read or write-min operation.

We divide the execution into two epochs: the first

contains all the steps where there are ≥ 2p remaining

leaves; the second contains all the steps where there are

< 2p remaining leaves. Each epoch is subdivided into

phases, which are defined such that: in the first epoch,

the number of remaining leaves decreases by p in each

phase; in the second epoch, the number of remaining

leaves decreases by a factor of 2 in each phase.

Claim 1: There are at most m/p+log(2p) phases in

total.

B. Analysis

Treewalk analysis. We say that a treewalk is complete
in phase k if it begins and ends in phase k. The

remainder of this section is dedicated to showing that

there are O(p) complete treewalks per phase, with high

probability. (It is immediately clear that there are ≤ p
treewalks that cross the boundary between every pair

of consecutive phases, as there are only p processes

active at any given time.) Let Bi be the set of complete

treewalks in phase i. We need to bound the set of leaves

counted by treewalks in Bi.

Intuitively, we would like to think of this procedure

as randomly and independently throwing Θ(p) balls into

V ≥ 2p bins. In reality, this intuition can be misleading,

since the treewalks are not independent, nor are they

strictly positively or negatively correlated. Moreover,

each treewalk may be affected by other treewalks in

Bi, or by treewalks that began in a previous phase (and

hence are not included in Bi). The key challenge in

the analysis resides in accurately bounding the amount

of interference between treewalks, and getting right the

technical aspects related to independence.

More precisely, we focus on the probability that all

treewalks are concentrated among few leaves, and show

that this probability is small. We prove the following

conditional claim:

Lemma 2: For a fixed set of leaves V not counted

at the root prior to phase i, for every treewalk b ∈ Bi:

the probability that: (i) b counts a leaf in V , or (ii)

that some treewalk that completed its descent prior to

b completing its descent counts a leaf in V , assuming

(iii) an arbitrary set of concurrent updates to the min-

registers, is ≥ |V |/|Ui|, where Ui is the set of leaves

not counted at the root prior to phase i.
The proof is based on the following intuition. (Please

see the full version of the paper [3] for a formal proof.)

Given a complete treewalk, either the min-registers

335

read by the operation are not changed by concurrent

treewalks, in which case the probability distribution

over unmarked leaves is roughly uniform, or the min-

registers are updated concurrently, in which case the

distribution over leaves may be biased arbitrarily. In this

second case, the counters are either changed by treewalk

operations marking leaves in the set V , in which case

the probability of marking a leaf in V only decreases,

or by treewalk operations marking leaves outside V ,

in which case the original walk can only be biased

towards the set V (since the complement of V shrinks).

The claim follows by taking these cases into account.

Considering all treewalks in Bi, we conclude:
Lemma 3: For a fixed set of leaves V uncounted

prior to phase i, the probability that no treewalk in Bi

counts a leaf in V is ≤ (1− |V |/|Ui|)|Bi|.
Phase analysis. At this point, it remains only to show,

via a union bound over all possible sets V of appropriate

size, that there are O(p) treewalks in each phase:
Lemma 4: For every phase i and for any constant k,

|Bi| = O(p+k) with probability at least 1− (1/2)
p+k

.
Notice that, since there are m/p + log p phases, in

some phases (by bad luck) there may be more than p
treewalks if p is much smaller than m. We observe that,

in expectation, there is O(1/2p) such wasted work, and

by a Chernoff bound, conclude that the total number of

treewalks is O(m+p log p) with probability 1−1/em+p.

Each treewalk consists of O(log2 m) steps, since the

To-Do Tree has height O(logm), and each min-register

operation has cost O(logm) [5]. This yields our main

result. When one task is assigned to each leaf, the

following holds:
Theorem 5: With probability at least (1 − 1/em+p),

the total number of tasks executed during an execution

is O(m+ p log p), and the total number of steps taken

is O(m log2 m+ p log p log2 m).
By assigning log2 m tasks to each leaf, we achieve the

following:
Theorem 6: The total number of tasks executed dur-

ing an execution and the total number of steps taken

is O(m + p log p log2 m), with probability at least

(1− 1/em/ log2 m+p).

V. DETERMINISTIC TO-DO TREES

In this section, we derive the existence of a deter-

ministic To-Do Tree algorithm, via the probabilistic

method. We begin with an overview of the algorithm,

and proceed to divide the analysis into two epochs. After

bounding the number of treewalks in each epoch, for

a fixed adversarial scheduling, we proceed to take a

union bound over all possible schedules, yielding the

final result.

A. Flipping coins in advance

Recall that in the randomized To-Do Tree, each pro-

cess performs repeated treewalks, randomly choosing

at each step whether to proceed left or right in its

walk down the tree. To derandomize, we assume that

all the random choices are made before the execution

begins: each process is initialized with a sufficiently

long string of “random” bits; it generates O(logm)
random bits for each random number in [0, 1) needed

during the protocol. During a treewalk, a process uses

these predetermined “random” bits to determine its walk

down the tree. Each treewalk uses Θ(log2 m) “random”

bits (discarding any unused bits if it terminates its walk

before reaching a leaf). Throughout, when we talk about

the probability of a certain event, this is in reference to

these random choices made before the execution began.

Since the adversary can see all the random bits in

advance, it can schedule the processes based on their

“future” random choices, attempting to prevent them

from making progress. As a result, we can no longer

analyze the random choices in the same manner as

in Section IV. Even so, we show that with very high

probability, the To-Do Tree algorithm still completes

all the tasks in O(m+ p log5 m log2 max(m, p)) steps.

From this, we conclude (via the probabilistic method)

that there exists a good set of input bits for each process,

and hence a deterministic To-Do Tree algorithm.

B. Overview

Our primary goal is to bound the number of treewalks

that processes execute. As the execution progresses,

leaves get marked and then counted at the root. The

algorithm terminates when there are no available leaves.

We divide the execution into phases such that

Θ(1/ logm) of the remaining leaves are completed in

each phase. The key technical result is a bound on the

number of treewalks in each phase (Lemma 13 and

Lemma 14). In fact, the adversary, by his scheduling

choices, determines the phase length. We fix a particular

assignment of treewalks to phases, and show that the

probability of a phase being too long is exponentially

small. The phase length must be long enough (at least

Θ(p log3 m)) to get sufficiently small probabilities, but

short enough that we can ensure a sufficient percentage

of treewalks in that phase succeed.

Within a phase, we analyze the leaves selected by

the treewalks. Since the random numbers are fixed

in advance, and the adversary can influence the tree-

walks by controlling their scheduling, it is difficult to

determine at which leaf a given treewalk will land.

On the other hand, since all the treewalks make their

336

random choices in advance, we can analyze the a priori
distribution of the treewalks, independent of the actual

scheduled execution. As such, the treewalks choose

tasks uniformly at random from the set of remaining

tasks (Claim 8), and the treewalks are “well spread out”

in the space of available leaves (Claim 11). We can also

show that if the treewalks do not encounter too much

disruption in the tree, they will arrive at their “targeted”

leaf (Claim 10).

We then analyze the behavior of these treewalks

in the real tree. We first bound the extent to which

the adversary can distort the treewalks (Claim 9). The

adversary can “control” a logarithmic factor more leaves

than there are treewalks in a phase; we bound the impact

of this control, and hence the number of treewalks that

can be disrupted (Claim 12). This yields the desired

bound on the number of treewalks in each phase.

Finally, we enumerate the total number of ways that

the adversary can assign treewalks to phases, and take

a union bound over all possibilities, yielding our final

result.

C. Preliminaries

The execution is divided into two epochs, where the

first epoch continues until there are only O(p log3 m)
leaves left to execute, and the second epoch contin-

ues from the end of epoch one until the algorithm

completes. Each epoch is divided into phases. In both

epochs, each phase is defined such that Θ(1/ logm) of

the remaining work is completed. That is, let si be the

number of unmarked leaves at the beginning of phase

i; the phase ends when Θ(si/ logm) new leaves are

counted at the root.

Claim 7: Epoch 1 has O(log2 m) phases, and epoch

2 has O(logm log p+ logm log logm) phases.

We now fix a specific scheduling of the execution.

The adversary chooses which processes take steps in

which order. We will show that for each schedule,

we can bound the number of treewalks in each phase

with very high probability. At the end, we will take a

union bound over all the (exponentially many) possible

schedules. We now give an overview of the analysis; the

complete argument can be found in the full version [3].

D. The First Epoch

Fix α, d ≥ 1 constants. For phase i in epoch one,

let k = αmax(si/ logm, p log3 m). Our goal is to

show that k treewalks complete si/(d logm) leaves, i.e.,

sufficiently many to complete a phase.

For phase i, we define a reference tree RTi in which

all the leaves counted at the root when phase i begins are

counted, while the remaining leaves are unmarked. Fix

a set Bi of treewalks that both start and end in phase

i, where |Bi| = k, and define the target of treewalk

w to be the leaf that is reached via a treewalk in the

(unmodified) reference tree. Each such treewalk chooses

uniformly from the available leaves:

Claim 8: The probability that a walk w ∈ Bi targets

a specific leaf (in the reference tree) is 1/si.

The muting threshold. For every node v in the ref-

erence tree, we define the muting threshold for v as

follows. Let j be the value of the min-counter at v in the

reference tree for this phase; then the muting threshold

tv = j − j/(β logm), for some constant β ≥ 1. In the

real tree, we say that v is muted from the first step after

which all but tv of the tasks in v’s sub-tree are counted

at node v.

We say that a leaf is in shadow (in the real tree) if

any of its ancestors are muted. We observe that for the

duration of phase i, there cannot be too many leaves in

shadow:

Claim 9: For d > 2β constant, at most 2βsi/d leaves

are in shadow during phase i of epoch 1.

This follows from noticing that, within a subtree that

is muted, there must be one marked leaf for every

β logm unmarked nodes, and at most Θ(si/ logm+p)
leaves may be marked before the phase ends.

Similarly, we say a subtree is muted if its root node is

muted. The intuition is that in muted subtrees, counter

values may be quite different from in the reference tree;

hence, we make no assumptions on which leaves are

reached by walks entering a muted subtree. A subtree

contained in a muted subtree is also muted.

Live tree walks. Treewalks that enter muted sections of

the tree (i.e., those that target leaves in shadow) may be

significantly diverted from their original target. On the

other hand, a treewalk that has a non-muted target has

a good chance of arriving at its target. (The adversary,

however, can influence which treewalks are muted and

which are not.) We now analyze how many of the non-

muted treewalks will arrive at their target.

We first consider what would happen to a treewalk

if, hypothetically, it were executed in a copy of the

reference tree in which the adversary could decrement

any of the min-registers arbitrarily, with the limitation

that no min-register is decreased below its muting

threshold. We say that a treewalk is live if it still reaches

its target in this adversarially perturbed reference tree.

We now prove that at least a constant fraction of the k
walks in Bi remain live.

Claim 10: Let S be the set of live walks during this

phase. With probability at least 1 − (1/e)k/16, |S| >
k/2.

337

This follows from the observation that at each step,

each treewalk has a 1/β logm probability of dying, as

that bounds the maximum disruption the adversary can

create at each step.

Sparse tree walks. Consider a list L of all the un-

marked leaves at the beginning of phase i, ordered from

left-to-right. We say that a subset of treewalks is sparse
if for every pair of treewalks in the set, there are at

least (logm)/α− 1 leaves separating the targets of the

treewalks in L. We now argue that there exists a set of

at least Θ(si/ logm) treewalks in Bi that are both live

and sparse.

Claim 11: With probability at least 1 − (1/e)k/16,

there exists a set V of αsi/(16 logm) sparse live walks.

The key point is to notice that sparsity and liveness

are independent: the distribution of a treewalk over

targets is unrelated to whether or not it is alive (which

depends on how close the random numbers are to the

muting threshold at each node). We begin with the k/2
treewalks identified by Claim 10. We group the leaves

into bins of size logm/α, and notice that each treewalk

effectively chooses a bin at random. By straightforward

balls-and-bins analysis, we see that sufficiently many

treewalks land in their own bins. Sparsifying the result-

ing set of treewalks yields the result.

Analyzing the real tree. Consider a treewalk w in the

set V . We now examine what happens when it executes

in the real tree. Recall that the walk is complete,

meaning that it proceeds down the tree and returns to

the root in this phase. There are two possibilities: (i)

the treewalk continues to its target, or (ii) some node

encountered by the tree walk is muted by the end of

the tree walk. Since the treewalk is on target, these

are the only two possibilities. If no min-register that

it reads exceeds the muting threshold, then, since the

treewalk is alive, it proceeds to its target as it would in

the adversarially perturbed reference tree.

Shadowed leaves. Recall that the adversary can choose

to shadow 2βsi/d of the leaves where d > 2β is a

constant that we can control. Assume that adversary

can choose the leaves to shadow arbitrarily. We define

a contiguous segment g as a maximal set of consec-

utive leaves from the list L that are shadowed. We

partition the shadowed leaves into contiguous segments

G = {g1, g2, . . .}.
Let us examine a segment g. Assume that some of

the walks in V target leaves in the segment g. Then

they will enter their respective muted subtrees, and may

be arbitrarily diverted away from their target. In the

best case for the adversary, they all get diverted to the

same leaf. Thus, effectively, for all the walks that are

diverted to a single segment, we can only assume that

one leaf is counted at the root. On the other hand,

since the treewalks in V are sparse, the adversary must

shadow a large number of leaves to include more than

one treewalk in a segment. Specifically, if segment g
contains t > 1 treewalks, then the segment shadows at

least logm(t− 1)/α leaves. From this we conclude:

Claim 12: Given a contiguous segment g in shadow,

and a non-empty set H of treewalks in V that target

leaves in g, then: i) at least one leaf in the segment gets

counted at the root in this phase and ii) the size of the

segment g has to be at least logm(|H| − 1)/α.

We can now show that each phase in epoch 1 contains

only k complete treewalks, with very high probability:

Lemma 13: Let α ≥ 1 be a constant. For i ≥ 1,

the probability that k = αmax(si/ logm, p log3 m)
complete treewalk operations in phase i count less than

si/d logm leaves at the root is at most (1/e)k/16.

Proof: Recall that we have identified a set V of

at least αsi/(16 logm) walks which are sparse and on

target, with probability at least (1/e)k/16 (Claim 11).

These walks are partitioned across segments g1, g2, . . .,
as decided by the adversary. For each segment, one walk

that targets the segment is useful and the others are

wasted. However, Claim 12 states that for each wasted

walk w, the segment which w targets has to contain

at least (logm)/α additional (untargeted) leaves. In

turn, based on a simple counting argument, Claim 9

implies that the number of wasted walks in V is at most

O(si
logm). Therefore, the number of walks in V that are

either not targeting leaves in shadow or are useful is

at least
(

αsi
16 logm

)
−

(
2αβsi
d logm

)
≥ si

d logm , where we

have chosen α and d appropriately. This occurs with

probability at least 1 − (1/e)k/16. Since no two such

walks may hit the same leaf, for sufficiently large α,

the main claim follows.

E. The Second Epoch

The analysis of the second epoch is similar to the

first, except we can no longer assume that treewalks

are sparse: there are no longer enough available leaves.

Also, to ensure exponentially high probability in p, we

need a sufficient number of treewalks per phase. The

second epoch starts with at most O(p log3 m) leaves

uncounted at the root. We show that each phase in this

epoch contains O(p log3 m) complete treewalks.

Lemma 14: Let α, c, d ≥ 1 be constants. For i ≥ 1,

the probability that αp log3 m complete treewalk oper-

ations in phase i count less than si/(d logm) leaves at

the root is at most (1/e)(α−c)p log3 m.

338

F. Counting Schedules

We have upper bounded the probability of failure for

each phase in the two epochs, under the assumption that

the schedule is fixed by the adversary. We now count

the number of possible schedules. We give an overview

of the argument for m ≥ p; the other case is similar,

and can be found in the full version.

Since each treewalk uses a fixed number of random

bits, we need only enumerate the number of different

ways in which treewalks may be assigned to phases.

We assume the adversary chooses how many walks to

schedule for each process and their interleaving among

processes. (For each process, the adversary can only

schedule walks in order.)

In the first phase of epoch one, the adversary chooses

to schedule αm/ logm complete walks, along with up

to p incomplete walks. These treewalks can be allocated

to any subset of the processes in any quantity. For a

constant c′ > 1, the number of possible combinations

is upper bounded by
(
αm/ logm+2p

2p

) ≤ 2c
′p logm.

From Claim 7, we know that there are O(log2 m)
phases in total. The total number of interleavings is

bounded by the product of the interleavings in each

phase, and hence we bound the number of schedules

by:

O(log2 m)∏
i=1

(
αsi/ logm+ 2p

2p

)
≤ 2cp log3 m

with c ≥ 1 constant.

By Lemma 13 and Lemma 14, there exists a constant

α ≥ 1 such that, for a given scheduling of treewalks,

the probability that any of the O(log2 m) phases fails

to complete with the specified number of treewalks is

at most O(log2 m) (1/2)
αp log3 m ≤ (1/2)

(α−1)p log3 m
.

By a union bound, the probability that there exists exists

an interleaving of treewalks for which some phase fails

is ≤ (1/2)
(α−c−1)p log3 m

< 1, for α > c + 1. Thus,

there exists a sequence of random bits for each process

for which all phases are successful.
The last step is to upper bound the total work

performed during an execution in which all phases

are successful. The total number of treewalks (and

hence tasks executed) is at most: O((m − p log4 p) +
p log3 m(logm log p+logm log logm)). Each treewalk

has cost O(log2 m).
By assigning log2 m tasks to each leaf in the

tree, we obtain that the total amount of work is

O(m/ log2 m + p log4 m(log p + log logm) log2 m) =
O(m + p log6 m(log p + log logm)). This yields our

main theorem:

Theorem 15: For general m and p, there exists a

deterministic To-Do Tree algorithm with total work

and number of tasks executed O(m+ p log5 m(log p+
log logm) logmax(m, p)).

VI. CONCLUSION

We presented randomized and deterministic algo-

rithms for the shared-memory task allocation problem.

Our algorithms are efficient for general values of m and

p, and match the Ω(m + p log p) lower bound of [14]

to within logarithmic factors.

We have not reached the limits of our techniques. We

believe that our approach can be refined to improve the

deterministic bounds. We conjecture that there exists a

tighter analysis, showing that the deterministic To-Do

Tree can have the same asymptotic work and tasks-

executed bounds as the randomized To-Do Tree. Al-

though we omit details here, our approach may also be

used to analyze other variants of asynchronous task al-

location, such as collect [2], in which processes need to

aggregate register values, the at-most-once problem [22]

and do-most [20], in which only a fraction of the tasks

need be performed.

REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873–890, 1993.

[2] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A
theory of competitive analysis for distributed algorithms.
In Proc. 35th Annual Symposium on Foundations of
Computer Science (FOCS), pages 401–411, 1994.

[3] D. Alistarh, M. A. Bender, S. Gilbert, and R. Guerraoui.
How to allocate tasks asynchronously. Technical report,
EPFL, 2012. http://infoscience.epfl.ch/record/180499.

[4] R. J. Anderson and H. Woll. Algorithms for the certified
write-all problem. SIAM J. Comput., 26:1277–1283,
October 1997.

[5] J. Aspnes, H. Attiya, and K. Censor. Polylogarithmic
concurrent data structures from monotone circuits. Jour-
nal of the ACM, 59(1):2:1–2:24, Feb. 2012.

[6] H. Attiya and J. Welch. Distributed Computing. Funda-
mentals, Simulations, and Advanced Topics. McGraw-
Hill, 1998.

[7] Y. Aumann. Efficient asynchronous consensus with
the weak adversary scheduler. In Proc. 16th Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 209–218, 1997.

339

[8] Y. Aumann, Z. M. Kedem, K. V. Palem, and M. O.
Rabin. Highly efficient asynchronous execution of
large-grained parallel programs. In Proc. 34th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 271–280, 1993.

[9] Y. Aumann and M. O. Rabin. Clock construction in
fully asynchronous parallel systems and pram simula-
tion. Theoretical Computer Science, 128(1-2):3–30, June
1994.

[10] A. Aziz, A. Prakash, and V. Ramachandran. A near
optimal scheduler for switch-memory-switch routers. In
Proc. 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 343–352,
2003.

[11] M. A. Bender and S. Gilbert. Mutual exclusion with
O(log2 log n) amortized work. In Proc. 52nd An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 728–737, 2011.

[12] M. A. Bender and C. A. Phillips. Scheduling dags on
asynchronous processors. In Proc. 19th Annual ACM
Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 35–45, 2007.

[13] E. Borowsky and E. Gafni. Immediate atomic snapshots
and fast renaming. In Proc. 12th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 41–51, 1993.

[14] J. F. Buss, P. C. Kanellakis, P. L. Ragde, and A. A.
Shvartsman. Parallel algorithms with processor failures
and delays. J. Algorithms, 20:45–86, January 1996.

[15] B. S. Chlebus, S. Dobrev, D. R. Kowalski, G. Malewicz,
A. Shvartsman, and I. Vrto. Towards practical detemi-
nistic write-all algorithms. In Proc. 13th Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), pages 271–280, 2001.

[16] B. S. Chlebus and D. R. Kowalski. Cooperative asyn-
chronous update of shared memory. In Proc. 37th Annual
ACM Symposium on Theory of Computing (STOC),
pages 733–739, 2005.

[17] C. Georgiou and A. A. Shvartsman. Do-All Computing
in Distributed Systems: Cooperation in the Presence of
Adversity. Springer, 2008.

[18] J. F. Groote, W. H. Hesselink, S. Mauw, and R. Ver-
meulen. An algorithm for the asynchronous write-all
problem based on process collision. Distrib. Comput.,
14(2):75–81, Apr. 2001.

[19] P. C. Kanellakis and A. A. Shvartsman. Efficient parallel
algorithms can be made robust. Distributed Computing,
5(4):201–217, 1992.

[20] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghu-
nathan. Efficient program transformation for resilient
parallel computation via randomization. In Proc. 24th
Annual ACM Symposium on the Theory of Computing
(STOC), pages 306–317, May 1992.

[21] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient
robust parallel computations. In Proc. 22rd Annual ACM
Symposium on Theory of Computing (STOC), pages 138–
148, May 1990.

[22] S. Kentros, A. Kiayias, N. Nicolaou, and A. A. Shvarts-
man. At-most-once semantics in asynchronous shared
memory. In Proc. 21st Annual Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 43–44,
2009.

[23] D. R. Kowalski and A. A. Shvartsman. Writing-all de-
terministically and optimally using a nontrivial number
of asynchronous processors. ACM Trans. Algorithms,
4:33:1–33:22, July 2008.

[24] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[25] G. Malewicz. A work-optimal deterministic algorithm
for the asynchronous certified write-all problem. In Proc.
22nd Annual Symposium on Principles of Distributed
Computing (PODC), pages 255–264, 2003.

[26] C. Martel and R. Subramonian. On the complexity of
certified write-all algorithms. J. Algorithms, 16:361–387,
May 1994.

[27] A. Prakash, A. Aziz, and V. Ramachandran. Randomized
parallel schedulers for switch-memory-switch routers:
Analysis and numerical studies. In Proc. 23rd Confer-
ence of the IEEE Communications Society (INFOCOM),
2004.

[28] C. Womach and M. Farach. Randomization, persuasive-
ness and rigor in proofs. Synthese, 134(1-2):71–83, 2003.

340

