Abstract

An essential feature of magnetic resonance (MR) probes for magnetic resonance imaging and spectroscopy is the ability to generate uniform B-1(+) excitation in a volume of interest. When the magnetic field strength is increased, leading to an increase in resonance frequency, the constraints on the MR probes size, the sample size and the associated radiation losses caused by conductor elements are higher. In this study we simulate, test and construct two birdcage coils for imaging rodents operated at 14.1 T. Bench experiments and imaging tests show that at 14.1 T dielectric resonance effect is the dominant factor accounting for B-1(+) field inhomogeneity but remained achievable for imaging rodent brains.

Details