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This paper describes the states of quantum versions
of finite�dimensional Hamilton–Dirac systems in
terms of (analogues of) the Wigner function (various
definitions of Wigner functions for classical Hamilto�
nian systems can be found in [8]). We give a system of
equations, which we call the Moyal–Dirac system,
describing the evolution of this Wigner function. The
passage from the Moyal equation describing the evolu�
tion of the quantum version of a classical Hamiltonian
system to the Moyal–Dirac system describing the evo�
lution of the quantum version of the corresponding
Hamilton–Dirac system is similar to the passage from
the Liouville equation describing the evolution of a
classical Hamiltonian system to the Liouville–Dirac
system of equations describing the evolution of the
corresponding Hamilton–Dirac system. Thus, our
Moyal–Dirac system is a generalization of both the
Liouville–Dirac system and the Moyal equation.

If a Hamilton–Dirac system is infinite�dimen�
sional, then, instead of the Wigner function, the so�
called Wigner measure [7] should be used, because, by
virtue of Weil’s well�known theorem, on an infinite�
dimensional (topological vector) space, there exists no
analogue of the standard Lebesgue measure, i.e., no
nonzero σ�finite locally finite countably additive
translation�invariant Borel measure. In the finite�
dimensional case, the density of the Wigner measure
with respect to the Lebesgue measure is the Wigner
function.

Hamilton–Dirac systems were introduced by
Dirac (see [4] and the references therein), who called
them generalized Hamiltonian systems. They are also
known as constrained Hamiltonian systems; such sys�
tems can be regarded as objects dual to Lagrangian
systems with nonholonomic constraints (Lagrangian

system with holonomic constraints bear no relation to
constrained Hamiltonian systems).

Hamilton–Dirac systems arise under the applica�
tion of the Legendre transform to an unconstrained
Lagrangian system with degenerate Lagrange function
(for such Lagrange functions, which are also called
singular, the Legendre transform is noninvertible). It is
worth mentioning that to Lagrangian systems with
nondegenerate Lagrange function and nonholonomic
constraints the Legendre transform assigns uncon�
strained Hamiltonian systems with degenerate Hamil�
ton function (for which the Legendre transform is
again noninvertible).

In what follows, we emphasize the algebraic aspects
of the theory and omit analytical details.

1. NOTATION AND TERMINOLOGY

The definitions and notation used in this paper can
largely be found in our paper [12]. A Hamilton–Dirac
system is a quadruple (E, �, �, ψ), where E is a real
Hausdorff locally convex space (LCS), � ∈ �(E ', E) is
the vector space of all continuous linear mappings of the
topological dual E ' of E ' to the space E, �* = –�, � is a
real� or complex�valued function on E, called the
Hamilton function (of the Hamilton–Dirac system),
and ψ is a smooth mapping of the LCS E to an auxil�
iary LCS Zψ. The pair (E, �) is a symplectic LCS,
called the phase space of the Hamilton–Dirac system.

By {·, ·} we denote the Poisson bracket; we define it
not only for scalar functions but also for functions tak�
ing values in an LCS (see [12]).

Given smooth numerical functions f and g on E,
their Poisson bracket is defined by {f, g} :=
f '(x)(�g'(x)). If G1 and G2 are LCSs, f, g ∈ C∞(E, �),
a ∈ G1, and b ∈ G2, then the functions a ⊗ f ∈ C∞(E,
G1) and b ⊗ g ∈ C∞(E, G2) are defined by (a ⊗ f)(x) :=
f(x)a G1 and (b ⊗ g)(x) := g(x)b ∈ G2 for x ∈ E. The
Poisson bracket {a ⊗ f, b ⊗ g} ∈ C∞(E, G1 ⊗ G2) is
defined by {a ⊗ f, b ⊗ g}(x) := {f, g}(a ⊗ b), where {f, g}
is the Poisson bracket of the scalar functions. The
mapping (a ⊗ f, b ⊗ g) � {a ⊗ f, b ⊗ g} can be extended
to a bilinear mapping (ϕ, ψ) � {ϕ, ψ} of the product of
the space F1 := G1 ⊗ C∞(E, �) ⊂ C∞(E, G1) and the
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space F2 := G2 ⊗ C∞(E, �) ⊂ C∞(E, G2) to the space
C∞(E, G1 ⊗ G2). Clearly, the Poisson bracket {·, ·} thus
defined is skew�symmetric. If G3 is yet another LCS,
F3 := G3 ⊗ ⊗ C∞(E, �) ⊂ C∞(E, G3), f ∈ F1, g ∈ F2, and
h ∈ F3, then {f, {g, h}}(x) + {g, {h, f}}(x) + {h, {f, g }}(x) = 0
in G1 ⊗ ⊗ G2 ⊗ G3 for any x ∈ E (by virtue of the asso�
ciativity of algebraic tensor product). For the product
f · g defined by (f · g)(x) := f(x) ⊗ g(x), the Leibniz rule
{f, g · h} = {f, g} · h + g · {f, h} ∈ C∞(E, G1 ⊗ G2 ⊗ G3)
also holds. Thus, the Poisson bracket of functions tak�
ing values in an LCS has the same properties as the
Poisson bracket of scalar functions.

We set �ψ := {x ∈ E | ψ(x) = 0}; it is assumed in
what follows that 0 is a regular value of ψ and x ∈ �ψ

implies {ψ, ψ}(x) = 0 and {�, ψ}(x) = 0.
The Liouville–Dirac system of equations for a

Hamilton–Dirac system (E, �, �, ψ) is the system

(1)

with respect to an unknown function F(·) of a real
argument t taking values in the set of smooth functions
on E; here, �λ(t) := � + λ(t)ψ and λ is an arbitrary

function of the same argument taking values in  (in
Dirac’s book [4], the function �λ is called a general�
ized Hamiltonian).

By a solution of the Liouville–Dirac system we
mean a function F(·) satisfying system (1) on the set �ψ.

2. WIGNER FUNCTIONS AND MEASURES

In what follows, we assume that Q and P are copies
of a real Hilbert space H, and Q' = P, P ' = Q, and E is
identified with the Hilbert sum of the Hilbert spaces Q
and P. The elements h ∈ E are identified with linear

continuous functionals E � x � (x, h) on E; by  we
denote the pseudodifferential operator with symbol h
defined on an appropriate space of functions or mea�
sures on Q.

Definition 1. If h = qh + ph, where qh ∈ Q, ph ∈ P,
ψ is a suitable function on Q, and dimQ = dimP = n,

then ψ is the function on Q defined by

Definition 2. The Wigner measure generated by a
density operator T is the (generalized) measure WT on
the phase space E defined by

F· t( ) �λ F t( ),{ },=
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Zψ
'
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Remark 1. The function (q, p) � tr  is
called the Weyl function; thus, the Wigner measure is
the (inverse) Fourier transform of the Weyl function.

If μ is a nonnegative Borel measure on E, then the
density of the Wigner measure WT with respect to μ is

called the Wigner μ�function and denoted by ; if
dimE < ∞ and μ is the standard Lebesgue measure,
then the Wigner μ�function is called the Wigner func�
tion.

Remark 2. We have  = ; thus, in this
case, the exponential of the pseudodifferential opera�
tor with symbol q + p coincides with the pseudodiffer�
ential operator whose symbol is the exponential of the
former symbol (i.e., of the function q + p); we empha�
size that a similar assertion for symbols not being lin�
ear functions is false.

3. THE MOYAL–DIRAC EQUATIONS: 
THE FINITE�DIMENSIONAL CASE

In this section, we assume that dimH < ∞. For each
t ∈ [0, ∞), let T(t) be the density operator describing
the state at the moment of time t of the quantum sys�
tem obtained by quantizing the Hamilton–Dirac sys�
tem (E, �, �, ψ). Let WT(t)(·, ·) := WT(t)(·, ·) be the
Wigner function corresponding to the density operator
T(t), and let (x) := {f, �λ}(x) for f ∈ C∞(E, �)

(  is called the Liouville operator).

Theorem 1. There exists a function λ: [0, ∞) → 
for which WT(·) satisfies the Moyal–Dirac system of
equations

(2)

on the set of those (q, p) ∈ E for which ψ(q, p) = 0. Here,

and ( F)(x) := F(n)�⊗nG(n)(x).

4. INFINITE�DIMENSIONAL 
MOYAL–DIRAC EQUATIONS

As mentioned above, in the case where dimH = ∞,
instead of Wigner functions, Wigner measures, or
Wigner μ�functions, should be used. In the case of
unconstrained infinite�dimensional Hamiltonian sys�
tems, the passage from equations for functions to
equations for measures is straightforward, because the
Liouville operator can be naturally defined on mea�
sure spaces; this fact can be regarded as an infinite�
dimensional version of Liouville’s theorem on the
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preservation of phase volume (which does not exist in
infinite�dimensional spaces) under the canonical
transformations.

In the case of infinite�dimensional Hamilton–
Dirac systems, the passage to equations with respect to
measures requires attaching meaning to the assertion
that the Moyal–Dirac system (2) is satisfied on the set
{(q, p)| ψ(q, p) = 0}. This can be done by replacing the
passage from a Wigner function defined on the entire
phase space to its restriction to the submanifold
{(q, p)| ψ(q, p) = 0} by the passage from a Wigner mea�
sure defined on E to the corresponding surface mea�
sure.

5. FEYNMAN FORMULAS

A Feynman formula is a representation of a solu�
tion of an evolution differential equation or some
object related to this equation (e.g., the trace of the
operator on the right�hand side of the equation) in
terms of the limit of integrals over Cartesian powers of
some space, e.g., the configuration or phase space of
the corresponding Hamiltonian system, as the expo�
nent tends to infinity.

To obtain a Feynman formula for a solution of the
Moyal–Dirac system (2) describing the quantum sys�
tem corresponding to a (classical) Hamilton–Dirac
system, we note that the Moyal–Dirac system coin�
cides with a system of Schrödinger�type equations for
the extended Hamilton–Dirac system (Eext, �ext, �ext,
ψext), where Eext := EQ × EP, EQ and EP are two copies
of the space E, �ext(h, k) := (k, –h) for (h, k) ∈ EQ × EP,
ψext(k) := ψ'(k)�k, and

Theorem 2. If WT(·) is a solution of the Moyal–Dirac
system (2) and ψ(q, p) = 0, then the following Feynman
formula is valid:

Here,  denotes the pseudodifferential

operator with symbol ; its definition,

which is similar to Definition 1 given above, can be found
in [12].
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