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1 Introduction

Non-abelian gauge theories on R3 × S1 with center symmetry have been of great inter-

est [1–7] in the past years, not only as a tool for understanding QCD-like theories in a

controlled, semi-classical regime, but potentially as a way to define a theory on R4 by

arguing continuity in the compact circumference L of the circle [8, 9]. There has been

tremendous progress in understanding the dynamics of the theory for L� ΛQCD−1, which

is carried either by instanton-monopoles or bound states of instanton-monopoles known

as bions.
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Figure 1. Typical renormalon diagram.

On the other hand, non-abelian gauge theories on R4 are strongly coupled, and non-

perturbative effects are notable. Even so, one may still hope that certain processes at short

distance scales, or large momentum transfer1 Q2 � Λ2
QCD, are computable in perturbation

theory. In a certain class of n loop diagrams, however, the characteristic momentum

running through the loops is not Q2, but is exponentially suppressed with the number of

loops n. This suppression is caused by the appearance of logarithms in the one loop vacuum

polarization diagrams (see section 2 and [10, 11] for more details.), which we revisit in this

work on R3×S1. This suppression leads to n! growth of the diagram upon integration over

the momentum P running through the chain of loops (see figure 1 for a typical diagram),

rendering the loop expansion non-Borel summable (for review see [10, 11]). Another way of

saying this is that the Borel plane contains poles on the real axis, which generate ambiguities

in the calculation, depending on whether the pole is circumvented from above or from below.

The class of diagrams suffering from this problem are referred to as the renormalon diagrams

and the corresponding non-Borel summability is the (in)famous renormalon problem [12].

Borel non-summability of the perturbation theory is not in itself surprising and was

argued by Dyson long time ago2 [14]. This problem also appears in quantum mechanics, but

there the divergence is caused by the factorial proliferation of the number of the Feynman

diagrams. In fact, one finds that such divergence is cured by instanton-anti-instanton

events [15, 16], and a priori has nothing to do with the renormalon problem.

It was recently suggested in [17, 18] that IR renormalon ambiguity cancellation can be

understood in terms of semi-classical instanton-monopole solutions appearing in the theory

on R3 × S1, but which do not appear on R4. This idea was substantiated by the detailed

analysis of two-dimensional models on R× S1 [19–22], which have extra non-perturbative

saddles compared to the theory on R2 (these are analogous to the instanton-monopoles in

gauge theories). Since these theories reduce to quantum mechanics for small L, a resurgent

expansion can be constructed, in which case these saddles play a crucial role in canceling

the ambiguities of the perturbation theory. It was conjectured in these works that these

saddles (or rather their correlated pairs) cancel the renormalon ambiguity which also exists

1Capital letters are used to denote the 4-momenta, and small letters denote the spatial 3-momenta.
2Although it is true that the perturbation series is divergent, it was pointed out that Dyson’s argument

may not be entirely valid [13].
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in these theories on R2. This conjecture was made plausible because the leading renormalon

ambiguity matched the even-integer multiple of the action of the saddles, because the beta-

function coefficient, β0, is an integer. This, however, is not the case in gauge theories in

four dimensions where the beta-function coefficient β0 is no longer an integer. This non-

matching in gauge theories has led to the conjecture that renormalon ambiguities are shifted

on R3 × S1 and that they smoothly interpolate from a semi-classical regime at L� Λ−1
QCD

to those in the decompactification limit L→∞ [18].

In this work, however, we show that the renormalon problem3 vanishes completely from

theories formulated on R3×S1. In particular, we will show that all logarithmic dependence

of the vacuum polarization (which we calculate exactly for arbitrary external momentum)

in a center symmetric background cancel out, and hence no renormalon problem appears in

the theory. In order to preserve the center symmetry, we will mainly focus on Yang-Mills

theory with adjoint matter, where center symmetry is perturbatively stable [1].

For the theory on a small4 L � Λ−1
QCD, the IR dynamics of QCD(adj) is governed by

the instanton-monopoles and their correlated pairs which are called bions. The neutral

monopole-anti-monopole pairs (the neutral bions) generate ambiguities which should be

canceled by the perturbation theory and which were conjectured to be the semi-classical re-

alization of renormalons [17–19, 21]. Since we show that no renormalons exist in this theory,

the inevitable conclusion is that the singularity in the Borel plane due to neutral bions is as-

sociated with the proliferation of diagrams, rather than the renormalon.5 On the other hand

the factorial divergence of diagrams on R4 is believed to be associated to the 4D instanton-

anti-instanton pairs. This is consistent with the fact that no factorial growth of diagrams

happens in the large N limit [23], as instantons have an exponentially vanishing contribu-

tion in this limit. The arguments leading to this conclusion should fail however on R3×S1,

provided that the large N limit is taken with NL kept fixed,6 as the ambiguities of the neu-

tral bions (which survive this kind of large N limit) need to be canceled by an appropriate

n! growth. Since no renormalons exist on R3×S1 it is natural to assume that this factorial

behavior will come from some additional diagrams which appear in the theory on R3× S1.

Although the perturbation theory does not suffer from the IR renormalons, this should

by no means be taken as an indication that the perturbation theory is complete. One imme-

diate indication of this is that computation of the renormalon processes are very sensitive

to the radius L, which they should not be since the full theory is gapped and should not feel

3We emphasize that in this paper we define renormalons as the ambiguities in the Borel plane which arise

from the factorial growth of the diagram shown in figure 1. We stress, however, that the word renormalon

can also be used in a broader sense to mean any high-order growth of perturbation theory which can not be

accounted for by instantons. In addition the word renormalon is often used in the context of OPE matching

(see discussion at the end of section 2.1).
4Strictly speaking the criterion should be NL � Λ−1

QCD, but since we mostly discuss N = 2, 3 in this

work, this difference is not important.
5Although the authors of [19, 21, 22] do not stress this point, the cancellation between non-perturbative

saddles and perturbation theory is clearly of this kind.
6Since the relevant scale in the center symmetric vacuum is NL, a naive ’t Hooft limit would restore the

R4 results. This is a form of large N volume independence. The large N limit with NL kept fixed is often

referred to the abelian large N limit.
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the size of the box, so no physics should be affected by L� Λ−1
QCD. However a question does

pose itself: if all non-perturbative effects are systematically taken into account, would this L

dependence cancel in the final result? Of course there is an immediate problem here because

the theory for large L is not semi-classical. In the small L � Λ−1
QCD regime, however, the

theory is semi-classical and under theoretical control [1], but the physical observables are

not L-independent, even though there is some indication that continuity between small and

large L holds7 on R4 [8, 9]. The L dependence kicks in at the scale L ∼ Λ−1
QCD, so that there

is no reason to expect that the L dependence of the renormalon diagram is canceled by the

non-perturbative effects. This is even more so the case because of the fact that the regime

of small L is characterized by the hierarchy of scales for which L� (monopole separation),

so that the monopole screening of the perturbative propagators happens at the momentum

scales much lower than the scale 1/L, the point at which momentum dependence is cut off

in the renormalon diagram. As L is increased, however, these two scales (i.e. the monopole

diluteness and the IR cutoff scale L) become of the order Λ−1
QCD. This happens when the

coupling is already strong, and perturbation theory is not justified anyway, so low momenta

in Feynman diagrams should be cut off by non-perturbative effects. If complemented by the

non-perturbative monopoles, however, the perturbation theory will have a new IR cutoff

scale which is now as important as L, so appropriate non-perturbative corrections need to

be introduced in the perturbative propagators.

It is perhaps important to stress that although the theory on R3 × S1 does not have

renormalon poles in the Borel plane because the factorial growth n! is cut off by the presence

of the IR scale L, for L� Λ−1
QCD there will be some factorial growth which still may have

physical meaning.8 Indeed at large L the perturbation theory will complain about the fact

that one is using it in the regime where it should not be used. But since the unphysical

growth of the series is cut off at large n, and since formally no singularity in the Borel

plane exists due to the renormalon diagram, it is not as straightforward to attach meaning

to this growth and to connect it to non-perturbative saddles. It seems clear, however, that

whatever physics can be extracted in the regime of large L� Λ−1
QCD, it should remain the

same as on R4, due to the presence of the mass gap of order ΛQCD. As the radius L is

reduced and as the threshold Λ−1
QCD is reached, the semi-classical instanton-monopoles and

bions will be the source of mass-gap and condensates, but no renormalon growth will be

observed at all. On the other hand there will be factorial growth of diagrams associated with

these saddles. Whether for L � ΛQCD there is a connection between the two, seemingly

different and unrelated factorial growths, remains an open and important question.

These arguments are heuristic, however, but they do give hope that the theory on large

L can indeed be studied for small L, where all effects can be systematically accounted for

and the large L (and possibly as nW → 0) limit taken.

7This statement must be made with care for QCD(adj), as the continuous chiral symmetry will be

broken for large L. The observables calculated on small L, however, can be thought of as analytic functions

of the number of adjoint Weyl flavors nW and L. In this case one can make a statement that the small L

and nW > 1 theory on R3 × S1 is continuously connected to the nW = 0 theory on R4 by taking the limits

L→∞ and nW → 0.
8Indeed there is a lot of phenomenological work where renormalon behavior can be extracted from a

finite box [24–27], and this will also be true for a large L theory on R3 × S1.
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The article is organized as follows. In section 2 we review the renormalon problem

and how it arises in gauge theories on R4. We also qualitatively discuss why it is expected

that no renormalons appear on R3 × S1. In section 3 we introduce our computational

strategy and obtain the general structure of the vacuum polarization tensors exactly using

the background field method for arbitrary external momentum. In section 4 we carry

out systematic and exact calculations of the vacuum polarization tensor to one loop. To

the best of our knowledge, this is the first exact calculations of the vacuum polarization

diagram on R3×S1 and the results are easily applied to the case of thermal QCD and QED.

Finally, in section 5 we show explicitly that no renormalons exist on R3×S1. We conclude

in section 6. Various appendices summarize miscellaneous sums and integrals used in the

computations. In particular, in appendix E we use a novel method to obtain the exact

result of new untabulated integrals.

2 IR renormalons: the sickness and cure

Although there are excellent reviews of renormalons on R4 [10, 11], we will review the

renormalon problem in R4 in this section for completeness. We also argue why this problem

disappears when we formulate our theory on R3 × S1. In this section, our arguments will

be heuristic, postponing a careful analysis until the next section.

2.1 IR renormalons on R4

IR renormalons appear in processes which depend on a hard momentum scale Q2. One

such process is the current-current correlator 〈jµjν〉. Due to the gauge invariance, this

correlator has the following structure

Πµν(Q) = (δµνQ
2 −QµQν)Π(Q2) . (2.1)

The renormalons, however, are often discussed in the context of the so-called Adler function,

defined by

D(Q2) = 4π2Q2dΠ(Q2)

dQ2
. (2.2)

The renormalon diagram is depicted in figure 1, and has the following form (see e.g. [10, 11])9

D =

∞∑
n=0

αs(µ)

∫ ∞
0

dP 2

P 2
F (P 2/Q2)

[
β0,fαs(µ) log

(
P 2

µ2

)]n
, (2.3)

where αs(µ) = g2(µ)
4π is the coupling at scale µ, P is the momentum which runs into the loop

chain (see figure 1), and β0,f is the fermion contribution to the 1-loop β-function coefficient

of the theory. The exact expression for F (P 2) can be found in [28], but its exact form is

9Notice that we have introduced the renormalization scale µ which must be taken as µ� Λ in order to

insure small coupling and the validity of the perturbative expansion. Physical results, however, should not

depend on µ.
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largely unimportant for the discussion of renormalons. What is important, however, is that

for small P 2/Q2 the function F (P 2/Q2) behaves as

F (P 2/Q2) ∼ CP 2a/Q2a + . . . (2.4)

where a = 2. Doing an integral in P 2 from 0 to Q2 gives the behavior

D(Q2) ∼ αs(µ)
∑
n

(
−αs(µ)

β0f

a

)n
n! ≡ S . (2.5)

The Borel transform10 of the above sum is

B[S] = αs(µ)
∑
n

(
−αs(µ)

β0f

a
u

)n
=

αs(µ)

1 + αs(µ)β0fu/a
, (2.6)

and has a pole at u = − aβ0f
αs(µ) . So far we have only considered fermion loops (hence the

appearance of the β0f ). A convenient (and somewhat ad hoc) replacement of β0f → β0

is often invoked, where β0 is the full beta function coefficient of the theory, which, in

asymptotically free theory, is negative. Hence the pole lies on the real axis, which in turn

renders the sum non-Borel-summable. The pole can be circumvented from above or from

below, which yields an imaginary ambiguity in the sum

S = (real part)± iπ a
β0
e

a
β0αs(µ) . (2.7)

Notice that the ambiguity is exponentially small and non-perturbative in the small coupling

αs(µ). Using the one loop β-function and taking care of the prefactors, it is possible to

show that

Im D(Q) ∼
(

Λ

Q

)4

. (2.8)

The above result offers an interpretation that there are certain condensates of order ∼ Λ4

beyond the perturbative treatment and that these condensates have an ambiguity which

exactly cancels the renormalon ambiguity of the perturbative sector.

There is an alternative interpretation of the renormalon, however, which does not call

for the introduction of the renormalon ambiguity [29]. In this view the integration over

momenta p . ΛQCD is nonsensical, as the propagators in this momentum regime would

not be the simple, perturbative ones. In this more physical approach to the renormalon

diagram, the momentum integral should be cut off in the infrared region at some scale

µ, sufficiently larger than ΛQCD in order to render the perturbation theory valid. Since

the scale µ is artificial and (almost) completely arbitrary, no physical observable should

depend on it. On the other hand the condensates contain the momentum scales below the

scale µ, and therefore depend on µ as well. The consistent OPE should therefore involve

the scale µ in the perturbative and in the condensate terms in such a way that µ cancels

out completely from the final result.

10The Borel transform of a series S =
∑
n cn is defined as B[S] =

∑
n cnu

n/n!. The original series can

be recovered by
∫∞
0
du e−uB[S].
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Notice that this approach never encounters the factorial divergence of the loop sum-

mation, simply because all perturbative integrals are cutoff in the IR region of p < µ, and

its contribution is thrown into non-perturbative condensates. Therefore in this view the

renormalon problem is gone and is viewed as the artifact of our lack of ability to probe the

low momentum (i.e. strong coupling region) in perturbation theory.

2.2 Overview of the theory on R3 × S1 and the absence of the renormalon

problem

Let us present some heuristic arguments of why no IR renormalons are expected in the

center symmetric theory on R3 × S1. Our exposition, as well as the formulas, will be very

schematic and we postpone detailed calculation of vacuum polarization on R3 × S1 to the

next section. We give our argument for the SU(2) case, but it applies trivially to higher

rank gauge groups.

The theory we discuss is described by the Lagrangian (3.1) with nW Weyl fermions in

the adjoint representation. If center symmetry is preserved then the vacuum configuration

that one needs to expand around is A3 = v
2τ

3 (we chose the third spatial direction to be

compact), with v = π/L, which is the center symmetric point stabilized perturbatively11

in QCD(adj) and we have chosen a gauge in which A3 is always in the third color direction.

In this vacuum, the gauge symmetry is spontaneously broken to U(1) and one can

distinguish between gauge and fermion fields in the third color direction whose propagators

remain massless, and fields in the 1 and 2 color directions which get a mass of order

1/L. The gauge field along the the third color direction is the U(1) photon denoted by

am,m = 0, 1, 2, 3, for which the longitudinal component gets a mass by one loop effects.

For small L � Λ−1
QCD the theory is in a weakly coupled regime and hence one can apply

reliable semi-classical analysis to find that the theory is gapped due to the proliferation of

non-perturbative and non-self-dual topological molecules known as magnetic bions [1]. For

large L, although no abelianization can be invoked, from the point of view of perturbation

theory the propagators fall into a class of massless, would-be U(1) photon, and massive

would-be W -bosons, whose low momentum dependence in the propagator is cut off at 1/L.

In this sense the radius L serves as an IR regulator for the W -boson propagators.

First, we discuss the massive gauge bosons. Looking at the renormalon diagram in

figure 1, we consider the case when all wavy lines are massive gauge bosons either W -

bosons or longitudinal a3 (we denote the compact direction by the 3-component). Then

the propagators in the renormalon diagram are all well behaved in the IR and are of the

form ∼ 1/(p2 +m2), while the fermion loop has a structure f(p) which vanishes12 when13

11Although in this work we use QCD(adj) to do all the calculations, the conclusions we give apply equally

to any QCD-like theory with a stable center symmetry. In a generic theory, however, some non-perturbative

terms need to be included in order to render the center stable, and the “electric mass” non-tachyonic.
12If the function f(0) = const, then one must first subtract the constant and absorb it into the mass m2.
13Since we are interested in the low p-momentum behavior, we only analyze the case p3 = 0, i.e. the

zero Matsubara mode. The higher Matsubara modes cannot cause problems in the IR as the Matsubara

frequency acts as an IR regulator.
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p→ 0. The renormalon diagram then has a structure∫
d(p/q) F (p/q)

(
f(p)

p2 +m2

)n
(2.9)

where F (p) is some function of p which is not pathological in the IR.14 Since the expression

f(p)/(p2+m2) vanishes for small p, the p-integral is cutoff rapidly at low momenta for large

n, and hence small p contribution to the integral is negligible, and no factorial dependence

arises from this integral. We will remind the reader that in the case of the analogous

computation on R4 the situation was different as m = 0 and f(P ) = P 2 logP 2, and it was

the appearance of the softly IR divergent (logP )n term in the integrand which lead to the

n! behavior. Here, however, the integrand is made perfectly well behaved in the IR because

of the mass term.

Next let us discuss the case of massless photon in the renormalon diagram. In this case

the wavy lines in figure 1 are all massless photons. However, the fermions in the loop have

to be charged under the U(1) and are heavy with mass of order ∼ 1/L. Then the loop can

be sensitive to the external momentum only up to the IR scale 1/L. To say it differently,

the coupling constant for the massless photon stops running perturbatively once the scale

L−1 is reached, as the only way this running can occur is through the mediation of the

massive W -bosons and massive fermions which are not in the third color direction. This

means that the vacuum polarization in the IR reduces to

Πµν = (δµνp
2 − pµpν)× (constant) . (2.10)

which results in the following structure of the Adler function:∫
d(p/q) F (p/q)(constant)n . (2.11)

Again no factorial behavior n! is observed. Therefore renormalon problem, in the formula-

tion which we gave in section 2.1 does not exist on R3 × S1.

Let us give another, more quantitative, argument of why IR logarithmic singularities

of the vacuum polarization disappear on R3 × S1. The key observation is to note that

the result of the Matsubara sums can be split into two parts: a vacuum contribution and

“thermal” excitations contribution.15 The “thermal” part is characterized by the Bose-

Einstein distribituion16 Re 1
ekL+iµ−1

, where µ = vL is the holonomy, while the vacuum part

can be obtained by the replacement Re 1
ekL+iµ−1

→ 1/2 (see e.g. (B.4) and (B.5)). The

14Note that this is not the same function as in section 2.1, and that we have not computed this function

which comes from integrating over the momentum in the “large fermion loop” of the renormalon diagram.

However no strange IR behavior should arise from this computation. In fact the calculation can be dra-

matically simplified if the assumption qL � 1 is made, in which case the Matsubara sum over the large

fermion loop can be converted into an integral. However, since this function determines the position of the

renormalon pole, its structure may still be important. See section 6.
15Of course, since fermions are periodic in the compact direction, no thermal interpretation holds for

this setup.
16This factor is just the Bose-Einstein-like thermal excitation factor of particles who’s Boltzmann factor

is e−kL and coupling to the A3 abelian U(1) field is e±i
∫
A3dx

3

, so they carry “electric charge”.
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holonomy appears in these calculations because the particles running in the loop are charged

under the remaining U(1) gauge group. However, notice that limk→0 Re 1
ekL+iµ−1

= −1
2 , so

that in the IR the vacuum and the “thermal” contribution cancel, and the loops are better

behaved for low momenta than they are on R4. It is this observation which causes the IR

logarithms to cancel between the thermal and the vacuum part (for details the reader is

referred to section 4).

The argument given above is valid only for µ 6= 0 mod 2π. For µ = 0 mod 2π

the divergence is actually worse than logarithmic, but logarithms still exist and they still

cancel.17 To see this we computed the necessary integrals exactly which are valid for any

µ, even for µ = 0 mod 2π.

In the rest of the paper we make the picture portrayed above more precise by carrying

out detailed calculations for the vacuum polarization diagrams for the massless photon to

one-loop order.

3 Strategy and the calculation method

In this section, we explain the elements of the method we use to calculate the one-loop

vacuum polarization. Since we perform our calculations for QCD(adj), we first summa-

rize the perturbative dynamics of this theory in subsection 3.1. As was mentioned in the

introduction, the renormalon calculations start by assuming a large number of fermion

flavors running in the loops. In this case, the type of diagrams depicted in figure 1 will

be enough to show the n! growth associated with the appearance of renormalons. How-

ever, including the non-abelian contribution is far more complicated. For example, adding

the gluon and the ghost bubbles to the fermion bubble is not sufficient to guarantee a

gauge invariant answer. In fact, in order to respect the gauge invariance of the theory,

the number of diagrams we need to calculate proliferate making any attempt to perform

such calculations impractical. In order to circumvent this problem, we use a convenient

computational device by replacing the one-loop running of the coupling on R3 × S1 due

to fermions with the full running of the coupling. In turn, this reduces the hard problem

to a simpler one: we just need to calculate the one-loop correction to the running of the

coupling constant on R3 × S1 in the presence of a non-trivial holonomy. In order to avoid

considering vertex correction, a convenient way to perform such calculations is to use the

background field method where only vacuum polarization diagram needs to be computed.

In section 3.2, we explain this method adapted to our geometrical setup. After obtaining

the one-loop vacuum polarzation, one then needs to sum a series of bubbles to obtain the

full propagator. This summation process is reviewed in subsection 3.3.

Throughout this work, we perform our analysis in the Euclidean space and we use the

imaginary time formalism (the Matsubara technique) to carry out our calculations. We

also use elements of the Lie algebra for the sake of generality, but we focus mainly on

the cases of su(2) and su(3) algebra where expressions simplify at the center symmetric

point. Generalizing our results to a general gauge group is straightforward. We use capital

letters P,K to denote four-dimensional Euclidean quantities and boldface letters to denote

17This cancellation was also demonstrated explicitly for µ = 0 mod 2π in [30].
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their three-dimensional component ppp,kkk such that P = (p0, ppp). The magnitude of the three

dimensional quantities will be denoted by normal letters p ≡ |ppp|. Notice also that we use

boldface letters to denote quantities that live in the Cartan subspace. It will be obvious

from the context which structure we mean.

3.1 Perturbative dynamics of QCD(adj) on R3 × S1

We consider Yang-Mills theory on R3×S1 with a compact gauge group G and nW massless

Weyl fermions. We compactify the x3 direction such that x3 ∼ x3 + L, where L is the

circumference of the S1 circle. The action of the theory is given by

S =

∫
R3×S1

tr

[
1

2g2
fmnf

mn − 2iλ̄I σ̄
mDmλI

]
, (3.1)

where fmn = ∂man− ∂nam + i[am, an] is the field strength tensor and I is the flavor index.

In this paper, the letters, m,n run over 0, 1, 2, 3, while the Greek letters µ, ν run over 0, 1, 2.

We also write am ≡ aamt
a and λ ≡ λat

a, where ta are the Lie algebra generators and the

letters a, b denote the color index. A brief review of a few elements of Lie algebra used

in this paper is provided in appendix A. The x0 axis is the time direction, and hence the

compact direction x3 is one of the spacial directions. Therefore, both gauge bosons and

fermions obey periodic boundary conditions around S1.

The quantum theory has a dynamical strong scale ΛQCD such that to one-loop order

we have

g2(µ) =
16π2

β0

1

log
(
µ2/Λ2

QCD

) , (3.2)

where µ is a normalization scale, β0 = (11−2nW )c2
3 , and c2 is the dual Coexter number

which is equal to N for su(N) algebra. In this work we will take nW < 5.5 so that

our theory is asymptotically free. Moreover, by working at a small spacial circle, i.e. for

LΛQCD � 1 we find that the coupling constant remains small and hence we can perform

reliable perturbative calculations. Therefor, for LΛQCD � 1, we can use perturbation

theory to integrate out the Kaluza-Klein tower of the gauge fields and fermions. This can

be performed in a self-consistent way by first writing down the components of the gauge

fields and fermions in the Weyl-Cartan basis (see appendix A):

X = Xata = XXX ·HHH +
∑
βββ+

XβββEβββ +
∑
βββ+

XβββE−βββ , (3.3)

where XXX = (X1, X2, . . . , Xr) denotes the Cartan components of any field, {βββ+} is the set

of positive roots, and r is the rank of the group which is N − 1 for su(N) algebra. We use

boldface letters to denote vectors in the Cartan subspace of the color space. Later in this

work, we will also use boldface letters to denote three dimensional vectors in the Euclidean

space. This should not bring on any confusion since it will be clear which space we mean.

Next, we assume that the quantum corrections will induce a vacuum expectation value for

the gauge fields along the x3 direction. Defining

AAA3 ≡
φφφ

L
, (3.4)
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we find that for a general value of φφφ, the gauge group G spontaneously breaks down into

its U(1)r subgroups. In this case, the bosonic part of the dimensionally reduced action on

R3 reads

S =

∫
R3

d3x

{
L

2g2
g

∂µφφφ · ∂µφφφ
L2

+
L

4g2
s

fff2
mn + Veff(φφφ)

}
. (3.5)

This is the long distance effective action on the three dimensional space. Heavier fields are

of order 1/L and their effects will show up as corrections to the classical action. In fact, the

scalar field φφφ is the gauge field component along the x3 direction, and its effective potential

Veff(φφφ) results from quantum corrections to this field. On the other hand, an effective

potential to the field vvvµν is forbidden thanks to the U(1)r gauge symmetry. However,

quantum corrections will result in a wave function renormalization which in turn will

modify the value of the coupling constants gg and gs, which in general are different.

The quadratic term in Veff(φφφ) can be obtained by computing the two-point function

as we will do in section 5. However, one can also obtain the full result of the potential by

performing Gross-Pisarski-Yaffe one-loop analysis [30]:

Veff(φφφ) = (−1 + nW )
4

π2L4

∞∑
n=1

∑
βββ+

cos(nβββ ·φφφ)

n4
. (3.6)

In this work, we will be interested in the su(N) group, and specifically N = 2, 3 only. In

this case the minimum of the potential Veff(φφφ) is located at

φφφ0 =
2πρρρ

N
, (3.7)

where ρρρ is the Weyl vector ρρρ =
∑r=N−1

u=1 ωωωu, ωωωu are the fundamental weights which satisfy

ωωωu ·αααv = δuv, and αααu are the simple roots. At these values of φφφ0, one can easily check that

the ZN center symmetry of the SU(N) gauge group is preserved.

3.2 The background field method on R3 × S1 in the presence of non-trivial

holonomy

The background field method is a powerful tool to compute the quantum corrections with-

out losing the explicit gauge invariance of the theory. The essentials of this method goes

back to the sixties of the last century [31]. In this method one writes the gauge field ap-

pearing in the classical Lagrangian as A+ a, where A is the classical background field and

a is the quantum fluctuations. In 1980, Abbott [32] showed how to generalize the back-

ground field method to include multi-loops, and he gave explicit prescription including

Feynman rules to compute the gauge-invariant effective action. In this work, we use the

same technique and rules as given by Abbott in order to calculate the one-loop correction

to the gluon propagator in the presence of non-trivial holonomy for any gauge group G.

We explain in details how to do this for adjoint fermions, and then we describe a simple

recipe to include the contributions from the non-abelian gauge fields. Throughout this

section, we need to use elements of the Lie algebra technology. In addition, we need the

– 11 –
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Figure 2. Fermion contribution to the vacuum polarization.

expressions of the propagators on R3 × S1 in the presence of a non-trivial holonomy. Both

of these topics are summarized in appendix A.

The adjoint Dirac fermions couple to the holonomy A3, the dynamical gluon am, and

the background field Am as

L =

∫
d4xψ̄aγm

(
∂mδ

ac + fabcAb3δ3m + fabcabm + fabcAbm
)
ψc , (3.8)

from which one can easily read the fermion-background field vertex:

gfabc = −ig(T badj)ac . (3.9)

Then, using the propagator (A.8), the one-loop fermion contribution to the vacuum polar-

ization for any gauge group reads (see figure 2)

ΠD ed
mn (p, ω) = −g

2

L

∑
q∈Z

∫
d3k

(2π)3
Tradj

[
T eT dγm

1

/K
γn

1

/K + /P

]
(3.10)

= −4g2

L

∑
q∈Z

tradj


∫

d3k

(2π)3

T eT d
[
δmn

(
−K · P −K2

)
+KmPn +KnPm + 2KmKn

][
k2 +

(
2πq
L +Ab3T

b
)2
] [

(kkk + ppp)2 +
(

2πq
L +Ab3T

b + ω
)2
]
 .

where the superscript D denotes that the expression is given for a single Dirac fermion,

Tr denotes the trace over both the color and gamma matrices, K · P = k0 · p0 + kkk · ppp,
K2 = k2

0 + k2, k0 = 2πn
L +Ab3T

b, and p0 = ω.

One can also use the background field method in the Cartan-Weyl basis by turning on

background fields along the Cartan generators Am = AimH i. In this case, one can derive

the fermion-background field vertex simply by replacing βiφi with βiAiµ in (A.14). Thus,

we find the fermion-background field vertex:

gβiAiµ . (3.11)

Then, we use the propagator (A.15) to find the vacuum polarization in the Cartan-Weyl

basis:

ΠD ij
mn = −4g2

L

∑
βββ

∑
q∈Z

∫
d3k

(2π)3

βiβj
[
gmn

(
−K · P −K2

)
+KmKn +KnPm + 2KmKn

][
k2 +

(
2πq
L + φiβi

2πL

)2
] [

(kkk + ppp)2 +
(

2πq
L + φiβi

2πL + ω
)2
] .

(3.12)

– 12 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
9

In order to simplify the calculations, we take G = su(N) and perform our analysis at

center-symmetry. The value of the holonomy in the center-symmetric case is given by (3.7).

In addition, for N = 2, 3 one can easily see that the combination 2πn+ρiβi

L falls into one of

two categories: either 2πn+µ
L or 2πn−µ

L ,18 where

µ =
2π

N
, N = 2, 3. (3.14)

Therefore, for su(2) and su(3) the vacuum polarization tensor takes the form

ΠD ij
mn = −4g2

L

∑
βββ(1)

∑
q∈Z

∫
d3k

(2π)3

βiβj
[
δmn

(
−K · P −K2

)
+KmPn +KnPm + 2KmKn

][
k2 +

(
2πq+µ
L

)2
] [

(kkk + ppp)2 +
(

2πq+µ
L + ω

)2
]

−4g2

L

∑
βββ(2)

∑
q∈Z

∫
d3k

(2π)3

βiβj
[
δmn

(
−K · P −K2

)
+KmPn +KnPm + 2KmKn

][
k2 +

(
2πq−µ
L

)2
] [

(kkk + ppp)2 +
(

2πq−µ
L + ω

)2
] ,

where βββ(1,2) denotes the roots in the first or second category. Now using
∑

βββ(1,2)
βiβj =

δµνN/2 (keeping in mind that N = 2, 3 only), we finally obtain

ΠD ij
mn (p, ω) = −δµν 4Ng2

2L

∑
q∈Z

∫
d3k

(2π)3

δmn
(
−K · P −K2

)
+KmPn +KnPm + 2KmKn[

k2 +
(

2πq+µ
L

)2
] [

(kkk + ppp)2 +
(

2πq+µ
L + ω

)2
]

+(µ→ −µ). (3.15)

It is easy to understand the physics behind the simplified formula (3.15) for N = 2, 3 since

in these cases all charged fermions ψβββ have exactly the same mass in the center-symmetric

vacuum. For N > 3 the charged fermions will generally have different masses, and hence

one has to restore to the original expressions (3.10) or (3.12).

In fact, one can obtain the result (3.15) directly from (3.10) for N = 2, 3 by setting

Ab3T
b = ±µ/L and using Tradj[T

eT d] = fadcf cea = Nδed. This is a huge simplification since

one can then use the same background field Feynman rules, as given by Abbott [32], to

compute the non-abelian one-loop corrections on R3× S1, shown in figure 3, provided that

we substitute the ghosts and gluons propagators on R4 with the propagators on R3 × S1

18This is trivial to see in su(2) since there are only two roots βββ1,2 = ±1. The su(3) case requires a bit

more work. The roots, fundamental weights, and Weyl vector are given by

βββ1 = (1, 0) ,βββ2 =

(
−1

2
,

√
3

2

)
, βββ3 =

(
−1

2
,−
√

3

2

)
,

βββ4 = (−1, 0) ,βββ5 =

(
1

2
,−
√

3

2

)
, βββ6 =

(
1

2
,

√
3

2

)
,

ωωω1 =

(
1,

1√
3

)
,ωωω2 =

(
0,

2√
3

)
, ρρρ =

(
1,
√

3
)
. (3.13)

Then, we find 2πρρρ ·βββ1/N = 2π/3, 2πρρρ ·βββ2/N = 2π/3, and 2πρρρ ·βββ3/N = −4π/3. We see that theses values

belong to the first category given that we shift n → n + 1 in 2πn+ρρρ·βββ3
L

. Similarly, we find that the values

2πρρρ · βββ4/N = −2π/3, 2πρρρ · βββ5/N = −2π/3, and 2πρρρ · βββ6/N = 4π/3 belong to the second category after

making the shift n→ n− 1 in 2πn+ρρρ·βββ6
L

.

– 13 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
9

Figure 3. Diagrams contributing to the non-ableian part of the vacuum polarization (3.16). The

dashed lines are the ghosts, and that the second line of diagrams does not contribute on R4 in

dimensional regularization.

in the presence of a non-trivial holonomy. The diagrams of figure 3 (for N = 2, 3) add up

to [33]:

ΠNAij
mn (p, ω) = δij

g2N

2L

∑
q∈Z

∫
d3k

(2π)3

× 4δmnP
2 + 2 (PmKn + PnKm) + 4KmKn − 3PmPn − 2(K + P )2δmn[

k2 +
(

2πq+µ
L

)2
] [

(kkk + ppp)2 +
(

2πq+µ
L + ω

)2
]

+ (µ→ −µ) . (3.16)

Before proceeding to the the computation of the expressions (3.15) and (3.16), we

review the procedure for summing up an infinite number of bubble diagrams.

3.3 The general form of the gluon propagator

In this subsection, we briefly review the procedure to sum an infinite number of bubble

diagrams. The Euclidean bare gluon propagator in the Feynman gauge on R3 × S1 takes

the form

Dab ,0
mn =

δabδmn
p2 + ω2

, (3.17)

where a, b are the color indices. The vacuum polarization is defined as the difference

between the inverse full gluon propagator and the inverse bare gluon propagator:

Πab
mn = D−1 ab ,0

mn −D−1 ab
mn . (3.18)

Assuming that the polarization tensor is diagonal in the color indices, we can write the

polarization tensor in the general form

Πab
mn = δabΠmn = δab

(
FPLmn +GPTmn

)
, (3.19)
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where the projection operators PT
mn and PL

mn are defined as

PT33 = PT
3µ = 0 , PTµν = δµν −

pµpν
p2

, PL
mn = δmn −

PmPn
p2 + ω2

− PT
mn . (3.20)

The projection operators obey the usual relations PTPT = PT , PLPL = PL, and PTPL =

0. Next, one uses the fact that the polarization tensor is transverse, PmΠmn = 0, to express

Π33 as

Π33 =
pµpµΠµν

p2
3

. (3.21)

Then, we set m = n = 3 and m = n = µ in (3.19), to obtain

F =

(
1 +

ω2

p2

)
Π33 , G =

1

2

(
Πµµ −

ω2

p2
Π33

)
. (3.22)

One can therefore express the full polarization tensor as a function of Π33 and Πµµ. Notice

that in order for the F and G functions to be non-singular, the Π33 must vanish as p2 for

nonzero ω. This will be one check of our results given in (4.16). Finally, one can sum the

polarization tensor to obtain the full propagator

Dab
mn = δab

[
1

p2 + ω2 −G
PTmn +

1

p2 + ω2 − F
PLmn

]
. (3.23)

As we will see in section 5, the full propagator on R3 × S1 in the presence of a non-trivial

holonomy does not suffer from any IR logarithmic singularity, and hence QCD(adj) on a

compact circle is an IR renormalon free theory.

4 Calculating the polarization tensor on R3 × S1

In this section, we compute the one-loop contribution from fermions and gauge bosons as

given by (3.15) and (3.16). All the excited Kaluza-Klein modes cannot cause IR problems

as they have a Matsubara mass, and all infrared singularities, if any, will show up in the

static limit ω = 0. Before taking the static limit, we compute the total polarization for

QCD(adj) as a general function of p and ω. We postpone the discussion of the static limit

to the next section.

4.1 The one-loop fermion correction

The fermions contribution to the vacuum polarization is given by (3.15) (see figure 2).

Keeping in mind that this expression is given for a single Dirac fermion, and ignoring

the color indices, we find that the contribution from nW Weyl fermions is given by the

expression

ΠW
mn =

nW
2

ΠD
mn .
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Before proceeding to the calculations of (3.15), we first examine the limit L→∞. Making

the replacement

1

L

∑
n∈Z

∫
d3k

(2π)3
→
∫

d4K

(2π)4
, (4.1)

and performing the calculations using the dimensional-regularization method, by substi-

tuting 4→ D = 4− ε, we obtain

ΠL→∞
mn (P ) = −2nWNg

2

3 (4π)2 (P 2δmn − PmPn) logP 2 , (4.2)

where we have ignored the 1/ε piece accompanying the logarithm which can be absorbed

in a counter term. The expression (4.2) is the standard background field textbook result

in four dimensional field theory.

Now, we turn to the full calculation of (3.15). First, one needs to sum over the Kaluza-

Klein modes. Such sums can be performed with the help of the complex plane and the

residue theorem. In appendix (B), we summarize and compute the list of the sums we

encounter in this paper. Among the sums we denote by S0, S1, S2, and S3, only S0 and

S1 are independent. In terms of S0, S1, and S2 the Π33 and Πµµ components of the

polarization tensor read:

ΠW
µµ = −2nWNg

2

∫
d3k

(2π)3

[(
−kkk · ppp+ 2k2

)
S1 − 3ωS2 − 3S0

]
,

ΠW
33 = −2nWNg

2

∫
d3k

(2π)3

[
−kkk · pppS1 − 2k2S1 + S2ω + S0

]
. (4.3)

The structure of the sums S1 to S3, which appear in appendix (B), takes the general form

S = Re

(
1

epL−iµ − 1

)
F(pL, ωL) +

1

2
F(pL,−ωL) , (4.4)

where F depends on the specific details of the sum. The first term in (4.4) is the contri-

bution from the µ-dependent part of the sum, while the second term is the vacuum part,

L → ∞. We see that the µ-dependent term can be obtained from the vacuum part upon

replacing 1
2 → Re

[
1

epL−iµ−1

]
and ω → −ω . This observation will prove to be crucial for

the cancellation of the IR divergences as we explain below.

Using the integrals in appendix C, we can express the polarization tensor in terms of

the integrals I0, I1, I2, and I3:

ΠW
µµ = −2nWNg

2

L2

{
−
(

1 +
2ωL

pL
tan−1

(
pL

ωL

))
I0 +

(
p2L2

2
+
ω2L2

2

)
I1

+4I2 + 2ωLI3

}
, (4.5)

and

ΠW
33 = −2nWNg

2

L2

{
−
(

1− 2ωL

pL
tan−1

(
pL

ωL

))
I0 +

(
p2L2

2
+
ω2L2

2

)
I1

−4I2 − 2ωLI3

}
. (4.6)
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The integrals I0 to I3 result from integrating the sums S0 to S3 over k. Inheriting the sum

structure, the IR behavior of these integrals can be studied by casting the integrals in the

following form:19

I = IV + δI =

∫
0
dx

[
1

2
+ Re

(
1

ex−iµ − 1

)]
G(pL, ωL, x) , (4.7)

where the function G(pL, ωL, x) depends on the details of the integral. The first

part of (4.7), G(pL, ωL, x)/2, is the vacuum contribution to the integral, while

Re
(

1
ex−iµ−1

)
G(pL, ωL, x) is the µ-dependent contribution.

Now, we discuss a general feature of the integral (4.7) which is vital for the absence

of the infrared renormalons. The integral
∫
dxG(pL, ωL, x)/2 has an IR logarithmic

divergence:

IV = limq→0

∫
q
dx
G(pL, ωL, x)

2
=
N
2

logP + . . . , (4.8)

where P =
√
p2 + ω2, N is some number that depends on the explicit form of G, and the

dots represent terms that are not singular in the IR. On the other hand, the µ-dependent

part in (4.7) suffers from the same IR divergence which can be extracted by expanding

Re
(

1
ex−iµ−1

)
about x = 0: Re

(
1

ex−iµ−1

)
∼= −1

2 +O(x). Thus, we find

δI = limq→0

∫
q
dxRe

(
1

ex−iµ − 1

)
G(pL, ωL, x) (4.9)

= −limq→0

∫
q
dx
G(pL, ωL, x)

2
+ . . . = −N

2
logP + . . . . (4.10)

Comparing (4.8) with (4.10), we see that the IR parts cancel as we add IV to δI. This

cancellation can also be seen immediately by computing the integrals δI0 to δI3. To the

best of our knowledge, these integrals are not known in the literature. In appendix E, we

use a novel method to compute the integrals. We list the final expressions of I0 to I3 in

appendix D. From the explicit form of these integral, we find that the logarithms that come

from the lower limit of the vacuum integrals IV cancel exactly with the corresponding

logarithmic dependence of δI.

4.2 The non-abelian part of QCD one-loop correction

In this subsection, we repeat the same analysis we carried out above for the non-abelian

case. At infinite circle radius we obtain from (3.16)

ΠNA ,L→∞
mn (P ) =

11g2N

3(4π)2
(P 2δmn − PmPn) logP 2 , (4.11)

thus we have the famous QCD β-function coefficient.

19We stress that this form is appropriate only to study the IR behavior of the integrals and to show the

cancellation of the logarithms between the vacuum and the volume dependent parts.
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Similar to the fermion case, the vacuum polarization of the non-abelian part (3.16)

can be expressed in terms of the sums S0 to S3 as:

ΠNA
µµ =

g2N

L

∫
d3k

(2π)3

[(
−8kkk · ppp+ 3p2 + 4k2 + 6ω2

)
S1 − 6 (S0 + 2ωS2)

]
,

ΠNA
33 =

g2N

L

∫
d3k

(2π)3

(
−ω2 + 2p2 − 4k2 − 4kkk · ppp

)
S1 + 2S0 . (4.12)

Next, we use the integrals in appendix (C) to find

ΠNA
µµ =

g2N

L2

[
−2

(
1+2

ωL

pL
tan−1

(
pL

ωL

))
I0+

(
7p2L2+10ω2L2

)
I1+8I2 + 4ωLI3

]
, (4.13)

and

ΠNA
33 =

g2N

L2

[
−2

(
1− 2

ωL

pL
tan−1

(
pL

ωL

))
I0 +

(
4p2L2 + ω2L2

)
I1 − 8I2 − 4ωLI3

]
. (4.14)

Adding the contribution of fermions and the non-abelian part, we obtain the full polariza-

tion tensor Π
QCD(adj)
mn = ΠNA

mn + ΠW
mn whose µµ and 33 components read:

ΠQCD(adj)
µµ =

g2

L2

{
2N(nW − 1)

(
1 + 2

ωL

pL
tan−1

(
pL

ωL

))
I0 (4.15)

+N
[
(7− nW )p2L2 + (10− nW )ω2L2

]
I1 + 8N(1− nW )I2 + 4N(1− nW )ωLI3

}
,

and

Π
QCD(adj)
33 =

g2

L2

{
2N(nW − 1)

(
1− 2

ωL

pL
tan−1

(
pL

ωL

))
I0 (4.16)

+N
[
(4− nW )p2L2 + (1− nW )ω2L2

]
I1 − 8N(1− nW )I2 − 4N(1− nW )ωLI3

}
.

Now, we can examine the functions F and G in (3.22) as pL → 0 for any non-zero

value of the the Matsubara momentum ω. We find that F and G do not suffer from any

singularities as pL→ 0. In particular, the polarization tensor Π
QCD(adj)
33 /(pL)2 is a constant

at pL = 0. In the next section, we closely examine the behavior of the polarization tensor

as pL → 0 at ω = 0. Due to the absence of any IR logarithmic singularities, we will find

that the polarization tensor as well as the resummed propagator are well behaved in the IR.

5 The static limit, resummation and absence of IR renormalons

In this section, we examine the polarization tensor and the resummed propagator when

the external Matsubara frequency is set to zero. In fact, one expects the infrared problems

to show up in this limit. To explain our point, let us first consider the case L → ∞
where the polarization tensor behaves as Πmn(P ) = 2g2β0

(4π)2
(P 2δmn − PmPn) log(P ), where

β0 = N(11−2nW )
3 . Now, Consider n vacuum polarization graphs sandwiched between two

external gluon at ω = 0. The full gluon propagator reads

D(n)
µν (ω = 0, p) =

[
(Π33)n P0

µν +

(
1

2
Πµµ

)n
PTµν

]
1

(p2)n+1 , (5.1)
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and hence we obtain as we send n→∞

Dmn(p) =
1

p2

∑
n=0

(
2β0g

2

(4π)2
log p

)k
PLmn +

1

p2

∑
k=0

(
4g2β0

2(4π)2
log p

)k
PTmn

=
PLmn

p2
[
1− 2g2β0

(4π)2
log p

] +
PTmn

p2
[
1− 2β0g2

(4π)2
log p

] . (5.2)

Therefore, we find that the above expression suffers from IR logarithmic singularity as

p→ 0 when setting ω = 0. It is this IR singularity that is responsible for the IR renormalons

as we explained in the introduction.

On the contrary, on R3 × S1 such IR logarithmic singularities disappear which in

turn leaves the theory IR renormalon free. As we stressed in the previous section, the

absence of logarithmic singularities is attributed to the cancellation of the IR logarithms

between the vacuum and holonomy-dependent integrals. To further examine the situation,

we explicitly write the polarization tensor of QCD(adj) on R3 × S1 at ω = 0 in the limit

pL� 1. From (4.15), (4.16) and (D.2) we obtain:

ΠQCD(adj)
µµ (ωL = 0) =

g2Np2

24π2
(11− 2nW )

[
2 log

(
LΛ0

4π

)
−
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]

− g2Np2

36π2
(nW − 1) , (5.3)

and

Π
QCD(adj)
33 (ωL = 0) = g2N

{
(nW − 1)

6L2

(
−1 + 3

(µ
π
− 1
)2
)

+
11− 2nW

48π2
p2

[
2 log

(
Λ0L

4π

)

−
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]}
+
g2Np2

36π2
(nW − 1) , (5.4)

where Λ0 is some normalization scale that comes from the vacuum part of the integrals.

Interestingly enough, we find Π
QCD(adj)
µµ (ωL = 0)→ 0 as pL→ 0. In fact, recalling that this

limit is equal to the gluon magnetic mass, we find that this result is not surprising since a

photon mass term is forbidden thanks to the U(1)N−1 gauge symmetry. As a bonus, one

can use (5.3) to obtain the running of the coupling constant of the U(1)N−1 gauge theory

due to the inclusion of the Kaluza-Klein tower of excitations. Since the polarization term

Π
QCD(adj)
µν (ωL = 0) is just the wave function normalization for the background field Aµ

that lives on R3, we find

1

g2
g ,eff(L)

=
1

g2
0

+
N(11− 2nW )

48π2

[
log

(
16π2

L2Λ2
0

)
+
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]
+
N(nW − 1)

72π2
.

(5.5)

where g0 is the bare coupling. Notice that the bare coupling term and the term which

depends on the UV scale Λ0 combine to give 1/g2 where g2 is the QCD one-loop coupling

at scale ∼ L. Setting nW = 1, we obtain the result (up to the renormalization scheme

– 19 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
9

constants) of the running coupling in super Yang-Mills computed in [4, 6] using the index

theorem technology.

On the other hand, we have for the 33 component of the vacuum polarization

Π
QCD(adj)
33 (ωL = 0, pL = 0) = g2N(nW − 1)

[
1

6L2

(
−1 + 3

(µ
π
− 1
)2
)]

. (5.6)

Since the gluon electric mass is defined as m2
g = −Π

QCD(adj)
33 (ωL = 0, pL = 0), we see that

an electric mass is generated by quantum corrections. The first term in (5.6) is a genuine

electric mass term for the gluon. At the center-symmetric holonomy we have µ = π/N ,

N = 2, 3, and therefor we find

m2
sc =

g2(1− nW )

3L2

(
N − 6 +

6

N

)
. (5.7)

For nW = 1 the electric mass vanishes as expected for super Yang-Mills. In addition,

we note that the second and third line in (5.4) is the wave function normalization of the

compact scalars, and it gives the scalar effective coupling

1

g2
s ,eff(L)

=
1

g2
0

+
N(11− 2nW )

48π2

[
log

(
16π2

L2Λ2
0

)
+
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]
− N(nW − 1)

36π2
.

(5.8)

Notice that in the supersymmetric limit nW = 1 the coupling of the scalar is the same

as the coupling of the 3D photon. This indeed has to be the case as they, upon photon

dualization, combine to form the lowest component of the chiral multiplet.

Now, inserting the expressions (5.4) and (5.3) into the resummed propagator (3.23)

we obtain

Dmn(ωL = 0) =
PLmn

p2
[
1− β0g20N

(4π)2

[
log
(

Λ2
0L

2

4π2

)
−
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]
−N nW−1

36π2

]
+m2

sc

+
PTmn

p2
[
1− β0g20N

(4π)2

[
log
(

Λ2
0L

2

4π2

)
−
(
ψ
( µ

2π

)
+ ψ

(
1− µ

2π

))]
+N nW−1

72π2

] . (5.9)

Comparing this expression to (5.2), we see that there is no IR logarithmic singularity,

or any IR dependence on the external momentum20 and hence QCD(adj) on R3 × S1 is

renormalon free.

6 Conclusion

In this work we have analyzed in detail the vacuum polarization of the massless photon on

R3×S1 in the center symmetric background. As we have shown in this theory all logarithmic

dependence of the vacuum polarization as a function of the external momentum cancels

and is cut off at short momentum scales, leading to the behavior very different from that of

20In other words the coupling stops running at scale ∼ L.
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the theory on R4 where IR renormalons appear. The cancellation of logarithmic divergence

we find is quite general, but it usually leads to IR problems which are worse than on R4.

In the theory studied, however, all potentially IR dangerous effects are regulated by the

IR cutoff scale L — the radius of the compact circle.

This observation makes the recent connection of renormalons to non-perturbative sad-

dles in [17–22] more difficult to make. All hope is not lost, however, but the issue seems

much more subtle, since the vanishing of the renormalon growth seems to be compensated

by the corresponding diagram proliferation, as we discussed in the Introduction. Making

this connection in Quantum Field Theory is very difficult as large orders of perturbation

theory are not tractable. It may well be worth while to study the 2D, asymptotically free

toy models such as O(N), CP (N − 1) and the Principal Chiral Models and attempt to

connect the renormalon growth to the diagram proliferation, as these theories reduce to

quantum mechanics upon compactification, where a lot is known about the large orders of

perturbation theory.

Although renormalon divergence no longer exists, we should emphasize that the po-

sition of the renormalon ambiguity on R4 in the Borel plane, which owes its existence to

logarithms which no longer exist on R3×S1, nevertheless had nothing to do with the bubble

chain, but rather with the low momentum dependence of the F -function which resulted

from the integration over the large fermion loop in the renormalon diagram (see 2.1). It is

this function which dictated the structure of the OPE and the condensates which can ap-

pear in the theory, and it is very likely that this is still the case. So in order to understand

how the condensates change as L is changed, one may very well need to study the large

fermion loop and the resulting F -function and its dependence on the momentum running

into the chain.

Finally let us mention a curiosity about the large N expansion. In the large N limit

it can be shown that only planar diagrams contribute in the perturbative expansion, and

that they do not proliferate factorially but as a power [23]. This is perfectly reasonable,

as factorial growth of diagrams is associated with instanton saddles, which are irrelevant

in the large N limit. However the theory on R3 × S1 with preserved center symmetry

has additional saddles (i.e. instanton-monopoles) which carry 1/N of the instanton action,

and are important in the large N limit where NL is kept fixed, i.e. the abelian large

N limit (see footnote 6). The monopole-anti-monopole saddles will contribute to the

ambiguity in the Borel plane which should then be canceled by the corresponding ambiguity

in the perturbation theory. Since we have shown that this ambiguity does not come from

the renormalon-type processes, it must come from the factorial growth of the number of

diagrams. So the abelian large N limit must have contributions from non-planar diagrams

as well which will show factorial proliferation.
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A Lie algebra and propagators on R3 × S1 in the presence of holonomy

In this appendix we review the Lie algebra, and then we derive the propagators on R3×S1

in the presence of a non-trivial holonomy for a general gauge group.

A.1 Elements of the Lie algebra

We consider a gauge group G with Lie algebra
[
T a, T b

]
= ifabcT c, where a, b =

1, 2, . . . ,dim(G). The structure constants fabc are the Lie generators {T a} in the adjoint

representation. Thus, they can be written as dim (G)×dim(G) matrices fabc = −i(T badj)ac.

It will also prove convenient to use the Cartan-Weyl basis. In this basis one finds a maximal

set of commuting generators {H i} known as the Cartan generators:[
H i, Hj

]
= 0 , (A.1)

where i, j = 1, 2, . . . , r and r is the rank of the group. The remaining dim(G)−r generators

are decomposed into and lowering {E−βββ} and raising {Eβββ} generators which satisfy

[H i, E±βββ] = ±βiE±βββ . (A.2)

The subscripts ±βββ denote the roots associated with the operators E±βββ. A bold-face letter

will be used to denote an r-component vector, so that βββ = (β1, β2, . . . , βr). Since {H i}
form a mutually commutating set, they can be represented by diagonal matrices. The

non-zero structure constants are given in terms of the Cartan generators as

faib = −i(T iadj)ab = (H i
adj)ab = βiδab , (A.3)

where a, b denote the remaining dim(G)− r components. The generators {H i} and {E±βββ}
are renormalized as

trf

[
H iHj

]
=
δij

2
, trf

[
EβββEγγγ

]
=
δβββ+γγγ=0

2
, (A.4)

where f denotes the fundamental representation. Given this normalization, we find

tradj

[
H iHj

]
= δijc2 , tradj

[
fabcf cda

]
= δbdc2 , (A.5)

where c2 is the dual Coxeter number.

A.2 The propagator in the presence of background holonomy

In this subsection, we derive the form of the propagator on R3 × S1 for any gauge group

G in the presence of a non-trivial holonomy. This derivation works for scalars, fermions,

and gauge fields. In the following, we derive the fermion propagator as an example. The

Lagrangian of a Dirac fermion in the adjoint representation reads:

L =

∫
d4xψ̄aγm

(
∂mδ

ac − i(T badj)acA
b
m

)
ψc . (A.6)
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A background holonomy can be introduced in terms of a constant field along the S1

direction:

Am = δm3A3 = δm3A
b
3T

b
adj . (A.7)

Then, it is trivial to see that the fermion propagator with periodic boundary conditions

along the S1 direction takes the form

SFn
A3

=
1

γ3

(
2πn
L +Ab3T

b
adj

)
+ γmlm

. (A.8)

Equivalently, one can write the Lagrangian (A.6) as

L = 2

∫
d4xtrf

[
ψ̄Dmγmψ

]
, (A.9)

where Dm = ∂m − i[Am, ]. Then, the spinor ψ can be expanded in Cartan-Weyl basis as:

ψ(x, x0) =
1

L

∑
n∈Z

ei
2πnx0

L

ψψψn(x) ·HHH +
∑
βββ+

ψnβββ (x)Eβββ +
∑
βββ+

ψ∗nβββ (x)E−βββ

 , (A.10)

where HHH ≡ (H1, H2, . . . ,Hr), {βββ+} is the set of the positive roots, and the generators

{H i} and {Eβββ} are in the fundamental representation. Next, a background holonomy can

be introduced in terms of a constant field φφφ which lives along the Cartan generators in the

S1 direction:

Am = A3δm3 ≡
φφφ ·HHH
L

δm3. (A.11)

In general, this holonomy breaks G to U(1)r, its maximal abelian subgroup. Using

[HHH,E±βββ] = ±βββ, we obtain:

[A3, ψ] =
1

L

∑
n∈Z

ei
2πnx0

L

∑
βββ+

ψnβββEβββ
βββ ·φφφ
L
−
∑
βββ+

ψ∗nβββ E−βββ
βββ ·φφφ
L

 . (A.12)

Then, we have∫ L

3
dx3trf

[
ψ̄D3γ3ψ

]
= (A.13)

1

L2

∑
n,m∈Z

∫ L

0
dx3e−i

2π(m−n)x3
L

ψ̄ψψm(x) ·HHH +
∑
βββ+

ψ̄mβββ (x)Eβββ +
∑
βββ+

ψ̄∗mβββ (x)E−βββ


×iγ3

2πn

L
ψψψn(x) ·HHH+

∑
βββ′+

ψnβββ′(x)Eβββ′

(
−β
ββ′ ·φφφ
L

+
2πn

L

)
+
∑
βββ′+

ψ∗nβββ′ (x)E−βββ′

(
βββ′ ·φφφ
L

+
2πn

L

).
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Using trf[H
iHj ] = δµν/2, trf

[
EβββE−βββ′

]
= δββββββ′/2, we finally obtain

2

∫
d4xtrf

[
ψ̄Dmγmψ

]
=

1

L

∫
d3x

∑
n∈Z

{∑
βββ+

ψ̄nβββ

[
iγ3

(
2πn

L
+
βββ ·φφφ
L

)
+ γm∂m

]
ψ∗nβββ

+
∑
βββ+

ψ̄∗nβββ

[
iγ3

(
2πn

L
− βββ ·φφφ

L

)
+ γm∂m

]
ψnβββ

+ψ̄ψψ
n
(
iγ3

2πn

L
+ γm∂m

)
·ψψψn

}
. (A.14)

The first and second terms in (A.14) describe a tower of charged fermions under the un-

broken U(1)r with masses |2πnL ±
βββ·φφφ
L |. Then, the propagator of the charged fermions reads:

SFn
βββ =

1

γ3

(
2πn
L + βββ·φφφ

L

)
+ γmlm

. (A.15)

The last term in (A.14) describes neutral fermions under U(1)r with masses 2πn
L . Since

these particles do not couple to any of the U(1) photons, they do not play a role in our

analysis and we ignore them. Both form of the propagators (A.8) and (A.15) will be used

in the present work.

Similarly, one can obtain the gluon (in the Feynman gauge) and the ghost propagators

in the Cartan-Weyl basis:

DGL ij
mn =

δijδmn

k2 +
(

2πn
L + βββ·φφφ

L

)2 , GGH ij =
δij

k2 +
(

2πn
L + βββ·φφφ

L

)2 . (A.16)

B The Matsubara sums

In the present work, we need to perform the sums

S0(k, p, ω;µ) =
1

2L

∑
n∈Z

1

(kkk + ppp)2 +
(

2πn+µ
L + ω

)2 + (µ→ −µ) ,

S1(k, p, ω;µ) =
1

2L

∑
n∈Z

1

k2 +
(

2πn+µ
L

)2

1

(kkk + ppp)2 +
(

2πn+µ
L + ω

)2 + (µ→ −µ) ,

S2(k, p, ω;µ) =
1

2L

∑
n∈Z

2πn+µ
L

k2 +
(

2πn+µ
L

)2

1

(kkk + ppp)2 +
(

2πn+µ
L + ω

)2 + (µ→ −µ) ,

S3(k, p, ω;µ) =
1

2L

∑
n∈Z

(
2πn+µ
L

)2

k2 +
(

2πn+µ
L

)2

1

(kkk + ppp)2 +
(

2πn+µ
L + ω

)2 + (µ→ −µ) .
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The sum S1 can be obtained by considering the engineered integral

I =
1

2πi

∮
C
dz

1

eLz−iµ − 1

1

k2 − z2

1

(kkk + ppp)2 − (z + iω)2 , (B.1)

where C is a circle enclosing the complex plane at infinity. This integral vanishes since

the integrand goes to zero at large values of z. Actually, (B.1) can be computed using the

residue theorem, which in turn can be used to obtain the result of the sum. The integrand

has simple poles at

z1,2 = ±k , z3,4 = −iω ± (kkk + ppp) , zn+4 = i
2πn+ µ

L
. (B.2)

Calculating the residues and using the identity

1

e−x−iµ − 1
= −1− 1

ex+iµ − 1
, (B.3)

we find

S1(k, p, ω;µ) =
1

2
Re

[
1

eLk−iµ − 1

1

k

1

(kkk + ppp)2 − (k + iω)2

+
1

eL|kkk+ppp|−iµ − 1

1

|kkk + ppp|
1

k2 − (|kkk + ppp| − iω)2

]
+

1

2

1

k

1

|kkk + ppp|2 − (k − iω)2 +
1

2

1

|kkk + ppp|
1

k2 − (|kkk + ppp|+ iω)2

+(µ→ −µ) . (B.4)

The structure of this sum repeats in all sums, so we take a moment to comment on it.

The first two lines in (B.4) is the contribution from the µ-dependent part of the sum,

thanks to the presence of the factor Re
[

1

eL|~l|−iµ−1

]
. While the last line in (B.4) is the

vacuum, L→∞, part. Comparing the first two lines with the last one, we see that the µ-

dependent part can be obtained from the vacuum part upon replacing 1
2 → Re

[
1

eL|~l|−iµ−1

]
and ω → −ω. This observation is crucial for the cancellation of the logarithmic divergences,

which in turn kills the infrared renormalons.

Using the same method we obtain for S0

S0(k, p, ω;µ) =
1

2|kkk + ppp|

[
1

2
+ Re

1

e|kkk+ppp|L−iµ − 1

]
+ (µ→ −µ) . (B.5)

S0 and S1 are the main sums one needs to perform. The rest of the sums can be obtained

from S0 and S1 using simple algebra:

S2(k, p, ω;µ) =
1

2ω

[
S0(k, 0, ω;µ)− S0(k, p, ω;µ) + (k2 − |kkk + ppp|2 − ω2)S1(k, p, ω;µ)

]
,

S3(k, p, ω;µ) = −k2S1(k, p, ω;µ) + S0(k, p, ω;µ) . (B.6)
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C Integrals

In this appendix, we list important integrals. First let us define δI0, δI1, δI2, δI3:

δI0(µ) =
2

(2π)2

∫ ∞
0

dx xRe
1

ex−iµ − 1
, ,

δI1(pL, ωL;µ) =
1

(2π)2

1

2pL

∫ ∞
0

dxRe
1

ex−iµ − 1
log

[
(2x+ Lp)2 + ω2L2

(2x− Lp)2 + ω2L2

]
,

δI2(pL, ωL;µ) =
1

(2π)2

1

4pL

∫ ∞
0

dx x2 Re
1

ex−iµ − 1
log

[
(2x+ Lp)2 + ω2L2

(2x− Lp)2 + ω2L2

]
,

δI3(pL, ωL;µ) =
1

(2π)2

1

pL

∫ ∞
0

dx x Re
1

ex−iµ − 1

×

[
tan−1

(
2x+ pL

ωL

)
− tan−1

(
2x− pL
ωL

)]
. (C.1)

Using these definitions, we find the integrals over the sums:

∫
d3k

(2π)3
S0 =

I0

L2
,

∫
d3k

(2π)3
S1 = I1 ,∫

d3k

(2π)3
kkk · pppS1 = −p

2

2
I1 ,

∫
d3k

(2π)3
S2 = −ω

2
I1 ,∫

d3k

(2π)3
k2S1 =

1

L2

(
I0 + 2I2 −

1

2
ω2L2I1 + ωLI3 −

ωL

pL
tan−1

(
pL

ωL

)
I0

)
. (C.2)

D The results of the integrals

In this appendix, we list the results of the integrals. We write the integrals from I0 to I3

as IV + δI to denote the vacuum and the µ-dependent parts. The vacuum parts can be

computed from the usual R4 methods, while the rest is given by

δI0 =
−1 + 3

(µ
π − 1

)2
24

,

δI1 =
1

2(2π)2
log

(
PL

4π

)
− 1

2(2π)2
+

1

2(2π)2

ωL

pL
tan−1

(
pL

ωL

)
− 1

4πpL
Im

[
log Γ

(
µ

2π
+
PL
4π

)
+ (µ→ 2π − µ)

]
,

δI2 =
(pL)2 − 3(ωL)2

48(2π)2

(
log

(
PL

4π

)
− 1

3

)
+

3(pL)2 − (ωL)2

48(2π)2

ωL

pL
tan−1 pL

ωL

+
δI0

4
+

π

2pL
Im

[(
PL
4π

)2

log Γ

(
µ

2π
+
PL
4π

)
− 2P

4π
ψ−2

(
µ

2π
+
PL
4π

)
+ 2ψ−3

(
µ

2π
+
PL
4π

)
+ (µ→ 2π − µ)

]
,
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δI3 =
ωL

4(2π)2

(
log

PL

4π
− 1

2

)
+

(ωL)2 − (pL)2

8(2π)2pL
tan−1 pL

ωL

+
sign (ω)

8(2π)2
Im

[
− 4πPL log Γ

(
µ

2π
+
PL
4π

)
+ (4π)2 ψ−2

(
µ

2π
+
PL
4π

)
+ (µ→ 2π − µ)

]
. (D.1)

where P = |ω|+ ip.

We also give approximations of the integrals δI1,2,3 or pL� 1

δI1≈
1

2(2π)2
log

(
LP

4π

)
− 1

2(2π)2

(
1− |ω|

p
tan−1 p

|ω|

)
− 1

(4π)2
Re

[
ψ

(
µ

2π
+

(|ω|+ ip)L

4π

)
+ (µ→ 2π − µ)

]
,

δI2≈
(pL)2 − 3(ωL)2

48(2π)2

(
log

(
PL

4π

)
− 1

3

)
+

3(pL)2 − (ωL)2

48(2π)2

|ω|
p

tan−1 p

|ω|

+
1

32(2π)2
Re

[(
ω2 + iωp− p2

3

)
L2ψ

(
µ

2π
+
|ω|L+ ipL

4π

)
+ (µ→ 2π − µ)

]
+
δI0

4
,

δI3≈
ωL

8(2π)2

(
2 log

PL

4π
− 1

)
+

(ωL)2 − (pL)2

8(2π)2p
tan−1 p

ω

− sign (ω)

8(2π)2
Re

[(
|ω|+ ip/2

)
Lψ

(
µ

2π
+
|ω|L+ ipL

4π

)
+ (µ→ 2π − µ)

]
. (D.2)

E The computations of integrals

Here we derive the integrals δI1,2,3. The integral δI1 can be written as

δI1(qL, ωL; a) =
1

2

∫ ∞
0

dk

(2π)2

1

q
log

(2k + q)2 + ω2

(2k − q)2 + ω2
fµ(k) , (E.1)

where fµ(k) = Re 1
ekL+iµ−1

, we made explicit that the integral can depend on qL and ωL

only (which can be seen by substituting x = kL).

To compute this integral we will differentiate qδI1 with respect to q and L, obtaining

∂L∂q(2qδI1) =− 2

∫ ∞
0

dk

(2π)2

2k + q

(2k + q)2 + ω2
Re

k

4 sinh2(kL+ iµ)
+ (q → −q) =

=

∫ ∞
−∞

dk .
2k + q

(2k + q)2 + ω2
∂L

1

2
coth

(
kL+ iµ

2

)
+ (q → −q) . (E.2)

It is tempting to pull the ∂L in front of the integral, and close the contour from above,

turning the integral into a sum using the residue theorem. However, we must be careful

here, as the integral and the differential do not necessarily commute when the integral is
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infinite. To proceed, therefore, let us rewrite the above expression as[
∂L

∫ ∞
−∞

dk

(
2k + q

(2k + q)2 + ω2
− 1

2(k + iµ/L)

)
1

2
coth

(
kL+ iµ

2

)

+

∫
dk ∂L

(
L

2(kL+ iµ)

1

2
coth

(
kL+ iµ

2

))
+ (q → −q)

]
. (E.3)

Notice that we pulled the ∂L out of the integral in the first line, as the integral on which it

acts is convergent. In the second line, however, this trick is not allowed, as doing so would

not yield the correct result. Indeed, pulling out the derivative might give a false impression

that the integral is zero, as we can simply substitute x = kL under the integral, which

renders it independent of L. If we however notice that ∂L = k ∂
∂(kL) = k∂x, treating k as a

constant, the integral in the second line reduces to

1

L

∫
dx∂x

(
x

2(x+ iµ)

1

2
coth

(
x+ iµ

2

))
=

1

2L
. (E.4)

Closing the contour in the first line of (E.3) from above, the expression (E.3) becomes

∂L∂q(2qδI1) =
1

(2π)2
∂L

{ ∞∑
n=1

[
2(n− a)− ib

(2(n− a)− ib)2 − c2
− 1

2n

]

+
π

4
cot (π(a+ ib/2 + c/2)) + c.c.

}
+

1

L(2π)2
, (E.5)

where we labeled

a =
µ

2π
, b =

qL

2π
, c =

|ω|L
2π

. (E.6)

The above sum is easily expressed in terms of the digamma function

∂L∂q(2qδI1) =− 1

4(2π)2
∂L

[
ψ

(
1− a− i b

2
− c

2

)
+ ψ

(
1− a− i b

2
+
c

2

)

− π cot

(
π

(
a+ i

b

2
+
c

2

))
+ c.c.

]
+

1

(2π)2L
, (E.7)

or, using the identity ψ(1− x)− π cot(πx) = ψ(x), we have

∂L∂q(2qI1) = − 1

2(2π)2
∂LRe

[
ψ

(
a+ i

qL

4π
+
|ω|L
4π

)
+ψ

(
1− a− iqL

4π
+
|ω|L
4π

)]
+

1

(2π)2L
,

(E.8)

Integrating the above expression with respect to q yields

∂L(2qδI1) = − 1

2π
∂LIm

[
1

L
log Γ

(
a+ i

qL

4π
+
|ω|L
4π

)
− 1

L
log Γ

(
1− a− iqL

4π
+
|ω|L
4π

)]
+

q

(2π)2L
, (E.9)
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where we have set the integration constant (which depends on ω,L) to zero, because we

must have that I1 is nonsingular as q → 0, so that the r.h.s. above needs to vanish in this

limit. The above expression is finally integrated with respect to L to yield

2δI1 =− 1

2πqL
Im

[
log Γ

(
a+ i

qL

4π
+
|ω|L
4π

)

− log Γ

(
1− a− iqL

4π
+
|ω|L
4π

)]
+

log(LQ)

(2π)2
+ C(ω, q) , (E.10)

where C(ω, q) is the integration constant,21 in general dependent on ω and q. In the limit

L → ∞, the above must vanish. Since the logaritham of the gamma function has an

expansion

log(Γ(z)) ≈ z log(z)− z (E.11)

for large real part of z. Therefore, writing |ω| + iq = Qeiφ, where φ = tan−1(q/|ω|), we

have that

Im

[
log Γ

(
a+ i

qL

4π
+
|ω|L
4π

)
− log Γ

(
1− a− iqL

4π
+
|ω|L
4π

)]
≈

≈ 2Im

[
QL

4π
eiφ log

(
QLeiφ

4π

)
− QL

4π
eiφ
]

=
qL

2π
log(QL/(4π))− qL

2π

(
1− |ω|

q
tan−1 q

|ω|

)
, (E.12)

so that

C = − 1

(2π)2
log(4π)− 1

(2π)2

(
1− |ω|

q
tan−1 q

|ω|

)
(E.13)

so that, finally

δI1 =− 1

4πqL
Im

[
log Γ

(
a+ i

qL

4π
+
|ω|L
4π

)
+ (a→ 1− a)

]

+
log
(
LQ
4π

)
2(2π)2

− 1

2(2π)2

(
1− |ω|

q
tan−1 q

|ω|

)
. (E.14)

Since we are mostly interested in the limit qL� 1, before integrating with respect to

q we can assume that the ψ-function varies slowly with q in this limit, and take it out of

the integral. Then we obtain

δI1
qL�1
≈ 1

2(2π)2
log

(
LQ

4π

)
− 1

(2π)2

(
1− |ω|

q
tan−1 q

|ω|

)
− 1

2(4π)2
Re

[
ψ

(
a+

(|ω|+ iq)L

4π

)
+ (a→ 1− a)

]
. (E.15)

21Notice that we also added the constant Q =
√
q2 + ω2 under the logarithm in anticipation of the result.
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Next, consider the integral

δI2/L
2 =

1

4(2π)2

∫
dk
k2

q
log

(2k + q)2 + ω2

(2k − q)2 + ω2
fa(k) . (E.16)

Multiplying the above expression with q and differentiating with respect to q, L, using

similar techniques one can show that it reduces to the expression

4(2π)2∂L∂q(qδI2/L
2) =

1

8
∂LRe

[
(|ω|+ iq)2ψ

(
a+
|ω|L+ iqL

4π

)
+ (a→ 1− a)

]

+ (2π)2∂LδI0 +
q2 − ω2

4L
. (E.17)

Integrating with respect to L and demanding that the result vanishes for L→∞

4(2π)2∂q(qδI2/L
2) =

1

8L2
Re

[
(|ω|L+ iqL)2ψ

(
a+
|ω|L+ iqL

4π

)
+ (a→ 1− a)

]

+ (2π)2δI0 +
q2 − ω2

4
log

QL

4π
+
ωq

2
tan−1 q

ω
. (E.18)

Integrating over q, demanding that qδI2 → 0 in this limit (i.e. that δI2 is non-singular),

we get

4(2π)2δI2/L
2 =

8π3

L3q
Im

[(
|ω|L+ iqL

4π

)2

log Γ

(
a+
|ω|L+ iqL

4π

)
(E.19)

− 2(|ω|L+ iqL)

4π
ψ−2

(
a+
|ω|L+ iqL

4π

)
+ 2ψ−3

(
a+
|ω|L+ iqL

4π

)
+ (a→ 1− a)

]

+
q2 − 3ω2

12

(
log

(
QL

4π

)
− 1

3

)
+

3q2 − ω2

12

|ω|
q

tan−1 q

|ω|
+ (2π)2δI0/L

2 ,

where ψ−2 and ψ−3 are the polygamma functions of negative order, which can be defined by

ψn−1(x) =

∫ x

0
dx′ψn(x′) , n ≤ 0 . (E.20)

For qL � 1, before integrating with respect to q, we can assume that the ψ-function

varies slowly in this limit, so that we need only to integrate the function in front

δI2/L
2 qL�1
≈ q2 − 3ω2

48(2π)2

(
log

(
QL

4π

)
− 1

3

)
+

3q2 − ω2

48(2π)2

|ω|
q

tan−1 q

|ω|
+
δI0

4L2

+
1

32(2π)2
Re

[(
ω2 + iωq − q2

3

)
ψ

(
a+
|ω|L
4π

)
+ (a→ 1− a)

]
. (E.21)

Finally we compute

δI3/L =

∫
dk

(2π)2

fa(k)k

q

(
tan−1 2k + q

ω
− tan−1 2k − q

ω

)
. (E.22)
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Again we can obtain a result by differentiating with respect to q and L

(2π)2∂L∂q(qI3/L) =
sign(ω)

8
∂L

{
−(|ω|+iq)ψ(a+

|ω|L+ iqL

4π
)+(a→ 1−a)

]
+
ω

4L
. (E.23)

By integrating with respect to L, and demanding that the result vanishes for L → ∞,

we get

(2π)2∂q(qI3/L) =
sign (ω)

8
Re

[
− (|ω|+ iq)ψ

(
a+
|ω|+ iq

4π

)
+ (a→ 1− a)

]

+
|ω|
4

log
LQ

4π
− q

4
tan−1 q

|ω|
. (E.24)

Integrating with respect to q, and demanding that qI3 vanishes when q → 0, we obtain

δI3/L =
sign (ω)

8(2π)2q
Im

[
− 4π

L
(|ω|+ iq) log Γ

(
a+
|ω|L+ iqL

4π

)

+

(
4π

L

)2

ψ−2

(
a+
|ω|L+ iqL

4π

)
+ (a→ 1− a)

]

+
ω

8(2π)2

(
2 log

QL

4π
− 1

)
+
ω2 − q2

8(2π)2q
tan−1 q

ω
. (E.25)

For qL� 1 we can repeat the integration, assuming the ψ-function varies slowly and obtain

δI3/L
qL�1
≈ − sign (ω)

8(2π)2
Re

[(
|ω|+ iq/2

)
ψ

(
a+
|ω|L+ iqL

4π

)
+ (a→ 1− a)

]

+
ω

8(2π)2

(
2 log

QL

4π
− 1

)
+
ω2 − q2

8(2π)2q
tan−1 q

ω
. (E.26)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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[8] M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: Confinement and large-N

volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].
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[18] P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories:

new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063

[arXiv:1206.1890] [INSPIRE].
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