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Infinite geometric frustration in a cubic dipole cluster
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The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in
physics, chemistry, and engineering. Motivated by recent progress concerning the self-assembly of magnetic
structures, the equilibrium orientation of eight interacting dipoles in a cubic cluster is investigated in detail.
Instead of discrete equilibria we find a type of ground state consisting of infinitely many orientations. This
continuum of energetically degenerate states represents a yet unknown form of magnetic frustration. The
corresponding dipole rotations in the flat potential valley of this Goldstone mode enable the construction of
frictionless magnetic couplings. Using computer-assisted algebraic geometry methods, we moreover completely
enumerate all equilibrium configurations. The seemingly simple cubic system allows for exactly 9536 unstable
discrete equilibria falling into 183 distinct energy families.
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Magnetism has fascinated mankind for millenia [1]. Today,
even the smallest magnets can hardly be overestimated in
their relevance for magnetic storage technology. A fascinating
example for the interplay of magnetic particles is their
self-arrangement in cubic lattice clusters (see, e.g., [2,3]).
Its macroscopic analog is the toy known as “magnetic cube
puzzle” shown in Fig. 1(a), a stable arrangement of spherical
magnets in a simple cubic cluster. How are these magnetic
spheres oriented in such an ordered cluster? For the minimal
arrangement within this class, namely, a cube consisting of
eight magnets [see Fig. 1(b)], the answer is intriguing: There
are infinitely many orientations. We find the ground state to be
a continuum of energetically degenerate states—an extreme
form of magnetic frustration. The phenomenon of frustration
arises when the system cannot simultaneously minimize all
dipole-dipole interaction energies (see [4] for a recent review).
As this continuum is the ground state of the cube system, the
question arises: Are there any other equilibrium orientations?
Through our application of methods from numerical algebraic
geometry (see Supplementary 4 [5]) we are able to construct
and classify the complete set of equilibrium states. This set
comprises thousands of unstable discrete dipole orientations
in addition to the continuous states. We stress here that we
find all equilibrium configurations (stable and unstable) unlike
commonly used relaxation methods.

The study of equilibrium states of dipolar hard and soft
spheres has a long history in the context of magnetic colloids.
Early works [6–8] on these so-called ferrofluids investigate
the phase behavior (colloidal crystal structures, chain for-
mation, string fluids, etc.). More recently, thermodynamic
properties of two-dimensional (2D) monolayer systems have
been studied [9] and a full phase diagram in terms of dipole
strength and packing fraction was given [10]. Further, the
self-assembly and transition from rings to chains controlled
by an external field was investigated (see, e.g., [11–13]).
Isolated planar dipole clusters in external fields have been
considered in quadratic and ringlike configurations [14,15], as
well as the ground states of planar chains and rings and their
interaction [16]. A three-dimensional (3D) isolated cluster of
uniformly distributed dipoles on a sphere is given in [17] and

equilibrium configurations with a hierarchy of chains, rings,
and tubes have been found in [18] and further detailed in [19].
In all these related works, a continuous equilibrium (ground)
state of a dipole cluster has not been discovered. Further,
we characterize the complete set of all possible equilibrium
configurations of a cluster.

The precise problem addressed reads as follows: N freely
orientable dipoles of equal magnitudes are given together with
their fixed positions in space. Which equilibrium configura-
tions are possible? How many of these equilibria are stable?
Which equilibrium represents the energetically favorable
ground state, i.e., has the lowest energy? Here, we consider the
classical dipole-dipole interaction with the magnetic energy
per dipole,

E = 1

N

N∑

i<j

mi · mj − 3 (mi · eij ) (mj · eij )

|rij |3 ,

where m1, . . . ,mN are the variable dipole moments with
equal magnitudes |mi | = 1, and rij denotes the fixed relative
position vector between dipole i and j with eij being the

FIG. 1. (Color online) (a) The “magnetic cube puzzle”: A stable
arrangement of 216 spherical magnets in a 6 × 6 × 6 simple cubic
cluster. (b) The minimal simple cubic configuration of spherical
magnets, in a 2 × 2 × 2 cluster. The ground state of this arrangement
is not a single equilibrium configuration with only one discrete
orientation for each dipole but rather a continuum of infinitely many
configurations.
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FIG. 2. (Color online) (a) Rendering of eight dipoles as arrows located at the corners of a cube. The colored and translucent arrows show
selected orientations in the ground state of the system which is a continuum of infinitely many configurations. The continuum corresponds to
rotations of the dipoles in planes perpendicular to the cube’s volume diagonal of the respective corner in analogy to the mechanical system in
Fig. 2(c). Consecutive arrows are seperated by 30°. Along the continuum we repeatedly pass through two particularly notable configurations:
First, the color red shows two counter-rotating rings of four dipoles each lying in the upper and lower faces of the cube. Secondly, the color
green shows two groups of four dipoles lying in two diagonal planes perpendicular to each other. Thirdly, the color blue shows two rings similar
to red but now in the left and right faces of the cube. Pairs of dipoles in opposing corners are always parallel. (b) Magnetic energy landscape
for eight dipoles located at the corners of a cube. The energy is shown as a function of the two orientation angles of one dipole, covering
all possible orientations. The other seven dipoles adjust to the respective minimum energy configuration. The white line through the “valley”
marks the continuous ground state. (c) Rendering of eight bevel gears located at the corners of a cube. The rotation axes point to the cube’s
center and every gear interlocks with its three edge neighbors. The motion of this mechanical system, indicated by the red arrows, corresponds
to the motion of the ground state continuum in the magnetic system shown in Figs. 1(b) and 2(a). This analogy opens up new engineering
possibilities to construct frictionless magnetic couplings.

corresponding unit vector (cf. Supplementary 1 [5]). The equi-
librium condition ∇E = 0 corresponding to stationary points
in the energy landscape is represented by a set of strongly
coupled polynomial equations for all dipole orientations of
the cluster (cf. Supplementary 2 [5]). Numerical algebraic
geometry methods described in Supplementary 4 [5] allow
one to construct the complete solution set and thereby find all
equilibrium configurations.

We investigate different elementary clusters of dipoles (see
below) but report here in detail about one case which proves
to be special: the case of eight dipoles located at the corners
of a cube. As pointed out before, the ground state of this
arrangement is not a single configuration with only one discrete
orientation for each dipole but rather a continuum of infinitely
many configurations. Below we refer to this ground state
continuum in short as the “continuum”; its spatial structure
is shown in Fig. 2(a). The continuum exhibits a reflection
symmetry through the three central planes (each parallel to
a pair of cube faces)—the dipole moments (as axial vectors)
flip sign under reflection. If we rotate one of the dipoles along
the continuum all the other dipoles rotate accordingly. Such
a rotation is not affected by any magnetic counterforce since
we stay on the same level in the magnetic energy landscape.
This walk through the “ground state valley” is depicted in
Fig. 2(b). For the unit cube the energy of the continuum
has the characteristic value of Ec = −2 + √

2/16 + √
3/18

and its net magnetic moment is zero. Furthermore, the toroid
moment with respect to the center of the cube is also zero (cf.
Supplementary 1 [5]).

The continuum described here sheds a new light on
frustration in magnetic systems, which has regained a
lot of attention in recent years because of tailor-designed

structures (e.g., “artificial spin ice”) showing new and
exciting thermodynamic behavior [4]. Classically, frustration
has been studied with the following assumptions: Discrete
spins interact (anti)ferromagnetically with nearest neighbors,
mostly on an infinite lattice, though some interesting studies
on finite isolated magnetic clusters do also exist (e.g., [20]).
In these discrete systems frustration emerges necessarily from
a countable number of different states which are energetically
degenerated. Furthermore, there are quantum mechanical
models of 2D spin systems (XY model) with “antidipolar”
interactions [21] (the Hamiltonian has the opposite sign
compared to the dipolar interaction) or general bilinear spin
interactions [22] (which would include dipolar interactions
but they are not considered in [22]). These models can possess
continuous states in tetrahedral arrangements [21,23] or on
the pyrochlore lattice [22]. In contrast to all these systems
we study classical dipoles which are freely orientable in 3D
space subject to not only nearest-neighbor but fully coupled
interactions in a finite system of N dipoles. For dipolar inter-
actions, the resulting type of frustration in the cube has a new
quality: The finite system reported here has an uncountable
infinite number of different states which are energetically
degenerated. In a sense, it is therefore “infinitely frustrated.”
Note that the continuous state is not a simple consequence of
the individual dipoles being freely (continuously) orientable.
In general, the anisotropic dipole-dipole interaction induces
discrete equilibrium configurations (see examples below) so
that the cube continuum is indeed exceptional.

A further intriguing aspect of the continuum is the existence
of an exact mechanical analog. The aforementioned possibility
to rotate one dipole along the continuum with the other dipoles
following accordingly, raises the question: Can we reproduce
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the same dynamics through another type of interaction? It
is possible with eight bevel gears, as explained in Fig. 2(c).
The analogy between the mechanical and the magnetic system
allows for new ways to engineer couplings. Since there are no
magnetic counterforces to overcome along the continuum, one
can build a frictionless sevenfold magnetic coupling. Practical
applications require robustness of the ground state continuum
with respect to perturbations of the perfect cubic arrangement
as well as to deviations from the point dipole approximation.
Experimental tests for two prototype realizations directly
confirm the robustness of our results. Details about these
constructions together with the analysis for the perturbed
arrangement are given in Supplementary 6 [5]).

The cube continuum is embedded in a richly structured
state space which contains a multitude of other equilibrium
configurations. We now provide the complete enumeration for
all possible equilibria in the cube. This is a highly nontrivial
problem since we aim at determining all solutions of a
strongly coupled system of 32 polynomial equations (cf. Sup-
plementary 2 [5]). The number of possible zero-dimensional
(0D) solutions (corresponding to discrete isolated orientations)
grows exponentially with the number of dipoles. For the cube
we have a simple upper bound of 224 = 16 777 216 possible 0D
solutions (cf. Supplementary 3 for the derivation [5]). Addi-
tionally, there may be higher dimensional solution manifolds;
the continuum described above is a 1D example. Fortunately,
this system size can be tackled with methods known under the
term “numerical algebraic geometry” which were developed in
the last two decades [24–26] (Supplementary 4 [5]). The result
is an astonishing number of 1 594 032 (generally complex) 0D
solutions. Besides that, there are four 1D continua, two of them
being complex, plus the ground state continuum described
above and a second real continuum. Higher dimensional
solution manifolds do not exist (cf. Supplementary 4 [5]).

Extracting the physically meaningful real-valued subset of
0D solutions, we still end up with 9536 solutions. These can
now be sorted into energy families, i.e., all solutions with
identical energies belong to the same family. There are always
at least two configurations with identical energy because the
polarity symmetry (reversing the orientation of all dipoles) is
again a solution and leaves the energy unchanged. In addition,
there is the full symmetry group of the cube of order 48.
Depending on the symmetries of the respective solution, we
therefore may have up to 2 × 48 = 96 members in one energy
family. In general, there could be more members in a family if
two configurations which are not related through symmetries
have accidentally the same energy, although this does not
happen in the cube. The sorting gives rise to 183 families of
0D solutions. The energy spectrum of these families together
with some exemplary configurations is shown in Fig. 3. An
interactive web gallery of all equilibrium configurations in the
cube can be found in [27].

The stability of any equilibrium configuration in our system
is determined by the 2N eigenvalues λk of the Hessian matrix
H, i.e., the matrix of all second-order partial derivatives of the
energy E with respect to the 2N degrees of freedom. A general
result for systems considered here is the relation

2N∑

k=1

λk = Tr(H) = −4E
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FIG. 3. (Color online) Magnetic energy spectrum of all 183
families of discrete equilibrium configurations for eight dipoles
located at the corners of a cube. Each family (black filled circles) with
its unique energy may contain up to 96 members due to polarity and
cube symmetries. The red filled circles mark positions of exemplarily
chosen configurations which are displayed in their respective inset.
The upper left inset shows a fully unstructured configuration with no
apparent symmetries, therefore the family has 96 members. The lower
right inset shows a more structured configuration with some obvious
symmetries, so this family has only six distinguishable members. The
upper right inset shows the maximum energy configuration which is
the most ordered one with all dipoles oriented to the cube center; all
symmetries of the cube are retained and only the polarity flip gives
a new configuration, so this family has two members. The additional
two blue circles mark the energetic positions of the ground state
continuum and the second real continuum.

(see Supplementary 5 for the derivation [5]). It shows that a
positive energy E > 0 is a sufficient condition for instability.
Since the sum of all eigenvalues is negative, there must be
at least one negative λk , which classifies a configuration as
unstable. From this we can conclude that a negative energy
E < 0 is a necessary condition for stability. For the cube this
means that the second real continuum is unstable (cf. Fig. 3).
Calculating the eigenvalues, we actually find all 183 families
of discrete equilibria to be (unstable) saddles in the energy
landscape, i.e., mixed positive and negative λk . The only
exception is the maximum energy family which is necessarily
unstable in any direction. This confirms that the ground state
continuum is the only stable state.

Now we put the cube and its continuum into the context
of other regular dipole clusters. We consider the dipoles to be
located at the vertices of various regular geometric shapes.
Table I lists the number of solutions and energy families
for different arrangements. The ground state continuum of
the cube seems to be an exceptional property. So far we
did not find any other regular arrangement which has this
feature. Simple planar arrangements like the line segment or
the equilateral triangle do not have continua; their ground states
are necessarily discrete. The two smaller (in terms of numbers
of corners) platonic solids, i.e., tetrahedron and octahedron,
have continua, but these are unstable (see also [23]). Therefore,

020410-3



RAPID COMMUNICATIONS

SCHÖNKE, SCHNEIDER, AND REHBERG PHYSICAL REVIEW B 91, 020410(R) (2015)

TABLE I. Number of discrete equilibrium configurations (DEC)
for different arrangements of freely orientable dipoles. The dipoles
are positioned at the corners of the respective arrangement. N is the
number of dipoles, Smax is a simple upper bound (cf. Supplementary
3 [5]) for the number of possible DECs, S is the actual number of
(generally complex) DECs, Sreal is the number of real-valued DECs,
and Freal is the number of energy families the real-valued DECs
split into. The last row serves solely as an illustration of exponential
complexity.

Arrangement N Smax = 23N S Sreal Freal

Line segment 2 64 8 8 4
Triangle 3 512 96 48 8
Tetrahedron 4 4096 420 116 10
Octahedron 6 262 144 37 608 1156 43
Cube 8 16 777 216 1 594 032 9536 183
Icosahedron 12 68 719 476 736 ? ? ?

their ground states are also discrete. Another common feature
of the regular arrangements investigated is the existence of only
one stable configuration (modulo energetic degeneracies due
to symmetries). For larger clusters, we expect several stable
configurations to coexist.

In this study we report on a yet unknown type of ground state
for systems of interacting dipoles—a continuum of infinitely
many energetically degenerate orientations. This result raises
several new questions: Is the cube the only cluster that admits
a stable (possibly ground state) continuum, allowing any
number of dipoles in any arrangement? What happens to a
continuum in an external field? What is the susceptibility of an
arrangement possessing a continuum? What consequences do
(stable or unstable) continua have for the dynamics of magnetic
clusters, or more general, for their thermodynamic properties?
The thermodynamic stability is especially relevant for the
miniaturization of domains in magnetic information storage,
specifically in the extreme limit of nanostructured systems
(see, e.g., [28]). The height of energetic barriers between
different coding states limits the thermodynamic long-term
stability. In our case the completely vanishing energy barrier
of the continuum prevents any information storage.

The authors are grateful to Michael Grunwald [29] for the
design and construction of the 3D printed dipole cube shown
in Supplementary 6 [5] and for the rendering of Fig. 2(c). J.S.
thanks Hecke Schrobsdorff for an introduction to POV-Ray
and Priya Subramanian for numerous fruitful distractions.
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[12] D. Tománek, S. Kim, P. Jund, P. Borrmann, H. Stamerjohanns,

and E. R. Hilf, Z. Phys. D: At., Mol. Clusters 40, 539 (1997).

[13] F. Kun, W. Wen, K. F. Pál, and K. N. Tu, Phys. Rev. E 64, 061503
(2001).

[14] P. Melenev, V. Rusakov, and Y. Raikher, J. Magn. Magn. Mater.
300, e187 (2006).

[15] Y. A. Koksharov, G. Khomutov, E. Soldatov, D. Suyatin,
I. Maximov, L. Montelius, and P. Carlberg, Thin Solid Films
515, 731 (2006).

[16] T. A. Prokopieva, V. A. Danilov, S. S. Kantorovich, and C. Holm,
Phys. Rev. E 80, 031404 (2009).

[17] P. Melenev, V. Rusakov, and Y. Raikher, Tech. Phys. Lett. 34,
248 (2008).

[18] A. S. Clarke and G. N. Patey, J. Chem. Phys. 100, 2213
(1994).

[19] R. Messina, L. A. Khalil, and I. Stanković, Phys. Rev. E 89,
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