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Abstract. Molecular Dynamics simulations of dislocation/obstacle inter-
actions are enhancing our physical understanding of plasticity. However,
despite increasing computational power, the interaction between simulation
cell boundaries and the long ranged fields of dislocations make spurious image
effects inevitable. Here, these image effects are examined in detail, providing
a general map of the spurious image stress as a function of simulation cell
size, aspect ratio, and bow-out for both nominally edge and screw disloca-
tions. This is achieved using an approximate image solution of the resulting
boundary value problem as well as an analytic model that captures most of
the spurious image effects. A unique simulation cell shape is found to min-
imize spurious image effects for a fixed simulation volume (i.e. fixed total
number of atoms) and specified initial dislocation line length. The results
are used to estimate image stress effects in various literature studies involv-
ing dislocation bow-out. The image effects are non-negligible. Several case
studies involving simulation cell dimensions are shown to converge due to
a near-zero scaling of the image stress with respect to the simulation cell
dimensions used. Finally, a direct comparison is made between a dislocation
bow-out configuration under an applied load in a finite simulation cell and
an image-free multiscale simulation of the same problem and the difference
is shown to be consistent with our estimated image stresses. Overall, the
results here provide guidance for both the development and interpretation of
quantitative Molecular Dynamics studies involving curved dislocation struc-
tures.
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1. Introduction

Fully atomistic methods have become an indispensible tool for provid-
ing direct physical insight into the mechanistic role of defects in materials
[1-6]. Molecular statics simulations have been used extensively to study
grain boundaries [7-9], dislocation cross-slip [10-12], crack tips [13, 14], and
dislocation/obstacle interactions [1-3, 5, 6, 15-33]. Due to the high compu-
tational cost, the size of simulation volumes (i.e. number of atoms) remains
relatively small. For problems involving dislocations, which have long range
stress and strain fields, the image forces associated with spurious interac-
tions between dislocations and boundaries of the simulation cell can be non-
negligible, but have also been difficult to assess quantitatively. Nonetheless,
various proposed methods to simulate dislocations [20-24] have proven useful
in providing insight into plasticity phenomena. As computational materials
science heads toward the goal of quantitative predictive results relevant to
real materials, the issue of accuracy of the methods becomes more important.
While one solution is to increase the simulation cell size, which is becoming
more feasible as computational capabilities continue to expand, the need to
perform many such simulations makes this only a partial solution. Thus, a
quantitative understanding of spurious image interactions in standard MD
simulations of dislocations is a useful benchmark for designing and interpret-
ing simulation results. A variety of numerical methods have been developed
to incorporate image forces based on finite element computations [34], and
fourier-transform methods [35, 36] as well as exact analytic expressions for
simple geometries [37, 38]. Here, we pursue a similar goal using other ap-
proaches and aimed at quantifying image forces within the standard simula-
tion geometries used for simulating problems involving dislocation bow-out.

Since its inception [39] the Periodic Array of Dislocations (PAD) method
[21-23, 40] has emerged, and gained acceptance over the past decade, as a
means to model interactions between dislocations and other inhomogeneities.
In this method, a single Volterra dislocation is inserted along the x axis with
its glide plane normal to the 2z axis as shown in Fig. la. The simulation
volume V = L, x L, x L, has periodicity imposed both along the line (z) and
glide directions (y), creating a periodic array of dislocations. Accomplishing
periodicity along the glide direction for edge dislocations requires addition or
removal of atoms, but various methods to do so are described in the literature
[6, 22]. The remaining out-of-plane direction is non-periodic, allowing for
the application of stress [20] (or strain [22]). The initial singular dislocation
structure is then relaxed using, e.g., the conjugate gradient method. The
addition of solutes, precipitates, vacancies, or ” quench methods” [41, 42] are
then used to create obstacles to dislocation motion with the desired physical
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characteristics for the problem of interest. To apply a stress to the system
using traction boundary conditions, the out-of-plane surfaces are subject to
in-plane tractions by application of appropriate forces to atoms. For instance,
to drive an edge dislocation using a traction boundary condition, the applied
shear stress is 7, = F,/A where F},/N represents the average force on each
of the N atoms acting over the upper or lower surface respectively (surface
normal z) of area A = L,L,. Applied stresses can also be controlled by
specifying displacement boundary conditions, i.e. fixing atoms on upper and
lower surfaces, to generate the desired "applied” stress state in the interior
of the system. Mixed boundary conditions (e.g. normal displacements and
in-plane tractions) may also be used [6]. The defect-containing volume is
then studied under varying applied loads. These simulations are typically
carried out using a large-scale parallel atomistic simulation software such as
LAMMPS [43].

Within the above scheme, the existence of spurious image forces due
to the in-plane periodic images and the out-of-plane free or fixed surface
are recognized, and attempts have been made to minimize their influence.
Typically both L, and L, are made sufficiently large such that both the
stacking fault width and the Peierls stress of a nominally straight dislocation
converge to published values [18, 20, 22, 44]. Satisfying such conditions is the
minimum requirement, and does not consider image forces on non-straight
dislocations. Thus, often, simulations are repeated with different simulation
cell sizes to examine the reliability of the results. However, in many cases,
simulations are performed for various periodic dislocation lengths (dimension
L,) so that the simulation cell dimensions, and corresponding image forces,
are changing simultaneously with the problem of physical interest.

Here, we examine the spurious image forces arising in a typical dislocation
bow-out simulation due to free out-of-plane surfaces and in-plane periodic
images exclusively as a function of the normalized simulation cell volume
(V = V/L3), cell aspect ratio (L,/L.), and the extent of bow-out of the
dislocation. This is accomplished by direct calculation of the image forces
using elasticity theory and a continuum representation of the dislocation and
its periodic images. We also develop an analytic model that captures the
majority of the spurious image forces. With these analyses, we provide a
general map of the spurious forces on nominally edge and screw dislocations
as a function of the simulation cell dimensions and the extent of dislocation
bow-out. We find that the image forces act against the bow-out process, so
the applied stress required to achieve any given level of bow-out is larger
than in an image-free simulation. The total effect of the image field can
be represented by an effective applied stress that counteracts the actual ap-
plied stress. We also make a comparison between a bowed-out dislocation
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Figure 1. (a) Schematic view of the PAD simulation cell containing only
the central dislocation; boundary conditions are imposed on the top and
bottom surface, while all others surfaces are periodic. (b) Schematic view
of the PAD simulation including only two sets of the infinite periodic and
image dislocation array (red: primary dislocation along z, blue: images
with positive Burgers vectors, black: images with negative Burgers vectors).
(c) Schematic of the 2d straight-image-dislocation approximation including
only two sets of the infinite periodic and image dislocation array. (d) Top
view of the periodic simulation cell depicting a bow-out of extent h and the
coordinate system used here with the origin centered at 2h/3 ahead of the
pinning points for a dislocation with maximum bow-out h.
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in a finite-size simulation cell and in an image-free multiscale simulation [45]
and show the difference to be consistent with our computed effective applied
stress due to the image forces. We then extend this comparison to several
other studies reported in the literature. Our analyses and results provide
guidance for estimating image forces in any given PAD simulation or, con-
versely, for choosing simulation cell sizes and shapes to minimize spurious
image forces.

2. Methods to Compute Image Forces

The well-known Peach-Koehler equation (e.g. [46]) relates the stress fields
(o) to the driving force (F) acting on a segment of dislocation (dl’). By
projecting this force on to the slip plane (unit normal n) with Burgers vector
b,

F-(nxdl')/|dl'|> = (ob - n) (1)

the component(s) of stress responsible for glide are obtained. Our goal here
is to determine the spurious image stresses, and thus the corresponding spu-
rious Peach-Koehler forces, for the simple problem of a dislocation bowing
out around periodically spaced pinning points when simulated by Molecular
Statics using the PAD geometry with traction boundary conditions. The
geometry of the problem is shown in Fig. la. We assume a bowed-out
dislocation configuration corresponding to an arc with a constant radius of
curvature terminating at pinning points on the boundaries of the cell along
the = direction, so that in the absence of bow-out the nominal dislocation
length is L,. Fig. 1b shows the "image” dislocations that partially satisfy
the periodic and free-surface boundary conditions of the PAD simulation
cell. We denote Tzifge = Oyzloy,z=0 and 75" = 04.|ry =0 as the spurious
image stress fields at positions (x,y,0) along the (x,y,0) line of the central
curved dislocation that arise from the imposed boundary conditions of the
(traction) PAD method. Our goal is to compute these image stresses as
a function of simulation cell size, cell shape, and dislocation bow-out (cur-
vature). There are three methods to obtain these image stresses. The first
method involves solving the posed boundary value problem using a numerical
solution via fourier transform methods or Finite Element Methods (FEM)
similar to those used in continuum discrete dislocation modeling [35, 47];
both the FEM and fourier transform procedures are general but pose several
challenges such as implementation of periodic boundary conditions, compu-
tational cost, and complexity, while lacking direct insight and thus are not
pursued here. The second method is a direct computation using an infinite
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array of curved image dislocations, as indicated in Fig. 1b, so as to satisfy
the imposed shear boundary conditions. The third method involves an ad-
ditional approximation leading to analytic expressions in which the curved
image dislocations are replaced by straight dislocations at appropriate po-
sitions. For edge dislocations, both the second and third methods require
an additional superposed Airy stress function to nullify the normal stresses
present on the upper and lower surfaces. We discuss and present here both
the second and third methods.

2.1 Curved Image Dislocations

Our objective is to determine the driving shear stress imposed on a
(curved) dislocation configuration with periodicity in the x and y directions
confined to the central slip plane, by the boundary conditions t|,_ JoLe = 0.
We start by examining two features of existing analytic solutions for the limit-
ing case of a simulation containing only a single, straight, infinite dislocation
aligned with the x-axis in an infinite plate, as proposed by Chou [48] for
the screw and Nabarro [49] for the edge. The premise of these solutions in-
volves the superposition of an infinite array of dislocations with alternating
Burgers vectors along the out-of-plane direction and an additional Airy stress
function for the edge. This scheme is directly extensible to finite dislocation
segments and is demonstrated as follows. The stress tensor field at point
(x,y,z) generated by a dislocation segment is [46]

I :
o= (be)R®dl

]{dy (be); @)

j{V’ (bx dl')(V®V —-IV*)R
(1-v)

where 1 is the shear modulus, R = \/(2/ — )2 + (v — y)2 + (2’ — 2)? and
the integrals are taken along the dislocation segment (dl') with respect to a
field point, x = [z,y, 2z]. Defining an origin on a free surface (unit normal
n oriented along the z direction), two shear stress terms (o,, 0,.) and a
normal stress (o,,) arise due to the presence of a dislocation segment having
line direction and Burgers vector perpendicular to n, i.e.
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g [ n-(Ax x b)dz/,

UaZ = E R3 (3)
L Azy(R* —32?)n - (b x dl')
47 (1-v)R5
and
po [ (2)(R*—32*)n- (b xdl)
O-ZZ

T 4r (1— )R )

where Ax = [(2/ — z), (v —y), (2 — 2)] and a = z, .

The shear stresses, Eq. (3), are odd in b and independent of the side of the
plane on which the segment resides (i.e. independent of sgn(z’)). To annul
the shear tractions on both upper and lower surfaces of the plate geometry, we
therefore proceed in a similar manner to Chou [48] by superposing alternating
signed dislocation segments outside of the PAD region. Specifically (referring
to Fig. 1b) for a given dislocation segment within the PAD described by Egs.
(3) and (4) with stress fields o(+b), 2N corresponding segments are placed at
distances z =+ /-i L, with stress fields o((—1)'b) and i = 1,2,3,...N. Within
this superposition scheme the resolved shear tractions on planes z =+ /—%
as N — oo are 0.

Second we note that the normal stress, Eq. (4), is both odd in b and 2’
and therefore (0,,) is not necessarily zero on either free surface in the plate
geometry when using the above image construction. The plate solution pre-
sented by Nabarro [49] edge dislocation uses an Airy stress function (x*(y, 2))
to annul these surface normal stresses while producing an additional shear
stress on the slip plane. To approximately annul the normal stress, Eq. (4),
in our problem involving curved dislocations, we include the same Airy stress
function as proposed by Nabarro [49] for the straight edge dislocation placed
at the origin along the center-of-mass line (in the y-direction) of the curved
dislocation structure, as indicated in Figs. lc,d. For the circular arc shape
considered here, the peak of the bow-out and the center-of-mass position
of the curved dislocation are at distances h and 2h/3 ahead of the initial
dislocation line, respectively. The origin of the Airy stress function therefore
evolves with the bow-out configuration (with increasing h).

The periodicity along the glide direction y of the PAD method is then
achieved by superimposing a periodic array of the solutions above for the
single dislocation in the infinite plate problem, including the superposition
of the Airy stress function evaluated at the center-of-mass site of each (edge)
dislocation. Since each vertical array plus Airy correction satisfies the desired
boundary conditions, the periodic sum over images in the y direction satisfies
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the desired boundary conditions automatically. For the Airy stress function
term, the summation is

N
Xy, 2)
edge )
TimZ,Airy(y) = Z - (W)

i=—N

()

y—iLy,z=0
This discrete sum over i can be simplified using both the angle sum and

Lagrange trig identities resulting in total additional shear stress on the slip
plane for a nominally edge dislocation given by

Ledge I, /oo n?sin(2n-L —) tanh*(n) sin((2N + 1)(nL,/L,))

'ng,Azry
b T(l—v (n — cosh(n) sinh(n)) sin(nL,/L,)

(6)

In the limit that N — 0 this additional shear stress term reduces to the result
given by Nabarro [49] for the single edge dislocation in an infinite plate.

To implement the above curved image construction, we create the corre-
sponding image dislocations in all three dimensions similar to Fig. 1b, but
extending out to only a finite number of images (N=25) in each direction,
and then add the shear stress generated by the modified periodic Airy stress
function Eq. (6) for the nominally edge dislocation. Each curved image dis-
location is then represented by a discrete set of straight dislocation segments,
i.e. discretized in exactly the same manner as is commonly used in various
discrete dislocation simulations. The modified periodic Airy stress function
is evaluated numerically using the "integral” function within Matlab. When
the central dislocation is included, the sum over an infinite number of images
produces nearly zero tractions on both free surfaces of the simulation cell.
To obtain the image forces on the central dislocation, we sum the stress fields
of the finite set of discretized image dislocations along the line of the cen-
tral dislocation. This is similar to nodal force calculations performed within
3d discrete dislocation codes such as ParaDiS [50] but we have written a
separate code within Matlab to obtain the results presented here.

For data presented below in Figs. 2 and 3, we have used 25 periodic
images of the central dislocation in all three directions x, y, and z with 5
segments per image. We have performed similar calculations using only 13
images in all directions and also using a small finite-sized obstacle rather
than a point obstacle in pinning the dislocation. The differences in results
are negligible. The finite size of our image array leads to shear stresses on
the out-of-plane surfaces of at most 2 MPa, so that these surfaces are not
truly traction free over the entire surface area, and this error decreases with
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increasing images as expected. Correcting for these stresses would lead to
image stresses on the central dislocation that differ from our results by [less
than 2 MPa. Using the finite image array, we then calculate the driving stress
Ty» OF T, along the line of the curved central dislocation. We repeat this type
of calculation for a range of simulation cell dimensions and magnitudes of
dislocation bow-out for both nominally edge and screw dislocations.

2.2 Approximation using Straight Image Dislocations

Numerical computations of the image stresses of the curved dislocations
can be performed but do not provide significant insights. Since the image dis-
locations are not usually too close to the central dislocation, the role of their
curvature is decreased as the simulation cell size is increased. We therefore
consider an image array where the curved image dislocations are replaced
by a set of straight image dislocations, shown in Fig. 1lc. This approxima-
tion allows for analytic estimates of the image stresses on the central curved
dislocation. We account for the bow-out of the central curved dislocation
by using a coordinate system for the image dislocations identical to that
described in section 2.1 for the Airy stress function, where the origin is lo-
cated at the center-of-mass line of the central bow-out ahead of the initial
dislocation position, as indicated in Fig. 1d. For a dislocation bowing out
in to a circular arc, the center-of-mass position is very accurately located
at 2h/3 ahead of the initial position, almost independent (within 2%) of the
amount of bow-out h/L,. Specifically, we define an (x,y,z) coordinate sys-
tem with the x axis lying along the position 2h/3 of the bow-out, so that
the actual curved dislocation line ranges from the positions (—L,/2, —2h/3)
and (L,/2,—2h/3) at the pinning points to (0, h/3) at the point of greatest
bow-out. The straight image dislocations then translate with the evolving
bow-out in h, and always replicate the mean burgers vector distribution of
the curved dislocation structure. This simplification neglects dipolar dislo-
cation segments with spacing and length on the order of L, and h, leading
to an error in the stress scaling as ~ O(%=).

The image stress at position (x,y,0) in t?irle plane of the central dislocation
is then given by the sum of the stresses due to the 2-dimensional array of
straight image dislocations and the modified periodic Airy stress function for
the straight edge dislocation. The stress field of a 1-dimensional array of in-
finite straight edge dislocations aligned along the x axis and with periodicity
L, is given by [46],

obd=ede(Y, Z)L,  sin(Y)(cosh(Z) — cos(Y) — Zsinh(Z))
b B 2(1 — v)(cosh(Z) — cos(Y))?

(7a)

9
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and similarly for the screw

ordserew(Y, Z) L, sin(Y')
b ~ 2(cosh(Z) — cos(Y))
where Y(y) = 2ny/L, and Z(z) = 2wz/L,. For a 2-d periodic array with
spacing L, and alternating Burgers vectors, the stress field is obtained by

shifting the 1-d solution by integer units of L., alternating the sign of the
Burgers vector, and summing over all the images, leading to

(7b)

“+oo

TR (y, ) = Y (=1)"oyd (Y, Z(2 — nL.)) (8a)
and
+o0
guTe(y ) = Y (=1)"opd (Y, Z(2 — L)) (8b)

We note the work of Cai and coworkers [51, 52] on conditional convergence
issues related to these (2D) summations. In the most general case, a linear
term and a constant spurious term arise due to the ~ 1/R stress fields being
summed over a 2d (~ RdR) domain. For these two specific cases (eq. (8a)
and (8b)), it has been demonstrated [51] that the correction terms are zero,
and hence absolute convergence is possible.

The image stresses should not include the stress due to the central dis-
location itself, and so the approximate image stress fields in the (x,y,z=0)

plane are
edge edge _edage ,Ltb
Timy (Y) = Timer airy (Y) + 053 9] o — W—V) (9a)
and ;
screw 2d—screw K
: = p—) — —— 9b
szg (y) Oz 0 27ry ( )

which depend on the 2-d aspect ratio L,/L,. We numerically evaluate Eqgs.
(9a), and (9b) for a range of aspect ratios and for positions y(x) along the line
of the bowed out dislocation (—L,/2 < x < L,/2). We truncate the infinite
summation at |n| < 1001 leading to < 0.1% error in the shear tractions on
the upper and lower surfaces.

2.3 Analytic Scaling of Image Forces and an Effective Image Stress

To gain insight into the scaling of the image stress fields with respect to
both the cell dimensions and bow-out, we analyze the results of Sec. 2.2

10
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further. Recognizing that y/L, is small because |y| < h and h < L, (see Fig.
1d), we expand (9a) and (9b) to first order in y/L,,. Defining the out-of-plane
aspect ratio as L = L,/L,, the image stress at the position y(z) along the
curved dislocation can be written as

Ty [W(@)]Ly

b

TiSTfLZew’Ein(l’)]Ly _ C(I/) <yl(z)> (10b)

= [L*A(L) + B(L) (%?) (10a)

and

where

A(L)

/ n3 tanh?(n) sin((2N + 1)(nL))
(1l —v) (n — cosh(n) sinh(n)) sin(nL)

B(L) 1—1/ [Z Csch2<L>(1—2nT7Tcoh(L>)—é]

_ —1)" 1
C(L) =2m [Z cOSh((QW)L) 1 E]

n=1

This approximate image stress field thus scales directly with the distance y
from the origin, with —2h/3 < y < h/3, and has no explicit dependence on
L,, as expected. Several further manipulations can then be made. First, a
general reference stress for dislocation bow-out problems is the Frank-Read
source operation stress, which scales as 7pp ~ £=. Second, since the cost of
molecular simulations scales directly with the Volume of the simulation cell,
we define a normalized volume V = L, L,/L%. Introducing these quantities
into Egs. (10a) and (10b), we obtain the image stress fields in terms of L
and V as

ol = (42 (52) s (112

screw ILLb y<x> —Sscrew
] = (1) (42) () (111)
where we have defined the dimensionless image stress gradient as

_ LA(L) + B(L)

7ed €T Y/
and o)
me (L V) = S (121)
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While the image stress fields along the line of the dislocation (Eqs. (11a)
and (11b)) provide insight, they are not directly interpretable relative to the
true applied stress and the nominally applied stress in a PAD simulation.
Consequently, we now derive an effective image stress, Tymgerr, that is (i)
spatially constant, that (ii) represents the net effect of the image forces on
the bowing dislocation, and that can be (iii) directly subtracted from the
nominally applied stress in a PAD simulation. The effective image stress
Timg,eff 15 determined as a net configurational force acting on the bowing out
dislocation in the following manner. Imagine a dislocation bowed out into an
arc of a circle with maximum bow-out h and consider an incremental increase
in both the bow-out and the 2d image array so that the maximum bow-out
is h+0h while the image array translates by géh. We denote the incremental
area swept out as 0A. Through this process, the image stress field T, [y(7)]
acts along the arc of the dislocation, in some places pushing the dislocation
forward and in places pushing it back. The total incremental work done by
the image stresses in making the incremental motion (dA = A(h+0h)—A(h))
is

W = ) 7imgy(2)]bd A (13)
A

Using the analytic expressions for 7;,,[y(x)] in Eq. 1la or b, the work can
be computed to first order in h/L, as

N ub? 4h _ F D
12 () () ot v »

for the edge and similarly for the screw. The net incremental work when
including the effective image stress acting over the same incremental area
however must be zero, so

@ Tomg.ef fbAA = —0W (15)
A

and hence our final estimate for the effective image stress is

edge /Lb 4h‘ —edge/ 1T Y/
= (1) () L) (162)
and ) n
screw K —screw (T Y/
7-img,eff ~ - <L_) (45L ) Timg (L’ V) (16b)
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Figure 2. (a) Edge and (b) Screw. Image stress field, normalized by the
Frank-Read stress (ub/L,), vs. normalized position along the (curved) dislo-
cation line for several normalized volumes (V = L,L./L?) and h = 0.2L,, as
predicted by the 3d discrete analysis (symbols) and by the 2d model (dashed
lines). The curved dislocation spans the range from the pinning point,
y(x) = —2h/3 (and hence (y(x) + 2h/3)/Ly = 0), to the peak y(0) = h/3
(and hence (y(z) + 2h/3)/Ly = h/Ly). For the cases h=0.2Lx shown here,
the peak is then at 0.2(Lz/Ly) = 0.2/VLV.

3. Results

We start by comparing the results of the 3d curved image array and the 2d
straight image approximation, (11a) and (11b). The independent variables
which determine the image stress field are the two characteristic simulation
cell dimensions L and V. The image stress field, normalized by the Frank-
Read stress, acting along the bow-out dislocation position, (y(z)+2h/3)/L,
as predicted by the analysis (11a), (11b) and the 3d curved image array is
shown in Figs. 2a,b for edge and screw dislocations, respectively, for several
different normalized volumes (V = L,L,/L?). Agreement between the fully
numerical and analytical results is very good along the entire line in all except
the most extreme cases, e.g. V < 0.3. While the image stress field gener-
ated by the curved dislocation array is complex, the 2d-model captures the
essential physics, scaling, and magnitude of the image fields. Both analyses
also demonstrate that the magnitude of the image stresses is largest at the
pinning points (positive, acting to push the dislocation outward) and near
the peak (negative, acting to oppose increased bow-out).

We verify the agreement between the 3d curved image array and the
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Figure 3. (a) Edge and (b) Screw. Normalized image stress (image stress
field, Timgly(z)], divided by Frank-Read stress, ub/L,, and extent of
bow-out, h/L,) vs. ratio of the normalized position along the dislocation
line, y(z)/h, to the product of the normalized volume and aspect ratio,
VL, (ie. (y(x)/h)/(LV) ) for several aspect ratios as predicted by the 3d
discrete analysis (symbols) and by the 2d analysis (dashed lines) for the
peak (y = h/3) and pinning point (y = —2h/3).

2d analysis more generally in the following manner. The image stresses
at position (x,y,0) are uniquely specified by the y coordinate since x is a
function of y. We therefore use a normalized position y/h ranging from
—2/3 at the pinning points (r = +/ — L, /2) to +1/3 at the point of peak
bow-out (x = 0) in accordance with Fig. 1d. The scaling analysis, Egs.
(11) and (12), suggests that the image stress field is proportional to both
the Frank-Read stress, ub/L, and the extent of bow-out, h/L,, and scales
inversely with the normalized volume (V = L,L,/L?). Figures 3a,b show
the normalized image stress fields (Timgy(z)]/ [(1b/Ls)(h/Ly)]) at the two
extremities of the bow-out (i.e. the peak: (r = 0,y = h/3) and the pinning
points: (z = +/ — L, /2,y = —2h/3)) for a wide range of cell aspect ratios
(L = L,/L,), normalized volumes (V = L,L,/L?), and extents of bow-out
(h/L.), (i) as computed numerically (symbols) and (ii) as predicted by the
analytic model (dashed lines) for the entire bow-out (—2/3 < % < 1/3).
In general, the results for different amounts of bow-out h collapse very well
using this normalization. The analytic model and the numerical model agree
quite well where h/L, << 1; at larger h/L, the neglected curvature in the
2d analytic model becomes non-negligible.

Having validated the 2d analysis against the 3d analysis, we now note
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several predicted scalings that emerge from the 2d analysis (Eqgs. 1la,b
and Eqs. 16a,b). Both Egs. 1la,b and 16a,b show that the effects of cell
simulation dimensions are contained in the quantities 7";‘%6 and 7,7, Figure
4 thus shows these quantities, multiplied by the normalized volume V', as a
function of L. As expected, for larger overall cells, the magnitude of the image
stress decreases. However, there are wide variations in the trend as a function
of the aspect ratio (L). Therefore, the choice of simulation cell aspect ratio
and normalized volume can have a significant affect on the apparent stresses
and thus both simulation cell volume and shape must be chosen carefully.

Other trends emerging from the analysis are that:

1. For a fixed nominal dislocation line length L., and fixed aspect ra-
tio L = L,/L,, the normalized image stress scales inversely with the
simulation volume.

2. For an initial dislocation line length L, and fixed volume V', the nor-
malized image stress depends only on L.

3. With varying length L., the normalized image stress is constant for
constant normalized volume V and constant aspect ratio L; in other
words, increasing the overall system size proportionally has no affect
on the normalized image stress.

4. For a given volume V there is an optimal aspect ratio L to minimize
t_he image stresses independent of L,, with L,, ~ 0.8 for the edge and
Loy ~ V2 for the screw.

5. Since a bow-out of h scales with the applied stress as 74y, ~ (ub/L;)(h/L,),
the effective image stress scales with the true applied stress, i.e. Timgesf/Tapp
remains constant, independent of the applied stress.

4. Discussion & Application

Our results show that the effective normalized image stress is approxi-
mately quadratic in L, because of the inverse relationship with the normal-
ized volume (% ~ V=1 ~ L2). Thus, a typical study in which L, and
L, are fixed anézthézlength L, is varied to study the effects of obstacle spacing
can lead to large variations in image stresses that contaminate the intended
measurements. Fig. 4 shows a large difference in the dimensionless image
stress gradient, Eqs. (12a) and (12b) between a nominally edge and screw

dislocation PAD simulation. The dimensionless image stress gradient for the

screw dislocation is much smaller than that for the edge e.g. ;’Zﬁz]e S

tmg [L=1

Wl
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Figure 4. Dimensionless image stress gradient (7;,,) times normalized
volume (V = izﬁ) vs. aspect ratio (L = %) for the nominally edge and
screw dislocation. The asymptotic behavior of 7j,, for L >> 1 and L << 1
is shown to be ~ 1/L? and ~ 1/ Lz respectively. The optimal aspect ratio
which minimizes spurious image stress for the nominally edge dislocation is

Loy = 0.8 and for the nominally screw dislocation is Eopt ~ V2.
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Furthermore, at a fixed applied stress, a nominally edge dislocation is ex-
pected to bow-out more than a screw dislocation at the same applied stress
due to the reduced line tension making the image stress, relative to the ap-
plied stress, much larger for the edge dislocation. For the nominally edge
dislocation both the increased dimensionless image stress gradient and the
increased bow-out at a fixed applied stress suggest that the image stress rel-
ative to the applied stress is generally much greater for the nominally edge
dislocation. With all of these subtleties, extracting quantitative results from
parametric studies requires a sufficiently large minimum cell volume as to
mitigate spurious image type effects all together.

We now demonstrate, through example, the interpretation and usage of
Fig. 4 as a guide to the design of studies involving dislocation/obstacle in-
teractions. We examine a typical simulation of a nominally edge dislocation
impinging on obstacles with spacing L, = 50 nm in Al (FCC, lattice constant
a = 4.03 A, atomic density = 61%). We start by considering equal glide
and out-of-plane periodic lengths, L, = L, = 40 nm for simplicity. These
dimensions lead to V = L,L,/L? = 0.64 and L = L,/L, = 1. The number
of atoms required for this simulation follows as N = (L3)(V)(61/nm?) ~ 4.9
million atoms. One or a few calculations at this size are computationally
feasible, however numerous computations of this size quickly become compu-
tationally expensive. From Fig. 4, we find that 7"5?56 ~ —1.4/0.64 = —2.19
and the effective image stress is thus Tygerr = 2.19(ub/L,)(4h/45L,) at
bow-out h. If this magnitude is acceptable, we might wish to use half the
number of atoms and the same aspect ratio L = 1, or L, = L, = 28.3nm.
The effective image stress would then double because the volume is halved
at fixed L. But if instead we halved the number of atoms by changing the
aspect ratio to L = 0.8 with L, = 25.3 nm, L, = 31.6nm, and thus V = 0.32,
we obtain an effective image stress of Tigcrr = 3.91(ub/ L, )(4h/45) which is
less than twice the original value.

To further validate our analysis quantitatively, we now compare results
in a typical PAD simluation and in a multiscale image-free simulation [45]
of the same problem: bow-out of a pinned nominally edge dislocation under
an applied stress. The studies were performed on Al using the Ercolessi-
Adams [53] EAM potential having material properties p = 30.8 GPa, |b|
= 285 A and v = 0.35, with an obstacle spacing of L, = 50 nm. The
PAD simulation, reported in [54], used dimensions L, = L, = 20 nm. The
multiscale image-free simulation was performed using the Coupled Atom-
istic/Discrete Dislocation (CADD) method [45, 55], in which an atomistic
domain is embedded in a fully anisotropic continuum elastic domain with a
seamless atom/continuum interface that introduces no spurious forces. The
multiscale simulation corresponds effectively to infinite dimensions L, L,. In
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Fig. 5, we show the equilibrium configurations of three curved dislocation
structures: two using the traction PAD method [54] under a PAD simulation
applied stresses of ~ 30 MPa and ~ 45 MPa and one using the multiscale
image-free method [45] under a (true) applied stress of ~ 30 MPa. The
traction PAD simulation at ~ 45 MPa closesly matches the image-free result
at ~ 30 MPa, indicating that the image stresses correspond to an effective
applied stress of ~ 15 MPa, one-half of the true applied value. The trac-
tion PAD simulation at a simulation stress equal to that in the multiscale
simulation, ~ 30 MPa, exhibits significantly less bow-out; in fact, the peak
bow-out is approximately 2/3 that of the traction PAD simulation at 3/2
larger applied stress, as expected since both the bow-out and the effective
image stress scale with the applied stress. We now use our results to pre-
dict the effective image stress. For this PAD simulation cell, L = 1 and

V = 0.16. From Fig. 4, we find 7°%° = —(1.4/0.16) and thus from Eq. 16a

img

Towse op = (1.4/0.16)(ub/L,)(4h/45L,). From Fig. 5, h/L, ~ 0.14 and so
Tieiz;f ; = 18.4 MPa. The predicted effective image stress agrees very well

with the measured image stress, with an error of &~ 25%. The over-estimate
for this particular case is consistent with Fig. 2a, where the analytic 2d re-
sult (dashed blue line) over-estimates the numerical 3d result (symbols) for
V = 0.16.

Finally, we extend the analyses to several dislocation/obstacle simulation
studies available within the literature. In Table 1 we report the absolute
dislocation line length L,, aspect ratio (L), and normalized volume (V') re-

ported for various simulation cells. For these values, we compute the nor-

malized effective image stress (Timg.err/ [(‘L‘—b) (ﬁ)}) for studies involving

nominally edge and screw dislocations. We note that the normalized effec-
tive image stress for the PAD depicted in Fig. 5 corresponds to the value
~ 8.2 which corresponded to an error of ~ 50% (45 MPa vs. 30 MPa) in
the applied stress. With the exception of the simulation reported by Cheng
and coworkers [1], all of the other edge studies have effective image stresses
that are comparable to or worse than the result in Fig. 5. Osetsky [56]
and Dong [54] attempted some limited convergence studies by increasing the
simulation cell in the in-plane direction (L,) for a fixed obstacle spacing.
As predicted by (12a), however, these studies reproduced nearly the same
normalized effective image error while adding computational cost with the
approximately doubled volume. Thus, although the coarse results appear
to have converged, they still have the same image error embedded in the
results! Several similar studies involved ” strain” controlled boundary con-
ditions on the top and bottom surfaces, where the dislocation is driven by
an imposed displacement rather than an imposed stress. As noted by Rod-
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ney [57], the image stresses for the displacement boundary conditions are
expected to be comparable to, but larger than, those for traction control.
Our estimates of the effective image stresses are thus probably conservative
in these cases. Table 1 also shows the normalized effective image stress for
three nominally screw simulation cells [58] but for illustrative purposes only
because the actual studies did not involve bow-out type configurations con-
fined to the central slip plane. We conclude with a brief, general discussion
about testing the size of simulation cells for converged simulation results.
As seen in Table 1, it is remarkably easy to change a single length of the
simulation cell, either the out-of-plane length L, or the periodic glide length
L,, and recover a ” converged” yet wrong result. Examination of Eqs. (12a),
(12b) and Fig. 4 provides a quantitative explanation for this, demonstrating
that when L >> 1 or L << 1 changing L, or L,, respectively, has virtually
no influence on the image stress. Instead, fixing the aspect ratio (L) to the
optimum value and varying the normalized volume (V) is a more suitable
method to test for converged results.

5. Summary

We have investigated the nature of undesirable spurious image stresses
arising from the bowing out of a dislocation around obstacles in a finite sized
atomistic simulation volume, and have provided a general map of the magni-
tude of the spurious effects as a function of the simulation cell size and shape.
We have further demonstrated that, independent of the cell size, these image
stresses scale with the nominally applied load. For both a nominally edge
and screw dislocation, we have found special aspect ratios (L = L,/L,) which
minimize spurious image forces for a given number of atoms (given simulation
volume). We have made a direct comparison between a dislocation structure
under an applied load in a finite simulation cell and an image-free multiscale
simulation [45] of the same problem, showing that our analysis is quantita-
tively accurate. Finally, we have evaluated the image stresses that would
have arisen in several other studies within the literature, predicting compa-
rable errors. Overall, this work provides a clear and simple benchmark for
designing atomistic simulations with controlled and minimized image effects
in the many physical situations involving dislocation bow-out.
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Figure 5. Equilibrium configurations of a nominally edge dislocation
bowing out under an applied stress using the traction PAD method [54]
(blue) and an image free multiscale method [45] (red). The PAD simulation
cell contained an obstacle spacing of L,= 50 nm with periodicity and free
surfaces a distance L, = L, = 20 nm. Two PAD bow-outs are depicted
under a nominal applied stress of ~ 30 MPa and ~ 45 MPa. A single artifact
free bow-out is shown at an applied stress of ~ 30 MPa corresponding
with the PAD bow-out of ~ 45 MPa. For this simulation cell geometry,
nominal dislocation structure (edge) and Ercolessi-Adams [53] potential:

edge
T . . . . .
—maell ~ 50%. Partial dislocations were detected using a common neighbor

Tapp

analysis and averaged to yield a single, continuous center line for the
dislocation bow-out.
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LIE
Edge am) L VT K > (zéfﬂ
Osetsky* et. al. [56] C1 414 1.5 0.33 5.8
c2 414 3 0.66 5.8
C3 83 1.5 0.08 22.5
Cheng et. al. [1] 28 2 1.02 2.5
Dong [54] 50 1 016 8.2
80 1 0.063 20.9
80 1.7 0.11 20.3
80 21 0.13 20.3
Screw mame ) [ (2) ()
Rodney* [58] 20 133 0.85 0.6
37.3 138 0.24 2.0
29.7 1.38 0.1 4.8

Table 1. Simulation cell obstacle spacing (L,), aspect ratio (L = L,/L,),
normalized volume (V = L,L,/L?), and resulting normalized effective image
stress analysis, Eqgs. (16a) and (16b) applied to several dislocation/obstacle
interaction studies (v=1/3). The dimensionless image stress gradient has
been calculated directly from (12a) and (12b) for the nominally edge and
screw dislocation respectively. When L >> 1 or L << 1 doubling the
simulation volume can result in an identical (and non-negligible) image
stress (e.g. Osetsky [56] C1 and C2 and Dong [54]). *These simulations were
performed using either a ”strain” controlled (Osetsky [56]) or alternatively
bounded (Rodney [58]) PAD and so the computation of 7, (L, V) remains
inexact. As noted by Rodney [57] however, it is expected to be comparable
to, but larger in the case of ”strain” control due to the mismatch between

the curved dislocation structure and straight dislocation field within the
PAD region.
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