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Abstract Given a sequence of positive integers p = (p1, ..., pu), let S, denote the
family of all sequences of positive integers x = (x1, ..., x,) suchthatx; < p; foralli.
Two families of sequences (or vectors), A, B C S, are said to be r-cross-intersecting
if no matter how we select x € A and y € B, there are at least r distinct indices i
such that x; = y;. We determine the maximum value of |A| - | B| over all pairs of
r-cross-intersecting families and characterize the extremal pairs for r > 1, provided
that min p; > r+ 1. The case min p; < r+ 1 is quite different. For this case, we have a
conjecture, which we can verify under additional assumptions. Our results generalize
and strengthen several previous results by Berge, Borg, Frankl, Fiiredi, Livingston,
Moon, and Tokushige, and answers a question of Zhang.

1 Introduction

The Erdés-Ko-Rado theorem [7] states that for n > 2k, every family of pairwise
intersecting k-element subsets of ann-element set consists of at most (Z:%) subsets, as
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many as the star-like family of all subsets containing a fixed element of the underlying
set. This was the starting point of a whole new area within combinatorics: extremal
set theory; see [3,6,8,12]. The Erdds-Ko-Rado theorem has been extended and gen-
eralized to other structures: to multisets, divisors of an integer, subspaces of a vector
space, families of permutations, etc. It was also generalized to “cross-intersecting”
families, i.e., to families A and B with the property that every element of A intersects
all elements of B; see Hilton [13], Moon [16], and Pyber [17].

For any positive integer k, we write [k] for the set {1, ..., k}. Given a sequence of
positive integers p = (p1, ..., pn), let

Sp=1Ip1]l x - xIpa]l ={(x1,...,x2) : x; € [p;i] fori € [n]}.

We will refer to the elements of S, as vectors. The Hamming distance between the
vectors x,y € S, is |{i € [n] : x; # y;i}| and is denoted by d(x, y). Let r > 1 be an
integer. Two vectors x, y € S, are said to be r-intersecting if d(x, y) < n — r. (This
term originates in the observation that if we represent a vector x = (x1, ..., Xx,) € Sp
by the set {(i,x;) : i € [n]}, then x and y € S, are r-intersecting if and only if the
sets representing them have at least r common elements.) Two families A, B C §,,
are r-cross-intersecting, if every pair x € A, y € B is r-intersecting. If (A, A) is an
r-cross-intersecting pair, we say A is r-intersecting. We simply say intersecting or
cross-intersecting to mean l-intersecting or 1-cross-intersecting, respectively.

The investigation of the maximum value for |A| - | B| for cross-intersecting pairs of
families A, B C §), was initiated by Moon [16]. She proved, using a clever induction
argument, that in the special case when p; = p» = -+ = p, = k for some k > 3,
every cross-intersecting pair A, B C S, satisfies

|A| - |B| < k"2,

with equality if and only if A = B = {x € §, : x; = j}, for some i € [n] and
Jj € [k]. In the case A = B, Moon’s theorem had been discovered by Berge [2],
Livingston [15], and Borg [4]. See also Stanton [18]. In his report on Livingston’s
paper, published in the Mathematical Reviews, Kleitman gave an extremely short
proof for the case A = B, based on a shifting argument. Zhang [20] established a
somewhat weaker result, using a generalization of Katona’s circle method [14]. Note
that for k = 2, we can take A = B to be any family of 2" ~! vectors without containing
apair (x1,...,%x,), (1, ..., yn) withx; +y; = 3foreveryi. Then A is an intersecting
family with |A|> = 22”2, which is not of the type described in Moon’s theorem.

Moon also considered r-cross-intersecting pairs in S, with p; = pp = -+ =
pn = k for some k > r + 1, and characterized all pairs for which |A| - | B| attains its
maximum, that is, we have

Al - B = k270,

The assumption k£ > r 4 1 is necessary. See Tokushige [19], for a somewhat weaker
result, using algebraic techniques.
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Zhang [20] suggested that Moon’s results may be extended to arbitrary sequences
of positive integers p = (p1, - .., pn). The aim of this note is twofold: (1) to establish
such an extension under the assumption min; p; > r + 1, and (2) to formulate a
conjecture that covers essentially all other interesting cases. We verify this conjecture
in several special cases.

We start with the special case » = 1, which has also been settled independently by
Borg [5], using different techniques.

Theorem 1 Let p = (py, ..., pu) be a sequence positive integers and let A, B C S,
form a pair of cross-intersecting families of vectors.

We have |A| - |B| < |Sp|2/k2, where k = min; p;. Equality holds for the case
A =B =1{x¢€S8,:x = j}, whenever i € [n] satisfies p; = k and j € [k]. For
k # 2, there are no other extremal cross-intersecting families.

We say that a coordinate i € [n] is irrelevant for a set A C S, if, whenever two
elements of S, differ only in coordinate i and A contains one of them, it also contains
the other. Otherwise, we say that i is relevant for A.

Note that no coordinate i with p; = 1 can be relevant for any family. Each such
coordinate forces an intersection between every pair of vectors. So, if we delete it,
every r-cross-intersecting pair becomes (r — 1)-cross-intersecting. Therefore, from
now on we will always assume that we have p; > 2 for every i.

We call a sequence of integers p = (pi, ..., pn) a size vector if p; > 2 for all i.
The length of p is n. We say that an r-cross-intersecting pair A, B C S, is maximal
if it maximizes the value |A| - | B].

Using this notation and terminology, for k > 2 Theorem 1 can be rephrased as
follows.

Theorem 1’ Let p = (p1, ..., pn) be a sequence of integers with k = min; p; > 2.

For any maximal pair of cross-intersecting families, A, B C Sp, we have A = B,
and there is a single coordinate which is relevant for A. The relevant coordinate i
must satisfy p; = k.

See Sect. 5 for a complete characterization of maximal cross-intersecting pairs in
the k = 2 case. Here we mention that only the coordinates with p; = 2 can be relevant
for them, but for certain pairs, all such coordinates are relevant simultaneously. For
example, let n be odd, p = (2,...,2), and let A = B consist of all vectors in
S, which have at most |n/2] coordinates that are 1. This makes (A, B) a maximal
cross-intersecting pair.

Let T C [n] be a subset of the coordinates, let xo € S, be an arbitrary vector, and
let k be an integer satisfying 0 < k < |T'|. The Hamming ball of radius k around xg
in the coordinates 7 is defined as the family

Br={xeS,:[{i eT:x; # (x0)i}| <k}

Note that the pair (B, B;) is (|T| — k — I)-cross-intersecting. We use the word ball to
refer to any Hamming ball without specifying its center, radius or its set of coordinates.
A Hamming ball of radius 0 in coordinates 7 is said to be obtained by fixing the
coordinates in 7.
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For the proof of Theorem 1, we need the following statement, which will be estab-
lished by induction on #, using the idea in [16].

Lemma2 Let1 <r <n,let p=(p1,..., pn) be a size vector satisfying 3 < p; <
p2 < --- < pypandlet A, B C S, form a pair of r-cross-intersecting families. If

then |A] - |B| < H?=r+1 piz. In case of equality, we have A = B and this family can
be obtained by fixing r coordinates in Sp.

By fixing any r coordinates, we obtain a “trivial” r-intersecting family A = B C §),.
As was observed by Frankl and Fiiredi [9], not all maximal size r-intersecting families
can be obtained in this way, for certain size vectors. They considered size vectors
p = (k, ..., k)withn > r +2 coordinates, and noticed that a Hamming ball of radius
1 in r + 2 coordinates is r-intersecting. Moreover, for k < r, this family is strictly
larger than the trivial r-intersecting family. See also [1].

On the other hand, as was mentioned before, for k > r + 2, Moon [16] proved that
among all r-intersecting families, the trivial ones are maximal.

This leaves open only the case k = r 4 1, where the trivial r-intersecting families
and the radius 1 balls in » 4 2 coordinates have precisely the same size. We believe
that in this case there are no larger r-intersecting families. For » = 1, it can be and
has been easily verified (and follows, for example, from our Theorem 1, which deals
with the asymmetric case, when A and B do not necessarily coincide). Our Theorem 7
settles the problem also for r > 3. The intermediate cases r = 2 or 3 are still open,
but they could possibly be handled by computer search.

Therefore, to characterize maximal size r-intersecting families A or maximal 7-
cross-intersecting pairs of families (A, B) for all size vectors, we cannot restrict our-
selves to fixing r coordinates. We make the following conjecture that can roughly
be considered as a generalization of the Frankl-Fiiredi conjecture [9] that has been
proved by Frankl and Tokushige [11] (see also [10]). The generalization is twofold:
we consider r-cross-intersecting pairs rather than r-intersecting families and we allow
arbitrary size vectors not just vectors with all-equal coordinates.

Conjecture 3 If 1 < r < n and p is a size vector of length n, then there exists a
maximal pair of r-cross-intersecting families A, B C Sy, where A and B are balls. If
we further have p; > 3 for all i € [n), then all maximal pairs of r-cross-intersecting
families consist of balls.

Note that the » = 1 special case of Conjecture 3 is established by Theorem 1. Some
further special cases of the conjecture are settled in Theorem 7.

It is not hard to narrow down the range of possibilities for maximal r-cross-
intersecting pairs that are formed by two balls, A and B. In fact, the following theo-
rem implies that all such pairs are determined up to isomorphism by the number of
relevant coordinates. Assuming that Conjecture 3 is true, finding max |A| - | B| for
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r-cross-intersecting families A, B C §), boils down to making numeric comparisons
for pairs of balls obtained by various radii. In case p; > 3 for all i (and still assuming
Conjecture 3), the same process also finds all maximal r-cross-intersecting pairs.

Theorem 4 Let1 <r <nandlet p = (p1,..., py) be asizevector If A, B C §)
form a maximal pair of r-cross-intersecting families, then either of them determines
the other. In particular, A and B have the same set of relevant coordinates. Moreover, if
Ais a ball of radius | around xo € Sy ina set of coordinates T C [n], then |T| > I +r,
and B is a ball of radius |T| — | — r around xq in the same set of the coordinates.
Furthermore, we have p; < p; foreveryi € T and j € [n]\ T, and the radii of the
balls differ by at most 1, that is, ||T| — 21 — r| <1

Note that if A = B for a maximal pair (A, B) of r-cross-intersecting families,
then A is also a maximal size r-intersecting family. This is the case, in particular,
if A and B are balls of equal radii. However, for many size vectors, no maximal
r-cross-intersecting pair consists of r-intersecting families, as the maximal r-cross-
intersecting pairs are often formed by balls whose radii differ by one. For example,
for the size vector p = (3, 3, 3, 3, 3), the largest 4-intersecting family C is obtained
by fixing four coordinates, while the maximal 4-cross-intersecting pair is formed by a
singleton A = {x} and a ball B of radius 1 around x in all coordinates. Here we have
|A|-|B| = 11> |C|*> =09.

As we have indicated above, we have been unable to prove Conjecture 3 in its
full generality, but we were able to verify it in several interesting special cases. We
will proceed in two steps. First we argue, using entropies, that the number of relevant
coordinates in a maximal r-cross-intersecting family is bounded. Then we apply com-
binatorial methods to prove the conjecture under the assumption that the number of
relevant coordinates is small.

In the case where there are many relevant coordinates for a pair of maximal r-
cross-intersecting families, we use entropies to bound the size of the families and to
prove

Theorem S Let1 <r <n,let p=(p1,..., py) beasizevector,let A, B C S, form
a maximal pair of r-cross-intersecting families, and let T be the set of coordinates
that are relevant for A or B. Then neither the size of A nor the size of B can exceed

[Spl
[licr (pi = DI=2/7i

We use this theorem to bound the number of relevant coordinates i with p; > 2.
The number of relevant coordinates i with p; = 2 can be unbounded; see Sect. 5.

Theorem 6 Let1 <r <n,let p=(p1,..., pn) be asize vector, andlet A, B C S,
form a maximal pair of r-cross-intersecting families.
For the set of coordinates T relevant for A or B, we have

r
[1pi=]]wi—n'"%",

i=1 ieT
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which implies that |{i € T : p; > 2}| < 5r.

We can characterize the maximal r-cross-intersecting pairs for all size vectors p
satisfying min p; > r 4 1, and in many other cases.

Theorem 7 Let 1 <r < mn, let p = (p1,..., pn) be a size vector with p1 < py <
- < pn,and let A, B C S, form a pair of r-cross-intersecting families.

1. If p1 > r+ 1, we have |A| - |B| < H?=r+1 piz. In case of equality, A = B holds
and this family can be obtained by fixing r coordinates in S),.

2. If p1 =r+1> 4 we have |A| - |B| < [\, p?. In case of equality, A = B
holds and this family can be obtained either by fixing r coordinates in S, or by
taking a Hamming ball of radius 1 inr + 2 coordinates i, all satisfying p; = r + 1.

3. There is a function t(r) = r/2 + o(r) such that if p1 > t(r) and (A, B) is a
maximal r-cross-intersecting pair, then the families A and B are balls in at most
r + 3 coordinates.

The proof of Theorem 7 relies on the following result.

Theorem 8 Let 1 < r < n and let p be a size vector of length n.

1. If there exists a maximal pair of r-cross-intersecting families in Sp with at most
r 4 2 relevant coordinates, then there exists such a pair consisting of balls.

2. If pi > 2foralli € [n]and A, B C S, form amaximal pair of r-cross-intersecting
families with at most r + 3 relevant coordinates, then A and B are balls.

With an involved case analysis, it may be possible to extend Theorem 8 to pairs with
more relevant coordinates. Any such an improvement would carry over to Theorem 7.

All of our results remain meaningful in the symmetric case where A = B. For
instance, in this case, Theorem 1 (also proved by Borg [5]) states that every intersecting
family A C S, has at most |S,|/k members, where k = min; p;. In case k > 2,
equality can be achieved only by fixing some coordinate i with p; = k. Note that in
the case A = B (i.e., r-intersecting families) the exact maximum size is known for
size vectors (g, ..., q) [11].

2 Proofs of Theorems 4 and 1

First, we verify Theorem 4 and a technical lemma (see Lemma 9 below) which gen-
eralizes the corresponding result in [16]. Our proof is slightly simpler. Lemma 9 will
enable us to deduce Lemma 2, the main ingredient of the proof of Theorem 1, presented
at the end of the section.

Proof of Theorem 4 The first statement is self-evident: if A, B C S, form a maximal
pair of r-cross-intersecting families, then

B ={x € §, : x r-intersects y forall y € A}.

If a coordinate is irrelevant for A, then itis also irrelevant for B defined by this formula.
Therefore, by symmetry, A and B have the same set of relevant coordinates.
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If A is the Hamming ball around x¢ of radius / in coordinates 7, then we have
B =0if|T| < [ +r, which is not possible for a maximal cross-intersecting family. If
|T'| > I + r, we obtain the ball claimed in the theorem. Foreveryi € T, j € [n]\ T,
consider the set T’ = (T \ {i}) U {j} and the Hamming balls A’ and B’ of radii [ and
|T| — I — r around xq in the coordinates T’. These balls form an r-cross-intersecting
pair and in case p; > p;, we have |[A’| > |A| and |B’| > |B|, contradicting the
maximality of the pair (A, B).

Finally, let B; be a ball of radius / around some fixed vector x in a fixed set T of
coordinates. We claim that the size | B;| of these balls is strictly log-concave, that is,
we have

|Bi|* > |Bi—1| - | B+l

for 1 <1 < |T|. As balls around different centers have the same size, we can represent
the left-hand side as | B;|? = |C|, where

C = {()’,Z) | y,Z € Spvd(x’ y) Sl,d(va) < l}

Similarly, the right-hand side can be represented as |B;_1| - |Bj+1| = |D| with
D={(y.2) | y.z€8p,dx,y) =l —1,d(y,z) <l +1]}.

We say that two pairs (y, z) and (y’, z') (all four terms from S,) are equivalent
if z = 7’ and for every i € [n] we have either y; = y/ or y;, ¥/ € {x;, z;}. Let us
fix an equivalence class O. For all (y, z) € O, the element z and some coordinates
y; of y are fixed. We call the remaining coordinates i open. For an open coordinate
i, the value of y; must be one of the non-equal values x; or z;. If m denotes the
number of open coordinates in O, we have |O| = 2™. For a pair (y,z) € O, the
distance d(x, y) = d; + d2(y), where d; is the number of fixed coordinates i with
X; # yi, while d»(y) is the number of open coordinates i with x; # y;. Note that d;
is constant for all elements of O, while d>(y) takes any value j for (m) members of
0. Similarly, we can write d(y, z) = d| + (m — da(y)), as y; # z; holds for the same
fixed coordinates where x; # y;, and y; is equal to exactly one of x; and z; for an
open coordinate i. Summarizing, we have

CNO={(»,2)eO|di+m—1=<dy(y) <I—di},
DNO={(y,2) €0 |di+m—1—1=<dy(y) <l—d —1}.

We claim that [CNO| > |DN O].Indeed, ifl —d; < m/2,thenCNO = DN O = .
Otherwise, we have |[CNO|—|DNO| = (l:nd.) — (17$+1) > 0. Note also that equality
holds only if ] —dy < m/2 orl — d; > m, in which cases C and D are disjoint from
O or contain O, respectively.

As C contains at least as many pairs from every equivalence class as D does, we have
|C| > | D|. Equality cannot hold for all equivalence classes, so we have |C| > |D|, as

claimed.
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To finish the proof of the theorem, we need to verify that the pair (B;,, B;,) is not

maximal r-cross-intersecting if r = |T| — [1 — Iy and |l; — | > 2. This follows
from the log-concavity, because in case [1 > [» + 2 the pair (Bj,—1, B,+1) is also
r-cross-intersecting and | B;,—1| - | By, 1| > | By, | - | B, . O

The following lemma will also be used in the proof of Theorem 5, presented in the
next section.

Lemma9 Let1 <r <n,let p=(p1,..., pn) be asize vector, and let A, B C §)
form a maximal pair of r-cross-intersecting families.

Ifi € [n] is a relevant coordinate for A or B, then there exists a value l € [p;] such
that

x e A:xi #1}| < |Al/pi

HyeB:yi #U}| <|Bl|/pi.

Proof Letus fix r,n, p,i, A, and B as in the lemma. By Theorem 4, if a coordinate
is irrelevant for A, then it is also irrelevant for B and vice versa.

In the case n = r, we have A = B and this family must be a singleton, so the
lemma is trivially true. From now on, we assume that n > r and hence the notion of
r-cross-intersecting families is meaningful for n — 1 coordinates.

Letg = (p1,..., Pi-1, Pi+1, ..., pn). Forany [ € [p;], let

A;:{xeA:xizl},
Bj={yeB:y=l.

and let A; and B; stand for the families obtained from Aj and Bj, respectively, by
dropping their ith coordinates. By definition, we have A;, B; € S, and |A| = Zl |A;]
and |B| = Y, | B;|. Furthermore, for any two distinct elements /, m € [p;], the families
A and B, are r-cross-intersecting, since the vectors in A; differ from the vectors in B},
in the ith coordinate, and therefore the r indices where they agree must be elsewhere.

Let Z denote the maximum product |A*| - |B*| of an r-cross-intersecting pair
A*, B* C S;. We have |A/| - |B,| < Z foralll,m € [p;] with! # m. Adding an
irrelevant ith coordinate to the maximal r-cross-intersecting pair A*, B* C §,, we
obtain a pair A*, B¥ C S, with |[A*| - |B¥| = piZZ. Using the maximality of A and
B, we have |A| - |B| > p,.ZZ. Let [y be chosen so as to maximize |Ay,| - | By, |, and let
¢ = 1Al - 1Byl/Z.

Assume first that ¢ < 1. Then we have

PrZ <|Al-[Bl= D> |Al-|Bul< D Z=p;Z.
L,me(pi] l,me[pil

Hence, we must have equality everywhere. This yields that ¢ = 1 and that A; and B,,
form a maximal r-cross-intersecting pair for all [, m € [p;], [ # m. This also implies
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that |A;| = |Ay| for I, m € [p;], from where the statement of the lemma follows,
provided that p; = 2.

If p; > 3, then all families A; must be equal to one another, since one member
in a maximal r-cross-intersecting family determines the other, by Theorem 4. This
contradicts our assumption that the ith coordinate was relevant for A.

Thus, we may assume that ¢ > 1.

Form € [p;], m # ly, we have |Ay| - | By | < Z = |Ay| - |Byl/c. Thus,

|Bm| < |By,l/c, ey

which yields that |[B| = >
have

melpi] |Bu| < (14 (p;i —1)/c)|By,|. By symmetry, we also

[Am| < [Agl/c @)

form # lpand |A| < (14 (p; — 1)/c)| Ay, |. Combining these inequalities, we obtain
piZ < 1Al 1Bl < (1+ (pa — D/’ |Agy| - 1Byl = (1 + (pi = D/e)*cZ.

We solve the resulting inequality pl.2 < c(14(pi —1)/c)? for ¢ > 1 and conclude that
¢ > (pi — 1)?. This inequality, together with Eqs. (1) and (2), completes the proof of
Lemma 9. O

Proof of Lemma 2 We proceed by induction on 7.

Let A and B form a maximal r-cross-intersecting pair. It is sufficient to show that
they have only r relevant coordinates. Let us suppose that the set T of their relevant
coordinates satisfies |T| > r, and choose a subset 7" C T with |T'| = r + 1. By
Lemma 9, for every i € T’ there exists [; € [p;] such that the family X; = {x € B :
x; # 1;} has cardinality | X;| < |B|/pi.

If we assume that

holds (with strict inequality), then the above bound of | X;| would suffice. In order to
also be able to deal with the case

2 +i1=1,

Pr+1 ol pi

we show that |X;| = |B|/p; is not possible. Considering the proof of Lemma 9,
equality here would mean that the families A; and B; (obtained by dropping the ith
coordinate from the vectors in the sets {x € A : x; = l}and {y € B : y; =1},
respectively) satisfy the following condition: both (A;;, B,,) and (A, B;;) should be
maximal r-cross-intersecting pairs for all m # [;. By the induction hypothesis, this
would imply that A;, = B, and A,, = By, contradicting that |A,,| < |A;| and
|Bn| < |By;| (see (1), in view of ¢ > 1). Therefore, we have |X;| < |B|/p;.
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LetC = {x € S, : x; = 1 foralli € [r]} be the r-intersecting family obtained by
fixing r coordinates in S,. In the family D = B \ (|J;.y+ Xi), the coordinates in 7’
are fixed. Thus, we have

n
DI < [] pi=< [] pi=IClPs1.

ieln\T’ i=r42

On the other hand, we have

r+1
DI =Bl - > IXi| > |B|(1 - 1/p,~) > |B|(1 -> 1/p,~).

ieT’ ieT’ i=1
Comparing the last two inequalities, we obtain
IC]
; .
pra(l =351/ pi)

By our assumption on p, the denominator is at least 1, so that we have |B| < |C|. By
symmetry, we also have |[A| < |C|. Thus, |A|-|B| < |C 2 contradicting the maximality
of the pair (A, B). This completes the proof of Lemma 2. O

|B| <

Now we can quickly finish the proof of Theorem 1.

Proof of Theorem 1 Notice that Lemma 2 implies Theorem 1, whenever k =
min; p; > 3. It remains to verify the statement for k = 1 and k = 2. For k = 1,
this follows from the fact that all pairs of vectors in S, are intersecting, thus the only
maximal cross-intersecting pairis A = B = ).

Suppose next that k = 2. For x € S, let x" € S, be defined by x/ = (x; + 1
mod p;) for i € [n]. Note that x > x’ is a permutation of §,,. Clearly, x and x’ are
not intersecting, so we either have x ¢ A or x’ ¢ B. As a consequence, we obtain that
|A| + |B| < |Spl, which, in turn, implies that [A] - |B] < |Sp|2/4, as claimed. It also
follows that all maximal pairs satisfy |A| = |B| = |Sp|/2. O

3 Using Entropy: Proofs of Theorems 5 and 6

Proof of Theorem 5 Letr,n, p, A, B and T be as in the theorem. Let us write y for a
randomly and uniformly selected element of B. Lemma 9 implies that, foreachi € T,
there exists a value [; € [p;] such that

Priyi=0L]1>1—-1/p;. 3)

We bound the entropy H(y;) of y; from above by the entropy of the indicator

variable of the event y; = [; plus the contribution coming from the entropy of y;
assuming y; # [;:

H(y;)) <h(1—=1/pj)+ (/pi)log(p;i — 1) =logp; — (1 —2/p;)log(p; — 1),
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where h(z) = —zlogz — (1 — z) log(1 — z) is the entropy function, and we used that
1= 1/pi > 1/2.

Foranyi € [n]\ T, we use the trivial estimate H (y;) < log p;. By the subadditivity
of the entropy, we obtain

log|Bl=H(y)< > H(y) <Y (logp; — (1—2/p)log(pi — 1)+ > logpi.
ieln] ieT ie[n]\T

or, equivalently,

Pi |Sp|
Bl < - P = s
BI=]] (pi — )12/ [T » ier (pi — D277

ieT ie[n]\T

as required. The bound on | A| follows by symmetry and completes the proof of the
theorem. o

Theorem 6 is a simple corollary of Theorem 5.

Proof of Theorem 6 Fixing the first r coordinates, we obtain the family
C={xeSp:x;=1foralli €[r]}.

This family is r-intersecting. Thus, by the maximality of the pair (A, B), we have

n 2
|A| - |B| = |C|2=( I1 pi) : )

i=r+1

Comparing this with our upper bounds on |A| and | B|, we obtain the inequality claimed
in the theorem.

To prove the required bound on the number of relevant coordinates i with p; # 2,
we assume that the coordinates are ordered, that is, p; < p» < --- < p,. Applying
the above estimate on Hie[r] pi and using (p; — !=%/Pi > pl.l/5 whenever p; > 3,
the theorem follows. O

4 Monotone Families: Proofs of Theorems 8 and 7

Given a vector x € §), the set supp(x) = {i € [n] : x; > 1} is called the support of
x. A family A C §, is said to be monotone, if for any x € A and y € §), satisfying
supp(y) < supp(x), we have y € A.

For afamily A C §), let us define its support as supp(A) = {supp(x) : x € A}. For
a monotone family A, its support is clearly subset-closed and it uniquely determines
A,as A= {x €S, : supp(x) € supp(A)}.

The next result shows that if we want to prove Conjecture 3, it is sufficient to prove
it for monotone families. This will enable us to establish Theorems 8 and 7, that is, to
verify the conjecture for maximal r-cross-intersecting pairs with a limited number of
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relevant coordinates. Note that a similar reduction to monotone families appears also
in [9].

Lemma 10 Let 1 <r < n and let p be a size vector of length n.

There exists a maximal pair of r-cross-intersecting families A, B C S, such that
both A and B are monotone.

If pi > 3 foralli € [n], and A, B C S, are maximal r-cross-intersecting families
that are not balls, then there exists a pair of maximal r-cross-intersecting families that
consists of monotone families that are not balls and have no more relevant coordinates
than A or B.

Proof Consider the following shift operations. For any i € [n] and j € [p;]\ {1}, for
any family A C S, and any element x € A, we define

d)l(x) = (x]a""xl'fly laxi+]a""xn)5
; ifx; =J d i A
¢i,j(x:A) _ ¢i(x) if x; ‘J an ¢i(x) ¢
otherwise,

¢i,j(A) = {¢; j(x, A) 1 x € A}.

Clearly, we have |¢; j(A)| = |A| for any family A C §,. We claim that for any
pair of r-cross-intersecting families A, B C S, the families ¢; ;(A) and ¢; ;(B)
are also r-cross-intersecting. Indeed, if x € A and y € B are r-intersecting vectors,
then ¢; j(x, A) and ¢; ;(y, B) are also r-intersecting, unless x and y have exactly r
common coordinates, one of them is x; = y; = j, and this common coordinate gets
ruined as ¢; j(x, A) = x and ¢; j(y, B) = ¢;(y) (or vice versa). However, this is
impossible, because this would imply that the vector ¢; (x) belongs to A, in spite of
the fact that ¢; (x) and y € B are not r-intersecting.

If (A, B) is amaximal r-cross-intersecting pair, then sois (¢; j (A), ¢; ;(B)). When
the application of one of these shift operations changes either of the families A or B,
then the total sum of all coordinates of all elements decreases. Therefore, after shifting a
finite number of times we arrive at a maximal pair of r-intersecting families that cannot
be changed by further shifting. We claim that this pair (A, B) is monotone. Let y € B
and y" € S, \ B be arbitrary. We show that B is monotone by showing that supp(y’) is
not contained in supp(y). Indeed, by the maximality of the pair (A, B) and using the
factthaty’ ¢ B, there mustexistx’ € A such that x” and y’ are not r-cross-intersecting,
and hence |supp(x’) U supp(y’)| > n — r. Applying “projections” ¢; to x’ in the
coordinates i € supp(x’) N supp(y), we obtain x with supp(x) = supp(x’) \ supp(y).
The shift operations ¢; ; do not change the family A, thus A must be closed for
the projections ¢; and we have x € A. The supports of x and y are disjoint. Thus,
their Hamming distance is [supp(x) U supp(y)|, which is at most n — r, as they are
r-intersecting. Therefore, supp(x) U supp(y) = supp(x’) U supp(y) is smaller than
supp(x")Usupp(y”), showing that supp(y’) & supp(y). This proves that B is monotone.
By symmetry, A is also monotone, which proves the first claim of the lemma.

To prove the second claim, assume that p; > 3 for all i € [r]. Note that Theorem 1

establishes the lemma in the case r = 1, so from now on we can assume without loss
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of generality thatr > 2. Let A, B C S, form a maximal r-cross-intersecting pair. By
the previous paragraph, this pair can be transformed into a monotone pair by repeated
applications of the shift operations ¢;, ;. Clearly, these operations do not introduce new
relevant coordinates. It remains to check that the shifting operations do not produce
balls from non-balls, that is, if A, B C §,, are maximal r-cross-intersecting families,
and A" = ¢; j(A) and B’ = ¢; j(B) are balls, then so are A and B. In fact, by
Theorem 4 it is sufficient to prove that one of them is a ball.

We saw that A" and B’ must also form a maximal r-cross-intersecting pair. Thus, by
Theorem 4, there is a set of coordinates T C [n], a vector xg € S, and radii / and m
satisfying |T'| = r +1+m and that A" and B’ are the Hamming balls of radius / and m
in coordinates T around the vector xo. We can assume that i € T, because otherwise
A = A’ and we are done. We also have that (xp); = 1, as otherwise A’ = @i, j(A)is
impossible. The vectors x € §), such that x; = j and

HkeT : xp# &}l =1+1

are called A-critical. Analogously, the vectors y € S, such that y; = j and

{keT : y# (o)}l =m+1

are said to be B-critical. By the definition of ¢; ;, the family A differs from A’ by
including some A-critical vectors x and losing the corresponding vectors ¢; (x). Sym-
metrically, B \ B’ consists of some B-critical vectors y and B’ \ B consists of the
corresponding vectors ¢; (). Let us consider the bipartite graph G whose vertices on
one side are the A-critical vectors x, the vertices on the other side are the B-critical vec-
tors y (considered as disjoint families, even if/ = m), and x is adjacent to y if and only
if |[{k € [n] : xx = yx}| = r. If x and y are adjacent, then neither the pair (x, ¢; (y)),
nor the pair (¢; (x), y) is r-intersecting. As A and B are r-cross-intersecting, for any
pair of adjacent vertices x and y of G, we have x € A if and only if y € B.

The crucial observation is that the graph G is connected. Note that this is not the
case if py = 2 for some index k ¢ T, since all A-critical vectors x in a connected
component of G would have the same value x;. However, we assumed that p; > 2 for
[ € [n]. In this case, the A-critical vectors x and x’ have a common B-critical neighbor
(and, therefore, their distance in G is 2) if and only if the symmetric difference of the
lelementsets {k € T\ {i} : xx # (xo)x}and {k € T\ {i} : x,’( # (x0)x} have at most
2r — 2 elements. We assumed that » > 1, so this means that all A-critical vectors are
indeed in the same component of the graph G. Therefore, either all A-critical vectors
belong to A or none of them does. In the latter case, we have A = A’. In the former
case, A is the Hamming ball of radius / in coordinates 7" around the vector x{), where
x(’) agrees with xq in all coordinates but in (x(’)),- = j. In either case, A is a ball as
required. O

Proof of Theorem 8 By Lemma 10, it is enough to restrict our attention to monotone
families A and B. We may also assume that all coordinates are relevant (simply drop
the irrelevant coordinates). Thus, we have n < r + 3.

Denote by U; the Hamming ball of radius / around the all-1 vector in the entire set
of coordinates [1]. Notice that the monotone families A and B are r-cross-intersecting
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if and only if for a € supp(A) and b € supp(B) we have |a Ub| < n —r. We consider
all possible values of n — r, separately.

If n = r, both families A and B must coincide with the singleton Uj.

If n = r+1, itis still true that either A or B is Uy, and hence both families are balls.
Otherwise, both supp(A) and supp(B) have to contain at least one non-empty set, but
the union of these sets has size at most n — r = 1, so we have supp(A) = supp(B) =
{0, {i}} for some i € [n]. This contradicts our assumption that the coordinate i is
relevant for A.

If n = r 4+ 2, we are done if A = B = Uj. Otherwise, we must have a 2-element
set either in supp(A) or in supp(B). Let us assume that a 2-element set {7, j} belongs
to supp(A). Then each set b € supp(B) must satisfy b C {i, j}. This leaves five
possibilities for a non-empty monotone family B, as supp(B) must be one of the
following set systems:

- {7}

-9, i}
RUNIIE

- {#.{i}. {j}}, and
RUSURTIRUNIE

Cases 2, 3, and 5 are not possible, because either i or j would not be relevant for B.
In case 1, A and B are balls, as claimed. Nevertheless, this case is impossible as
the radii of A and B differ by 2, contradicting Theorem 4.
It remains to deal with case 4. Here supp(A) consists of the sets of size at most 1
and the 2-element set {i, j}. Define

[ O I S R

C={xeSy:x=1forallk € [n]\ {i, j}}.

Note that |A|+|B| = |U;|+]|C|, because each vectorin S, appears in the same number
of sets on both sides. Thus, we have either |A| 4+ |B| < 2|U;| or |A| 4+ |B| < 2|C]|.
Since |A| > |B|, the above inequalities imply |A| - |B| < |U1|2 or |[A]l - |B| < |C|2.
This contradicts the maximality of the pair (A, B), because both U; and C are r-
intersecting. The contradiction completes the proof of the case n — r = 2.

To complete the proof of Theorem 8, we need to deal with the case n — r = 3,
i.e., when there are r + 3 relevant coordinates. Note that, as part 1 of Theorem 8
does not apply to this case, we have p; > 3 for i € [n]. This slightly simplifies the
following case analysis, where we consider all containment-maximal pairs of families
(supp(A), supp(B)) with the required condition on the size of the pairwise unions.

Before considering the individual cases, we make a few simple observations. First,
we have

supp(A) ={T < [n] | YU € supp(B) : [TUU < 3},

supp(B) = {U C [n] | VT € supp(A) : | TUU| < 3.

These are non-empty sets and they determine the monotone sets A and B.

@ Springer



Graphs and Combinatorics (2015) 31:477-495 491

We say that i dominates j in a set system C, if whenever j € T buti ¢ T for a set
T € C, then we have (T \ {j}) U {i} € C. We say that i is equivalent to j in C if i
dominates j in C and j also dominates i. If i dominates j but j does not dominate i,
then we say that i strictly dominates j.

Note that if one of the statements “i dominates j,” “i is equivalent to j,” or
“istrictly dominates j” holds in either supp(A) or supp(B), then the same statement
holds in both families. If i strictly dominates j in supp(A), then we have p; > p;.
Indeed, otherwise we would have |A’| > |A| and |B’| > | B| for the monotone families
A’ and B’ whose supports supp(A’), resp. supp (B'), are obtained from supp(A), resp.
supp(B), by switching the roles of i and j. Since A’ and B’ are r-cross-intersecting,
this contradicts the maximality of (A, B).

For equivalent coordinates i and j in supp(A), we may assume by symmetry that
pPi = Dj-

Case 1. First assume that supp(A) contains a 3-element set {7, j, k}. Then all sets
in supp(B) are contained in {7, j, k}. Therefore, supp(B) must be one of the following
sets, up to a suitable permutation of the indices i, j, and k.

{9},

{0, {i}},

{0, (i}, {1},

{0, (i}, {7}, {k}},

AUV AN

{0,403, {j}, k), i g}

0.4}, {7} k3, (g, (i K3,

(2R PR VAN LS PR AN AR LS PR WAV 2

(2R PR VAN (S PR A B LAV PR WAV AR LA A9 4 B

WXk w =

In all of these families, i dominates j and j dominates k. So we may assume
Pi = Ppj =Pk = 3.

Subcases 2, 5, 7, and 9 are not possible, because i is not a relevant coordinate for
A in them.

In subcase 1, A and B are balls, but, as before, this case is still impossible, because
the radii of A and B differ by 3.

In subcase 3, we apply Lemma 9 to the set B and coordinate i to obtain (p; — 1)? <
pj,acontradiction.

In subcase 4, a similar application of Lemma 9 yields (p; — 1) < pj+pr—1
with the only solution p; = p; = px = 3. We have supp(A) = supp(Uz) U {{i, j, k}}
and thus |A| = |U,| 4+ 8. We further have |B| = 7. We must have n > 4, so that
|U1| > 9 and |U;| > 33. Using these estimates, we obtain |A| - |B| < |Uj| - |U2|, a
contradiction.

In subcase 6, we again start with Lemma 9. It yields that (p; — 1)2pj <pj+tp—1,
a contradiction.

Finally, in subcase 8, we have (p; — l)z(pj + pk — 1) < pjpi from Lemma 9, a
contradiction.

Case 2. Now we assume that supp(A) contains no 3-element sets, but it contains
two disjoint 2-element sets {i, j} and {k, /}. In this case, supp(B) contains the empty
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set and all singletons plus one of the following families of 2-element sets, up to a
suitable symmetry on the indices i, j, k, and /:

@,

{{i, k}},

{{i. k). (i, 1),

i kY, (. 1}

i, kY, 4, 1, {7, 1)

e, &y, 4i, 1, {0, k3 47 )

Note that in subcase 1, A and B are balls, and subcase 6 is identical with subcase 4
with the roles of A and B reversed. We use Lemma 9 and numeric comparisons to rule
out the remaining cases.

Consider the monotone ball C of radius 1 in the set of coordinates [n] \ {i}. This
is an r-intersecting family. In subcases 2 and 3, i dominates all other coordinates, so
we may assume that p; is maximal among all the p,, (m € [n]). In both subcases
considered, we have 2|C| > |A| + | B|. In subcase 2, this follows from p; > py, while
in subcase 3, we again need to apply the inequality in Lemma 9. In both subcases,
we have |A| > |B|. Thus, |A| - |B| < |C|?, contradicting the maximality of the pair
(A, B).

A similar argument works in subcases 4 and 5. Here i does not dominate / (nor
does it dominate j, in subcase 4), but it dominates all other indices, and we can still
assume by symmetry that p; is maximal. This implies that [A| + |B| < 2|C], so that
|A| - |B| < |C|?, a contradiction.

Case 3. Finally, assume that Cases 1 and 2 do not hold. In this case, for any pair
T,U € supp(A),wehave |[TUU| < 3 and, hence, supp(B) 2 supp(A). We can further
assume by symmetry that supp(B) contains no 3-element set and no pair of disjoint
2-element sets. This implies supp(A) = supp(B) so that A = B. In this case, supp(A)
contains the empty set, the singletons, and a containment-maximal intersecting family
of pairs. There are only two types of such families to consider:

Qs w =

1. (star) supp(A) contains the empty set, all singletons, and all pairs containing some
fixed coordinate i € [n].

2. (triangle) supp(A) contains the empty set, all singletons, and the pairs formed by
two of the three distinct coordinates i, j, k € [n].

Here subcase 1 is not possible, as i is not a relevant coordinate for A. In subcase 2,
we may once again assume that p; is maximal. We use the same r-intersecting family
C as in Case 2. To see that |A| = |B| < |C] (a contradiction), we use Lemma 9. 0O

To extend Theorem 8 to somewhat larger values of relevant coordinates (that is,
to verify Conjecture 3, for instance, for the case where there are r 4 4 relevant coor-
dinates), we would have to go through a similar case analysis as above. We would
have to consider much more cases that correspond to containment-maximal pairs of
set systems (U, V) with |u U v| bounded for u € U and v € V. This seems to be
doable, but the number of cases to consider grows fast.

Now we can prove our main theorem, verifying Conjecture 3 in several special
cases.
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Proof of Theorem 7 The statement about the case p; > r + 1 readily follows from
Lemma 2, as in this case the condition

holds.

To prove the other two statements in the theorem, we assume that A and B form a
maximal r-cross-intersecting pair. We also assume without loss of generality that all
coordinates are relevant for both families (simply drop the irrelevant coordinates).

By Theorem 6, we have [[/_, pi > [1/_;(pi — )!7?/7i, and thus

r

G = [T w-von

i=r+1

Here the function x/(x — 1)!=2/* is decreasing for x > 3, while (x — DI=2/x js
increasing, and we have p; > p; > 3. Therefore, we also have

r

HW > H (p1 — D'72P1,

i (P1 i=rt1

iz (pr = D,

rlog p1
N (1 —2/pp)log(pr — 1)’

Simple calculation shows that the right-hand side of the last inequality is strictly
smaller than r + 4 if p; < #(r) for some function ¢ (r) = r/2 + o(r) and, in particular,
for p; = r + 1 > 5. In this case, we have n < r + 3 relevant coordinates. Thus,
Theorem 8 applies, yielding that A and B are balls. This proves the last statement of
Theorem 7.

For the proof of the second statement, note that we have already established that A
and B are balls in up to r + 3 coordinates. Theorem 4 tells us that the pair of radii must
be (0,0), (0, 1), (1, 1), or (1, 2). Simple calculation shows that the first possibility
(fixing the smallest r coordinates) is always optimal, and the cases where the two radii
are unequal never yield maximal r-cross-intersecting pairs. Finally, the construction
with a ball of radius 1 in r + 2 coordinates matches the family obtained by fixing the
r smallest coordinates if and only if all relevant coordinates satisfy p; = r + 1. This
completes the proof of Theorem 7. O

5 Coordinates with p; = 2

In many of our results, we had to assume p; > 2 for all coordinates of the size vector.
Here we elaborate on why the coordinates p; = 2 behave differently.
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For the simple characterization of the cases of equality in Theorem 1, the assumption
k # 2 is necessary. Here we characterize all maximal cross-intersecting pairs in the
case k = 2.

Let p = (p1, ..., pn) be a size vector of positive integers with k = min; p; = 2
and let I = {i € [n] : p; = 2}. For any set W of functions I — [2], define the
families

Aw ={x € Sy :3f € Wsuch thatx; = f(i) forevery i € I},
Bw ={ye€S,:Af € Wsuchthaty; # f(i) foreveryi € I}.

The families Ay and By are cross-intersecting for any W. Moreover, if |W| = 2//1=1,
we have [Aw |- |Bw| = ISy |2 /4, so they form a maximal cross-intersecting pair. Note
that these include more examples than just the pairs of families described in Theorem 1,
provided that |/| > 1.

We claim that all maximal cross-intersecting pairs are of the form constructed
above. To see this, consider a maximal pair A, B € §,,. We know from the proof of
Theorem 1 that x € A if and only if x" ¢ B, where x’ is defined by x/ = (x; + 1
mod p;) for all i € [n]. Let j € [n] be a coordinate with p; > 2. By the same
argument, we also have that x € A holds if and only if x” ¢ B, where x/" = x! for
i €[n]\{j}and x;.’ = (x; +2 mod p;). Thus, both x" and x” belong to B or neither
of them does. This holds for every vector x’, implying that j is irrelevant for the family
B and thus also for A.

As there are no relevant coordinates for A and B outside the set I of coordinates
with p; = 2, we can choose a set W of functions from 7 to [2] such that A = Aw.
This makes

B ={yeS§),:yintersects all x € A} = By.

We have |A| + |B| = |S,| and |A| - |B| = |S,|?/4 if and only if [W| = 2//I=1.

The size vector p = (2, ..., 2) of length n is well studied. In this case, S, is the
n-dimensional hypercube. If » > 1, then all maximal r-cross-intersecting pairs have
an unbounded number of relevant coordinates, as a function of n. Indeed, the density
|A] - |B|/|Sp|2 is at most 1/4 for cross-intersecting pairs A, B C S, and strictly
less than 1/4 for r-cross-intersecting families if r > 1. Furthermore, if the number of
relevant coordinates is bounded, then this density is bounded away from 1/4, while
if A = B is the ball of radius (n — r)/2 in all the coordinates, then the same density
approaches 1/4.

One can also find many maximal 2-cross-intersecting pairs that are not balls. For
example, in the 3-dimensional hypercube the families A = {0, 0, 0), (0, 1, 1)} and
B ={(0,0, 1), (0, 1,0)} form a maximal 2-cross-intersecting pair.

Finally, we mention that there is a simple connection between the problem dis-
cussed in this paper and a question related to communication complexity. Consider
the following two-person communication game: Alice and Bob each receive a vec-
tor from §), and they have to decide whether the vectors are r-intersecting. In the
communication matrix of such a game, the rows are indexed by the possible inputs of
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Alice, the columns by the possible inputs of Bob, and an entry of the matrix is 1 or 0
corresponding to the “yes” or “no” output the players have to compute for the corre-
sponding inputs. In the study of communication games, the submatrices of this matrix
in which all entries are equal play a special role. The largest area of an all-1 submatrix
is the maximal value of |A| - | B| for r-cross-intersecting families A, B C S,
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