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Abstract

The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is 
unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which 
lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-
dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or 
oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensi-
tive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strong-
est membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in 
comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was low-
est in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1 mM of hydroxyl-radical-generating 
copper-ascorbate mix, or either 1 or 10 mM hydrogen peroxide) caused a higher potassium loss from the roots of the 
npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the 
lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. 
The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na+ entry into the root 
tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depo-
larization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, 
NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis.

Key words: ROS, membrane potential, oxidative stress, potassium fluxes, proton fluxes, salinity, salicylic acid, sodium fluxes, 
viability staining.

Introduction

Soil salinity is one of the major abiotic stresses that threaten 
sustainable food production worldwide. About 831 mil-
lion ha of land is affected by natural salinization worldwide 

(Rengasamy, 2006). In addition, secondary salinization, 
resulting from poor irrigation and/or drainage practices, 
affects more than 50% of productive irrigated land globally 
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(Martinez-Beltran and Manzur, 2005), increasing on average 
by up to 0.5 M ha each year. Remediation of salt-affected 
arable lands is very expensive, time consuming, and hard to 
implement on a large scale. Thus, increasing the salt toler-
ance of crop plants through molecular and plant breeding 
approaches is the most attractive and viable option to sus-
tain food production in salt-affected environments (Ondrasek 
et  al., 2011). In this regard, salicylic acid (SA) has gained 
importance as an important signalling phytohormone that 
can marshal salt tolerance in plants (Borsani et  al., 2001; 
Horváth et al., 2007). However, the exact SA signalling cas-
cades during salt stress remain elusive.

Endogenous SA is synthesised from a primary metabo-
lite, chorismate, by two distinct pathways: the phenylalanine 
ammonia-lyase pathway in the cytoplasm, and the isochoris-
mate pathway in the chloroplast (reviewed in Dempsey et al., 
2011; Rivas-San Vicente and Plasencia, 2011). The latter 
pathway is responsible for the bulk of the pathogen-induced 
SA synthesis in diverse plant species (reviewed in Vlot et al., 
2009). An Arabidopsis sid2 (SA induction deficient 2) mutant 
defective in the expression of the isochorismate synthase 
(ICS1) gene is hypersensitive to salt stress (Lee et al., 2010; 
Asensi-Fabado and Munné-Bosch, 2011), implying that this 
pathway is essential for salinity tolerance in plants. In con-
trast, some studies have found that a SA-deficient Arabidopsis 
mutant exhibited higher salinity stress tolerance compared 
with the wild type and SA-hyper-accumulating mutants 
(Borsani et  al., 2001; Cao et  al., 2009; Hao et  al., 2012). 
However, opposite to the aforementioned results were also 
reported by some other authors (Asensi-Fabado and Munné-
Bosch, 2011; Miura et al., 2011). The reason for such discrep-
ancy is due to the use of mutants that were not altered in 
the isochorismate-synthase-mediated SA synthesis causing 
subsequent changes in SA accumulation. Instead, the SA 
levels were altered by SA hydroxylase (NahG) activity, allow-
ing for the possibility that SA signalling might be turned on 
before NahG converts SA into catechol (Borsani et al., 2001). 
Moreover, among the SA biosynthesis pathways, only the 
isochorismate-synthase-mediated SA synthesis pathway is 
stress inducible (see above); hence, it is imperative to evaluate 
specifically the isochorismate-synthase-mediated SA-hyper-
accumulating mutants during salt stress to decipher SA 
signalling.

The Arabidopsis genome contains 25–32 Nudix (nucleoside 
diphosphates linked to moiety X) hydrolases (AtNUDTs) 
that hydrolyse nucleoside derivatives (Kraszewska, 2008); 
however, the work on estimating the number of Nudix genes 
is ongoing. Among the members, AtNUDT7 (At4g12720) 
was identified as a gene induced by multiple stresses, includ-
ing salinity (Jambunathan and Mahalingam, 2006), and its 
knockout mutant, nudt7-1 (SALK_046441; formerly known 
as growth factor gene 1; hereafter described as nudt7) was 
found to have three- to four-fold higher concentration of SA 
than the wild type under control growth conditions (Bartsch 
et al., 2006; Straus et al., 2010; Wang et al., 2012). This SA 
concentration increase is absent in the double mutant nudt7 
sid2-1 (Bartsch et  al., 2006; Straus et  al., 2010), suggesting 
that isochorismate-synthase-mediated SA biosynthesis is 

responsible for high SA in nudt7 mutant. Hence, characteri-
zation of nudt7 mutant under salt stress may be a useful tool 
to answer whether isochorismate-synthase-mediated SA bio-
synthesis and SA accumulation are essential for salt tolerance 
in plants.

To activate a defence response, SA should bind to some 
specific receptors. The NPR1 (non-expresser of pathogene-
sis-related gene 1) protein was identified as one of these (Wu 
et al., 2012). Simultaneous studies revealed that SA also binds 
with NPR1 prologues NPR3 and NPR4, which in turn trig-
ger the reduction of inactive oligomeric NPR1 into active 
monomeric NPR1 (a master regulator of SA-induced defence 
genes) in the cytoplasm (Fu et  al., 2012). The monomeric 
NPR1 enters the nucleus and functions as a transcriptional 
co-activator of defence genes (Attaran and He, 2012; Fu 
et al., 2012). Microarray analysis in Arabidopsis reported that 
among SA-induced defence genes, more than 90 percent were 
NPR1-dependent genes (Wang et  al., 2006; Blanco et  al., 
2009). In particular, the Atnudt7 mutant has been reported 
to mediate both NPR1-dependent and NPR1-independent 
defence response against pathogens (Ge et  al., 2007). 
Moreover, defence genes that control programmed cell death 
and osmotic and oxidative stress tolerance (all important for 
salt tolerance) fall under either pathway (Blanco et al., 2009).

Recently, an Arabidopsis NPR1 knockout mutant (npr1-1) 
accumulated SA upon salt stress and showed enhanced salt 
tolerance (Hao et al., 2012). On the other hand, an NPR1-
hyper-accumulating Arabidopsis double mutant (npr3npr4) 
failed to undergo programmed cell death (Attaran and He, 
2012; Fu et  al., 2012), suggesting NPR1-mediated preven-
tion of programmed cell death may be beneficial for salt tol-
erance. Overall, it seems that salt tolerance in plants can be 
controlled by both NPR1-independent and NPR1-dependent 
mechanisms. Comparison of a nudt7 mutant (which has both 
constitutively expressed NPR1-independent and NPR1-
dependent SA-mediated pathways) with a NPR1 knockout 
mutant (without SA-mediated NPR1-dependent pathway) 
will pave the way for characterizing a SA-mediated defence 
response against salt stress.

Salt stress increases the production of various forms of reac-
tive oxygen species (ROS) namely superoxide (O2

−), singlet 
oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radi-
cal (˙OH) in plants (reviewed in Parida and Das, 2005). Some 
of these ROS species (˙OH, O2

−, and H2O2) can induce K+ 
loss via ROS-activated channels and trigger programmed cell 
death during salt stress (e.g Shabala et al., 2007; Demidchik 
et al., 2010; Poór et al., 2012; Tran et al., 2013). Several inde-
pendent studies confirmed that Atnudt7 mutant participated 
in redox homeostasis maintenance (Ge et al., 2007; Ishikawa 
et al., 2009; Jambunathan et al., 2010; Straus et al., 2010) and 
delayed programmed cell death (Straus et al., 2010). However, 
it needs to be tested whether delayed programmed cell death 
in the nudt7 mutant is due to prevention of K+ loss through 
ROS-activated channels. Exploring this issue was one of the 
aims of this study.

The present study hypothesized that the elevated SA con-
centration may mediate adaptive responses against salt and 
oxidative stresses through both NPR1-independent and 
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NPR1-dependent pathways. This hypothesis was tested by 
characterizing roots of Arabidopsis mutants, namely nudt7, 
and npr1-5 under saline and oxidative stresses. The nudt7 
contains the constitutively expressed SA-mediated NPR1-
independent and NPR1-dependent defence genes, whereas 
npr1-5 (formerly known as sai1, salicylic acid-insensitive1), is 
a NPR1-knockout mutant without the SA-mediated NPR1-
dependent defence response (Shah et al., 1997; Shah et al., 
1999). The reported results confirm that SA-mediated salt and 
oxidative stress tolerance is NPR1-dependent. Particularly, 
NPR1-dependent SA signalling helps plants to (i) prevent 
Na+ loading into root tissue and its subsequent transport 
into shoots, and (ii) retain K+ both in the roots and shoots 
by controlling K+ loss through depolarization-activated out-
ward-rectifying K+ channels (KOR) and ROS-activated non-
selective cation channels (NSCC).

Materials and methods

Plant material
Seeds of Arabidopsis thaliana L. wild type (Col-0) and mutant seeds 
of loss-of-function of NPR1 gene npr1-5 (Salk_CS3724, Col-0) and 
NUDT7 gene nudt7 (Salk_046441, Col-0) were obtained from the 
Arabidopsis Biological Resource Centre (http://www.Arabidopsis.
org/abrc/). Arabidopsis seeds were surface sterilized with 1 % v/v 
sodium hypochlorite (commercial Bleach) plus 0.01 % v/v Triton 
(wetting agent) for 10 min followed by at least three rinses with ster-
ile deionized water.

Long-term growth experiments
For genotype comparison, 15 surface-sterilized seeds of each geno-
type (Col-0, nudt7, and npr1-5) were sown on the surface of 90-mm 
Petri dishes containing solid 0.35 % w/v phytogel, full strength 
Murashige and Skoog medium (MS; Sigma-Aldrich, Castle Hill, 
NSW, Australia), 1% w/v sucrose, and various concentrations of 
NaCl (0, 50, 100, or 150 mM). Media pH was adjusted to 5.7 by 
adding either KOH or HCl. The Petri dishes were divided into three 
equal parts to accommodate three genotypes per dish (Fig. 1). The 
Petri dishes containing seeds were sealed with Parafilm strips, kept 
at 4  °C for 2 d, and then transferred into a growth chamber with 
16/8 h day/night photoperiod, 150 µmol m–2 s–1 photon flux density 
and 23 °C temperature. The Petri dishes were placed in a horizontal 
position, allowing the roots to grow through the phytogel MS media 
for 25 d. To assess radicle emergence during salt stress, Arabidopsis 
seeds were sown on the MS media containing 150 mM NaCl. Seeds 
were then vernalized (as above), and the germination percentage was 
assessed after 7 d in the growth chamber. These experiments were 
repeated at least twice, with four replicates each time.

At the end of the experiment, plants were harvested and thor-
oughly rinsed with ice-cold 0.5 mM CaSO4 solution; excess water 
was removed by blotting shoots with paper towels, and fresh weight 
was measured immediately. Plants were then dried at 65 °C for 2 d 
in a Unitherm Dryer (Birmingham, UK) and weighed. Shoot water 
content (%) was calculated as the difference between fresh and dry 
weight.

Short-term experiments
Surface-sterilized seeds were sown on the surface of 90-mm Petri 
dishes containing 0.4 % w/v agar, 1.0 mM KCl plus 0.1 mM CaCl2 at 
pH 5.7 (Jayakannan et al., 2011; Jayakannan et al., 2013). The Petri 
dishes containing seeds were sealed, vernalized, and grown under 
controlled conditions as described above. In the short-term experi-
ments, the Petri dishes were placed vertically, allowing the roots to 

grow down along the agar surface without penetrating it, but being 
anchored in it via root hairs. The 4- to 5-day-old seedlings were used 
for all the short-term experiments (measurements of ion fluxes, 
membrane potential, and root viability).

Ion flux measurements
The Microelectrode Ion Flux Estimation (MIFETM, University of 
Tasmania, Hobart, Australia) technique was used to measure net 
fluxes of H+, K+, and Na+. The principles and methods of this 
MIFETM technique can be found in Newman (2001). The details 
pertinent to microelectrode fabrication, conditioning, and calibra-
tion were detailed in previous publications (Jayakannan et al., 2011; 
Bose et al., 2013; Jayakannan et al., 2013).

Preparation of Arabidopsis seedlings for MIFE measurements
The roots of an intact Arabidopsis seedling were immobilized and 
conditioned in a Petri dish containing 30 ml of BSM (basal salt 
medium; 1 mM KCl and 0.1 mM CaCl2, pH 5.5) for at least 30 min 
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Fig. 1. Growth and radicle emergence of Arabidopsis thaliana grown 
in full-strength MS medium with 2% w/v phytogel infused with different 
concentration of salt. (A–C) Photographs of radicle emergence in (i) Col-0, (ii) 
nudt7, (iii) npr1-5 at the indicated NaCl concentrations 7 d after sowing. (D) 
Quantification of radicle emergence out of 20 seeds shown under 150 mM 
NaCl treatment at 7 d after sowing. (E) Fresh weight of the three genotypes 
under indicated NaCl concentrations 2 weeks after sowing. Each bar in 
the graphs represents mean±SEM. Different letters in bar graphs indicate 
significant differences. (This figure is available in colour at JXB online.)
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before commencing MIFE measurements (Jayakannan et al., 2011; 
Jayakannan et  al., 2013). The Petri dish was then placed on the 
microscope stage of the MIFE system. Electrodes were positioned 
at either the distal elongation zone (180–300 µm from the root cap) 
or mature root zone (>2 mm from the root cap) as described in Bose 
et al. (2010a, b). Ion fluxes were measured under control conditions 
for 5 min before treatment application. Treatments (100 mM NaCl; 
1 mM copper-ascorbate mix; 1 or 10 mM hydrogen peroxide) were 
applied by pipetting the required volume of treatment stock solu-
tions into the bathing solution in the Petri dish. After addition, the 
bathing solution was thoroughly mixed by sucking into, and expel-
ling from, a pipette approximately five times. The bathing solution 
was allowed to equilibrate for 1 min before recording ion fluxes 
under treatment conditions; hence, the time required for the stock 
addition and the establishment of the diffusion gradients is about 40 
s (Shabala and Hariadi, 2005). Accordingly, flux measurements dur-
ing the first minute after treatment applications were discarded from 
the analysis and appear as gaps in the figures. Transient flux kinetics 
of K+, H+, and Na+ were measured for specified times.

Membrane potential measurements
The roots of  an intact Arabidopsis seedling were gently secured 
in a measuring chamber in a horizontal position using a Parafilm 
strip and small plastic blocks. The seedling was then placed in a 
10-ml Perspex measuring chamber filled with 7 ml of  BSM and 
pre-conditioned as described above. The specific details pertinent 
to microelectrode preparation, impalement into the epidermal cells 
of  mature root zone, and data recording can be found in previous 
publications (Bose et al., 2013; Jayakannan et al., 2013). Once a 
stable membrane potential measurement was obtained for 1 min, 
salt treatment (100 mM NaCl) was imposed. The transient mem-
brane potential kinetics was recorded up to 30 min after treatment 
commencement. The membrane potential values of  eight indi-
vidual seedlings were averaged for every genotype and treatment 
combination.

Viability staining
Root viability was assessed by fluorescein diacetate/propidium 
iodide double staining method as described in a previous publica-
tion (Bose et al., 2014).

In vivo hydrogen peroxide imaging
The H2O2 imaging of root tissue was done by following the stand-
ard procedure adopted in a previous publication (Bose et al., 2014). 
The 4- to 5-day-old Arabidopsis seedlings were treated with 100 mM 
NaCl in BSM background. At 4 h and 24 h after salt treatment, the 
roots were washed with 10 mM Tris-HCl buffer and incubated in 
25 µM 2′,7′-dichlorofluorescein diacetate (DCF-DA, D6883; Sigma) 
for 30 min at 30  °C. Following DCF-DA incubation, the amount 
of H2O2 produced in roots was assessed by visualizing fluores-
cence intensity using a confocal microscope (Leica TCS SP5, Leica 
Microsystems). The Argon, visible laser power was set at 20%. 
Given that the H2O2 fluorescence intensity at 4 h was stronger than 
at 24 h time point, two different settings (and, hence, two different 
sets of controls) were used to resolve the signal. The acousto-optic 
tuneable filter (AOTF-488) was set at 10 % and 40 %, and the hybrid 
detector (HyD) gain was set at 19 and 120 for 4-h and 24-h time 
points, respectively. The software Leica Application Suite Advanced 
Fluorescence (LAS AF, Leica Microsystems) used to acquire images, 
and ImageJ (National Institutes of Health) was used to calculate the 
mean fluorescence intensity.

Statistical analysis
Data are reported as means±SEM. Statistical significance of mean 
values was determined using the standard LSD test at P≤0.05 level.

Results

nudt7 and npr1-5 plants differ in salt sensitivity

Similar to a previous report (Bose et al., 2013), 2 weeks of salt 
stress had a strong effect on plant growth, with fresh mass, 
dry mass, and water content all declining significantly and in 
a dose-dependent manner for all three Arabidopsis genotypes 
tested (Fig. 1 and Supplementary Fig. S1). This decline was 
smallest in nudt7 plants, followed by the wild type, and then by 
npr1-5 (most sensitive to salinity; Fig. 1 and Supplementary 
Fig. S1). Furthermore, under control conditions (i.e. no salt), 
the fresh (Fig. 1) and dry mass (Supplementary Fig. S1) were 
slightly lower in npr1-5 plants than the wild type and nudt7, 
but the difference was not statistically significant. At 150 mM 
NaCl, salt-sensitive npr1-5 had fewer radicles emerging than 
nudt7 and the wild type (Fig. 1).

The extent of salt-induced loss of cell viability was 
more severe in npr1-5 than nudt7 roots

To determine the effect of salinity on root cell viability, 4- to 
5-day-old Arabidopsis seedlings were exposed to 100 mM NaCl 
for 1 or 12 h and then double stained with fluorescein diacetate–
propidium iodide (FDA–PI; Fig.  2). Under the fluorescence 
microscope, viable cells fluoresced bright green, whereas dead/
damaged cells fluoresced bright red (Fig. 2). The Arabidopsis 
seedlings incubated in BSM alone (control) showed green fluo-
rescence even after 12 h, suggesting the control roots were via-
ble and healthy in our experimental solutions (Fig. 2).

An hour of salt stress severely affected the viability of npr1-
5 root cells in the elongation and meristematic regions, with 
the wild-type roots also showing a few dead cells in the elon-
gation zone (Fig. 2). However, no damage was observed in the 
roots of nudt7 mutant (Fig. 2). Prolonged salt exposure (12 h) 
increased the extent of the damage in the following order 
npr1-5 > Col-0 > nudt7. These results were consistent with the 
long-term salinity exposure data (Fig. 1 and Supplementary 
Fig. S1) and imply that roots of npr1-5 were sensitive to salt 
stress, whereas nudt7 was salt-tolerant.

NaCl-induced ion flux responses varied between nudt7 
and npr1-5

Consistent with our previous observations on Arabidopsis 
roots (Jayakannan et  al., 2011; Bose et  al., 2013), salin-
ity (100 mM NaCl) caused significant changes in net ion 
fluxes measured from the elongation and mature zones of 
Arabidopsis roots (Figs 3, 4 and 5).

Acute salt stress caused significant K+ efflux from elonga-
tion and mature root zones in all genotypes tested (Fig. 3). 
The peak K+ efflux was reached within 2 min after imposition 
of salt stress, followed by gradual recovery and stabilization 
20 min later. Nearly a 4-fold difference in peak K+ fluxes was 
found between the elongation and the mature root zones in 
each Arabidopsis genotype (Fig. 3), implying the root elon-
gation zone is more sensitive to salt stress than the mature 
root zone.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru528/-/DC1
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Among the three genotypes, the highest NaCl-induced K+ 
efflux was measured from npr1-5 roots in both the elongation 
and the mature root zones (–9269 ± 574 and –2096 ± 367 nmol 
m–2 s–1, respectively), whereas nudt7 showed about a 3-fold 
smaller peak K+ efflux (Fig. 3). The wild type had a peak K+ 
efflux in between the two mutants. In addition, the average K+ 
efflux over the first 60 min of salt treatment was about 9-fold 
(elongation zone) and 6-fold (mature zone) higher in salt-sen-
sitive npr1-5 than salt-tolerant nudt7 mutant (Fig. 3 insets).

Salinity-induced H+ fluxes also showed genotypic differ-
ences, in both the elongation and mature root zones (Fig. 4). 
Under control conditions (no salt), a significantly higher 
net H+ influx was observed in the root elongation zone of 
the npr1-5 mutant in comparison with Col-0 and the nudt7 
mutant (Fig. 4 top panel). Addition of 100 mM NaCl caused 
a significant increase in net H+ influx in the elongation zone 
of npr1-5 (58 ± 8.5  nmol m–2 s–1) and Col-0 (7.4 ± 4.4  nmol 
m–2 s–1; Fig. 4 top panel). By contrast, 100 mM NaCl addi-
tion induced an initial H+ efflux in the elongation zone of 
the nudt7 mutant followed by recovery towards the steady 
state before salt treatment (Fig. 4 top panel). In the mature 
root zone (Fig. 4, bottom panel), NaCl increased H+ influx 
for all three genotypes with the following magnitude npr1-5 
> Col-0 > nudt7 (Fig. 4, bottom panel). Similarly, the aver-
age H+ influx (over the first 60 min after salt application) at 

both the elongation and mature root zones was highest in 
the npr1-5 mutant followed by Col-0 and was least in nudt7 
(Fig. 4 insets).

Na+ fluxes were measured in the mature root zone of the 
three Arabidopsis genotypes (Fig.  5A) using an improved 
Na+-selective resin (Jayakannan et  al., 2011). Acute salt 
stress caused an immediate Na+ influx in Col-0 and npr1-5 
(Fig. 5A). The peak Na+ influx was observed within minutes 
of salt addition and declined thereafter, but remained positive 
(influx) throughout the measurement period in npr1-5 and the 
wild type, while hovering around zero in nudt7 (Fig. 5A). The 
average Na+ flux measured during 1-h salt stress was about 
28-fold higher in npr1-5 than nudt7 (Fig. 5A inset).

nudt7 and npr1-5 differ in the magnitude of NaCl-
induced depolarization of the plasma membrane

The resting membrane potential in the mature zones of 
Arabidopsis roots was not significantly different among the 
three genotypes under control conditions (Fig. 5B). Adding 
100 mM NaCl to the bathing medium resulted in highly 
significant (P≤0.01) membrane depolarization in all three 
Arabidopsis genotypes tested. The time-course of  membrane 
potential changes (Fig.  5B) mirrored both Na+ (Fig.  5a) 
and K+ flux (Fig.  3) data, with the maximum membrane 
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Fig. 2. Viability staining images of 4- to 5-day-old Arabidopsis thaliana 
roots exposed to 100 mM salt stress. The seedlings were grown in basal 
salt medium (BSM) containing 0.4% (w/v) agar for 4–5 d, then pre-
treated with 100 mM NaCl in BSM for 1 or 12 h, and double stained with 
fluorescein diacetate–propidium iodide for imaging under a fluorescence 
microscope. The control plants were treated only with BSM; the image 
shown is the control plant after 12 h in BSM. (This figure is available in 
colour at JXB online.)
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depolarization observed within minutes of  NaCl treatment; 
approximately at the same time as the peak Na+ influx and 
K+ efflux (the magnitude of  the former being greater than 
that of  the latter) (Figs 3 and 5). Initial depolarization was 
followed by a substantial (10–20 mV) membrane repolari-
zation, with the membrane potential reaching new steady-
state values in all three Arabidopsis genotypes 20–30 min 
after salt application (Fig.  5B). Among the genotypes, the 
salt-sensitive npr1-5 showed the highest magnitude of  mem-
brane depolarization (to –15 ± 1 mV), whereas salt-tolerant 
nudt7 showed the least membrane depolarization (to –30 ± 1 
mV) (Fig. 5B). A ≈25mV difference between nudt7 and npr1-
5 plants was maintained throughout the measurement period 
(Fig. 5B).

Salt-induced H2O2 production was higher in nudt7 
than npr1-5

In vivo imaging of H2O2 production in root tissue was done 
4 h and 24 h after 100 mM NaCl addition (Fig. 6). The salt-
induced H2O2 production was several folds higher at 4 h than 
24 h in all the genotypes tested, necessitating specific settings 
(described in the Materials and methods section) to acquire 
images for each time point to avoid oversaturation and pho-
tobleaching. Among the genotypes, mutant npr1-5 with SA 

signalling blockage had lower capacity to increase H2O2 pro-
duction under salt stress, whereas nudt7 mutant showed sus-
tained elevation in H2O2 production under salt stress at both 
time points.

Shoot Na and K concentrations differed between 
nudt7 and npr1-5 during long-term salt exposure

As expected, 25 d of growth in NaCl-supplemented MS media 
caused a substantial increase in the shoot Na+ concentration 
and a decrease in the shoot K+ concentration in all three 
Arabidopsis genotypes tested (Fig. 7). Under salt stress, nudt7 
showed the lowest Na+ concentration in shoots followed by 
the wild type, whereas the npr1-5 mutant had the highest con-
centration (Fig. 7A). In contrast, the shoot K+ concentration 
was the highest in the nudt7 mutant followed by the wild type 
and was lowest in the npr1-5 mutant (Fig. 7B) under either 50 
or 100 mM NaCl stress.

nudt7 and npr1-5 mutants vary in their oxidative stress 
tolerance

The viability staining was used to evaluate the responses 
of  Arabidopsis genotypes during oxidative stress by 
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treating 4- to 5-day-old seedlings in a hydroxyl-radical-
producing medium (1 mM copper-ascorbate or 10 mM 
H2O2) for 1 h (Fig.  8). Fluorescence microscopy showed 
that 1-h exposure to hydroxyl radicals caused severe dam-
age to the roots of  npr1-5 and less so to the wild type Col-0 
(Fig. 8). No damage was found in nudt7 mutant (Fig. 8). 
Furthermore, in npr1-5 treated with copper-ascorbate 
the damage was detected in the root tips as well as in the 
mature root part, whereas in Col-0 plants only the mature 
zone showed damage symptoms (Fig.  8). With respect 
to H2O2, the damage was smaller in Col-0 and nudt7 in 
comparison to npr1-5 (Fig. 8). The damage was detected 
only in the cortex of  the mature roots of  Col-0 and nudt7 
(Fig. 8), whereas the whole roots were severely affected by 
H2O2 stress in npr1-5.

Net ion fluxes influenced by oxidative stress differ 
between nudt7 and npr1-5 mutants

Application of 1 mM of hydroxyl-radical-generating cop-
per-ascorbate mix caused a large K+ efflux from the mature 
root zone of all three Arabidopsis genotypes (Fig. 9A). This 
hydroxyl-radical-induced K+ efflux was not instantaneous, 
but increased gradually over time, reaching a peak value 5 min 
after the commencement of the oxidative stress treatment in 
Col-0 and nudt7 and 10 min for npr1-5 (Fig. 9A). The magni-
tude of K+ efflux was the lowest in nudt7 and the highest in 
npr1-5 (Fig. 9A; 2-fold difference; significant at P≤0.05). The 
K+ flux gradually recovered after reaching the peak, although 
it remained negative for the treatment duration in all three 
Arabidopsis genotypes (Fig.  9A). The average K+ efflux 
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measured over a 60-min Cu-ascorbate treatment period was 
2-fold higher in npr1-5 than nudt7 (Fig. 9B).

The average K+ fluxes during 1-h exposure to either 1 or 
10 mM H2O2 treatment revealed no significant dose-depend-
ency in Arabidopsis genotypes nudt7 and Col-0 (Fig.  9C). 
However, the npr1-5 mutant had 2-fold greater K+ efflux at 
10 than at 1 mM H2O2 (Fig. 9C). This mutant had greater K+ 
efflux than nudt7 and Col-0 regardless of the H2O2 concentra-
tion used (Fig. 9C).

Though the initial H+ flux from the mature root zone of 
Arabidopsis was higher at 10 mM H2O2 than 1 mM H2O2, the 
steady state H+ flux (from 10 min onwards) is similar for differ-
ent genotypes exposed to either concentration of H2O2 (Fig. 10). 
In general, the salt-sensitive npr1-5 mutant showed significantly 
higher (4- to 5-fold) H+ influx compared with the other two gen-
otypes (nudt7 and Col-0) in either 1 or 10 mM H2O2 (Fig. 10).

Discussion

The NPR1-dependent SA signalling is pivotal for Na+ 
exclusion from roots and shoots

Maintaining relatively low Na+ concentration in shoots is an 
important trait for salt tolerance in glycophytes (Colmer et al., 
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2005; Munns and Tester, 2008). The main mechanisms employed 
by the glycophytes to minimize Na+ accumulation in shoots are 
linked to the enhanced capacity of plants to (i) restrict the ini-
tial entry of Na+ ions into the root tissue, (ii) excrete Na+ from 
root tissue back into the rhizosphere, (iii) sequester Na+ inside 
the root vacuoles, and (iv) reduce the long-distance transport of 
Na+ into the shoots (Cuin et al., 2011). Given that Arabidopsis 
is a glycophyte, shoot Na+ concentration analysis and root Na+ 
flux measurements were employed to ascertain the operation of 
the above mechanisms in two SA-signalling mutants. The npr1-
5 mutant lacking NPR1-dependent SA-signalling recorded 
the highest Na+ influx into root tissue in comparison with the 
wild type and nudt7 mutant (Fig. 5A). If npr1-5 was efficient in 
sequestering Na+ in root vacuoles or excluding Na+ out of root 
cells, there would have been significant improvement in growth 
accompanied by reduction in the shoot Na+ concentration. 
However, poor growth (Fig. 1 and Supplementary Fig. S1) and 
viability of root cells (Fig. 2) along with the highest shoot Na+ 
concentration (Fig. 7A) in comparison with the wild type and 
nudt7 mutant implied that the npr1-5 mutant was defective in 

preventing the entry of Na+ into root tissue and its subsequent 
transport into the shoots.

In contrast to npr1-5, the nudt7 mutant had the lowest Na+ 
influx into root tissue (Fig. 5a). This may be attributable to either 
decreased Na+ entry or enhanced Na+ extrusion via H+-ATPase-
energized SOS1 (a Na+/H+ exchanger) activity in the plasma 
membrane (Cuin et al., 2011). Four lines of evidence favour the 
latter explanation for the nudt7 mutant. First, the initial Na+ entry 
into the epidermis of root tissue during acute salt stress is ther-
modynamically passive and is poorly controlled in glycophytes 
(Tester and Davenport, 2003). Second, the inherent stability of 
SOS1 mRNA is poor (with a half-life of only 10 min), and it was 
shown that exogenous H2O2 application increased the stability of 
SOS1 in a rapid (within 30 min) concentration-dependent man-
ner (Chung et al., 2008). If this is the case, sustained elevation of 
H2O2 production in the root tissue of nudt7 mutant (Fig. 6) dur-
ing salt stress is expected to result in improved SOS1 mRNA sta-
bility. Thirdly, SOS1 transcripts were found to be higher in roots 
of the salt-tolerant mutant over-expressing haem oxygenase 
(EC 1.14.99.3) (Bose et al., 2013). Indeed, a 3-fold higher induc-
tion of putative haem oxygenase (At1g69720) was found in the 
nudt7 mutant when grown under nutrient stress (Jambunathan 
et al., 2010). Finally, the nudt7 mutant showed either H+ efflux or 
reduced net H+ influx during acute salt stress (Fig. 4) in compari-
son with the wild type and npr1-5 mutant, which is usually the 
result of enhanced H+-ATPase activity fuelling SOS1 operation 
(Bose et al., 2013; Jayakannan et al., 2013). Overall, the above 
results suggest that the nudt7 mutant has enhanced capacity to 
decrease both the loading of Na+ into the root tissue and the 
transport of Na+ into the shoot (Fig. 7A).

The NPR1-dependent SA signalling assists plants 
in retaining K+ during salt stress by controlling both 
depolarization-activated KOR and ROS-activated 
NSCC channels

Salinity stress has ionic, hyperosmotic, and oxidative stress 
components that severely hamper plant growth and produc-
tivity. Apart from hyperosmotic stress, both the ionic stress 
through depolarization-activated KOR and the oxidative 
stress through ROS-activated non-selective cation channels 
(NSCC) exacerbate K+ loss, thereby depleting the cytosolic 
K+ pool available for metabolic functions, which eventually 
leads to cell death (Shabala and Cuin, 2008; Shabala, 2009). 
Hence, the magnitude of salt-induced K+ loss can be used as 
a measure of salt tolerance of diverse plant species, including 
Arabidopsis (Bose et al., 2013; Jayakannan et al., 2013). Acute 
salt stress in the study presented here resulted (as expected) in 
a K+ loss from both the elongation and mature root zones of 
all three genotypes tested (Fig. 3). However, the salt-induced 
K+ loss was lowest in the nudt7 mutant and highest in the 
npr1-5 mutant (Fig. 3), suggesting NPR1-dependent SA sig-
nalling is critical for decreasing the K+ loss during salt stress.

In Arabidopsis, comparison of the depolarization-acti-
vated KOR knock-out mutant gork1-1 with rbhoD (a mutant 
lacking ROS production via NADPH oxidase) during acute 
100 mM NaCl stress revealed that 3/4 of K+ loss were medi-
ated by depolarization-activated KOR and the remaining 
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1/4 through H2O2-activated channels (Jayakannan et  al., 
2013). Superoxide (Tran et  al., 2013) and hydroxyl radicals 
(Demidchik et  al., 2010) can also induce K+ loss through 
the GORK channel. Thus, the contrasting capacity of nudt7 
and npr1-5 mutants to retain K+ in roots (Fig. 3) and shoots 
(Fig. 7B) during salt stress may be underpinned by their dif-
ferential K+ loss through KOR and/or ROS-activated NSCC 
channels.

The entry of positively charged Na+ (Fig.  5A) and H+ 
(Fig.  4) ions into root tissue during acute 100 mM NaCl 
stress resulted in net depolarization of the plasma membrane 
in all three genotypes tested (Fig.  5b), implying that the 
bulk of the NaCl-induced K+ loss (Fig. 3) might have been 
through depolarization-activated KOR channels. Among the 
genotypes, H+ and Na+ uptake (Figs 4, 5A) as well as NaCl-
induced membrane depolarization were highest in the npr1-5 
mutant followed by the wild type, and were lowest in the nudt7 
mutant. Moreover, approximately a 15–25 mV difference 
was observed between npr1-5 and nudt7 mutants (the latter 
being less depolarized) throughout the measurement period 
(Fig. 5B). Such a difference in depolarization voltage may be 
associated with a lower NaCl-induced K+ loss in nudt7 com-
pared with npr1-5. It is evident that NPR1-mediated SA sig-
nalling plays a key role in regulating the membrane potential 
during salt stress.

An increase in the production of superoxide (Borsani et al., 
2001), hydrogen peroxide (Xie et al., 2011), and hydroxyl rad-
icals (Demidchik et al., 2010) was noted in Arabidopsis roots 
exposed to salt stress. These ROS species can promote K+ loss 
through NSCC channels (Demidchik et  al., 2003; Zepeda-
Jazo et al., 2011) and/or through KOR channels (Demidchik 
et al., 2010; Tran et al., 2013). The results here (Fig. 9) showed 
that hydroxyl radicals caused a severe K+ loss (about 15- to 
20-fold higher) compared with up to 10 mM H2O2. Among 
the genotypes, the npr1-5 mutant showed a higher K+ loss 
than the wild type and nudt7 mutant under hydroxyl radical 
and hydrogen peroxide treatments (Fig. 9), suggesting npr1-5 
was more sensitive to these ROS species in comparison with 
the wild type and nudt7 mutant. The viability staining results 
confirmed this, whereby a 1-h treatment with either hydroxyl 
radicals or 10 mM hydrogen peroxide affected root cells more 
severely in npr1-5 than in the nudt7 mutant (Fig. 8). The nudt7 
mutant was able to increase the salt-induced H2O2 produc-
tion in root tissue over a 24 h period, but the npr1-5 mutant 
was not (Fig. 6) suggesting NPR1 is a key regulator of salt-
induced H2O2 production in plants. Because the nudt7 mutant 
produced more ROS than wild type and npr1-5 during salt 
stress, it is reasonable to assume that H2O2-induced K+ efflux 
would be greater in nudt7. However, in the exogenous H2O2 
treatment (1 and 10 mM), the K+ efflux of nudt7 mutant 
did not differ from the wild type, and was lower than in the 
npr1-5 mutant (Fig. 9C). This suggests that the presence of 
an NPR1-mediated SA signalling component in the nudt7 
mutant makes K+-efflux transporters insensitive to elevated 
H2O2 concentration during salt stress. Overall, these results 
provide evidence that (i) NPR1-mediated SA signalling is 
pivotal for H2O2 production during salt stress, and also for 
decreasing K+ loss through the NSCC and KOR channels 

activated by hydrogen peroxide and hydroxyl radicals, and 
(ii) the nudt7 mutant shows no response to hydrogen peroxide 
and is tolerant to hydroxyl radicals.

In summary, an npr1-5 mutant lacking the NPR1-dependent 
SA signalling was unable to control both the entry of Na+ into 
roots and its long-distance transport into the shoot, and to pre-
vent K+ loss via depolarization-activated KOR and the ROS-
activated NSCC channels during salt stress. As a result, the 
npr1-5 mutant was sensitive to salt stress. On the other hand, 
the constitutive expression of NPR1-dependent SA signalling 
enhanced the salt tolerance of a nudt7 mutant by controlling 
Na+ entry into the root tissue and subsequent transport to the 
shoot, as well as minimizing K+ loss during salt stress. In con-
clusion, NPR1-dependent SA signalling is a crucial compo-
nent of salt and oxidative stress tolerance in Arabidopsis.

Supplementary data

Supplementary data are available at JXB online
Figure S1. Effect of salt stress on dry weight and water 

content of Arabidopsis thaliana seedlings grown in the full-
strength MS medium with 2% w/v phytogel for two weeks.
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