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Abstract We prove that the Kloosterman sum S(1, 1; c) changes sign infinitely often
as c runs over squarefree moduli with at most 10 prime factors, which improves the
previous results of Fouvry and Michel, Sivak-Fischler and Matomäki, replacing 10 by
23, 18 and 15, respectively. The method combines the Selberg sieve, equidistribution
of Kloosterman sums and spectral theory of automorphic forms.
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1 Introduction

In this paper, we are interested in the sign changes of Kloosterman sums, defined by

S(m, n; c) =
∑∗

a(mod c)

e

(
ma + na

c

)

for each positive integer c and integers m, n, where aa ≡ 1 (mod c). There is much
literature investigating the Kloosterman sums because of their profound applications
in analytic number theory and automorphic forms as well as their own mysterious
nature.

A well-known estimate for individual Kloosterman sums due to Weil [15] asserts
that

|S(m, n; p)| � 2p
1
2 (1)

for each prime p with (m, n, p) = 1. More generally, one has

|S(m, n; c)| � c
1
2 (m, n, c)

1
2 τ(c),

where τ(c) is the divisor function; in fact, Estermann [2] showed the slightly stronger
estimate

|S(m, n; c)| � c
1
2 (m, n, c)

1
2 2ω(c) (2)

for 32 � c, where ω(c) denotes the number of distinct prime factors of c.
Kloosterman sums have long been basic tools in the analytic theory of automorphic

forms; for example, they appear in the Petersson trace formula for the average of
products of Fourier coefficients of holomorphic modular forms. In return, the theory
of automorphic forms can be used to study Kloostermans sums. The precise link was
first established by Kuznetsov [9], who, by means of his trace formula, made progress
on a conjecture of Linnik and Selberg that

∑

c�x

1

c
S(m, n; c) = Om,n,ε(xε) (3)
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Sign changes of Kloosterman sums 143

for any ε > 0. Kuznetsov proved that (3) is valid for any ε > 1/6, while applying (2)
to each summand gives (3) only for ε > 1/2.

One might expect that Kuznetsov’s estimate is mainly due to the oscillations of
Kloosterman sums as c varies amongst the consecutive integers, but one had to wait
for the work of Michel [11], who was able to confirm this phenomenon by proving
that there must be a positive portion of prime pairs (p, q) such that |S(1, 1; pq)| �
0.64

√
pq . Hence it is natural to investigate the sign changes of Kloosterman sums

when c varies over thinner set, for instance, the primes.
As an analog of the celebrated Sato–Tate conjecture for elliptic curves, Katz [7]

formulated a conjecture for the equidistribution of the Kloosterman sum angle θp(a),
which is defined as

S(a, 1; p) = 2p
1
2 cos θp(a)

by means of (1).

Conjecture 1 (Katz) For any f ∈ C([0, π ]) and nonzero integer a, we have

lim
x→+∞

1

π(x)

∑

p�x

f (θp(a)) = 2

π

π∫

0

f (θ) sin2 θdθ.

This conjecture predicts that for such an a the angles θp(a) equidistribute with
respect to the Sato–Tate measure

μST = 2

π
sin2 θdθ

as p runs over all the primes; it would then follow immediately that S(1, 1; p) changes
sign infinitely often as p varies.

There are many facts that support Conjecture 1. For instance, Katz himself [8]
proved that {θp(a) : a ∈ F×

p } equidistributes with respect to the Sato–Tate measure
μST as p tends to infinity; we will come back to this issue in the next section. It is also
known that S(1, 1; c) change signs infinitely often as c runs over positive squarefree
integers with at most 23 prime factors, or more precisely that

|{X < c � 2X : S(1, 1; c) ≷ 0, μ2(c) = 1, ω(c) � 23}| � X

log X
.

This was proved by Fouvry and Michel [4,5] by a pioneering combination and
application of the Selberg sieve, spectral theory of automorphic forms and �-adic
cohomology. The subsequent improvements are due to Sivak-Fischler [13,14] and
Matomäki [10], who reduced 23 to 18 and 15, respectively.

In this paper, we shall present a further improvement on the problem of sign changes.
We would also use the Selberg sieve, but with a modification, inspired by an old idea
of Selberg [12] towards the Twin Prime Conjecture. This will be explained in the next
section.

123



144 P. Xi

The main theorem can be stated as follows.

Theorem 1 There exists an absolute constant c0 > 0 such that for sufficiently large
X > 0,

|{X < c � 2X : S(1, 1; c) ≷ 0, μ2(c) = 1, ω(c) � 10}| � c0
X

log X
.

Notation. Throughout this paper, p is reserved for a prime number; we write e(z) =
e2π i z;μ, ϕ denote the Möbius and Euler functions, respectively, τ denotes the divisor
function, and ω(n) denotes the number of distinct prime divisors of n. Moreover,
(a, b) and [a, b] denote the g.c.d. and l.c.m. of a, b, respectively. Given X � 2, we
set L = log X . We use | · | to denote the cardinality of a set or the absolute value
of a number. We adopt the notation (σ ) to denote the usual contour integral over the
line σ + i t, t ∈ R. We use A to denote a sufficiently large positive number and ε a
sufficiently small positive number, which can be different at each occurrence.

2 Outline of the proof

We prove Theorem 1 by applying the Selberg sieve. Let λ = (λd) be the Selberg sieve
weight given by

⎧
⎪⎨

⎪⎩

λ1 = 1,

|λd | � 1,

λd = 0, ifd >
√

D or μ(d) = 0.

Here
√

D = Xγ exp(−√L) for some γ � 1
4 to be optimized later, and

λd = μ(d)

(
log(

√
D/d)

log
√

D

)k

(4)

for 1 � d �
√

D and k a positive integer to be specialized later.
Let g(x) be a fixed smooth function supported in [1, 2], and its Mellin transform is

defined as

g̃(s) =
+∞∫

0

g(x)xs−1dx .

Integrating by parts, we have

g̃(s) 	 (|s| + 1)−A

for any A � 0.
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Sign changes of Kloosterman sums 145

Our starting point is the following sum

H±(X) =
∑

n

g
( n

X

) |S(1, 1; n)| ± S(1, 1; n)√
n

μ2(n)

(
ρ −

(
k

2

)ω(n))( ∑

d|n
λd

)2

,

(5)

where ρ is a parameter (depending upon k) to be chosen later. Our basic strategy is to
show that there exists some pair (k, ρ) with k � 3 and ρ > 1, such that

H±(X) > 0

for X large enough; it then follows from the definition that there exists n ∈ (X, 2X ]
with

ω(n) �
[

log ρ

log(k/2)

]

for which S(1, 1; n) ≷ 0. More precisely, one can obtain a lower bound for the number
of such n by applying Hölder’s inequality appropriately; this will establish Theorem 1.

From (5), we have

H±(X) � ρH1(X) − 2H2(X) ± ρH3(X),

where

H1(X) =
∑

n

g
( n

X

) |S(1, 1; n)|√
n

μ2(n)

⎛

⎝
∑

d|n
λd

⎞

⎠
2

,

H2(X) =
∑

n

g
( n

X

) |S(1, 1; n)|√
n

μ2(n)

(
k

2

)ω(n)
⎛

⎝
∑

d|n
λd

⎞

⎠
2

,

H3(X) =
∑

n

g
( n

X

) S(1, 1; n)√
n

μ2(n)

⎛

⎝
∑

d|n
λd

⎞

⎠
2

.

We wish to estimate as accurately as possible Hj (X), j = 1, 2, 3. We shall follow
the arguments in [10,14] to obtain a lower bound for H1(X). The tools involved include
the Sato–Tate distribution of Kloosterman sums in prime variables. The investigation
on the upper bound for H2(X) can be reduced to a problem of evaluating a multiple-
integral, where the Cauchy residue theorem can be applied. The estimate for H3(X) is
derived using the spectral theory of automorphic forms, following Fouvry and Michel
[5].

123



146 P. Xi

Proposition 1 For any sufficiently large X, we have

H1(X) � g̃(1)XL−1(1 + o(1))
∑

2�i�5

2i Ai (γ, k)Ci ,

where γ is defined by
√

D = Xγ exp(−√L), Ai (γ, k) is given by (11), (12), (13), and
the constants Ci satisfy C2 � 0.11109, C3 � 0.03557, C4 � 0.01184, C5 � 0.00396.

Proposition 2 For any sufficiently large X, we have

H2(X) � k!2 · Rk(γ ) · g̃(1)XL−1(1 + o(1)),

where γ is defined as above and R is a polynomial given by (20).

Proposition 3 For any sufficiently large X and D = O(X
1
2 exp(−√L)), we have

H3(X) 	 XL−A

for any A > 0.

In order to obtain a positive lower bound for H±(X), it suffices to choose ρ so that

ρH1(X) > 2H2(X) + |ρH3(X)|

for X large enough. For this, it suffices by the above propositions to choose k, γ and
ρ so that

ρ ·
∑

2�i�5

2i Ai (γ, k)ci > 2k!2 · Rk(γ ), 0 < γ � 1

4
.

With the help of Mathematica 9, we check that the choice

k = 6, γ = 1

4
, ρ = 1.5 × 105

satisfies the above condition. We can obtain Theorem 1 since

log ρ

log(k/2)
≈ 10.849.

3 Kloosterman sums: from algebraic to analytic

Kloosterman sums are special kinds of algebraic exponential sums, which are con-
structed through algebraic geometry. Furthermore, Kloosterman sums also appear in
the spectral theory of automorphic forms. We shall employ both aspects of Klooster-
man sums to prove Theorem 1.
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Sign changes of Kloosterman sums 147

3.1 Equidistribution of Kloosterman sums: after Katz and Michel

By the works of Deligne [1] and Katz [8], the function

m �→ S(m, 1; p)√
p

= 2 cos θp(m), m ∈ F×
p

is the Frobenius trace function (restricted to Gm(Fp) = F×
p ) of an �-adic sheaf Kl of

rank 2, pure of weight 0 and determinant 1. This means

2 cos θp(m) = tr(Frobm,Kl).

By the Weyl equidistribution criterion and the Peter–Weyl theorem, the proof of
Katz’s equidistribution theorem reduces to the study of

∑

m∈F
×
p

symk(θp(m)) =
∑

m∈F
×
p

tr(Frobm, symkKl),

where symkKl is the k-th symmetric power of the Kloosterman sheaf Kl (i.e., the
composition of the sheaf Kl with the k-th symmetric power representation of SL2)
and

symk(θ) = sin(k + 1)θ

sin θ
.

Using Deligne’s main theorem, Katz proved that
∣∣∣∣∣∣∣

∑

m∈F
×
p

symk(θp(m))

∣∣∣∣∣∣∣
� 1

2
(k + 1)p

1
2 ; (6)

we refer to Example 13.6 and the preceding theorem in [8] for more details. This
implies that {θp(m) : m ∈ F×

p } equidistributes with respect to the Sato–Tate measure
μST as p → ∞.

We can regard (6) as the square-root cancellation phenomenon for angles of Kloost-
erman sums. Due to the supposed randomness of Kloosterman sums, it is reasonable
to expect a similar phenomenon also for θp(β(m)), where β is a non-constant ratio-
nal function defined over F×

p of fixed degree. In fact, we will use this for the map

β : m �→ m2. In that direction, it is known that
∑

m∈F
×
p

symk(θp(m
2)) 	 p

1
2 , (7)

where the implied constant depends on k polynomially. This estimate has been obtained
implicitly by Michel [11], for whom the relevant sheaf is

symk([−2]∗Kl).
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148 P. Xi

Hence we can conclude from (7) the equidistribution of θp(m2) with respect to the
Sato–Tate measure μST.

3.2 Equidistribution of Kloosterman sums with composite moduli

We have been concerned with the equidistribution of Kloosterman sums of prime
moduli in the preceding arguments. In later applications, we shall also consider the
relevant equidistribution of Kloosterman sums with composite moduli, particularly
the products of distinct primes.

Before stating the equidistribution precisely, we would like to introduce some mea-
sures μ( j) on [−1, 1] which are connected with the classical Sato–Tate measure μST.
They can be defined recursively as follows:

dμ(1)x = 2

π

√
1 − x2dx

and

μ( j) = μ(1) ⊗ μ( j−1), j � 2.

Then

μ(1)([−x, x]) = 4

π

x∫

0

√
1 − t2dt = 2

π
(x

√
1 − x2 + arcsin x)

and

μ( j)([−x, x]) = μ(1)([−x, x]) + 4

π

1∫

x

μ( j−1)([−x/t, x/t])
√

1 − t2dt.

Suppose p1, p2, . . . , pk are distinct primes. As a generalization of Katz’s result, one
expects that the Kloosterman sum S(m, 1; p1 p2 · · · pk) equidistributes with respect
to the measure μ(k) as m runs over the primitive residue system and the product
p1 p2 · · · pk tends to infinity. We shall show this is the case, even while m is restricted
to prime variables and the length of sum is sufficiently large compared to the moduli.

3.3 Equidistribution of Kloosterman sums over prime variables

We have discussed the equidistribution of Kloosterman sums as the variable runs
over consecutive integers in the sense of modular arithmetic. Now we consider the
equidistribution results when the variable runs amongst the primes, which is in fact
what we shall need in the applications to the problem on sign changes. Here we only
state the necessary lemmas for the equidistribution, and the precise result will be stated
explicitly in the next section.
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Sign changes of Kloosterman sums 149

In a recent series of papers, Fouvry, Kowalski and Michel have investigated analytic
properties of some general functions, known as algebraic trace functions, defined
over Fp. In particular, they [3] considered the behaviors of such functions over prime
variables, and provided a power-saving cancellation. In our applications, we will use
the special case of their results.

Lemma 1 Let k be a positive integer. For each ε > 0 there exists δ = δ(ε) > 0 so

that if N > p
3
4 +ε, then

∑

N<n�2N
nprime

symk(θp(n
2)) 	 N p−δ,

where the implied constant depends on ε and polynomially on k.

Proof This is a special case of Theorem 1.5 in [3], where we can take their trace
function K as

n �→ symk(θp(n
2))

defined over F×
p . 
�

Furthermore, we also require some equidistribution with more than one variables,
with respect to the prime moduli and almost prime moduli (products of distinct primes).
For the former case, we appeal to the following bilinear form estimate, which can be
found in [11], Corollaire 2.11.

Lemma 2 Suppose 1 � M, N � p. For each positive integer k and any coefficients
α = (αm), β = (βn), we have

∑

M<m�2M

∑

N<n�2N
(mn,p)=1

αmβnsymk(θp(mn2))	 ‖α‖‖β‖(M N )
1
2 (N− 1

2 +M− 1
2 p

1
4 (log p)

1
2 ),

where ‖ · ‖ denotes the �2-norm and the implied constant depends polynomially on k.

Remark. Lemma 2 is sufficient in our applications. In fact, we can remove
the restrictions on the sizes of M, N provided that we insert an extra term

‖α‖‖β‖(M N )
1
2 p− 1

4 in the upper bound; an explicit and more general statement can
be found in Theorem 1.17 of [3].

In the case of composite moduli, we require the following estimate, which is stated
as Proposition 7.2 in [5] and proved by the techniques of �-adic cohomology.

Lemma 3 Suppose p1, p2, . . . , ps are distinct primes. Write r = p1 p2 · · · ps . For
each s-tuple of positive integers (k1, k2, . . . , ks), and any coefficients α = (αm), β =
(βn), γ = (γm,n) with m ≡ m′ (mod n) ⇒ γm,n = γm′,n, we have
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150 P. Xi

∑

M<m�2M

∑

N<n�2N
(mn,r)=1

αmβnγm,n

∏

1� j�s

symk j
(θp j (mnr p−1

j

2
))

	 c(s; k)‖α‖‖β‖‖γ ‖∞(M N )
1
2 (r− 1

8 + N− 1
4 r

1
8 + M− 1

2 N
1
2 ),

where ‖ · ‖∞ denotes the sup-norm, c(s; k) = 3s ∏s
j=1(k j + 1) and the implied

constant is absolute.

4 Proof of Proposition 1: lower bound for H1(X)

4.1 Initial step: preparation for equidistribution

We start the proof of Proposition 1. Let

C(m, n) = S(m2, 1; n)

2ω(n)
√

n

for (m, n) = 1. Then we have |C(m, n)| � 1 for squarefree n by (2), and it follows
from the Chinese remainder theorem that

C(1, mn) = C(m, n)C(n, m). (8)

In particular, we have C(m, p) = cos θp(m2) for (m, p) = 1. In this way, we have

H1(X) =
∑

n

g
( n

X

)
μ2(n)2ω(n)|C(1, n)|

( ∑

d|n
λd

)2

.

In our applications, we need only consider those n with few prime factors. To that
end, we introduce the interval

I (P) = (P, P + PL−1],

and the set of the products of primes

Pi (X; Pi1, Pi2, . . . , Pii ) = {p1 p2 · · · pi : p j ∈ I (Pi j ) for each j � i}

for each positive integer i � 2. Furthermore, for each fixed i , we assume that {Pi j } is
a decreasing sequence as j varies and the product of the lengths of the intervals I (Pi j )

is exactly X , i.e., that

Pi1 > Pi2 > · · · > Pii > Xε,
∏

1� j�i

|I (Pi j )| = X. (9)

123



Sign changes of Kloosterman sums 151

In this way, we can bound H1(X) from below by the summation overPi (X; Pi1, Pi2,

. . . , Pii ); for this, we employ the variants of the Sato–Tate distributions stated above.
Due to the positivity of each term, we can drop those n’s with “bad” arithmetic struc-
tures. To this end, we introduce the following restrictions on the size of Pi j :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P3/4
21 Xη < P22, η = 10−2014,

P1/2
31 exp(

√L) < P32,

P1/2
41 exp(

√L) < P42 P43,

P1/2
51 exp(

√L) < P52 P53 P54 and (P53 P54 P55)
1/2 exp(

√L) < P52,

· · ·

(10)

Now summing up to i = 5, we have the lower bound

H1(X) �
∑

2�i�5

2i H1,i (X),

where

H1,i (X) =
∑†

Pi1,Pi2,...,Pii

∑

n∈Pi (X;Pi1,Pi2,...,Pii )

g
( n

X

)
|C(1, n)|

( ∑

d|n
λd

)2

with the symbol † denoting the restrictions (9) and (10).
Recalling the choice (4), we find, for each n ∈ Pi (X; Pi1, Pi2, . . . , Pii ), that

∑

d|n
λd = (1 + o(1))Li (γ, k; Xα1 , Xα2 , . . . , Xαi ),

where

Li (γ, k; Xα1 , Xα2 , . . . , Xαi ) =
∑

A⊆{α1,α2,...,αi }∑
α∈A α<γ

(−1)|A|
(

1 − 1

γ

∑

α∈A
α

)k

. (11)

Note the bound |C(1, n)| � 1. From partial summation, we can write

H1,i (X) = g̃(1)Li−1(1 + o(1))

×
∫

· · ·
∫

Ri

L2
i (γ, k; X1−α2−···−αi , Xα2 , . . . , Xαi )dα2 · · · dαi

×
∑

n∈Pi (X;X1−α2−···−αi ,Xα2 ,...,Xαi )

|C(1, n)|,
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where the multiple-integral is over the area Ri :

R2 : =
{
α2 ∈ (0, 1) :

(
3

4
+ η

)
(1 − α2) < α2 <

1

2

}
, η = 10−2014,

R3 : =
{
(α2, α3) ∈ (0, 1)2 : 1

2
(1 − α2 − α3) < α2, α3 < α2 < 1 − α2 − α3

}
,

R4 : =
{
(α2, α3, α4) ∈ (0, 1)3 : 1

2
(1 − α2 − α3 − α4) < α2 + α3

}

∩ {(α2, α3, α4) ∈ (0, 1)3 : α4 < α3 < α2 < 1 − α2 − α3 − α4},
R5 : =

{
(α2, α3, α4, α5) ∈ (0, 1)4 : 1

2
(1 − α2 − α3 − α4 − α5) < α2 + α3 + α4

}

∩
{
(α2, α3, α4, α5) ∈ (0, 1)4 : 1

2
(α3 + α4 + α5) < α2

}

∩ {(α2, α3, α4, α5) ∈ (0, 1)4 : α5 < α4 < α3 < α2

< 1 − α2 − α3 − α4 − α5}. (12)

4.2 Applications of equidistribution

In the preceding ranges, we deduce from Lemmas 1, 2 and 3 the following equidistri-
bution results, which extend Propositions 6.1, 6.2 and 6.3 in [5].

Lemma 4 With the notation as above, for i ∈ {2, 3, 4, 5} and (α2, . . . , αi ) ∈ Ri , the
sets

{C(p1, p2 · · · p j ) : n = p1 p2 · · · p j ∈ Pi (X; X1−α2−···−αi , Xα2 , . . . , Xαi )}

and

{C(p2 · · · p j , p1) : n = p1 p2 · · · p j ∈ Pi (X; X1−α2−···−αi , Xα2 , . . . , Xαi )}

equidistribute in [−1, 1] with respect to μ(i−1) and μ(1), respectively, as X → +∞.

Lemma 4 provides the equidistribution of Kloosterman sums with fixed moduli.
However, for the purpose of lower bound for H1,i (X), we must understand the distri-
bution of C(1, n) as n runs over Pi (X; X1−α2−···−αi , Xα2 , . . . , Xαi ). Of course, this
would partially follow from the factorization of C(1, n) as the product the two Kloost-
erman sums, of which we know equidistribution in the ranges stated in Lemma 4.
Hence, in general, we are faced with the problem of obtaining the result for joint
distribution of two sequences assuming equidistribution of each. For this, we appeal
to the following rearrangement type inequality due to K. Matomäki [10].

Lemma 5 Assume that the sequences (an)n�N and (bn)n�N contained in [0, 1]
equidistribute with respect to some absolutely continuous measures μa and μb, respec-
tively, as N → ∞. Then
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(1 + o(1))

1∫

0

xyl(x)dμa([0, x]) � 1

N

∑

n�N

anbn � (1 + o(1))

1∫

0

xyu(x)dμa([0, x]),

where yl(x) is the smallest solution to the equation μb([yl , 1]) = μa([0, x]) and yu(x)

is the largest solution to the equation μb([0, yu]) = μa([0, x]).

Now we write

∑

n∈Pi (X;X1−α2−···−αi ,Xα2 ,...,Xαi )

|C(1, n)|

=
∑

n∈Pi (X;X1−α2−···−αi ,Xα2 ,...,Xαi )

|C(p2 · · · pi , p1)||C(p1, p2 · · · pi )|.

By Lemmas 4 and 5, this is

� |Pi (X; X1−α2−···−αi , Xα2 , . . . , Xαi )|Ci (1 + o(1))

= XL−i Ci (1 + o(1))

α2 · · · α j (1 − α2 − · · · − α j )

for some positive constant Ci . Hence we can obtain the inequality

H1(X) � g̃(1)XL−1(1 + o(1))
∑

2�i�5

2i Ai (γ, k)Ci ,

where

Ai (γ, k) =
∫

· · ·
∫

Ri

L2
i (γ, k; X1−α2−···−αi , Xα2 , . . . , Xαi )

α2 · · · α j (1 − α2 − · · · − α j )
dα2 · · · dαi . (13)

More precisely, by Lemma 5, we can take

Ci �
1∫

0

xyi (x)dμ(1)([−x, x]),

where yi (x) is the unique solution to the equation

μ(1)([−x, x]) = μ(i−1)([−1,−y] ∪ [y, 1]) = 1 − μ(i−1)([−y, y]).
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With the help of Mathematica 9, we can obtain

C2 � 0.11109,

C3 � 0.03557,

C4 � 0.01184,

C5 � 0.00396.

This proves Proposition 1.

5 Proof of Proposition 2: upper bound for H2(X)

Before starting the proof of Proposition 2, we state two results from complex analy-
sis. The first one is an example of the Mellin inversion formula, as an immediate
consequence of Cauchy’s residue theorem.

Lemma 6 Suppose k is a non-negative integer. For any positive number x, we have

k!
2π i

1+i∞∫

1−i∞

xs

sk+1 ds =
{

0, 0 < x � 1,

(log x)k, x > 1.

The following lemma is contained implicitly in [6].

Lemma 7 Suppose x � 1, and k, l are non-negative integers. Then we have

Res
(s1,s2)=(0,0)

xs1+s2

(s1 + s2)l(s1s2)k+1 = 1

(2k + l)!
(

2k

k

)
(log x)2k+l .

Proof We adopt the method of Motohashi, as presented in [6]. Consider the double-
integral

J = 1

(2π i)2

∫

D1

∫

D2

xs1+s2

(s1 + s2)l(s1s2)k+1 ds1ds2,

where D1,D2 are two small circles centered at the origin of radii ε, 2ε, respectively.
One can see that J just represents the residue of the integrands at origin. Write s1 =
s, s2 = sξ, then J becomes

J = 1

(2π i)2

∫

D1

∫

D3

x (ξ+1)s

s2k+l+1ξ k+1(ξ + 1)l
dsdξ,

where D3 is the circle centered at origin of radius 2. Clearly, the s-integral is

1

(2k + l)! ((ξ + 1) log x)2k+l .
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Now it follows that

J = (log x)2k+l

(2k + l)!
1

2π i

∫

D3

(ξ + 1)2k

ξ k+1 dξ = (log x)2k+l

(2k + l)!
(

2k

k

)

since the ξ -integral detects the coefficient of ξ k in the expansion of (1 + ξ)2k . This
establishes Lemma 7. 
�

5.1 Expressing as a multiple-integral

The arguments in this section have almost nothing to do with Kloosterman sums; the
only fact we shall use is that |C(1, n)| � 1. More precisely, we have

H2(X) =
∑

n

g
( n

X

)
|C(1, n)|μ2(n)kω(n)

( ∑

d|n
λd

)2

�
∑

n

g
( n

X

)
μ2(n)kω(n)

∑

d|n
ξ(d),

where

ξ(d) =
∑

[d1,d2]=d

λd1λd2 . (14)

Furthermore, we have

H2(X) �
∑

d

ξ(d)kω(d)
∑

(n,d)=1

g

(
nd

X

)
μ2(n)kω(n).

Now we would like to evaluate the n-sum. By Mellin inversion, we can write

g

(
nd

X

)
= 1

2π i

2+i∞∫

2−i∞
g̃(s)

(
X

nd

)s

ds.

Then it follows that

∑

n

= 1

2π i

2+i∞∫

2−i∞
g̃(s)

(
X

d

)s

T (d, s)ds,

where T (d, s) is defined by the Dirichlet series

T (d, s) =
∑

n�1
(n,d)=1

μ2(n)kω(n)

ns
, �s > 1.
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For �s > 1, we have

T (d, s) =
∏

p�d

(
1 + k

ps

)
= ζ k(s)T ∗(d, s),

where, for each fixed positive integer d, T ∗(d, s) is a holomorphic function in the half
plane �s > 0 and

T ∗(d, 1) =
∏

p|d

(
1 + k

p

)−1

·
∏

p

(
1 + k

p

)(
1 − 1

p

)k

.

Thus T (d, s) admits a meromorphic continuation to �s > 0 with s = 1 as the
unique pole of order k. Note that

∑

n

= 1

2π i

2+i∞∫

2−i∞
g̃(s)

(
X

d

)s

ζ k(s)T ∗(d, s)ds.

Moving the integral line to �s = 1
2 , we shall pass the pole s = 1, getting

∑

n

= Res
s=1

g̃(s)

(
X

d

)s

ζ k(s)T ∗(d, s) + 1

2π i

1
2 +i∞∫

1
2 −i∞

g̃(s)

(
X

d

)s

ζ k(s)T ∗(d, s)ds.

From the growth of the integrand, we can easily verify that the second term is
bounded by (X/d)δ for some δ < 1. The first term is in fact

g̃(1)X

d
T ∗(d, 1) Res

s=1
ζ k(s)

= g̃(1)

(k − 1)!
∏

p

(
1 − 1

p

)k(
1 + k

p

)
·
∏

p|d

(
1 + k

p

)−1 X

d
Pk−1(log(X/d)),

where Pk(·) is a monic polynomial of degree k − 1.
Hence we find

∑

n

= g̃(1)

(k − 1)!
∏

p

(
1 − 1

p

)k (
1 + k

p

)
·
∏

p|d

(
1 + k

p

)−1 X

d
Pk−1(log(X/d))

+ O(Xd−1L−A),
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and it follows that

H2(X) � g̃(1)

(k − 1)!
∏

p

(
1 − 1

p

)k(
1 + k

p

)
X · D(X) + O(XL−A), (15)

where

D(X) =
∑

d�X

ξ(d)
kω(d)

d

∏

p|d

(
1 + k

p

)−1

Pk−1(log(X/d)). (16)

Denote by D̃(X) the relevant contribution from the highest order monomial in
Pk−1(log(X/d)). Then by Lemma 6 we have

D̃(X) = (k − 1)!
2π i

1+i∞∫

1−i∞
M(s)

Xs

sk
ds, (17)

where

M(s) =
∑

d�1

ξ(d)
kω(d)

ds+1

∏

p|d

(
1 + k

p

)−1

.

Now define

u(n, s) = kω(n)

ns+1

∏

p|n

(
1 + k

p

)−1

,

and rewrite M(s) as

M(s) =
∑

d�1

ξ(d)u(d, s) =
∑∑

d1,d2�
√

D

λd1λd2 u([d1, d2], s). (18)

Note that

u([d1, d2], s) = u(d1, s)u(d2, s)

( ∏

p|(d1,d2)

1

u(p, s)

)

= u(d1, s)u(d2, s)
∑

d|(d1,d2)

∏

p|d

(
1

u(p, s)
− 1

)
,

thus (18) becomes

M(s) =
∑

m�√
D

μ2(m)
∏

p|m

(
1

u(p, s)
− 1

)
Z(m, s)2, (19)
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where

Z(m, s) = 1

(log
√

D)k

∑

d�√
D

m|d

μ(d)u(d, s) logk(
√

D/d)

= 1

(log
√

D)k
μ(m)u(m, s)

∑

d�√
D/m

(d,m)=1

μ(d)u(d, s) logk(
√

D/md).

Write

G(w, m) =
∑

d�1
(d,m)=1

μ(d)u(d, w),

for �w > 0. It is clear that G(w, m) has an analytic continuation on C in the w-
variable, in fact, we can write

G(w, m) = 1

ζ(w + 1)k
F(w) ·

∏

p|m
(1 − u(p, w))−1,

where F(w) is defined by

F(w) =
∏

p

(
1 − k

pw(p + k)

)(
1 − 1

pw+1

)−k

as �w > −1. Now we have

Z(m, s) = μ(m)u(m, s)

(log
√

D)k

k!
2π i

1+i∞∫

1−i∞
G(w + s; m)

(
√

D/m)w

wk+1 dw,

from which and (19) we find

M(s) = k!2
(log

√
D)2k

1

(2π i)2

1+i∞∫

1−i∞

1+i∞∫

1−i∞
F(w1 + s)F(w2 + s)

ζ k(w1 + s + 1)ζ k(w2 + s + 1)

(
√

D)w1+w2

(w1w2)k+1 dw1dw2

×
∑

m�√
D

μ2(m)u2(m, s)

mw1+w2

∏

p|m

(
1

u(p, s)
− 1

)

× (1 − u(p, s + w1))
−1(1 − u(p, s + w2))

−1.
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Note that the m-sum can be expressed as

1

2π i

1+i∞∫

1−i∞
ζ k(t + w1 + w2 + s + 1)H(t, w1, w2, s)

(
√

D)t

t
dt,

where H(t, w1, w2, s) is holomorphic for �(t + s),�(w1 + s),�(w2 + s) > −1 with

H(0, 0, 0, 0) =
∏

p

(
1 + k

p

)(
1 − 1

p

)k

.

Hence we can deduce from (17) that

D̃(X) = (k − 1)! · k!2
(log

√
D)2k

1

(2π i)4

∫∫∫∫

(1)(1)(1)(1)

K (t, w1, w2, s)

×
(

(w1 + s)(w2 + s)

s(t + w1 + w2 + s)

)k
(
√

D)t+w1+w2 Xs

t (w1w2)k+1 dtdw1dw2ds,

where K (t, w1, w2, s) is holomorphic for �t,�w1,�w2,�s,�(t + s),�(w1 +
s),�(w2 + s) > −1 and

K (0, 0, 0, 0) =
∏

p

(
1 + k

p

)−1(
1 − 1

p

)−k

.

5.2 Shifting contours

Now we are in the position to evaluate the multiple-integral by shifting contours. To
this end, we define

C =
{
− 1

2014 log(|t | + 2)
+ i t : t ∈ R

}
,

which is related to the zero-free region of Riemann zeta functions.
We can shift all contours to σ = 1/ log X without passing any poles of the integrand.

We now continue to shift the four contours to C one by one; we consider the t-integral
first. There are two singularities t = 0 and t = −(w1 + w2 + s), which are of
multiplicity 1 and k, respectively. Hence, after the shifting, the new integrand becomes

K (0, w1, w2, s)

(
(w1 + s)(w2 + s)

s(w1 + w2 + s)

)k
(
√

D)w1+w2 Xs

(w1w2)k+1

+ K (−(w1 + w2 + s), w1, w2, s)

×
(

(w1 + s)(w2 + s)

s

)k
(
√

D)w1+w2 Xs

(w1w2)k+1

1

(k − 1)!
∂k−1

∂tk−1

(
√

D)t

t

∣∣∣∣
t=−(w1+w2+s)

.
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In fact, there is also another contribution from the integral along C, which is of
a lower order of magnitude due to the growth of Riemann zeta functions (In the
discussion below, we shall not present explicitly the error terms resulting from shifting
contours). Note that the second term comes from the singularity t = −(w1 +w2 + s),
and the factor (

√
D)w1+w2 will vanish after taking the partial derivatives, thus we

conclude from Lemma 6 that the second term will produce a contribution of lower
order of magnitude. We only consider the first term in latter discussions since what
we are interested in is the constant in the main term.

Now we are left with the triple-integral with respect to w1, w2 and s. The resulting
integrand is

K (0, w1, w2, s)

(
(w1 + s)(w2 + s)

s(w1 + w2 + s)

)k
(
√

D)w1+w2 Xs

(w1w2)k+1 .

Now we turn to shift the s-contour. Clearly, we shall encontour four singularities s =
0,−w1,−w2 and −(w1 +w2). In fact, the latter three ones will produce factors of the
shape (

√
D/X)w1 , (

√
D/X)w2 and (

√
D/X)w1+w2 . Following the same arguments as

above, we conclude from Lemma 6 that all of these will contribute negligibly. Hence
we need only consider the singularity s = 0. Note that

(
(w1 + s)(w2 + s)

s(w1 + w2 + s)

)k

=
(

1 + w1w2

s(w1 + w2 + s)

)k

=
k∑

j=0

(
k

j

)(
w1w2

s(w1 + w2 + s)

) j

,

thus we can rewrite the integrand as

k∑

j=0

(
k

j

)
K j (w1, w2, s),

where

K j (w1, w2, s) = K (0, w1, w2, s)

(
w1w2

s(w1 + w2 + s)

) j
(
√

D)w1+w2 Xs

(w1w2)k+1 .

For j � 1, we have

Res
s=0

K j (w1, w2, s) = 1

�( j)

(
√

D)w1+w2

(w1w2)k+1− j

(
∂ j−1

∂s j−1

Xs

(w1 + w2 + s) j

)

s=0

= 1

�( j)

j−1∑

i=0

(
j − 1

i

)
(log X) j−i−1(−1)i �( j + i)

�( j)

× (
√

D)w1+w2

(w1w2)k+1− j (w1 + w2) j+i
.
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Repeating the same arguments to the w1, w2-integrals, it follows that we need only
consider the residue at w1 = w2 = 0, thus we deduce from Lemma 7 that

Res
(0,0,0)

K j (w1, w2, s) =
j−1∑

i=0

(
j − 1

i

)(
2(k − j)

k − j

)
�( j + i)

�( j)2

(−1)i

(2k − j + i)!
× (log X) j−i−1(log

√
D)2k− j+i .

Hence we obtain

D̃(X) = (k − 1)! · k!2(1 + o(1))
∏

p

(
1 + k

p

)−1(
1 − 1

p

)−k

×
k∑

j=1

j−1∑

i=0

(
k

j

)(
j − 1

i

)(
2(k − j)

k − j

)

× �( j + i)

�( j)2

(−1)i

(2k − j + i)! (log X) j−i−1(log
√

D)− j+i .

5.3 Conclusion

By similar arguments, we can obtain an asymptotic formula for the contributions
related to lower order terms of the shape Pk−1(log(X/d)). Comparing with the above
asymptotic formula for D̃(X), we find that D̃(X) contributes the main term in (16). It
then follows from (15) that

H2(X) � k!2 · g̃(1)XL−1(1 + o(1))Rk(γ ),

where γ is defined by
√

D = Xγ exp(−√L) and

Rk(y) =
k∑

j=1

j−1∑

i=0

(
k

j

)(
j − 1

i

)(
2(k − j)

k − j

)
�( j + i)

�( j)2

(−1)i

(2k − j + i)!
1

y j−i
. (20)

This completes the proof of Proposition 2.

6 Proof of Proposition 3: estimate for H3(X)

Opening the square in H3(X) and switching the summations, we get

H3(X) =
∑

d�D

ξ(d)
∑

n≡0(mod d)

μ2(n)g
( n

X

) S(1, 1; n)√
n

,
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where ξ(d) is defined by (14), giving |ξ(d)| � 3ω(d) for any squarefree d. Hence we
have

H3(X) 	
∑

d�D

3ω(d)

∣∣∣∣∣∣

∑

n≡0 (mod d)

μ2(n)g
( n

X

) S(1, 1; n)√
n

∣∣∣∣∣∣
.

Now we are in a position to estimate mean values of Kloosterman sums. We appeal
to the following Bombieri–Vinogradov type theorem for Kloosterman sums, which
has been proved in [5] using the spectral theory of automorphic forms without the extra
factor μ2(n); the version employed here is due to Sivak-Fischler [14] as Corollaire
2.2 therein.

Lemma 8 For any A > 0 there exists some B = B(A) > 0 such that

∑

q�√
XL−B

∣∣∣∣∣∣

∑

n≡0 (mod q)

μ2(n)g
( n

X

) S(1, 1; n)√
n

∣∣∣∣∣∣
	 XL−A,

where the implied constant depends on A and g.

Proposition 3 can be established by the following lemma, which is weighted by
divisor functions.

Lemma 9 For any A > 0, there exists some B = B(A) > 0 such that

∑

q�√
XL−B

3ω(q)

∣∣∣∣∣∣

∑

n≡0 (mod q)

μ2(n)g
( n

X

) S(1, 1; n)√
n

∣∣∣∣∣∣
	 XL−A,

where the implied constant depends on A and g.

Proof For any fixed A > 0, we split the q-sum as

∑

3ω(q)�LA/2

+
∑

3ω(q)>LA/2

,

hence the contribution from the first term is at most O(XL−A/2) by Lemma 8. For
the second term, the contribution is

	 L−A/2
∑

q�√
XL−B

μ2(q)9ω(q)

∣∣∣∣∣∣

∑

n≡0 (mod q)

μ2(n)g
( n

X

) S(1, 1; n)√
n

∣∣∣∣∣∣

	 L−A/2
∑

q�√
XL−B

μ2(q)9ω(q)
∑

n∼X
n≡0 (mod q)

2ω(n)

	 XL1−A/2
∑

q�√
XL−B

μ2(q)
18ω(q)

q

	 XL18−A/2.
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Now the lemma follows from the arbitrariness of A. 
�
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