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Abstract—Emerging massively parallel architectures such as a general-purpose processor plus many-core programmable
accelerators are creating an increasing demand for novel methods to perform their architectural simulation. Most state-of-the-art
simulation technologies are exceedingly slow and the need to model full system many-core architectures adds further to the complexity
issues. This paper presents a fast, scalable and parallel simulator, which uses a novel methodology to accelerate the simulation of a
many-core coprocessor using GPU platforms. The main idea is to use. The target architecture of the associated . Simulation of many
target nodes is mapped to the many hardware-threads available on highly parallel GPU platforms. This paper presents a novel
methodology to accelerate the simulation of many-core coprocessors using GPU platforms. We demonstrate the challenges, feasibility
and benefits of our idea to use heterogeneous system (CPU and GPU) to simulate future architecture of many-core heterogeneous
platforms. The target architecture selected to evaluate our methodology consists of an ARM general purpose CPU coupled with
many-core coprocessor with thousands of simple in-order cores connected in a tile network. This work presents optimization
techniques used to parallelize the simulation specifically for acceleration on GPUs. We partition the full system simulation between
CPU and GPU, where the target general purpose CPU is simulated on the host CPU, whereas the many-core coprocessor is simulated
on the NVIDIA Tesla 2070 GPU platform. Our experiments show performance of up to 50 MIPS when simulating the entire
heterogeneous chip, and high scalability with increasing cores on coprocessor.

Index Terms—Parallel simulation, heterogeneous architectures, many-core processors, accelerators, GPGPU, CUDA, QEMU

1 INTRODUCTION AND RELATED WORK

WITH increasing complexity and performance demands
of emerging applications, heterogeneous platforms
are becoming a popular trend in computer design. Increased
use of embarrassingly parallel algorithms and fine-grained
parallelism is creating a market for general-purpose hard-
ware accelerators (coprocessors) to manipulate large
amounts of data in parallel with high energy efficiency [1].
These future platforms consist of traditional multi-core
CPUs in combination with a many-core coprocessor, which
is composed of thousands of embedded cores. Examples of
these heterogeneous architectures include on-chip special-
ized many-core coprocessors [2], [3], [4] and upcoming tile-
based many-core architectures [5], [6], [9], [10].

Simulating these heterogeneous architectures poses
novel challenges, as current state-of-the art simulation tech-
nologies are not sufficiently well equipped to handle their
complexity. Simulation platforms are needed to make
meaningful predictions of design alternatives and early
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software development, as well as to be able to assess the
performance of a system before the real hardware is avail-
able. Current state-of-the-art sequential simulators leverage
SystemC [11], binary translation [18], smart sampling tech-
niques [12] or tunable abstraction levels [13] for hardware
description. However, one of the major limiting factors in
utilizing current simulation methodologies is simulation
speed. Most of the existing simulation techniques are slow
and/or have poor scalability, which leads to an unaccept-
able performance when simulating a large number of cores.
Since next generation many-core coprocessors are expected
to have thousands of cores, there is a great need to have sim-
ulation frameworks that can handle target workloads with
large data sets, while is also suitable for parallel simulation
of many-core architectures. In order to comprehensively
and quickly evaluate the design, architecture and program-
ming tradeoffs in such future heterogeneous platforms, a
fast simulation method with scalability up to thousands of
cores is a fundamental requirement. In addition, these new
and scalable simulation solutions must be inexpensive, eas-
ily available, with a fast development cycle and able to pro-
vide good tradeoffs between speed and accuracy.

It is easy to notice that simulating a parallel system is an
inherently parallel task. This is because individual proces-
sor simulation may independently proceed until the point
where communication or synchronization with other pro-
cessors is required. This is the key idea behind parallel
simulation technologies in which we distribute the simula-
tion workload over parallel hardware resources. Parallel
simulators have been proposed in the past [14], [15], [16],
which leverage the availability of multiple physical
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processing nodes to increase the simulation rate. However,
this requirement may turn out to be too costly if server
clusters or computing farms are adopted as a target to run
the many-core coprocessor simulations.

The development of computer technology has recently
led to an unprecedented performance increase of General-
Purpose Graphical Processing Units (GPGPU). Modern
GPGPUs integrate hundreds of processors on the same
device, communicating through low-latency and high band-
width on-chip networks and memory hierarchies. This
allows us to reduce inter-processor communication costs by
orders of magnitude with respect to server clusters. More-
over, scalable computation power and flexibility is deliv-
ered at a rather low cost by commodity GPU hardware.
Besides hardware performance improvement, the program-
mability of GPUs also has been significantly increased in
the last 5 years [17], [19]. This has led to the proliferation of
computing clusters based on such many-cores, providing
an inexpensive solutions in high performance computing
domain for a wide community.

This scenario motivated our idea of developing a novel
parallel simulation technology that leverages the computa-
tional power of widely-available and low-cost GPUs. In this
simulation method we exploit the opportunity to parallelize
the simulation of many-core coprocessor on top of GPGPU
host platforms. The main novelty of our simulation method-
ology is to use heterogeneous system as a host platform to
tackle the challenge of simulating the heterogeneous archi-
tectures of future heterogeneous platforms.

While exploring the idea of simulation acceleration using
GPUs, we encountered several performance and implemen-
tation challenges. One of the main challenge is to identify the
parallelization in simulator code and optimize it for the scal-
ability on GPU. In this paper, we present the key challenges
for simulation scalabilities and methods used to tackle these
challenge. Specifically, we make following contributions:

e We present a comprehensive approach to build full
system simulation frameworks for heterogeneous
architectures. The architecture of coprocessor is
inspired from the GPUs [4], [7] and accelerator chips
[5], [6], [9], [10], which are most likely to scale to
thousands of cores in near future. As a case study,
we selected a target architecture which is composed
of a general purpose CPU connected with a copro-
cessor with thousands of cores in a tile network. The
proposed architecture is selected as an illustration
for future coprocessor architectures to present the
viability and benefits of using our approach.

e We present our main idea to partition heterogeneous
system simulation workloads between CPU and GPU.

e Wediscuss the code optimization techniques that we
utilize to maximize concurrency and gain maximum
benefit from parallel GPU hardware.

e We provide a cycle-approximate model for fast
performance prediction of the overall simulated
platform. The simulation framework uses a relaxed-
synchronization technique to minimizing synchroni-
zation overhead and achieving speedup.

For experimental purposes, we simulated an ARM CPU

connected with ARM-based coprocessor composed of up to
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Fig. 1. System target architecture.

4,096 cores. The targeted architecture of RISC cores con-
nected with a tile network is a popular candidate for future
development in the area of many-core coprocessors.
Although this work presents the experiences related to a
particular target architecture accelerated on GPUs, the
methods applied and lessons learned are more broadly
applicable for future many-core designs.

Our experimental results demonstrate the benefits of
using our proposed simulation method, with which we
achieved up to 50 MIPS when simulating the complete
CPU-Coprocessor system and high scalability compared to
other state-of-the-art simulation approaches.

2 OVERVIEW OF FULL SYSTEM HETEROGENEOUS
SIMULATION APPROACH

In this section, we provide architectural details of the het-
erogeneous platform targeted by our simulation technique.
Next, we give an overview of our simulation flow for the
full system simulator.

2.1 Target Architecture

Our target architecture is representative of future heteroge-
neous platforms. It consists of a a general purpose processor
connected with a many-core coprocessor (accelerator), as
shown in Fig. 1. While currently available many-core copro-
cessors only integrate up to hundreds of cores interconnected
via a network-on-chip (NoC) [5], [6], [8], in the near future
the number of cores is likely to increase to the thousands [22].
The simulator presented in this work is targeted to model
such future embodiments of many-core paradigm. To simu-
late general-purpose CPU, we selected QEMU [18] which is
an ARM Versatile Platform Baseboard featuring an ARM v7-
based processor and input-output devices. QEMU is a popu-
lar, open-source, fast emulation platform based on dynamic
binary translation (DBT) which models a complete develop-
ment board with a set of common devices (e.g., Ethernet
interfaces, disks, audio controllers), enabling the execution of
an un-modified operating system allowing applications com-
piled for an architecture to be run on many others.

The target coprocessor features many (thousands of) sim-
ple ARM cores each equipped with data and instructions
scratchpad memories (SPM), private caches, private and dis-
tributed shared memory of target (TDSM). The architecture
of a core in the coprocessor is based on a simple single issue,
in-order pipeline. The cores are interconnected via an on-chip
network organized as a rectangular mesh. As shown in Fig. 1,
a single node includes a core, its cache subsystem, NoC
switch, private memory per core and a bank of physically
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Fig. 2. Overview of simulation flow.

distributed shared memory (TDSM). Caches are private to
each core, which means that they only deal with data or
instructions allocated in the private memory. The distributed
shared memory (TDSM) is non-cacheable; therefore the simu-
lation of the cache coherence protocol is not required.

The applications and program binaries targeted for this
system are launched from within Linux OS running on the
general-purpose CPU. The execution of a parallel applica-
tion is divided between the two entities, the host and the
coprocessor. General purpose processor runs the sequential
part of target application up to a point where a computation
intensive and highly-parallel program region is encoun-
tered. When a parallel program region is encountered, this
particular part of the program is offloaded to the coproces-
sor to gain benefit from its high performance.

The considered memory model of coprocessor adheres to
the Partitioned Global Address Space (PGAS) paradigm [20].
Each thread (mapped to a single node of target coprocessor)
has private memory for local data items and shared memory
for globally shared data values. Both private and shared
memory is mapped in a common single global address space,
which is logically partitioned among a number of threads.
Each thread has a private space as well as affinity with glob-
ally shared address space. Greater performance is achieved
when a thread accesses data, which is held locally (whether in
its private memory or a partition of the global address space).
Non-local access to the shared memory space generate com-
munication traffic across on-chip interconnect, therefore incur
performance overhead. Programming model assumed for
this target architecture is similar to Unified Parallel C [21]. It
distributes the independent iterations across threads typically
to boost locality exploitation. Interaction between threads is
managed by synchronization primitives on shared data items.
Data qualified as shared resides in shared memory space
while rest of the data is considered thread private data.

2.2 Simulation Flow

Fig. 2 depicts the full-system simulation methodology we
propose to model heterogeneous architectures. Our simulator
consists of two main blocks. First, QEMU emulates the target
general purpose processor, capable of executing a Linux OS
and file system. Next, our coprocessor simulator uses GPUs
for accelerating simulation of its thousands of cores.
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Fig. 3. Overview of our technique to interface QEMU and the coproces-
sor-simulator.

Our coprocessor simulator is entirely written using C for
CUDA [17] and, in order to model thousands of nodes, we
map each instance of a simulated node to a single CUDA
thread. These CUDA threads are then mapped to streaming
processors of GPU by its hardware scheduler and run con-
currently in parallel. Each target core model is written using
an interpretation-based method to simulate the ARM pipe-
line. Thus, each simulated core is assigned its own context
structure, which represents register file, status flags, program
counter, etc. The necessary support for data structures are
initially allocated from the main (CPU) memory for all the
simulated cores. The host program (running on the CPU) ini-
tializes these structures, and then copies them to the GPU
global device memory, along with the program binary. Once
the main simulation kernel is offloaded to the GPU, each
simulated core repeatedly fetches, decodes and executes
instructions from the program binary. Similar to the opera-
tion on the hardware, the instruction byte is fetched, decoded
and executed at run time. Each core updates its simulated
registers file and program counter until program completion.

3 INTERFACING QEMU wiTH COPROCESSOR
SIMULATOR

As mentioned in Section 2, full system simulation is parti-
tioned between CPU (using QEMU) and GPU (using copro-
cessor simulator), therefore it is essential to find an efficient
way to offload the data parallel part of the target application
from QEMU on to coprocessor simulator.

As shown in Fig. 3, the target application running on guest
kernel space of the target platform (simulated by QEMU) is
named QEMU target process. QEMU process running on
host CPU is named QEMU-Hprocess. Our coprocessor simu-
lator program written in C and CUDA is designed to execute
partly on the host CPU and host GPU. The part of coproces-
sor simulator program executed on host CPU is named CP-
Hprocess. The other part that runs on host GPU platform is
named CP-Gprocess. Target application needs to forward
requests (data structure and parameters) between QEMU
and the coprocessor simulator almost instantly in parallel.
Therefore an interface is needed so that the QEMU target
process can communicate to the QEMU-Hprocess and finally
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to the CP-Gprocess. To implement this communication
between the processes, we use semihosting [25] (see Fig. 3).
Semihosting is a technique developed for ARM targets
allowing the communication between an application run-
ning on the target and a host computer running a debugger.
It enables the redirection of all the application’s 1O system
calls to a debugger interface. We leverage this method to
provide a direct communication channel between QEMU
target process (QEMU-Tprocess) and QEMU-Hprocess.
Next, we used Unix Domain Sockets to transfer data
between the QEMU-Hprocess and the CP-Gprocess. The
CP-Hprocess initially boots as a server and waits for an off-
loading request from the client. When the client (QEMU-
Hprocess) encounters a data parallel function from the
QEMU-Tprocess, it transfers the structure of parameters
pointed by semihosting call to the server socket. When the
CP-Hprocess receives all the necessary data structures
(data and code segment), it launches the CUDA kernel as a
CP-Gprocess for simulation on GPU platform. The QEMU-
Hprocess waits for computation to end from GPU side and
releases it in the end. To avoid overheads due to moving
big amounts of data using the socket, larger data structures
(e.g., I/0O buffers) are accessed through host processor
shared memory (HSM) segments defined and allocated by
the QEMU-Hprocess. For more details on the implementa-
tion of this method, please refer to our previous work [26].

4 FUNCTIONAL SIMULATION OF COPROCESSOR
oN GPU

The coprocessor simulator comprises many modules that
simulate the various components of the target architecture.
In particular, the core model is responsible for modeling
the computational pipeline; the memory model includes
scratchpad memory models, cache models for private
memory and distributed shared memory of the target
(TDSM) models. The network model handles TDSM opera-
tions and allows routing of network packets over the on-
chip network.

The entire simulation flow is structured as a single CUDA
kernel, whose simplified structure is depicted in Fig. 1. One
physical GPU thread is used to simulate one single node. The
program is run inside a main loop until all simulated nodes in
turn finish their simulation. The core model is executed first.
During the instruction fetch phase and while executing mem-
ory instructions, the core issues memory requests to the cache
model. The cache model is in charge of managing data/
instructions stored in the private memory of each core.
Caches are private to each core and therefore they only deal
with data/instructions allocated in the private memory. Com-
munication between the cache model, the core and the NoC
model takes place using communication buffers allocated in
shared memory region of GPU device (GSM). Our proposed
information exchange mechanism exploits the producer/con-
sumer paradigm without the need for synchronization
because core, cache and NoC models are executed sequen-
tially and communication buffers are used to exchange infor-
mation between core, cache and network model.

Since the TDSM in our target architecture is distributed
across the nodes and is non-cacheable, DSM regions are
only accessible by sending packets through on-chip
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network. When an operation towards the shared address
space is detected, the request is forwarded to the corre-
sponding tile using mesh based network. For details on
network-on-chip simulation model, please refer to the sup-
plemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.2319092.

4.1 Key Challenges for Simulation Scalability
Although CUDA provides a powerful API with a swift
learning curve, designing a parallel simulator for many-
core running on GPUs is not a straightforward task and
implementing a simulator for such a platform imposes sev-
eral challenges as listed below:

e One of the main challenge handled in simulation of
target nodes is to identify the parallelization in vari-
ous stages of target node pipeline and map the target
nodes on CUDA threads such that there is minimum
control flow divergence.

e The layout of data structure that represent the con-
text of target node is carefully organized in GPU
memory to utilize high bandwidth GPU global mem-
ory and low-latency shared memory (GSM).

e We optimize the simulation code to ensure GPU
device shared memory (GSM) is free of bank conflicts.

e Interaction between CPU and GPU is a costly pro-
cess. Therefore, we minimize the amount of data
transfer required between host CPU and GPU plat-
form by using relaxed-synchronization method as pre-
sented in the following section.

The methods implemented to overcome abovementioned
limitation are provided with supplemental material, avail-
able online. For more details on implementation of each of
these models, please refer to our previous publications
[27], [28].

5 PERFORMANCE PREDICTION MODEL OF TARGET
COPROCESSOR

A performance model gives an insight about the applica-
tion primitives that are particularly costly in a certain
heterogeneous platform and allows us to predict the run-
time behavior of a program in that target platform. More-
over, thread level parallelism creates timing dependent
outcomes; therefore in addition to having functional cor-
rectness, it is important to have timing fidelity as well. In
this paper, we present a cycle-approximate method to
predict the performance of our many core coprocessor.
This allows designers to make decisions about configura-
tions of architectural parameters and to predict the scal-
ability of their applications. The simulator only calculates
the performance prediction for the part of the program
running on the coprocessor. Accurate performance pre-
diction for the whole heterogeneous simulator is beyond
the scope of this work.

Cycle-approximate method. In this section, we perform fast
performance estimation of the simulated platforms at run-
time by annotating the events generated by a functionally
accurate model with a fixed estimated delay. Ideally, sys-
tem-level simulation should provide sufficient timing details
for performance evaluation with cycle-accuracy. However
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due to extremely slow simulation of cycle-accurate models, it
is realistic to say that for large scale many-core platforms,
timing accuracy at the micro-architecture level is not a prime
requirement. Predictions about features such as application
scalability, costs due to memory locality and high synchroni-
zation rates are sufficient for users to perform early design
space exploration. Our main goal is to achieve significant
simulation speedup useful for architecture performance esti-
mation at early design stages [29]. Therefore, we develop a
simplified cycle-approximate model to estimate the opera-
tion latency of devices simulated by the functional simulator.

In order to quantitatively estimate perfomance of an
application running on target many-core coprocessor, we
apply simple fixed, approximated delays to represent the
timing behaviors of simulation models. Since the functional
model of cores is based on interpretation scheme, it is easier
to tightly couple the timing information with each generated
event. Every core has a local clock variable and this variable
is updated after completion of each instruction (event). Con-
sidering a unit-delay model all computational instructions
have fixed latency of a single clock cycle. Caches have one-
cycle hit latency and 10-cycle cache miss penalty. Each simu-
lated node thread simulates a local clock which provides a
timestamp to every locally generated event and clock cycles
are updated for each event with round trip latency. As the
simulator executes an application code on a core, it increases
its local clock in accordance with the event executed on the
code block. Each memory access or remote request is initially
stamped with the initiator core’s local clock time and is
increased by a specific delay as it traverses the architecture’s
communication model. When the initiator core finally starts
processing the reply, its own local clock is updated to that of
the reply. To summarize, the sum of all delays induced by all
the device models traversed is added to a core’s local time in
case of interaction. Similarly, when the response of a memory
load instruction returns to its originating node thread, the
local clock of this thread simulating the local clock of the
node is updated by the round trip latency gathered by
the memory packet. Communication packets through on-
chip network update their latency as they traverse through
the system and thus collect the delay due to congestion and
network contention. Single-hop traversal cost on on-chip net-
work is assumed to be one. Finally, the simulator output con-
sists of global clock cycles of many-core processor as well as
total instructions per cycles (IPC) calculated for running the
parallel application allowing the designers to forecast scal-
ability and performance variations from routing and net-
work contention as well as coarse-grain architecture changes.

6 SYNCHRONIZATION IN MANY CORE SIMULATION

When simulating a many core coprocessor, synchroniza-
tion requirements can add significant overhead to the
performance efficiency. This section focuses on our
efforts to increase the efficiency of required synchroniza-
tion operations.

6.1 Synchronization Requirements in Parallel Many
Nodes Simulation

Application programs offloaded to the coprocessor, may
contain inter-thread interactions using various synchroniza-

tion primitives such as barrier and locks. In this case,
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application threads running on many cores will generate
accesses to the shared memory distributed across the simu-
lated many nodes (TDSM), which in turn will result in traf-
fic (remote packets) over the NoC. We call these remote
packets s-events. To simulate these s-events, it is important to
have a synchronization mechanism to ensure the timing
and functional fidelity of the many core simulation main-
taining both simulation speed and accuracy.

Timing fidelity. Cycle approximate timing simulation
assesses the target performance by modeling the node laten-
cies using local clock cycles. Since this is simulated using par-
allel host GPU hardware threads, node clocks are non-
synchronized and run independent of each other at different
simulation speeds. To accurately model the timing behavior
of the entire system, these simulated local clocks should be
synchronized at some point in time to keep the accounting of
global target time of coprocessor. Additionally, during the
occurrence of s-events, it is important that target nodes clock
cycles proceed in lock-step manner at every clock cycle by
creating synchronization points after each clock tick of all
nodes. This is essential to determine the correct round trip
latency of NoC packet communication between otherwise
unsynchronized nodes. For example, when application
threads are mapped on different cores of simulated copro-
cessor and during an s-event such as spin lock for a shared
memory (TDSM) variable, the local clocks of each node
needs to know the correct number of iterations that each
thread should wait before acquiring the lock.

Functional fidelity. From the functional accuracy point of
view, synchronization between many nodes is essential to
maintain functional simulation accuracy particularly during
simulation of s-events. Since only s-events modify the state of
the shared memories of the target system, they needs to be
simulated in non-decreasing timestamp order so that shared
memory (TDSM) accesses with data dependencies are exe-
cuted in order. S-events with smaller timestamp have poten-
tial to modify the state of the system and thereby affect
events that happen later.

To illustrate this, let us consider an example where the
first s-event s1 of the system is detected by node n1, at its local
target timestamp T1. If another node n2 has a local time-
stamp T2, such that T2 > T1 then the simulation of s1 will
not create any data dependency violation with respect to n2
because n2 is most likely executing local memory instruc-
tions and it is safe for the simulation to proceed. However, if
another node n3 is at an earlier timestamp T3 such that T3
<T1, then a potential dependency violation may occur if n3
generates an s-event s3 and s1 and s3 have data dependency.
In this case node n1 should wait for until timestamp of both
nl and n3 are synchronized such that T3 is at least equal to
T1 and has finished simulating all previous s-events.

Therefore, a remote s-event arriving at a node should not
have timestamp lower than local events and a node should
only handle an s-event when it can be sure that no remote
s-event with earlier timestamp will arrive in the future.

6.2 Challenges of Synchronization on GPU

Due to lack of support for inter-block synchronization in
CUDA, supporting simulation of s-events is a challenging
task. From the point of view of implementing synchroni-
zation behavior on GPU, this requires periodically
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synchronizing hardware threads on a barrier. Barrier
functionality can only be imposed on threads within the
same block and synchronization among thread blocks is
not natively supported by CUDA and GPU hardware.
This is achieved by terminating the GPU kernel function
call and using costly communication between CPU and
GPU (Host-CPU-Barrier). Host-CPU-Barrier requires sus-
pension of execution on GPU, saving the states of all simu-
lated cores in GPU’s global memory and transferring
control to host CPU where barrier synchronization is per-
formed. This poses a serious performance, bottleneck and
slows down the entire simulation.

Shucai et al. [37] recently proposed on-GPU synchroniza-
tion, which facilitates inter- block synchronization without
returning to the CPU. However, special care must be taken
because in a naive implementation we may easily experi-
ence deadlocks when simulating a higher number of cores
than the available physical GPU processors. Simulated
nodes are mapped on both active and inactive thread-blocks
and the GPU hardware scheduler selects thread-blocks for
execution based on available computational resources [17].
If the number of threads in all blocks is higher than the
number of processors on the GPU, only a subset of all the
blocks can execute, while the remaining blocks wait (inac-
tive) until the first set finishes its execution.

6.3 Relaxed-Synchronization
A traditional lock-step approach or cycle accurate simula-
tion would force synchronization of each node simulation
at every clock cycle, so that the simulated program can exe-
cute in synchronized target time. The major drawback of
this approach is immense synchronization overhead, as the
simulation would stop and synchronize at each clock-tick.
To address the problem of high overhead due to Host-
CPU-Barrier synchronization and gain significant speedup,
we use less frequent synchronization, introducing a
technique which we call relaxed-synchronization. In relaxed-
synchronization, instead of synchronizing at every few clock
cycles, we choose to synchronize only upon s-events to mini-
mize the number of synchronization points. Fig. 4 shows the
steps taken to achieve fast synchronization on GPU as
described below:

e Step 1—Simulation of all nodes are allowed to run
freely and cores simulate with high speed until an s-
event is detected in coprocessor system. This is to
ensure that we achieve fast simulation by allowing
the hardware context thread to execute indepen-
dently without the need to synchronize frequently.
All nodes which are simulated independently, con-
tinuously checks for the presence of any s-event in
the system after execution of each local instruction
by polling an s-event flag in GPU device memory.
When any of the nodes in the system detects the first
occurrence of an s-event, it sets the s-event flag and all
other nodes are notified of the presence of an s-event
in the system. In Fig. 4 node 0 is the first to detect the
presence of an s-event at its local clock cycle TO reads
4. As explained above, at this point it is necessary to
synchronize all nodes to maintain the functional and
timing fidelity of the simulation.
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Fig. 4. Graphical representation of using Relaxed-Synchronization to
minimize performance overhead from Host-CPU-Barrier on GPU
platforms.

e Step 2—As explained in Section 6.1, to avoid data
dependency violation we need to make sure that all
the nodes should have local clock cycles at least
equal to the timestamp of the node generating the
s-event. Local clocks Tn of all nodes are collected
and Lower Bound on Timestamps (LBTS) is calcu-
lated, where LBTS is equal to the clock cycle of the
node that notifies the presence of an s-event.

e Step 3—Calculating LBTS requires inter-thread syn-
chronization of GPU CUDA threads. Therefore all
nodes suspend their independent simulation and
control returns to the host CPU platform to perform
Host-CPU-Barrier operation. As shown in Fig. 4, the
LBTS is calculated as 4 in this case.

o Step 4—When GPU kernel is launched again, if it was
detected in the previous step that some of the nodes
have Tn less than LBTS, then a synchronization cycle
is called which ensures that the simulation of all
nodes has a timestamp greater than or equal to
LBTS. Simulation of nodes with local clock lower
than LBTS proceed while nodes with timestamp
greater than or equal to the lower bound wait until
all local clocks are at least equal to LBTS = 4 as
shown in figure. If there are any previous s-events
present in the system, Steps 2, 3 and 4 are repeated
until all of them are detected and LBTS is set to the
minimum value of their timestamp.

e Step 5—The simulation proceeds in lock-step fashion
until all detected s-events in the system are retired as
shown in Fig. 4. As explained in Step 1, due to the
presence of s-events in the system, each node simu-
lates a single event on GPU before returning the con-
trol to the CPU to perform the Host-CPU-Barrier.
Lock-step simulation also helps to ensure that timing
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Fig. 5. Synchronization in a single step of NoC simulation under lock-
step simulation.

fidelity is maintained and we get the expected round
trip latency of the packet traveling across NoC by
continuously checking any modified value of LBTS
after each GPU kernel launch.

e Step 6—Once the simulation of s-events in the system
is complete, normal simulation resumes without bar-
riers until the simulation ends or next s-event is
encountered at which point Step 2 is invoked again.
In Fig. 4 s-event generated in Step 1 is serviced and
fast GPU simulation continues.

Next, with the help of Fig. 5, we explain lock step simulation
implemented in NoC simulation. We recall that a single
CUDA thread simulates a single node of the NoC, which
has a network switch connected to local and neighboring
queues as shown in Fig. 1. Local processor and memory
queues are bidirectional and switch receives requests and
inserts the forwarding packets from/to them indepen-
dently. However neighboring nodes are connected using
two queues—incoming and outgoing. The incoming queue
for one switch of the neighbor acts as an outgoing queue for
the second one and vice versa. Within one single kernel
launch (step) of lock-step synchronization, every switch
queries its incoming packet queues, then selects a single
packet from one of its queues and forwards it to the destina-
tion outgoing queue. This implies that in a single step, two
neighboring switches may be reading and writing from the
same packet queue. Therefore additional synchronization is
needed where one of the neighbors is trying to insert the
packet in the outgoing queue while another one is trying to
read the packet from the same queue location (which may
result in write-after-read hazard).

This synchronization is done using a combination of CPU
barrier synchronization and a lock-free fast barrier synchro-
nization [37] (see Fig. 5). Therefore, a single step between
two CPU Barrier Synchronization points is further divided
into a read and writes cycles. First, in a read cycle all
switches poll their incoming queue for requests and read a
packet to be serviced. This is followed by a lock-free fast
barrier synchronization [37] to ensure that all threads have
finished reading their incoming queues, before writing the
selected packet into their outgoing queues. Finally, the fol-
lowing CPU barrier synchronization ensures that packets
written to all queues in the write cycle are globally visible
for reading with the next CUDA kernel launch.

The overall simulation performance loss due to synchro-
nization is related to the number of s-events present in each
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simulated workload. Since our target coprocessor is aimed
at running many-thread data parallel workloads, we expect
very low synchronization requirements and consequently
high simulation speedups for heterogeneous platforms.

7 EXPERIMENTAL RESULTS

In this section we first present our experimental set up and
benchmarks. Next we show performance results for bench-
marks running on top of our simulator. Finally, we show
the evaluation of scalability of our simulator and a detailed
comparison of its performance with respect to other state-
of-the-art commercial platform simulation approaches.

7.1 Experimental Setup

For evaluating our simulation methodology, we carefully
selected our target architecture and benchmarks for simula-
tion. As a target architecture for heterogeneous platforms,
we decided to simulate an ARM versatile baseboard with
dual core ARM1136 CPU connected with a many-core pro-
grammable coprocessor. As described before in Section 2,
the architecture we are targeting for target coprocessor has
thousands of very simple in-order cores. We use simple
RISC32 cores (based on ARM instruction set architecture
[25]). Since we model various different system components
in our coprocessor simulator (i.e., cores, caches, on-chip net-
work, memory), it is important to understand the cost of
modeling each component on performance of simulator.
Therefore we conducted our experiments with two different
architectures.

e Architecture 1. First we considered an architecture
where each tile is composed of a RISC32 core with
associated instruction (ISPM) and data scratchpad
memory (DSPM). All private memory references are
handled by dedicated code portion modeling the
behavior of scratchpad memories. All synchroniza-
tion instructions targeted towards shared memory
(TDSM) are handled from a global space.

e  Architecture II. This includes the entire set of compo-
nents such as cores, caches, NoC, SPMs, distributed
shared memory (TDSM) and performance models.
Caches are private to each core, which means that
they only deal with data or instructions allocated in
the private memory. The distributed shared memory
(TDSM) is non-cacheable; therefore simulation of
cache coherence protocol is not required. The com-
plete list of architectural features is provided in
Table 1.

We characterize our simulator’s performance using a
metric called S-MIPS. S-MIPS presents the rate at which
the host platform simulates target instructions. We define
S-MIPS as follows:

S-MIPS — Millions of Simulated Instructions

Host wall clock time in seconds

For all experiments, we used a NVIDIA C2070 Tesla
graphic card (the Device), equipped with 6 GB memory and
448 CUDA cores. The QEMU ARM emulator runs a Linux
kernel image compiled for the Versatile platform with EABI
support. The many-core coprocessor simulator executes the
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TABLE 1
System Parameters of Target Architecture of Coprocessor

Processing Cores

128 to 4096 ARM ISA cores, 3-stage pipeline

Instruction and Data Caches per core, 32 KB per node,
Reconfigurable set-associative (default 8 ways), FIFO replacement policy,
write allocate, write no allocate, write back,

Caches 128-byte lines Cache miss latency: 10 cycles, Cache hit latency: 1 cycle
Network-on-chip, nxn 2D mesh, static routing, XY,
Interconnect Single cycle per hop when no network congestion

Private Memory

4GB per target coprocessor, Distributed equally for available number of cores, Cacheable

Shared Memory (TDSM)

40MB per target coprocessor, Distributed equally for available number of cores, Non-cacheable

data parallel section of the workload offloaded by the main
program, simulated on QEMU. As a host CPU platform, we
used an Intel Xeon 2.67 GHz multi-core system running
Linux 2.6.32. To generate target binaries for ARM, we have
used arm-linux-gcc. We vary the number of processors in
the simulated many-core from 128 to 4,096. This allows us
to explore the performance of our simulator when modeling
both current and future many-core designs.

7.2 Benchmarks

The benchmarks we have selected aim at evaluating (i) the
scalability of target workload on many-cores, (ii) the
design alternatives for target architecture with CPU-
coprocessor scheme (iii) the efficacy of simulator imple-
mentation on GPU. We measure the impact on four most
important factors:

e Datalevel parallelism.

e Data set sizes.

e Synchronization.

o Task level parallelism.

In Table 2, we list the benchmarks adopted for our
experiments with their data set size which are scaled up
so that they can be parallelized for as many as four thou-
sands cores. As mentioned in Section 2, the coprocessor
architecture enables fine-grained parallelism and is best
suited for workloads with high level of data-level paral-
lelism. Therefore, the first four benchmarks are extracted
from a JPEG decoder and from the OpenMP Source Code
Repository [30] benchmark suite and exhibits high degree
of data parallelism. We also used the EP kernel from NAS
parallel benchmark [32]. The EPCC benchmark is taken

from the well-known OpenMP Microbenchmarks Suite
[31], which contains large data parallel phases inter-
spersed with several implicit synchronizations. Fig. 6
presents the instruction profile showing percentage of dif-
ferent mix of instructions in each of these benchmarks
when 4,096 cores are simulated on the many-core copro-
cessor. The percentage of instructions is referred to the
application portion that is running on the target coproces-
sor. We can see that for EPCC benchmark, the fraction of
synchronization instructions represents a small percent-
age of the total. The dataset size changes between bench-
marks. In particular, MM and NCC have larger datasets,
which implies a longer duration of their overall execution
time compared to the other benchmarks.

FFT was chosen as a representative of task (MIMD) par-
allelism. Indeed, in this benchmark, threads with an odd ID
perform different computation than threads with an even
ID. These threads, when mapped to the simulation cores,
create control flow divergence, as discussed in Section 4.

Finally, synchronization is an important feature for any
shared memory programming model and it is important to
measure the overhead of using synchronization primitives
in a given workload. Therefore, we selected a worst case
scenario and used a barrier synchronization benchmark,
described in [33] and [34]. This benchmark consists of a
sequence of data-parallel tasks (or algorithmic phases) and
a final barrier synchronization, which makes threads wait
for each other at the end of parallel region. We consider
three different implementations of barrier algorithm to
show that our simulator can precisely capture the perfor-
mance impact of software and architectural design imple-
mentations, namely:

TABLE 2
Benchmarks
[ [ Benchmark [ Acronym | Source [ Comments |
1 Inverse DCT IDCT JPEG Decoding [30] Datasize - 4K DCT blocks(8*8 pixels)
2 Luminance Dequantization DQ JPEG Decoding [30] Datasize - 4K DCT blocks(8*8 pixels)
3 Background Subtraction NCC Normalized Cut Clustering [30] Datasize - 4K parallel rows
4 Matrix Multiplication MM OpenMP Source Code Repository[30] Datasize - (4096x100)*(100x100)
5 Fast Fourier Transform FFT OpenMP Source Code Repository[30] (Datasize = 4K)
6 EPCC Test Atomic EPCC EPCC OpenMP Microbenchmark Suite [31] Datasize = 4K (Atomic Operations)
7 Embarrasingly Parallel EP NAS Parallel Benchmarks [32] Datasize= 218
Datasize = 4096
8 Barrier - Centralized BC PARKBENCH [33], Marongiu et al.[34] End barrier (Spin Locks, Polling Loops)
Datasize = 4096
9 Barrier- Master Slave Distributed B-MSD PARKBENCH [33], Marongiu et al.[34], End barrier (Spin Locks, Polling Loops)
Datasize = 4096
10 | Barrier - Master Slave Distributed Tree | BMSD-T PARKBENCH [33], Marongiu et al.[34], End barrier (Spin Locks, Polling Loops)
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Fig. 6. Instruction profile of benchmarks (parallelized for 4,096 cores).

o Centralized. In the first implementation of the barrier
benchmark (BC), a centralized shared barrier is
used. It uses shared entry and exit counters atom-
ically updated through lock-protected write opera-
tions. Implementation of synchronization primitives
is done using spinlocks and polling a shared variable
which is stored in one single segment of the distrib-
uted shared memory of the target (TDSM). Threads
busy-waiting for barrier to complete are constantly
sending memory packets with high latency towards
a single node. Therefore the number of synchroniza-
tion instructions increases with the increasing num-
ber of simulated cores, creating increasingly high
traffic towards a single tile in the network.

e Distributed master-slave. In this barrier algorithm (B-
MSD), we work around the contention problem by
designating a master core, responsible for collecting
notifications from other cores (the slaves). Each
slave notifies its presence on the barrier to the master
on a separate location of an array stored in DSM por-
tion local to the master. The master core polls on this
array until it receives the notification from all the
slaves. Slave cores however poll on a separate DSM
portions local to them. When the master core deter-
mines that all slaves have reached barrier, it releases
the slaves by writing to their polling location [34].
Distributing the polling location for slaves local to
their DSM segment, greatly reduces the traffic on
network due to busy-waiting, as evident from Fig. 6.

o Tree based distributed master-slave. This algorithm is
similar to B-MSD, but further improves perfor-
mance by using a tree based multi-stage synchroni-
zation mechanism (BMSD-T) where cores are
organized in clusters. The Master-Slave approach is
maintained as explained above, and each core in the
cluster has dedicated notification and polling flags.
In this case, the first core of each subcluster is master
to all slave cores in that subcluster. When all slaves
in a subcluster reach the barrier, they trigger top-
level synchronization betweeen local (cluster) mas-
ters [34]. Since the tree-based implementation
(BMSD-T) is better suited for a large number of pro-
cessors, it is expected to further mitigate the effect of
barrier synchronization.

Overall, each of these benchmarks is either representa-

tive of a category of applications widely used in the
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many-core domain, or contains specific computation or
memory patterns frequently found in highly parallel
applications. All benchmarks are launched from within
Linux OS running on QEMU. During the execution of
these benchmarks, when a parallel kernel is encountered,
it is offloaded for simulation on our many-core simulator
using the semihosting technique. The parallelization
scheme we have developed for this purpose is similar to
OpenMP static loop scheduling and focuses on evenly
dividing total loop iterations among all participating pro-
cessors. More specifically, an identical computation is
replicated over parallel threads, which operate on disjoint
chunks of the iteration space and data set according to
their identification number.

7.3 Application Performance Estimation

In this section, we present the results related to the per-
formance prediction capabilities of our many-core copro-
cessor simulator. Application performance depends upon
a large number of parameters. Performance overhead is
related to the various software features such as parallel
programming model, number of loop iterations per
thread, chunk size and software implementation of syn-
chronization directives. In addition to this, it also
depends upon architectural features such as cache design,
memory locality and communication cost due to network
delay. Therefore, with this set of experiments we assess
how each of these characteristics affects application per-
formance. We report average instructions per cycles for
each benchmark in Fig. 7. As mentioned in Section 7.2,
the first five benchmarks have high data parallellism and
therefore show increasing IPC of up to 2,000 with increas-
ing number of cores. EP and EPCC benchmark have a
small percentage of synchronization instructions, so they
still benefit from the rest of the available data parallel sec-
tion. BC is our worst case scenario and maximum IPC it
achieves is around 350, for the case when coprocessor is
simulated for 1,024 cores. This is due to heavy traffic com-
ing from synchronization directives, which creates a bot-
tleneck in the NoC and imposes sequential execution. The
simulator therefore correctly demonstrates the cause of
poor performance for BC. The poor performance is due to
the ill-matched synchronization scheme of the BC barrier
algorithm with an architecture with NUMA (distributed)
memory. B-MSD and BMSD-T are more suitable imple-
mentations for the assumed memory model and hence
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show better results compared to BC. As expected, due to
multi-stage implementation of Master-Slave algorithm,
the simulation cycles are further reduced in BMSD-T as
compared to BMSD, and therefore show higher instruc-
tions per cycles.

In Figs. 9a and 9b, we show scalability results for up to
4,096 cores. The application speedup is calculated by divid-
ing the cycle counts of a parallelized benchmark running on
N cores by the cycle count of the same benchmark running
on a single core of the coprocessor. Results for data parallel
kernels are shown in Fig. 9a and barrier algorithms are
shown in Fig. 9b. All the benchmarks achieve good scalabil-
ity in Fig. 9a due to high parallellism. FFT features data-
dependent conditional execution and EPCC includes syn-
chronization primitives. Due to this, the inherent parallel-
ism of EPCC and FFT is lower than that of the other
benchmarks and consequently we see a slight decrease in
application scalability when parallelizing for 4,096 cores.

ldeal

2 9013
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(a) Data Parallel Benchmarks

1345

In Fig. 9b, as we expect, BC does not scale, showing the
effect of heavy network congestion due to contention for cen-
tralized barrier counters. B-MSD mitigates the effect of syn-
chronization and shows significantly better results where
the application speed up increases to 1,000x. Employing a
tree-based algorithm in BMSD-T further removes the traffic
due to busy-waiting, and therefore shows better speedup
(3,300x) than BMSD with increasing number of cores.

7.4 Simulator Scalability Evaluation

In this section, we evaluate the scalability of our many-core
simulator running on GPU. We present the simulator’s per-
formance using S-MIPS for both Architecturel and Architec-
ture Il as explained in Section 7.1.

Fig. 10a shows S-MIPS for increasing core count of
the simulated accelerator for Architecture I. We can notice
that the performance is as high as 600 S-MIPS when
simulated for 4K cores for the MM benchmark with big-
gest dataset sizes. The same experiment for Architecture II
is shown in in Fig. 10b. The performance is close to 50 S-
MIPS. As explained in Section 4, the performance of our
simulator is directly related to the level of parallelism
available in the coprocessor workload. High level of data
parallelism in application implies longer simulation of
workload in parallel, thus benefiting from GPU hardware
parallelism and therefore results in better scalability and
performance. Therefore, MM and NCC benchmarks with
the largest parallel datasets benefits the most and show
highest performance compared to rest other benchmarks.
For other benchmarks, due to the small workload size on
coprocessor, the overhead associated with semihosting
and parallelization directives wins over the benefits of

Fig. 9. Application speed up when target coprocessor simulated with up to 4,096 cores.
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Fig. 11. Performance comparison of GPU based coprocessor simulator with OVPSim when simulating up to 4,096 cores.

parallelism on GPU. In addition to this, as explained in
Section 4, task parallel workload has a performance
impact on architecture simulation due to the serialization
of execution when control flow divergence occurs (during
the execution phase of core pipeline simulation), which is
visible in the simulation performance of the FFT bench-
mark in both Fig. 10a and Fig. 10b. In Fig. 10b, we see
that the increase in S-MIPS stagnate between 1,024 and
2,048 cores. This happens because when simulating
Architecture 2, due to a very large data structure of NoC,
Caches etc, we exhaust the available shared memory
resource on GPU device (GSM) and GPU scheduler can
only launch a limited number of total CUDA thread
blocks per multiprocessor, which can simulate up to 1792
cores concurrently. Simulation of rest of the cores wait
until the first batch of simulation finishes before launch-
ing the next batch of core simulation. Due to this seriali-
zation, we see no gain in performance between 1,024 and
2,048 cores, however when simulating 4,096 cores, we
again see increase in performance due to the fact now a
very high number of cores are simulating in parallel,
although in three batches of 1,792 cores simultaneously.

Fig. 10c shows our implementation of barrier bench-
marks. BC being a worst-case scenario incurs a huge
performance overhead due to slow CPU-GPU communi-
cation, as explained in Section 4. The impact of synchro-
nization overhead is visible in Architecture II, where each
application synchronization requires frequent CPU-GPU
barrier synchronization to faithfully simulate on-chip
network communication and synchronize the cycles
counts of the performance model as explained in Sec-
tion 5. B-MSD and BMSD-T show significant improve-
ment in performance. The cost of synchronization is
visible beyond the simulation of 1,024 cores, but as we
expect, BMSD-T shows the best performance among all
three implementations.

Fig. 8 gives further insight into our heterogeneous simu-
lator scalability. It shows the breakdown of total simulation
time for different benchmarks. We evaluate the amount of
time spent on the QEMU, the time spent on many-core sim-
ulation, overhead of semihosting required for the communi-
cation between the two and time spent in CPU-GPU
communication. These results refer to a 1,024-core instance
of many-core coprocessor. Since the MM benchmark has the
largest dataset, the time spent on the GPU is highest,
whereas for BC, B-MSD, BMSD-T, most of the time is spent
in the CPU-GPU communication (due to synchronization).
For most cases, we can see that semihosting time is a small
fraction of total execution time.

7.5 Simulator Performance Comparison

In this section we compare our simulation methodology
with dynamic binary translation. Single core simulation
on a powerful CPU using DBT is likely to outperform
our interpretation-based simulation approach on the
GPU. However, we can expect that the high number of
streaming processors available on a single graphics card
would allow our simulation method to deliver signifi-
cant speedup benefits when simulating thousands of
cores On COpProcessor.

To the best of our knowledge, none of the currently avail-
able simulators can simulate thousands of ARM cores along
with caches and interconnect similar to the full system
architecture of our target coprocessor. As a term of compari-
son, we selected OVPSim [35], which is a famous commer-
cial state-of-the-art simulation platform able to model
architectures composed of thousands of ARM-based cores.
OVPSim is a sequential simulator where each core takes
turn after certain number of instructions, however it
exploits the benefits of Just in Time Code Morphing and
translation caching system to accelerate the simulation.
OVPSim is a functionally accurate simulator without sup-
port for cache or interconnect modeling. The host platform
used for running OVPSim is the same we use for our
QEMU-based target CPU simulator; an Intel i7 quad-core
x86-64 based machine, running Linux at 2.67 GHz We
compare the performance of OVPSim against Architecture I
(Section 7.1), which most closely matches what OVPSim is
capable of modeling. We conducted two different experi-
ments. First we consider two benchmarks from the OVPSim
test suite, Dhrystone and Fibonacci. Unlike our other bench-
marks, these two benchmarks are not parallelized and every
core on the coprocessor simulator executes the benchmarks
entirely. The main reason for the using this set of bench-
marks is to highlight the reason behind the steady through-
put (5-MIPS), exhibited by OVPSim as shown in Figs. 11a
and 11b. They also allow us to present the difference
between the OVPSim technique that uses code morphing
technology as compared to our interpretation based
method. In both benchmarks, OVPSim shows a constant
performance with increasing number of simulated core
because of its code morphing technology. With these bench-
marks, OVPSim needs to invoke its morphing phase just
once and exploits the translation caching system to speed
up the simulation. Our GPU based simulator, on the other
hand, scales well up to 2,048 simulated. Beyond 2,048 cores
the achievable throughput only increases very slightly. Due
to per-block GPU device shared memory (GSM) require-
ments on the GPU, we are only able to run at most three
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blocks per multi-processor at a time. When simulating 4,096
cores we exceed this limit and extra blocks are dynamically
scheduled thus impacting the final scalability. The break-
even performance point between our coprocessor simulator
and OVPSim is 1,024 cores.

In the second experiment, we consider our data-parallel
benchmarks MM and NCC. We recall here that, with this
parallelization approach, smaller chunks of data are proc-
essed by each core when the core count increases. Results
for this test are shown in Figs. 11c and 11d. These graphs
show that performance of OVPSim decreases significantly,
showing less than 50 S-MIPS when simulating 4,096 cores.
Indeed, OVPSim suffers from a high initial overhead,
induced by its code morphing phase. This overhead is
increasingly evident as the workload size diminishes, since
morphing time tends to dominate. This initial overhead is
clearly amortized as soon as workload increases. On the
contrary, our simulator performs equally well in this con-
text (600 MIPS), even for very small workloads. On-chip
many-core coprocessors are often involved in data-parallel
computation, which may contain even very small amounts
of work (e.g., embedded accelerators for image processing,
which may perform single-pixel computation). In these
scenarios our simulation approach performs better than
OVP. The breakeven performance point between coproces-
sor simulator and OVPSim for data-parallel kernels is close
to 512 cores.

Results presented in this section indicate that our simula-
tion approach shows high scalability for the target many-
thread workloads and many-core architectures. Thousands
of hardware thread contexts available in GPU host make a
perfect match for simulation of the simple, single issue, in-
order cores of our target many-core coprocessor. The perfor-
mance of our simulator is however dependent upon the
total number of cores simulated in coprocessor simulator as
well as on the target workload. It is easy to notice that high
performance gain is obtained when we simulate very high
number of cores. We also proved that our simulator perfor-
mance scales further with the increasing scalability level
shown by the workload being simulated in the target plat-
form. Although there is a small impact of synchronization
and task parallelism on the performance of the simulator,
but the probability of their presence in our target workloads
is expected to be very low. With future development of
GPU architectures, we aim to incorporate dynamic binary
translation technique in our simulator to achieve further
improvement in performance.

8 CONCLUSION

In this paper, we have presented a novel methodology to
use GPU acceleration for architectural simulation of het-
erogeneous platforms in which a general purpose proces-
sor is coupled with a many-core coprocessor. The main
motivation of this work is to present feasibility, optimiza-
tion techniques, and performance benefits gained from
accelerating simulation on GPUs. The targeted heteroge-
neous platform is an illustrative architecture of a general
purpose processor coupled with a many-core coprocessor.
We have shown in this work how to effectively partition
simulation workload between the host machine’s CPU
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and GPU. Thousands of hardware thread contexts avail-
able in GPU hardware make a perfect match for simula-
tion of the simple, single issue, in-order cores of our
target many-core coprocessor.

Compared to performance results from the OVPSim sim-
ulator, our solution demonstrates better scalability when
simulating a target platform with increasing number of
cores. More precisely, our proposed simulator achieved up
to 50 MIPS when simulating full architecture for coproces-
sor including cache and NoC model while 600 MIPS when a
simpler architecture is considered with thousands of cores
using scratchpad memory.
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