000208111 001__ 208111
000208111 005__ 20190228220040.0
000208111 0247_ $$2doi$$a10.1088/0029-5515/55/5/053020
000208111 022__ $$a0029-5515
000208111 02470 $$2ISI$$a000353546700021
000208111 037__ $$aARTICLE
000208111 245__ $$aADX: a high field, high power density, advanced divertor and RF tokamak
000208111 260__ $$bIop Publishing Ltd$$c2015$$aBristol
000208111 269__ $$a2015
000208111 300__ $$a25
000208111 336__ $$aJournal Articles
000208111 520__ $$aThe MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)-a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (>= 6.5 T, 1.5 MA), high power density facility (P/S similar to 1.5 MW m(-2)) will test innovative divertor ideas, including an 'X-point target divertor' concept, at the required performance parameters-reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region-while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magneticfield side-the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination-advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions-will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv: 1409.3540)) that makes use of high-temperature superconductor technology-a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
000208111 6531_ $$atokamak
000208111 6531_ $$aadvanced divertor
000208111 6531_ $$alower hybrid current drive
000208111 6531_ $$aion cyclotron range of frequency heating
000208111 6531_ $$ahigh magnetic field
000208111 6531_ $$ahigh power density
000208111 6531_ $$aX-point target divertor
000208111 700__ $$aLabombard, B.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aMarmar, E.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aIrby, J.
000208111 700__ $$uUniv Texas Austin, Inst Fus Studies, Austin, TX 78712 USA$$aTerry, J. L.
000208111 700__ $$aVieira, R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWallace, G.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWhyte, D. G.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWolfe, S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWukitch, S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aBaek, S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aBeck, W.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aBonoli, P.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aBrunner, D.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aDoody, J.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aEllis, R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aErnst, D.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aFiore, C.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aFreidberg, J. P.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aGolfinopoulos, T.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aGranetz, R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aGreenwald, M.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aHartwig, Z. S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aHubbard, A.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aHughes, J. W.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aHutchinson, I. H.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aKessel, C.
000208111 700__ $$uUniv Texas Austin, Inst Fus Studies, Austin, TX 78712 USA$$aKotschenreuther, M.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aLeccacorvi, R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aLin, Y.
000208111 700__ $$uUniv York, York YO10 5DD, N Yorkshire, England$$aLipschultz, B.
000208111 700__ $$uUniv Texas Austin, Inst Fus Studies, Austin, TX 78712 USA$$aMahajan, S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aMinervini, J.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aMumgaard, R.
000208111 700__ $$uSandia Natl Labs, Albuquerque, NM 87185 USA$$aNygren, R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aParker, R.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aPoli, F.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aPorkolab, M.
000208111 700__ $$uUniv York, York YO10 5DD, N Yorkshire, England$$aReinke, M. L.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aRice, J.
000208111 700__ $$uLawrence Livermore Natl Lab, Livermore, CA USA$$aRognlien, T.
000208111 700__ $$uUniv Texas Austin, Inst Fus Studies, Austin, TX 78712 USA$$aRowan, W.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aShiraiwa, S.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aTerry, D.
000208111 700__ $$aTheiler, C.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aTitus, P.
000208111 700__ $$uLawrence Livermore Natl Lab, Livermore, CA USA$$aUmansky, M.
000208111 700__ $$uUniv Texas Austin, Inst Fus Studies, Austin, TX 78712 USA$$aValanju, P.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWalk, J.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWhite, A.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aWilson, J. R.
000208111 700__ $$uMIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA$$aWright, G.
000208111 700__ $$uPrinceton Plasma Phys Lab, Princeton, NJ 08543 USA$$aZweben, S. J.
000208111 773__ $$j55$$tNuclear Fusion$$k5
000208111 909C0 $$pCRPP
000208111 909C0 $$0252028$$pSPC
000208111 909CO $$pSB$$particle$$ooai:infoscience.tind.io:208111
000208111 909C0 $$xU12272$$xU12268$$xU10558$$xU10635$$xU12266$$xU10636$$xU10137$$xU12270$$xU10557$$xU12273$$xU10559$$xU12271$$xU12269$$xU12267$$xU10136
000208111 917Z8 $$x112823
000208111 937__ $$aEPFL-ARTICLE-208111
000208111 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000208111 980__ $$aARTICLE