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Abstract A simple topological graph is a graph drawn in the plane so that its edges
are represented by continuous arcs with the property that any two of themmeet at most
once. Let G be a complete simple topological graph on n vertices. The three edges
induced by any triplet of vertices inG form a simple closed curve. If this curve contains
no vertex in its interior (exterior), then we say that the triplet forms an empty triangle.
In 1998, Harborth proved that G has at least 2 empty triangles, and he conjectured
that the number of empty triangles is at least 2n/3. We settle Harborth’s conjecture in
the affirmative.

Keywords Topological graphs · Empty triangles · Graph drawings · Simple
topological graph

1 Introduction

A topological graph is a graph drawn on a surface so that its vertices are represented by
points and its edges are represented by Jordan arcs connecting the respective endpoints.
Moreover, in topological graphs we do not allow overlapping edges or edges passing
through a vertex. In the present note, we assume that a graph is drawn in the plane.
A topological graph is simple if every pair of its edges meets at most once either in a
common vertex or at a proper crossing. We use the words “vertex” and “edge” in both
contexts, when referring to the elements of an abstract graph and also when referring
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Fig. 1 The twisted drawing of a
complete graph [7]
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to their planar counterparts. A graph is complete if there is an edge between every pair
of vertices. Throughout this note n denotes the number of vertices in a graph.

IfC is a simple closed curve,R2\C is partitioned uniquely into two connected sets,
one bounded and the other one unbounded. The (topological) closure of the latter is
referred to as the exterior of C , while the closure of the former is called the interior
of C ; we denote them by ext(C) and int(C), respectively. For a complete simple
topological graph G and a triplet T = {a, b, c} of vertices from G, let CT denote the
simple closed curve consisting of the edges between vertices of T . We say that T is an
empty triangle if either int(CT ) or ext(CT ) contains no vertex from G in its relative
interior.

In 1998, Harborth [7] proved that every complete simple topological graph with
n > 3 vertices contains at least two empty triangles. He conjectured that every vertex
is incident to at least two empty triangles, see also [3, Chap. 9.6]. If this conjecture is
true, then it is tight in the following sense: there are drawings where almost all vertices
(all vertices but four of them) are incident to only two empty triangles [7] (see Fig. 1
for the drawing drawn by Harborth). The same drawings illustrate that the number
of empty triangles can be as small as 2n − 4, which is the best upper bound on the
minimum number of empty triangles in a complete simple topological graph. In the
present note we confirm Harborth’s conjecture.

Theorem 1 Let G be a complete simple topological graph on at least 4 vertices. Then
every vertex is incident to at least two empty triangles.

From Theorem 1 the following theorem follows immediately.

Theorem 2 Every complete simple topological graph, with at least three vertices,
contains at least 2n/3 empty triangles.

Aichholzer et al. [1] have improved the previous theorem and shown that every
complete simple topological graph with at least four vertices contains at least n empty
triangles.

1.1 Empty Triangles in Planar Point Sets

In the case of geometric graphs, the equivalent problem is to find the number of
empty triangles for sets of points in the plane in general position. It is easy to see that
the number of empty triangles in a planar point set (in general position) is at least
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quadratic [2], which is tight up to the order of magnitude. However, the search for the
asymptotically exact bounds on theminimumnumber of empty triangles in planar point
sets is far from being settled; analogous bounds have been studied for convex/non-
convex k-gons for k = 4, 5, 6 [9,11]. We remark that for every integer k, there are
configurations of k points in general position with no empty convex heptagons [8],
while it is known that every sufficiently large point set in the plane in general position
contains six points that induce an empty convex hexagon [6].

We remark that Corollary 5 was used in [5] and [4] to reprove a result of Suk
[10], namely that every simple complete topological graph with n vertices has at least
�(n1/3) pairwise disjoint edges.

The paper is organized as follows: In Sect. 2, we prove the main lemma and a
generalization of it (Corollary 5). In Sect. 3, using Corollary 5 we prove Theorem 1.
In Sect. 4, we give an alternate version of Corollary 5 that is weaker but has a simpler
proof and which is enough for the proof of Theorem 1. In Sect. 5, we finish with some
concluding remarks.

2 The Main Lemma

Let a wheel denote a graph consisting of a cycle C and one additional vertex v con-
nected with all the vertices on C by an edge. The present section is mostly devoted to
the proof of our main lemma (Lemma 3) stating that if a wheel is drawn as a simple
topological graph so that no two edges of C cross, then at least two edges incident to
v do not cross any edge of C . We say that a topological graph is plane if it is free of
edge crossings. We conclude this section with Corollary 5 that extends Lemma 3 to
face boundaries in plane graphs.

We will now introduce some terminology. For a topological graph and a crossing
point x between edges uv and ab, we say that x is transformed into a vertex if the
topological graph is changed in the following way: x becomes a vertex, the edges uv

and ab are deleted and in their place four edges xa, xb, xu, xv are added and drawn
using the corresponding parts of the deleted edges.

Let G be a simple topological graph and C be a cycle in G. We say that C is plane
if no two edges of C cross. We use C to denote both the cycle and the closed curve
formed by its edges. For a subgraph H of G and a vertex v not in H , we say that e is
an edge from v to H if e is incident to v and to a vertex from H .

Consider a simple topological graph G containing a plane cycle C with a vertex
v in its interior (int(C)). The edge e from v to C is divided by its crossings with C
into several arcs. The arcs in int(C), with the exception of the one incident to v, are
referred to as the diagonals of e with respect to C . If v is in the exterior of C , then
similarly we refer to the arcs in ext(C), with the exception of the one incident to v, as
the diagonals of e with respect to C . If the cycle is clear from the context, we simply
refer to them as the diagonals of e. Let γG(e,C) denote the number of diagonals of e
with respect to C and γG(v,C) := ∑

c∈C :vc∈E(G) γG(vc,C).
Given an abstract graph G and an edge uv, the contraction of uv is an operation

which modifies G in the following way: We delete the vertices v and u, and add a new
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Fig. 2 The redrawing in the proof of Claim 4 when b is a vertex. From left to right A cycle with a diagonal;
the remaining figure-eight after the contraction; and the appropriate redrawing that avoids degeneracy

vertex to the vertex set of G, whose set of adjacent vertices is the union of the vertices
adjacent to v and u in G.

A topological multi-graph is simple if every pair of its edges connecting distinct
pairs of vertices meets at most once either in a common vertex or at a proper crossing
and every pair of its edges connecting the same pair of vertices meets exactly twice.

Lemma 3 Let G be a simple topological graph, C be a plane cycle of G, and v be a
vertex of G in int(C) (resp. ext(C)). Suppose that for every c ∈ V (C), vc ∈ E(G).
Then there exist at least two edges from v to V (C) that are contained in int(C) (resp.
ext(C)).

Proof For the sake of contradiction, letG,C , and v be a counterexample to the lemma
minimizing the number of vertices of C and γG(v,C), in this order. Without loss of
generality, we assume that v is in int(C) and that G is the graph consisting of C and
the edges from v to V (C). ��
Claim 4 γG(v,C) = 0, that is γG(vw,C) = 0 for all w ∈ C.

Proof For a contradiction, suppose that vw is an edge with at least one diagonal. Let a
andb be the crossings of vw andC that bound thefirst diagonal of vw, whenwe traverse
vw from v towards w along vw (see Fig. 3). We denote by ab the corresponding
diagonal along vw. Using ab and vw, we will modify G, thereby obtaining a new
graph contradicting the choice of G,C , and v.

Either b is a vertex of C or it is not. Assume first that b is a vertex of C , and let e
be the edge of C that contains the crossing point a (refer to Fig. 2). We transform a
into a vertex and then we contract the diagonal ab, which is now an edge, to a point.
In our drawing of G the contraction is performed by moving a towards b along ab
while dragging the edges adjacent to a. This operation gives rise to a new vertex uab
corresponding to the contracted edge ab. Note that ab cannot be crossed by an edge
of G due to the fact that G is simple. Thus, the contraction of ab results in a simple
topological multi-graph, in which the cycle C has been transformed, topologically,
into a “figure-eight,” i.e., two cycles sharing a point. Note that one of these cycles can
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Fig. 3 The redrawing in the proof of Claim 4 when b is not a vertex. From left to right A cycle with
a diagonal; the remaining figure-eight after the contraction; and the appropriate redrawing that avoids
degeneracy

be formed by two multi-edges. It is clear that v is in the interior of one of these cycles.
Let C ′ denote the new cycle that contains v in its interior.

It is easy to see that C ′ has at least three vertices. Delete all the vertices (and
the edges incident to the deleted vertices) which are not in V (C ′) ∪ {v} and observe
that none of the deleted vertices was joined with v by an edge contained in int(C).
Let G ′ denote the resulting topological graph. Note that G ′ is simple and satisfies
the hypothesis of the lemma. Every vertex c′ ∈ C ′ corresponds to an original vertex
c ∈ C , and the edge vc′ corresponds to an edge vc in the original drawing; furthermore
for all c′ ∈ C ′, vc′ is contained in int(C ′) if and only if vc is contained in int(C).
Note that |V (G ′)| ≤ |V (G)| and that γG ′(v,C ′) < γG(v,C ′). This, together with the
previous observations, is a contradiction.

Therefore it follows that b is not a vertex of C (refer to Fig. 3). Let e1 and e2 be
the edges from C containing a and b, respectively. The following argument is very
similar to the one from the previous case. Transform a and b into vertices. Similarly
as in the previous case we contract ab into a new vertex denoted by uab. Again, C has
been transformed, topologically, into a “figure-eight”. Let C ′ denote the cycle from
this “eight” that contains v in its interior. Delete all the vertices (and the edges incident
to the deleted vertices) which are not in V (C ′)∪{v}. For every vertex c′ ∈ C ′, distinct
to uab and w, there is an original vertex c ∈ C and an edge vc corresponding to the
edge vc′ in the original drawing. Moreover, the modified graph also contains an edge
between uab and w. In order to satisfy the hypothesis of the lemma, we delete the
edge uabw from the modified graph and add the edge vw to the modified graph by
drawing it so that it closely follows the edge uabv and the deleted edge uabw, and
such that it passes uab in the exterior of C ′. For all the vertices c′ ∈ C ′ distinct to uab,
vc′ is contained in int(C ′) if and only if vc is contained in int(C). Clearly, uabv is not
contained in int(C ′).

Let G ′ denote the resulting simple topological graph. Recall that C ′ is a cycle of
G ′ and v a vertex of G ′ in int(C ′) satisfying the hypotheses of Lemma 3. The edges
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Fig. 4 From left to right An unbounded face F ; the cycle C around F ; the edge uv and the representatives
of u on C ; and new edges from v to u1, u2, u3

from v to C ′ which are contained in int(C ′) are in one-to-one correspondence with
the edges from v to C which are contained in int(C) . Furthermore, |V (C ′)| ≤ |V (C)|
and γG ′(v,C ′) < γG(v,C). This contradiction concludes the proof of the claim. ��

From Claim 4, it follows that all the edges from v to V (C) are either contained in
int(C) or partitioned by the crossings with C into exactly two curves, one in int(C)

and one in ext(C).
Let a denote the crossing of uv, u ∈ V (C), with C . Clearly, if such a vertex u and

the crossing a do not exist we are done. Moreover, let us pick a so that one of the
Jordan arcs contained in C between a and u does not contain crossing points (recall
that all crossing points are given by an edge incident to v with an edge of C). Let A
denote this arc between a and u along C . Since G is simple, A has to contain a vertex
w of C in its relative interior, and by the choice of A, wv is contained in the interior
of C . Similarly, let B be the closure of the complement of A in C , that is the other
arc contained in C going from u to a. Then there exists a closest pair u′ and a′ along
B of a vertex u′ ∈ C and a crossing point a′ of u′v and C . The part of B between u′
and a′ contains a vertex w′ of C such that w′v is contained in int(C). Clearly, w and
w′ are two distinct vertices of C such that vw and vw′ are contained in int(C); this
concludes the proof of the lemma. ��

A face of a plane graph G is a connected component of R2 − G. We say that a
vertex is incident to a face F if it is contained in the closure of F . For a face F of
a plane subgraph H of a topological graph G and a vertex v �∈ V (H) in the interior
of F , we say that an edge e from v to a vertex incident to F is contained in F , if the
relative interior of e is a subset of F .

Corollary 5 Let G be a simple topological graph and H be a connected plane sub-
graph of G with at least two vertices. Let v be a vertex of G that is not in H, and F be
the face of H that contains v. Assume that for every vertex w incident to F we have
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vw ∈ E(G). Then there exist two edges in G from v to a vertex incident to F that are
contained in F.

Proof We may assume that F is unbounded; the bounded case is analogous. Refer to
Fig. 4. We draw a plane cycle C around the boundary of F sufficiently well approxi-
mating the “contour” of F , placing one vertex in every connected component of the
intersection of the curve corresponding to C with small balls centered around the
vertices incident to F . We call the vertices on C in the small ball centered around a
vertexw ∈ C the representatives ofw. Thus, each vertex incident to F has at least one
representative onC , and only cut-vertices in H can have more than one representative.
Using the original drawing of G, we will draw edges from v ∈ ext(C) to each vertex
of C and then apply Lemma 3 on the graph consisting of C, v and the edges between
v and C .

Let u be a vertex incident to F and let u1, u2, . . . , uk be the representatives of u
on C . The end-piece of the edge uv is in the cyclic order of the end-pieces of the
edges incident to u between the end-pieces of a pair of edges uw and uz (possibly
w = z) incident to F . For every such u, we draw the edges from v to ui for 1 ≤ i ≤ k
very close to one another, by following uv; however, we must be careful when joining
them to their corresponding representative. To this end, we first pick the unique index
j such that w j ′u j , u j z j ′′ ∈ E(C), where w j ′ and z j ′′ are representatives of w and z,
respectively. We draw the edge from v to ui such that for all i ∈ {1, 2, . . . , k}\{ j} in
a close neighborhood around ui the edge uiv is contained in int(C). The rest of uiv is
contained in ext(C) if and only if uv does not intersect the boundary of F . We draw
the edge u jv such that in a close neighborhood around u j the edge u jv is contained
in ext(C). The relative interior of u jv is fully contained in ext(C) if and only if uv

does not intersect the boundary of F . Note that an edge from v to C that is contained
in ext(C) corresponds to an edge from v to a vertex incident to F that is contained in
F . Furthermore, for each edge from v to a vertex incident to F that is contained in F ,
there is exactly one edge from v to C that is contained in ext(C). Thus, by Lemma 3
the corollary follows. ��

3 Empty Triangles

Proposition 6 Let G be a complete simple topological graph. Then every vertex v is
incident to at least one bounded empty triangle.

Note that Theorem 1 follows from Proposition 6: let v ∈ G. From Proposition 6,
it follows that there exists a bounded empty triangle T that is incident to v. Apply an
inversion of the plane to the drawing so that T becomes an unbounded empty triangle.
In this new topological graph, again by Proposition 6 there exists a bounded empty
triangle T ′ containing v, obviously T �= T ′. Therefore, T and T ′ are two distinct
empty triangles incident to v.

We give a proof of Proposition 6.

Proof Let G and v be as in the proposition and H0 be the star graph, induced by G,
which consists of the vertices of G and the edges incident to v. Since G is simple,
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Fig. 5 The procedure of the proof of Proposition 6: finding at every iteration an extra edge and hence a
smaller triangle incident to v. The empty triangle incident to v, in this particular case, is vu1u2

H0 is necessarily a plane subgraph of G. Let u0 be a vertex of G distinct from v.
By Corollary 5, applied to H0 − u0v, there exist an edge e in G incident to u0 and a
vertex w0, distinct from v, which does not cross any edge of H0. Let T0 be the triangle
{v, u0, w0}. If T0 is not empty, then let H1 be the plane graph obtained by adding u0w0
to H0. Note that H1 is a plane subgraph of G. Let u1 be a vertex in the interior of
T0. We again apply Corollary 5, this time to H1 − u1v, to find an edge from u1 to a
vertex w1 of G, distinct to v, not crossing any edge of H1 −u1v. Note that the triangle
T1 = {v, u1, w1} is contained inside of T0 and thus contains a strictly smaller number
of vertices of G in its interior (see Fig. 5).

If T1 is not empty, i.e., it contains a vertex ofG in its interior, we proceed inductively
finding at every iteration a triangle incident to v with a smaller number of vertices in
its interior. After a finite number of iterations, an empty triangle incident to v will be
found; this concludes the proof. ��

4 A Faster Proof of Proposition 6

Corollary 5 is crucial for uses in other applications such as [4]. However, for proving
Proposition 6 we only need to prove the existence of a non-crossing edge in certain
specific situations. Corollary 8 has a shorter proof than Corollary 5 and can replace
the latter in the proof of Proposition 6.

For a complete simple topological graphG and a vertex v ∈ V (G), let EG(v) denote
the subset of edges of E(G) that are incident to v. For a subset of edges E ′ ⊂ E(G)
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Fig. 6 On the left is the first iteration in the proof of Lemma 7: E2 = {vv4, vv6} and i3 = 4. On the right
are some of the edges of a graph satisfying the hypotheses of Corollary 8

and an edge e ∈ E\E ′, we will say that e does not cross E ′ if e does not cross any
edge in E ′.
Lemma 7 Let G be a simple complete topological graph and let v and u be two
vertices of G. There exists a vertex w in V (G)\{v, u} such that uw does not cross any
edge in EG(v).

Proof Without loss of generality, we may assume that v is on the boundary
of the unbounded face of G (the unbounded connected component of R

2\G).
Let v1, v2, . . . , vn−1 be an order of the vertices of V \{v} such that the edges
vv1, . . . , vvn−1 appear in clockwise order in a small neighborhood of v and fur-
thermore u = v1 . Notice that the edges of G partition the plane into regions, one of
which is unbounded.

Consider the edge v1v2 and let E2 be the edges incident to v that cross v1v2 (refer
to Fig. 6). If E2 is empty, we are done. Otherwise let i3 be the smallest index such that
v1v2 crosses vvi3 and let E3 be the edges incident to v that cross v1vi3 . We claim that
E3 ⊂ E2. Indeed, since vvi3 crosses v1v2 it follows that vi3 must be in the interior of
the triangle T with vertices v, v1, v2. It is easy to see that a simple topological graph
with four vertices has at most one crossing. By considering the simple topological
graph induced by the vertices v, v1, v2, vi3 , it follows that v1vi3 cannot cross vv2. Let
CT be the closed curve determined by the edges of the triangle T . It follows that v1vi3
does not cross CT , and hence if v1vi3 crosses an edge incident to v, it must be inside
CT and therefore it must also cross v1v2, i.e., E3 ⊂ E2. If E3 is empty we are done.
Otherwise, we proceed inductively, at each iteration defining i j to be the smallest
index such that vvi j is in Ei j−1 and defining E j to be the subset of EG(V ) consisting
of the edges incident to v that cross v1vi j . From the previous analysis, it follows that
E2 ⊃ E3 ⊃ . . .. Therefore, there is a j such that E j is empty and the corresponding
edge v1vi j is the edge we are looking for. ��
Corollary 8 Let G be a complete simple topological graph and v be a vertex of G.
Assume that there are vertices v1, v2 in V (G)\{v} such that the simple topological
graph induced by the edges EG(v) ∪ {v1v2} is planar. Let T = {v, v1, v2} and u be a
vertex of G in the interior (exterior) of CT . Then there exists a vertexw in V (G)\{v, u}
such that uw does not cross any edge of Ev ∪ {v1v2}.
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Proof Let G, v, v1, v2 be as in the statement of the corollary and u be a vertex in the
interior of CT (the case where u is on the exterior is analogous).

Let V ′ be the subset of V consisting of the vertices of V which are inside CT or
on its boundary (i.e., we include the vertices v, v1, v2). Let G ′ = G[V ′] be the simple
topological graph induced from G by considering the edges that have both endpoints
in V ′. By Lemma 7, there is a w ∈ V ′\{v, u} such that uw does not cross any edge
of EG ′(v). Since both u and w are on the interior or boundary of CT and uw does not
cross any edge of E ′

v , it follows that uw does not cross v1v2. Therefore, uw does not
cross CT and hence uw does not cross any edge from Ev ∪ {v1v2}. ��

5 Concluding Remarks

As witnessed by the example of Harborth [7], a straightforward extension of Theo-
rems 1 and 2 to dense graphs is not possible. The current best lower bound for the
number of empty triangles in a complete simple topological graph is n [1], while the
example witnessed by Harborth shows that there are examples with 2n − 4 empty tri-
angles. It is an interesting open problem to figure out the right estimate for the number
of empty triangles in complete simple topological graphs.
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