Effect of surface pretreatment of TiO$_2$ films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation

Sami Rtimi1, Jelena Nesic1,2, Cesar Pulgarin1, Rosendo Sanjines3, Michael Bensimon4 and John Kiwi5,1

1Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, 1015 Lausanne, Switzerland
2Faculty of Chemistry, University of Belgrade, Studentski trg 12, Belgrade, Serbia
3Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-IPMC-LNNME, Bat PH, Station 3, 1015 Lausanne, Switzerland
4Ecole Polytechnique Fédérale de Lausanne, EPFL-ENAC-HESGR-CEL, Bat GC, Station 18, 1015 Lausanne, Switzerland
5Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Bat Chimie, Station 6, 1015 Lausanne, Switzerland

Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO$_2$ sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO$_2$ loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES–TiO$_2$ and PE–TiO$_2$ samples. The amount of TiO$_2$ on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO$_2$ photocatalysis. Evidence was found for Ti$^{4+}$/Ti$^{3+}$ redox catalysis occurring on PES–TiO$_2$ and PE–TiO$_2$ during the bacterial inactivation process. On PE–TiO$_2$ surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the n(CH$_2$) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C–H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES–TiO$_2$ was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1–5% wt PES–TiO$_2$ samples. The interactions between the TiO$_2$ aggregates and the outer lipopoly-saccharide cell wall involve electrostatic effects competing with the van der Waals forces.

1. Introduction

TiO$_2$ has been reported during the last decade to be able to abate bacteria under solar light irradiation [1–8]. Films to reduce/eliminate bacterial infections are becoming increasingly important to preclude the spread of bacteria resistant to antibiotics leading to hospital-acquired infections (HAIs) [9,10]. TiO$_2$ films should completely inactivate antibiotic-resistant bacteria over a long lifetime in hospital facilities to prevent the spread of infections among patients while they are undergoing treatment.

The low surface energy of polyester (PES) and other textiles and polymer thin films leads to poor TiO$_2$ nanoparticle adhesion. For this reason, radio-frequency plasma (RF) and ultraviolet light below 320 nm (UVC) were used to pretreat the PES and generate an increased number of active sites, thus enabling increased TiO$_2$ adhesion. RF-plasma pretreatment induces binding...
sites for TiO$_2$ and concomitantly increases the textile hydrophilicity due to the polarity of the surface groups (e.g. –COOH) [11,12]. The fixation of suitable amounts of TiO$_2$ on fabrics and polymers makes it possible to drive bacterial inactivation over acceptable time scales.

Colloidal deposition of TiO$_2$ on textiles, polymers, glass and steel plates is used to prepare self-disinfecting and self-cleaning surfaces with a significant photocatalytic activity. But the colloidal or sol–gel preparations can lead to films that are not mechanically stable, that are not reproducible, that present low uniformity and that have little adhesion since they can be wiped off by a cloth or thumb [13]. In this report, we will show that pretreating a textile allows the fixation of TiO$_2$ nanoparticulate films at temperatures compatible with non-heat-resistant materials.

Section 3 of this report addresses the damage to the bacterial outer cell wall by TiO$_2$ leading to bacterial inactivation [14]. There have been previous reports of cell wall damage due to TiO$_2$ photocatalysis in Pseudomonas aeruginosa [15,16].

Here, we report recent work in our laboratory on: (i) the enhanced deposition of TiO$_2$ on PES (PET-TiO$_2$), pretreated by RF-plasma and UVC, (ii) the use of low-intensity actinic light and sunlight to inactivate bacteria on PES–TiO$_2$, (iii) the reduction of Escherichia coli viability in the dark and under light by TiO$_2$ on PES and polyethylene (PE) substrates, (iv) the surface properties of the PES, PE, PES–TiO$_2$ and PE–TiO$_2$ used in the bacterial disinfection, and finally (v) suggestions for the mechanism of E. coli inactivation in the dark on colloidal TiO$_2$ films deposited on PES.

2. Results and discussion

2.1. Effect of sunlight compared with visible light on the bacterial inactivation kinetics on polyester–TiO$_2$: monitoring the high-oxidized radicals

Figure 1 shows the E. coli inactivation kinetics as a result of bacterial degradation of diverse RF-pretreated PES samples under Osram Lumilux lamp irradiation emitting at 4.1 mW cm$^{-2}$. Trace 1 presents the almost negligible disinfection action of the PES sample by itself. Trace 2 shows a PES–TiO$_2$ sample without pretreatment inactivating bacteria within 5 h. Traces 3, 4 and 5 present a faster E. coli inactivation as the pretreatment time increases from 10 up to 30 min. The faster bacterial reduction kinetics within 1.5 h for PES–TiO$_2$ samples pretreated for 30 min involves an increased amount of oxidative radicals (mainly OH radicals) developed on the PES–TiO$_2$ [17]. Trace 6 shows that the 120 min RF-pretreatment period does not shorten the bacterial reduction kinetics beyond that shown by a 30 min RF pretreatment. Therefore, the capacity to produce highly oxidative radicals (OH radicals) seems to reach a maximum after 30 min of RF-pretreatment.

Figure 2a presents the fluorescence intensity of PES samples pretreated with RF-plasma for different times after 30 min of illumination. These results show the favourable effect of an increase in RF-plasma pretreatment time up to 30 min for PES–TiO$_2$ samples, enhancing OH radical generation upon illumination. The OH radicals produced on the PES–TiO$_2$ have been quantified by measuring the fluorescence of the terephthalic acid [18,19]. Upon illumination of the PES–TiO$_2$, the terephthalic acid in NaOH solution converts to a highly fluorescent hydroxy-substituted product. Monitoring the increase of the hydroxy product allows the TiO$_2$ surface-generated oxidative species (OH radicals) to be estimated. We can only suggest that the active sites on the RF-pretreated PES– TiO$_2$ are introduced from two sources: (i) by the RF pretreatment of the PES generating polar binding sites due to the residual O$_2$ in the RF treatment cavity and (ii) by the impurities, defects and dangling bonds of the interfacial PES–TiO$_2$ (anatase).

The actinic Osram Lumilux 18 W/827 lamp acts as a simulated sunlight source to activate the PES–TiO$_2$ sample fluorescence. Figure 2b presents the lamp emission spectrum between 320 and 730 nm with an integral output of 4.1 mW cm$^{-2}$.

The diffuse reflectance spectroscopy (DRS) spectra for the PES–TiO$_2$ RF-pretreated samples for 10, 20 and 30 min are shown in figure 3. The light absorption of the PES alone is due to the TiO$_2$ content added as whitener during the fabrication of PES as described in the Material and methods section. The spectra in figure 3 show the direct relationship between the light absorption in Kubelka–Munk units as a function of the RF-plasma pretreatment time. The approximate UV-Vis reflectance data cannot be used directly to assess the absorption coefficient of the RF-pretreated samples because of the large scattering contribution to the reflectance spectra. Normally, a weak dependence is assumed for the scattering coefficient S on the wavelength. In figure 3, the scattering coefficient S is a function of the spectral wavelength in the DRS spectra. The KM/S values for the samples in figure 3 follow the same trend observed for the bacterial reduction kinetics reported previously in figure 1.

The wt% Ti/wt PES in table 1 shows the increases in TiO$_2$ content with a longer RF-plasma pretreatment time.

Figure 4a presents the fluorescence of the PES–TiO$_2$ samples irradiated for up to 30 min by an Osram Lumilux 18 W/827 lamp using a 400 nm cut-off filter as shown in the inset in figure 4a. Figure 4a shows a drastic fluorescence reduction with respect to the same data presented in figure 2a. The residual fluorescence induced by the filtered light of the Osram Lumilux 18 W/827 lamp comes from the tail optical absorption of the PES– TiO$_2$ between 400 and 500 nm (figure 3). The tail optical absorption involves C–TiO$_2$ bands with a yellow colour introduced on the PES surface during the RF pretreatment. The C–TiO$_2$ species have been reported as being responsible for optical absorption above 400 nm [19,20]. The
RF pretreatment introduces C-oxidative functionalities on the PES and the local heat effects break the PES intermolecular H-bonds [21]. The evaporation of water from the PES leaves spaces for the diffusion of TiO₂ into the PES matrix, which increases with the RF-plasma pretreatment time [22].

Figure 4b shows the bacterial I reduction kinetics in the presence of the cut-off filter 400 nm. The inactivation kinetics is slowed to 3.5 h, providing further evidence for the generation of a small amount of highly oxidative radicals when a 400 nm cut-off filter is used to inactivate bacteria only using visible light irradiation (filtered light conditions).

2.2. Surface characterization of polyester–TiO₂ surfaces

Figure 5 presents the transmission electron microscopy (TEM) of: (i) the PES surface sample and (ii) the PES–TiO₂ where a
continuous coating between 25 and 80 nm thick of TiO$_2$ is observed for the RF-plasma-pretreated sample. Un-aggregated particles show sizes between 20 and 30 nm. This means that the coating in figure 5c comprises between one and four TiO$_2$ layers.

Figure 5b shows the X-ray diffraction for PES and for PES–TiO$_2$ RF-plasma-pretreated samples for 30 min. A strong signal for anatase is readily seen at 25.2° along with smaller anatase satellite peaks.

Figure 5c shows the X-ray electron spectroscopy (XPS) deconvoluted spectrum of an RF-plasma-pretreated PES–TiO$_2$. The peaks for the OH group at 531.0 eV [23], Ti–O at 529.8 eV [24] and the Ti–O–C peak at 532.8 eV [25] are shown in figure 5c. A large amount of adsorbed/chemisorbed water was introduced in the sample during the sol–gel coating at temperatures less than or equal to 100°C. The amount of surface OH$_{surf}$ radical adsorbed on the sample is higher after the RF-plasma pretreatment due to the increased hydrophilicity introduced by the O-containing polar groups by the RF-plasma pretreatment.

2.3. Transparent, non-scattering polyethylene–TiO$_2$ sputtered films inactivating *Escherichia coli*: reversible photo-switching required for repetitive disinfection processes

Recently, a report addressed the synthesis, kinetics and characterization of TiO$_2$ transparent non-scattering films able to inactivate *E. coli* within the minute range [26]. Figure 6 shows *E. coli* inactivation on PE–TiO$_2$ films under simulated solar light with a dose of 52 mW cm$^{-2}$. The fastest bacterial inactivation was found for pretreated PE–TiO$_2$ samples sputtered for 8 min and RF-plasma PE pretreated for 15 min. No significant bacterial inactivation was observed for bacteria on uncoated PE. These sputtering and pretreatment times lead to the most favourable bacterial inactivation kinetics by PE–TiO$_2$ films. The bacterial evaluation procedure used was carried out according to [27]. The RF-plasma allowed the sputtering of additional uniform TiO$_2$ layers compared with non-pretreated PE. The PE–TiO$_2$ samples pretreated for 15 min and sputtered for 8 min presented the highest amount of TiO$_2$ sites in exposed positions leading to the favourable bacterial inactivation kinetics shown in figure 6, trace 1 [25]. PE–TiO$_2$ sputtered samples for times between 1 and 5 min were not loaded with sufficient TiO$_2$ to result in rapid bacterial inactivation. The loading weights of TiO$_2$ on PES on transparent TiO$_2$–PE films are shown in table 1.

Samples sputtered for times longer than 8 min led to a thicker coating inducing charge bulk inward diffusion decreasing the charge transfer between the PE–TiO$_2$ and bacteria [28]. It seems that the TiO$_2$ sputtering for 8 min leads to a TiO$_2$ loading with the most suitable thickness for the charge diffusion generated in the TiO$_2$ reaching the bacteria. To verify that no re-growth of *E. coli* occurs after the first bacterial inactivation cycle, the PE–TiO$_2$ film was incubated on an agar Petri dish for 24 h at 37°C. No bacterial re-growth was observed, meaning that no bacteria adhered to the surface after the inactivation cycle.

The bacterial inactivation for the most suitable PE–TiO$_2$ samples (PE pretreated with RF-plasma in air for 15 min then TiO$_2$ sputtered for 8 min) was investigated up to the sixth cycle. The recycling of the sample showed a stable inactivation kinetics up to the fifth cycle, afterwards slowing down by approximately 20%. After each cycle, the samples were washed with distilled water and dried. Then, samples were kept in an oven at 60°C to avoid bacterial contamination. After washing, the PE–TiO$_2$ samples were left standing for 24 h before regaining the initial sample hydrophobicity. This will be discussed below since it relates to PE–TiO$_2$ film hydrophobic–hydrophilic transformation under sunlight irradiation and the reverse dark reaction. This is shown below by the hydrophobic–hydrophilic transformation under light shown in figures 7a,b and 8.

Figure 7a illustrates the rate at which the hydrophilicity is photo-induced up to 60 min on PE–TiO$_2$. Figure 7b shows the restoration rate of the initial hydrophobicity found on the PE–TiO$_2$ surfaces in the dark as a function of cos θ. The rate of change of hydrophobic to hydrophilic was found to be 0.277 min$^{-1}$ and the reverse reaction rate was 8.71 x 10$^{-3}$ min$^{-1}$. The reverse reaction was complete within 24 h. These rates were calculated by integrating cos θ in Young’s equation [7,8,16,28,29].
According to Young's theory, the contact angle of a liquid droplet on a solid is a function of the interfacial energy between the solid and the liquid. The wettability is commonly evaluated in terms of the contact angle (CA), which is given by Young's equation (2.1):

$$\gamma_S = \gamma_{SL} + \gamma_L \cdot \cos \theta,$$

where γ_S and γ_L are the surface free energies per unit area of the solid and liquid, respectively, and γ_{SL} is the interfacial free energy per unit area. In addition, γ_{SL} can be approximated using the Girifalco–Good equation (2.2), with γ_S and γ_L as

$$\gamma_{SL} = \gamma_S + \gamma_L - \Phi \left(\frac{\gamma_S}{\gamma_L} \right)^{1/2}.$$

Here, Φ is a constant parameter ranging from 0.6 to 1.1, depending on the solid. In addition, γ_L is the water surface free energy per unit area.

Figure 5. (a) TEM of (i) PES and (ii) PES–TiO$_2$ sputtered for 8 min after RF-plasma pretreatment for 30 min (E indicates the epoxide used in the preparation and cutting of the sample). (b) X-ray diffraction of PES (lower trace) and an RF-plasma pretreated PES–TiO$_2$ sample pretreated for 30 min and sputtered for 8 min with TiO$_2$. For more details see text. (c) XPS O1s spectra of PES–TiO$_2$ sputtered for 8 min and RF-pretreated showing the bands assigned to Ti–O, Ti–O–C and the OH$_{surf}$ functionalities.

Figure 6. PE–TiO$_2$ samples sputtered for 8 min after RF air plasma pretreatment for: (1) 15 min, (2) 20 min, (3) 30 min and (4) 5 min.
free energy, which has a constant value of 74 mJ m\(^{-2}\). Therefore, by combining (2.1) and (2.2), the CA can be simply expressed as

\[
\cos \theta = c \gamma^{1/2} - 1(\text{cconst}).
\]

The highly hydrophilic state generated by UV light gradually returns to the initial hydrophobic state in the dark, as shown in figure 7b. The hydrophobic nature of the PE–TiO\(_2\) surface before the photo-switching is important for the performance of the antibacterial films. Under light the mechanism of the hydrophilic conversion can be explained on the basis of the evidence found by electrochemical experiments [30]. These experiments show that the photo-generated holes, not the electrons under light irradiation, led to the hydrophilic conversion shown in figure 8. The photo-generated holes in the bulk diffuse to the TiO\(_2\) surface and are trapped at the lattice oxygen sites. The trapped holes react with the adsorbed organics directly, or are adsorbed in water producing OH radicals. However, a small portion of the trapped holes reacts with TiO\(_2\), breaking the bond between the lattice Ti and oxygen ions and coordinating with water molecules at the Ti site [29]. The coordinated water molecules release a proton for charge compensation and then a new OH group forms, leading to the increase in the number of OH groups at the TiO\(_2\) surface. The TiO\(_2\) surface is gradually covered with the thermodynamically less stable OH groups, which have a higher energy than that of the TiO\(_2\) surface covered with the initial OH groups.

The initial CA in figure 7a decreased to a CA less than 5° within 60 min of irradiation. The hydrophobic or hydrophilic nature of a surface is important in the adhesion of the bacteria to a surface and the subsequent light- or dark-induced inactivation. *Escherichia coli* and *Staphylococcus aureus* present a preferential adhesion to hydrophilic surfaces [16,31,32]. Bacteria with hydrophobic surface properties such as *Staphylococcus epidermidis* adhere preferentially to hydrophobic surfaces [33]. Hydrophobic bacteria have been reported to adhere to a variety of surfaces forming biofilms to a greater extent than hydrophilic bacteria [34]. Recently, Amal and co-workers have reported reversible photo-switching behaviour under light by Ag nanoparticles [35,36].

2.4. Surface characterization of polyethylene–TiO\(_2\) films

2.4.1. Atomic force microscopy topography of polyethylene–TiO\(_2\) sputtered films

Figure 9 presents PE–TiO\(_2\) RF air plasma-pretreated samples: roughness = 7 nm was observed for PE–TiO\(_2\) sputtered for 8 min, without PE pretreatment. A larger \(R_g\) value of 16 nm was observed for PE–TiO\(_2\) sputtered for 8 min and pretreated for 15 min at 1 torr. The value for PE–TiO\(_2\) pretreated by RF air plasma for 15 min and sputtered for 8 min was \(R_g = 11\) nm. The roughness values for different PE samples were observed to be higher for pre-treated samples than for non-pretreated samples. The general trend observed was that higher roughness leads to
a faster bacterial inactivation and also involved thicker TiO$_2$ layers.

2.4.2. Transmission electron microscopy and energy dispersive X-ray spectroscopy of polyethylene – TiO$_2$ surfaces

Figure 10 shows the scanning electron microscopy (SEM) images for PE–TiO$_2$ RF air plasma pretreated for 15 min and sputtered for 8 min, inducing faster bacterial inactivation (figure 6). Figure 10a shows a continuous coating of TiO$_2$ on PE. A TiO$_2$ thickness of approximately 60 nm is equivalent to 300 layers, taking an atomic layer thickness of 0.2 nm. Figure 10b shows high-angle annular dark-field (HAADF) scanning electron microscopy. The uniform distribution obtained by energy dispersive X-ray spectroscopy (EDX) of O and Ti on the coating is shown in figure 10c and d.

2.4.3. Redox processes at the polyethylene – TiO$_2$ surface detected by X-ray photoelectron spectroscopy

Figure 11a,b shows the deconvoluted O1s peaks of PE–TiO$_2$ films with no pretreatment and after pretreatment. The peaks of the Ti–O, Ti–OH and O–C bands for non-pretreated PE–TiO$_2$ are shown in figure 11a. Figure 11b presents the deconvoluted O1s bands of PE–TiO$_2$ pretreated in air plasma for 15 min showing a shift greater than 0.2 eV for the Ti–O, Ti–OH and O–C bands due to redox processes occurring during the RF-plasma air sample pretreatment. The Ti–O and Ti–OH species in the XPS spectrum were deconvoluted by introducing the sensitivity factors for oxygen [23,37,38]. The Ti–OH on PE–TiO$_2$ samples show peaks at 532.4 and 532.7 eV. The PE pretreatment gives rise to a different O–C boundary layer between PE and TiO$_2$, introducing a different accessibility for the attachment of TiO$_2$ to PE [39,40].

The different pretreatments of PE give rise to boundary O–C layers allowing the PE–TiO$_2$ films to react in a specific way during bacterial inactivation. The different bacterial kinetics observed for the PE–TiO$_2$ samples during the bacterial inactivation kinetics is possibly due to: (i) different accessibility of the bacteria to the O–C catalytic sites on the PE–TiO$_2$ and (ii) different distances between the interfacial layers and bacteria [25].

Redox processes involve Ti$^{4+}$/Ti$^{3+}$ species on PE–TiO$_2$ during the photocatalytic bacterial inactivation. This is shown next in figure 11c,d. At time zero, figure 11c shows the Ti$^{4+}$ peak at 458.6 eV. This binding energy value is slightly higher than the Ti$^{3+}$ peak at 457.8 eV, with both oxidation states coexisting on the PE–TiO$_2$ sample. But after bacterial inactivation, the Ti$^{3+}$ peak in figure 11d amounts to more than 90% of the XPS signal and the Ti$^{4+}$ to less than 10%. This redox reaction on the TiO$_2$ occurs concomitantly to the increase in hydrophilicity within 60 min required for bacterial inactivation on PE–TiO$_2$ samples (figure 7).

2.5. On the kinetics and mechanism of the bacterial inactivation in the dark with TiO$_2$ surfaces

The TEM of the PES–TiO$_2$ interaction with E. coli is shown in figure 12. The TEM in figure 12a shows the interaction of the
TiO$_2$–PET sample with *E. coli* K12 at time zero. The *E. coli* intact cell wall is seen as well as the aggregates and co-aggregates of TiO$_2$ positioned at a distance from the cell wall in agreement with the Derjaguin–Landau–Verwey–Overbeek theory of colloidal stability. TiO$_2$ nanoparticle aggregation commences at a pH close to the isoelectric point (IEP) of 6.8 due to the attractive van der Waals forces leading to TiO$_2$ aggregation within 30 min as shown in figure 12b [41]. The TiO$_2$ single particles present sizes between 40 and 60 nm and the hydrodynamic diameters of the aggregates were found to be 170–240 nm, i.e. equivalent to three or four primary TiO$_2$ particles. After 30 min, the TiO$_2$ aggregates accumulate on the cell wall surface due to their almost neutral charge at physiological pH as shown in

Figure 10. (a) SEM of an PE–TiO$_2$ sample RF air plasma pretreated for 15 min and sputtered for 8 min (BF, bright field), (b) HAADF image taken on the same sample, (c) EDX mapping of Ti of this sample and (d) EDX mapping of O. For more details see text.

Figure 11. (a,b) O1 s deconvolution of PE–TiO$_2$ XPS spectral peaks for samples sputtered for 8 min and: (a) no pretreatment, (b) after RF air plasma pretreatment for 15 min. (c,d) Ti2p peak deconvolution of a PE–TiO$_2$ sample sputtered for 8 min and pretreated with RF air plasma for 15 min (a) before and (b) after bacterial inactivation under solar simulated light involving Ti$^{3+}$/Ti$^{4+}$ oxidation states within 60 min, the bacterial inactivation period.
A weak attraction between the TiO\textsubscript{2} (IEP approx. 6.8) and the negatively charged cell wall commences at a pH close to the TiO\textsubscript{2} IEP of 6.8. The weak electrostatic interaction between the co-aggregates of TiO\textsubscript{2} and the negative bacterial cell wall in the dark within 30 min seems to attach the TiO\textsubscript{2} NP's to the cell wall.

Figure 12c shows the damage to the \textit{E. coli} outer wall cell within 120 min. After 120 min, the wall outer layers show discontinuities and have vanished in some regions. The observed damage to the cell wall leading to cell inactivation involves changes to the cell morphology, cell microstructure and local pH that have been reported previously (P. Vadgama 2014, personal communication). Damage to the cell wall due to abrasion by the TiO\textsubscript{2} rutile component on the \textit{E. coli} envelope has also been reported \cite{42}. The extensive damage in the outer cell layers after 120 min in the dark coincides with the time required for the total loss of cell viability shown in figure 12c. The bacterial cell cannot function any more as a membrane regulating the equilibrium osmotic pressure and material flow. Sunada \textit{et al.} \cite{43} reported \textit{E. coli} inactivation by TiO\textsubscript{2} films due to damage to the cell wall membrane leading to the leakage of internal cell components.

Figure 12. TEM of TiO\textsubscript{2}–PES 5\% (hydrothermal) interacting with the \textit{E. coli} cell wall in the dark at (a) time zero (b) time 30 min (c) time 120 min. For more details, see text.
preclude pathogenic biofilm formation in the dark and at a faster rate under band-gap light irradiation.

3. Material and methods

3.1. Radio-frequency plasma samples pretreatment, DC-sputtering, X-ray fluorescence, diffuse reflectance spectroscopy and contact angle

RF-plasma samples pretreatment. The procedure has been described recently [17,44]. The PET polyester Dacron EMMA test cloth no. 407 fabric was pretreated in the vacuum cavity of the RF-plasma unit at approximately 1 torr and also at atmospheric pressure in the cavity of an RF-plasma unit (Harrick Corp., 13.56 MHz, 100 W).

Sputtering procedures. The TiO₂ was sputtered by direct current magnetron sputtering (DC) as reported previously [17,44]. The reactive DC-magnetron sputtering used a 5 cm diameter Ti target that was 99.99% pure (Kurt J. Lesker, Hastings, UK) in an O₂ gas flow. The current on the Ti target was set at 280 mA (power of 128 W). Before sputtering the films, the pressure Pₛ in the sputtering chamber was set to Pₛ = 10⁻⁴ Pa. The substrate to target distance was set at 10 cm. The thickness of the sputtered layers was determined by means of a profilometer (AlphaStep500, Tencor) for films onto silica wafers in the magnetron chamber.

X-ray fluorescence (XRF). The Ti content on the PES was evaluated by XRF since it emits a X-ray of a certain wavelength associated with the TiO₂ uniform films. The distribution of bacteria on the sputtered surface was determined by means of a profilometer (AlphaStep500, Tencor) for films onto silica wafers in the magnetron chamber.

Contact angle. The CA of TiO₂ films was determined by the sessile drop method on a DataPhysics OCA 35 unit. FTIR spectra were measured in a Portmann Instruments AG spectrophotometer equipped with a Specac attachment.

3.2. Bacterial inactivation evaluation, irradiation procedures and determination of the OH radical by fluorescence spectroscopy

Bacterial inactivation evaluation. The samples of Escherichia coli (E. coli K12) were obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) ATCC25716, Braunschweig, Germany. A total of 100 μl culture aliquots with an initial concentration of approximately 10⁶ CFU ml⁻¹ in NaCl/KCl (pH 7) were placed on coated and uncoated (control) PE fabric. The 100 μl of the E. coli solution was placed in contact with the TiO₂ uniform films. The distribution of bacteria on the substrate turned out to be homogeneous and was in contact with the inoculated cells. The procedure was carried out at ambient temperature. The samples were then placed on Petri dishes with a lid to prevent evaporation. After each determination, the fabric was transferred into a sterile 2 ml Eppendorf tube (900 μl) containing autoclaved NaCl/KCl saline solution. This solution was subsequently mixed thoroughly using a vortex for 3 min. Serial dilutions were made in NaCl/KCl solution. A sample of 100 μl of each CFU run was pipetted onto a nutrient agar plate and then spread over the surface of the plate using standard plate method. Agar plates were incubated lid down, at 37 °C for 24 h before colonies were counted. Three independent assays were done for each sputtered sample. The CFU statistical analysis was performed by calculating the standard deviation values. The average values were compared by one-way analysis of variance and with the value of statistical significance. The one-way analysis of variance (one-way ANOVA) was used to compare the mean of the samples using the Fisher distribution. The response variable was approximated for the sample data obtained from the photocatalytic inactivation of test samples presenting the same distribution within the same sputtering time. The bacterial evaluation method used has been reported previously to test the antibacterial activity of the PES–TiO₂ fabrics [17,44]. The bacterial data reported were replicated three times. To verify that no re-growth of E. coli occurred after the total inactivation observed in the first disinfection cycle, the samples were incubated for 24 h at 37 °C, and replica samples were incubated at 37 °C for 24 h at the end of each bacterial inactivation cycle. No bacterial re-growth was observed.

Irradiation procedures. The irradiation of the samples was carried out in the cavity of a reactor provided with reflecting Al walls irradiating by way of a Osram Lumilux 18 W/827 lamp with light emission resembling the solar spectrum (figure 3). A filter at 400 nm was introduced to filter the light that was not in the visible range of more than 400 nm.

Detection of the OH radicals was carried out according to recent work reported by Hashimoto and colleagues [18] and Girault and colleagues [19]. A sample of 4 cm² of TiO₂-coated fabric was immersed in a solution of terephthalic acid at 0.4 mM dissolved in a 4 mM NaOH solution. After each irradiation, the solution was transferred into a quartz cell and the fluorescence spectra of 2-hydroxyterephthalic were measured on a Perkin Elmer spectrometer at 450 nm under an excitation wavelength of 315 nm.

3.3. Atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy

Atomic force microscopy (AFM). The AFM images were acquired in contact mode using a PESA-Xe-100 atomic force microscope. Silicon nitride cantilevers were used with feedback set points around 1.0 nN. The images originate from the Z-scanner (12 μm) and are not influenced by the nonlinearity and the hysteresis of the Z-scanner. The roughness values involve an experimental error below 10%. The mean surface roughness (Ra) was calculated for the scanned area by applying the equation:

\[
Ra = \frac{\sum_{i,j} N \cdot (Z_{i,j} - Z_{\text{average}})^2}{N^2}
\]

where Ra is the normalized standard deviation calculated from the local heights (Zᵢ,ⱼ) and the average height (Z-average) determined over the x,y coordinates (N) measured in the AFM image.

TEM. A CM12 microscope at 120 kV was used to follow the PES–TiO₂ coating interaction with bacteria as a function of time. The samples were embedded in epoxy resin 45359 Fluka and the fabrics were cross-sectioned with an ultramicrotome (Ultracut E) at an angle of 35°. HAADF imaging was used to map the scanning transmission electron microscopy (STEM) using a FEI Tecnai TEM-STEM OSIRIS, 200 kV. The Z-contrast images were obtained by collecting the scattered electrons passing through the objective provided with an annular dark field.

To take the TEM images showing the interaction of bacteria with PES–TiO₂ coatings, the E. coli were fixed in paraformaldehyde 2% + glut 0.2% in phosphate buffer for 30 min, centrifuged and the pellet was re-suspended in low melting point agarose. The sample was then cut into small cubes, dehydrated and stained for 20 min in 2% uranyl-acetate, then dehydrated in graded
alcohol. The samples were then embedded in the LR white resin in beam capsules and polymerized overnight at 55°C. The resin blocks containing the E. coli on the PES–TiO₂ were sectioned with an ultramicrotome (Leica UC7). The PES–TiO₂ fibres were embedded in epoxy and thin sectioned to a thickness of approximately 80–100 nm.

X-ray diffraction (XRD). The identification of the TiO₂ crystallographic phase anatase was carried out by means of an XPert diffractometer (Phillips, Delft, The Netherlands). The Ka line of Cu (1.5409 Å) radiation was used as reference.

X-ray photoelectron spectroscopy (XPS). An AXIS NOVA photoelectron spectrometer (Kratos Analytical, Manchester, UK) provided with monochromatic AlKα (hv = 1486.6 eV) was used to determine the atomic surface concentration of some of the elements on the PES–TiO₂ samples. The carbon Cls line at 284.6 eV was used as a reference to correct the charging effect. The surface atomic concentration was determined from peak areas using known sensitivity factors for each element [23]. The spectrum background was subtracted according to Shirley [38]. The XPS spectral peaks of TiO₂ were deconvoluted by way of a CasaXPS-Vision 2 (Kratos Analytical).

Acknowledgements. We thank EPFL-CIME for their help with the electron microscopy experiments and the COST Actions MP1101 and 1106 for interactive discussions during the course of this study.

Funding statement. We thank the EPFL and Swiss National Science Foundation (SNF) Project (200021-143283/1) for financial support of this work.

References

