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Many theories and empirical formulae have been proposed to estimate the shear strength of reinforced
concrete members without transverse reinforcement. It can be noted that these approaches differ not
only in the resulting design expressions, but also on the governing parameters and on the interpretation
of the failure mechanisms and governing shear-transfer actions. Also, no general consensus is yet avail-
able on the role that size and strain effects exhibit on the shear strength and how should they be
accounted. This paper reviews the various potential shear-transfer actions in reinforced concrete beams
with rectangular cross-section and discusses on their role, governing parameters and the influences that
the size and level of deformation may exhibit on them. This is performed by means of an analytical inte-
gration of the stresses developed at the critical shear crack and accounting for the member kinematics.
The results according to this analysis are discussed, leading to a number of conclusions. Finally, the
resulting shear strength criteria are compared and related to the Critical Shear Crack Theory. This com-
parison shows the latter to be physically consistent, accounting for the governing mechanical parameters
and leading to a smooth transition between limit analysis and Linear Elastic Fracture Mechanics in
agreement to the size-effect law provided by Bažant et al.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Design for shear of one- and two-way slabs without transverse
reinforcement has been a topic where significant efforts have been
devoted in the past. For beams and girders with stirrups, consistent
equilibrium-based models as strut-and-tie models or stress fields
can be applied [1]. However, with reference to the shear strength
of beams and slabs without transverse reinforcement, no general
agreement on the parameters and phenomena governing shear
strength is yet found in the scientific community. This lack of
agreement is also reflected in codes of practice, whose provisions
for shear design are often based on empirical formulas [2,3].
Some approaches based on mechanical models consider a given
shear transfer action as governing, neglecting the influence of the
others. For instance, for one-way slabs without transverse rein-
forcement, shear carried by the compression chord is identified
as the most significant parameter influencing the shear strength
by Zararis [4]. On the contrary, aggregate interlocking can be con-
sidered as the governing shear transfer action explaining shear
strength according to the compression field theory and its
derivatives [5,6]. Also, Yang [7] acknowledges the role of aggregate
interlock, whose failure is triggered by the development of a
delamination crack at the level of the flexural reinforcement.
Other approaches deal with the problem of shear strength in
beams without transverse reinforcement on the basis of the tensile
strength after cracking (including the presence of fibres in the
cement matrix [8]) or based on fracture mechanics concepts
[9,10]. Some interesting research lines have also been developed
based on the upper-bound theorem of limit analysis with some
modifications accounting for the presence of concrete cracking
[11,12]. Finally, other approaches account for various potential
shear-transfer actions. This is for instance the approach of Tue
et al. [13] and Marí et al. [14] (where the role of the compression
chord is nevertheless normally dominant) or the Critical Shear
Crack Theory [15,16] (where the development of a critical shear
crack limits the capacity of the shear-transfer actions). It is notice-
able that, although different models account for different govern-
ing shear-carrying actions and for the strain and size effects in
different manners, the final design expressions account for similar
parameters with similar influences and, in most cases, fit in a sim-
ilar manner when compared to available datasets.

An attempt to understand the role of the various potential shear
transfer actions has recently been presented by Campana et al.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2015.05.007&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2015.05.007
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Nomenclature

GF fracture energy
V shear force
VR shear strength
Vpl flexural strength
a shear span
b width of beam
bef effective width in tension
c thickness of compression zone
cb concrete cover
d effective depth (distance from the centroid of the flexu-

ral reinforcement to the outermost compressed fibre)
dB depth of critical shear crack
db bar diameter
dg maximum aggregate size
dg0 reference aggregate size
dn dimension parameter
fct tensile strength of concrete
fc concrete compressive strength measured in cylinder
fcef effective concrete compressive strength
ki coefficients
l lengths

sb bar spacing
w crack width
wcr maximum crack width for which tensile stresses are

transferred after concrete cracking
wli maximum crack width for which aggregate interlock

stresses are transferred after concrete cracking
a constant
b constant; angle of compression strut
d crack slip
ci shear span-to-effective depth ratio
h angle of inclined crack
e reference strain
r normal stress
s shear stress
r0 maximum normal stress transferred by aggregate inter-

locking
s0 Maximum shear stress transferred by aggregate inter-

locking
w Rotation
g,n Variables for integration
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[17]. This investigation showed that different crack patterns may
develop in similar reinforced concrete members and that their
associated kinematics at failure (relative displacement of the lips
of the critical shear crack) may also be very different. This holds
true even for constant mechanical and geometrical parameters.
Accounting for measured shapes and kinematics obtained by speci-
fic testing and by using a number of advanced constitutive models
for aggregate interlock, residual tensile strength, doweling action
and stirrup contribution, the contribution of each shear-transfer
action to the total strength was estimated numerically. It was
found that the governing shear transfer actions may be very differ-
ent from one member to another. This dependency was mostly
governed by the cracking pattern and its associated kinematics at
failure, despite the fact that the total shear strength (sum of the
various shear transfer actions) may be similar.

Other than the role attributed to the shear-transfer actions, dif-
ferent considerations are usually performed on the influence that
size and strain effects have on shear strength. The size effect is
defined as the reduction on the unitary (normalized) shear
strength for geometrically identical specimens but with increasing
size, refer to Fig. 1a. As stated by Bažant et al. [9,10], this reduction
should follow a size-effect law, with a transition between a yield
criterion for small sizes (without any size effect) and the behaviour
predicted by Linear Elastic Fracture Mechanics (LEFM) for large
sizes (strength reduction governed by d�0.5). In addition, it has also
been experimentally observed that specimens are sensitive to a
strain effect [6,15], with decreasing unitary shear strength for geo-
metrically identical specimens but subjected to higher levels of
deformation (Fig. 1b). In many cases, both effects are considered
by means of empirical coefficients, by introducing a size-effect fac-
tor (depending on the depth [9,10] or on shear span length [4,14])
and by relating the shear strength to the level of deformation (for
instance as a function of the flexural reinforcement ratio or axial
load [13,3]). Some design codes, however, neglect these aspects,
at least in their most simplified design formulations [2].

In this paper, the contribution of the various shear-transfer
actions to the shear strength and how they are influenced by the
size and level of deformation of the member is investigated. This
is performed by means of an analytical approach, accounting for
their activation based on the shape of the shear crack and its kine-
matics and by using some fundamental constitutive models pro-
viding the stresses along the critical shear crack. By integration
of the stresses at the critical shear crack, the contribution of each
shear-transfer action is determined as well as its governing param-
eters. This allows obtaining eventually a failure criterion for shear
design as well as to investigate on the influence of size and strain
effects on the shear response. The results show that the contribu-
tions of all shear-transfer actions decrease for increasing openings
of the critical shear crack and that their decay follows a similar
trend. These results are finally related to the failure criterion pro-
posed by the Critical Shear Crack Theory [15]. The works of this
paper allow justifying on a rational basis its failure criterion (shape
and influence of the various mechanical parameters considered by
the theory). This criterion is observed to be consistent with the
integration of stresses performed for the various critical shear
crack shapes and kinematics investigated, thus validating the fun-
damental hypotheses of this theory. In addition, it is also shown
that the theory is consistent with the strain effects and particularly
with the size-effect law, providing naturally (without the need of
considering any specific parameter) a smooth transition between
a yield criterion and LEFM depending on the size of the member.

2. Shear-transfer actions in RC

After cracking due to bending, shear can be transferred in rein-
forced concrete members by a number of potential actions, whose
activation depends much on the shape and kinematics of the crit-
ical crack leading to failure [17,15]. A summary of these actions is
presented below (refer to Fig. 2):

– Cantilever action (Fig. 2a). The possibility of transferring shear
by means of the concrete in between two flexural cracks (acting
as a cantilever beam or ‘‘tooth’’ linking the tension and com-
pression chords) was already observed by Kani [18]. At the loca-
tion of the crack, shear is carried by the inclined compression
chord. The strength of this action is limited by the development
of the vertical flexural crack into a quasi-horizontal crack,
which disables the capacity of the tension tie of the tooth [15].



Fig. 1. Size and strain effects on the shear strength of reinforced concrete members without transverse reinforcement: (a) size effect expressed in a double-logarithmic scale;
and (b) strain effect expressed in terms of member deformation.

Fig. 2. Shear-transfer actions: (a) cantilever action; (b) aggregate interlock; (c)
dowel action; (d) residual tensile strength of concrete; and (e–f) arching action.
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– Aggregate interlock (Fig. 2b). Aggregate interlock was also early
acknowledged as a potentially governing shear transfer action
[19–24]. In a concrete crack, aggregate interlocking stresses
develop when the aggregates at one side of the crack contact
the cement paste in the other. Thus, depending on the crack
opening (w) and relative slip of the crack (d), see Fig. 3a, normal
and tangential stresses develop, Fig. 3b. The strength of this
action is mostly limited by the opening of the cracks, by the
roughness of the contact surface and by the level of slip (d)
between the lips of the crack. It should be noted that the
Fig. 3. Aggregate interlock: (a) kinematics of a shear crack with relativ
roughness of the crack is influenced by the aggregate size
(micro-roughness) but also by the actual shape of the crack
(crack undulations defining a meso-roughness and changes in
the direction of the crack defining a macro-roughness).

– Doweling action (Fig. 2c). The longitudinal bars of a reinforced
member also have the possibility to transfer shear forces acting
as dowels between the lips of a crack [25–29]. This action has
shown to be efficient in regions were concrete cannot develop
spalling cracks. This is for instance the case of short-span beams
(where the critical shear crack develops near the bearing plate,
thus preventing spalling cracks to appear) or for members with
transverse reinforcement [30,17]. Also, when the critical shear
crack develops through the compression reinforcement (where
no spalling can occur near the loading plate), dowelling action
becomes very efficient (as for the integrity reinforcement
[31]). However, when spalling cracks can develop parallel to
the bending reinforcement (Fig. 2c) as for slender beams with-
out transverse reinforcement, this action is significantly
decreased, and even considered as negligible by many research-
ers [29,4,15,28].

– Residual tensile strength of concrete (Fig. 2d). After cracking,
concrete still has the capacity to transfer some level of tensile
stresses, allowing tension ties to develop through the cracks.
These stresses develop at the fracture process zone of the crack
(near its tip) and soften for increasing openings of the crack
width [32] (the concrete has eventually no capacity to carry
any stress for crack openings of a quite limited width, of about
0.2 mm [33]).

– Arching action (Fig. 2e and f). The four previous shear carrying
actions (Fig. 2a–d) allow carrying shear in a member keeping
constant the lever arm between the compression and tension
chords. Thus, the force in the tension reinforcement varies
accordingly to the bending moments of the beam. Due to this
reason, such actions can be referred to as beam shear-carrying
actions. However, shear can also be carried by assuming a con-
stant force in the flexural reinforcement, which leads to an
e components of opening (w) and slip (d); and (b) contact stresses.
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inclined compression strut carrying shear as shown in Fig. 2e.
This possibility corresponds in fact to a plasticity-based stress
field in concrete without tensile strength as originally proposed
by Drucker in 1961 [34]. Developing the full plastic strength on
the basis of such stress field was not found possible for slender
beams without transverse reinforcement [18,15] as flexural
cracks may potentially develop across the theoretical compres-
sion strut, limiting its strength. However, for compact
(short-span) members, the results obtained according to the
arching action are in agreement to observed test results [35,36].

The influence of slenderness on the governing shear-carrying
actions is presented in Fig. 4 with the help of the ‘‘Kani’s valley’’.
The arching action is governing for deep beams (beams with low
shear span (a)-to-effective depth (d) ratios c = a/d < c1 in Fig. 4)
and the shear that can be carried at failure (VR) corresponds to that
of the plastic strength (Vpl, governed by yielding of the flexural
reinforcement and crushing of the concrete zone, according to
Fig. 2e). This is due to the fact that for low slenderness, flexural
cracks do not penetrate within the compression strut [15]. For lar-
ger slenderness (c1 < c < c2) cracks may partly penetrate within the
strut. As a consequence, the plastic solution overestimates the
actual strength [18] (as the strength of the compression strut is
limited by the transfer of forces across the critical shear crack
and the compression strut develops with an elbow-shaped form
as shown in Fig. 4a [15]). This region (left-hand side of the Kani’s
valley) can be investigated by using stress fields accounting for
the influence of cracking on the strength of a compression field
[5] (compression fields experiencing a reduction of the strength
for transverse strains (strain effect) but no size effect, refer to
[37,38]). For larger values of the slenderness (c > c2) the arching
actions starts to develop in combination with the various beam
shear-transfer actions (refer to the strut-and-tie model of Fig. 4),
that become dominant thereafter. The ratio between the shear
strength and the plastic strength increases in this case and gives
rise to the characteristic shape of the right-hand side of the
Kani’s valley shown in Fig. 4 [18], where for very high values of
the slenderness, the members fail again in bending (the beam
shear-carrying actions offering sufficient shear strength). In this
paper, the behaviour of slender members (c > c2) will be examined.
3. Contributions of the shear-transfer actions in slender beams

For slender members, the shape of the critical shear crack can be
characterized according to Fig. 5a that is assumed to be composed of
three parts (the actual shape of this crack being subjected to some
level of scatter [17,39]): a quasi-vertical part (named A in Fig. 5a,
developing at an angle hA), a quasi-horizontal part (named B in
Fig. 5a, developing at an angle hB) and a delamination crack (named
C in Fig. 5a). The associated length of the former parts (lB and lA) can
vary. In most cases, the quasi-vertical part (A) has a bending origin
Fig. 4. Kani’s valley: governing shear transfer actions as a function of shear
slenderness.
and extends approximately up to the neutral axis (or to the fibre
where the tensile strength of concrete in bending is found),
although diagonal cracks (associated to limited lengths of lA) are
also possible. The kinematics of such crack is presented in Fig. 5b,
characterized by a centre of rotations located near the tip of the
crack (in agreement to the test measurements presented in [17]).
With respect to crack B, its origin can be related to the tensile stres-
ses developing at that region due to the beam shear-carrying actions
(refer to the quasi-vertical ties in Fig. 2a and d).

This crack shape (points A and B) and associated kinematics
requires the development of a delamination crack at the level of
the flexural reinforcement (Fig. 5a–b). This is justified by the verti-
cal component of the displacement along the reinforcement shown
in Fig. 5e which occurs for an inclined crack type A and when the
quasi-horizontal crack type B develops. Along this crack, bond is
not possible and the strain remains constant in the reinforcement
(Fig. 5c), which increases the opening of the critical shear crack
with respect to a bending-based prediction of its opening [7].
Thus, the rotation can be calculated on the basis of the deformation
of the reinforcement at this crack as:

w ¼ wl

dB
¼ es

lc

dB
ð1Þ

With respect to the potential shear transfer actions, other than
the contribution along the shear crack (VCSC in Fig. 5d) due to
aggregate interlock and residual tensile strength, doweling action
(VDA in Fig. 5d) and the contribution of the compression chord
(VCC in Fig. 5d) can also be acknowledged. It is interesting to note
that the kinematics (Fig. 5b) is governing the relative displace-
ments of the lips of the crack. In the top part, this leads to a pure
opening but no crack sliding (assuming that the shortening of
the compression chord can be neglected, Fig. 5f) whereas in the
middle part (length lA, Fig. 5g), it is associated to variable opening
and constant sliding along the crack.

3.1. Contribution of the top part of the critical shear crack

As previously introduced, the top part of the critical shear crack
is subjected only to an opening of the crack. Its response is charac-
terized thus by mode I in fracture and is then governed by the
residual tensile strength of concrete (the interaction with potential
shear stresses will be neglected). The force that can be transferred
through the crack due to this contribution (Fig. 2d) can be calcu-
lated for a given tension softening behaviour. In the following, a
simplified constant decay of the tensile strength with respect to
the opening of the crack (linear law) will be assumed for simplicity
reasons (Fig. 6a):

r ¼ f ct 1� w
wcr

� �
0 6 w 6 wcr

0 w > wcr

(
ð2Þ

where the area below the crack-stress curve is equal to the fracture
energy GF. The integration of the shear contribution can however be
generalised to any other tension softening law considered. The nor-
mal stresses developing at the crack can be calculated on the basis
of the crack kinematics (Fig. 6b), determining a shear strength equal
to:

VCSC;B ¼
Z lB

g¼0
r � b � cos hB � dg ¼ b cos hB �

Z lB

g¼0
r � dg ð3Þ

where r refers to the normal stress to the crack, b to the width of
the member (considered constant), hB to the angle of the crack with
respect to the beam axis and g is the integration variable (Fig. 6b).
With respect to the crack opening (w), it can be obtained for the
given kinematics by relating it to the rotation of the critical shear
crack (w) developed at its centre of rotation (Fig. 6b):



Fig. 5. Investigated cracking pattern at shear failure of slender beams: (a) geometry of critical shear crack and delamination crack; (b) assumed kinematics; (c) strain at the
flexural reinforcement; (d) shear contributions; (e) relative displacements of the crack lips according to the crack shape and kinematics; (f) opening and sliding along the top
part of the critical shear crack; and (g) opening and sliding along the bottom part of the critical shear crack.

Fig. 6. Contribution of residual strength of concrete in tension: (a) tension softening of concrete under pure tensile stresses; (b) crack kinematics; (c and d) tensile stresses
developing through the crack for cases (1 and 2) respectively; and (e and f) shear force carried by the critical shear crack as a function of the deformation of the member.
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w ¼ w � g ð4Þ
Two regimes are potentially possible, refer to Fig. 6c and d. These

regimes have the following physical meaning: (1) cases when the
normal stresses develop along the whole length of the investigated
branch (w 6 wcr, corresponding to low crack openings), refer to
Fig. 6c; and (2) cases when the normal stresses develop only close
to the tip of the crack (w > wcr at the outermost part of the crack,
corresponding to large crack openings). By introducing Eqs. (4)
and (2) into Eq. (3) and solving the integral, the resulting shear force
that can be transferred through the crack results:
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VCSC;B ¼
b � lB � f ct � cos hB � 1� w�lB

2wcr

� �
0 6 w 6 wcr

lB

b � lB � f ct � cos hB � 1
2�w�lB

w > wcr
lB

8<
: ð5Þ

The two regimes can be identified in Fig. 6e, where the shear
force carried through the top part of the critical shear crack is
expressed as a function of w. The first regime corresponds to a lin-
ear decay (while the normal stresses develop through the whole
depth of the crack) and is followed by an hyperbola (when the nor-
mal stresses develop only for a given length of the crack). It can be
noted that the larger the deformation of the member (associated to
larger crack widths), the lower the shear strength that can be
transferred through the critical shear crack.

Alternatively, Eq. (5) can also be formulated on the basis of
other parameters that may be more convenient for design. For
instance, this can be done in the following manner:

– The tensile strength can be related to the compressive strength
of concrete. Usually, relationships of the type

f ct ¼ k1f a
c

are used. According to Model Code 2010 [40], suitable values are
k1 = 0.3 and a = 2/3. Other authors relate the tensile strength of con-
crete to other powers of the compressive strength, generally vary-
ing between 0.5 [42] and 2/3.
– Parameter wcr can be related to the fracture energy GF for the

proposed linear law as

wcr ¼
2GF

f ct

The fracture energy is in turn significantly influenced by the
compressive strength of concrete and by the maximum size of
the aggregates [40,41]. Based on the results provided by Hilsdorf
and Brameshuber [41], the following relationship can be used for
calculating the value of the fracture energy of concrete:

GF ½N=mm� ¼ 0:002 � dg þ dg0

dg0

� �
ðf cÞ

0:7

where dg refers to the maximum aggregate size, dg0 to a reference
aggregate size (8 mm) and fc is to be introduced in [MPa].

Accounting for fct = 0.3 f 2=3
c , it results (assuming f 0:033

c � 1):

wcr ¼ k2ðdg þ dg0Þ

It can be noted that other approaches may estimate the fracture
energy GF with different expressions, giving for instance less signif-
icance to the aggregate size and decreasing the value of the power
applied to the concrete strength (refer for instance to [40]).

– The length lB can be assumed to be proportional to the distance
between two cracks defining a concrete tooth (refer to
Figs. 2 and 5a). This distance has been in its turn observed to
be proportional to the effective depth of the member [43].
Thus, it can be assumed:

lB / d

The effective depth of the critical shear crack (dB) can be
assumed proportional to the effective depth of the member assum-
ing a cracked flexural behaviour of the member [15]. If the length
of the region contributing to the opening of the critical shear crack
(named lc in Fig. 5c and including its delamination branch) is also
assumed to be proportional to the effective depth of the member,
the rotation w of the critical shear crack can be related to a refer-
ence longitudinal strain of the member e (larger longitudinal
strains in the member being associated to larger rotations [15])
according to Eq. (1):
w / e

With these assumptions, Eq. (5) can be rewritten as:

VCSC;B

b � d � f a
c

¼
kr � 1� e�d

2kwðdgþdg0Þ

� �
0 6 e 6 kw

dgþdg0
d

kr
2

kw �ðdgþdg0Þ
e�d e > kw

dgþdg0
d

8<
: ð6Þ

where kr and kw are constants depending on the material parame-
ters and crack inclination hB. This formula is plotted in Fig. 6f, where
the vertical axis is normalised by the factor b�d�f a

c .
The figure shows still the two regimes (linear and hyperbolic)

and the decay on the shear strength for increasing deformation
or sizes. It can thus be observed that both size and strain effects
are naturally resulting from the physical phenomenon (reduction
of the shear strength for increasing openings of the shear crack)
without the need of accounting for any specific (or empirical)
factor.

3.2. Contribution of the bottom part of the critical shear crack

With respect to the bottom part of the critical shear crack, both
opening and sliding occur according to Fig. 5g. This implies a
response in mixed mode I and II, that can be evaluated by means
of aggregate interlock models (Fig. 3). In this case, an analytical
integration of the contribution of aggregate interlock can also be
performed with reference to the simplified laws shown in Fig. 7a
(where both the slip and opening between the lips of the crack
increase proportionally with the rotation w). These laws assume
a linear decay on the shear and normal stresses that can be trans-
ferred through aggregate interlock, with a maximum stress trans-
ferred for perfect contact (no crack opening) and no stress
transferred for a limit crack opening (wli) where no contact
between the crack develops for any relative slip:

s ¼ s0 1� w
wli

� �
0 6 w 6 wli

0 w > wli

(
ð7Þ

r ¼ r0 1� w
wli

� �
0 6 w 6 wli

0 w > wli

(
ð8Þ

More refined laws for the maximum aggregate interlock stress
developed for a given crack opening can be derived from the rough
crack model (proposing an hyperbolic [22] or square-root [23]
decay with increasing crack opening instead of a linear one, but
keeping the same governing parameters). The selected linear laws
for aggregate interlock behaviour can be replaced, without loss of
generality, by more realistic envelopes of aggregate interlock stres-
ses calculated on the basis of the actual crack opening and slip
(refer to dotted lines in Fig. 7a) which in turn affect the contact sur-
face as well as the amount and distribution of sizes of aggregates)
and by assuming a plastic strength in the concrete matrix (as for
instance performed by Walraven [21]). These envelopes lead to
an activation phase (where contact is not developed in all potential
contact surfaces) prior to developing the plastic strength at the
interface (refer to Fig. 7a). Integration of such laws requires typi-
cally using numerical procedures [17]. Due to this reason, the sim-
plified laws will be used in the following, but the influence of the
activation phase will be discussed with reference to the total
amount of shear force that can be transferred through the critical
shear crack.

By accounting for the crack shape and kinematics, the relative
displacements between the lips of the cracks can be obtained
(Fig. 7b). On the basis of such displacements and the aggregate
interlock laws (Fig. 7a), the shear stresses at the critical shear crack



Fig. 7. Contribution of aggregate interlock: (a) aggregate interlock stresses; (b) relative displacements between the lips of the crack; (c and d) shear stresses developing
through the crack for cases (1 and 2) respectively; and (e and f) shear force carried by the critical shear crack as a function of the deformation of the member.
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can be determined as shown in Fig. 7c and d. It can be noted that
both shear and normal stresses result. It can thus be written:

VCSC;A ¼
Z l2

n¼l1

s � b � sin hAdn�
Z l2

n¼l1

r � b � cos hAdn ð9Þ

where l1 and l2 refer to the integration limits that can be calculated
on the basis on the geometry of the critical shear crack defined in
Fig. 5 as:

l1 ¼ lB cosðhA � hBÞ
l2 ¼ l1 þ lA

ð10Þ

It can be noted that, for slender member, cracks develop in a
rather vertical manner. In addition, the normal stresses associated
to aggregate interlock are normally significantly lower than the
shear stresses [44] for realistic crack kinematics. Accounting for
these two arguments, the term concerning the shear stresses can
be considered as dominant. In the following, and for simplicity
reasons, only this term will be considered, although the general
integration could be performed reaching the same conclusions
(the shear and normal stresses develop in affinity as a function of
the crack width according to Fig. 7a):

VCSC;A ¼ j � b
Z l2

n¼l1

s � dn ð11Þ

where the coefficient j accounts for the contribution of the normal
stresses and the influence of the angle hA. It can be noted that the
actual value of the parameter s0 depends on the crack kinematics
(angle of the displacement vector with respect to the crack plane
[44]). Although this angle varies along the crack, this variation is
limited and will be neglected in the following for simplicity reasons
(an integration accounting for this fact would not influence the
results presented hereafter).

The integration of the aggregate interlock stresses leads in this
case to three potential regimes: (1) cases where the shear stresses
develop through the whole depth of the vertical part of the crack
(Fig. 7c); (2) cases where the shear stresses develop only on the
top region of the vertical part of the shear crack (Fig. 7d); and (3)
cases where no shear stresses develop in the vertical branch of
the critical shear crack (since the opening of the crack in the verti-
cal branch exceeds the limit value wli). Integration of the shear
stresses results thus in the following expression:
VCSC;A ¼

b � lA � s0 � j 1� w�ðl1þl2Þ
2wli

� �
0 6 w 6 wli

l2

b � lA � s0 � j 1
2 1� w�l1

wli

� �
wli

w�lA
� l1

lA

� �
wli
l2
< w 6 wli

l1

0 w > wli
l1

8>>><
>>>: ð12Þ
where s0 refers to the maximum shear stress that can be transferred
through aggregate interlock (Fig. 7a) and w to the rotation devel-
oped at the tip of the critical shear crack. It can be noted that for
low values of l1 (l1 ? 0), the regimes simplify to two and lead to
a linear decay of the shear strength followed by an hyperbolic
decay:
VCSC;A ¼
b � lA � s0 � j 1� w�l2

2wli

� �
0 6 w 6 wli

l2

b � lA � s0 � j 1
2

wli
w�lA

w > wli
l2

8<
: ð13Þ

Eqs. (12) and (13) are plotted in Fig. 7e. For design purposes,
these equations can be rewritten accounting for other physical
parameters more suited for design:
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– The maximum shear stress is related to a number of parameters
such as the cement paste strength, aggregate type, maximum
size of aggregate and aggregate volume fractions. However,
the governing parameter for normal strength aggregates, can
be considered the cement paste strength (as the aggregate size
decreases, the force transferred by each aggregate diminishes,
but the total number of aggregates transferring shear increases,
both effects compensating as can be observed from the aggre-
gate interlock relationships of [22,23]). This term, according to
Walraven’s model [21] can be assumed as proportional to the

power 0.56 of the compressive strength of concrete: s0 / f 0:56
c .

Other authors (as the rough crack model [22,23]) assume a lin-
ear dependency of the maximum shear strength with respect to
the compressive strength of concrete s0 / f c. In the following, it
will be assumed:

s0 / f a
c

where the exponent a varies potentially between 0.56 and 1.0 (sim-
ilar values but not necessarily the same as those already discussed
for the contribution of the top part of the critical shear crack)

– Parameter wli, referring to the crack opening leading to no con-
tact between the lips of the crack for any value of the sliding,
can be correlated to the maximum aggregate size and crack
roughness. This is justified because half the maximum aggre-
gate will lead to a no-contact situation for a crack developing
in a planar surface (contact of the aggregates refers to the
micro-roughness of the crack). However, concrete cracks are
not perfectly planar and present a certain level of
meso-roughness, Fig. 7a. The limit crack width is thus related
to a reference dimension related to the sum of the micro- and
meso-roughnesses:

wli / dg þ dg0

where dg0 refers to a reference size (not necessarily identical to that
of the residual tensile strength).

– The length of the quasi-vertical cracked zone can be assumed
proportional to the effective depth of the member (l2 / d) if
the crack extends up to the neutral axis [15].

– The rotation w of the critical shear crack is, as previously,
assumed proportional to a reference longitudinal strain of the
member e, thus w / e.

In light of these assumptions, and considering the previous sim-
plification of l1 ? 0 (the general Equations could also be applied
without loss of generality) Eq. (13) can be rewritten as:

VCSC;A

b � d � f a
c

¼
ks � 1� e�d

2kwðdgþdg0Þ

� �
0 6 e 6 kw

dgþdg0
d

ks
2

kwðdgþdg0Þ
e�d e > kw

dgþdg0
d

8<
: ð14Þ

where ks and kw are constants depending on the material parame-
ters (where kw does not necessarily have the same value as for Eq.
(6)). The regimes are plotted in Fig. 7f. In addition, another curve
(dotted line) is plotted accounting for the activation of the aggre-
gate interlock stresses (as previously referred, see also Fig. 7a). It
is noticeable that Eqs. (6) and (14) have the same shape and
mechanical parameters implied, despite their different physical
and kinematical origins. The shear strength can be normalized by
the product of the width, effective depth of the member and a
power of the compressive strength of concrete. The opening of the
critical shear crack can in turn be related to the product of a longi-
tudinal reference strain times the effective depth of the member.
Both expressions lead to a decay on the shear strength that can
be transferred through the critical shear crack for an increasing
opening of the critical shear crack. In addition, both predict the
same influence of size and strain (by means of the product e�d) on
the shear strength.

3.3. Contribution of dowelling action

Dowelling action can also be mobilized according to the consid-
ered crack geometry and kinematics, as the flexural reinforcement
follows a transversal displacement in addition to the longitudinal
one, refer to Fig. 5e. In order to activate dowelling action in the flex-
ural reinforcement, it is necessary that tensile stresses develop in the
concrete (Fig. 2c). As shown in Fig. 8a, the equilibrium of the shear
force in the reinforcement requires the development of vertical ten-
sile stresses, potentially originating a delamination crack. Despite
the development of this delamination crack, the dowelling action
can still occur, as the tensile stresses develop again at the tip of the
delamination crack (Fig. 8b). This leads in fact to a plastic behaviour
of the dowelling strength that has been confirmed experimentally,
refer for instance to the works of Baumann and Rüsch [25] shown
in Fig. 8d (specimens whose inner wedge was separated at casting
by means of two plastic layers to measure the dowelling action of
the reinforcement). It can be noted in Fig. 8d that shear transfer by
dowelling of the flexural reinforcement was activated for very low
values of transverse displacement and the force was roughly con-
stant thereafter, giving rise to a delamination crack of the longitudi-
nal reinforcement as that presented in Fig. 2b.

The capacity of dowelling action to transfer shear forces is lim-
ited in slender members if no transverse reinforcement is available
[25–28]. Yet, its value is not necessary negligible in all cases (refer
to Fig. 8d) and can be expressed in a general manner as [31]:

VDA ¼ n � f ct;ef � bef � lef ð15Þ

where n refers to the number of bars, fct,ef to the effective tensile
strength of concrete, bef to the effective width in tension per bar
(Fig. 8c) and lef to the effective concrete length in tension
(Fig. 8a). According to [31]:

– bef can be estimated as the minimum of the values (sb � db; 6 db;
4 cb), where sb refers to the spacing between the bars, db to their
diameter and cb to their cover.

– lef can be estimated as two times the bar diameter (lef = 2db).

With respect to the effective tensile strength, it should be noted
that its value is strongly influenced by the state of longitudinal
strains in the flexural reinforcement. This evidence has been exper-
imentally demonstrated in [45], refer to Fig. 8e. It is justified by the
fact that reinforcement strains in cracked concrete are associated
to bond stresses between the concrete and the steel. These bond
stresses require the development of transversal tension rings
(according to Tepfers [46]) which limit the capacity of the concrete
cover to withstand any other transverse actions (as dowelling
forces). According to [45], the effective tensile strength can be esti-
mated as a function of the deformations of the flexural reinforce-
ment according to the following expression:

f ct;ef ¼ kbðeÞ � f ct ð16Þ

where the reduction factor (kb) follows a decay for increasing
strains at the flexural reinforcement as shown in Fig. 8e [45]. It
can be noted that if Eq. (16) is introduced into Eq. (15) and the
strength is normalized, it results:

VDA

f ct � b � d
¼ bef

sb

lef

d
kbðeÞ ¼

bef

sb

2db

d
kbðeÞ ð17Þ

The strength depends thus on the level of deformation of the
specimen (strain effect) and on the ratios bef /sb and db/d. It should
be noted that, in practical applications, the bar spacing (sb) in slabs



Fig. 8. Dowelling action: (a and b) development of transverse stresses at the cover region along the bar depending on the length of the spalled concrete; (c) distribution of
transverse tensile stresses at the cover (perpendicular to the bar); (d) plastic behaviour of dowelling action according to [25] (dimensions in [mm]); and (e) reduction on the
effective tensile strength as a function of the longitudinal strains in the bar (experimental data according to [45]).
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is normally kept constant or almost constant. Thus, for the same
amount of flexural reinforcement ratio, db has to vary according
to the square-root of the effective depth of the member. The influ-
ence of size will thus be different depending on whether bef is gov-
erned by the condition 6db or sb � db � sb. In a general manner, this
dependency can then be written as:

VDA

f a
c � b � d

� kd

db � kbðeÞ ð18Þ

where kd and b are constants depending on the geometrical and
mechanical parameters and fct has been approximated as a power
of fc as previously justified for the contribution of the residual ten-
sile strength of concrete. It can be noted that Eq. (18) includes an
explicit dependency on the strain and on the size of the member.
Yet, both phenomena are still related as it will be explained later
(larger sizes are associated to lower strains).
3.4. Contribution of compression chord/arching action

Other than the residual tensile strength of concrete, aggregate
interlock and dowel action, shear can be transferred by means of
the inclination of the compression chord (VCC, refer to
Figs. 2a,f and 5d). This action is governing for short-span beams
although its influence is more limited for slender members [36].

In the case of slender members, shear can be transferred at the
location of the cracks by means of the cantilever action (Fig. 2a),
where the shear force is carried by the inclination of the compres-
sion chord. This action is however disabled as the critical shear
crack propagates in a quasi-horizontal manner (Fig. 9a) leading
to the kinematics shown in Fig. 9b on the basis of a simplified crit-
ical shear crack shape. In this situation, a contribution of the
compression chord is still possible provided that an inclined com-
pression strut develops. The angle of the compression strut (bCC in
Fig. 9c) is governing for the amount of shear force that can be
transferred by the compression chord and this angle depends
much on the height and location of the critical shear crack (point
A in Fig. 9a and b). Developing a full-arching action (Fig. 2e, char-
acterized by a theoretical direct strut carrying the total shear force
and developing between the loading plate and the support) is pos-
sible for short-span beams but it is however not possible for slen-
der members since the inclined strut would be intercepted by the
critical shear crack (Fig. 9c), refer to Fig. 4. For slender members,
the inclination of the compression chord is thus flatter than that
corresponding to the full arching action (bAA in Fig. 9c). This results
from the assumption that the beam shear transfer actions in the
region between the critical shear crack and the load are neglected
(yet they are still active in the region between the support and the
critical shear crack to deviate the inclined strut of the compression
chord). As a consequence, the remaining shear force is carried by
the previously investigated shear-carrying actions, mostly by
means of a strut developing at an angle bCSC corresponding to
aggregate interlock and concrete contribution in tension if dowel
action is neglected, refer to Fig. 9c. On the basis of the force dia-
gram (Fig. 9c) it can be seen that, for activating the arching action,
both shear contributions (VCC and VCSC) are related by geometric
conditions:

VCC ¼ VCSC �
cot bAA � cot bCSC

cot bCC � cot bAA
ð19Þ

where in Eq. (19), the value of bAA is constant (as cotbAA refers to the
slenderness ratio a/z). The value of bCC is also constant as it is deter-
mined by the location of point A of the crack. The value of bCSC can
also be assumed as roughly constant since the resultant of



Fig. 9. Analysis of the compression chord for slender members: (a) flexural cracking
pattern and cantilever action; (b) development of the horizontal branch of the
critical shear crack; and (c) inclined compression strut.
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aggregate interlock stresses is located close to point A of the crack
(refer to the distribution of shear stresses in Fig. 7c). As a conse-
quence, failures associated to such cracking pattern implies that
both shear transfer actions (VCC and VCSC) are roughly proportional
and the contribution of the compression chord will be governed
by the same parameters controlling the shear carried through the
critical shear crack (Eqs. (6) and (14)). It can be noted that this
approach assumes that failure results from loss of resistance in
the critical shear crack and that the proportion of load taken by
the inclined compression chord is determined by the geometry
and the position of the critical shear crack.

4. The Critical Shear Crack Theory as a mechanical model for
shear design

The Critical Shear Crack Theory (CSCT) is a theory whose funda-
mentals were first presented in 1991 [47] and that can be applied
for shear design of one- and two-way slabs [15,48,49,16] with and
without transverse reinforcement or fibres [50–52]. A design for-
mulation based on this theory has recently been incorporated in
fib Model Code 2010 [40,53] with reference to the punching shear
strength of two-way slabs. The theory states, consistently to what
has been presented previously, that the shear strength of rein-
forced concrete members without transverse reinforcement
depends on the opening and roughness of a critical shear crack
transferring shear [15].

In the CSCT, the width of the critical shear crack is estimated
proportional to a reference longitudinal strain (Fig. 10a–c) times
the effective depth of the member [15] (w / e � d), which is in
agreement to the considerations presented in this paper. On that
basis, Muttoni and Fernández Ruiz [15] proposed the following
equation for the failure criterion (refer to Fig. 10d):
VC ¼
bd

ffiffiffiffi
f c

p
3

1
1þ 120 e�d

dg0þdg

½MPa;mm� ð20Þ

By comparing Eq. (20) to the previous equations derived for the
residual tensile strength and aggregate interlock contributions
(Eqs. (6) and (14)), it can be noted that they are similar, with the
same parameters governing the shear strength and showing a sim-
ilar shape. Also the limit cases (e ? 0 and e ?1) are correctly
reproduced for each governing regime. This holds also true for
the contribution of the compression chord (Eq. (19)) as previously
explained. With respect to the dowelling action (whose contribu-
tion can be considered as more limited), it is also dependent on
the same parameters (strain and size) and presents a similar
dependency on them, refer to Eq. (18), yet it is also influenced by
the detailing rules considered (spacing, concrete cover, bar
diameter).

A comparison of the failure criterion of the CSCT and the contri-
bution of the shear transfer actions is qualitatively shown in
Fig. 10e (the amount of force carried by each shear-transfer
depends on the actual crack shape and kinematics [17]). The power
of the concrete compressive strength is assumed by the CSCT to be
0.5 (within the previously determined range), and a reference size
of 16 mm is considered for parameter dg0 (yet consistent to those
previously observed). The previous comparison of the selected
shape of the CSCT (Eq. (13)) and the analytically-derived formulas
for the various shear-carrying actions validate the proposed shape
as well as its generality independently of the governing
shear-carrying actions. For design purposes, Eq. (20) has neverthe-
less the advantage that it is defined by only one analytical curve
(which greatly simplifies its use) yet accounting for the governing
parameters, limit cases and influences of the various implied phe-
nomena derived from the mechanical models previously
presented.

5. Size-effect law consistency of the CSCT

One interesting aspect of the CSCT is that it accounts directly for
the size and strain effects. Whereas in many shear approaches both
effect are explicitly introduced by means of strength correction fac-
tors (empirical in many cases [3]), the CSCT considers them natu-
rally on the basis of its physical assumptions (without the need of
adding any correction factor). It can be noted that in the formula-
tion of Eq. (20) both phenomena (influence of size and strain) are
related. Specimens of larger sizes, for instance, will fail at lower
levels of unitary shear forces (due to size effect) if the reinforcement
ratio remains constant, thus being subjected to lower levels of
deformation. In order to perform a consistent investigation of the
size effect law predicted by the CSCT, such dependency should be
suitably addressed. This can be done for instance by replacing the
reference strain (Fig. 10b) as a function of the size and acting shear
force of the member. According to a cracked sectional analysis [15],
refer to Fig. 10a–c, this reference strain can be estimated as:

e ¼ M
d � b � q � Es � ðd� c=3Þ

0:6d� c
d� c

ð21Þ

where M refers to the acting bending moment at the control section
and c refers to the depth of the compression zone [15]:

c ¼ d � q � Es

Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ec

q � Es

s
� 1

 !
ð22Þ

It can be noted that the bending moment M is related to the
shear force. For instance, assuming a simply supported beam,
where the location of the nominal control section is set at d/2 of
the mid-span according Fig. 10a (the demonstration can be gener-
alised to other cases), the shear strength results:



Fig. 10. Failure criterion of the Critical Shear Crack Theory (CSCT): (a–b) location of the control section and reference fibre; (c) assumed cracked behaviour for calculation of
the reference strain; (d) failure criterion (Eq. (20)) and comparison to tests on beams failing in shear under point loading [15]; and (e) qualitative comparison of the shear
transfer actions contributions and the CSCT failure criterion.

Fig. 11. Calculated influence of size effect with the CSCT: (a) simply supported beam with a = 4.5d, q = 1.0%, fc = 30 MPa, dg = 16 mm, Es = 205 GPa, steel assumed perfectly
elastic (ratio a/(b�dg) = 10); and (b) comparison of the size effect law predicted by the CSCT to the test dataset given in [15].
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ffiffiffiffi
f c
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dg0þdg
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0
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1
CCCA¼1 ð23Þ

where the parameters a and b are independent of d (since the shear
span a is proportional to d in order to keep scaled geometries, c is
proportional to d according to Eq. (22) and dg is kept constant).
Thus:
VR ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b

a d
q
2b

ð24Þ

If the strength is normalized by bd
ffiffiffiffi
f c

p
¼ 3d=a, it results:

VR

bd
ffiffiffiffi
f c

p ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 bd

a

q
6 bd

a

ð25Þ
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Thus, for very large sizes (d ?1) the expression can be simpli-
fied as:

VR

bd
ffiffiffiffi
f c

p ¼ 1
3

ffiffiffiffiffiffiffiffiffi
a

b � d

r
ð26Þ

This Equation shows that, for very large sizes, the size effect
depends on d�0.5, in agreement to the LEFM [9]. This leads, in dou-
ble logarithmic scale, to a slope �1/2 with respect to the influence
of d for these cases:

log
VR

bd
ffiffiffiffi
f c

p
 !

¼ log
1
3

ffiffiffi
a
b

r� �
� 1

2
logðdÞ ð27Þ

Fig. 11a shows for instance a calculation of the influence of size
for a typical case corresponding to a simply supported beam with a
ratio a/(b�dg) = 10 (a = 4.5d, q = 1.0%, fc = 30 MPa, dg = 16 mm,
Es = 205 GPa; steel is assumed to behave elastically). The CSCT is
observed to consistently reproduce the limit behaviours predicted
by the size-effect law [9] as well as to exhibit a smooth transition
between them. It can be additionally noted that Eq. (25) can be
rewritten in terms of the parameter dn = bd/a as:

VR

bd
ffiffiffiffi
f c

p ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4dn

p
6dn

ð28Þ

This latter Equation describes in fact the size effect law pre-
dicted by the CSCT, which is compared in Fig. 11b to the same test
data of Fig. 10d [15] (in double-logarithmic scale). The results show
again a suitable prediction of the size effect and its limit beha-
viours. It can further be noted that the experiments (many of them
corresponding to realistic sizes and mechanical properties for prac-
tical applications) are not necessarily governed by the yield crite-
rion or the LEFM. This may also be considered as an additional
argument supporting the differences that may be found in the gov-
erning shear-transfer actions for a given member [17].

As shown in Fig. 11b, size effect exhibits a significant influence
on the shear strength of members without transverse reinforce-
ment. Despite this fact, it can be noted that current codes of prac-
tice do not always account for its influence (as ACI 318-11 [2]) or
may propose empirical expressions calibrated on the basis of lim-
ited dataset leading to inconsistent results (for instance, the size
effect factor of Eurocode 2 [3], which predicts no influence of size
effect for very large sizes). With this respect, a consistent treat-
ment on a physical basis of size and strain effects is thus consid-
ered as a need for future design codes.

6. Conclusions

Various potential shear-transfer actions can develop in rein-
forced members cracked in bending (aggregate interlocking, resid-
ual tensile strength of concrete, dowelling action and inclination of
compression chord). This paper investigates on the response of
reinforced concrete beams with rectangular cross-section and on
the governing parameters of shear strength with special reference
to size and strain effects. Its main conclusions are listed below:

1. Aggregate interlocking and the residual tensile strength of con-
crete develop at the critical shear crack due to its shape and
associated kinematics. The strength exhibited by both action
decays for increasing openings of the critical shear crack, which
occurs for increasing sizes and strains.

2. The dowelling action exhibits a more limited contribution for
slender members, yet not necessary negligible. It is affected
by a strain effect and also by a size effect depending on the
detailing rules of the reinforcement (mainly on the ratio
between the bar diameter and the effective depth of the
member).
3. Arching action is potentially significant for beams with short
shear span-to-effective depth ratios. For slender members, its
contribution decreases due to the presence of the critical shear
crack as the presence of this crack reduces the inclination of the
compression chord. Its response is influenced by the same
parameters as the residual tensile strength and aggregate inter-
lock actions.

4. On the basis of the integration of the stresses developed in con-
crete for mechanical models of slender members simulating
aggregate interlocking, residual tensile strength of concrete,
dowelling action and the inclined compression chord, it can
be observed that all shear-transfer actions depend in fact on
the same physical parameters (concrete compressive strength,
effective depth and width of the member, longitudinal strains
or rotation and maximum aggregate size). Also, all lead to a
similar shape decay on the shear stress that can be transferred
through the critical shear crack for increasing openings of the
critical shear crack.

5. The approach, hypotheses and failure criterion of the Critical
Shear Crack Theory (CSCT) is shown to be consistent with the
previous aspects. The failure criterion proposed in this theory
for slender one-way slabs and beams suitably reproduces the
shape and parameters observed for activation of the aggregate
interlock, residual tensile strength of concrete, dowelling action
and arching action.

6. The influences of size and strain on the shear strength of a
member can be suitably reproduced by means of the CSCT.
Both phenomena are yet coupled, as larger sizes are associated
to lower levels of deformation. In this paper, it is also proven
the consistency of the CSCT to the size-effect law predicted by
Bažant et al., reproducing a smooth transition between a
strength or yield criterion (without size effect, for small size
specimens) to the behaviour predicted by Linear Elastic
Fracture Mechanics (for specimens with very large sizes).
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