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Abstract 
Shear fatigue of reinforced concrete members without transverse reinforcement has been observed to be potentially 
governing for the strength of some structural members subjected to large live loads of repetitive nature (as traffic, wind 
or wave actions). Although extensive experimental programmes have been performed in the past and a rational ap-
proach to the problem can be performed on the basis of Fracture Mechanics, most design codes still ground shear fa-
tigue design on empirical equations fitted on the basis of existing data. These empirical formulas show inconsistency 
amongst them and some neglect potentially relevant parameters as the ratio of maximum and minimum fatigue load 
levels. 
In this paper, a consistent design approach is presented, by using the principles of Fracture Mechanics applied to quasi-
brittle materials in combination with the Critical Shear Crack Theory. This approach leads to a simple, yet sound and 
rational, design equation incorporating the different influences of fatigue actions (minimum and maximum load levels) 
and shear strength (size and strain effects, material and geometrical properties). The accuracy of the design expression is 
checked against available test data in terms of Wöhler (S-N) and Goodman diagrams, showing consistent agreement to 
experimental evidence. In addition, the estimate of the number of cycles until failure is shown to be significantly more 
accurate and with lower scatter than current empirical shear fatigue formulations of Eurocode 2 or fib-Model Code 2010. 
 

 
1. Introduction 

Fatigue problems in reinforced concrete elements have 
traditionally been associated to rupture of the reinforc-
ing bars, normally due to bending actions. Nevertheless, 
investigations on the fatigue behaviour of some mem-
bers such as bridge deck slabs (Fig. 1a) have shown that 
shear fatigue might be governing particularly for high 
values of the maximum applied shear force (Natário and 
Muttoni 2014; Gallego et al. 2014). Also, fatigue verifi-
cations may be governing for other structures exposed 
to large cyclic actions, such as wind towers and their 

foundations or offshore structures, refer to Figs. 1b,c. 
These cases related to structural engineering are usually 
governed by ratios of the minimum applied shear force 
to maximum applied shear force close to zero or can 
even be subjected to reversal actions. 

In the past, most research on shear fatigue failures of 
reinforced concrete members has concentrated on beams 
tested under three- or four-point bending configuration. 
These experimental programmes have focused on ana-
lysing the influence of parameters like the shear span-
to-depth ratio (a/d), the flexural reinforcement amount 
(ρ = As/bd), the concrete strength (fc) or the influence of 
the maximum and minimum level of shear forces (Vmax, 
Vmin). One of the first most comprehensive and system-
atic testing was carried out by Chang and Kesler 
(1958a,b) in the fifties. They tested 64 beams under fa-
tigue loading with a constant value of the shear slender-
ness (a/d = 3.72) and three different flexural reinforce-
ment amounts (ρ = 0.0102, 0.0186 and 0.0289). Accord-
ing to their experimental results, Chang and Kesler  
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Fig. 1 Examples of structural elements potentially sensi-
tive to shear fatigue failures: (a) bridge deck slabs; (b) 
wind towers; and (c) offshore platforms. 
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identified two potential shear fatigue failure modes (re-
fer to Fig. 2): shear-compression failure and diagonal 
cracking failure. Both were due to the development and 
propagation with the number of cycles of an eventually 
critical shear crack. In the former failure mode, the 
propagation of the crack limits the depth and strength of 
the compression zone near the load, which eventually 
crushes. In the latter, the critical shear crack propagates 
in an unstable manner leading to a sudden collapse of 
the member.  

Stelson and Cernica (1958) tested 11 specimens with 
ρ = 0.0290 and similar cross section than those of Chang 
and Kesler, but higher shear slenderness (a/d = 5.65). 
Four specimens presented shear fatigue failures by di-
agonal cracking at a very similar number of load cycles 
to the corresponding series of Chang and Kesler. Verna 
and Stelson (1962) carried out 60 fatigue tests in rein-
forced concrete beams without stirrups. They focused 
on the description of fatigue failure and identified the 
following failure modes: shear fatigue, fatigue of the 
reinforcement, fatigue of concrete in compression and 
fatigue of the anchorage. The latter failure mode was 
related to the propagation of a diagonal crack towards 
the support and at the level of the longitudinal rein-
forcement, similar to the delamination cracks due to 
dowel action (Muttoni and Ruiz 2008). Taylor (1959) 
studied the influence of the type of reinforcement, by 
testing specimens with plain and ribbed bars with a con-
stant value of the shear slenderness (a/d = 4.1) and for 
different amounts of flexural reinforcement. The results 
showed very similar fatigue strength of specimens with 
different reinforcement, even though the bond properties 
of reinforcement are known to play a significant role in 
the actions involved in resisting shear force (Muttoni 
and Ruiz 2008). 

Shear fatigue tests carried out in Japan in late seven-
ties focused on the influence of the shear slenderness 
and the load levels. Higai (1978) and Farghaly (1979) 
tested reinforced concrete beams with shear slenderness 
ranging from 1.5 to 6.4. Their results showed that the 
diagonal crack developed in the first cycle for the short-
est specimens, but the residual fatigue life after diagonal 
cracking was much larger than specimens with higher 
shear slenderness. Moreover, a higher sensitivity to di-
agonal cracking failure than to shear-compression was 
observed as the shear slenderness increased. The influ-
ence of the ratio between the minimum and the maxi-
mum shear load (R = Vmin/Vmax) was investigated by 
Ueda (1982). His tests showed that elements subjected 
to higher values of parameter R had higher fatigue life 
than elements tested with lower values of R.  

Rombach and Kohl (2012, 2013) have recently tested 
7 reinforced concrete beams with a/d = 5.0 and ρ = 
0.0157, obtaining shear fatigue failure (by shear-
compression) in the beams where the maximum load 
exceeded 60% of static strength. Other experimental 
works on lightly and normally reinforced beams (ρ 
varying from 0.0052 to 0.016) (Schläfli and Brühwiller 

1998; Johansson 2004) only showed some cases of 
shear fatigue failures after rebar fractures, being fatigue 
of the reinforcement the most common failure mode. A 
number of tests including shear fatigue failure tests was 
also carried out by other researchers that focused on 
details like the shape of the section (Frey and Thürli-
mann 1983; Markworth et al. 1984), the influence of 
large member size (Teng et al. 1984) or the effect of 
high strength concrete (Kwak and Park 2001). Despite 
the significant efforts devoted to experimental pro-
grammes, most codes of practice still ground their pro-
visions on empirical formulas (CEN 2004, fib 2012).  

With respect to the previous experimental experiences, 
it can be noted that shear fatigue failures are due to the 
development and growth of an eventually critical shear 
crack, leading to the loss of the beam shear-transfer ac-
tions strength (aggregate interlock, cantilever and dow-
elling action) (Higai 1978). Such failures are associated 
to members with moderate-to-high slenderness, where 
the shear strength depends on size and strain effects 
(governing the width of the critical shear crack (Muttoni 
and Ruiz 2008)). However, for low slender members, 
arching action is prevalent, which seems to be less 
prone to failures under shear fatigue (refer to Higai 
(1978), Fig. 3). Shear failures in these cases are associ-

Fig. 2 Failure modes by Chang and Kesler (1958a,b): (a) 
shear-compression failure; (b) diagonal cracking failure; 
and Zanuy (2008): (c) cracking evolution and shear-
compression failure. 
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ated to the crushing of the compression strut carrying 
shear, which is sensitive to strain effects (transverse 
strains) but where size effect (localization of strains on a 
single crack) plays a more limited role (Zhang and Tan 
2007). This fact has recently been accounted by Gallego 
et al. (2014) that proposed a consistent approach for 
shear fatigue design of slender reinforced concrete 
members accounting for the development and growth of 
a critical shear crack based on fracture mechanics ap-
plied to quasi-brittle materials. This approach has shown 
to lead to consistent and accurate estimates of the fa-
tigue shear strength (number of cycles leading to fail-
ure) and failure modes. Its application for practical pur-
poses remains yet complex.  

In this paper, the principles proposed by Gallego et al. 
(2014) are applied in combination with the Critical 
Shear Crack Theory. The latter aims at estimating the 
shear capacity of reinforced concrete members as a 
function of the opening and roughness of a critical shear 
crack leading to failure. The use of both approaches 
leads to simple design expressions, whose comparison 
to available test results shows sound agreement for the 
various mechanical and geometrical parameters. Also, 
both the S-N curves and Goodman diagrams for fatigue 
loading can be derived on an analytical manner, show-
ing consistent agreement to test data, improving current 
empirical design formulas proposed by codes of practice 
(CEN 2004, fib 2012). 

 
2. Existing design approaches for shear 
fatigue design  

First attempts of developing design approaches for 
shear-fatigue failures were early developed by Chang 
and Kesler (1958a, b), who proposed a curve statisti-
cally obtained from their experimental tests in a semi-
logarithmically S-N diagram (Vmax/Vstatic vs logN, where 
Vmax is the maximum applied load, Vstatic the static 

strength load and N the fatigue life). The proposal pre-
sented a threshold for a maximum applied load of about 
60% of the static failure load. In a discussion of the 
works of Chang and Kesler, Taylor (1959) pointed out 
that the fatigue strength was not only influenced by the 
maximum applied load, but also by the ratio between 
minimum and maximum applied loads and the size of 
the members.  These investigations were later followed 
by the works of Higai (1978) and Farghaly (1979) who 
proposed linear relationships in a semi-logarithmically 
S-N diagram without fatigue limits. One of the best 
known approaches was later established by Ueda (1982). 
Ueda (1982) proposed a S-N formulation acknowledg-
ing the influence of the quasi-static (monotonic) shear 
strength and the levels of shear loading: 

max min min

max max

log 0.036 1 log
cu

V V V
N

V V V
= − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1) 

where Vmin refers to the minimum applied shear force, 
Vmax to the maximum level of shear force and Vcu to the 
quasi-static shear strength. This expression showed a 
reasonable fitting to test results and is even applicable to 
reverse shear loading, although comparisons to tests 
were not provided by the author in (Ueda 1982). The 
formula was proposed without a consistent demonstra-
tion based on rational models, but a physical discussion 
on the influencing parameters is available and its shape 
was derived following logical considerations (its con-
stants being fitted on the basis of tests). 

Codes of practice like Eurocode 2 (CEN 2004) or fib-
Model Code 2010 (fib 2012) present shear-fatigue pro-
visions for reinforced concrete members without shear 
reinforcement that are based on empirical Goodman 
diagrams or S-N formulations.  

The Eurocode 2 distinguishes two different loading 
regimes. If the minimum (VE,min) and maximum (VE,max) 
applied shear forces have the same sign (no reverse 
loading), the code proposes for normal strength concrete 
(up to C50/60) the following Goodman diagram: 

,max ,min

, ,

0.5 0.45 0.9E E

R c R c

V V

V V
≤ + ≤  (2) 

where VR,c is the static shear strength. If the maximum 
and minimum shear forces do not have the same sign 
(reverse loading cases), Eq. (2) is modified as follows: 

,max ,min

, ,

0.5E E

d c R c

V V

V V
≤ −  (3) 

The proposed equation to calculate the static shear 
strength (VRd,c) in Eurocode 2 is based on an empirical 
formulation and not on a mechanical model. This equa-
tion can be found in Appendix A. 

The  fib-Model Code 2010 presents the following S-N 
formulation: 

 
Fig. 3 Influence of fatigue loading on the shear strength 
of compact members (governed by arching action) and 
slender members (governed by beam shear-transfer 
actions). 
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max

Ref

log 10 1
V

N
V

≤ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4) 

where Vmax is the maximum applied shear force, VRef  the 
static shear strength and N the fatigue life. The static 
strength VRef  is calculated according to a mechanical 
model based on the Simplified Modified Compression 
Field Theory (Sigrist et al. 2013) and can be consulted 
in Appendix A. It can be noted that this formulation 
does not include any consideration on the level of 
minimum applied shear force (which has nevertheless 
been observed as a potentially significant parameter 
(Ueda 1982) and is explicitly incorporated by Eurocode 
2). Eq. (4) was already included in the previous version 
of the Model Code, but with a different formulation for 
the estimate of the static strength. 

Recently, a rational approach for shear fatigue has 
been proposed by Gallego et al. (2014). The fatigue 
strength is obtained as a result of the breakdown of re-
sisting mechanisms due to the propagation of a shear 
crack. The model includes a two-parameter fracture 
mechanics-based propagation law, in which the stress 
intensity factor is evaluated at the tip of the effective 
shear crack. The model has allowed understanding the 
mechanics of the shear fatigue process, even though its 
application for practical purposes is not straightforward. 

 
3. Consistent design for shear fatigue  

In this section, the principles of Linear Elastic Fracture 
Mechanics (LEFM) applied to quasi-brittle materials 
together with the Paris-Erdogan law for crack propaga-
tion are briefly introduced, as they will be used to 
ground the proposed formulation for the shear strength 
of members subjected to fatigue loading. The analyses 
will be performed assuming also long-length cracks (as 
those characterizing shear failures). The validity of this 
assumption for concrete members failing in shear was 
previously investigated by Gallego et al. (2014).  

According to LEFM, the propagation of a crack with 
the load cycles (da/dN) depends on the amplitude of the 
stress intensity factor at the crack tip (ΔK), refer to Fig. 
4. Three regimes can then be distinguished: (a) initiation 

of crack propagation; (b) stable crack propagation; and 
(c) unstable crack propagation. The former is governed 
by a threshold (ΔK0) below which no propagation oc-
curs. The latter leads to a fast an unstable crack propa-
gation leading to failure. With respect to the stable crack 
propagation regime, it can be characterized by the em-
pirical law observed by Paris-Erdogan (1963): 

d
d

ma
A K

N
Δ= ⋅  (5) 

where A and m are constants depending on the material 
properties. The validity of this law has been largely veri-
fied for metallic materials, with typical values for A 
ranging between 3·10-9 to 300·10-9 and for m ranging 
between 2.5 to 4.5. Applications to other materials (ce-
ramic and plastic namely) has also been investigated. 
Also, values have been reported for granite (a material 
more similar to concrete), where the values of A and m 
result 2·10-4 and 12 respectively (a detailed summary on 
suitable values can be consulted elsewhere (Elices Cala-
fat 1998)).  

For application to concrete, the Paris-Erdogan law 
has shown to provide suitable results provided that it 
incorporates the size effect factor (refer to Bažant and 
Xu 1991), which can be consistently introduced in the 
following manner: 

d
d

m

f

a K
C

N K
Δ

= ⋅
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (6) 

where Kf  refers to the fracture toughness. This expres-
sion can be transformed by considering the dependency 
of Kf  on the size of the element, expressed by means of 
brittleness number β  (β = h/h0 where h refers to the 
element representative size and h0 to a constant) as 
(Bažant and Xu 1991): 

( )d
(1 )

d

ma
C

N
Δσ β= ⋅ +  (7) 

Assuming, as a first approximation, that factors β (re-
lated to size effect) and C (depending on material and 
geometrical properties) are roughly constant (other as-
sumptions could be adopted but will not be investigated 
hereafter), it is obtained by integration: 

/2
0 (1 )m ma a C Nβ Δσ− = ⋅ + ⋅  (8) 

where failure occurs for a crack a = ac at a number of 
cycles NR, progressing from an initial crack length a0. 
The expression thus turns into: 

0
/2(1 )

c
R m m

a a
N

C β Δσ
−

=
⋅ + ⋅

 (9) 

Which can be rewritten as: 
Fig. 4 Crack growth rate as a function of the stress in-
tensity factor. 
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1/

0
/2

1/ (1 )

m

c
m

m
R

a a
C

N
β

Δσ

−

⋅ +
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (10) 

This equation provides the number of cycles required to 
lead to failure. Its direct evaluation is possible (Gallego 
et al. 2014), yet time-consuming and might be unpracti-
cal for simple design. Instead, the different terms can be 
correlated to physical values in the following manner: 
- The stress amplitude can be assumed to be linearly 

dependent on the amplitude of the shear action, thus 
, minc NV VΔσ ∝ − , where Vc,N refers to the shear force 

leading to failure at a number NR of cycles and Vmin 
to the minimum acting shear force during the load 
cycles. 

- The term on top of the fraction of Eq. (10) 
/ 2 1/

0(( ) /( (1 ) ))m m
ca a C β− ⋅ + ( )( )1/

, min
m

R c NN V V= −  

is assumed to be linearly dependent on the shear 
strength under monotonic loading minus the mini-
mum acting shear force, thus: 

/ 2 1/
0 ,1 min(( ) /( (1 ) ))m m

c ca a C V Vβ− ⋅ + ∝ − .  
It can be noted that the first hypothesis is reasonable 

and physically consistent, as the stresses acting in the 
member are proportional to the acting actions (provided 
that yielding of the reinforcement or crushing of con-
crete are not governing). Thus the acting range of 
stresses (Δσ) has to depend on the difference between 
maximum and minimum actions during load cycles (Vc,N 
– Vmin).  

With respect to the second hypothesis, it is grounded 
on the fact that the crack length progresses from an ini-
tial length (a0) to a critical one (ac). This progression (ac 
– a0) takes place during a number of cycles N, when the 
applied shear force is increased (and thereafter de-
creased) in each cycle from a minimum acting shear 
force (Vmin) to a higher level. The critical length (ac) can 
be assumed to be comparable to that developed by an 
identical member but loaded to failure in a monotonic 
manner (corresponding then to a shear force Vc,1). Thus, 
the increase of length of the crack from the minimum 
value during the load cycles to the critical one (ac – a0) 
could be related to the difference in the actions between 
the monotonic strength of the member and the minimum 
acting shear force during the load cycles (Vc,1 – Vmin). 
The validity of this assumption can be easily verified for 

1N → , when min ,1cV V→  leading to 0 ca a→ . For other 
cases, its accuracy will be checked against available test 
results in the next section. It can be noted that future 
theoretical work is nevertheless required to assess or to 
correct the generality of this hypothesis. 

With these two considerations, Eq. (10) turns to be: 

,1 min1/

, min

cm
R

c N

V V
N

V V
κ

−
=

−
 (11) 

The term κ is a coefficient that accounts for the pro-
portionality of the two terms 
( ), min ,1 min and  c N cV V V V− − . Its value can be obtained 
by means of comparison to test results. As it will be 
shown later, κ = 1 yields good predictions of the actual 
behavior and will be adopted in the following. 

For the use of Eq. (11), it may also be noted that it is 
convenient to include by notation the term  R = Vmin / 
Vc,N ≥ 0, leading thus to: 

,

1/
,1

1
(1 )

c N

m
c R

V

V R N R
=

+ ⋅ −
 (12) 

It can be noted that evaluation of Eq. (12) requires as-
sessing the shear strength under monotonic loading 
(term Vc,1). This term depends on the material and geo-
metrical parameters of the member and is influenced by 
some effects as size effect (refer to term β). For evalua-
tion of this term, the Critical Shear Crack Theory 
(CSCT) (Muttoni and Ruiz 2008) can be used in a con-
sistent manner. This theory considers a critical shear 
crack developing through the theoretical location of the 
compression strut carrying shear, refer to Fig. 5. The 
opening of the critical shear crack is estimated to be 
correlated to a reference strain (refer to Figs. 5b-e for 
location) times the effective depth of the member: 
w dε∝ ⋅ . On the basis of this assumption, the follow-
ing failure criterion was proposed (Muttoni and Ruiz 
2008) (equation in SI units [MPa, mm]): 

, 1 2
   

6 1 120
16 

R c

c

g

V
db d f
d

ε
= ⋅

⋅⋅ +
+

 (13) 

where dg refers to the maximum aggregate size, fc to the 
compressive strength of concrete measured in cylinders, 
b to the width of the member and d to its effective depth. 
This formulation has in-built the influence of size effect 
(referring to the effective depth on which the crack 
width relies) and considers the geometrical and me-
chanical parameters of the member in a consistent man-
ner (Muttoni and Ruiz 2008). More details on how to 
apply the CSCT to beams without shear reinforcement 
can be found in Appendix A. The theory can also be 
used for members subjected to distributed loading 
(Pérez Caldentey et al. 2012) and when plastic strains 
develop in the flexural reinforcement (Vaz Rodrigues et 
al. 2010). 

It should be noted that the CSCT is accepted valid for 
slender members (a/d>3) and in cases without reverse 
loading. These restrictions will thus be applied for the 
use of Eq. (12), and further studies should be performed 
to analyze its validity and potential modifications for 
these cases as well as other phenomena (like the damage 
accumulation (Palgrem-Miner effect)).  

It can be noted also that the estimate of the monotonic 
shear strength Vc,1 incorporates already a number of 
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influences (size and strain effects, concrete and aggre-
gate properties). In addition, the loading rate can also be 
considered to estimate the shear strength. The loading 
rate increases or decreases the concrete strength (Rüsch 
1960; Ruiz et al. 2007) and this holds true also for 
shear-related failures under impact loading (Micallef et 
al. 2014) (with increasing nominal shear strength) or 
sustained loading (Sarkhosh et al. 2013) (with decreas-
ing nominal shear strength).  

 
4. Comparison to test results and existing 
design models  

The previous design expression is compared in this sec-
tion to the available experimental evidence. To that aim, 
the database presented in Gallego et al. (2014) will be 
used, considering only slender members (a/d > 3) to 
avoid any arching action . The results are presented in 
terms both of S-N and Goodman diagrams.  

It is to be noted that the loading rate is accounted for 
in the comparisons. This is justified as the quasi-static 
reference strength provided by the shear design formula 
of the CSCT (or other design models) is aimed at quasi-
static failures in cases when loading duration is about 
one hour time (typical testing time). However, tests fail-
ing in fatigue loading are typically performed at much 
higher loading rates, typically 1 Hz. This implies that 
for NR→1, the observed strength at higher loading rates 
should be higher than the corresponding one for a refer-
ence (quasi-static) specimen (Sarkhosh et al. 2013; Mi-
callef et al. 2014). This phenomenon is accounted for in 
a simplified manner by using the Model Code 2010 ex-
pressions for modifying the concrete strength as a func-
tion of the loading rate (fib 2012). According to Model 
Code 2010, the increase on the concrete strength for 
tests performed at a loading rate of 1 Hz with respect to 
quasi-static specimens (1 hour-time for failure) is ap-

proximately 10% (η = 1.10 ≈ 36000.014). This value will 
be accepted as affecting the monotonic shear strength 
Vc,1 although a more refined investigation of this pa-
rameter will require future work.  

In addition, the threshold value for propagation of 
crack widths (refer to previous section) will be assumed 
as Vc,N /Vc,1 = 0.5 (the same as the one suggested by 
Eurocode 2 (CEN 2004)): 

,

1/

,1

1
0.50

(1 )
c N

m

c R

V

V R N R
= ≥

+ ⋅ −
 (14) 

Figure 6 plots the results obtained with the proposed 
approach (Eq. (14)) compared to the available test data-
set (Gallego et al. 2014). To that purpose, it has been 
proposed a value m = 17 and η = 1.10. In addition, only 
tests with values of R lower than 10% have been se-
lected. The influence of this parameter is investigated 
with the Goodman diagrams (Fig. 7). These values (m, 
η and threshold) refer to the average response of the test 
results, and could be adapted, if necessary, to respect a 
target safety level (5% fractile or other). A very good 
agreement is obtained for this sub-set of tests, with an 

average ratio between max

,1 testc

V
V

 (Vc,1 calculated accord-

ing to Eq. 13) and ,

,1 model

N

c N

c

V
V

 (substituting the experi-

mental N in Eq. 14) equal to 1.06 with a CoV of 13%, 
refer to Table 1. It should be noted that the predictions 
show a very low scatter, with a value similar to that ob-
tained by the CSCT for evaluation of monotonic shear 
failures (Muttoni and Ruiz 2008), thus the model for 
cyclic behavior adding no further scatter to the estimate 
of the shear strength. In addition, the threshold for shear 

 
Fig. 5 Shear design according to the Critical Shear Crack Theory: (a) actual crack pattern and development of the critical 
shear crack through the theoretical location of the compression strut; (b) location of the control section; (c,d) bending 
moment in the control section; and (e) strains in the control section. 
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crack propagation is attained for a number of cycles 
close to 106.  

The comparison of the test results in terms of Good-
man diagrams allows observing the influence of the load 
levels (Vc,N and Vmin) on the shear fatigue strength. Such 
diagrams are shown in Fig. 7 for the complete range R. 
The predictions are again consistent, suitably incorpo-
rating the influence of R. The results show a good 
agreement between the predicted and measured 

strengths (average equal to 1.00) with a low value of the 
CoV (15%), refer to Table 1. It can be noted that the 
value selected for the threshold is considered independ-
ent of the ratio R in good agreement to test results. This 
aspect could however be developed in future research 
(for high values of parameter R, the specimen is perma-
nently subjected to a high level of shear stresses, which 
may lead to the phenomenon of concrete fatigue under 
sustained loading (Ruiz et al. 2007)). 
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Vc,N

Vc,1
= η 1
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Fig. 6 Comparison of the proposed approach and available test data (R<10%) as a S-N diagram. 

 

N=1.102

N=1.101

V
m
a
x
/V

c,
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N=1.103
N=1.102

N=1.104N=1.103

V
m
a
x
/V

c,
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N=1.105N=1.104

N=1.106N=1.105

Vmin/Vc,1

V
m
a
x
/V

c,
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Vmax

Vc,1
= ηN−1/m + Vmin

Vc,1

(
1−N−1/m

)

m =17

η =1.1

N=20.106N=1.106

Vmin/Vc,1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Chang & Kesler (1958a-b)
Higai (1978)
Taylor (1959)
Stelson & Cernica (1958)
Ueda (1982)
Zanuy (2008)
Rombach & Kohl (2012)
Farghaly (1979)
Frey & Thürlimann (1983)
Markworth, Mildner & Streiber (1984)

 
Fig. 7 Comparison of the proposed approach and available test data in Goodman diagrams. 
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With respect to codes of practice, it can be noted that 
the formulas of Eurocode 2 (refer to Eq. (2) and to Ap-
pendix A) are not an estimator of the number of cycles 
to failure, but they provide a suitable threshold to avoid 
premature shear failures. Its application to the database 
provides thus quite safe estimates of the shear fatigue 
failures (Average = 1.29, CoV = 0.20), refer to Table 1 
and to Fig. 8. With respect to Model Code 2010, (refer 
to Eq. (4) and to Appendix A), the formulation yields 
safe estimates (Average = 1.52, CoV = 0.22, as it should 
be expected for a design code), particularly for members 
failing under a large values of number of cycles, as it 
does not present any threshold, refer to Table 1 and to 
Fig. 9. It can be noted that both design codes lead in fact 
to quite safe estimates on average but with significant 
scatter in the predictions. The test results are on the con-
trary well estimated with the proposed LEFM (for 
quasi-brittle materials) and the CSCT approach, with 
consistent and low scatter for both low and high number 
of cycles. 

 
5. Conclusions 

A consistent design approach for shear-fatigue of slen-
der reinforced concrete members (a/d > 3) without 
transverse reinforcement is presented in this paper, ap-
plying the principles of Fracture Mechanics (FM) for 
quasi-brittle materials in combination with the Critical 
Shear Crack Theory (CSCT). The main conclusions of 
this paper are: 

- Shear fatigue failures are due to development and 
growth of shear cracks. Consistent design can thus be 
performed on the basis of the FM for quasi-brittle 
materials combined with the CSCT. This approach 
leads to a simple, yet sound and rational, design 
equation incorporating the different influences of fa-
tigue actions and shear strength: 

･ minimum and maximum load levels  
･ size and strain effects 
･ material and geometrical properties 
･ loading rate 

- Shear-fatigue seems not to occur for values of maxi-
mum applied load below approximately 50% of the 
static shear strength, and this value can be satisfacto-
rily used as a threshold for shear crack propagation 
when compared to test results (the number of tests 
with fatigue failure occurring at a number of cycles 
larger than 106 cycles is yet limited). 

- Consistent agreement is obtained with the proposed 
approach in terms of Wöhler (S-N) and Goodman 
diagrams, being the estimate of the number of cycles 
until failure significantly more accurate and with 
lower scatter than current empirical shear fatigue 
formulations of Eurocode 2 or fib-Model Code 2010. 
The scatter obtained with the proposed approach is in 
addition similar to that of the CSCT for members 
failing in shear under monotonic loading and thus the 
proposed formulation adds no further scatter to the 
phenomenon. 
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Fig. 8 Comparison of Eurocode 2 and available test data. 
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Fig. 9 Comparison of fib-Model Code 2010 and available test data. 
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Table 1 Comparison between experimental tests and studied models. 
 Test to model ratio (1) 

Experimental campaign Test ID b (m) d (m) ρl (%) fc 
(MPa) a/d dg (mm) R Vmax 

(kN)
experimental 

N 

CSCT 
R=0 
(2) 

CSCT R 
(3) 

MC2010
(4) 

EC2
(5)

Chang & Kesler (1958a-b) 2 0.10 0.14 1.02 42.7 3.7 25 0.04 12 23500 0.96 0.94 1.44 1.37
Chang & Kesler (1958a-b) 3 0.10 0.14 1.02 41.2 3.7 25 0.04 12 3000 0.82 0.81 1.19 1.32
Chang & Kesler (1958a-b) 4 0.10 0.14 1.02 34.1 3.7 25 0.04 12 6500 0.96 0.95 1.40 1.47
Chang & Kesler (1958a-b) 5 0.10 0.14 1.02 36.2 3.7 25 0.04 12 1800 0.87 0.86 1.26 1.44
Chang & Kesler (1958a-b) 9 0.10 0.14 1.02 36.9 3.7 25 0.04 12 2600 0.88 0.87 1.28 1.43
Chang & Kesler (1958a-b) 10 0.10 0.14 1.02 30.5 3.7 25 0.05 10 47100 0.90 0.88 1.34 1.21
Chang & Kesler (1958a-b) 12 0.10 0.14 1.02 38.3 3.7 25 0.04 12 23200 1.00 0.99 1.49 1.42
Chang & Kesler (1958a-b) 22 0.10 0.14 1.02 44.1 3.7 25 0.04 12 30000 0.95 0.93 1.44 1.34
Chang & Kesler (1958a-b) 4-6 0.10 0.14 1.86 29.3 3.7 25 0.03 16 800 1.00 1.00 1.33 1.62
Chang & Kesler (1958a-b) 4-7 0.10 0.14 1.86 32.1 3.7 25 0.02 18 200 1.02 1.01 1.36 1.80
Chang & Kesler (1958a-b) 4-8 0.10 0.14 1.86 32.0 3.7 25 0.03 13 557000 1.22 1.20 1.84 1.35
Chang & Kesler (1958a-b) 4-9 0.10 0.14 1.86 27.0 3.7 25 0.03 13 16800 1.07 1.05 1.44 1.43
Chang & Kesler (1958a-b) 4-11 0.10 0.14 1.86 27.2 3.7 25 0.05 10 1900200 0.94 0.94 1.58 1.01
Chang & Kesler (1958a-b) 4-12 0.10 0.14 1.86 29.6 3.7 25 0.04 11 1142100 1.06 1.06 1.70 1.15
Chang & Kesler (1958a-b) 4-14 0.10 0.14 1.86 37.3 3.7 25 0.04 12 19300 0.86 0.85 1.19 1.17
Chang & Kesler (1958a-b) 4-15 0.10 0.14 1.86 14.8 3.7 25 0.04 12 1940 1.11 1.09 1.39 1.59
Chang & Kesler (1958a-b) 4-16 0.10 0.14 1.86 29.2 3.7 25 0.03 15 440 0.94 0.93 1.24 1.57
Chang & Kesler (1958a-b) 4-17 0.10 0.14 1.86 29.6 3.7 25 0.03 16 360 0.97 0.96 1.28 1.65
Chang & Kesler (1958a-b) 4-19 0.10 0.14 1.86 35.9 3.7 25 0.04 11 6690200 0.97 0.97 1.95 1.06
Chang & Kesler (1958a-b) 4-24 0.10 0.14 1.86 31.7 3.7 25 0.04 12 4822400 1.14 1.14 2.17 1.24
Chang & Kesler (1958a-b) 4-25 0.10 0.14 1.86 29.5 3.7 25 0.04 13 1097300 1.21 1.21 1.93 1.31
Chang & Kesler (1958a-b) 4-27 0.10 0.14 1.86 35.3 3.7 25 0.03 13 1250400 1.14 1.14 1.86 1.25
Chang & Kesler (1958a-b) 4-28 0.10 0.14 1.86 37.4 3.7 25 0.03 14 578800 1.20 1.18 1.83 1.33
Chang & Kesler (1958a-b) 4-29 0.10 0.14 1.86 37.0 3.7 25 0.03 13 1207600 1.16 1.16 1.91 1.28
Chang & Kesler (1958a-b) 1-5 0.10 0.14 2.89 19.9 3.7 25 0.04 12 1027200 1.28 1.28 1.86 1.41
Chang & Kesler (1958a-b) 2-5 0.10 0.14 2.89 19.7 3.7 25 0.04 11 976100 1.17 1.17 1.69 1.28
Chang & Kesler (1958a-b) 3-5 0.10 0.14 2.89 25.0 3.7 25 0.03 13 467200 1.24 1.22 1.72 1.43
Chang & Kesler (1958a-b) 5-3 0.10 0.14 2.89 32.6 3.7 25 0.03 17 23200 1.16 1.14 1.51 1.64
Chang & Kesler (1958a-b) 5-4 0.10 0.14 2.89 37.0 3.7 25 0.02 18 1700 1.00 1.00 1.28 1.68
Chang & Kesler (1958a-b) 5-5 0.10 0.14 2.89 32.2 3.7 25 0.03 16 402900 1.36 1.34 1.91 1.62
Chang & Kesler (1958a-b) 5-6 0.10 0.14 2.89 34.7 3.7 25 0.03 14 15871700 1.19 1.19 2.57 1.39
Chang & Kesler (1958a-b) 5-3 0.10 0.14 2.89 34.5 3.7 25 0.03 16 11217700 1.29 1.29 2.63 1.50
Chang & Kesler (1958a-b) 5-10 0.10 0.14 2.89 14.9 3.7 25 0.03 16 100 1.11 1.10 1.31 1.99
Chang & Kesler (1958a-b) 5-11 0.10 0.14 2.89 24.8 3.7 25 0.03 13 39800 1.08 1.06 1.39 1.43
Chang & Kesler (1958a-b) 5-12 0.10 0.14 2.89 28.0 3.7 25 0.02 18 530 1.06 1.05 1.31 1.84
Chang & Kesler (1958a-b) 5-13 0.10 0.14 2.89 30.6 3.7 25 0.03 13 3666500 1.16 1.16 2.02 1.34
Chang & Kesler (1958a-b) 5-14 0.10 0.14 2.89 36.8 3.7 25 0.03 16 13000 0.99 0.98 1.29 1.47
Chang & Kesler (1958a-b) 5-15 0.10 0.14 2.89 33.2 3.7 25 0.03 13 239000 1.06 1.04 1.46 1.30
Chang & Kesler (1958a-b) 5-16 0.10 0.14 2.89 27.6 3.7 25 0.03 14 4300 0.98 0.97 1.23 1.50
Chang & Kesler (1958a-b) 5-17 0.10 0.14 2.89 35.8 3.7 25 0.03 14 87800 1.04 1.03 1.41 1.38
Chang & Kesler (1958a-b) 5-20 0.10 0.14 2.89 32.7 3.7 25 0.02 20 900 1.13 1.12 1.42 1.94
Stelson & Cernica (1958) 1 0.13 0.11 2.90 26.6 5.6 13 0.15 13 66000 - 1.05 1.59 1.30
Stelson & Cernica (1958) 2 0.13 0.11 2.90 26.6 5.6 13 0.15 13 323000 - 1.14 1.83 1.30
Stelson & Cernica (1958) 7 0.13 0.11 2.90 26.6 5.6 13 0.29 14 32000 - 1.01 1.61 1.31
Stelson & Cernica (1958) 8 0.13 0.11 2.90 26.6 5.6 13 0.29 14 20800 - 0.99 1.56 1.31

Taylor (1959) 2 0.19 0.22 1.21 29.5 4.1 19 0.23 31 1340000 - 1.16 2.02 1.14
Taylor (1959) 3 0.19 0.22 1.21 29.5 4.1 19 0.22 33 40000 - 1.02 1.50 1.20
Taylor (1959) 5 0.19 0.22 1.49 29.5 4.1 19 0.22 35 126000 - 1.09 1.66 1.20
Taylor (1959) 6 0.19 0.22 1.49 29.5 4.1 19 0.22 35 35000 - 1.02 1.49 1.20
Taylor (1959) 9 0.19 0.22 1.83 29.5 4.1 19 0.22 35 121000 - 1.02 1.54 1.12
Taylor (1959) 10 0.19 0.22 1.83 29.5 4.1 19 0.21 36 3600 - 0.88 1.22 1.17
Taylor (1959) 13 0.19 0.22 2.33 29.5 4.1 19 0.23 38 222000 - 1.04 1.62 1.16
Taylor (1959) 14 0.19 0.22 2.33 29.5 4.1 19 0.22 39 2600 - 0.86 1.18 1.21
Higai (1978) FT 3 0.20 0.20 2.15 39.8 4.0 15 (*) 0.19 27 1740000 - 0.83 1.40 0.80
Higai (1978) FT 4 0.20 0.20 2.15 39.8 4.0 15 (*) 0.17 29 70000 - 0.77 1.11 0.88
Higai (1978) FT 13 0.20 0.16 2.40 31.1 5.0 15 (*) 0.18 28 2000 - 0.80 1.12 1.12
Higai (1978) FT 14 0.20 0.16 2.40 29.1 5.0 15 (*) 0.20 25 3000 - 0.73 1.04 1.00
Higai (1978) FT 16 0.20 0.16 2.40 32.8 5.0 15 (*) 0.22 23 790000 - 0.87 1.49 0.90
Higai (1978) FT 19 0.20 0.16 2.40 35.1 5.0 15 (*) 0.21 24 730000 - 0.87 1.47 0.90
Higai (1978) FT 6 0.20 0.11 1.80 34.4 6.4 15 (*) 0.18 28 500 - 1.12 1.71 1.64
Higai (1978) FT 7 0.20 0.11 1.80 35.5 6.4 15 (*) 0.21 24 440000 - 1.33 2.44 1.38

Farghaly (1979) 3.5-F-70-1 0.30 0.22 1.74 30.1 3.5 20 (*) 0.31 55 24300 - 0.87 1.30 1.09
Farghaly (1979) 3.5-F-70-2 0.30 0.22 1.74 22.5 3.5 20 (*) 0.25 55 223500 - 1.11 1.73 1.24
Farghaly (1979) 3.5-F-80-1 0.30 0.22 1.74 22.5 3.5 20 (*) 0.22 63 1400 - 1.01 1.34 1.44
Farghaly (1979) 3.5-F-80-2 0.30 0.22 1.74 22.5 3.5 20 (*) 0.22 63 13000 - 1.12 1.57 1.44
Farghaly (1979) 4.5-F-60-1 0.30 0.22 1.74 26.0 4.5 20 (*) 0.36 44 14500 - 0.74 1.14 0.89
Farghaly (1979) 4.5-F-70-1 0.30 0.22 1.74 26.0 4.5 20 (*) 0.31 51 214000 - 1.00 1.65 1.06
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 Test to model ratio (1) 

Experimental campaign Test ID b (m) d (m) ρl (%) fc 
(MPa) a/d dg (mm) R Vmax 

(kN)
experimental 

N 

CSCT 
R=0 
(2) 

CSCT R 
(3) 

MC2010
(4) 

EC2
(5)

Farghaly (1979) 4.5-F-70-2 0.30 0.22 1.74 26.3 4.5 20 (*) 0.31 51 113700 - 0.97 1.56 1.06
Farghaly (1979) 4.5-F-80-1 0.30 0.22 1.74 26.0 4.5 20 (*) 0.28 58 2350 - 0.93 1.33 1.23
Farghaly (1979) 4.5-F-80-2 0.30 0.22 1.74 26.3 4.5 20 (*) 0.28 58 4600 - 0.96 1.38 1.22

Ueda (1982) 1A 0.20 0.44 0.68 33.4 3.5 25 0.10 49 500 0.84 0.81 0.96 1.25
Ueda (1982) 1B 0.20 0.44 0.68 33.4 3.5 25 0.61 49 3140000 - 0.90 2.01 0.95
Ueda (1982) 2A 0.20 0.44 0.68 45.5 3.5 25 0.10 46 18600 0.89 0.85 1.05 1.06
Ueda (1982) 3B 0.20 0.44 1.67 33.4 3.5 25 0.51 71 700 - 0.74 1.04 1.08
Ueda (1982) 4A 0.20 0.44 1.67 45.5 3.5 25 0.10 67 430000 1.10 1.04 1.45 1.14
Ueda (1982) 4B 0.20 0.44 1.67 45.5 3.5 25 0.41 79 2300 - 0.81 1.12 1.15
Ueda (1982) 5B 0.40 0.22 0.68 34.2 3.5 25 0.40 58 341000 - 0.91 1.71 1.08
Ueda (1982) 7A 0.40 0.22 1.67 34.2 3.5 25 0.60 98 490 - 0.82 1.28 1.20
Ueda (1982) 7B 0.40 0.22 1.67 34.2 3.5 25 0.10 98 240 0.96 0.94 1.23 1.57
Ueda (1982) 8A 0.40 0.22 1.67 46.0 3.5 25 0.80 99 706000 - 0.79 2.06 0.96

Frey & Thürlimann (1983) BII-7 0.30 0.37 1.72 32.3 4.3 16 0.05 95 69000 1.35 1.31 1.67 1.41
Markworth, Mildner & Streiber 

(1984) H2-4 0.30 0.30 0.84 40.0 3.5 16 0.30 45 46000 - 0.70 1.01 0.82

Markworth, Mildner & Streiber 
(1984) H2-5 0.30 0.30 0.84 40.0 3.5 16 0.30 35 1512000 - 0.65 1.10 0.64

Zanuy (2008) VA1 0.30 0.26 2.51 25.0 5.2 20 0.42 60 170718 - 0.89 1.55 1.00
Rombach & Kohl (2012) V-3 0.20 0.30 1.57 39.0 5.0 16 0.08 60 289 1.09 1.06 1.31 1.49
Rombach & Kohl (2012) V-4 0.20 0.30 1.57 39.0 5.0 16 0.10 53 7290 1.15 1.11 1.40 1.30
Rombach & Kohl (2012) V-5 0.20 0.30 1.57 39.0 5.0 16 0.11 45 153000 - 1.11 1.53 1.10

AVG 1.06 1.00 1.52 1.29 CoV 0.13 0.15 0.22 0.20

Note: (1) ratio 
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Appendix: Notation 
a shear span (distance between the center of the 

load and the center of the support) 
a crack length 
a0 initial crack length 
ac critical crack length 
b beam width 
bw beam width 
c depth of compression zone 
d effective flexural depth 
dg maximum aggregate size 
da/dN rate of crack length propagation with loading 

cycles 
fc concrete compressive strength measured in cyl-

inders 
h element representative size 
h0 constant 
m constant 
z effective shear depth 
A constant 
C constant 

Ec reinforcement modulus of concrete 
Es reinforcement modulus of elasticity 
Kf fracture toughness 
M acting bending moment 
ME acting bending moment 
N fatigue life 
NR fatigue life 
Pmax maximum applied load 
Pstatic static strength load 
R ratio between minimum and maximum applied 

loads 
V acting shear force 
Vc,1 static shear strength for monotonic loading 
Vcu static shear strength  
Vc,N applied fatigue shear force 
VE,max maximum shear force 
VE,min minimum shear force 
Vmax maximum shear force 
Vmin minimum shear force 
VR,c static shear strength 
VRef static shear strength 
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β brittleness number 
ε reference strain at 0.6d from the compressive 

face 
εx reference strain at mid-depth of the effective 

shear depth 
κ proportionality factor 
η multiplying factor of static strength due loading 

rate  
ρ reinforcement ratio 
ρl reinforcement ratio 
Δσ variation of stress 
ΔK variation of stress intensity factor 
ΔK0 propagation threshold of the variation of stress 

intensity factor 
ΔKc critical variation of stress intensity factor 
ΔV variation of shear force 
 
Appendix A 
The applied formulations used in this paper to calculate 
the static shear strength of reinforced concrete rectangu-
lar beams without shear and skin reinforcement are pre-
sented in this appendix  
 
A1) Shear strength according to the Critical Shear 
Crack Theory 
If no axial force is applied, the strain ε in the control 
depth at the control section depends on the applied 
bending moment M as follows: 

( )
0.6

/ 3s

M d c
bd E d c d c

ε
ρ

−
=

− −
 (15) 

where b represents the width of the beam, d the effective 
depth, ρ the reinforcement ratio and Es the reinforce-
ment modulus  of elasticity. The depth of the compres-
sion zone c is given by:  
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where Ec it the concrete modulus of elasticity. 
The CSCT failure criterion has the following analytical 
expression: 
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    [MPa,mm] (17) 

where VR,c is the static shear strength,  fc the concrete 
compressive strength  measured in cylinders and dg the 
maximum aggregate size. 

The failure load can be determined by the intersection 
of the shear force-strain relationship (which is related to 
the bending moment-strain relationship) with the failure 
criterion (by substituting Eq. (15) into Eq. (17)). For 
high-strength concrete (fc>60 MPa) or light-weight con-
crete dg should be taken equal to zero because the criti-
cal shear crack develops through the aggregates. 

 

The control section for three or four-point bending 
tests on beams is located at d/2 from the point load.  

 
A2) Shear strength according to fib-Model Code 2010 
The shear strength (VR,c) according to fib-Model Code 
2010 is given by 

,R c v c wV k f zb=     [fc in MPa] (18) 

where the effective shear depth can be taken as 0.9d 
(being d the effective flexural depth), bw is the member 
width, fc is the concrete compressive strength and fc

1/2 
shall not be taken as greater than 8MPa. 

For a Level II approximation, kv is determined with: 
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    [z in mm]  (19) 

Parameter kdg can be determined as follows: 

32
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+

    [dg in mm] (20) 

For concrete compressive strengths larger than 70 
MPa and light-weight concrete dg shall be taken as zero 
in order to account for the loss of aggregate interlock in 
the cracks due to fracture of aggregates. 

If no axial force is applied, the strain εx at the mid-
depth of the effective shear depth in the control section 
is given by: 
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 (21) 

where Es is the reinforcement modulus of elasticity, As is 
the tensile reinforcement area, and ME and VE the ap-
plied bending moment and shear force, respectively. 

One may determine the static shear strength by sub-
stituting Eq. (21)  into Eq. (19) and then (18).  

The control section for three or four-point bending 
tests on beams is located at d from the point load. 

 
A3) Shear strength according to Eurocode 2 
The shear strength (VR,c in N) according to Eurocode 2 
is given by: 

( )1/ 3 3 / 2 1/ 2
,

0.18
100 0.035

1.0R c l c w c wV k f b d k f b dρ= ≥  (22) 

where fc is the concrete compressive strength (in MPa), 
bw is the member width (in mm), d is the effective flex-
ural depth (in mm), ρl is the reinforcement ratio (that 
shall not be taken larger than 0.02). 
Parameter k can be determined as: 

200
1 2.0k

d
= + ≤     [d in mm]  (23) 

 




