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LIMIT ANALYSIS FOR PUNCHING SHEAR DESIGN OF 
COMPACT SLABS AND FOOTINGS 

João T. Simões, Duarte M. Viúla Faria, Aurelio Muttoni and Miguel Fernández Ruiz 

Ecole Polytechnique Fédérale de Lausanne, ENAC, CH-1015 Lausanne, Switzerland 
 

Abstract 

In this paper, the kinematical theorem of limit analysis is used to obtain the governing failure 
mechanisms and the corresponding failure load of reinforced concrete footings without transverse 
reinforcement. To that purpose, a Mohr-Coulomb yield criterion is used for the concrete together with 
uniaxial rigid-plastic behaviour for the reinforcing bars. Two different mechanisms allowing failures 
with both rotational and translational movements are used. The results show that various failure modes 
can develop, associated to clockwise or counter-clockwise rotations combined with translational 
movements. It is also shown that a flexural-shear regime, representing a transition between pure 
flexural and punching shear failures may be governing, with a lower load carrying capacity than a pure 
flexural failure mechanism. Finally, it is shown that the failure mechanism governing in the punching 
shear regime might be dependent on the amount of top compression reinforcement. A fairly good 
agreement is found between theoretical and experimental results. 

Keywords: Compact slabs, footings, flexural-shear, punching shear, limit analysis, plastic theory 

1 Introduction 

Limit analysis is a consistent tool for design of reinforced concrete members provided that the 
behaviour is sufficiently ductile. This is for instance the case of beams with transverse reinforcement, 
where the influence of smeared cracking on the concrete strength is usually considered in a simplified 
manner by means of an efficiency (or strength reduction) factor. In case crack localization develops, 
the deformation capacity of the member is reduced. In these cases, the use of limit analysis is still 
possible, yet the influence of crack development on the compressive strength of concrete is to be 
carefully accounted and other phenomena govern (such as size effect). This is corresponds for 
example to the case of punching shear failures near concentrated loads. Regardless of the presence of 
transverse reinforcement, strains localize near the concentrated loads due to the relatively strong 
gradients of bending moments and shear forces and a single critical shear crack develops. 
Investigations of the punching shear strength have shown that for relatively high levels of shear force 
(as for compact footings or for flat slabs with large amounts of transverse reinforcement), crushing of 
the concrete struts is governing for the punching strength. For these cases, application of limit analysis 
is possible provided that the influence of cracking is suitably considered on the concrete strength. 
 

The load carrying capacity of footings has been investigated by several researchers (e.g. Talbot 
1913; Richart 1948; Kordina & Nölting 1981; Dieterle 1986; Dieterle & Rostásy 1987; Hallgren, 
Kinnunen & Nylander 1998; Hallgren & Bjerke 2002; Timm 2003; Hegger, Sherif & Ricker 2006; 
Hegger & al. 2007; Hegger, Ricker & Sherif 2009; Ricker 2006; Siburg & Hegger 2014; Urban & al. 
2013). Nevertheless, there is yet no consensus about a mechanical model to determine the load 
carrying capacity of these elements when subjected to concentrated loads. In this paper, limit analysis 
is used to obtain the governing failure mechanisms and load carrying capacity of reinforced concrete 
footings without transverse reinforcement. 

 
Limit analysis was firstly applied to reinforced concrete elements subjected to in-plane shear by 

Drucker (1961), who proposed a stress field (Fig. 1(a)) and a failure mechanism (Fig. 1(b)) providing 
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the same strength, therefore corresponding to the exact plastic solution. Thereafter, limit analysis has 
been used to investigate the shear strength of several plain and reinforced concrete elements (e.g. 
Johansen 1962; Gesund & Dikshit 1971; Braestrup 1974, 1979, 1981; Jensen 1975; Braestrup & al. 
1976; Nielsen & al. 1978; Nielsen, Braestrup & Jensen 1978; Gesund 1983, 1985; Jiang and Shen 
1986; Bortolotti 1990; Kuang 1991; Salim & Sebastian 2002; Chen 2007; Nielsen & Hoang 2011). 
With respect to the punching shear strength of slabs, Braestrup & al. (1976) proposed a kinematical 
approach based on a failure mechanism consisting on a vertical shift of the outer portion of the slab 
(refer to Fig. 1(c)), considering a modified Coulomb failure criterion for the concrete. Jiang & Shen 
(1986), Bortolloti (1990), Kuang (1991) and Sebastian & Salim (2002) have also presented others 
solutions based on the kinematical theorem of limit analysis, considering the same failure mechanism 
originally proposed by Braestrup & al. (1976), but with some differences, notably, in the concrete 
behaviour. Using the referred failure mechanism (Fig. 1(c)), the mentioned works have neglected the 
influence of rotations at failure (and thus the influence of both bottom and top reinforcement), 
therefore allowing only the analysis of punching shear regime. 

 
A rational approach based on the kinematical theorem of limit analysis is presented in this 

paper, referring specifically to the cases of compact slabs and footings with concentrated reactions. 
The approach presented is nevertheless also applicable to the case of footings with different 
distributions of reactions (as for example uniform soil reaction). Two potential failure mechanisms are 
considered. Both mechanisms result from a relative rotation rate around an instantaneous centre of 
rotation. The kinematics considered differ in the admissible location for the instantaneous centre of 
rotation as well as in the direction of the rotation considered. The solution presented in this paper 
considers therefore the influence of rotations activating both the bottom and the top reinforcement, 
allowing the analysis not only of punching shear failures, but also of flexural and combined flexural-
shear failures. The results are finally discussed and compared to some available experimental 
evidence. 

 

(a)

fc

(b)

(c)

Fig. 1   First application of limit analysis to reinforced concrete elements subjected to in-plane shear by Drucker 
(1961) through the development of a (a) stress field and (b) a kinematically admissible mechanism; (c) 
kinematically admissible mechanism originally proposed by Braestrup & al. (1976) to calculate the punching 
shear strength of slabs. 

2 Kinematical theorem of limit analysis applied to footings 

The kinematical theorem of limit analysis will be used in this work. This theorem states that the rate of 
internal energy dissipated has to be balanced by the rate of external work. The materials are 
considered to behave in a perfectly rigid-plastic manner. As shown in Fig. 2(a), uniaxial rigid-plastic 
behaviour in both tension and compression is considered for the reinforcement. A Mohr-Coulomb 
yield criterion is used for the concrete, being the tensile strength neglected (tension cut-off of plasticity 
surface) due to its brittle behaviour (refer to Fig. 2(b) and (c)). A plastic compressive strength of 
concrete is also considered (Muttoni 1990; Muttoni, Schwartz & Thürlimann 1997; Fernández & 
Muttoni 2007, 2008): 
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fcccp ff          (1) 

where the reductions factors ηε and ηfc take into account, respectively, the potential presence of 
transverse strains and the brittle behaviour in compression of high-strength concrete. The latter factor 
may be computed as (Muttoni 1990; Muttoni, Schwartz & Thürlimann 1997; Fernández & Muttoni 
2007, 2008): 

1
3/1

0 









c

c
cp f

f        (2) 

With respect to the reduction factor accounting for the presence of transverse strains ηε, it is important 
to note that it may be evaluated according to several formulations (e.g. Vecchio & Collins 1986, 1988; 
Collins & al. 1996; Muttoni 1990; Muttoni, Schwartz & Thürlimann 1997; Vecchio 2000). Other 
researchers consider both reductions factors together η=ηεηfc, proposing a global efficiency factor (e.g. 
Nielsen & Hoang 2011). 
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Fig. 2   (a) Rigid-plastic behaviour both in tension and compression admitted for the reinforcement bars; (b) 
rigid-plastic behaviour considered for concrete; (c) Mohr-Coulomb failure criterion adopted for concrete.
 
The geometry of a compact footing is presented in Fig. 3(a): (i) rs represents the radius of the footing; 
(ii) rc is the radius of the column; (iii) rq is the radius of the introduction of the reaction resultant; (iv) 
r0 is the radius of the failure surface at the level of bottom flexural reinforcement; (v) d is the effective 
depth of the bottom reinforcement, which is assumed to be the distance between the centroid of the 
bottom reinforcement and the top surface of the footing; (vi) d’ is the effective depth of the top 
reinforcement; (vii) h is height of the footing; (vii) ρ and ρ‘ are respectively the bottom and top 
reinforcement ratios. With respect to materials properties (besides the plastic concrete compressive 
strength fcp) fy and fy’ are respectively considered as the yield strength of the bottom flexural and top 
reinforcement. 
 
 A narrow plastic zone, developing along the entire effective depth of the footing separates it in 
two portions. The velocity u  in each infinitesimal part of this narrow plastic zone results from the 
relative rotation rate   around an instantaneous centre of rotation, see Fig. 4(b) and (c): 

      22
ICRICR zzrru      (3) 

The radial component of this velocity may be computed as: 

  ICRr zzu        (4) 

While the inner portion is considered rigid, the outer portion is considered to deform according to a 
conical shape due to compatibility reasons of the velocity field occurring along the failure surface 
(which is considered to be rotationally symmetric). As a result, dissipation of energy due to tangential 
bending may occur and is taken into account. As shown in Fig. 6(b) and (c), two different mechanisms 
(corresponding to two different kinematics) named M1 and M2 are considered. The admissible 

3



 

 

location for the instantaneous centre of rotation, as well as the direction considered for the rotation, 
distinguishes both mechanisms. The mechanism leading to the lowest load carrying capacity is the 
governing one, representing the upper bound of the load carrying capacity. 
 

failure surface

ρ’; fy’

ρ; fy

rICR ϵ ]-∞; rc ] 

zICR ϵ [ 0; ∞ [ 

rICR ϵ ] rq ; ∞ ] 

zICR ϵ ] -∞; 0 ]
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Fig. 3   (a) Definition of geometrical parameters and materials properties used in the proposed approach; 
admissible location of the instantaneous centre of rotation for mechanism (b) M1 and (c) M2. 
 
 As shown in Fig. 3(b), mechanism M1 represents a kinematics characterized by a counter-
clockwise rotation with an instantaneous centre of rotation radially located behind the edge of the 
column and vertically located above the bottom flexural reinforcement. When the instantaneous centre 
of rotation is close to the tip of the failure surface and below the top surface, a significant rotation is 
observed in the failure mechanism with the development of a tangential compression zone (resulting 
from the conical deformed shape of the outer zone),  indicating flexural failures. On the other hand, if 
the instantaneous centre of rotation shifts to infinite (rICR→-∞), a vertical translational movement 
characterizes the failure mechanism. This is the failure mechanism originally proposed by Braestrup & 
al. (1976) for punching failures of flat slabs. In this latter case, the load carrying capacity is only 
dependent on the rate of internal energy dissipated along the failure surface.  
 
 The kinematics considered in mechanism M2 presents a clockwise rotation with an 
instantaneous centre of rotation radially located beyond rq (the radius where the reaction is applied) 
and vertically located below the bottom flexural reinforcement (refer to Fig. 3(c)). This kinematics is 
associated with punching shear failures, since it not only enables the development of a failure 
mechanism without activation of bottom reinforcement, but also considers a rotation direction 
opposite to the one known to occur in flexural failures. When the instantaneous centre of rotation is 
radially located at infinite, the failure mechanism given by this kinematics is again characterized by a 
vertical shift of the outer portion of the footing, corresponding again to the failure mechanism 
presented by Braestrup & al. (1976).  
 
 An example of failure mechanisms (a) M1 and (b) M2 with their corresponding velocity fields is 
shown in Fig. 4. The definition of the location of the instantaneous centre of rotation (rICR, zICR) and 
the geometry of the failure surface, defined by the function r(z), enables the computation of each 
component of the total rate of internal energy dissipation and rate of external work, therefore allowing 
the calculation of the load carrying capacity. The rate of external work is only given by the reaction 
resultant, while the total rate of internal energy dissipation results from the sum of different 
components, namely, energy dissipated along the failure surface, energy dissipated in concrete due to 
tangential bending of the outer footing portion and, finally, the energy dissipated in both bottom and 
top reinforcements. Each component may be calculated as explained in the following. 
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Fig. 4   Example of mechanism (a) M1 and (b) M2 with corresponding velocity fields.

3.1 Rate of external work 

The rate of external work eP , whose only source is the reaction resultant, is given by: 

 ICRqe rrVP        (5) 

The rate of external work is always a non-negative scalar. In the case of concentrated reactions, as the 
case in study, V represents the concentrated reaction located at a radius rq from the centre of the 
footing. In the case of concentrated reactions, the failure surface may reach the level of bottom 
flexural reinforcement in between the column edge and the reaction inner radius. 

3.2 Rate of internal energy dissipated in the concrete along the failure surface 

A radial view of an infinitesimal part of the narrow plastic zone with a thickness Δ developing along 
the failure surface is shown in Fig. 5(b). It is still considered that the failure surface develops only 
between the level of bottom flexural reinforcement and top surface, being the concrete cover 
contribution of the bottom reinforcement neglected. Based on the mentioned assumptions, the rate of 
internal energy dissipated along the failure surface may be calculated as: 

     
d

cpFSci

dz
rufP

0

,, sin
1sin


      (6) 

where α represents the angle between the failure surface and the vertical axis; χ refer to the angle 
between the failure surface and the velocityu . The calculation of this component was already shown 
by several researchers (e.g. Jensen 1975) and applied previously to punching shear problems assuming 
χ= α (Braestrup 1979; Braestrup & al. 1976). Substituting (3) in (6), the rate of internal energy 
dissipated along the failure surface may be obtained by: 

        
sin

1sin
0

22
,,

dz
rzzrrfP

d

ICRICRcpFSci      (7) 
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Fig. 5   (a) Representation of failure surface and (b) radial view of infinitesimal part of narrow plastic zone 
occurring along the failure surface. 

 
The consideration of the Mohr-Coulomb yield criterion with a tension cut-off leads to the definition of 
three potential regimes occurring along the failure surface (refer to Fig. 2 (b)): (i) Regime A (χ= φ) , 
where the rate of internal energy dissipated per unit area is maximum, therefore corresponding to a 
sliding failure; (ii) Regime B (φ< χ<90°), where the rate of internal energy dissipated per unit of area 
is non-zero; (iii) Regime C (χ=90 °), where no dissipation of energy occurs (since tensile strength is 
neglected), representing a separation failure. 

3.3 Rate of internal  energy dissipated in the concrete tangential compression 

As previously explained, when the instantaneous centre of rotation is below the top surface in 
mechanism M1 (0<zICR<d), a tangential compression zone develops in the outer portion of the footing 
in between zICR<z≤ d (refer to Fig. 4(a)). In this case, the rate of internal energy dissipated due to 
tangential compression is given by: 

  dVolfP cptctci ,,,        (8) 

where the unit of volume dVol and the corresponding strain rate tc,  (given by the ratio of the radial 

component of the velocity and the radius) are respectively given by: 

dzddrrdzdAdVol        (9) 

r

zz

r

u ICRr
tc








,  with zICR<z≤ d    (10) 

Substituting (9) and (10) in (8), the rate of internal energy dissipated in concrete tangential 
compression may be computed as: 

    






d

z

r

r

cpICRcscp
ICR

tci

ICR

s

c

fzdrrdzddrrf
r

zz
P




2

0

2

,,   (11) 

where ICRzd   is equal to zero when the component ICRzd   is negative. This component does not 

exist in mechanism M2, since the entire footing is considered to be in tension in the corresponding 
kinematics. 

3.4 Rate of internal of energy dissipated in the reinforcement 

A velocity with a non-zero radial component at the level of both bottom and top reinforcement may 
occur in both mechanisms. In those cases, dissipation of energy occurs in the reinforcement, either in 
tension or in compression. The rate of internal energy dissipated in the bottom reinforcement results 
from the sum of rate of internal energy dissipated in both radial and tangential directions. With respect 
to radial direction, the rate of internal energy dissipated is given by: 
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  dAfuP ybsr
rad

bsi ,,,,        (12) 

where the radial component of the velcoity at the level of bottom reinforcement and the unit of area 
are respectively given by: 

   ICRzrbsr zuu )0(,,       (13) 

 drdA  0        (14) 

In what respects tangential direction, the rate of internal energy dissipated is given by: 

  dVolfP cpbstbsi ,,
tan

,,        (15) 

where the corresponding strain rate and unit of volume given respectively by: 

r

z

r

u ICRbsr
bst








 ,,

,,       (16) 

 ddrrddVol        (17) 

Using (12) to (17), the rate of internal energy dissipated in the bottom reinforcement may be written 
as: 

 






2

0

2

0

0
tan

,,,,,,

0

sr

r

yICRyICRbsi
rad

bsibsi ddrdfzdrdfzPPP   (18) 

which may be simplified to: 

  ICRscpbsi zrfdP 2,,      (19) 

where ω represents the bottom mechanical reinforcement ratio (ω=ρ fy/fcp). The rate of internal energy 
dissipated in the top reinforcement may be analogously calculated: 

    ''
,, 2 ddzrfdP ICRscpbsi     (20) 

where ω’ refers to the top mechanical reinforcement ratio, computed as ω’=ρ’ fy/fcp. 

3.5 Determination of load carrying capacity 

The load carrying capacity may be calculated based on the kinematical theorem of limit analysis, 
provided that a location for the instantaneous centre of rotation and a geometry for the failure surface 
are assumed. The solution is the result of the minimization of the load carrying capacity. Besides the 
possibility of solving this problem by calculus of variations, using Lagrange-Euler equations (Courant 
& Hilbert 1953) as shown by Braestrup & al. (1976), it may be also numerically solved, corresponding 
to a constrained non-linear optimization problem (location of instantaneous centre of rotation and 
velocity field constrained). The results presented in the following were obtained through numerical 
optimization. 

3 Discussion of theoretical results 

The normalized load carrying capacity is shown in Fig. 6(a) as a function of the bottom mechanical 
reinforcement ratio and considering both potential mechanisms, for a general case characterized by 
rs/d=2.0, rq/d=1.5, rc/d=0.3, r0,max=1.3 and without top reinforcement (ω‘=0). Several failure 
mechanisms are represented in Fig. 6(b) to (d), where the principal strain rate directions and the length 
of the regimes along the failure surface are also shown. The flexural capacity is also presented in Fig. 
8(a), which was calculated according to: 
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 2        (21) 

where the flexural strength of the section mR is computed assuming a rigid-plastic behaviour for 
concrete and steel: 












d

c
dfm cpR 2

12       (22) 

where c represents the height of the compression zone which, in the cases where no top reinforcement 
is used, is equal to c=ωd. It is shown in Fig. 6(a) that a pure flexural failure occurs only in the cases 
where fairly low amounts of bottom mechanical reinforcement ratio are available. In these cases, the 
load carrying capacity obtained with mechanism M1 is very close to the one calculated according to 
(21) and (22). With increasing amount of bottom mechanical reinforcement ratio, two different 
regimes may be observed: (i) flexural-shear regime and (ii) punching shear regime. The first regime is 
characterized by an increase of the load carrying capacity with increasing amount of the bottom 
mechanical reinforcement ratio. Mechanism M1, which presents a kinematics with a counter-
clockwise rotation (known to occur in pure flexural failures), is governing for a significant part of the 
flexural-shear regime. This regime defines a transition between a pure flexural failure and a punching 
shear failure. The rotation component of the failure mechanism reduces with increasing amount of 
bottom mechanical reinforcement ratio, decreasing the relative significance of rate of internal energy 
dissipated in the bottom reinforcement. On the other hand, the amount of energy dissipated along the 
failure surface increases as the length of regimes A and B along the failure surface also increases (refer 
to Fig. 6(b) and (c)). Therefore, while for low amounts of the bottom mechanical reinforcement ratio 
the location of the instantaneous centre of rotation is close to the footing (leading to an important 
component of rotation at failure), it is located at larger distances for increasing amounts of this 
reinforcement. This leads to a failure mechanism with low significance of rotation and a more 
significant component of translation. 
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Fig. 6   (a)  Normalized load carrying capacity as a function of the bottom mechanical reinforcement ratio for a 
general case with rs/d=2.0, rq/d=1.5, r0,max=1.3, rc/d=0.3 and ω‘=0; (b) failure mechanism M1 for ω=0.05; (c) 
failure mechanism M1 and M2 for ω≈0.1125; (d) failure mechanism M2 for ω=0.15 and (e) failure mechanism 
M1 for ω=0.225. 
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 The transition between mechanism M1 and M2 occurs when the failure mechanism is 
characterized by only a translational movement, meaning that in both cases the instantaneous centre of 
rotation is located at infinite (Fig. 6(c)). Thereafter, the increase of the bottom mechanical 
reinforcement ratio leads to a reduction in the radial component of the velocity in mechanism M1, thus 
decreasing the relative significance of the activation of the bottom reinforcement in the total rate of 
internal energy dissipated (at same time, the rate of internal energy dissipated in the concrete along the 
failure surface increases, compare Fig. 6(c) and (e)). In mechanism M2, the increase of the bottom 
mechanical reinforcement ratio leads to a progressive approximation of the instantaneous centre of 
rotation to the level of the bottom reinforcement and to the footing (leading to a clockwise rotation, 
compare Fig. 6(c) and (d)). While M1 leads to a failure mechanism characterized by a vertical 
translation of the outer portion of the footing when large amounts of bottom mechanical reinforcement 
ratio are provided, mechanism M2 leads to a failure mechanism with a clockwise rotation 
(instantaneous centre of rotation at the level of the bottom reinforcement). The load carrying capacity 
obtained in both cases is only governed by the energy dissipated along the failure surface. 
Nevertheless, from the comparison of Fig. 6 (d) and (e), it might be seen that mechanism M1 leads to a 
more significant presence of regime A (biaxial compression) along the failure surface. This result 
shows that the mechanism originally proposed by Braestrup & al. (1976), and later used by other 
researchers (Jiang & Shen 1986; Bortolotti 1990; Kuang 1991; Salim & Sebastian 2002), might not be 
the only one governing in punching shear failures. This is for instance the cases of compact footings 
without top reinforcement, since in these cases the instantaneous centre of rotation may get closer to 
the failure surface and no top reinforcement is available to be activated with a clockwise rotation. In 
these cases, if top reinforcement is provided, a change in the failure mechanism (reduction the 
clockwise rotational component) and an increase of the load carrying capacity may be observed. 
Therefore, a certain amount of top reinforcement (which is a function of geometrical and material 
properties) has apparently to be provided to ensure that a failure mechanism characterized by a vertical 
movement of the outer portion of the footing is governing in the punching shear regime. This result 
may also be physically explained with the confinement stresses that top reinforcement may provide to 
the diagonal compression strut carrying shear (Guiddoti, Fernández Ruiz & Muttoni, 2010). 
 

It is still important to note that, as already observed by Braestrup & al. (1976), the failure 
surface develops in between the column edge and the support inner radius, since the tensile strength of 
concrete is neglected. Therefore, the support width assumes an important role not only for the 
mechanism M1, but mostly for the mechanism M2, specifically in the cases where top compression 
reinforcement is not provided.  

 
It can also be noted that the approach presented above can be extended to other cases, varying 

the geometrical and material properties as well as the reactions distribution (e.g. uniform soil 
reaction). 

4 Comparison between theoretical and experimental results 

Hallgren, Kinnunen and Nylander (1998) is one of the several experimental works performed 
presented having as objective the investigation of the punching shear behaviour of footings (e.g. 
Talbot 1913; Richart 1948; Kordina & Nölting 1981; Dieterle 1986; Dieterle & Rostásy 1987; 
Hallgren & Bjerke 2002; Timm 2003; Hegger, Sherif & Ricker 2006; Hegger & al. 2007; Hegger, 
Ricker & Sherif 2009; Ricker 2006; Siburg & Hegger 2014; Urban & al. 2013). Hallgren, Kinnunen & 
Nylander (1998) performed tests on eleven reinforced concrete column footings without shear 
reinforcement that showed the influence of the bottom reinforcement ratio and of the concrete 
compressive strength. It was concluded that the concrete compressive strength has an important 
influence in the footings load capacity, significantly higher than in slender slabs, and that the influence 
of the longitudinal reinforcement ratio was not so pronounced as for the concrete compressive 
strength. Three additional investigated parameters were the type of anchorage of the reinforcement 
bars, the type of loading (line or uniform) and the shape of the footing (square or circular). According 
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to Hallgren, Kinnunen & Nylander (1998), these three parameters do not have a significant influence 
in the value of the collapse load. 
 

The work presented by Hallgren, Kinnunen and Nylander (1998) is used here to compare the 
experimental results with the theoretical predictions using the kinematical approach above presented. 
This experimental campaign presents nine tests (S1 to S5, S7 to S9, S12 and S13) with the same 
loading setup (concentrated reactions) and where all the parameters (rs, rc, rq, d, ω’) were kept 
approximately constant, varying only the bottom mechanical reinforcement ratio ω. In the present 
analysis it is considered that the loading plates had a diameter equal to 0.10 m. The main properties for 
each test are presented in Table 1. 

 
The theoretical prediction calculated using the kinematical approach above presented as well as 

the ratio VR,test / VR,Plastic obtained for each experimental result are presented in Table 1. The value of 
the plastic concrete compressive strength fcp was calculated according to (1) assuming ηfc from (2) and 
ηε=0.55. This latter value is selected according to the reduction factor proposed by fib Model Code 
2010 to take into account the shear cracking developing not parallel to the compression direction 
(typical case of beams with shear reinforcement where limit analysis is used by means of the truss 
analogy). The results of the ratio VR,test / VR,Plastic shows a fairly good agreement, with an average of 
0.98 and a coefficient of variation of 0.085. 
 

Table 1 
Description of experimental tests performed by Hallgren, Kinnunen and Nylander 

(1998) 

Specimen Shape 
rs 

1 
[mm]

rc 
2 

[mm] 
rq 

3 
[mm] 

d 
[mm]

fc,cube 
4 

[MPa]
ρ 

[%]
fy 

[Mpa]
VR,test 
[MN]

fcp 
[MPa] ω VPlastic 

[MN] 
VR,test / 
VR,Plastic

S1 

square 480 
125 

337 

242 49.8 0.40

621 

1.36 19.9 0.13 1.34 1.02 
S2 243 35.5 0.40 1.02 15.6 0.16 1.10 0.92 
S3 250 37.2 0.39 1.01 16.4 0.15 1.20 0.84 
S4 232 32.1 0.66 0.99 14.1 0.29 0.94 1.06 
S7 246 18 0.40 0.62 7.9 0.31 0.57 1.09 
S8 245 39.3 0.25 0.92 17 0.09 0.98 0.93 
S9 244 31.9 0.40 0.90 14 0.18 1.00 0.91 

S12 
circular 480 337 

242 34.1 0.42 1.05 15 0.17 1.05 0.99 
S13 244 24.7 0.42 0.80 10.9 0.24 0.77 1.04 

  Average 0.98 

  COV 0.085 
{1} for square footings, rs is calculated considering an equal area for the bottom surface; 
{2} circular columns used in all the specimens; 
{3} for square footings, rq is simplified considering to be equal to the one of the experimental tests in circular 
footings; 
{4} to compare with the theoretical results, an fc =0.8 fc,cube is considered. 
 
Fig. 7(a) depicts the normalized load carrying capacity as a function of the bottom mechanical 
reinforcement ratio considering an average value for the effective depth of d=0.243 m (therefore 
leading to definition of the parameters characterizing this experimental campaign with the following 
average values: rc/d=0.514; rs/d=1.98; rq/d=1.39; r0,max/d=1.18 and ω’=0). Also the flexural capacity, 
computed according to (21), is represented in Fig. 7(a). Although the theoretical curves shown in Fig. 
7(a) represent average values, a good agreement between theoretical and experimental results may be 
observed, in accordance with the results already presented in Table 1. Nevertheless, it might be seen 
that the plastic solution tends to slightly overestimate the experimental load capacity for low amounts 
of the bottom mechanical reinforcement ratio and to underestimate for larger amounts of this ratio. 
The ratio VR,test / VR,Plastic obtained for each experimental test (refer to Table 1) is shown in Fig. 7(b) as 
a function of the bottom mechanical reinforcement ratio, being possible to observe a slight increase of 
this ratio with increasing the bottom mechanical reinforcement ratio. This result may be physically 
explained by the fact that footings with low amounts of bottom mechanical reinforcement ratio present 
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a softer behaviour (larger deformations), therefore requiring a more pronounced reduction of the 
concrete compressive strength. On the other hand, footings with large amounts of bottom 
reinforcement ratio present a stiffer behaviour, requiring slightly lower reductions of the concrete 
compressive strength. 
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Fig. 7   (a) Comparison between proposed plastic solution and experimental values of load carrying capacity as 
a function of bottom mechanical reinforcement ratio for the experimental tests of Hallgren, Kinnunen and 
Nylander (1998), considering the following average values: rc/d=0.514; rs/d=1.98; rq/d=1.39; r0,max/d=1.18 and 
ω’=0 with d = 0.243m; (b) ratio VR,test/VR,plastic as a function of bottom mechanical reinforcement ratio. 
 

5 Conclusions 

A kinematical approach is proposed to calculate the load carrying capacity of isolated footings under 
concentrated reactions. Rigid-plastic behaviour, based on a Mohr-Coulomb yield criterion, was 
adopted for the concrete, being its tensile strength neglected. The reinforcement bars are considered to 
behave in a rigid perfectly plastic manner in both tension and compression. Two different 
mechanisms, referring to different kinematics, are considered. The following conclusions are obtained: 

1) Besides the flexural regime observed for very low amounts of bottom mechanical reinforcement, 
two regimes may govern: (i) flexural-shear and (ii) punching shear regime; 

2) The flexural-shear regime, which is shown to lead to lower strength than the one obtained 
considering a pure flexural failure, governs for low amounts of the bottom mechanical reinforcement 
and represents a smooth transition between pure flexural and punching shear failures;  

3) The punching shear failure is governing for large amounts of bottom mechanical reinforcement; 
4) It is shown that top compression reinforcement might play an important role in the punching 

shear regime; the punching shear failure is characterized by a vertical movement of the outer portion 
of the footing when large amounts of top reinforcement is used; when top reinforcement is not 
provided, a failure mechanism with an instantaneous centre of rotation close to the footing and at the 
level of the bottom flexural reinforcement might govern; 

5) The approach presented in this paper is shown to be consistent with the experimental results of 
Hallgren, Kinnunen and Nylander (1998), considering a reduction factor of ηε=0.55 to take into 
account the presence of transverse strains; this corresponds to a value normally used when limit 
analysis is applied to shear strength problems. 
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