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ABSTRACT
The ever-growing amount of data available on the Internet calls for
personalization. Yet, the most effective personalization schemes,
such as those based on collaborative filtering (CF), are notoriously
resource greedy. This paper presents HyRec, an online cost-effective
scalable system for user-based CF personalization. HyRec offloads
recommendation tasks onto the web browsers of users, while a
server orchestrates the process and manages the relationships be-
tween user profiles.

HyRec has been fully implemented and extensively evaluated on
several workloads from MovieLens and Digg. We convey the abil-
ity of HyRec to reduce the operation costs of content providers
by nearly 50% and to provide a 100-fold improvement in scala-
bility with respect to a centralized (or cloud-based recommender
approach), while preserving the quality of personalization. We also
show that HyRec is virtually transparent to users and induces only
3% of the bandwidth consumption of a P2P solution.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering;
H.3.5 [Online Information Services]: Web-based services; K.6.4
[System Management]: Centralization/decentralization

General Terms
DESIGN

Keywords
Personalization, Collaborative Filtering, Recommendation Systems

1. INTRODUCTION
Personalization has become an essential tool to navigate the wealth

of information available on the Internet. Particularly popular now
are recommendation systems which provide users with personal-
ized content, based on their past behavior and on that of similar
users. These systems have been successfully applied by major on-
line retailers such as Amazon to propose new items to their cus-
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tomers. Social networks, such as Facebook, exploit them to suggest
friends to users and to filter the content displayed on their feeds,
while Google or Yahoo! use them to provide personalized news to
users.

Yet, the need to personalize content is no longer an exclusive
requirement of large companies. Personalization is arguably cru-
cial for every web-content editor, including relatively small ones.
A very typical example is that of VideoJeux.Com1, a relatively
small French online video-game magazine employing 20 people
only, while gathering 3 million registered users (responsible for
only 20% of the traffic: the rest being generated by unregistered
ones who comment and discuss published content). The site of
the company, visited 45 million times per month, enables access
to 6, 000 discussion forums, which in turn generate up to 300, 000
messages per day. In many cases, the amount of information some-
times over-floods specialized users interested in specific games,
who finally unregister. Clearly, the number of companies in similar
situations is growing and all would greatly benefit from a personal-
ization scheme providing users with recommendations about what
they would most likely be interested in. However, state-of-the-art
personalization solutions still represent a significant investment in
terms of computing power and money.

The motivation of our work is to explore solutions that can "de-
mocratize personalization" by making it accessible to any content-
provider company, without requiring huge investments. In this pa-
per, we introduce HyRec, a middleware hybrid architecture capa-
ble of providing a cost-effective personalization platform to web-
content editors. Instead of scaling either through larger and larger
recommendation back-end servers, or through fully decentralized
solutions that rely solely on clients, HyRec delegates expensive
computation tasks to users’ web browsers while, at the same time,
retaining on the server side the system’s management tasks and the
maintenance of the graph reflecting the relationships between user
profiles.

HyRec implements a user-based collaborative-filtering scheme
(CF): it predicts the interests of a user by collecting preferences or
taste information from many other users (collaborating) [30]. CF is
content agnostic and represents a natural opportunity for decentral-
izing recommendation tasks on user machines. More specifically,
HyRec adopts a k-nearest-neighbor (KNN) strategy, which consists
in computing the k nearest neighbors according to a given similar-
ity metric, and identifying the items to recommend from this set of
neighbors [49]. The challenge is to cope with a large number of
users and items. Traditional centralized recommendation architec-
tures achieve this by computing neighborhood information offline
and exploiting elastic cloud platforms to massively parallelize the
recommendation jobs on a large number of nodes [25, 26]. Yet,

1We omit the real name for confidentiality reasons.
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offline computation is less effective when new content is continu-
ously added: forcing periodic re-computations induces significant
costs [25, 38, 41].

HyRec’s architecture avoids the need to process the entire sets of
users and items by means of a sampling-based approach inspired by
epidemic (gossip-based) computing [50, 19], and successfully used
in state of the art KNN graph construction [28] as well as query
processing [15].

The computation of the personalization operations of a user are
performed transparently by the browser on the user’s machine (which
we sometimes simply call "the user" or "the client"). The HyRec
server provides each user’s browser with a sample set of profiles of
other users (candidate set). Every browser then computes its user’s
KNN and most popular items based on this sample. The server
uses, in turn, the user’s new neighbors to compute the next sample.
This iterative process implements a feedback mechanism that keeps
improving the quality of the selected neighbors and leads them to
converge very quickly to those that could have been computed us-
ing global knowledge. This is achieved without the need for HyRec
to reveal the identity of any user to other users: the user/profile as-
sociation is hidden through an anonymous mapping: periodically,
the identifiers of the items and the users in the candidate sets are
anonymously shuffled.

We fully implemented HyRec and its code is available [7]. We
also extensively evaluated it in the context of two use cases: Digg, a
personalized feed, and MovieLens, a movie recommender. We used
real traces in both cases. We compared HyRec with solutions based
on a centralized infrastructure as well as with a fully decentralized
one. Our results show that the quality of the KNN approximation
provided by HyRec is within 10% of the optimum for MovieLens.
As the convergence of the KNN graph is driven by user activity,
users who are frequently online benefit from a better approximation
than users who are rarely online. We show that the reactiveness of
HyRec in computing and refining the KNN graph during the activity
of online users drastically improves recommendation quality with
respect to solutions that use offline clustering, which may update
this graph too late to provide useful recommendations.

HyRec reduces the server’s computational cost by a factor rang-
ing from 1.4 to 2. We show that, as the scale of the system in-
creases, its ability to serve clients is much higher than that of a
centralized approach (100-fold improvement). By computing KNN
selection at the edge of the network on user machines, HyRec inher-
ently reduces the operational costs incurred by the content provider.
With our largest case study, HyRec yields a cost reduction for the
content provider of nearly 50% with respect to a centralized solu-
tion. We show that the impact of HyRec on user machines is negli-
gible, compared to a fully decentralized (P2P) solution. In the case
of our Digg dataset for instance, a single user machine transmits
around 24MB with the P2P approach, and only 8kB with HyRec.
We also show that HyRec can exploit clients with small mobile de-
vices without impacting user activities.

The rest of the paper is organized as follows. In Section 2 we
introduce some background on collaborative filtering and recom-
mender architectures. Section 3 and Section 4 present the design
and implementation of HyRec. Our extensive evaluation of HyRec
follows in Section 5. Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
Before presenting HyRec, we provide some background on user-

based collaborative filtering (CF) systems. We also recall the prin-
ciples underlying centralized and decentralized CF recommenda-
tion systems (or simply recommenders) and motivate the very no-
tion of a hybrid architecture.

2.1 Collaborative filtering
While content-based recommenders leverage content similarities

between items, user-based collaborative filtering (CF in the follow-
ing) focuses mainly on users [34]. CF recommenders build neigh-
borhoods of users based on their interests in similar (e.g. overlap-
ping) sets of items. Due to its content-agnostic nature, CF has now
been adopted in a wide range of settings [30].

Notations. We consider a set of users U = u1, u2, . . . , uN and
a set of items I = i1, i2, . . . , iM . Each user u ∈ U has a profile
Pu = < u, i, v >, collecting her opinions on the items she has
been exposed to, where u is a user, i an item, and v the score value
representing the opinion of user u on i. For the sake of simplicity,
we only consider binary ratings indicating whether a user liked or
disliked an item after being exposed to it. This rating can be easily
extended to the non-binary case [47].

Two steps are typically involved when a recommender provides
a user with a set of items R ⊆ I: neighbor selection and item
recommendation.

Algorithm 1 KNN selection: γ(Pu, Su) where Pu is the profile of the
user u and Su is a candidate set for user u

1: var similarity[];
2: for all uid : user in Su do
3: similarity[uid] = score(Pu, Su[uid].getProfile());
4: end for
5: Nu = subList(k, sort(similarity));
6: return: Nu, the k users with the highest similarity;

Neighbor selection. Neighbor selection consists in computing,
for each user u, the (k) most similar users (referred to as KNN, k
nearest neighbors, in the rest of the paper), with respect to a given
similarity metric: we use cosine similarity [30] in this paper, but
any other metric could be used. A brute force KNN computation
has a complexity of O(N2) and designing low-complexity com-
putations remains an open problem. We use a sampling-based ap-
proach to reduce drastically the dimension of the problem while
achieving accurate results. The approach proceeds by successive
approximations. At each iteration (Algorithm 1), it identifies a set
of candidate users starting from the current KNN approximation,
Nu. Then it computes the similarity between u’s profile and that of
each user in the candidate set and updates the KNN approximation
by retaining the best candidates. This sampling-based approach is
also a good candidate for decentralization as it does not require any
global knowledge about the system. Indeed it is used in both cen-
tralized [28] and decentralized [19, 18] recommenders although the
details of the computation of the candidate set may differ.

Algorithm 2 Recommendation: α(Su, Pu) where Pu is the profile of the
user u and Su is a candidate set for user u

1: var popularity[];
2: for all uid : user in Su do
3: for all iid : item in Su[uid].getProfile() do
4: if Pu does not contain iid then
5: popularity[iid] + +;
6: end if
7: end for
8: end for
9: Ru = subList(r, sort(popularity));

10: return: Ru, the r most popular items;

Item recommendation. A user-based recommender makes rec-
ommendations based on the user profiles identified during the KNN-
selection phase (Algorithm 2). In our context, we consider a sim-
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ple scheme: The system recommends to a user u the r items that
are most popular among the profiles in the candidate set identified
when computing the KNN of u [25].

The presence of new users (i.e with empty profiles) and new
items (i.e. without ratings) leads to the so-called cold-start is-
sue. Solutions to this problem typically rely on application-specific
techniques such as content-based recommendation and are there-
fore out of the scope of this paper. Similarly, for the sake of sim-
plicity, we do not consider the retrieval of recommended items and
we assume that items are hosted somewhere else.

2.2 Centralized architecture
A typical recommender follows a client-server interaction model

(Figure 1), namely a centralized architecture. The server maintains
two global data structures: A Profile Table, recording the profiles
of all the users in the system and the KNN Table containing the k
nearest neighbors of each user. Users interact with a web browser,
which in turn communicates with the server to update the profiles,
fill the KNN tables, and compute the recommendations.

In this setting, the server performs all computation tasks. These
include running KNN selection and item recommendation for all
users. Due to its high computational cost, the neighbor selection is
typically performed periodically offline on back-end servers, while
item-recommendation is achieved in real time. Clearly, the load on
the server also depends on the number of concurrent (online) users.
The web server, application logic, recommendation subsystem, and
associated databases may leverage distribution, for example by del-
egating computation- and data-intensive recommendation tasks to a
data center using cloud-based solutions like in Google News [25].
Yet, all active components remain under the responsibility of the
website owner.

One of the main challenges underlying centralized CF architec-
tures is scalability. This is particularly true for websites that en-
able users to generate content. Dimension reduction and algorith-
mic optimizations [33, 32], or sample-based approaches [28, 31,
27], partially tackle the problem. Yet they do not remove the need
to increase computational resources with the number of users and
items [45, 25, 22]. Even with massive (map-reduce) paralleliza-
tion [26] on multicore [46, 40] or elastic cloud architectures [25],
CF remains expensive in terms of both hardware and energy con-
sumption [24, 41].

2.3 Decentralized architecture
A radical way to address scalability is through a significant de-

parture from centralized (cloud-based) architectures, namely through
fully distributed solutions [51, 48, 17, 42, 52]. A fully decentral-
ized architecture, e.g. [19, 21, 18], builds an overlay network com-
prising all user machines, typically resembling a uniform random
graph topology [35]. Users can join and leave the system at any
time, e.g. due to machine failures or voluntary disconnections. No
user has global knowledge of the system. Instead, each maintains
her own profile, her local KNN, and profile tables. This allows a
user to compute her own recommendations without further interac-
tion with other users, or a server.

Decentralized solutions exploit a sampling protocol similar to
the one in Algorithm 1. At each iteration, each user, u, exchanges
information with one of the users, say v, in her current KNN ap-
proximation. Users u and v exchange their k nearest neighbors
(along with the associated profiles) and each of them merges it with
an additional random sample obtaining a candidate set. Each of
them then computes her similarity with each user in her candidate
set and selects the most similar ones (see Figure 1 and Algorithm
1) to update her KNN approximation. This process converges in a

few cycles (e.g. 10 to 20 in a 100.000 node system [50]).
The absence of a server makes it possible to fully distribute KNN

selection and item recommendation. However, fully decentralized
solutions—like the one we implemented and compare with in Sec-
tion 5.6—face important deployment challenges. They require users
to install specific software that must manage their on/off-line pat-
terns, while taking care of synchronization between multiple de-
vices that may not be online at the same time. Moreover, they
require substantial complexity to deal with NAT devices and fire-
walls. These limitations, combined with the inherent scalability of
decentralized solutions, provide a strong motivation for a hybrid
approach like ours.

2.4 Towards a hybrid architecture
A hybrid approach combines a centralized entity that coordi-

nates tasks and manages the graph of relationships between users
with processes that run on user machines to perform computation-
ally intensive tasks. The central entity can effectively manage dy-
namic connections and disconnections of users, while retaining the
main scalability advantages of decentralized solutions. Unlike [19,
21], HyRec allows clients to have offline users within their KNN,
thus leveraging clients that are not concurrently online. Moreover,
HyRec makes it possible to compute similarities with all the 2-hop
neighbors at once, leading to faster convergence.

Hybrid approaches have already proved successful in various
contexts. SETI@home [13] leveraged the machines of volunteers
to analyze radio-telescope data whereas Weka [36] does something
similar for data mining. A distributed Weka requires either a grid
hosted by the content-provider, or an application server on the clients.
In addition, Weka is oriented towards data analysis and does not
provide a real-time personalization system. TiVo [16] proposed a
hybrid recommendation architecture similar to ours but with sev-
eral important differences. First, it considers an item-based CF
system. Second, it does not completely decentralize the person-
alization process. TiVo only offloads the computation of item rec-
ommendation scores to clients. The computation of the correlations
between items is achieved on the server side. Since the latter op-
eration is extremely expensive, TiVo’s server only computes new
correlations every two weeks, while its clients identify new recom-
mendations once a day. This makes TiVo unsuitable for dynamic
websites dealing in real time with continuous streams of items. As
we explain below, HyRec addresses this limitation by delegating
the entire filtering process to clients. It is to our knowledge the first
system capable of doing so on any user-based CF platform.

3. HYREC
As we pointed out, HyRec lies between cheap, but complex-to-

implement, hard-to-maintain, decentralized solutions, and efficient,
but potentially costly, centralized designs. It leverages the locality
of the computation tasks involved in user-based CF schemes.

The bottom of Figure 1 shows HyRec’s hybrid architecture and
its interaction pattern. The server delegates both KNN selection
and item recommendation to user’s web browsers using a sampling-
based approach. Consider a user, u, that accesses a web page with
recommendations. The server first updates u’s profile in its global
data structure. Then, it identifies a personalized candidate set for
u, containing the profiles of candidate users for the next KNN it-
eration, and sends it to the browser, which executes a piece of
JavaScript code attached to the web page. This code computes the
recommended items, it performs the similarity computations be-
tween the local profile and the ones in the candidate set, and sends
the results to the server. In the following, we detail this process by
focusing on each component of the architecture.
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Figure 1: Centralized, decentralized, and hybrid (HyRec) architectures for a recommender system.

3.1 HyRec server
The server is in charge of (i) orchestrating the decentralization

and (ii) maintaining the global data structures, a profile table and a
KNN table. Each entry in the Profile and the KNN tables associates
the identifier of each user respectively with her own profile and with
those of the users in her current KNN approximation.

The server decomposes the recommendation process into per-
sonalization jobs that run on client-side widgets in the browsers of
(connected) users. A personalization job essentially consists of a
message containing the candidate set that allows the client to per-
form (i) KNN selection, and (ii) item recommendation by executing
JavaScript code. In the following, we describe the two components
of the server depicted in Figure 1: the Sampler and the Personal-
ization orchestrator.

Sampler
HyRec relies on the sampling approach outlined in Algorithm 1 to
associate each user with her k nearest neighbors. This local and it-
erative algorithm, inspired from epidemic clustering protocols [50,
19], leads to an online KNN-selection process, unlike the periodic
one used in centralized architectures. This makes the system more
reactive to dynamic interests.

The sampler participates in each iteration of the sampling algo-
rithm and is responsible for preparing the candidate set (or sam-
ple). This consists of a small (with respect to the total number of
users) set of candidate users, from which the client selects its next k

nearest neighbors. Let Nu be a set containing the current approx-
imation of the k nearest neighbors of u (k is a system parameter
ranging from ten to a few tens of nodes). The sampler samples a
candidate set Su(t) for a user u at time t by aggregating three sets:
(i) the current approximation of u’s KNN,Nu, (ii) the current KNN
of the users inNu, and (iii) k random users. Because these sets may
contain duplicate entries (more and more as the KNN tables con-
verge), the size of the sample is ≤ 2k + k2. As the neighborhood
of u, Nu, converges towards the ideal one (N∗u), the candidate set
tends to get smaller and smaller as shown in Section 5.2.

By constraining the size of the candidate set, HyRec’s sampling-
based approach not only limits computational cost, but also net-
work traffic, while preserving recommendation quality as we show
in our experiments. Research on epidemic [50] and k-nearest-
neighbor graph construction [28] protocols show that the process
converges very rapidly even in very large networks. Using u’s
neighbors and their neighbors provides the client with a set of can-
didates that are likely to have a high similarity with u. Adding
random users to the sample prevents this search from getting stuck
into a local optimum. More precisely, this guarantees that the pro-
cess will eventually converge in the absence of profile changes
by recording the user’s k-nearest neighbors in the set Nu, so that
limt→∞Nu − N∗u = 0, where N∗u is the optimal set (i.e. con-
taining the k most similar users). When profiles do change, which
happens frequently in the targeted applications (e.g. news feed),
the process provides each user with a close approximation of her
current optimal neighbors.

88



Personalization orchestrator
The personalization orchestrator manages the interaction with the
browsers. Once a user u accesses the server, (Arrow 1 in Figure 1),
the orchestrator retrieves a candidate set, parametrized by k from
the sampler and builds a personalization job. The personalization
job for u consists of a message that includes u’s profile and the
profiles of all the candidates returned by the sampler (Arrow 2 in
Figure 1). Finally, the orchestrator sends the personalization jobs,
and updates the global data structures with the results of the KNN-
selection iteration. Figure 2 illustrates the interactions between the
clients and the server in HyRec as well as in a centralized approach.

Figure 2: Timeline: a centralized approach vs. HyRec.

Clearly, sharing profiles among users may compromise their pri-
vacy. However, HyRec hides the user/profile association through
an anonymous mapping that associates identifiers with users and
items. HyRec periodically changes these identifiers to prevent curi-
ous users from determining which user corresponds to which pro-
file in the received candidate set. As we discuss in Section 6, this
mechanism does not suffice in the case of sensitive information
(e.g., medical data) if cross-checking items is possible.

3.2 HyRec client
In HyRec, users interact with the recommender system through

a web interface. The client side of HyRec consists of a javascript
widget, running in a web browser. This widget serves as a web con-
tainer that interacts with the server’s web API. The HyRec widget
sends requests to the server whenever the user, u, requires some
recommendations. The server replies by providing a personaliza-
tion job containing a candidate set. Upon receiving the job, the
widget (i) computes u’s recommended items and (ii) runs an iter-
ation of the KNN-selection algorithm. Thanks to HyRec’s hybrid
architecture, the widget does not need to maintain any local data
structure: it receives the necessary information from the server and
forgets it after displaying recommendations and sending the new
KNN to the server.

Recommendation
Given the candidate set, Su, and u’s profile, Pu, the widget com-
putes u’s personalized recommendations asRu = α(Su, Pu), where
α(Su, Pu) returns the identifiers of the rmost popular items among
those that appear in the profiles in Su, but not in Pu. These con-
sist of the most popular items in Su to which u has not yet been
exposed.

As explained in Section 3.1, the candidate set contains the pro-
files of u’s neighbors, u’s two-hop neighbors, and k random users.
By taking into account the items liked by the (one- and two-hop)

neighbors, item recommendation exploits the opinions of similar
users. By also taking into account items from the profile of ran-
dom users, it also includes some popular items that may improve
the serendipity of recommendations.

In a real application, once the item to be recommended have been
identified, they might need to be retrieved from a web server to be
displayed in a web page. We omit the process of retrieving the
actual content of these items since this is application-dependent.

KNN selection
The client also updates the user’s k-nearest neighbors. To achieve
this, the KNN algorithm (Algorithm 1) computes the similarity be-
tween u’s profile, Pu, and each of the profiles of the users in the
candidate set, Su. It then retains the users that exhibit the highest
similarity values as u’s new neighbors, Nu = γ(Pu, Su), where
γ(Pu, Su) denotes the k users from Su whose profiles are most
similar to Pu according to a given similarity metric (here the co-
sine similarity). This data is sent back to the server to update the
KNN table on the server (Arrow 3 in Figure 1).

4. HYREC IMPLEMENTATION
Our implementation of HyRec consists of a set of server-side

modules and a client-side widget.

4.1 J2EE Servlets
Each component of the server consists of a J2EE servlet. These

servlets come in two flavors: either as stand-alone components
that can be run in different web servers, or bundled all together
with a version of Jetty [9], a lightweight web server. Integrating
the servlets into different customized web servers allows content
providers to deploy our architecture on multiple hosts, thereby bal-
ancing the load associated with the various recommendation tasks
(e.g. network load balancing). Bundling them with a Jetty instance
makes it easy for content providers to deploy our solution into their
existing web architectures.

4.2 Javascript Widget
The HyRec widget consists of a piece of JavaScript code attached

to web pages, and can be executed without the need of special plu-
gins. The widget’s code use the jQuery implementation [10]. It
identifies users through a cookie, collects user activities, runs KNN
selection and item recommendation, manages the retrieval of the
recommended items and displays them. All exchanges between the
server and the widgets are formatted into JSON messages and com-
pressed on the fly by the server using gzip (browsers are natively
able to decompress messages). We use the Jackson implementa-
tion [8] to serialize JAVA objects to JSON message.

The use of JavaScript makes the operation of HyRec totally trans-
parent to users thanks to the asynchronous nature of the AJAX
model, which dissociates the display of a web page from the actions
(i.e. javascript files, network communication) associated with it.
Consider a web page that contains the HyRec widget: the browser
will first display the web-page content, then it will asynchronously
execute the personalization job and display the recommendation
once all computations have completed.

4.3 Web API
The widget communicates with the HyRec server through the

web API described in Table 1. The use of a public web API not only
provides a simple way to implement our widget but also achieves
authentication and makes it possible for content providers to build
their own widgets that interact with HyRec. To develop a new
widget, one simply needs to make the right API calls and tune
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Web API
https://HyRec/online/?uid=uid Client request
https://HyRec/neighbors/?uid=uid&id0=fid0&id1=fid1&... Update KNN selection

Customizable interfaces and methods
interface Sampler{...} Java interface on server side to define the sampling strategy
setSimilarity(); Customizable method on widget to determine the similarity metric for the neighbors selection
setRecommendedItems(); Customizable method on widget to determine the selected items to recommend

Table 1: Web API and main tools to customize HyRec.

the Javascript file associated with the HyRec widget. The content
provider can tune the parts of the widget that process personaliza-
tion jobs and collect user activities. For example, our implemen-
tation uses the cosine similarity metric and the most popular item-
recommendation algorithm, but content providers can define new
similarity metrics as well specify a new algorithm for item recom-
mendation.

The current version of HyRec also integrates interfaces to cus-
tomize parts of its behavior on the server-side. For example, con-
tent providers can control the sampling process and the size of user
profiles, depending on the application, by means of the Sampler
interface in Table 1. Similarly, they can include new fields in user
profiles in the corresponding JSON messages returned by the API
calls. All these settings are entirely transparent to end users.

5. EVALUATION
In this section, we show that HyRec meets ours goals: providing

good-quality recommendations, reducing cost, and improving the
scalability of the server as compared to a centralized approach; and
this, without impacting the client, be it running on a smartphone
or a laptop. We also show that HyRec uses less bandwidth than a
decentralized recommender, besides not requiring custom software
on user machines. We start with a description of the experimen-
tal setup. We then study KNN selection, recommendation quality,
their impact on cost, and we evaluate the performance of HyRec’s
server and client in comparison with alternatives.

5.1 Experimental setup

Platform
We consider a single server hosting all components (front and back-
end) and assume that the database is entirely stored in memory. In
practice, several machines can be used to implement each compo-
nent separately to sustain the load at the network level. Yet, this
does not affect the outcome of our experiments. We use a Pow-
erEdges 2950 III, Bi Quad Core 2.5GHz, with 32 GB of memory
and Gigabit Ethernet, to evaluate the server. To evaluate the client,
we use both a Dell laptop latitude E4310, Bi Quad Core 2.67GHz
with 4 GB of memory and Gigabit Ethernet under Linux Ubuntu,
and a Wiko Cink King smartphone with Wi-Fi access running an
Android system.

Datasets
We use real traces from a movie recommender based on the Movie-
Lens (ML) workload [12] and from Digg [4], a social news web
site. The ML dataset consists of movie-rating data collected through
the ML recommender web site during a 7-month period and is of-
ten used to evaluate recommenders [25]. For the sake of simplicity,
we project ML ratings into binary ratings as follows: for each item
(movie) in a user profile, we set the rating to 1 (liked) if the initial
rating of the user for that item is above the average rating of the
user across all her items, and to 0 (disliked) otherwise. We use the

three available versions of this dataset, varying in their number of
users, to evaluate the quality of recommendation in HyRec.

Dataset Users Items Ratings Avg ratings
ML1 943 1,700 100,000 106
ML2 6,040 4,000 1,000,000 166
ML3 69,878 10,000 10,000,000 143
Digg 59,167 7,724 782,807 13

Table 2: Dataset statistics.

The Digg dataset allows us to consider an even more dynamic
setting. Digg is a social news web site to discover and share content
where the value of a piece of news is collectively determined. We
collected traces from Digg for almost 60, 000 users and more than
7, 500 items over 2 weeks in 2010. This dataset contains all ob-
served users in the specified period. Table 2 summarizes the work-
load. The average number of ratings per user for the Digg dataset
is significantly smaller than for the ML datasets.

Competitors
We compare the performance of HyRec with that of several alterna-
tives to highlight the benefits and limitations of our approach. The
alternatives include both centralized and completely decentralized
approaches. For centralized approaches, we distinguish two major
families. Offline solutions perform KNN selection periodically on a
back-end server, while they compute recommendations on demand
on a front-end. Online solutions perform both KNN selection and
item recommendation on demand on the front-end.

Metrics
View Similarity. To measure the effectiveness of HyRec in find-
ing the nearest neighbors in term of interest, we compute the aver-
age profile similarity between a user and her neighbors, referred to
as view similarity in the following. We obtain an upper bound on
this view similarity by considering neighbors computed with global
knowledge. We refer to this upper bound as the ideal KNN in the
rest of the evaluation.
Recommendation Quality. To measure and compare recommen-
dation quality, we adopt the same approach as in [37]. We split
each dataset into a training and a test set according to time. The
training set contains the first 80% of the ratings while the test set
contains the remaining 20%. For each positive rating (liked item),
r, in the 20%, the associated user requests a set of n recommen-
dations, <. The recommendation-quality metric counts the number
of positive ratings for which the < set contains the corresponding
item: the higher the better. If a positive rating represents a movie
the user liked, this metric counts the number of recommendations
that contain movies that the user is known to like.
System Metrics. To evaluate the performance of HyRec’s hybrid
architecture, we measure execution time on both the HyRec server
and the HyRec client. We also measure the bandwidth consumed
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Figure 3: Average view similarity on ML1 dataset for HyRec and
ideal KNN.
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Figure 4: Impact of the user’s activity on the quality of the KNN
selection of HyRec (ML1 dataset, k = 10).

during their exchanges. Finally, we measure the impact of HyRec
on other applications running on a client machine as well as the
impact of the load on the client machine on HyRec’s operation.

5.2 KNN selection quality
To evaluate the quality of the KNN selection provided by HyRec,

we replay the rating activity of each user over time. When a user
rates an item in the workload, the client sends a request to the
server, triggering the computation of recommendations. We com-
pare HyRec with the upper bound provided by the ideal KNN.

Figure 3 displays the average view similarity over all the users
in the ML1 dataset as a function of time. Users start with empty
profiles. As time elapses, they replay the ratings in the dataset,
thereby increasing the average view similarity over time. The plot
compares the results obtained by HyRec with those obtained by Of-
fline Ideal. This consists of an offline protocol that computes the
ideal KNN once a week. The period of one week allows us to iden-
tify a step-like behavior in the offline approach. This is because in
offline protocols the neighbors remain fixed between two periodic
computations and thus cannot follow the dynamics of user inter-
ests. A typical period in existing recommenders is in the order of
24h. Such a shorter period would make the steps thinner but it
would not lead to faster convergence. Indeed, the upper bound on
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view similarity can be obtained by connecting the top-left corners
of the steps in the offline-ideal curve on Figure 3. This upper bound
corresponds to an online protocol that computes the ideal KNN for
each recommendation. While interesting as a baseline, such a pro-
tocol is inapplicable due to its huge response times as we show in
Section 5.5.

Overall, Figure 3 shows that HyRec effectively approximates this
upper bound. For a neighborhood size of k = 10, HyRec’s average
view similarity remains within 20% of that of the ideal KNN at the
end of the experiment. The curve for k = 20 shows the impact of
the neighborhood size: larger values of k result in larger candidate
sets that converge faster to the nearest neighbors.

HyRec is an online protocol in the sense that it runs KNN selec-
tion as a reaction to user requests. The timing of such requests fol-
lows the information available in the data trace. As a term of com-
parison, we also consider a variant (IR=7) that bounds the inter-
request time (i.e. the interval between two requests of the same
client) to one week. Results show that the quality of KNN selec-
tion drastically improves according to the activity of users: more
frequent user activity results in better view quality. An inter-request
period of one week for k = 10 is enough to bring HyRec’s approxi-
mation within 10% of the upper bound at the end of the experiment.

To further analyze the impact of user activity on the KNN pro-
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vided by HyRec, we plot the view similarity of each user as a per-
centage of her ideal view similarity (i.e. that of the ideal KNN) after
replaying all the dataset. Figure 4 shows the results as a function of
profile size. In our experimental setting, larger profiles imply more
recommendation requests and thus more KNN iterations. Results
clearly show the correlation between the number of iterations and
the quality of KNN selection. More active users benefit from better
KNN selection. The plot also shows that the vast majority of users
have view-similarity ratios above 70%.

The iterative approach of HyRec refines its KNN selection over
time. As the KNN of each user converge, the average size of the
candidate set tends to decrease as each candidate is more likely to
be a neighbor. Figure 5 depicts the average candidate-set size on
the entire ML1 workload as a function of time for different values
of k. We observe that the candidate-set size quickly converges to a
stable value. For instance, for k = 10, its value quickly converges
to around 55 instead of the upper bound of 120. The small fluctu-
ations in the curve result from the continuous arrival of new users,
who start with large candidate sets.

5.3 Recommendation quality
The recommendation process leverages KNN selection to iden-

tify the items to recommend as explained in Section 2. To evaluate
this, Figure 6 plots the recommendation-quality metric against the
number of recommendations provided in response to each client re-
quest. As described in Section 5.1, recommendation quality counts
the number of recommendations that refer to positive ratings in the
testing set [37]. For a fixed number of recommendations (x co-
ordinate in the plot), higher recommendation quality implies both
higher precision and higher recall [39].

Figure 6 compares HyRec with systems based on ideal KNN
(both offline and online). The recommendation quality of offline
approaches drastically changes according to the period of offline
KNN selection (parameter p on Figure 6). The online-ideal solu-
tion, on the other hand, provides an upper bound on recommen-
dation performance by computing the ideal KNN before providing
each recommendation.

HyRec yields an up-to-12% improvement in recommendation
quality with respect to the offline-ideal approach even when this
runs with a period of 24 hours, which is already more costly than
HyRec as we show in Section 5.4. It also provides better perfor-
mance than offline ideal with a period of 1 hour and scores only
13% below the upper bound provided by online ideal.

Dataset 48h 24h 12h
ML1 8.6% 15.8% 27.4 %
ML2 31% 47.6 % 49.2 %
ML3 49.2 % 49.2 % 49.2 %

12h 6h 2h
Digg 2.5% 5.0% 9.5%

Table 3: Cost reduction provided by HyRec with respect to a cen-
tralized back-end server with varying KNN selection periods.

To understand HyRec’s improvement on offline approaches, con-
sider a user whose rating activity fits inside two cycles of offline
KNN selection. This user will not benefit from any personalization
with an offline approach. This is especially the case for new users,
which start with random KNN. In HyRec, on the other hand, users
start to form their KNN selection at their first rating and refine it
during all their activity. This allows HyRec to achieve personaliza-
tion quickly, efficiently, and dynamically.

5.4 Economic advantage of Hyrec
We now compare the cost of running the HyRec front-end with

that of running several offline solutions based on the centralized
recommender architecture depicted in Figure 1. In such solutions,
a front-end server computes the recommended items in real time
upon a client request, while a back-end server periodically runs the
KNN selection. Since HyRec leverages user machines to run the
KNN-selection task, it significantly reduces the cost of running a
recommender system.

To ensure a fair comparison, we first identify a baseline by select-
ing the least expensive offline solution among several alternatives
running on a cluster. Offline-ideal is the offline approach we con-
sidered in Sections 5.2 and 5.3. It computes similarities between
all pairs of users thereby yielding the ideal KNN at each iteration.
Offline-CRec is an offline solution that uses the same algorithm as
HyRec (i.e. a sampling approach for KNN) but with a map-reduce-
based architecture. Both exploit an implementation of the mapre-
duce paradigm on a single 4-core node [46]. Finally, MahoutSingle
and ClusMahout are variants based on the user-based CF imple-
mentation in Mahout [11]. Widely employed to add recommen-
dation features to application and websites, Mahout consists of a
state-of-the-art open-source machine-learning library by Apache.
Both MahoutSingle and ClusMahout exploit the Apache Hadoop
platform [5] to parallelize KNN selection on multiple processing
cores. MahoutSingle runs on a single 4-core node, while ClusMa-
hout runs on two 4-core nodes. Because all four solutions share the
same front-end, we only compare the running times of their KNN-
selection tasks on the back-end. In all cases, we consider two pe-
riods for offline KNN selection: 48 hours on MovieLens and 12
hours on Digg.

Figure 7 depicts the results in terms of wall-clock time. Not sur-
prisingly, we observe a strong correlation between the size of the
dataset (in terms of number of users and size of the profile) and the
time required to achieve KNN selection. We observe that Offline-
CRec consistently outperforms other approaches on all datasets with
the exception of ClusMahout using two nodes on the ML1 dataset.
On average, Offline-CRec reduces the KNN-selection time by 95.5%
and 66.4% with respect to Offline-ideal and ClusMahout, respec-
tively. Moreover, the gap between the wall time required by Offline-
CRec and by the other alternatives increases with the size of the
dataset. We therefore select Offline-CRec as a baseline to evaluate
the gains provided by HyRec in terms of cost.

Specifically we gauge the cost associated with running Offline-
CRec and the HyRec front-end on a cloud infrastructure using Ama-
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Figure 8: Average response time for HyRec versus CRec according
to the profile size.

zon EC2 services [3]. For the front-end server of both solutions, we
consider the cheapest medium-utilization reserved instances which
cost around $681 per year (the Profile table as well as the KNN ta-
ble need to be stored in memory in order to answer client requests
as fast as possible). For the back-end server of Offline-CRec, we
consider one of the midrange compute-optimized on-demand in-
stances with a price of $0.6 per hour (on-demand instances allow
the content provider to be flexible in operating the offline KNN
selection task). The efficiency of Offline-CRec’s KNN selection
depends on the frequency at which it is triggered: a higher cluster-
ing frequency improves recommendation (as shown in Section 5.3)
but it makes more frequent use of the on-demand instances, thereby
increasing cost.

Based on these estimates, Table 3 considers back-end servers
with varying KNN selection periods and summarizes the cost re-
duction achieved by HyRec over each of them. The numbers show
the percentage of the total cost saved by the content provider. We
do not consider extra costs for data transfer as the bandwidth over-
head generated by HyRec is small and does not exceed the free
quota even with the ML3 dataset.

The cost reduction provided by HyRec ranges from 8.6% for
ML1 with a KNN selection period of 48 hours to 49.2% for ML3.
To compute this last value of 49.2%, we considered a compute-
optimized reserved instance over one year. This is cheaper than the
number of required on-demand instances, and makes the cost of the
offline back-end independent of the KNN selection period. Finally,
we observe that the small cost reduction on Digg results from the
small user profiles that characterize this dataset.

5.5 HyRec server evaluation
We now evaluate the performance of the HyRec server and its

ability to scale when increasing the number of clients or the size
of user profiles. In doing this, we consider Offline-CRec as a cen-
tralized alternative. However, in this section, we only consider its
front-end server (referred to as CRec) and assume that its KNN ta-
ble is up to date as a result of a previous offline computation.

The performance of HyRec mostly depends on the size of profiles
and on that of the candidate set. Both these parameters are indepen-
dent of the size of the dataset; thus we present our experiments on
a single dataset, namely ML1, and we artificially control the size
of profiles. The other datasets yield similar results. In addition, our
experiments model the worst case by considering the largest possi-
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ble candidate set for a given k (ignoring the decreasing size of the
candidate set as the neighborhood converges). Finally, since KNN
update messages from the client to the server are negligible when
compared to the other messages, we ignore them in the evaluation.

Impact of the profile size.
The size of the user profile directly impacts the performance of the
servers (HyRec and CRec). This is clearly application-dependent:
for instance users tend to rate news articles more often than they
rate movies. Typically, in HyRec, the larger the profile, the larger
the size of the messages sent by the HyRec server to a HyRec
client. In CRec, the profile size impacts the time spent to com-
pute item recommendation: the larger the profile, the longer the
item-recommendation process.

In order to evaluate the impact of the profile size, we run an ex-
periment varying this parameter and evaluate the response time on
the HyRec server and on the CRec front-end server. We use ab [2],
a benchmark tool provided by Apache. Figure 8 plots the aver-
age (over 1000 requests) response time to serve a client request in
HyRec and CRec with an increasing profile size. The response time
for HyRec includes the time required to compress and decompress
JSON messages. In spite of this, HyRec consistently achieves a
better response time (by 33% on average) than CRec and this is
clearer as the size of profiles increases. This can be explained by
the fact that item recommendation on the CRec server takes con-
sistently longer than HyRec’s personalization orchestrator takes to
build messages.

Impact of the number of users.
The data in Figure 8 refers to a single request by a single user. How-
ever, the number of concurrent users definitely impacts the perfor-
mance of HyRec. Figure 9 compares HyRec with CRec when facing
a growing number of concurrent requests from users with profile
sizes (ps) of 10 and 100. As expected, with smaller profile sizes,
both HyRec and CRec serve requests more rapidly. Yet, HyRec con-
sistently outperforms CRec regardless of the profile size. Results
show that HyRec is able to serve as many concurrent requests with
a profile size of 1000 as CRec with a profile size of 10. This rep-
resents a 100-fold improvement in the scalability of the front-end
server for very large profiles.
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Impact on bandwidth consumption.
Finally, the size of profiles impacts HyRec’s bandwidth consump-
tion. Indeed, by delegating expensive computation tasks to clients,
HyRec imposes some communication overhead with respect to a
centralized architecture. Figure 10 shows the impact of profile size
on the size of the JSON messages generated by the HyRec server
upon a client request. Results show that the size of JSON messages
grows almost linearly with the size of profiles. However, HyRec’s
front-end server compresses messages on the fly through gzip. This
results in a bandwidth consumption of less than 10KB even with a
profile size of 500 (compression of around 71%). Note that band-
width consumption also depends on the size of the candidate set.
The size we consider here is an upper bound: the candidate set
of a user quickly converges to smaller values. Overall, this shows
that HyRec’s overhead is negligible when compared to the average
size of a current web page (1.3MBytes [6]) and to the content of
recommendations themselves, which can include pictures and text.

5.6 HyRec client evaluation
We now evaluate the cost of operating HyRec on the client. Our

solution introduces a set of tasks on the client side, namely KNN
computation, item recommendation, and sending update messages.
No data structure needs to be maintained locally. This makes it pos-
sible for a user to use HyRec with the same profile from various de-
vices. For HyRec to be sustainable, the operation of HyRec should
not significantly impact the performance of a user’s machine. Con-
versely, HyRec should be able to run on any device regardless of its
load. We now show that HyRec complies with these requirements.

Impact of HyRec on a client machine.
We first measure the impact of operating the HyRec widget on an
application running on a user’s device (Figure 11). We consider a
laptop on which we run a stress tool [14] to create a baseline level
of CPU load (x axis in Figure 11). In parallel, we run a simple mon-
itoring tool that executes an infinite loop consisting of a similarity
computation. We measure the progress of this tool as the number
of iterations it achieves over a given time window. This yields the
Baseline curve in Figure 11.

For each of the other curves, we run an additional application
in parallel with the stress and the monitoring tools. For HyRec
operation, we run an infinite loop that continuously executes the
operations of the HyRec widget: KNN selection and item recom-
mendation with a profile size of 100. For Display operation, we
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Figure 11: Impact of HyRec widget, a decentralized recommender
and a display operation on a client machine.

run an infinite loop that requests some HTTP content (1, 004 bytes
from an RSS feed) from a server and displays it on a web page in
a browser. Finally, for Decentralized, we run a fully decentralized
recommender comprising P2P network management [35] as well
as HyRec-like operations (KNN selection and recommendation).

Results demonstrate that the impact of HyRec on the client ma-
chine is minimal. HyRec affects the client machine in a similar way
as requesting an item from an RSS feed and displaying it on a web
page. The plot, also shows that the decentralized recommender has
an even lower impact on the client. However, the impact of the de-
centralized recommender is stable over time since it is mostly due
to overlay-network management. Conversely, the impact of HyRec
is noticeable only while computing a recommendation. In addi-
tion, the operation of the HyRec widget is completely transparent
to users, while a P2P recommender requires dedicated software and
may encounter limitations related to churn and NAT traversal.

We also measured the impact of the HyRec widget, running in a
browser, on other applications running on another tab of the browser
while varying CPU usage. Results (not displayed here for space
reason) show no impact of the HyRec computation job on other
pages within the same browser. This is due to the fact that the
browser considers each tab as a different process without links or
shared resources. Overall, these experiments demonstrate the neg-
ligible impact of the HyRec widget on a user’s browser.

Impact of CPU usage on the HyRec client.
We now evaluate to what extent the recommendation tasks of HyRec
are impacted by the CPU load on the client machine on two differ-
ent devices: a smartphone with Android using Wi-Fi and a laptop
with Firefox using Ethernet. We measure the time spent by the
widget within a browser with a profile size set to 100. To artifi-
cially impose load on client machines, we use the antutu smart-
phone benchmark [1] and stress [14] on the smartphone and the
laptop, respectively. Figure 12 shows the average time required on
client machines to execute the HyRec recommendation tasks de-
pending on the baseline CPU usage on each of these two devices.
We observe that even on a client machine with a CPU loaded at
50%, HyRec tasks run in less than 60ms on the smartphone and
less than 10ms on the laptop. We also observe that this time in-
creases only slowly on the laptop as the CPU gets more loaded.
This conveys the fact that the HyRec widget can effectively operate
even on highly loaded devices.
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Figure 12: Impact of the client machine load on the HyRec client.

Impact of profile size.
Unlike on the server, the impact of the size of user profiles on the
HyRec widget is minimal. Figure 13 shows the duration of HyRec
tasks (KNN selection and recommendation) on both a laptop and a
smartphone with k = 20 and k = 10. Results show that the com-
bined time for KNN selection and recommendation only increases
by less than a factor of 1.5 and 7.2 for a laptop and a smartphone,
respectively, with profile sizes ranging from 10 to 500 (Figure 13).
We observe that although HyRec operations run faster on a laptop
than on a smartphone, the impact of profile size remains limited,
demonstrating that HyRec scales very well with large profiles.

Impact on bandwidth consumption.
In Section 5.5, we showed that the bandwidth consumption of HyRec
is negligible even with large profiles. Here, we observe that, with
respect to user machines, it is even lower than that of decentral-
ized recommenders. While the operations carried out by HyRec
are similar to those of a P2P recommender, the latter also needs to
maintain an overlay network. This leads to continuous profile ex-
changes (typically every minute) that result in much higher traffic
than HyRec, which only causes communication when responding
to user requests. For example, on the Digg dataset (with an av-
erage of 13 ratings per user), each node in a P2P recommender
exchanges approximately 24MB in the whole experiment, while a
HyRec widget only exchanges 8kB in the same setting (3% of the
of the bandwidth consumption of the P2P solution).

6. CONCLUDING REMARKS
We report in this paper on the design and evaluation of HyRec,

the first user-based collaborative-filtering system with a hybrid ar-
chitecture. The challenge for a hybrid system consists in deciding
what to compute at the clients and what to maintain at the server in
order to provide the scalability of P2P approaches while retaining
a centralized orchestration. HyRec decomposes the KNN compu-
tation between server and clients in an original manner. Clients
perform local KNN iterations, while the server stores intermediate
results and makes them immediately available to all other clients.
This not only provides scalability improvements with respect to
centralized (possibly cloud-based) solutions, but it also overcomes
the connectivity limitations of completely decentralized ones. We
show that HyRec is cost-effective as it significantly reduces the cost
of recommendation.
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Figure 13: Profile size’s impact on the HyRec widget.

The motivation underlying HyRec is to democratize personaliza-
tion by making it accessible to any content provider without requir-
ing huge investments. HyRec is generic and can operate in many
contexts. In its current version, it adopts a user-based CF scheme.
However, it can use any data filtering algorithm that can be split
among users’ web browsers. Experimenting with several such al-
gorithms in HyRec constitutes an interesting future perspective.

Applying HyRec in other contexts may also require additional
optimizations. For instance, as shown in Section 5, the size of pro-
files can have an impact on the overall system performance. In our
implementation, we compressed profiles through gzip (which pro-
vides an important compression ratio for a tag-based format such
as JSON). But this might not always suffice. The size of user pro-
files depends on the very nature of the application as well as on the
number of users in the system. The content provider may thus also
constrain profiles by selecting only specific subsets of items, for
example those rated within a specific time window.

Another important aspect is the Quality-of-Service perceived by
the end user. A good Internet connection and a powerful device will
provide recommendations much faster than a poor connection or an
old device. However, even in sub-optimal conditions, the delay to
display recommendations does not block the display of the rest of
the web page thanks to the asynchronous nature of HyRec’s widget.
Moreover, recent technologies like support for JavaScript threads in
HTML5 [20] may further improve the performance of HyRec and
encourage further exploration of hybrid web architectures.

Finally, the possibility of attacks and their potential impact can
also be an important factor in determining whether to adopt a hy-
brid architecture. HyRec limits the impact of untrusted and mali-
cious nodes: each user computes only its own recommendations.
Furthermore, as we pointed out in Section 3.1, HyRec does not
leak the browsing history or the exact profile-identity mapping of
other users. De-anonymizing HyRec’s anonymous mapping is diffi-
cult if the data in profiles cannot be inferred from external sources
such as social networks [44] or other datasets [43]. For privacy-
sensitive applications such as recommending a doctor to a patient,
it will however be interesting to enrich HyRec with stronger privacy
mechanisms, such as homomorphic encryption [23], or to explore
how to provide guarantees like differential privacy [29].
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