3-Dimensional Devices:
Models and Design Tools

Giovanni De Micheli
The emerging nano-technologies

- *Enhanced* silicon CMOS is likely to remain the main manufacturing process
 - The 10nm and 7nm technology nodes are planned
- What are the candidate technologies for the 5nm node and beyond?
 - Tunneling FETs (TFET)
 - Silicon Nanowires (SiNW)
 - Carbon Nanotubes (CNT)
 - 2D devices (flatronics)
- What are the common denominators from a design standpoint?

(c) Giovanni De Micheli
22 nm Tri-Gate Transistors

32 nm Planar Transistors

22 nm Tri-Gate Transistors

(c) Giovanni De Micheli

[Courtesy: M. Bohr]
From FinFET to Nanowire FET

FinFET NW FET
Vertically-aligned Nanowire FETs

NW FET

Gate-All-Around
- Electrically program the transistor to either p-type or n-type
- Field-effect control of the Schottky barrier
Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli

[Courtesy: De Marchi, EPFL]
Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli

[Courtesy: De Marchi, EPFL]
Device cross sections

- NW stack
- Gate Oxide
- PolySi

100nm

- NW stack
- d<20nm

100nm
Device working principle

PG = 1 → n-type
CG = 0

PG = 1 → n-type
CG = 1

PG = 0 → p-type
CG = 1

PG = 0 → p-type
CG = 0
Device I_d/V_{cg}

[Image: A graph showing the relationship between V_{cg} and $Log(I_d)$ for different values of V_{pg}. The graph includes lines for $V_{pg} = -4V$, $-2V$, $0V$, $2V$, and $4V$. The graph highlights the difference in slope for $V_{pg} = 0V$ with a 64mV/dec decrease and $V_{pg} = -4V$ with a 70mV/dec decrease.]

[Courtesy: De Marchi, IEDM 12 EPFL]
Similar devices

- Controlled devices can be realized with various materials and shapes (e.g., FINFET)
- SiNW controlled-polarity devices can be made with one polarity gate on one side [Heinzig]
- Polarity-gate bias can enable:
 - Steep Subthreshold
 - Multiple threshold voltages
Steep subthreshold slope devices

- Polarity gate at fixed voltage to create potential wells
- Barrier lowering due to carrier generation by impact ionization and accumulation in S/D well areas

![Graph showing drain current versus gate voltage for different drain voltages.](image)

(c) Giovanni De Micheli

[Zang –IEDM 14]
Average Subthreshold slope

- 6 mV/decade over 5 decades of current
Three-independent-gate SiNWFET

- **Structure**
 - Vertically stacked nanowires
 - 3 independent gate regions
 - Schottky barrier contacts at S/D
 - Polarity and Vt controllability

- **Electrostatic control**

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
<th>PGS</th>
<th>CG</th>
<th>PGD</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ON (P-type)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ON (N-type)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>OFF (LVT)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>OFF (LVT)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>OFF (HVT)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>OFF (HVT)</td>
</tr>
</tbody>
</table>
Library cell design for double-gate SiNWFETs

- Exploit complementary to achieve full swing
- Require smart local routing to compensate for extra input
- Major advantage is handling binate logic functions well (e.g., XOR)

<table>
<thead>
<tr>
<th>Negative Unate functions</th>
<th>Binate functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>XOR2</td>
</tr>
<tr>
<td>NAND2</td>
<td></td>
</tr>
</tbody>
</table>

Similar to regular CMOS

Only 4 transistors when compared to 8 transistors with a regular CMOS

(c) Giovanni De Micheli

[Courtesy: H. Ben Jamaa, '08]
2 FET inverter configuration

IN \rightarrow \text{OUT}

PG-PU

PG-PD

Vdd = 1V
PG-PD = 1V
PG-PU = -0.5V
2 transistor XOR circuit

![Diagram of 2 transistor XOR circuit with input A, input B, XOR gate, and output OUT.]

![Graph showing the output voltage (OUT) versus input voltage (A) with two curves. One curve represents Vdd=1V and the other represents B=0V, B=1V.]
Full swing XOR circuit
Dumbbell-stick diagrams

Transistor pairing

Control gates connected together

Transistor grouping

Polarity gates connected together
Layout abstraction and regularity with *Tiles*

Two transistor pairs grouped together

(c) Giovanni De Micheli

[Courtesy: Bobba, DAC 12]
Logic level abstraction

- Three terminal transistors are switches
 - A loaded transistor is an *inverter*
- Controllable-polarity transistors compare two values
 - A loaded transistor is an *exclusive or* (EXOR)
- The intrinsic higher computational expressiveness leads to more efficient data-path design
- The larger number of terminals must be compensated by smart wiring
Biconditional Binary Decision Diagrams

- Native **canonical** data structure for logic design
- **Biconditional** expansion:
 \[
 f(v, w, \ldots, z) = (v \oplus w)f(w', w, \ldots, z) + (v \oplus w)f(w, w, \ldots, z)
 \]

- Each BBDD node:
 - Has two branching variables
 - Implements the **biconditional** expansion
 - Reduces to Shannon’s expansion for single-input functions
The BDD counterparts for these examples have about 50% more nodes!
Efficient Direct Mapping of BBDD Nodes

BBDD node

MUX driven by a XNOR

Controlled-polarity

CMOS
The BBDD optimization tool

- Unique table to store BBDD nodes
- Recursive formulation of Boolean operations
- Performance-oriented memory management
- Chain variable reordering

http://lsi.epfl.ch/BDD
Experimental results

- We implemented a BBDD package in C language
 - Comparison with CUDD (BDD)
- Both CUDD and BBDD first build the DDs and then apply sifting (no dynamic reordering)

Also 1.63x speedup for arithmetic intensive circuits
Modeling various emerging nanogates

CNFETs

SiNWFTs

Graphene FETs

(c) Giovanni De Micheli

Reversible Logic

6T Nanorelays

4T Nanorelays
Conclusions

- The FINFET is the first successful 3D transistor
- FINFET evolution comprises variations:
 - Multi filament devices (NanoWires)
 - Multi gate devices
- Additional gate biasing can be used to enhance logic functionality and/or performance of devices
- Device effectiveness in constructing logic cells depends significantly on physical design
- New logic design tools are key to assess the potential use of these technologies

(c) Giovanni De Micheli
Thank you

- Thank you to:
 - Luca Amarù
 - Shashikanth Bobba
 - Michele De Marchi
 - Pierre-Emmanuel Gaillardon
 - Yusuf Leblebici
 - Davide Sacchetto
 - Jian Zhang

- ERC Advanced Grant

(c) Giovanni De Micheli
Thank you