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ABSTRACT 5 

Warm climates pose challenges to building energy consumption and pedestrian comfort. 6 

Knowledge of the wind flow around buildings can help address these issues through 7 

improving natural ventilation, energy use and outdoor thermal comfort. Computational Fluid 8 

Dynamics (CFD) simulations are widely used to predict wind flow around buildings, despite 9 
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the large discrepancies that often occur between model predictions and actual measurements. 10 

Wind speed and direction exhibit a high degree of variability that adds uncertainties in 11 

modeling and measurements. Although some studies focus on methods to evaluate and 12 

minimize modeling uncertainties, sensor placement has been mostly based on subjective 13 

judgment and intuition; no systematic methodology is available to identify optimal sensor 14 

locations prior to field measurement. This work proposes a methodology for systematic 15 

sensor placement for situations when no measurement data are available and knowledge of 16 

the wind environment around buildings is limited. Sequential sensor placement algorithms 17 

and criteria are used to identify sensor configurations based on CFD simulation predictions at 18 

plausible locations. Optimal sensor configurations are compared for their ability to improve 19 

wind speed predictions at another location where no measurements are taken. The 20 

methodology is applied to two full-scale building systems of varying size. Results show that 21 

the methodology can be applied prior to field measurement to identify optimal configurations 22 

of a limited number of sensors that improve wind speed predictions at unmeasured locations. 23 

Author keywords: Computational Fluid Dynamics (CFD); System identification; 24 

Uncertainties; Measurement system; Sensors; Model falsification 25 

1. INTRODUCTION 26 

The continuous growth of urban areas has emerged as an important environmental issue 27 

around the globe. Of the many consequences of urban growth are poor air quality and thermal 28 

comfort, as well as increased energy consumption. The wind environment has a prominent 29 

role over these issues and improving knowledge of wind flow around buildings has become 30 

important. Recent studies have used computational models, such as Computational Fluid 31 

Dynamics (CFD), to assess the wind environment around buildings and address issues related 32 
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to air pollution (Balczó, et al. 2009; Gousseau, et al. 2011) natural ventilation (Chen 2009), 33 

pedestrian comfort (Mochida and Lun 2008) and safety (Blocken, et al. 2012), wind-driven 34 

rain (van Hooff, et al. 2011) and convection (Defraeye, et al. 2011). Advantages of CFD 35 

simulations are i) they allow the study of complex geometries and ii) they provide detailed 36 

information on flow characteristics. However the accuracy of predictions is usually 37 

questionable (Assimakopoulos, et al. 2006; Blocken, et al. 2007), in particular when steady-38 

state CFD analysis is performed, since predictions are very sensitive to values of the input 39 

parameters (Gousseau, et al. 2011; Murakami 1998). Moreover, wind flow around buildings 40 

is dominated by complex phenomena and a high degree of variability is expected, due to 41 

large differences in building heights and obstacles, as well as inherent climatic variations 42 

(Mochida and Lun 2008; Schatzmann and Leitl 2011).  43 

Some researchers have recognized the uncertainty associated with geometric and climatic 44 

variations and employed computational parameterization and measurements in search of rules 45 

that can be applied to all cases (Martilli, et al. 2003; Oleson, et al. 2008). Recommendations 46 

have also been provided on the use of CFD for wind studies around buildings (Franke 2007; 47 

Tominaga, et al. 2008). The main issue encountered in previous research is that CFD models 48 

have been derived in part from experiments, carried out under specific conditions and within 49 

controlled environments. Establishing similitude is consequently a challenge. 50 

Field measurements are essential for evaluating CFD predictions and ensuring that 51 

simulations have a sound basis. However, field measurements are difficult to perform, 52 

expensive, and result in limited quantities of data with low repeatability. More importantly, 53 

wind flow varies considerably over space and time and measurements within the urban 54 

canopy depend heavily on the location of sensors and sampling frequency (Pavageau and 55 

Schatzmann 1999). Previous research has shown that even when measurements are taken 56 
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under steady ambient conditions, large discrepancies occur between measured and predicted 57 

values that are caused by low frequency variations of the flow (Schatzmann and Leitl 2011).  58 

These factors add to the uncertainties associated with CFD modeling and field measurements. 59 

Related work has shown that using a single model with one set of input parameter values may 60 

lead to erroneous predictions (Blocken, et al. 2007; Schatzmann and Leitl 2011). In addition, 61 

the limited number of sensor locations poses challenges, since it influences the value of the 62 

measurement data and the decisions made based on the data (van Hooff and Blocken 2012). 63 

The task of using measurements to infer the behavior of a dynamic system is known as 64 

system identification (Ljung 1988). In model-based system identification, physics-based 65 

models are used to infer model parameters that are uncertain. Among the common 66 

approaches used for inference are based on model validation, such as residual minimization 67 

and Bayesian inference. In residual minimization (also known as model calibration), values 68 

of model parameters are adjusted to minimize the difference between model predictions and 69 

measured data; in Bayesian inference conditional probabilities are used to update the prior 70 

knowledge on model parameters. These approaches have already been applied in dynamic 71 

structural systems. For instance, values of model parameters, such as frequencies and mode 72 

shapes, have been estimated using vibration data (Friswell and Mottershead 1995). However, 73 

the performance of these approaches depends on the knowledge of modeling errors and their 74 

correlations (Beven 2008). Therefore they cannot be applied to wind studies around 75 

buildings, since modeling errors are not well known and are associated with the time-76 

dependent atmospheric boundary conditions (Schatzmann and Leitl 2011). 77 

Alternatively, inference approaches based on model falsification use measurements to falsify 78 

and not validate models that are not in agreement with the data. Such an approach is called 79 

error-domain model falsification and it has been proposed for infrastructure diagnosis (Goulet 80 



 

 5 

and Smith 2013). Recent work has demonstrated that this approach is more robust compared 81 

with Bayesian approaches for cases when systematic modeling errors are not well known 82 

(Goulet, et al. 2013). Uncertainties related to model-parameter values are explicitly 83 

represented in error-domain model falsification through a multiple-model approach (Raphael 84 

and Smith 2013). Falsification of model instances is performed using measured data and 85 

estimated error bounds. Non-falsified candidate models are then obtained that explain the 86 

measurements and thus describe the behavior of the system through ranges of parameter 87 

values. The term model instance refers to a computational model in which input parameters 88 

are assigned a definite combination of values and the corresponding values of output 89 

variables are predicted using a simulation. 90 

The success of any system-identification approach depends on measurement data and in 91 

model falsification, measurement data are important for falsifying model instances and 92 

identifying candidate models. In infrastructure diagnosis, there is a tendency to over-93 

instrument (Brownjohn 2007), and therefore many authors have developed sensor placement 94 

methodologies that identify the optimal locations needed for identification and diagnosis of 95 

structures. Criteria used for placing sensors have typically involved information gain (Meo 96 

and Zumpano 2005; Stephan 2012) and information entropy (Kripakaran and Smith 2009; 97 

Papadimitriou 2004; Robert-Nicoud, et al. 2005b). Goulet and Smith proposed a sensor 98 

placement methodology that predicted the usefulness of monitoring through the capability to 99 

falsify candidate models and reduce measurement-system costs (Goulet and Smith 2012). 100 

Most importantly, the methodology incorporates systematic modeling and measurement 101 

errors, as well as their dependencies. None of these methodologies and criteria has been 102 

adapted to predict the behavior of time-dependent systems at unmeasured locations, such as 103 

wind flow around buildings.  104 
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Compared with infrastructure diagnosis, sensor placement in wind studies around buildings 105 

still remains a challenge (van Hooff and Blocken 2012). Sensors have been placed mostly by 106 

educated guess, intuitive judgment and common sense. Some researchers have investigated 107 

optimal sensor configurations and the information obtained from measured data, either to 108 

reduce detection time and consumption of hazardous air pollutants (Hamel, et al. 2006), or to 109 

reconstruct a close approximation of the flow field (Mokhasi and Rempfer 2004). Other 110 

studies proposed optimal sensor placement approaches based on probabilistic models called 111 

Gaussian Processes (GPs) to predict values of several indoor and outdoor environmental 112 

variables at unmeasured locations, including temperature, humidity, precipitation and soil 113 

moisture (Das and Kempe 2008; Krause, et al. 2008; Osborne, et al. 2008; Wu, et al. 2012). 114 

Such approaches are data-driven and require prior knowledge of data distributions and spatial 115 

correlations that have been obtained from denser pre-deployment of sensors. However, pre-116 

deploying a large number of wind sensors for outdoor monitoring is costly and time-117 

intensive. Recent work by Du et al. (Du, et al. 2014) proposed a mixture GP model based on 118 

historical measured data and trained it with CFD simulation predictions to learn spatial 119 

correlations. Although Du et al. used the concept of maximum entropy in a similar way to our 120 

earlier study (Papadopoulou, et al. 2013), both modeling and measurement data were 121 

assumed to be free of errors. None of these studies have presented a rational and systematic 122 

sensor placement methodology for wind predictions that includes modeling and measurement 123 

uncertainty and can be used prior to field measurement in cases when limited knowledge on 124 

wind conditions is available.  125 

This paper proposes a methodology for systematic sensor placement to identify sensor 126 

locations that improve predictions for time-dependent systems, such as wind flow around 127 

buildings. The methodology uses a multiple-model system identification approach to account 128 

for parameter uncertainty in CFD simulation predictions. Existing sensor placement 129 
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algorithms and criteria are evaluated and adapted from system identification to wind studies 130 

around buildings. Section 2 summarizes three sequential sensor placement algorithms, based 131 

on incremental addition (forward and forward-max algorithms) and removal of sensors 132 

(backward algorithm), using entropy and subset-size as placement criteria. The performance 133 

evaluation of sensor placement strategies is performed using a combination of simulated and 134 

field measurements (Section 2.3). The final sections demonstrate the applicability of the 135 

sensor-placement methodology for predicting the time-dependent behavior of wind around 136 

buildings, through testing on two full-scale case studies. 137 

2. SYSTEMATIC SENSOR PLACEMENT METHODOLOGY 138 

Important inputs when selecting sensor locations are the objectives of measuring and how the 139 

data will be used. Then, the sensor placement strategy is chosen in order to identify the 140 

optimal number of sensor locations and their configuration. Several sensor placement criteria 141 

may be included, such as sensor characteristics, redundancy of information and cost of 142 

equipment; however, studying the effect of multiple and conflicting criteria on sensor 143 

placement is outside the context of this paper. 144 

In this work, an optimal sensor placement methodology is developed with the objective to 145 

improve time-dependent wind predictions around buildings (Fig. 1). The methodology is 146 

applied based on the hypothesis that measurement data are best used for model falsification 147 

and not for model validation. For each set of data at a particular instant of time, model 148 

instances whose predictions are inconsistent with the data are falsified taking into account 149 

modeling and measurement uncertainties. The remaining model instances form the candidate 150 

model set for this instant of time. The candidate model sets identified at any given time are 151 
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used to perform synchronous predictions of wind speed and horizontal direction, at locations 152 

where no measurements are taken. 153 

 154 

Fig. 1. The optimal sensor placement methodology for wind predictions around buildings and 155 

the scope of this work; the contexts of Figures 2 and 3 are also shown. 156 

Although specific interpretation strategies are out of the scope of this work (see Fig.1), they 157 

influence the sensor placement criteria. More details on the individual stages of the sensor 158 

placement methodology are given below.  159 

2.1. MULTIPLE CFD SIMULATION AND SENSITIVITY ANALYSIS 160 

The multiple-model approach proposed by Robert-Nicoud et al. (Robert-Nicoud, et al. 2005a) 161 

is adapted for CFD simulations in order to include parameter uncertainties. A discrete 162 
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population of predictions is generated that describes possible wind behavior around 163 

buildings. The discrete population of predictions is generated from simulations, varying 164 

values of input parameters that are not precisely known with plausible initial ranges defined 165 

by engineering judgment and literature. Since the number of possible value combinations is 166 

large, it is necessary to minimize computational cost and reduce the number of parameters. 167 

Sensitivity analysis and parameter selection are employed in order to choose a reduced set of 168 

parameters that have the highest impact on wind speed and direction predictions. The reduced 169 

set of parameters allows a simple-grid sampling through selecting values uniformly within 170 

the plausible ranges of the selected parameters; the remaining parameters are set to constant 171 

values. Multiple, steady-state CFD simulations are performed using all combinations, 𝑘, of 172 

values of the selected parameters and discrete populations of wind predictions, 𝑦#,% , are 173 

obtained at possible sensor locations, 𝑗 = 1,… , 𝑛+, where 𝑛+ is the number of potential sensor 174 

locations that are fixed. A definite combination of input values of parameters, and the 175 

corresponding wind predictions at the potential locations, is one model instance, 𝑚. The 176 

generated discrete population of model instances is called the initial model set, 𝑀. 177 

Since sensor placement is performed prior to field measurements, optimal sensor 178 

configurations are identified using the initial model set, taking into account modeling and 179 

measurement errors. The sensor placement criteria depend on the data interpretation approach 180 

and in this study the hypothesis is that optimal sensor configurations support multi-model 181 

falsification approaches, such as (Goulet, et al. 2013; Vernay, et al. 2014). Therefore the 182 

sensor selection criteria should increase the number of falsified model instances and reduce 183 

the number of candidate models. The sequence of sensor selection is incremental and two 184 

placement strategies are evaluated: addition of sensors from an initial state of no sensors and 185 

removal of sensors from an initial state of sensors at all locations. More details are given in 186 

the section below. 187 
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Finally, the performance of the optimal sensor configurations is evaluated for its ability to 188 

improve simulation predictions. During this stage, the candidate models identified with the 189 

optimal sensor configuration are used to update simulation predictions at an unmeasured 190 

location. The update predictions are then compared with measurements taking into account 191 

modeling and measurement errors. In this work, the performance of several sensor 192 

configurations is evaluated at the same instant in time, with a limited number of available 193 

sensors. Therefore, a combination of simulated and field measurements is used during 194 

performance evaluation. The evaluation procedure is described in section 2.3.  195 

2.2. SEQUENTIAL SENSOR PLACEMENT STRATEGIES 196 

Three sequential sensor placement algorithms are coded in MATLAB 8.1: the forward, the 197 

forward-max (adapted from (Papadimitriou 2004; Robert-Nicoud, et al. 2005b)) and the 198 

backward (adapted from (Goulet and Smith 2012)). The forward and the forward-max 199 

algorithms incrementally add sensors to the configuration from an initial condition of no 200 

sensors. The backward algorithm incrementally removes sensors from an initial configuration 201 

of all potential sensors. Sensor locations are selected using either of two placement criteria: 202 

entropy and subset size (adapted from (Kripakaran and Smith 2009; Papadimitriou 2004). 203 

The individual stages of the sensor placement strategies are shown in Fig. 2. The first step is 204 

to choose the algorithm and the criterion to be evaluated. Then, the range of predicted values 205 

at the 𝑗./ location is divided into equal intervals 𝐼1,2 %
 of width 𝑊. The width 𝑊 depends on 206 

estimates of modeling error, 𝑒56789, and measurement error, 𝑒58:+;<: 207 

𝑊 =	
   |𝑒56789| + |𝑒58:+;<|  (2.1) 

 208 

  209 
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 210 

Fig. 2. The three sensor placement algorithms with incremental addition (forward and 211 

forward-max) and removal (backward) of sensors, from a configuration of sensors at 212 

potential locations. 213 
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Next, for each possible sensor location 𝑗, all model instances from the initial model set 𝑀, are 214 

distributed into subsets according to the interval bounds 𝐼1,2 %
, satisfying the condition that 215 

∀𝑖 ∈ 1,… ,𝑁D 	
  𝑎𝑛𝑑	
  ∀ 𝑚2 % ∈ 𝑀 ∶ 𝐼1,2 %
	
  ≤ 𝑚2 % ≤ 	
   𝐼1,2IJ %

, where 𝑁D  is the maximum 216 

number of intervals at the 𝑗./ location. That is, model instances 𝑚2 that predict values within 217 

an interval belong to the same subset. Model instances are grouped into subsets depending on 218 

modeling and measurement errors, and therefore may not be further discriminated using the 219 

current sensor configuration. Histograms of model instances are then created at each location 220 

𝑗 and are used to evaluate the chosen placement criterion, entropy or subset size, which are 221 

explained below. 222 

The subset-size criterion is a direct measure of the number of model instances in a subset, 𝑚2. 223 

It is used to estimate the expected maximum number of candidate models. Since sensor 224 

placement is performed prior to field measurements, this number corresponds to the subset 225 

with the largest number of model instances, among all subsets of the optimal sensor 226 

locations. 227 

On the other hand, entropy is used as an indirect measure of disorder in model instances. It is 228 

computed using the histograms of predictions of the model instances at possible sensor 229 

locations; uniform distributions have the highest entropy. Entropy refers to Shannon entropy 230 

or Information entropy and is defined as: 231 

𝐻(𝑦)% = − 𝑝(𝑦2)% logS(𝑝(𝑦2)%)
TU

2VJ

  (2.2) 

where 𝐻 𝑦 % is the entropy of a random output variable 𝑦,	
  such as wind speed and horizontal 232 

direction, at a sensor location 𝑗, 𝑝(𝑦2)%  is the probability of the 𝑖./ interval of a variable’s 233 

distribution, with 𝑖 = 1,… ,𝑁D and 𝑁D is the maximum number of intervals at the 𝑗./ location. 234 
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The entropy at each location 𝑗 is computed through first calculating the number of model 235 

instances that lie within each interval, 𝑚2 %  and then calculating the probability of the 236 

interval as 𝑝(𝑦2)% = 	
   𝑚2 %	
  /𝑀.  237 

According to the hypothesis that measurements are best used to support multiple model 238 

falsification, optimal sensor configurations should increase the number of model instances 239 

that are falsified and reduce the number of candidate models.  240 

For the forward algorithm, using the subset-size criterion, optimal sensor locations are 241 

incrementally selected in order to reduce the number of candidate models (the subset-size); 242 

locations that provide the minimum subset-size are selected. Using the entropy criterion, 243 

optimal locations are incrementally selected to maximize separation between model instances 244 

in order to increase the number of model instances that are falsified; locations that provide 245 

maximum entropy in model predictions are selected. 246 

The backward algorithm is the inverse of forward algorithm and the least useful sensor 247 

locations are incrementally removed from a configuration of sensors at all possible locations. 248 

Consequently, locations are selected in order of maximum subset-size or minimum entropy. 249 

The forward-max algorithm is essentially a forward strategy with regard to incrementally 250 

selecting sensor locations, however it works differently after the 1st optimal location is 251 

selected. The simple forward algorithm (as well as the backward) is advantageous when 252 

compared to global search algorithms with regard to computational cost (Papadimitriou 253 

2004). Since sensor selection is based on incremental entropy calculations, mutual 254 

information between sensors is disregarded and redundant sensor locations may be selected. 255 

For example, the sensor location having the second highest value for entropy might contain 256 

the same information as provided by the first location. In general, sensor configuration is a 257 

combinatorial optimization problem. If there are N possible sensor locations, there are (2N -1) 258 
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number of combinations. Selecting the best k locations from among all these combinations 259 

would require evaluating non-redundant information content of each combination.  260 

The forward-max algorithm deals with this issue through creating subsets of model instances 261 

that predict values within the same intervals of previously selected sensor locations. These is 262 

done as follows: 263 

1.   For each subset of model instances 𝑚2 6X.J  in the histogram of the 1st optimal 264 

location (opt1), interval bounds 𝐼1,2 6X.J
 are recalculated at all possible sensor 265 

locations j. 266 

2.   Each subset 𝑚2 6X.J  is subdivided into smaller subsets of model instances at all 267 

locations j, so that 	
  ∀𝑖 ∈ 1,… ,𝑁D 	
  𝑎𝑛𝑑	
  ∀ 𝑚2 % ∈ 𝑚2 6X.J ∶ 𝐼1,2 %
	
  ≤ 𝑚2 % ≤268 

	
   𝐼1,2IJ %
 and new histograms of model instances are created. For example, if there 269 

are 10 subsets of model instances 𝑚2 6X.J that cannot be separated further with the 270 

1st sensor location, and 4 possible sensor locations, for each subset 𝑚2 6X.J , 4 271 

histograms of model instances are created—one corresponding to each location (in 272 

total, 40 histograms). 273 

3.   The chosen criterion is evaluated for all histograms and for each subset the maximum 274 

criterion value and the corresponding location are recorded (in the above example, 10 275 

criteria values would be recorded). 276 

4.   The recorded values are then compared and the location that scores the maximum 277 

value is added to the configuration as the 2nd optimal location (opt2). The 278 

corresponding subset is stored as, 𝑚6X.S 6X.J
. 279 

5.   The subset 𝑚6X.S 6X.J
 of the 1st optimal location is then replaced with the smaller 280 

subsets according to the subdivisions that location (opt2) provides. 281 
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6.   The histogram of the 1st optimal location (opt1) is updated and incremental sensor 282 

selections are repeated from step 1 until all locations are treated, or no more model 283 

instances can be separated. 284 

Although the forward-max algorithm does not directly evaluate the mutual information 285 

between sensors, the incremental sensor selection is based on the subset of model instances of 286 

previously selected sensors that maximizes the chosen criterion. This procedure has linear 287 

complexity with respect to the number of model instances and does not depend on the 288 

number of combinations of sensor locations. The maximum number of iterations required is 289 

equal to the number of possible subdivisions; the upper bound for this quantity is the 290 

maximum number of model instances of all subsets of the 1st optimal location. 291 

For all algorithms, the maximum number of candidate models of the current sensor 292 

configuration is recorded during sensor placement and following every update. This number 293 

corresponds to the subset with the largest number of model instances among all the subsets of 294 

the sensor configuration. 295 

2.3. EVALUATION USING SIMULATED AND FIELD MEASUREMENTS 296 

Each sensor placement algorithm and criterion is expected to construct a different optimal 297 

sensor configuration. In order to evaluate and compare their performance, actual 298 

measurements at those locations are needed. Since sensor placement is performed prior to 299 

field measurements, data at these locations are not currently available.  300 

For performance evaluation, several sensor configurations need to be compared at the same 301 

time instant. This could require costly deployment of a large number of sensors. Simulated 302 

measurements are therefore generated at optimal locations and historically measured field 303 

data are used to create realistic measurements. The simulated measurements are used for 304 
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making predictions at other locations in order to compute parameters such as prediction 305 

range, which indicate the capability of the algorithm to improve the quality of predictions. 306 

The procedure to generate simulated measurements is shown in Fig. 3. First, predictions of 307 

the initial model set are combined with modeling and measurement uncertainties of random 308 

distribution using a Monte Carlo simulation. Thousands of initial values of simulated 309 

measurements are generated at the optimal locations and a random sample is extracted from 310 

the combined distribution. 311 

 312 

Fig. 3. Framework for generating simulated measurements based on historically measured 313 

data and through combining simulation predictions with uncertainties. 314 

Historically measured data, available at other locations, are used to obtain more realistic 315 

values for simulated measurements. It is assumed that the sample distribution of the 316 

simulated measurements at the locations historically measured should follow the probability 317 

distribution of the measurement data. Therefore, the set of initial simulated measurements is 318 

sampled in order to obtain a similar probability distribution to the one measured. The 319 

corresponding values at other locations, where no measurement data are available, are picked 320 

from the initial values of simulated measurements. An updated sample of simulated 321 
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measurements is thus obtained at the optimal locations. This sample forms the final set of 322 

simulated measurements. 323 

Each simulated measurement from the final set is treated as an independent time step and 324 

model instances are falsified simultaneously over the optimal sensor locations. An 325 

independent candidate model set is obtained for each time step and is used to update 326 

predictions at an unmeasured location, which has been randomly selected. The resulting 327 

prediction ranges are compared with the initially generated simulated measurements at the 328 

same location. 329 

In order for the identification to be successful, the optimal sensor configuration should not 330 

only reduce the number of candidate models and narrow prediction ranges, but the prediction 331 

ranges should also contain the simulated measurements. The performance of the sensor 332 

placement strategies is therefore assessed with respect to prediction ranges, number of 333 

candidate models and success in identification. 334 

3. APPLICATIONS 335 

3.1. CASE STUDY 1: BUBBLEZERO 336 

The sensor configuration methodology was applied to BubbleZERO, which is an 337 

experimental facility of the Singapore-ETH center for Global Environmental Sustainability, 338 

located on NUS campus (Fig. 4, top). Its simple geometry, as well as the tropical climate of 339 

Singapore that is characterized by uniform temperatures and two distinct monsoon seasons, 340 

made it a good candidate for this study.  341 

  342 
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 343 

Fig. 4. (Top) Location of BubbleZERO and (bottom) 3D views of the computational domain. 344 

CFD simulations are performed with ANSYS Workbench 14.5, which is a platform that 345 

offers a probabilistic analysis in GUI mode using design exploration tools. FLUENT is used 346 

as a solver for the equations of flow motion and the Design Exploration tool for sensitivity 347 

analysis and feature selection. The simulations require geometrical simplifications and 348 

assumptions related to the numerical methods that control the solver: 349 

•   The geometry consists of the BubbleZERO, with dimensions 5 m	
  ×	
  6 m	
  × 3 m, and 350 

obstacles in proximity: a neighboring building and vegetation (Fig. 4, bottom). The 351 

orography of the area is assumed uniform and surface details of obstacles are omitted. 352 

The entire size of the computational domain (or boundary domain) is 220 m	
  ×	
  140 353 

m	
  ×	
  40 m. The extent of the modeled area and the size of the domain are defined 354 

according to recommendations available in literature (Franke 2007; Tominaga, et al. 355 

2008). 356 
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•   Assumptions with regard to numerical simplifications include the CutCell Cartesian 357 

meshing that is used as a discretization method to generate a predominantly 358 

hexahedral mesh with minimum user input. The SIMPLE algorithm is employed to 359 

achieve pressure-velocity coupling and second-order discretization is used as a 360 

pressure interpolation scheme. Finally, the single-precision solver is considered 361 

sufficiently accurate for this study. 362 

3.1.1. NUMERICAL ANALYSIS AND SIMULATION 363 

The behavior of wind around the BubbleZERO and the neighboring obstacles is characterized 364 

by a set of mathematical models, parameters, variables and constants that describe flow 365 

motion. The selected mathematical models are the RANS-equations, the realizable k-ε 366 

equations to represent turbulence and the standard wall-functions to treat near-wall 367 

turbulence. Steady-RANS analysis using the realizable k-ε equations is one of the most 368 

economical approaches to solve turbulent flows. 369 

In total, 15 parameters are identified related to the geometry, the discretization and the 370 

boundary conditions. These include parameters related to the discretization method, the 371 

geometry of the boundary domain, the surface roughness of the terrain and of the buildings, 372 

the inertial resistance of the vegetation, as well as inlet boundary conditions including wind 373 

speed, horizontal direction, turbulence kinetic energy and eddy dissipation. The following 374 

equations are used to describe boundary conditions: 375 

𝑈(𝑦) =
;∗ \]

^_^`
^`

a
   (3.1) 

where 𝑈 𝑦  is the wind speed at height 𝑧, 𝑢∗ is the atmospheric-boundary-layer friction (or 376 

shear) velocity, 𝑧d the surface roughness and 𝜅 ≅ 0.41 the von Kármán constant.    377 

𝑘 =
𝑢∗S

𝐶k
,  (3.2) 
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where 𝑘 is the turbulence kinetic energy and 𝐶k a model constant. 378 

𝜀(𝑦) =
𝑢∗m

𝜅 𝑧 + 𝑧d
  (3.3) 

where 𝜀 𝑦  is the turbulence eddy dissipation at height 𝑧.  379 

In FLUENT, the surface roughness is represented by the roughness height, 𝑧d , which is 380 

modified using the equivalent sand-grain roughness, 𝑘+,nop, (Equation(3.4)3.4).    381 

𝑘+,nop =
9.793𝑧d
𝐶+

  (3.4) 

where 𝐶+ is the roughness constant, set to satisfy the constraint 𝑘+,nop ≤ 𝑧X, and 𝑧X is the grid 382 

resolution (the distance of the centroid of the wall-adjacent cell to the wall). 383 

Vegetation is modeled as porous media, 𝐶 , with inertial resistance set in the x- and y-384 

direction as below (Guo and Maghirang 2012): 385 

𝐶 = 𝐶7𝑑tn  (3.5) 

where 𝐶7  is the drag coefficient, varying from 0.1 to 0.5, and 𝑑tn  is the local leaf-area 386 

density, with range 1 to 7 (Tiwary, et al. 2006). 387 

Sensitivity analysis is carried out with the Design Exploration tool in Workbench in order to 388 

reduce the number of parameters and minimize computational cost. An Optimal Space-389 

Filling design (Ansys 2011) with CCD sampling (Box and Hunter 1957) is applied, resulting 390 

in 283 simulations. The wind speed, referring to the magnitude of the horizontal component 391 

of the velocity vector, and the horizontal direction, in degrees, were the output variables of 392 

the simulations. Distributions of the output variables were built as a full second-order 393 

polynomial response-surface and predictions of wind speed and horizontal direction were 394 

obtained at 63 possible sensor locations, which were fixed uniformly near the BubbleZERO, 395 

at three height levels: 0.6, 1.5, 2.7 m (Fig. 5).  396 
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 397 

Fig. 5. Possible sensor locations: top view on the left and front view on the right 398 

Spearman’s rho correlation coefficient,	
  𝜌%, between the 15 input parameters and the output 399 

wind speed and horizontal direction, is calculated at each potential sensor location from 400 

Equation (3.6): 401 

𝜌% = −
𝑥#,% − 𝑥w 𝑦#,% − 𝑦w#

𝑥#,% − 𝑥w
S 𝑦#,% − 𝑦w

S
#

  (3.6) 

where 𝑥#,%, 	
  𝑦#,%	
  the ranks of the input parameters and output variables respectively at each 402 

location 𝑗 ∈ 1,… ,63 , with 𝑘 = 1,… , 𝑛 the size of the sample and 𝑥w, 𝑦w the mean values. 403 

For each input parameter and output variable, the average correlation coefficient 𝜌w  is 404 

calculated over all potential sensor locations. The parameters with the highest 𝜌w over the two 405 

output variables are identified as parameters with the highest impact on wind predictions. In 406 

order to study wind variability, computational cost had to be reduced by selecting the three 407 

parameters with the highest 𝜌w : wind speed, horizontal direction and turbulence kinetic 408 

energy at the inlet boundary (with coefficients 0.6, 0.4 and 0.1, respectively). 409 

Although the selected parameters are inlet boundary conditions that might be measured, this 410 

is not always practical. Orographic constraints are present in both the pilot study and the 411 
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second case study (Section 3.2). One of the major issues encountered is the difficulty in 412 

deploying sensors remote from the buildings in order to measure the undisturbed flow. In 413 

most previous experiments, reference weather stations were used to obtain the values for inlet 414 

boundary conditions. However, it is doubtful whether weather station data accurately 415 

represent inlet conditions of the simulation model because of the high spatial and temporal 416 

variability in climatic conditions. In most cases, resources are limited and only a few points 417 

can be measured, which are therefore selected near the buildings. The influence of the sensor 418 

locations on the measured data has, however, never been examined (Schatzmann and Leitl 419 

2011). 420 

Simulations were performed by varying values of the parameters within plausible ranges 421 

shown in Table 1. The reduced number of parameters allowed a simple-grid sampling 422 

through selecting values uniformly within the ranges. A set of 1024 combinations of values 423 

was created and simulations were carried out. A discrete population of wind-speed and 424 

horizontal-direction predictions at the 63 possible sensor locations was the output of the 425 

simulations. 426 

Recent work (Vernay, et al. 2014) has demonstrated that the range of modeling errors 427 

associated with wind direction can vary significantly, depending on input values of boundary 428 

conditions and sensor locations. The study estimated that modeling errors associated with 429 

wind direction could be the most that is possible, up to 180 degrees both ways. This is largely 430 

due to use of a steady-state RANS analysis that uses time-averaged equations to describe 431 

flow behavior. Therefore, in this study wind direction is not considered and only wind speed 432 

predictions are employed to demonstrate the application of the methodology.  433 

Table 1 Parameters and their ranges of values used to generate the initial model set. 434 

Parameter  Lower Upper Unit Comments 
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value value 

Horizontal 

wind direction 

1 360 deg The wind direction varied from 1 

to 360 degrees in order to account 

for possible values. 

Wind speed 0.5 7.2 m/s The lower and upper bounds were 

set according to meteorological 

data obtained from the Changi 

WMO, Singapore. 

Turbulent 

kinetic energy 

0.08 7.23 J/kg The lower and upper bounds were 

set according to (Franke 2007; 

Tominaga, et al. 2008). 

3.1.2. OPTIMAL SENSOR PLACEMENT 435 

Sensor placement strategies and criteria were evaluated using the initial model set in order to 436 

reveal optimal sensor configurations. The range of modeling errors can vary on average 437 

between -0.8 and +0.6 m/s for horizontal wind speed (Vernay, et al. 2014). In this study, a 438 

spatially uniform and constant value of modeling error is defined equal to ±0.7 m/s. The 439 

range of measurement errors depends on the characteristics of the measurement equipment 440 

and is set to 0.1 m/s. 441 

Fig. 6 shows a comparison of three sensor placement algorithms for wind-speed predictions 442 

using entropy as a placement criterion. The bars represent the maximum number of candidate 443 

models that is expected for a set of optimally placed sensors. For all the algorithms, the rate 444 

of change in the maximum number of candidate models is negligible after the 3rd sensor is 445 

added to the configuration: for the forward and backward algorithms it levels off and for the 446 

forward-max it drops below 5%. However, the forward-max algorithm estimates a 447 

significantly lower number of candidate models than the forward and backward algorithms. 448 
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The difference exceeds 50 candidate models for sensor configurations of four sensors and 449 

above. Overall, the forward-max algorithm has a better performance than the forward and 450 

backward algorithms in reducing the number of candidate models, while requiring the least 451 

number of sensors. 452 

 453 

Fig. 6. Comparison of three sensor placement algorithms in estimating the expected 454 

maximum number of candidate models, using entropy as a placement criterion; a maximum 455 

set of 15 optimally placed sensors is displayed out of the possible 63. 456 

In Fig. 7 the entropy and the subset-size placement criteria are compared for wind-speed 457 

predictions using the forward-max sensor placement algorithm. When the subset-size 458 

criterion is employed, the estimated maximum number of candidate models is consistently 459 

higher than using the entropy criterion. Although the maximum difference between the two 460 

criteria decreases with the number of sensors, it is retained above 150 candidate models when 461 

less than ten sensors are deployed. Nevertheless, the entropy-based configuration of four 462 

sensors estimates a maximum of 372 candidate models, which is 36% of the size of the initial 463 
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model set; the subset-size criterion estimates a 1.5 times larger upper bound of 535 candidate 464 

models for the same number of sensors.  465 

 466 

Fig. 7. Comparison of the entropy and the subset-size placement criteria in estimating the 467 

expected maximum number of candidate models, using the forward-max sensor placement 468 

algorithm; a maximum set of 15 optimally placed sensors is displayed out of the possible 63. 469 

Fig. 8 presents the optimal sensor configurations of 4 sensors using the forward-max 470 

algorithm with the entropy (left) and the subset-size (right) placement criteria for predicting 471 

wind speed. Except the sensor location L17, the two criteria propose different optimal sensor 472 

configurations. Employing the subset-size criterion, no location is selected near the south 473 

façade of the building and with entropy, no locations is selected near the west façade of the 474 

building. Using either criterion, the 2nd and 3rd location are selected near the north façade. 475 

Overall, the optimal configurations are sensitive to the placement criterion and no common 476 

configurations are found. 477 



 

 26 

 478 

Fig. 8. Optimal sensor locations of the first four sensors for predicting wind-speed, obtained 479 

using the forward-max sensor placement with the entropy (left) and the subset-size (right) 480 

placement criteria. 481 

3.1.3. EVALUATION OF SENSOR CONFIGURATIONS 482 

A measurement campaign was carried out around the BubbleZERO in order to evaluate the 483 

optimal sensor placement methodology. Four sets of Wireless Vantage Pro2™ and Vantage 484 

Pro2 Plus™ weather stations were used for testing with resolution 0.1 m/s and 22.5 deg. 485 

Measurements were taken on December 18, 2012 under rainy conditions, which justified the 486 

premise of negligible convective effects and the use of isothermal condition during modeling. 487 

Four sensor locations were chosen at random (Fig. 9) and data were collected for a period of 488 

two hours, starting at 1pm. The sampling frequency was 2 sec for wind speed and 1 sec for 489 

wind direction, while data were recorded every 10 sec. A moving average time series was 490 

computed with a short averaging window of 60 sec. The objective is to capture short-term 491 

variations in atmospheric boundary conditions and minimize the effect of seasonal variations 492 

on flow. 493 
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 494 

Fig. 9. On-site measurement locations (left) and the same locations in the simulation 495 

environment (right). 496 

A sample set of simulated measurements of 2 hours is generated (as described in Section 2.3) 497 

at the potential sensor locations. In order to create realistic data, the probability distribution 498 

of the simulated measurements is updated according to the distribution of the measured data 499 

at the same locations. 500 

Model falsification is performed independently for each time step of the simulated 501 

measurements, using the optimal configurations identified by the forward-max algorithm 502 

with the two placement criteria. The resulting candidate model sets are used to obtain ranges 503 

of wind speed predictions at a 4th unseen location. Each candidate model set represents a set 504 

of boundary conditions and wind-speed prediction ranges at that instant of time.  505 

Fig. 10 presents a comparison of the wind-speed prediction ranges obtained using the 506 

entropy-based configuration and the subset-size-based configuration of four sensors with the 507 

forward-max placement algorithm. Although a short duration of 15 minutes is displayed, the 508 

results of the entire 2-hour prediction period are determined. There is a slight difference in 509 

the performance of the two placement criteria: the average size of the candidate model set for 510 

a 2-hour prediction period drops by 86% using the entropy criterion and by 88% using the 511 

subset-size criterion (from the initial model set of 1024). Remarkably, 95% of the simulated 512 
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measurements are within the prediction range using either criterion. However, estimated 513 

prediction ranges show differences. On average, the prediction range is reduced to 2.4 m/s 514 

using the entropy-based configuration and to 3.2 m/s using the subset-size-based 515 

configuration. This difference in the performance of the two criteria is in agreement with the 516 

results in Fig. 7. 517 

 518 

Fig. 10. Comparison of the wind-speed prediction ranges at an unseen location near 519 

BubbleZERO, using the entropy-based (top) and subset-size-based (bottom) sensor 520 

configuration of three sensors provided by the forward-max algorithm; a short duration of 15 521 

min is displayed from a 2-hr measurement period. 522 
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3.2. CASE STUDY 2: CREATE TOWER 523 

The optimal sensor placement methodology was tested on a larger case study in order to 524 

demonstrate its applicability. The study involved the CREATE Tower, a 60 meter high office 525 

building on NUS campus in Singapore (Fig. 11). 526 

 527 

Fig. 11. (Left) Location of CREATE Tower and surrounding buildings considered in 528 

modeling and (right) their 3D views in the simulation environment. 529 

The same procedure with Case study 1 is followed and geometric simplifications and 530 

assumptions are made during the numerical analysis. Steady-RANS analysis is employed 531 

using the realizable k-ε equations and the standard wall-functions. In total, 9 initial 532 

parameters are identified related to the geometry, the discretization and the boundary 533 

conditions. These are related to the discretization method, the geometry of the boundary 534 

domain, surface roughness, wind speed and horizontal direction at the inlet boundary; the 535 

parameters are set similar to Section 3.1.1. 536 

Sensitivity analysis is performed and three parameters are identified to have the highest 537 

Spearman’s correlation coefficient: wind speed, horizontal direction and surface roughness of 538 

buildings (with coefficients 0.4, 0.3 and 0.1, respectively). 539 
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Multiple CFD simulations are performed, using ANSYS FLUENT, varying values of these 540 

parameters within the plausible ranges [0 8.7] m/s, [1 360] deg, [8E-3 0.2] m, defined by 541 

engineering judgment and available literature (Franke 2007; Tominaga, et al. 2008). The 542 

reduced set of parameters allows simple grid sampling and in total 768 CFD simulations are 543 

performed. A discrete population of wind speed predictions is obtained at 187 possible sensor 544 

locations, which are fixed uniformly at 1.5 m height near the balconies (east and west) and 545 

the north terrace of CREATE Tower (Fig. 11, right). This initial model set was used to 546 

evaluate the sensor placement algorithms and criteria and to verify that results are in 547 

agreement with Sections 3.1.2 and 3.1.3. 548 

Fig. 12 (a) shows a comparison of the three sensor placement algorithms using entropy as the 549 

selection criterion. After placing the second sensor, the forward-max algorithm consistently 550 

estimates lower values for the maximum number of candidate models than the forward and 551 

backward algorithms, which provide the same results. This difference levels off after the 6th 552 

sensor is selected, and is retained to around 50 candidate models.  553 

In Fig. 12 (b), the entropy criterion is compared against the subset-size criterion for its ability 554 

to falsify candidate models, using the forward-max sensor placement algorithm. Results are 555 

similar with the BubbleZERO case study (Fig. 7), since sensor locations selected using the 556 

subset-size criterion estimate a maximum number of candidate models that is consistently 557 

higher than using the entropy criterion. Although the maximum difference levels off with the 558 

number of sensors, it is more than 100 candidate models for configurations involving less 559 

than 7 sensors. 560 

  561 
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 562 

Fig. 12 Comparison of (a) the three sensor placement algorithms using the entropy criterion 563 

and (b) the two placement criteria using the forward-max algorithm, for wind-speed 564 

predictions; only the first 15 optimal sensor locations are displayed. 565 

Fig. 13 shows the optimal locations of six sensors, using the forward-max algorithm with the 566 

entropy (left) and the subset-size (right) placement criteria for predicting wind speed. Similar 567 

with the Case study 1 (Fig. 8), the two criteria construct different optimal configurations.  568 

 569 

Fig. 13. Optimal sensor locations of the first six sensors for predicting wind-speed near 570 

CREATE Tower, obtained using the forward-max sensor placement with the entropy (left) 571 

and the subset-size (right) placement criteria. 572 
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Although, the above results are similar to those from the small case study (Fig. 6 and Fig. 7), 573 

the minimum number of sensors selected is increased from four to six, while the differences 574 

in the performance of the algorithms and placement criteria is reduced. These differences are 575 

attributed to the effects associated with the size of the case study. The distances between 576 

possible sensor locations are large (4 m) compared with the BubbleZERO study (Section 0) 577 

and this means that the area covered by the sensors is different. Such differences create 578 

varying sensitivities to the selection criteria.   579 

As was done in Section 3.1.3, the optimal sensor configurations are evaluated using a realistic 580 

sample distribution of simulated measurements generated based on historical measurements 581 

taken at other locations. A total of 2 hours of simulated measurements are used to falsify 582 

model instances. A set of candidate models is obtained at each time step and used to update 583 

wind-speed predictions at an unmeasured (unseen) location. 584 

Fig. 14 presents a comparison of the ranges of wind-speed predictions obtained at the 585 

unmeasured location using entropy-based and subset-size based configurations of six sensors, 586 

provided by the forward-max algorithm. Similar results are obtained using either criterion, 587 

consistent with the results in Fig. 12 (b) and Fig. 13. The average size of the candidate model 588 

set for a 2-hour prediction period drops by 99% (from the initial model set of 768 instances) 589 

and the prediction range reduces to almost 1.7 m/s. On average, 67% of the simulated 590 

measurements are within the prediction range, which indicates that the accuracy has not been 591 

significantly affected by the reduction in the size of candidate model set. Furthermore, it is 592 

seen that simulated measurements that lie outside the prediction range are quite close to the 593 

boundary (Fig. 14). 594 

  595 
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 596 

Fig. 14. Comparison of the wind-speed prediction ranges at an unseen location near CREATE 597 

Tower, using the entropy-based (top) and subset-size-based (bottom) sensor configuration of 598 

three sensors provided by the forward-max algorithm; a short duration of 15 min is displayed 599 

from a 2-hr measurement period. 600 

Applying the methodology to a second case study with significant differences in size 601 

confirmed that the candidate models identified using an entropy-based configuration with a 602 

forward-max placement algorithm can be used most effectively to make predictions at 603 

locations where no measured data are available. Overall, it was demonstrated that the 604 

methodology could be employed to identify optimal sensor configurations that improve the 605 
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accuracy of wind-speed predictions and are able to capture the variability of atmospheric 606 

boundary conditions. 607 

4. DISCUSSION  608 

Optimal sensor configurations were identified using three sensor placement algorithms and 609 

two criteria and were compared according to their ability to accurately predict short-term 610 

wind speed variation around buildings. Although the sensor placement strategies evaluated in 611 

this paper are similar to (Goulet and Smith 2012; Papadimitriou 2004; Robert-Nicoud, et al. 612 

2005b), they also have important differences as follows: 613 

•   In (Goulet and Smith 2012) a backward strategy has been proposed using a similar 614 

placement criterion to the subset-size criterion included in this work. However, 615 

Goulet and Smith generated simulated measurements from random values of model 616 

predictions and used them to select sensor locations. 617 

•   The performance of forward and backward sensor placements was compared in 618 

(Papadimitriou 2004) with entropy as a placement criterion. However, Bayesian 619 

statistical methodology was employed to identify optimal configurations.  620 

•   The forward-max algorithm was inspired from (Robert-Nicoud, et al. 2005b) who 621 

combined it with the entropy criterion. However, Robert-Nicoud et al. did not 622 

explicitly use the subset-size criterion to guide the search for optimal sensor locations. 623 

None of the above studies presented a comparison of the performance of the three algorithms 624 

and two criteria for improving the accuracy of predictions using a multiple-model 625 

falsification approach. Moreover the above studies concentrated on the identification of 626 

structural systems; sensor placement strategies have never been evaluated for time-dependent 627 

systems such as wind studies around buildings. 628 
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CFD-simulation predictions were employed during the optimal sensor placement and thus the 629 

number of assumptions during the application of CFD affected the results. Sensitivity 630 

analysis was employed to deal with this issue, since current computational means imposed a 631 

constraint on the number of parameters and variables that could be studied. Furthermore, 632 

isothermal conditions were assumed during modeling, which are justified, since 633 

measurements were taken during rainy conditions to minimize effects of convection on wind 634 

flow. 635 

An important contribution of this work is that the effects of modeling error are explicitly 636 

incorporated in the optimal sensor placement methodology. Evaluation of the approach using 637 

measurements from a full-scale case study is another significant contribution.  638 

A limitation of this work is that systematic errors as well as spatial correlations between 639 

errors are not considered. In this work modeling errors are also assumed to be constant. It is 640 

known that modeling errors associated with wind speed and direction may vary from location 641 

to location. This is due to the RANS-based modeling used in this work, which employs time-642 

averaged equations of flow motion. Ongoing research in our group is studying the effects of 643 

modeling errors in terms of horizontal wind direction, input values of boundary conditions 644 

and sensor locations. Including such aspects is expected to increase further the accuracy of 645 

wind predictions. Future investigations will incorporate systematic modeling errors and 646 

spatial correlations in the sensor placement methodology to allow the examination of wind 647 

direction predictions at unmeasured locations. 648 

  649 
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5. CONCLUSIONS 650 

A multiple-model system identification approach has been successfully employed to optimize 651 

sensor configurations that improve the accuracy of predictions of time-dependent systems, 652 

such as wind-flow around buildings. Specific conclusions are as follows:  653 

1.   Sensor placement based on an incrementally updated forward-max algorithm is better 654 

than forward and backward algorithms for falsifying model instances of wind speed. 655 

2.   Information entropy is a better sensor placement criterion than the subset size for 656 

falsifying model instances of wind speed; the degree of reduction in model instances 657 

depends on the number of sensors used for identification and the size of the case 658 

study. 659 

3.   Although information entropy provides a similar reduction in prediction ranges than 660 

the subset-size criterion, it can provide better identification of wind speed depending 661 

on the size of the case study.  662 

4.   Sensor locations that have been configured using entropy with an incrementally 663 

updated forward-max algorithm can improve predictions of wind speed at 664 

unmeasured locations while capturing time-variability.  665 
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