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Abstract

In the following theoretical and numerically oriented work, a number of findings have been
assembled. The newly devised VENUS-LEVIS code, designed to accurately solve the mo-
tion of energetic particles in the presence of 3D magnetic fields, relies on a non-canonical
general coordinate Lagrangian formulation of the guiding-centre and full-orbit equations
of motion. VENUS-LEVIS can switch between guiding-centre and full-orbit equations with
minimal discrepancy at first order in Larmor radius by verifying the perpendicular variation
of magnetic vector field, not only including gradients and curvature terms but also parallel
currents and the shearing of field-lines. By virtue of a Fourier representation of the fields
in poloidal and toroidal coordinates and a cubic spline in the radial variable, the order of
the Runge-Kutta integrating scheme is preserved and convergence of Hamiltonian proper-
ties is obtained. This interpolation scheme is crucial to compute orbits over slowing-down
times, as well as to mitigate the singularity of the magnetic axis in toroidal flux coordinate
systems. Three-dimensional saturated MagnetoHydroDynamics (MHD) states are associated
with many tokamak phenomena including snakes and Long-Lived Modes (LLMs) in spherical
or more conventional tokamaks, and are inherent to stellarator devices. The VMEC equilibrium
code conveniently reproduces such 3D magnetic configurations. Slowing-down simulations
of energetic ions from Neutral Beam Injection (NBI) predict off-axis deposition of particles
during LLM MHD activity in hybrid-like plasmas of the Mega-Ampère Spherical Tokamak
(MAST). Co-passing particles helically align in the opposite side of the plasma deformation,
whereas counter-passing and trapped particles are less affected by the presence of a helical
core. Qualitative agreement is found against experimental measurements of the neutron
emission. Two opposing approaches to include Resonant Magnetic Perturbations (RMPs) in
fast ion simulations are compared, one where the vacuum field caused by the RMP current
coils is added to the axisymmetric MHD equilibrium, the other where the MHD equilibrium
includes the plasma response within the 3D deformation of its flux-surfaces. The first model
admits large regions of stochastic field-lines that penetrate the plasma without alteration.
The second assumes nested flux-surfaces with a single magnetic axis, embedding the RMPs
in a 3D saturated ideal MHD state but excluding stochastic field-lines within the last closed
flux-surface. Simulations of fast ion populations from NBI are applied to MAST n = 3 RMP coil
configuration with 4 different activation patterns. At low beam energies, particle losses are
dominated by parallel transport due to the stochasticity of the field-lines, whereas at higher
energies, losses are accredited to the 3D structure of the perturbed plasma as well as drift
resonances.

Key words: curvilinear coordinates, MHD equilibrium, guiding-centre drift theory, full-orbit
simulations, non-canonical phase-space Lagrangian, fast ion confinement, neutral
beam injection, saturated ideal internal kink, helical core, resonant magnetic perturba-
tions
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Résumé

Le nouveau code VENUS-LEVIS est programmé pour résoudre le mouvement de particules
énergétiques en présence de champs magnétiques 3D avec la plus grande précision possible.
Par le truchement d’une formulation Lagrangienne non-canonique, les équations du centre
guide et les équations du mouvement cyclotronique sont exprimées en coordonnées curvi-
lignes, profitant de l’existence de fonctions de flux magnétique. Le passage des unes aux autres
équations du mouvement est déclenché par un critère qui vérifie la variation perpendiculaire
du champ magnétique, comprenant non seulement le calcul du gradient et de la courbure
du champ mais également la contribution due au courant parallèle et au cisaillement des
lignes de champ. Grâce à la représentation du champ magnétique en séries de Fourier dans la
direction poloïdale et toroïdale et à l’aide de splines cubiques dans la direction radiale, l’ordre
du schéma d’intégration Runge-Kutta est préservé et la convergence numérique des propriétés
hamiltoniennes des équations du mouvement est obtenue. Le schéma d’interpolation est cru-
cial pour calculer les orbites de particules rapides sur des temps de simulation longs, ainsi que
pour s’affranchir de la singularité de l’axe magnétique due au système de coordonnées. Dans
les tokamaks ou stellarateurs, de nombreux phénomènes sont convenablement interprétés
comme étant des états tridimensionnels saturés de la magnétohydrodynamique (MHD), en
particulier lesdits “serpents” ou lesdits modes à longue durée de vie. Ces équilibres MHD sont
fidèlement reproduits à l’aide du code VMEC. En présence de modes à longue durée de vie
dans les plasmas hybrides de MAST, les ions chauds s’alignent dans la région opposée à la
déformation hélicoïdale du plasma, contrairement aux particules thermales qui se déposent
autour de l’axe magnétique. Les simulations reproduisent qualitativement les mesures expéri-
mentales d’émission de neutrons. Deux approches distinctes sont comparées pour inclure
les perturbations magnétiques résonnantes (PMR) dans les simulations d’ions rapides. Avec
la première approche, le champ PMR dans le vide est algébriquement superposé au champ
d’équilibre MHD axisymétrique, ce qui prévoit la formation d’îlots magnétiques et de régions
où les lignes de champs sont ergodiques. Avec la deuxième approche, les PMR sont inclues
dans le calcul tridimensionnel de l’équilibre MHD, dont les surfaces de flux sont déformées en
surface sans produire d’îlots ni de stochasticité. L’effet de PMR est étudié sur des populations
d’ions rapides provenant de l’injection de neutres dans MAST en appliquant une périodicité
n = 3. À basse énergie, la perte de particules provient du transport parallèle et de la diffusion
des lignes de champ. À haute énergie, les pertes sont dues à la structure 3D de la configuration
magnétique ainsi qu’au mouvement résonnant des ions.

Mots clefs : coordonnées curvilignes, équilibre MHD, équations du centre guide, orbites de
particules chargées, Lagrangien non-canonique dans l’espace de phase, confinement
des ions rapides, injection de neutres, déplacement interne idéalement saturé, coeur
hélicoïdal, perturbations magnétiques résonnantes

iii





Contents

Abstract (English/Français) i

1 Introduction 1
1.1 Energy crisis, solutions and the importance of scientific research . . . . . . . . . 1

1.2 Nuclear fusion and plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Magnetic confinement, plasma heating and energetic particles . . . . . . . . . . 3

1.4 Thesis orientation, goals and contribution . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Magnetic representations and plasma equilibrium 9
2.1 Representations and magnetic coordinates . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Field-line equations from variational principles . . . . . . . . . . . . . . . . . . . 10

2.3 Ideal MHD equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Axisymmetry, nested flux-surfaces and Grad-Shafranov equation . . . . 13

2.3.2 Three-dimensional ideal MHD equilibria . . . . . . . . . . . . . . . . . . . 17

2.3.3 Straight-field line Boozer coordinates . . . . . . . . . . . . . . . . . . . . . 19

2.4 Stellarator symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Particle motion and guiding-centre drift 25
3.1 Full particle motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 The magnetic field as a generator of rotation . . . . . . . . . . . . . . . . . 25

3.1.2 In a constant magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Particle drift due to constant force (electric field) . . . . . . . . . . . . . . 27

3.2 Full-orbit equations in curvilinear coordinates . . . . . . . . . . . . . . . . . . . 28

3.2.1 Conservation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Drift theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 First-order guiding-centre drift equations . . . . . . . . . . . . . . . . . . 30

3.3.2 Conservation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Particle motion in a purely sheared magnetic field and limits of the drift approxi-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Field variation estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Toroidal coordinates with geometric toroidal angle . . . . . . . . . . . . . 45

3.5.2 Field variation constituents in MHD equilibrium fields . . . . . . . . . . 46

3.5.3 Field variation map of various devices . . . . . . . . . . . . . . . . . . . . . 48

3.6 Full-orbit to guiding-centre switching . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 From particle to guiding-centre variables . . . . . . . . . . . . . . . . . . . 54

3.6.2 From guiding-centre to particle variables . . . . . . . . . . . . . . . . . . . 55

3.6.3 Small vector displacements in curvilinear coordinates . . . . . . . . . . . 57

v



Contents

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 VENUS-LEVIS and numerical methods 61
4.1 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Spline-Fourier interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Fourier recomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Radial cubic splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Spline boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Grid substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.5 Interpolated integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 External fields (vacuum fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Neutral Beam Injection module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Monte-Carlo collision operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 MAST neutron camera synthetic diagnostic . . . . . . . . . . . . . . . . . . . . . 80

4.6.1 Neutron production rate or emissivity in VENUS-LEVIS . . . . . . . . . . 81

4.7 Hybrid kinetic-MHD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.1 MINERVA fields and perturbations with toroidal rotation . . . . . . . . . . 85

4.7.2 Fast ion contribution via δ f PIC scheme without rotation (preliminary) 87

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 NBI fast ion redistribution in saturated ideal internal kink 95
5.1 Phenomenology and modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Helical core equilibrium solution from VMEC . . . . . . . . . . . . . . . . . 98

5.2 Particle orbits in helical cores, drift surfaces and drift islands . . . . . . . . . . . 105

5.3 Slowing-down simulations of NBI distributions . . . . . . . . . . . . . . . . . . . 110

5.3.1 Comparison with experimental neutron camera data . . . . . . . . . . . . 114

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Effect of Resonant Magnetic Perturbation on NBI fast ion confinement 119
6.1 Coil configuration and compatibility with stellarator symmetry . . . . . . . . . . 120

6.2 Plasma response and magnetic field structure of the contrasting RMP models . 124

6.3 Slowing-down simulations, saturated loss rates and energy dependency of even
parity coil configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Prompt losses, diffusion and resonances . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Final remarks and perspectives 135
7.1 Perspectives and future expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1 Code development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.2 Physics applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Mathematical complements 139
A.1 Curvilinear coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 General definitions and properties . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.2 Special case of R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vi



Contents

A.2 Lagrangian and Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . . . . 149
A.2.1 Phase-space Lagrangian and non-canonical Hamilton equations of motion151
A.2.2 Lagrange and Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.2.3 Liouville theorem and other properties . . . . . . . . . . . . . . . . . . . . 153

B MHD equilibria 155
B.1 Axisymmetric representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1.1 Analytic Solov’ev equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.1.2 Axisymmetric straight field-line coordinates (MINERVA, PEST) . . . . . . . 157

B.2 3D representations with nested flux surfaces . . . . . . . . . . . . . . . . . . . . . 158
B.2.1 VMEC/ANIMEC coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Stellarator symmetry jargon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C Orbit equations 163
C.1 Relativistic non-canonical phase-space Lagrangian Guiding-centre Drift Equations163

C.1.1 Guiding-centre Drift Equations in straight field-line coordinates . . . . . 166

Bibliography 180

Acronyms 181

Acknowledgements 183

Curriculum Vitae 185

vii





1 Introduction

1.1 Energy crisis, solutions and the importance of scientific research

The world’s population is growing and its basic needs are increasing: access to food, water
and supplies, shelter, heat and safety, communication, trade and business, social interaction,
leisure time, etc. Unless major societal and political crisis leading to war, natural disasters
or disease, the human population and its desire for comfort will continue to increase. The
median quality of life, in industrialised countries at least, has significantly improved thanks to
technology. Over the past century, we have become exponentially dependent on its use. Its
seems difficult nowadays to imagine reverting back to more rudimentary lifestyles. The prob-
lem is that it takes an increasing amount of energy to produce and maintain the objects that
we use on a daily basis, like computers, telephones, washing-machines, televisions, vehicles
etc. Our capacity to generate energy is limited to what is available on our planet and what
comes from the sun. It also depends on how we are able to transform these natural resources
into usable power, in particular electricity. The majority of our electrical energy comes from
burning fossil fuels, such as petrol, gas or coal. The chemical process behind combustion is
simple to initiate and control. The heat released per cubic meter of fuel is good and currently
cheap. Reserves of fossil fuels are however being depleted and, according to Shafiee and Topal
(2009), we will have exhausted proven reserves of oil, coal and gas within approximately 35,
107 and 37 years respectively. Given modern extraction techniques (hydrofracturing, direc-
tional drilling) and latest reserve evaluations, depletion times are probably longer (100-300
years). Combustion of fossil fuels produces large amounts of CO2 which tends to enhance
the green-house effect in the atmosphere, contributing to the destabilisation of the world’s
climate. It is thus doubly important to break away from fossil fuels in favour of sustainable
and renewable sources of energy. The economy of many countries is based on the trade of
oil and petrol. Companies make huge profit on deciding the produced quantities and the
price of these goods. It will take political courage and determination to convince people of
the urgency of the situation and implement long-term measures. Sooner or later though, the
energy crisis will have to be faced. This is why scientific research is vital in order to develop
cleaner methods, improve conversion efficiency, optimise the distribution and rationalisation
of electricity, etc.

Green renewable energies, such as wind turbines, solar panels, geothermal energy and water
dams are important for sustainable development. They appeal to many countries who seek
energy independence. The advantage of renewable energies is that their source, i.e. the sun,
rainfall and wind is free, and the conversion in energy usually does not imply waste, except
for the construction and dismantling of the facilities. The cost to produce solar panels, wind
turbines, geothermal stations and dams as well as to maintain them is high, even if heavily
subsidised. The energy harvested per green power unit is relatively low and depends on the
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Chapter 1. Introduction

ambient weather conditions. The latter fluctuate and are often out of phase with the power
demand. The implementation of wind turbines or solar panels close to cities and villages often
triggers resistance from the local population because they occupy a lot of space and denature
the landscape. From these inconveniences, it seems unlikely that green energies will totally
cover our needs in electricity. Green energies should certainly constitute a large fraction of our
energy budget, but a baseline energy source is required.

Nuclear fission has been used now for over 70 years as a baseline source of electricity in many
countries including France, Japan, USA and Switzerland. The splitting of heavy atoms such as
Uranium releases extraordinary amounts of energy, several orders of magnitude more than
chemically based processes. With only a few grams of Uranium, nuclear power plants produce
the same amount of energy as fossil-fuel power plants with tons of gas or coal. Compared to
the massive release of CO2 and other pollutants from combustion of fossil fuels, the amount
of nuclear waste is relatively small. However, a fraction of the waste is extremely radioactive,
which means they must be handled and stored with great care for many thousands of years
(permanently). Nuclear waste can potentially be made into nuclear bombs, thus increasing
the risk of nuclear weapon proliferation. Fission technology is well advanced and has the
highest security standards in developed countries. However, the risk of setting the fission
chain-reaction off-balance and loosing control cannot be reduced to zero. The consequences
of accidents are usually catastrophic, as the 3 most critical incidents of Three-mile Island,
Chernobyl and Fukushima have demonstrated. Many developed countries like Germany and
Switzerland have recently decided to break away from nuclear fission power within the next 30
years and strongly encourage renewable energies. However, replacing a few nuclear power sites
each producing 1GW=1000MW of electricity with solar panels and wind turbines producing
an average of a few MW individually seems objectively unrealistic, especially in countries like
Switzerland where there is little open-space available. Unless major breakthroughs in the
research and development of green energies are realised or unless deflation of electrical power
consumption is sustained, those countries will necessarily have to import their energy from
their neighbours, in particular France whose production comes primarily from nuclear fission
(76%, according to the International Energy Agency’s Key World Energy Statistics 2014).

1.2 Nuclear fusion and plasmas

Active research to exploit sources of energy that have both a low ecological imprint and a high
power efficiency is ongoing. An ideal source of energy would harvest the huge energy radiated
by a nuclear reaction but without producing radioactive wastes and without the dangers of a
chain reaction. This is the solution offered by nuclear fusion. Fusion is, as the name suggests,
the opposite reaction of fission; light atoms are brought together to form heavier ones, which
releases huge amounts of energy due to the deficit mass between the final products and
reactants. Although it is possible to fuse any elements of the periodic tables (and this is how all
elements are created in stars and supernovae), on earth the easiest fusion reaction to initiate
and sustain is between deuterium-tritium atoms. The latter are both isotopes of hydrogen,
the most abundant element in the universe (73% of matter according to Carroll et al. (1996)).
Deuterium is found in small quantities in sea water but tritium must be derived from chemical

2



1.3. Magnetic confinement, plasma heating and energetic particles

and nuclear processes involving lithium. The production of tritium is why fusion is not yet
an ideal renewable source of energy. Although quite abundant, the reserves of lithium will
eventually be depleted in roughly 1000 years.

The state of matter in which fusion reactions are most likely to occur is called a plasma, where
the ions and electrons of deuterium and tritium atoms have separated, forming a neutral
soup of charges. While fission is self-sustained by a chain reaction, fusion is achieved only if
this plasma is extremely dense, hot and subject to high pressure. In stars like our sun, gravity
increases the pressure and density to create the right conditions for fusion, by compressing
hydrogen ions close enough to surpass their electric repulsion. Gravity on earth is too weak to
recreate the same conditions; fusion on earth can only take place at very high temperatures.
Techniques comprise intense shock-waves and implosions, a realm of research called inertial
fusion, and a more controlled approach called magnetic confinement, where the plasma is
heated while levitating in a constricting magnetic field. In such fusion devices, the reaction
between two deuterium ions produces highly energetic helium ions, called alpha-particles,
as well as neutrons. Neutrons exit the vacuum chamber, since they are insensitive to the
confining electromagnetic field, and are stopped by outer blankets. The deposited energy is
used to generate electricity via traditional steam turbines.

Although a very active field of research over the past 50 years, the difficulty to confine a hot
plasma and achieve fusion has discouraged scientists as well as partially turned away support
from governmental institutions. Unfortunately, it is clear from numerous plasma experiments
and theoretical predictions that the larger the device the easier it is to reach and sustain fusion.
The costs involved in building a fully operational fusion energy producing power plant grow
in proportion to their size, so large investments are necessary to perfect the technology and
guarantee the success of the fusion project. Laboratories throughout the world are working
towards this common goal, joining forces in a project called the International Thermonuclear
Experimental Reactor (ITER). This experimental device, currently in construction in Cadarache
(France), will demonstrate the feasibility of fusion on earth at the horizon of 2030. Many issues
are to be addressed and huge challenges will have to be overcome. This is why scientific
research, like the one documented in this thesis, is important not only for academic reasons
but to support efficient design and technological progress.

1.3 Magnetic confinement, plasma heating and energetic particles

Plasmas, although globally neutral fluids, are strongly susceptible to (electro)magnetic fields.
Magnetic confinement exploits this principle to contain ionised plasma in a finite volume
of space by applying strong magnetic fields, thus avoiding contact and heat transfers with
surrounding objects. Early designs of linear plasma devices were found to be rather ineffective
because of plasma loss through the ends. Spherical geometries suffer a similar issue by virtue
of the Hairy-Ball theorem (algebraic topology), stipulating that it is not possible to comb a
hairy ball flat without forming at least one cowlick1. The simplest geometry on which the
confining magnetic field can lie continuously without singularities is on a torus. This abstract

1There is no non-vanishing continuous tangent vector field on a sphere.
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Chapter 1. Introduction

Figure 1.1 – Tokamak confinement of a nuclear fusion plasma: the twisted magnetic field lines (yellow)
required to confine the high temperature plasma (purple) are created by the currents in a set of planar
coils (copper colour) and an induced current flowing in the conductive plasma itself. Courtesy of
Max-Planck Institut für Plasmaphysik.

mathematical fact has motivated the conception of toroidal fusion devices. Ignition and
steady-state burning plasmas are in principle easier to obtain in larger devices with stronger
confining fields. Building large machines is very costly, so research focuses on the optimisation
of magnetic confinement and modes of operation, targeting steady-state burning plasmas
with minimal power input.

A first category, called tokamaks like Tokamak à Configuration Variable (TCV) in Lausanne
(Switzerland), Mega-Ampère Spherical Tokamak (MAST) in Culham (UK), Joint European
Torus (JET) in Culham (UK) or ITER, use an axisymmetric set of coils to generate a strong
toroidal magnetic field (see figure 1.1). In order to confine the plasma, a poloidal magnetic
field is generated by inducing a toroidal plasma current. The induction limits the duration
of tokamak pulses (or shots) from a few seconds in small devices to 15 minutes in JET and
possibly over an hour in ITER.

Another category, called stellarators like W7X soon in operation in Greifswald (Germany),
relies on a complex design of external current coils to wind the magnetic field around the
plasma, thus avoiding the necessity of induced currents to obtain global confinement (see
figure 1.2). The duration of stellarator pulses are in principle limitless.

A large portion of the challenge in both types of devices is to optimise plasma confinement;
many instabilities emanate from the interplay between the electromagnetic fields and complex
motion of particles. This usually leads to significant loss of density and decrease of tempera-
ture, degrading the conditions for fusion. The internal dynamics and interactions of ions and
electrons inside a plasma are well understood in the framework of MagnetoHydroDynamics
(MHD). The (kinetic) closure is similar to the description of fluids or gases in thermodynamics
but with the inclusion of the Lorentz force. The MHD model performs well on the bulk of the

4



1.3. Magnetic confinement, plasma heating and energetic particles

Figure 1.2 – Coil configuration of Wendelstein-7X (W7X) stellarator device (blue) and representation of
the confined plasma (yellow). Courtesy of Max-Planck Institut für Plasmaphysik.

plasma and provides a robust theoretical background for many macroscopic instabilities such
as kink modes, sawteeth, ballooning modes, Alfvèn eigenmodes, etc. MHD alone is however
limited when it comes to incorporating some effects from non-thermal and energetic particles.
The MHD model predicts that the plasma fluid is tied to magnetic flux-surfaces. This property
is not compatible with the fact that hot particles have rather large radial excursions. More
importantly, MHD assumes that particles collide many times over a transit period along the
magnetic field lines. However, fast particles in modern tokamaks are essentially collisionless
over these scales.

Plasma heating is essential to reach ignition densities and temperatures, and plays a key role
in maintaining and controlling the conditions for burning plasmas. Ohmic heating being
insufficient, because the collisionality in the plasma decreases with its temperature, additional
heating systems are required. Neutral Beam Injection (NBI) or Ion Cyclotron Resonance
Heating (ICRH) create significant populations of energetic particles which transfer energy to
the bulk plasma via collisional processes over slowing-down timescales. From the point of
view of MHD, hot particles modify the net plasma pressure and, depending on their origin,
are the main source of anisotropy inside the plasma. ICRH enhances the magnetic moment
of particles, which causes the perpendicular pressure to rise. NBI provides thrust along the
toroidal direction, which mainly results in higher parallel pressure. Fast particles undergo
characteristic bounce or transit motion (trapped or passing orbits), precession around the
toroidal direction or more exotic potato or super-banana trajectories. They are expected to
resonate with spatial/time disturbances of the fields, hence strengthening or damping a certain
range of modes. Even if one disregards the complex microscopic turbulence, the physical
situation is ultimately non-linear. Analytic progress is made in simple cases, like axisymmetric
geometry, linearized electromagnetic perturbations, simple fast ion distributions, etc., but it is
necessary to deal with more realistic situations, like helical tokamak core, stellerator geometry,
full-field perturbations (especially relevant for high beta plasmas).

The efficient design of those heating systems thus requires accurate modelling of the dynamics
of fast ions so that their interaction with the background thermal plasma can be realistically
studied. More generally, accurate modelling of magnetic confinement physics phenomena
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constitutes a necessary step to explain experimental observations in current machines and
make predictions for future fusion devices. Computer codes of increasing complexity are
being developed to solve fast particle motion in various magnetic configurations. The physics
investigated by these numerical tools is disputably richer and more realistic compared to
simple but complementary analytic models. From the engineer’s point of view, quantitative
and trustworthy numerical solutions are indispensable to the safe and efficient design of
fusion devices, anticipating power deposition, heat load, mechanical stress, etc. High energy
particles striking the containment vessel can cause severe wall damage and compromise the
integrity of the plasma facing components. The loss of hot particles in fusion reactor devices,
amongst other mechanisms, can be enhanced by the onset of MHD unstable modes, by a
bifurcation of the equilibrium to a helical state, or by the perturbation of the equilibrium
with the application of Resonant Magnetic Perturbation (RMP) coils to control Edge Localised
Modes (ELMs).

1.4 Thesis orientation, goals and contribution

Many studies have been conducted on the topics of fast particle driven Alfvèn modes and
fast particle losses due to small perturbations from axisymmetry (RMPs, Test Blanket Module
(TBM), magnetic ripple, etc.) but less research has focused on the interaction between non-
thermal particles and 3D tokamak equilibria. The opportunity exists to investigate this subject
in depth, extending the possibilities of existing codes but also exploring new approaches.
Our research thus focuses on robust analytic and numerical techniques for capturing the
fast ion dynamics in 3D magnetic equilibria. The thesis reviews the theoretical background
related to solving charged particle motion in toroidal magnetic fields, with perhaps a slightly
alternate viewpoint than in the main literature. The techniques derived are then applied to
study the interactions of hot ions with 3D equilibrium and externally applied fields, in order
to establish their confinement properties as well as their impact as a source of free energy for
instabilities. In particular, the investigation of two physical phenomena will guide our work;
first, the evidence of exotic fast ion redistribution in the Long-Lived Mode (LLM) of MAST,
second, the impact of RMP simulation models on fast ion losses. These topics are addressed
with a desire for specific physical insight so that the methods can become general, exploiting
various mathematical methods such as curvilinear coordinates and Lagrangian/Hamiltonian
mechanics. The conceptual findings and analytic derivations presented are all implemented
in a new orbit code called VENUS-LEVIS. A number of interfaces between VENUS-LEVIS and
MHD codes such as VMEC, ANIMEC, MINERVA or TERPSICHORE are developed to yield a robust
and flexible platform for integrated modelling applications. Numerical results are compared
with experimental measurements in MAST and JET and predictions are made for ITER and
W7X. The manuscript details the modelling approach and the results obtained. The document
is meant to be more than just a simple gathering of publications. Little is devoted to explaining
the conception and technicality of the code. The interested users are encouraged to read the
documentation found alongside the source files or contact the author (main developer) for
explanations related to VENUS-LEVIS itself.
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1.5 Outline

The thesis is organised as follows. A short theoretical review of the representation of stationary
magnetic fields is presented in chapter 2. Curvilinear coordinates, whose usage is briefly
recalled in appendix A.1, are employed to highlight the geometry and symmetries of the mag-
netic configuration. The concepts of integrable field-lines, flux-surfaces, axisymmetric/three-
dimensional MHD equilibrium are discussed. The VMEC code, which comes with a few limita-
tions, is used to generate 3D MHD equilibria.

Chapter 3 addresses the motion of charged particles in general magnetic fields, focusing on
full-orbit equations in curvilinear coordinates and their convenient reduction to Guiding-
centre Drift Equations (GCDE). Derivations will rely on non-canonical phase-space Lagrangian
techniques, for which a complementary discussion is found in appendix A.2. The limitations
and inadequacy of first-order GCDE is exposed by solving particle motion in a purely sheared
magnetic field. A criterion to identify where this problem can occur in fusion relevant MHD
equilibria is proposed. A procedure to switch between particle and guiding-centre variables
with minimal discrepancy using this criterion is shown.

The new orbit-solving code called VENUS-LEVIS is presented in chapter 4. The important
interpolation scheme based on cubic splines and Fourier reconstruction is shown to preserve
smoothness and continuity of the equations of motion. The routines for initialising fast ions
according to NBI are upgraded to the flux-surface geometry of three-dimensional equilibria.
Monte-Carlo operators are derived for Coulomb collisions with the background plasma. The
neutron camera virtual diagnostic provides a comparison with experimental signals related to
fast ion transport phenomena. Considered as a bonus topic, the hybrid kinetic-MHD interface
between the MINERVA stability code and VENUS-LEVIS is presented. The formulation of linear
Vlasov equation as well as the delta-f treatment of the fast ion distribution is mentioned in
prevision of future work.

The redistribution of fast ion from NBI is studied in chapter 5 in MAST saturated ideal internal
kink. LLM phenomena are reproduced with the helical core solution of VMEC. The effect of
helical cores on fast ion orbits is assessed in both guiding-centre and full-orbit approaches,
focusing on the portrayal of helical drift-surfaces. Slowing-down simulations show off-axis
density, current and heat deposition of NBI particles, which is a consequence of the 3D
geometry and exotic drifts. Excellent qualitative match is obtained with experimental neutron
camera signals, proving that the main transport mechanism has been correctly captured.

Chapter 6 focuses on the modelling of RMPs, for which two approaches are compared. One
where the vacuum field is added on the unperturbed equilibrium and another where the RMP
is embedded in the 3D equilibrium generated with VMEC. Fast particle losses are assessed in
the presence of RMPs and various loss mechanisms are identified.

Chapter 7 will synthesise our modelling approach, summarise main results and expand on
the open questions that can be addressed using the methods discussed in this thesis and the
VENUS-LEVIS code.
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2 Magnetic representations and plasma equi-
librium

The important concepts related to the analytic and numerical representation of stationary
magnetic configurations are summarised in this chapter. Cartesian coordinates can always be
used to represent the magnetic field, but it is usually more convenient to express it in a set
of curvilinear coordinates, taking advantage of the natural geometry and spatial symmetries.
Curvilinear coordinates and their properties being central to our approach, a short review of
their manipulation is provided in appendix A.1.

2.1 Representations and magnetic coordinates

The solenoidal nature of the magnetic field, i.e. ∇∇∇·B = 0, is related to the fact that the magnetic
field derives from a vector potential; B =∇∇∇× (A +∇∇∇G), where G is an arbitrary function that is
added without effect on the magnetic field (property called gauge invariance). With the help
of curvilinear coordinates, the vector potential and the magnetic field are generically written
in covariant components (up to a gauge term) as

A = A j∇∇∇u j B =∇∇∇A j ×∇∇∇u j ∇∇∇A j = (∂i A j )∇∇∇ui

where ui is an arbitrary set of curvilinear coordinates and ∂i ≡ ∂
∂ui and the Einstein summation

convention1 is employed (and will be throughout the manuscript). This way of representing
the magnetic field is convenient because it is automatically divergenceless. The contravariant
components of the magnetic field are

B k = B ·∇∇∇uk = ∂i A j

(
∇∇∇ui ×∇∇∇u j

)
·∇∇∇uk = ∂i A jε

i j k = ∂i A j
εi j k

p
g

.

where εi j k =∇∇∇ui ·(∇∇∇u j×∇∇∇uk ) = εi j k /
p

g is the Levi-Cività tensor. The covariant representation
of the magnetic field is used to express, via Ampère’s law, the current density as

B = B j∇∇∇u j j /µ0 = J =∇∇∇×B =∇∇∇B j ×∇∇∇u j .

By Stokes theorem, the components of the vector potential are related to the magnetic flux,

ΦΣ =
∫
Σ

B ·dσ=
∮
∂Σ

A ·d l

which quantifies the flow of magnetic field-lines across a given surface Σ. Flux functions
arise from a meaningful choice of Σ surfaces, following the natural alignment of field-lines

1Terms with repeated upper and lower indices are summed, for example vi Ai j w j ≡
∑

i
∑

j v
j
i Ai j w j .
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and directions of symmetry. The use of flux functions (or stream functions) is the basis for
magnetic coordinates.

The Clebsch representation (Cary and Brizard, 2009; D’Haeseleer, 1991) is one of the simplest
examples. This coordinate system is based on the existence of functions (α,β, l ), in which the
vector potential and magnetic field have the following simple form

A =α∇∇∇β or −β∇∇∇α B =∇∇∇α×∇∇∇β= 1p
g

∂x

∂l
.

Originally appearing in hydrodynamics, α and β are called Euler potentials. l is a parallel
coordinate that is scaled to measure the length along the magnetic field-lines. In doing so,
the Jacobian of the coordinate system corresponds to the inverse of the magnetic strength,
(∇∇∇α×∇∇∇β) ·∇∇∇l = 1/

p
g = B(α,β, l ). Indeed, the field-line equation is redundantly expressed as

B

B
=p

g∇∇∇α×∇∇∇β= ∂x

∂l
.

∂x
∂l

Figure 2.1 – The path of the magnetic field-line is represented by the crossing of constant α=α0 and
β=β0. Courtesy of D’Haeseleer (1991).

As deduced from figure 2.1, smooth magnetic coordinates α and β originate from the align-
ment of field-lines on distinct surfaces (and vice-versa). Although elegant, the Clebsch repre-
sentation is generally not practical because the α and β potentials are difficult to express and
may not even be smooth functions in the case of stochastic field-lines. Clebsch coordinates
however constitute a prototype of canonical coordinates (Meiss and Hazeltine, 1990) for the
formulation of Hamiltonian Guiding-centre Drift Equations (GCDE).

2.2 Field-line equations from variational principles

An overlooked aspect of magnetic fields (and again a consequence of ∇∇∇·B = 0) is that the gov-
erning equations of field-lines are equivalent to those of Hamiltonian systems. As highlighted
by various references (Abdullaev, 2013; Morrison, 2000) as well as in the book by D’Haeseleer
(1991, section 9.4), but in the particular framework of non-canonical Lagrangian techniques

10
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by Cary and Littlejohn (1983), field-line equations derive from a variational principle

S =
∫

A ·d x =
∫

dλ

(
A · d x

dλ

)
δS = 0 ⇒ (∇∇∇× A)× d x

dλ
= B × d x

dλ
= 0

where x(λ) is the parametrisation of the field-line with respect to an arbitrary parameter λ. By
taking the vector product of this equation with B/B 2, the field-line equation is more easily
identified as

d x

dλ
= B

B

(
d x

dλ
· B

B

)
︸ ︷︷ ︸

dl /dλ

⇐⇒ d x

dl
= B

B

where l is the length along the curve. The fact that the field-line action S can be represented
as the integral of a phase-space Lagrangian suggests that a non-canonical treatment can be
applied (see appendix A.2.1) in order to recover various Hamiltonian properties. For example,
by virtue of Darboux theorem (Littlejohn, 1982), the Lagrangian can be (locally) cast into a
canonical form by finding an appropriate coordinate transformation (and using a specific
gauge), i.e. the action can be transformed into

S =
∫

Ai d xi =
∫

pd q −h(p, q, t )d t .

where (p, q, t ) are canonical coordinates, functions of x . The field-line equations in canonical
coordinates are written as usual Hamilton equations

d p

d t
=−∂h

∂q

d q

d t
= ∂h

∂p
.

In the context of toroidal systems, one can imagine promoting the toroidal angle as the
system’s time, t ≡ φ. By doing so, the toroidal covariant component of the vector potential
plays the role of the Hamiltonian h =−Aφ (Abdullaev, 2013; Cary and Littlejohn, 1983). This
Hamiltonian, identified with one of the vector potential’s component, formally depends on
the three coordinates of space x but, via the Darboux transformation, is actually seen to
depend on one degree of freedom q and its conjugate p and one variable playing the role
of time. The description of field-lines is therefore equivalent to Hamiltonian systems with
1+ 1/2 degrees of freedom. It is well-known that systems with N > 1 degrees of freedom
are generally non-integrable (non-separable) and can behave chaotically. This implies that
field-lines are intrinsically chaotic systems to the contrary of what is taught in textbooks
where they are simplistically pictured as closed curves. If the magnetic field possesses a
symmetry, i.e. a dummy coordinate ζ, the field-line equations become integrable (separable).
The ζ-invariance of the vector potential is equivalent to time-independence of the identified
Hamiltonian,Ψp =−Aζ. The latter quantity is conserved along the trajectory of field-lines (as a
Noether charge), which implies that field-lines lie on iso-contours ofΨp in the (p, q) plane. By
virtue of Hamilton-Jacobi theory of action-angle variables, a specific set of canonical magnetic
coordinates (P,Q, t ) ≡ (Ψt ,η,ζ) can be found where η is the phase-space (poloidal) angle and
Ψt = 1

2π

∮
A ·d x is the phase-space action (Poincaré integral invariant). Ψt corresponds to the

magnetic flux across a surface in the ζ= const plane enclosed by the contourΨp = const. In
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this action-angle coordinate system, the magnetic representation reduces to

A =Ψt∇∇∇η−Ψp (Ψt )∇∇∇ζ B =∇∇∇Ψt ×∇∇∇η+ dΨp

dΨt
∇∇∇ζ×Ψt

and the field-line equations read

dη

dζ
= ∂Ψp

∂Ψt
= ι(Ψt )

dΨt

dζ
=−∂Ψp

∂η
= 0.

In this phase-space, field-lines lie on on constant Ψt (and Ψp ) surfaces. In action-angle
coordinates where ζ is periodic, these surfaces represent nested tori. In real-space, these
canonical flux-surfaces may have more complex geometries as depicted on figure 2.2, but will
still correspond topologically to tori or Klein bottles (Kruskal and Kulsrud, 1958). The function
ι(Ψt ) = 1/q(Ψt ) is called the iota-profile and measures the pitch (slope) of the field-lines on
each toroidal iso-surface in the (η,ζ) plane

B ·∇∇∇η
B ·∇∇∇ζ = Bη

Bζ
= ι= 1

q
.

The independence of the iota-profile with respect to η (and ζ) is a defining property of so-called
straight field-line coordinates (Boozer, 1982) and vice-versa, straight field-lines coordinates
are in effect canonical field-line coordinates.

Straight field-line coordinates are used in various plasma theories in order to separate the par-
allel and perpendicular dynamics, for example in the study of MagnetoHydroDynamics (MHD)
stability, hybrid kinetic-MHD or gyro-kinetics. As it will be discussed in later section 2.3.2,
it is not straight-forward to obtain canonical straight field-line coordinates in general three-
dimensional systems; the existence of flux-surfaces depends on a symmetry of the field-line
Hamiltonian.

2.3 Ideal MHD equilibrium

A magnetic equilibrium refers to a stationary magnetic field that, in addition to being a
solenoidal vector field, respects the MHD force balance j ×B =∇∇∇p. This apparently simple
equation reflects something quite fundamental, namely the containment of pressure, i.e.
thermal agitation of particles, via magnetism. MHD, as the description of a state of plasma
by a magnetised fluid, embeds the microscopic/kinetic phenomena into the macroscopic
layout of the magnetic field. The MHD model also suggests that, although the plasma remains
a neutral fluid, the pressure gradient coexists with plasma current, i.e. internal flow of electric
charges.

In the context of toroidal fusion devices, it makes sense to consider the situation where the
plasma is hot and dense in the centre but cold and sparse near the walls. In this case, the
pressure gradient is inwards, compensated by the tension that the magnetic field creates by
bending, shearing and wrapping the field-lines around the constant pressure surfaces. On
the occasion of symmetry, magnetic equilibria are such that both the magnetic field-lines and
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current-lines lie on flux and pressure surfaces.

2.3.1 Axisymmetry, nested flux-surfaces and Grad-Shafranov equation

Axisymmetry is a topological constraint that implies that physical quantities, like the compo-
nents of the magnetic field, do not depend on the toroidal angle φ. The natural coordinate
system to work in is the cylindrical system (R,φ, Z ). For any physical function f , axisymmetry
corresponds mathematically to

∂

∂φ

∣∣∣∣
R,Z

f = eφ ·∇∇∇ f ≡ 0 ⇐⇒ f = f (R, Z )

where it is stressed that the partial derivative implies varying only φ.

The coordinate system does not necessarily need to be cylindrical, for example, one could
choose (u1(R, Z ),u2(R, Z ),φ). Coordinates u1 and u2 are mapping functions of R and Z so
that, by virtue of eφ ·∇∇∇uM = ∂uM /∂φ= 0, they automatically form valid dual basis vectors with
respect to φ (see appendix A.1). In this coordinate system (but also in cylindrical coordinates),
the vector potential is written generically as

A = AN (u1,u2)∇∇∇uN −Ψ(u1,u2)∇∇∇φ. (2.1)

The minus sign in front ofΨ highlights its role as the field-line Hamiltonian, as discussed in
previous section 2.2. The magnetic field, which derives from this specific vector potential,
possesses, thanks to axisymmetry, a reduced expression

B =∇∇∇× A = ∂M AN∇∇∇uM ×∇∇∇uN +∇∇∇φ×∇∇∇Ψ= ∂M ANp
g︸ ︷︷ ︸

Bφ(uM )

eφ+∇∇∇φ×∇∇∇Ψ

where
p

g = eu1 · (eu2 ×eφ) = [∇∇∇u1 · (∇∇∇u2 ×∇∇∇φ)
]−1

is the Jacobian of the yet unspecified coor-
dinate system. It is then seen that the magnetic field is always perpendicular to the gradient of
theΨ function,

B ·∇∇∇Ψ= ∂M ANp
g u
��
�eφ ·∇∇∇Ψ+((((((

((
(∇∇∇φ×∇∇∇Ψ) ·∇∇∇Ψ= 0.

On each fixed φ plane, magnetic field-lines lie on contours of constant Ψ as depicted on
figure 2.2. By revolution around the axis of these 2D curves, toroidal iso-surfaces called
flux-surfaces are created. Like on topographic maps, the 2D contours close around the hills
or craters ofΨ (formally extrema or O-points) forming, in 3D, toroidal nested flux-surfaces.
The saddle points ofΨ creates so-called X -points where the contour lines seem to intersect
(homoclinic point) but where the magnetic field is purely toroidal. Wherever ∇∇∇Ψ is zero
(extrema, saddle points and regions of constant Ψ), the magnetic field (if any) is purely
toroidal.

From the fact that eφ · ∇∇∇Ψ = 0, it appears that ∇∇∇Ψ is a perfect candidate for a dual basis
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Figure 2.2 – Map of the magnetic flux Ψ, its contours on a poloidal cross-section and iso-surfaces
created by revolution around the cylindrical axis.

vector andΨ can be promoted to a coordinate, say u1 ≡Ψ. The second coordinate, renamed
χ(R, Z ) = u2 for the remaining of this section, will give the position along each contour lines
(for example length). The χ function is somewhat arbitrary and irrelevant for the moment; it
must at least satisfy eχ =p

g∇∇∇φ×∇∇∇Ψ. In the case of closed contours and nested toroidal flux
surfaces, it is usually defined so to represent a poloidal angle. It is important to notice that the
coordinate system only makes sense if ∇∇∇Ψ is different than zero. In this toroidal coordinate
system, the presence of flux-surfaces is the tautological consequence of BΨ = B ·∇∇∇Ψ= 0.

From the orthogonality of the cylindrical basis vectors ∇∇∇φ= eφ/R2, the contravariant basis
vector display partial orthogonality ∇∇∇φ ·∇∇∇Ψ= 0 =∇∇∇φ ·∇∇∇χ. With this property, the magnetic
field reads

B = 1p
g︸︷︷︸

Bχ

eχ+Bφeφ = BΨ(Ψ,χ)∇∇∇Ψ+Bχ(Ψ,χ)∇∇∇χ+Bφ(Ψ,χ)∇∇∇φ where Bφ = BφR2.

(2.2)

By Ampère’s law, the contravariant components of the current are derived from the magnetic
field as

j /µ0 = J =∇∇∇×B = ∂Bφ

∂χ
∇∇∇χ×∇∇∇φ− ∂Bφ

∂Ψ
∇∇∇φ×∇∇∇Ψ+

(
∂Bχ

∂Ψ
− ∂BΨ

∂χ

)
∇∇∇Ψ×∇∇∇χ.

In particular, the toroidal component of the current is

Jφ = R2 Jφ = R2(∇∇∇×B ) ·∇∇∇φ= R2∇∇∇· (B ×∇∇∇φ) = R2∇∇∇·
(∇∇∇Ψ

R2

)
=∆∗Ψ. (2.3)

The elliptic operator ∆∗ is a 2D cylindrical version of the Laplacian. In this context, ∆∗Ψ= Jφ
resembles the Poisson equation whereΨwould be identified as the electrostatic potential and
Jφ as the charge density. The contours ofΨ on the R −Z plane are drawn, in the presence of
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toroidal currents, in the same way as 2D equipotential lines in the presence of free charges.
This picture is useful to explain various divertor configurations in tokamaks (Abdullaev, 2013).
The operator ∆∗ is written with respect to cylindrical coordinates (R, Z ) as

∆∗Ψ= R2∇∇∇φ · [∇∇∇× (∇∇∇φ×∇∇∇Ψ)
]= R2∇∇∇·

(∇∇∇Ψ
R2

)
= R

∂

∂R

(
1

R

∂Ψ

∂R

)
+ ∂2Ψ

∂Z 2

and with a change of variablesΨ=p
RU (Pataki et al., 2013) as

∆∗
(p

RU
)
=
p

R

(
∂2U

∂R2 + ∂2U

∂Z 2 − 3

4

U

R2

)
.

If the existence of toroidal magnetic flux-surfaces is a pure consequence of axisymmetry and
the smoothness of Ψ, it is not specified how this function behaves and acquires points of
extrema or saddle points yet. The MHD force balance further constrains the field to represent
a plasma equilibrium

j ×B =∇∇∇p. (2.4)

By projecting this equation on the magnetic field (parallel force balance), it is noted that,
unless the magnetic field has no poloidal component (i.e. ∇∇∇Ψ= 0), fluid pressure p(Ψ,χ) is
necessarily a flux function

∇∇∇p ·B = 0 ⇐⇒
(
∂p

∂Ψ
∇∇∇ψ+ ∂p

∂χ
∇∇∇χ

)
· (Bχeχ+Bφeφ

)= 0 ⇐⇒ Bχ ∂p

∂χ
= 0 ⇐⇒ p = p(Ψ).

The force balance equation contracted with j implies that the current-lines also lie on flux
surfaces

∇∇∇p · j = 0 ⇐⇒ j ·∇∇∇Ψ= 0 ⇐⇒ ∂Bφ

∂χ
= 0 ⇐⇒ Bφ = F (Ψ).

Notice that the argument can be reversed; if the current density lies on flux-surfaces ( jΨ = 0)
then a flux function p(Ψ) exists such that j ×B =∇∇∇p. Therefore, axisymmetric MHD equi-
librium labels a class of magnetic fields whose current density lies on toroidal flux-surfaces.
Members of this class are (uniquely) represented by theΨ function. Another way of demon-
strating the alignment of current lines on flux-surfaces is to consider the force balance in the
toroidal direction

eφ ·∇∇∇p = ∂p

∂φ
= 0 = ( j ×B ) ·eφ = jΨBχpg ⇐⇒ jΨ = 0.

The magnetic field and plasma current density are invariantly expressed in terms of F andΨ
as

B = F∇∇∇φ+∇∇∇φ×∇∇∇Ψ= F

R2 eφ+ 1p
g

eχ J = Jφ∇∇∇φ−F ′∇∇∇φ×∇∇∇Ψ= Jφeφ− F ′
p

g
eχ (2.5)
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where F ′ = dF /dΨ. From the normal projection of the force balance equation

µ0p ′ =µ0∇∇∇p ·eΨ = (J ×B ) ·eΨ =
(
−Jφ− F F ′

R2

)
eχ×eφ ·eΨp

g
, (2.6)

theΨ function (or U =Ψ/
p

R) complies to the so-called Grad-Shafranov equation

∆∗Ψ+µ0
d p

dΨ
R2 + 1

2

dF 2

dΨ
= 0

(
∂2

∂R2 + ∂2

∂Z 2

)
U = 3

4

U

R2 −µ0R
d p

dU
− 1

2R

dF 2

dU
(2.7)

which is a 2D non-linear elliptic partial differential equation, constraining the functional
form ofΨ. F (Ψ) and p(Ψ) are arbitrary functions that are prescribed either from theoretical
considerations or from experimental profiles for equilibrium reconstruction. Nearly every
plasma physics institute have their own Grad-Shafranov equilibrium solver as a quick method
to reconstruct the magnetic configuration in a tokamak. The Grad-Shafranov equation is
singular at the separatrix but is valid on either side of this point. It is used to represent the
plasma in regions near the divertors (Abdullaev, 2013). The Grad-Shafranov equation can also
be generalised to helical symmetry (White and Chance, 1984).

Simple analytic solutions are found. For example, Solov’ev (1968) assumed a constant current
profile and a linear pressure profile with respect toΨ. The Solov’ev solution, although missing
many features of real tokamak plasmas, is a useful analytic MHD equilibrium used in the
VENUS-LEVIS code for quick tests and benchmarks. The resulting magnetic field is discussed
in detail in appendix B.1.1.

Grad-Shafranov equation with toroidal rotation

In axisymmetry, toroidal rotation V =Ωeφ = R2Ω∇∇∇φ can be included into the Grad-Shafranov
equation. The ideal MHD force balance is composed of an extra term due to the toroidal flow

j ×B =∇∇∇p +ρM (V ·∇∇∇)V

where ρm = mi n is the ion mass density. The fluid velocity term actually represents a cen-
tripetal force

(V ·∇∇∇)V =Ω ∂

∂φ
(Ωeφ) =Ω2 ∂

2r

∂φ2 =−Ω2ReR =−Ω2R∇∇∇R.

From ideal Ohm’s law, the presence of toroidal flow implies a radial electric field proportional
to the angular rotation

E +V ×B = 0
(2.2)⇐⇒ E =Ωeχ×eφp

g
=Ω∇∇∇Ψ (2.8)

which, by Faraday’s law, happens to be a flux function

∇∇∇×E = 0 ⇐⇒ −∂Ω
∂χ

∇∇∇Ψ×∇∇∇χ= 0 ⇐⇒ ∂Ω

∂χ
= 0 ⇐⇒ Ω=Ω(Ψ).
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2.3. Ideal MHD equilibrium

The force balance is thus written

j ×B =∇∇∇p −mi nΩ2R∇∇∇R =∇∇∇p − miΩ
2R

2T
p∇∇∇R

where pressure is assumed to be p = (ni +ne )T = 2nT . Considering the toroidal projection of

the force balance, it is concluded that jΨ = 0 = ∂Bφ

∂χ , i.e. the current density lies on flux-surfaces
and the covariant toroidal component of the magnetic field is a flux function (as it is the case
without rotation). The magnetic field is still cast in the form B = F (Ψ)∇∇∇φ+∇∇∇φ×∇∇∇Ψ where
F (Ψ) is the current density profile (see equation 2.5). Taking the poloidal projection of the
force balance, one obtains

eχ · ( j ×B ) = 0 ⇐⇒ ∂p

∂χ
= mi nΩ2

2

∂R2

∂χ
= p

miΩ
2

4T

∂R2

∂χ

which implies that part of the pressure gradient is compensated by the centripetal force. To
make easy progress, we assume either that the plasma density or the temperature is a flux
function, i.e.

n(Ψ) ⇐⇒ p(Ψ,χ) = p0(Ψ)+Γ(R2 −R2
0) Γ(Ψ) = mi nΩ2

2

T (Ψ) ⇐⇒ p(Ψ,χ) = p0(Ψ)eΛ(R2−R2
0 ) Λ(Ψ) = miΩ

2

4T

Finally, two versions of the Grad-Shafranov equation in the presence of toroidal rotation are
derived. By considering the normal projection of the force balance and using the right-hand
side of (2.6) as well as the definition of ∆∗ (2.3), we obtain

n(Ψ) ⇐⇒ ∆∗Ψ+F F ′+µ0R2 [
p ′

0 +Γ′(R2 −R2
0)

]= 0 (2.9)

T (Ψ) ⇐⇒ ∆∗Ψ+F F ′+µ0R2
[

p ′
0

p0
+Λ′(R2 −R2

0)

]
p = 0 (2.10)

2.3.2 Three-dimensional ideal MHD equilibria

The stochastic nature of field-lines spoils the existence of flux-surfaces in three-dimensions,
as discussed in section 2.2. There is no equivalent of the Grad-Shafranov equation for general
3D fields unless imposing a symmetry. Conversely, the assumption of ideal flux-surfaces leads
to singularities on the surfaces where the rotational transform is a rational number (Boozer,
1981). The problem of finding 3D MHD equilibria is thus addressed using different physical
paradigms and/or iterative algorithms.

For example, the PIES code (Krommes and Reiman, 2009) employs an iterative scheme to
adjust the plasma current and magnetic field until the MHD force balance equation is satisfied;
given the initial guess of the magnetic field (e.g. vacuum fields or resulting from the previous
iteration) and imposing that B ·∇∇∇p, the diamagnetic (perpendicular) current is calculated
from the force balance and the Pfirsch-Schlüter current (parallel) from ∇∇∇· j = 0. The magnetic
field is then solved via Ampère’s law ∇∇∇×B =µ0 j . This method generates regions with magnetic
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Chapter 2. Magnetic representations and plasma equilibrium

islands and stochastic fields.

Another approach, considered by the HINT2 code (Harafuji et al., 1989; Suzuki et al., 2006),
is to relax an initial magnetic configuration into an equilibrium by solving resistive MHD
equations. The relaxation process is first carried out by adjusting the pressure to satisfy a
vanishing gradient along the field lines. Then a set of MHD equations are solved with the
fixed pressure distribution and artificial resistivity. This method also produces regions with
magnetic islands and stochastic fields which would be equivalent to using saturated states
from the MHD initial value code XTOR (Lütjens et al., 2009).

Magnetic configurations can be represented when pressure gradients are absent assuming full
relaxation of the plasma (Taylor, 1974) for which (∇∇∇×B)×B = 0. Solutions to this equation
belong to a class of force-free fields called Beltrami fields which satisfy ∇∇∇×B =µ(x)B (Dewar
et al., 2008). This idea is exploited by the SPEC code (Hudson et al., 2012) to partition the
plasma in multiple regions of relaxed constant pressure plasma and connect them with layers
of infinite current sheets with pressure steps.

To construct 3D equilibria without explicitly solving MHD differential equations, a number of
codes such as VMEC (Hirshman et al., 1986a; Hirshman and Whitson, 1983), ANIMEC (Cooper
et al., 2009) or SIESTA (Hirshman et al., 2011) use a steepest gradient method applying the
MHD energy minimisation principle by Kruskal and Kulsrud (1958). The saturated MHD states
in this thesis were generated with VMEC so the remaining of this section will present the key
concepts, the benefits and constraints of this approach. The main idea is to find a 3D vector
field B and a 3D scalar pressure p such that the total energy W is minimal. W is composed of
magnetic energy Wm and fluid energy W f as

W =Wm +W f Wm =
∫

V

B 2

2µ
dv W f =

∫
V

dU =
∫

V
e dm =

∫
V

eρdv

where V is the total volume of the plasma, µ is the magnetic permeability of the medium (µ0

in isotropic plasmas), dU is the internal energy of an infinitesimal volume d v of the plasma, e
is the specific internal energy and ρ is the mass density of the fluid plasma. Describing the
plasma as an ideal gas with specific heat capacity ĉv , the internal energy of an infinitesimal
plasma volume d v is dU = ĉv dN kB T = ĉv pd v . After defining the adiabatic index γ= 1+1/ĉv ,
the plasma energy is written in terms of thermal pressure and the magnetic field strength as

W =
∫

V
d v

(
B 2

2µ
+ p

γ−1

)
. (2.11)

Candidly minimising W without a proper variational principle will lead to the trivial result
B = 0 and p = 0. In the context of fusion devices where the magnetic configuration is toroidal,
the original principal proposed by Kruskal and Kulsrud (1958) was stated as follows: given
functions B (x), p(x) andΨ(x) that satisfy constraints

1. Ψ depicts toroidally nested surfaces withΨ= 0 on the magnetic axis (minimum) and
Ψ=Ψed g e on a perfectly conducting boundary (maximum),

2. B is a solenoidal field (∇∇∇·B = 0) that is aligned on constantΨ surfaces, i.e. B ·∇∇∇Ψ= 0,
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2.3. Ideal MHD equilibrium

3.
∫
Ψ≤c B · ∇∇∇ζdv = c, where ζ is a toroidal angle coordinate and

∫
Ψ≤c B · ∇∇∇ηdv = ψp (c),

where η is a poloidal angle coordinate; poloidal and toroidal flux,Ψp andΨ are related
flux functions,

4.
∫
Ψ≤c p1/γdv = M(c), where M(c) is a flux-function called mass profile reflecting mass

conservation of isentropic fluid elements (pρ−γ = const and ρdv = dm),

then, W is stationary functional if and only if

1. p = p(Ψ) is a function ofΨ,

2. ∇∇∇p = (∇∇∇×B )×B , the magnetic configuration satisfies MHD force balance.

The minimisation process is guided towards a solution of the MHD force balance via smartly
designed physical (holonomic) constraints. The equilibrium solutions thus represent a specific
class of MHD states, where the flux-surfaces are toroidally nested with a single magnetic axis.
From the Hamiltonian interpretation of field-line equations of section 2.2, imposing flux-
surfaces implies integrability of field-line equations. This is equivalent to implicitly forcing
the field-line Hamiltonian to possess a direction of symmetry. It is thus conjectured that
an independent (dummy) variable exists in the 3D MHD solutions arising from the above
minimisation principle. This statement is important for the interpretation of drift-surface in
later sections 5.2. The variational principle is evidently valid up to the last-closed flux-surface,
beyond whichΨ is an ill-defined function (separatrix). In axisymmetry, using this variational
principle can be shown to be equivalent to solving the Grad-Shafranov equations.

The VMEC code is based on the above variational principle (Hirshman and Whitson, 1983),
converging towards an MHD equilibrium via a steepest gradient method. Flux-surfaces
and the field components are Fourier decomposed into a fixed number of modes, yielding
valuable control over the resulting spectrum. This method also allows full control over the
plasma profiles, which are provided as inputs to the code (as opposed to the other methods
where the profiles are results of the equilibrium calculation). In the free-boundary version
of VMEC (Hirshman et al., 1986a), the geometry of the last-closed flux-surface is included in
the minimisation process. The boundary conditions are provided by vacuum fields generated
by external currents. This version is widely used in the stellarator community, in particular,
for the optimisation of the coil design of stellarators like Wendelstein-7X (W7X). VMEC does
not predict magnetic islands nor is it meant to handle stochastic regions. However, it is a
very convenient tool to obtain a robust MHD equilibrium, in the sense that the force balance
equation is numerically respected down to machine precision.

2.3.3 Straight-field line Boozer coordinates

The Boozer coordinate system, noted (s,θ,ϕ), is a particularly useful case of straight field-line
coordinate systems to represent 3D MHD equilibria. Among other interesting properties, its
Jacobian, i.e. the measure of infinitesimal volume elements, is a flux function divided by B 2.
The radial variable s =Φ/Φb is chosen as the normalised toroidal magnetic flux, θ is a poloidal
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angle and ϕ a toroidal angle. The covariant components of the vector potential are pure flux
functions, defining a canonical representation of field-lines as discussed in section 2.2,

A =Φ(s)∇∇∇θ−Ψ(s)∇∇∇ϕ. (2.12)

whereΨ is the poloidal magnetic flux. The magnetic field in the contravariant representation
becomes

B =∇∇∇ϕ×∇∇∇Ψ+∇∇∇Φ×∇∇∇θ =∇∇∇s × (Φ′∇∇∇θ−Ψ′∇∇∇ϕ) = 1p
g

(
Ψ′eθ+Φ′eϕ

)
. (2.13)

As expected in a straight field-line coordinate system, the q-profile is indeed a flux function
q(s) = Bϕ/Bθ =Φ′/Ψ′.

The toroidal angle ϕ is not the geometrical angle φ, but differs by a periodic function as
φ=ϕ+η(s,θ,ϕ). This loads the metric tensor with off-diagonal terms (gsϕ, gθϕ 6= 0) even in
axisymmetric cases. In compensation, the covariant components of the magnetic field are
conveniently written as (Boozer, 1982; D’Haeseleer, 1991)

B = Bs(s,θ,ϕ)∇∇∇s +J (s)∇∇∇θ−I (s)∇∇∇ϕ. (2.14)

where I is the poloidal current and J is the toroidal current. In this way, the magnetic field
strength has a direct relationship with the Jacobian

B 2 = JΨ′−IΦ′
p

g
> 0 (2.15)

which is the defining property of Boozer coordinates. Despite the negative sign in equation
(2.15), the right-hand side term is always positive. The Jacobian can be either negative or
positive depending on the right-handedness of the coordinate system.

The current is found as

∇∇∇×B = J =
(
I ′+ ∂Bs

∂ϕ

)
∇∇∇ϕ×∇∇∇s +

(
J ′− ∂Bs

∂θ

)
∇∇∇s ×∇∇∇θ. (2.16)

The MHD force balance equation J ×B =µ0∇∇∇p implies that

I ′Φ′−J ′Ψ′ =µ0p ′pg −
(
∂Bs

∂θ
Ψ′+ ∂Bs

∂φ
Φ′

)
This equation, integrated over the poloidal and toroidal angles, produces an interesting
relation between current derivatives, the pressure gradient and the flux volume (geometry)

I ′Φ′−J ′Ψ′ = µ0p ′

4π2

2π 2πÏ
0 0

p
g dθdϕ i.e.

dI

dΨ
− dJ

dΦ
= µ0

4π2

d p

dΦ

dV

dΨ
= µ0

4π2

d p

dΨ

dV

dΦ

(2.17)
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2.4. Stellarator symmetry

where V is the volume contained inside the flux-surface s,

V (s) =
s 2π2πÑ
0 0 0

p
g d sdθdϕ. (2.18)

TERPSICHORE (Anderson et al., 1990) is a code based on Boozer coordinates to investigate MHD
stability in 3D equilibria. TERPSICHORE converts VMEC coordinates into the list of flux functions
Ψ′,Φ′, I , J and provides a Fourier decomposition in Boozer coordinates of Rmn , B 2

mn , Bs,mn ,p
g in cosine functions and Zmn and ηmn in sine functions (thus implying stellarator symmetry,

see section 2.4). VENUS-LEVIS, the orbit code proposed in this thesis to solve the dynamics of
fast particles, was initially designed to trace particles in this coordinate system, for which the
guiding-centre equations are the same as in the ORBIT code (White and Chance, 1984). The
interpolation of Boozer metric elements has been improved with the spline-Fourier technique
described in section 4.2 and is used to follow full-orbits in straight field-line coordinates.

2.4 Stellarator symmetry

The coil design of most toroidal fusion devices respects a discrete symmetry identified by
Dewar and Hudson (1998), called stellarator symmetry. It is demonstrated hereafter and in
appendix B.3 that the magnetic field inside the plasma satisfies stellarator symmetry if the
coil configuration is stellarator symmetric. The list of acquirable states is thus conveniently
reduced, facilitating interpretation and representation of 3D MHD equilibria as well as helping
the convergence of VMEC. For the various applications within this thesis, stellarator symmetry
has been imposed. Compatible coil configurations had to be provided, which is not par-
ticularly evident with Resonant Magnetic Perturbations (RMPs), as discussed in section 6.1.
Minimal work would be required to relax the stellarator symmetric condition and produce
more general simulations. Results are nevertheless not expected to differ significantly. It
is however pointed out that a certain loss of generality occurs and care must be taken in
interpreting theoretical results. In real machines, stellarator symmetry is as improbable as
axisymmetry; those solutions may not necessarily be stable under non-stellarator symmetric
perturbations caused, for example, by small imperfections.

The definitions, jargon and notation concerning stellarator symmetry are specified in ap-
pendix B.3. Briefly summarising, a stellarator-symmetric (SS) scalar f denotes a function
such that f (R,−φ,−Z ) =± f (R,φ, Z ). A SS vector A is a vector field such that AR (R,−φ,−Z ) =
±AR (R,φ, Z ), Aφ(R,−φ,−Z ) = ∓Aφ(R,φ, Z ) and AZ (R,−φ,−Z ) = ∓AZ (R,φ, Z ). The vector
product of two SS polar-vectors or two SS axial-vectors is a SS polar-vector (see equations B.6).
The vector product of a SS polar-vector and a SS axial-vector is a SS axial-vector (see equa-
tions B.12 and B.14).

Ideal MHD equilibrium equations satisfy the following propositions

1. the current density J is a SS vector ⇐⇒ the magnetic field B is a SS vector.

Proof: ∇∇∇ is a SS polar-vector and ∇∇∇×B =µ0 J .
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2. the current density J is a SS vector ⇐⇒ the plasma pressure p is a SS scalar.

Proof: J ×B =∇∇∇p and point (1) implies that ∇∇∇p is a SS polar-vector.

Given stellarator symmetry, it does not seem that there is an equation implying that B (nor J )
should be either a SS axial-vector or a SS polar-vector. However, if B were a SS polar-vector,
it would mean that both Bφ(R,0,0) = −Bφ(R,0,0) = 0 and BZ (R,0,0) = −BZ (R,0,0) = 0, i.e.
the magnetic field is purely radial on the half-line R > 0, at φ = 0 and Z = 0. This would
obviously spoil the existence of toroidal flux-surfaces. Hence, in the applications of this
thesis, we only consider the case where B (and J ) are SS axial-vectors. The existence of
stellarator symmetric flux surfaces implies that the pressure is a SS scalar2. There is then an
equivalence between the transformation I : (R,φ, Z ) → (R,−φ,−Z ) and the transformation
in flux-coordinates S : (s,u, v) → (s,−u,−v) (no restriction in the definition of poloidal and
toroidal angle). The mapping from flux-coordinates to cylindrical coordinates is necessarily
expressed as R ∼ cos(mu −nv), Z ∼ sin(mu −nv) and φ− v ∼ sin(mu −nv). The modulus of
B and J (SS scalars) become |B |(s,u, v) ∼ cos(mu −nv), the covariant components (idem for
contravariant components) of the magnetic field respect

[Bs(s,−u,−v),Bu(s,−u,−v),Bv (s,−u,−v)] = [−Bs(s,u, v),Bu(s,u, v),Bv (s,u, v)]

and are thus expressed as Bs ∼ sin(mu −nv) and Bu,v ∼ cos(mu −nv).

Under the assumption of stellarator symmetry, VMEC necessarily produces a mapping between
cylindrical coordinates and flux coordinates as

R(s,u, v) = ∑
m,n

Rmn(s)cos(mu −nv) (2.19)

Z (s,u, v) = ∑
m,n

Zmn(s)sin(mu −nv) (2.20)

φ(s,u, v) = v. (2.21)

where s =Φ/Φed g e = ρ2 is the radial variable proportional to the toroidal flux, u is a poloidal
variable and v =φ the geometric toroidal angle. This implies that the configuration is up-down
symmetric on the specific poloidal cross-section at φ= v = 0. The same properties apply to
the output of TERPSICHORE in Boozer straight field-line coordinates (s,θ,ϕ).

By 2π-periodicity, stellarator symmetry with respect to φ= v = 0, denoted I0 by Dewar and
Hudson (1998), implies stellarator symmetry with respect to φ= v =π, denoted Iπ. If the coil
configuration has a certain toroidal periodicity, i.e. B(φ+ 2π

n ) = B(φ), there are 2n reference
angles for stellarator symmetry; I kπ

n
where k = 0, . . . ,2n − 1. In VMEC configuration space,

stellarator symmetric solutions come in pairs of energy extrema (maximum or minimum,
depending on the up-down symmetry of the coil configuration at the reference angle).

2It is not clear if in general, one could say that a SS scalar pressure implies the existence of stellarator symmetric
flux-surfaces.
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2.5 Conclusions

In summary, this chapter highlights the fact that field-line equations are equivalent to non-
integrable Hamiltonian systems. In this context, flux-surfaces arise from a symmetry condition,
either explicitly in the case of axisymmetry or implicitly in the case of VMEC. The latter im-
plements the variational principle by Kruskal and Kulsrud (1958) where nested flux-surfaces
are a prerequisite. Flux coordinates are convenient to express the magnetic field in terms of
physical quantities such as current density and magnetic flux. Physical insight is gained in
exchange to the algebraic complexity of curvilinear coordinates. For numerical applications, a
balance between these two aspects will be found, as seen in the next chapters.

Stellarator symmetry is assumed with little loss of generality, in effect reducing by a factor 2
the amount of Fourier coefficients to represent 3D MHD equilibria. This free optimisation is
exploited in the spline-Fourier interpolation scheme described in section 4.2. Stellarator sym-
metry is an inflexible condition on the coil configuration and requires conscious interpretation,
as it will be seen in section 6.1 on the investigation of RMPs.
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3 Particle motion and guiding-centre drift

The motion of charged particles in magnetic fields is discussed in this chapter with the goal
of expressing the equations of motion in coordinate systems related to the natural layout of
the magnetic field, in particular in the case of MagnetoHydroDynamics (MHD) equilibria.
Because the general gyro-motion is often superfluous to solve, so-called Guiding-centre Drift
Equations (GCDE) are established in order to follow the average drift of the particle without
solving the full gyro-motion. While a formal derivation of GCDE is not shown (slightly out of
the scope of the present thesis), a means of verifying the GCDE applicability will be proposed
by estimating the scale over which the magnetic field is varying. This measure will be used as
a trigger to switch between full-orbit or GCDE.

Original results from this section are partly published in Pfefferlé et al. (2014) and in a recently
accepted contribution (Pfefferlé et al., 2015a).

3.1 Full particle motion

3.1.1 The magnetic field as a generator of rotation

The motion of a charged particle in a magnetic field B is dictated by the well-known Lorentz
force. The usual vector differential equation can be arranged as

v̇ = q

m
v ×B =−ω×v ⇐⇒

v̇x

v̇y

v̇z

=−

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


vx

vy

vz

 i.e.
d v

d t
=−ω̃v

(3.1)

where ω = qB/m. This expression suggests that the infinitesimal variation of the velocity
vector v is caused by the action of an antisymmetric (skew-symmetric) matrix ω̃. Furthermore,
if the velocity vector v is embedded in an antisymmetric matrix ṽ similarly to ω in ω̃, it can be
verified that

[ω̃, ṽ ] = ω̃ṽ − ṽω̃= �ω×v
d ṽ

d t
=− [ω̃, ṽ ]

In the framework of Lie group theory, this differential equation defines a Lie algebra in the
adjoint representation where ω̃ represents the infinitesimal action of a group. The skew-
symmetric matrix ω̃ is identified as a generator of the Lie algebra and it turns out that the Lie
algebra so(3) formed by 3×3 skew-symmetric matrices is associated with the rotation group
SO(3) ≡ {3×3 matrices with det = 1}. This abstract affirmation basically means that the Lorentz
force instantaneously generates rotation. The particle motion corresponds, without solving
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it, to the infinite sum of small rotations around the axis generated by the vectorω. Since the
velocity vector v is instantaneously rotated aroundω, its norm is constant

d

d t
v2 = 2v · d v

d t
= 2v · (v ×ω) = 0 ⇐⇒ v = const.

The trajectory x(t ), that is constructed from the tangent velocity vector d x/d t = v , is a (topo-
logical) corkscrew or a distorted helix with the main axis being the direction of the magnetic
field.

To make further contact with the helical geometry of the trajectory, we write the differential
equation for the unit tangent vector T (l ) = v/v as a function of the arc-length along the
particle trajectory l = v t (invariance of v). It is known from Frenet-Serret formulas that the
variation of the unit tangent vector dT /dl is always in the direction of the normal unit vector
N and is proportional to the local curvature κ. By (3.7) and Frenet-Formulas, we obtain

κN = dT

dl
=−ω×T

v
.

The local curvature of the trajectory κ is identified as

κ= 1

R
=

∣∣∣∣dT

dl

∣∣∣∣= ω

v2
|v ×n| = ω

v2

√
v2 − v2

|| =
v⊥/ω

v2
||/ω

2 + v2
⊥/ω2

where n =ω/ω and v|| = v ·n. The expression of κ on the far right is distinctively recognised
as the curvature of a helix with radius ρ⊥ = v⊥/ω and pitch h = 2πρ|| = 2πv||/ω. The instanta-
neous gyro-radius or Larmor radius, is the normal vector multiplied by the local radius of the
helix

ρ⊥ = ρ⊥N =−ω×v

ω2 = m

q

v ×B

B 2 (3.2)

The Larmor radius vector corresponds to the trajectory’s centre of rotation. In fusion relevant
magnetic fields, the Larmor radius is a tiny characteristic length scale. The mass over charge
ratio m/q = 1.044 · 10−8kg/C is small for Hydrogen ions and a thousand times smaller for
electrons. This implies that the ion Larmor radius is proportional to a factor of

√
2m/q = 1.445·

10−4 as a function of energy (in electron Volts). The latter has to be in the keV range to yield a
Larmor radius of a few centimetres in a 1T magnetic field. These numerical considerations
indicate that low energy or light particles (electrons) are tangled with field-lines. This justifies
the separation of their fast motion along field-lines and slow drift across with a formalism
known as guiding-centre drift theory.

3.1.2 In a constant magnetic field

To make contact with the predicted helical trajectories, the motion of a particle is solved in
the simple situation where both the direction and the modulus of the magnetic field are kept
constant. Without loss of generality, the coordinate system can be chosen with the z axis
aligning in the direction of the magnetic field. In this case, the equation of motion in the
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parallel direction is simply vz = const = v||. The motion in the Ox y plane is solved from (3.1)
as

d

d t
v⊥ =−ω

(
0 −1
1 0

)
︸ ︷︷ ︸

ε̃

v⊥ ⇐⇒ v⊥(t ) = e−ωt ε̃v0

where ε̃ is the unit 2×2 antisymmetric matrix. Noticing that ε̃2 = −I , hence ε̃−1 = −ε̃, the
exponential of the anti-symmetric matrix ε̃ written as a power series reduces to a rotation
matrix in R2

eαε̃ = I +αε̃+ 1

2
α2ε̃2 + 1

3!
α3ε̃3 + . . . =

∞∑
n=0

αn ε̃n

n!
= I

∞∑
n=0

α2n(−1)n

2n!
+ ε̃

∞∑
n=0

α2n+1(−1)n

(2n +1)!

= I cosα+ ε̃sinα=
(

cosα −sinα
sinα cosα

)
= R(α)

Thus, the initial perpendicular velocity vector v0 is rotated at the frequency of ω = qB/m
called the gyro-frequency (clockwise for an ion, counter-clockwise for an electron)

v⊥(t ) =
(

cos(ωt ) sin(ωt )
−sin(ωt ) cos(ωt )

)
v0 = R(−ωt )v0

The particle motion is found after integration of v⊥(t ) over time as

x⊥(t ) = e−ωt ε̃ (−ε̃−1)
v0

ω︸ ︷︷ ︸
ρ0

+X =
(

cos(ωt ) sin(ωt )
−sin(ωt ) cos(ωt )

)
ρ0 +X = R(−ωt )ρ0 +X

It corresponds to the rotation of a vector ρ0, corresponding to the Larmor radius, around a
fixed position X called the guiding-centre. The Larmor radius is found as

ρ0 = ε̃v0

ω
= ω̃v0

ω2 = ω×v0

ω2 = m

qB
b ×v0 ρ0 = mv⊥

qB

where b = B/B and v⊥ is the initial velocity in the Ox y plane.

3.1.3 Particle drift due to constant force (electric field)

In addition to a constant magnetic field, let us assume that a constant force is added to the
equations of motion

d v

d t
=−ω×v + F

m
=−ωε̃v + f

where f = F /m is the "specific" force (force per unit mass). This matrix differential equation
admits a fixed point solution v where d v/d t = 0. For this case, the particle simply drifts at a
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constant speed

v = ε̃−1 f

ω
=− ε̃ f

ω
= f ×ω

ω2 = F ×b

qB

without undergoing rotation. The constant drift is eliminated from the equations of motion
with a change of reference frame v = u +v , d v/d t = du/d t ,

du

d t
=−ω×u −

�
��

��ω

ω
ε̃ε̃−1 f +��f ⇐⇒ u(t ) = R(−ωt )u0, v (t ) = R(−ωt )

(
v0 −v

)+v

Hence, the particle motion in this reference frame is that of a particle in a constant magnetic
field,

x(t ) = R(−ωt )ρL +X (t ) , X (t ) = v t +X0

where the guiding-centre is drifting at a constant speed perpendicularly to both the magnetic
field and the force field.

This drift is particularly relevant in the case of a force created by a constant electric field,
F = qE . The associated "electric" drift depends neither on the particle mass, neither on the
particle charge

VE = E ×b

B
(3.3)

such that even a massless charged particle undergoes a perpendicular drift to the field-lines in
the presence of an electric field. This electric drift has many implications, which will not be
discussed in this manuscript. However, it must be remembered, when reducing the particle
motion to its guiding-centre, that the drift E ×b/B must be included in the definition of the
parallel and perpendicular velocity. This is equivalent to stating that the frame of reference in
which to perform gyro-average procedures is the one where the perpendicular electric field
is cancelled due to the non-relativistic Lorentz transformation E ′ = E + v ×B . This remark
is particularly important to establish guiding-centre equations in rotating plasmas, where
the guiding-centre position is solved in the laboratory frame but the magnetic moment and
parallel velocity are defined in the rotating frame.

3.2 Full-orbit equations in curvilinear coordinates

The derivation of the equations of motion of a charged particle in an electromagnetic field is a
standard textbook problem, but rarely is it carried out in curvilinear coordinates.

It is often worth expressing the electromagnetic fields in flux coordinates because the compo-
nents are related to simple flux functions and other physically relevant quantities (poloidal
or toroidal current, q-profile, pressure gradient). The parallel and perpendicular dynamics
are more naturally separated in a toroidal set of coordinates than in the Cartesian system.
Formulating the fields in curvilinear coordinates finally relieves the numerical difficulties
related to discretisations and mesh creation in exchange for the algebraic yet analytic manip-
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ulation of geometric elements (metric). This is especially relevant in general 3D magnetic
equilibria, where the numerical evaluation of the field components requires either heavy
mesh-based interpolation schemes in the 3 directions of space, or a well-posed representation
of the physical fields via a smart choice of coordinates. The formulation, certainly suitable for
tokamaks, is of high interest for solving full-orbits in complex stellarator equilibria.

If general coordinates (u1,u2,u3) locate the particle, the contravariant components of its
velocity are v i = u̇i = ẋ ·∇∇∇ui . The Lagrangian associated with this charged particle is

L (ui , v i , t ) = 1

2
mv 2 +q A(ui , t ) ·v −qΦE (ui , t ) = 1

2
mgmn vm vn +q Ak vk −qΦE (3.4)

where Ak are the covariant components of the electromagnetic vector potential, ΦE the
electrostatic potential and gmn = ∂x

∂um · ∂x
∂un the covariant components of the metric tensor.

The Euler-Lagrange equations d
d t

(
∂L
∂v j

)
= ∂L

∂u j yield

g j k v̇k + d g j k

d t
vk + q

m

d A j

d t
= 1

2

∂gmn

∂u j
vm vn + q

m

∂Ak

∂u j
vk − q

m

∂ΦE

∂u j
. (3.5)

Expanding d
d t = ∂t + vm∂m and re-arranging a few terms, the equations of motion become

g j k v̇k +vm vn 1

2

(
2∂m gn j −∂ j gmn

)= q

m
vk (

∂k A j −∂ j Ak
)+ q

m

(−∂t A j −∂ jΦE
)−vk

��
�∂t g j k .

Situations where the metric elements vary explicitly with respect to time are discarded here-
after since, for most applications, the coordinate system is derived from a stationary magnetic
configuration such as an MHD equilibrium1.

Formulating the equations of motion with the anti-symmetric Levi-Cività symbol εl mn , using
the symmetry properties of the metric tensor and identifying the last term as the electric field,
the previous equation is re-expressed as

g j k v̇k + vm vn 1

2

(
∂m gn j +∂n g j m −∂ j gmn

)= q

m
ε j kl vkεlmn∂m An + q

m
E j . (3.6)

The first term on the right-hand side εl mn∂m An =p
g B l corresponds to the curl of the vector

potential, i.e. the magnetic field. The second term on the left-hand side is recognised as
the Christoffel symbol of first kind Γ j ,mn = 1

2

(
∂m gn j +∂n g j m −∂ j gmn

)
(see equation (A.18))

compensating for inertial forces due to the curvilinear coordinate system. This result is the
one expected from the derivation of geodesic equations of motion of charged particle in the
theory of general relativity (equivalence principle).

Summarising, the equations of motion are written for the covariant components as

v̇ j = g j k v̇k = q

m

(
ε j kl vk B l +E j

)
− vm vnΓ j ,mn

1If axisymmetry applies, the description of toroidally rotating plasmas is also free of explicit time variation of
metric elements.
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where εi j k =p
gεi j k is the Levi-Cività tensor, or for the contravariant components as

v̇ i = q

m

(
g i jε j kl vk B l +E i

)
− vm vnΓi

mn = q

m

(
εi j k v j Bk +E i

)
− vm vnΓi

mn (3.7)

or, in a recognisable vector form (relaxation of formal notation for Christoffel symbol from
Γi

mn to Γ) as

v̇ = q

m
(v ×B +E )−v ·Γ ·v .

3.2.1 Conservation properties

The equations of motion of charged particles also verify Hamiltonian conservation properties
in curvilinear coordinates. These properties are useful to test correct implementation and
convergence of numerical simulations. In particular, the particle’s energy is a constant of
motion in time-independent electromagnetic fields,

H (xi , v i )

q
= 1

2

m

q
gi j v i v j +ΦE , (3.8)

and for axisymmetric systems, the particle’s toroidal momentum is conserved

Pφ
q

= Aφ+ m
q gφ j v j =−Ψ+ m

q R2φ̇. (3.9)

whereΨ is the poloidal magnetic flux as in equation (2.1).

Without a third constant of motion, the motion of charged particle in time-independent
axisymmetric magnetic fields is in principle non-integrable (Dragt and Finn, 1976). In the
limit of an infinite field strength or a zero Larmor radius, the equations of motion reduce to
integrable field-line equations (see section 2.2). Departure from integrability is first answered
by adiabatic theory, which results in the invariance of the magnetic moment µ = mv2

⊥/2B
(Lichtenberg and Lieberman, 2010, section 2.3) or (Abdullaev, 2013, section 4.1). The adia-
batic treatment of charged particle full-motion is at the basis of guiding-centre drift theory,
discussed in the next section. Non-adiabaticity eventually leads to stochastic full-orbits even
in time-independent axisymmetric fields. However, the transition to chaos is smooth in the
sense of the KAM theorem, which guarantees persistent periodic orbits and near-confinement
at large Larmor radii (Cambon et al., 2014). This property is in favour of tokamak confinement,
where the magnetic fields only slightly depart from axisymmetry.

3.3 Drift theory

3.3.1 First-order guiding-centre drift equations

In simulations of charged particles travelling through electromagnetic fields, it is convenient
not to follow their spiralling trajectory whenever the field is slowly and smoothly varying with
respect to the fast gyro-motion around the field-lines. If the gyro-radius is much smaller
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3.3. Drift theory

than typical spatial variation lengths and the gyro-frequency much faster than characteristic
timescales, it is possible to reduce the 6-dimensional phase-space of those particles (position
and velocity) down to 4 (guiding-centre position and parallel velocity) via gyro-averaging
techniques, invoking the (adiabatic) invariance of the magnetic moment, µ= E⊥/B = mv2

⊥/2B
where m is the particle mass, v⊥ is its velocity perpendicular to the magnetic field and B = |B |
the magnetic field strength. At zero order in Larmor radius, the description of particle motion
is that of field-lines; particles simply stream along them at a given parallel speed. At first order,
particles steadily spin around their so-called guiding-centre, the latter slowly drifting across
field-lines because of the variations in the electromagnetic field. Numerically, solving the
slow drift of the guiding-centre is far less demanding than resolving the particle’s full orbit;
time-steps are at most of the order of the gyro-period in guiding-centre simulations, whereas
they are at least two orders of magnitude smaller in the full-orbit case. The guiding-centre
equations become increasingly accurate at low energies and for small Larmor radii, whereas
tight gyro-motion is more difficult to resolve.

Guiding-centre equations were first expressed by Morozov and Solov’ev (1966) averaging
the rapidly varying terms out of the equations of motion. The Russian findings were sim-
ilarly confirmed in a review by Northrop and Rome (1978). The disadvantage of directly
gyro-averaging full-orbit equations is that the resulting equations completely lack important
physical conservation properties like energy conservation in a time-independent system or
conservation of toroidal momentum in axisymmetric fields. A number of authors have thus
proposed Hamiltonian perturbation techniques to derive guiding-centre drift equations where
the terms that appeared to be of higher order in the gyro-expansion were preserved to correctly
satisfy conservation properties (Boozer, 1980; Littlejohn, 1979, 1981). The difficulty in Hamil-
tonian perturbation theory is to construct appropriate canonical coordinate transformations
(Meiss and Hazeltine, 1990; White and Chance, 1984), which originate for certain classes of
magnetic field configurations in the establishment of straight field-line coordinates (Boozer,
1982). Canonical coordinates are certainly useful in analytic derivations for devices where
the symmetry is apparent, for example in axisymmetric tokamaks or helically symmetric stel-
larators, but they are not very practical for numerical applications. Generalisations including
full-field perturbations or non-axisymmetric systems have been found (Cooper et al., 2011a;
Wang, 2006; White and Zakharov, 2003) and have, for example, been applied to general 3D
stellarator geometry (Jucker et al., 2012; Rome, 1995). Physical intuition is somewhat obscured
by the technicality of the coordinate transformations preserving the canonical structure, such
that, in practice, Hamiltonian formulations are used for specific cases and are often only
advantageous over non-canonical formulations in conjunction with symplectic integration
techniques (White et al., 2013) or in axisymmetry (Wingen et al., 2006).

The non-canonical phase-space Lagrangian technique developed by Littlejohn (1981, 1983) is
probably the best suited and most elegant to obtain guiding-centre equations of motion in
arbitrary coordinate system, yet retaining essential Hamiltonian properties such as energy
conservation in time-independent magnetic fields, toroidal momentum conservation in
axisymmetric systems, Liouville equation, Noether theorem, etc. The details on how to
construct the phase-space Lagrangian can be found in the review by Cary and Brizard (2009).
A systematic derivation to arbitrary order of the guiding-centre transformation is found in the
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Chapter 3. Particle motion and guiding-centre drift

work by Burby et al. (2013). These non-canonical phase-space techniques are at the basis of
gyro-kinetic theory (Brizard and Hahm, 2007; Krommes, 2010).

A derivation of guiding-centre equations including relativistic effects and pressure anisotropy
is done in appendix C.1. For the dynamics of ions in fusion devices, the relativistic approach
is superfluous. Leaving out anisotropy for the moment, the important steps are repeated in
order to compare various choices of the fourth coordinate. It is also verified that the resulting
equations of motion are implicitly identical. The starting point is the first-order non-canonical
phase-space guiding-centre Lagrangian proposed by Littlejohn (1983)

LGC

q
= l = A∗ · Ẋ − HGC

q
=

(
A + m

q
v||

B

B

)
· Ẋ −h = (

A +ρ||B
) · Ẋ −h (3.10)

and the Hamiltonian defined as

HGC

q
= h = 1

2

m

q
v2
||+

µ

q
B +ΦE = 1

2

q

m
ρ2
||B

2 + µ

q
B +ΦE (3.11)

where X is the position of the guiding centre, q and m the charge and mass of the considered
particle, ρ|| = mv||/qB the parallel gyro-radius, v|| the parallel velocity, µ = mv2

⊥/2B the
(adiabatically) conserved magnetic moment associated with the fast gyro-motion, v⊥ the
perpendicular velocity, A(X , t ) and B (X , t ) =∇∇∇×A the magnetic vector potential and magnetic
field,ΦE (X , t ) the electrostatic potential.

To obtain the guiding-centre Lagrangian above, Littlejohn (1983) assumes that the field vari-
ation is much weaker than the particle’s instantaneous Larmor radius (see equation 3.2),
presupposing that gradients and curvature are O(ε) in the guiding-centre expansion2. Sec-
ondly (and more importantly), the amplitude of the electric field is assumed to be of order
O(ε), which means that the electric drift is zero in the limit of a massless charged particle. Cary
and Brizard (2009) recommend including the zeroth-order electric drift in the definition of
the magnetic moment. This idea is related to choosing a reference frame in which the electric
field has been cancelled by a Lorentz transformation, as for example in the case of toroidal
rotation (Brizard, 1995). For the applications of this thesis, where only stationary magnetic
equilibrium are considered, the zeroth-order electric field is irrelevant.

As discussed in the appendix on non-canonical phase-space Lagrangian techniques A.2.1 and
for the relativistic example of appendix C.1, the equations of motion for any choice of variables
are written

żα = [Ω−1]αβ(∂βh +∂t A∗
β)

where the Lagrange brackets are expressed asΩαβ = ∂αA∗
β
−∂βA∗

α.

2The expansion parameter is said to correspond to the ratio m/q , but is essentially related to the Larmor radius.
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As a function of parallel gyro-radius

Given the guiding-centre Lagrangian (3.10), (ρ||, X ) is a suitable choice of four variables. The
modified vector potential is defined as A∗(ρ||, X , t) = A(X , t)+ρ||B(X , t) and the Lagrange
brackets

Ωαβ =
(

0 ∂ρ|| A
∗
j

−∂ρ|| A
∗
i ∂i A∗

j −∂ j A∗
i

)
=

(
0 B j

−Bi B∗kεki j

)
[Ω−1]αβ = 1

Bl B∗l

(
0 −B∗ j

B∗i −Bkε
ki j

)

where B∗(ρ||, X , t) =∇∇∇× A∗ = B +ρ||∇∇∇×B is the modified magnetic field, εki j = εki j
p

g and
εki j = εki j /

p
g the Levi-Cività tensor as in equation (A.28) with

p
g the Jacobian of the space-

coordinate system. The phase-space derivatives of the Hamiltonian read

∂ρ||h = ρ||q
m

B 2 = v||B and ∂i h +∂t A∗
i =−Ei +

(
µ

q
+ v||ρ||

)
∂i B +ρ||∂t Bi ≡−E∗

i ,

where the modified electric field E∗ was defined and the parallel velocity is formally a function
of the phase-space variables v||(ρ||, X , t ). The equations of motion are written(

ρ̇||
Ẋ i

)
= 1

Bl B∗l

(
0 −B∗ j

B∗i −Bkε
ki j

)(
v||B
−E∗

j

)

i.e.

ρ̇|| =
E∗

j B∗ j

Bl B∗l
= E∗ ·B∗

BB∗
||

(3.12a)

Ẋ i = v||
BB∗i

Bl B∗l
+ εi j k

p
g

Bk E∗
j

Bl B∗l
=

[
v||

B∗

B∗
||
+ E∗×b

B∗
||

]i

(3.12b)

where b = B/B and B∗
|| = b ·B∗ = Bl B∗l /B .

Using the decomposition Ẋ = b(Ẋ ·b)−b × (b × Ẋ ), the guiding-centre drift velocity can be
cast into the a form where the Larmor-radius terms are neatly ordered and various drift terms
from the literature are identified. In this case, we obtain

Ẋ = v||b +VE +VB +VP (3.13)

where VE is the electric drift, VB is the gradient and curvature drift, VP is a form of polarisation
drift. These first-order drifts are perpendicular to the field-lines and are found as

VE = E ×b

B∗
||

VB = b ×
(
µ

q
∇∇∇B + v||ρ||κ

)
/B∗

|| VP = ρ||
b ×∂t B

B∗
||

(3.14)

where the definition of magnetic curvature κ= b ·∇∇∇b =−b × (∇∇∇×b) was used (D’Haeseleer,
1991, chapter 4.3). It is noticed that the parallel projection of the guiding-centre velocity
exactly matches the parallel velocity b · Ẋ = v||, which is correct in guiding-centre theory only
to first order in Larmor radius (see equation 3.32 in later section 3.4). We also recall that the
electric drift of equation (3.14) should not be confused with the zeroth-order drift of equation
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(3.3). The ordering considered for the guiding-centre expansion requires all drifts of equation
(3.14) to be of order O(ε) (Littlejohn, 1983); VE in (3.14) and VE in (3.3) are technically of
different nature.

The set of GCDE (3.12) is implemented in the numerical code VENUS-LEVIS described in
later chapter 4.1. The advantage is that anisotropy as well as other relevant physics (parallel
perturbed vector potential) can be trivially included in the redefinition of ρ|| as discussed in
appendix C.1.

As a function of parallel velocity

The most common choice of variables for guiding-centre drift theory (Boozer, 1980; Cary and
Brizard, 2009) and the original choice in the work by Littlejohn (1983) is (v||, X ) because of the
convenient separation of the Hamiltonian into a kinetic term mv2

||/2 and an effective potential

Φ†
E = µB/q +ΦE . In this case, the modified vector potential is the function A†(v||, X , t) =

A + m
q v||B/B and the Lagrange brackets are

Ωαβ =
(

0 ∂v|| A
†
j

−∂v|| A
†
i ∂i A†

j −∂ j A†
i

)
=

(
0 m

q
B j

B

−m
q

B j

B B †kεki j

)
[Ω−1]αβ = qB

mBl B †l

(
0 −B † j

B †i −m
q

Bk
B εki j

)

where the modified magnetic field has a more elaborate expression than B∗

B †(v||, X , t ) =∇∇∇× A† = B + m

q
v||∇∇∇×

(
B

B

)
= B +ρ||∇∇∇×B −ρ||∇∇∇B ×b

and the parallel gyro-radius is now a function of the phase-space variables ρ||(v||, X , t). The
phase-space derivatives of the Hamiltonian now yield

∂v||h = m

q
v|| and ∂i h +∂t A†

i = ∂iΦ
†
E +∂t A†

i =−Ei + µ

q
∂i B +ρ||∂t Bi −ρ||

Bi

B
∂t B ≡−E †

i ,

such that the equations of motion are written as(
v̇||
Ẋ i

)
= qB

mBl B †l

(
0 −B † j

B †i −m
q

Bk
B εki j

)(
m
q v||
−E †

j

)

i.e.

v̇|| = qB

mBl B †l
E †

j B † j = q

m

E † ·B †

B †
||

(3.15a)

Ẋ i = v||
BB †i

Bl B †l
+ εi j k

p
g

Bk E †
j

Bl B †l
=

[
v||

B †

B †
||
+ E † ×b

B †
||

]i

(3.15b)

Although it is clear that B † 6= B∗ and E † 6= E∗, it is easily verified that B †
||(v||, X , t ) = (B +ρ||∇∇∇×

B −ρ||∇∇∇B ×b) ·b = (B +ρ||∇∇∇×B) ·b = B∗
|| (ρ||, X , t) and that the equations of motion for the

guiding-centre position (3.12b) and (3.15b) are algebraically the same.
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As a function of energy

With a choice of variables (σ,U , X ) where σ= sign(v||) (positive or negative branch) and U = h
(units of eV, positive for ions and negative for electrons), the parallel velocity can be written as
a function of energy and the guiding-centre position as

v||(σ,U , X , t ) =σ
√

2q

m

(
U −ΦE − µ

q
B

)
∂U v|| = q

mv||
∂i ,t v|| =− q

mv||

(
∂i ,tΦE + µ

q
∂i ,t B

)
The phase-space Lagrangian technique leads to correct equations of motion, although it is not
strictly rigorous nor practical to use the Hamiltonian as a variable (difficulty in distinguishing
the positive or negative branch of v||, singularity of v|| = 0). The modified vector potential is
A‡(σ,U , X , t ) = A + m

q v||B/B = A +ρ||B and the Lagrange brackets are

Ωαβ =
(

0 ∂U A‡
j

−∂U A‡
i ∂i A‡

j −∂ j A‡
i

)
=

(
0

B j

v||B

− B j

v||B
B ‡kεki j

)
[Ω−1]αβ = v||B

Bl B ‡l

(
0 −B ‡ j

B ‡i − Bk
v||B

εki j

)

where the modified magnetic field has the following expression

B ‡(σ,U , X , t ) =∇∇∇× A‡ = B +∇∇∇× (
ρ||B

)= B +ρ||∇∇∇×B + 1

v||

[
−∇∇∇ΦE −

(
µ

q
+ρ||v||

)
∇∇∇B

]
×b

The Hamiltonian being a function of U only, its phase-space derivatives are trivial

∂U h = 1 and ��∇∇∇h +∂t A‡ = ∂t A +ρ||∂t B + 1

v||

[
−∂tΦE −

(
µ

q
+ v||ρ||

)
∂t B

]
b

such that the equations of motion become(
U̇
Ẋ i

)
= v||B

Bl B ‡l

(
0 −B ‡ j

B ‡i − Bk
v||B

εki j

)(
1

∂t A‡
j

)

As expected, the equations of motion for the guiding-centre position is algebraically identical
to (3.12b) and (3.15b)

Ẋ = v||
B ‡

B ‡
||
+ ∂t A‡ ×b

B ‡
||

= v||
B∗

B∗
||
+ E∗×b

B∗
||

(3.16)

and the time-variation of the energy variable is equal to minus the partial time derivative of
the Lagrangian (3.10)

U̇ = dh

d t
=−v||

∂t A‡ ·B ‡

B ‡
||

=−∂t A‡ · Ẋ =−∂t l . (3.17)

The interest of this choice of variables is for the case of time-independent fields. As highlighted
by Littlejohn (1983, equation 11), the energy is a constant of motion and the guiding-centre
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position respects a fairly simple equation of motion,

d X

d t
= v||

B ‡

B ‡
||

⇐⇒ d X

dl
= B ‡

B ‡
(3.18)

where l is the (unimportant) length along the trajectory found by solving

dl

d t
= v||B ‡

B ‡
||

= v||
b ·b‡

= v||
1−O(ρ2

||)

Equation (3.18) is useful for the analytic treatment of linear delta- f hybrid kinetic-MHD,
where orbits are solved in equilibrium fields (see section 4.7). At a more conceptual level,
equation (3.18) is in fact a field-line equation for the modified magnetic field B ‡. This analogy
makes sense only if v|| 6= 0 and is therefore only valid for passing particles. The formalism of
section 2.2 can be applied to solve the topology of passing orbits (called drift-lines from now
on) without actually solving the equations of motion. In this context, the modified guiding-
centre vector potential is identified as a perturbed field-line phase-space Lagrangian for which
the drift-line action is written

S =
∫ (

A +ερ||B
) ·d X =

∫ (
A +εσ

√
2mU

q

√
1−ΦE /U −λB

B

B

)
·d X

where λ = µ/qU ∈ [0,1] is a convenient normalisation of the magnetic moment (adiabatic
constant of motion) and ε an expansion parameter reminding that the approach is valid at first-
order in Larmor radius (consistent with the guiding-centre approximation). The description of
drift-lines is in general chaotic by virtue of the equivalence between the above action and that
of a Hamiltonian system with 1+ 1

2 degree of freedom (again valid only in the case of passing
particles). If symmetry of the fields is assumed, drift-line equations are integrable and the
drift-lines will inevitably follow so-called drift-surfaces, in analogy with field-lines laying on
flux-surfaces. If flux-surfaces exist, classical perturbation theory (Lichtenberg and Lieberman,
2010) can be used to calculate the drift-surfaces to any desired degree of accuracy and, in the
case of resonances, secular perturbation theory to describe the occurrence of drift-islands.
The idea of using canonical perturbation theory upon the drift-line Lagrangian is used by
de Rover et al. (1996) to calculate the orbit width of deeply-passing relativistic electrons in a
simple case of axisymmetric tokamak equilibria. It is also used in work by Heyn et al. (2012)
investigating the confinement of passing alpha-particles in the presence of Resonant Magnetic
Perturbations (RMPs). The presence of drift-surfaces and drift-islands in saturated helical
states is interpreted in section 5.2 as a direct consequence of equation (3.18).

3.3.2 Conservation properties

Conservation properties arise from the Lagrangian treatment of the guiding-centre equations
of motion (Noether theorem). Constants of motion are used for testing the correct imple-
mentation of the equations and numerical convergence of the solved orbits. In the case of
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3.4. Particle motion in a purely sheared magnetic field and limits of the drift
approximation
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Figure 3.1 – Schematic picture of the purely-sheared magnetic field

time-independent fields, the energy of the guiding-centre HGC is a conserved quantity

HGC (X i ,ρ||)
q

= 1

2

m

q
v2
||+

µ

q
B +ΦE (3.19)

In the case of axisymmetry ∂φ ≡ 0, the toroidal momentum Pφ of the guiding-centre is a
conserved quantity

Pφ(X i ,ρ||)
q

= Aφ+
mBφ

qB
v||

where Aφ and Bφ are the covariant components in the toroidal direction of the vector potential
and the magnetic field. The considered quantities have therefore units of flux. Axisymmetric
magnetic fields that satisfy the ideal MHD equilibrium equations can always be written in
terms of flux functions as B = F (s)∇∇∇φ+∇∇∇φ×∇∇∇Ψ(s) (see section 2.3.1), where F (s) is the
poloidal current andΨ(s) the poloidal magnetic flux labelled by the radial variable s, such that
toroidal momentum simplifies to3

Pφ
q

=−Ψ(s)+ρ||F (s). (3.20)

3.4 Particle motion in a purely sheared magnetic field and limits of
the drift approximation

As an example of magnetic deformations that are ignored by the leading order terms of the
guiding-centre approximation, it is instructive to solve the motion of a charged particle in a

3In the presence of toroidal plasma rotation, the toroidal velocity must be added to the toroidal canonical
momentum.
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constant, curvature-free but sheared magnetic field4

B (x, y, z) = B0[sin(kx)e y +cos(kx)ez ]. (3.21)

As seen in figure 3.1, the field-lines are straight in the y − z plane, but the pitch varies for
different x. This magnetic field is such that its modulus, B , is constant and ∇∇∇×B = kB . Hence,
there are no gradients, ∇∇∇B = 0, and no curvature (D’Haeseleer, 1991, chapter 4.3)

κ= (b ·∇∇∇)b =−b × (∇∇∇×b) =− B

B 2 × (∇∇∇×B )+ B

B 3 × (∇∇∇B ×B ) = 0 (3.22)

where b = B/B . If the direction of the magnetic field is rapidly changing with respect to the
coordinate x and if this variation compares with the particle’s Larmor radius, the first order
GCDE break down. Indeed, applying equations (3.15) on this particular magnetic field, the
guiding-centre motion is written{

v̇|| = 0
Ẋ = v||b

⇐⇒
{

v||(t ) = v0

X (t ) = v0t b

such that it does not depend on the value of the shearing parameter k. As it will be demon-
strated in this section, the full particle motion is strongly dependent on k. Eventually, above a
certain threshold in k, the motion is not even constrained to the initial parallel axis.

Up to a gauge choice, the vector potential is A = B/k. The Lagrangian of such particle is
written

L (x, y, z, ẋ, ẏ , ż) = 1

2
mv2+q A ·v = 1

2 m
(
ẋ2 + ẏ2 + ż2)+ qB0

k

[
ẏ sin(kx)+ ż cos(kx)

]
(3.23)

The problem is integrable by virtue of the three constants of motion that can be deduced from
the symmetries of the above Lagrangian:

∂L

∂y
= 0 ⇐⇒ ∂L

∂ẏ
= Py = mẏ + qB0

k
sin(kx) = const

∂L

∂z
= 0 ⇐⇒ ∂L

∂ż
= Pz = mż + qB0

k
cos(kx) = const

∂L

∂t
= 0 ⇐⇒ H = 1

2
m

(
ẋ2 + ẏ2 + ż2)= const

Exploiting the freedom to chose the origin and orientation of the y and z axis, there is no loss
in generality to consider the case represented on figure 3.2 where, at t = 0,

x(0) = 0 y(0) = mu0

qB0
= ρ0 z(0) = 0 ẋ(0) = u0 ẏ(0) = 0 ż(0) = v0

i.e. the particle is initially at a distance ρ0 in the y direction from the origin, with an initial
perpendicular velocity of v⊥,0 = u0 in the x direction and an initial parallel velocity of v||,0 = v0

in the z direction. Without field-line shearing (k = 0), these initial conditions would lead to

4It is immediately verified that this is a valid magnetic field, i.e. ∇∇∇·B = 0. It corresponds to a trivial force-free
field where ∇∇∇×B = kB .
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z

x
y

v||,0

v⊥,0

Figure 3.2 – Schematic drawing of the initial conditions and particle motion in the case of low shearing
parameter k.

a standard helical trajectory along the z-axis, where the centre of the gyro-motion (guiding-
centre) starts on the origin and moves along z at a constant velocity v0 as expected.

With k 6= 0, the constants of motion are set to Py = 0, Pz = mv0 + qB0

k and H = 1
2 mv2 =

1
2 m(u2

0 +v2
0). The non-linear coupled system of equations describing the motion of a charged

particle respecting those initial conditions becomes

ẏ =−qB0

mk
sin(kx) =−ω0

sin(kx)

k
(3.24a)

ż = v0 + qB0

mk
[1−cos(kx)] = v0 + k

2ω0
sin2( k

2 x)(
k
2

)2 (3.24b)

ẋ2 +ω2
0

(
1+ kv0

ω0

)
sin2( k

2 x)(
k
2

)2 = u2
0 (3.24c)

where ω0 = qB0/m is the usual gyro-frequency. Equation (3.24c) is similar to that of a non-
linear pendulum, for which the solution is entirely expressed in terms of elliptic integrals.
Figure 3.3 draws the trajectory of the particle in (x, ẋ) phase-space. The colours represent the
effective potential corresponding to lines of constant energy. It is seen that if the perpendicular
initial velocity is high enough, the motion can be unbound in the x direction, above (or
below) the lightest blue lines forming the X -point at x = L/2 =π/k. In the special case where
v0 =−ω0/k, the velocity along x becomes constant, i.e. x(t ) = u0t and the trajectory is actually
circular in the y − z plane, i.e. y(t ) = ω0

k2u0
cos(ku0t ) and z(t ) =− ω0

k2u0
sin(ku0t ) with a radius of

4π2L2/ρ0.

For k → 0, equations (3.24a-3.24c) properly reduce to those of a charged particle in a constant
magnetic field pointing in the z-direction, for which the solution is the well-known helical
motion x(t ) = ρ0 sin(ω0t ), y(t ) = ρ0 cos(ω0t ) and z(t ) = v0t .
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x

ẋ

−L −L/2 0 L/2 L

Figure 3.3 – Trajectory in the (x, ẋ) phase-space and effective potential according to (3.24c). Beyond the
lightest blue line, the motion is unbounded in the x direction.

For intermediate k 6= 0, the motion in the x-direction is bounded (∃tM | ẋ(tM ) = 0) under the
condition that

∣∣∣sin
(

k
2 xM

)∣∣∣= uM = u0

ω0

k/2√
1+ kv0

ω0

< 1 ⇐⇒ ρ0 < L

π

√
1+ kv0

ω0
, (3.25)

where xM is the maximum amplitude in the x-direction. This condition demonstrates that if
the Larmor radius ρ0 is somewhat larger than the characteristic length L/π= 2/k of the shear,
particles do not necessarily perform a closed gyro-motion (blue curves on figure 3.3) but may
progress along the x-direction indefinitely (red curves on figure 3.3).

Let us focus on the case where the motion is bounded in x (and de facto in y), which corre-
sponds to the situation of closed gyro-orbits (blue contours on figure 3.3). The average particle
drift along x and y is thus zero, i.e. < ẋ >= 0 =< ẏ >. The period of this bounded motion is
given by

T =
∫ T

0
d t =

∮
d x

ẋ
= 2

∫ xM

−xM

d x√
u2

0 −
4ω2

0

k2

(
1+ kv0

ω0

)
sin2

(
k
2 x

)
= 4

u0

∫ xM

0

d x√
1− sin2

(
k
2 x

)
/sin2

(
k
2 xM

) = 8

ku0

∫ uM

0

du
p

1−u2
√

1−u2/u2
M

= 8uM

ku0

∫ 1

0

dτ√
1−u2

Mτ
2
p

1−τ2
= 4K (uM )

ω0

√
1+ kv0

ω0

k→0−→ 2π

ω0
(3.26)

where K (k) is the complete elliptic integral of first kind.

Since there is no average motion in x and y , the average velocity along the z-axis exactly
corresponds to the average particle drift. The latter is in the direction of the magnetic field at
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the guiding-centre position (x = 0 and y = 0). This drift is given by

< ż >= 1

T

∫ T

0
żd t = v0 + 2ω0

kT

∮ sin2
(

k
2 x

)
ẋ

d x = v0 +
16ω0u3

M

k2u0T

∫ 1

0

τ2dτ√
1−u2

Mτ
2
p

1−τ2

= v0 +
ku2

0

2ω0

1

1+ kv0
ω0

1− 1

K (uM )

∫ 1

0

√
1−u2

Mτ
2

p
1−τ2

dτ

 1

u2
M

= v0 +
ku2

0

4ω0

1

1+ kv0
ω0

[
1− E(uM )

K (uM )

]
2

u2
M

(3.27)

where E(k) is the complete elliptic integral of second kind.

First-order guiding-centre equations predict a constant parallel velocity of v0. By expanding at
leading order in the shearing parameter k, we find a correction to the parallel guiding-centre
velocity of

< ż >−v0
k→0−→ ku2

0

4ω0
. (3.28)

This correction should not be confused with the averaged quantity < v|| >. As the particle
swirls around the z-axis, it "sees" a varying magnetic field. The average parallel velocity, i.e.
the average of the projection of the particle’s velocity on B , corresponds to

< v|| > = < b · ẋ > = < sin(kx)ẏ +cos(kx)ż > .

Using (3.24a-3.24b) and after some algebra, the average parallel velocity as a function of k is
written

< v|| >−v0 = 1

T

∫ T

0
d t

[
−ω0

k
sin2(kx)− ω0

k
cos2(kx)+

(
v0 + ω0

k

)
cos(kx)

]
− v0

=−
(
1+ kv0

ω0

)
2ω0

kT

∫ T

0
sin2

(
k
2 x

)
d t =−ku2

0

4ω0

[
1− E(uM )

K (uM )

]
2

u2
M

k→0−→−ku2
0

4ω0
.

(3.29)

Therefore, at leading order, there is a fundamental (and conceptual) difference between the
average particle drift and the average parallel velocity

< ż >−< v|| >k→0−→ ku2
0

2ω0
= kµ

q
= µB

mω0
b · (∇∇∇×b) . (3.30)

From first-order guiding-centre theory Ẋ ≈ v||b +v⊥,drift, the particle drift along the parallel
direction is expected to be equal to the parallel guiding-centre velocity. This paradoxical result
is referred to as the Baños drift (equation (37) Baños, 1967), for which an interpretation is given
by Northrop and Rome (1978, appendix B) as well as by Cary and Brizard (2009, p.718). In this
example of magnetic fields with no gradient nor curvature, the guiding-centre equations must
be extended with second order terms in order to encompass the Baños drift due to shearing of

41



Chapter 3. Particle motion and guiding-centre drift

field-lines. In a Hamiltonian formalism, this can be performed starting with the second order
guiding-centre Lagrangian derived by Littlejohn (1983, equations (32-33)),

L = (
q A +mv||b

) · Ẋ −
[

1

2
mv2

||+µB + 1

2

m

q
µv||b · (∇∇∇×b)

]
, (3.31)

which yields an Euler-Lagrange equation that coincides with (3.28)

b · Ẋ = v||+ 1

2

µ

q
b · (∇∇∇×b) . (3.32)

where the correction due to field-line shearing and parallel currents appears at the same
order as other drift terms stemming from gradients or field-line curvature. The guiding-centre
motion along the field-lines is thus different than the gyro-averaged parallel velocity. The
latter variable v|| is interpreted in the guiding-centre phase-space as a pivot variable that
includes the parallel curl of the magnetic field and the shearing of field-lines. This simple
example where the Baños drift plays a crucial role motivated the implementation of full-orbit
equations in the VENUS-LEVIS code as well as a means of switching between guiding-centre
and full-orbit formulations as discussed in the next sections.

3.5 Field variation estimator

In most orbit simulations, first-order GCDE are used on the basis that the magnetic field
is slowly varying with respect to the Larmor radius. As seen in the example of the previous
section, there are situations, especially in three-dimensional configurations, where the field
variation is large and where the primary assumptions of the guiding-centre approximation are
not cleanly satisfied. Being able to quantify the field variation is important in order to assess
the applicability of GCDE.

The guiding-centre approximation is often loosely justified by assuming that the scale length
of the magnetic field is large compared with the gyroradius, or simply that gradients in the
magnetic strength are weak, B/|∇∇∇⊥B | À ρL . It is reminded that there are situations where
gradients of B and even curvature are absent, but the variation of the field can still be strong,
as demonstrated with the purely sheared magnetic field in section 3.4. GCDE are typically
derived by expanding the magnetic field around the position of the guiding-centre x = X +ρ⊥,
where x is the position of the particle, X the position of the guiding-centre and ρ⊥ a vector of
the size of the Larmor radius perpendicular to the magnetic field. At first order, the magnetic
field is approximated as

B (x) ≈ B (X )+ (ρ⊥ ·∇∇∇)B (X ).

Such an expansion can be qualified as reasonable as long as the variation of the field over ρ⊥
is much smaller than the field itself, i.e.

|δB |
|B | = |B (x)−B (X )|

|B | ≈
∣∣(ρ⊥ ·∇∇∇)B

∣∣
|B | ∼O(ε) ¿ 1.
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3.5. Field variation estimator

This criterion should be respected when using first-order GCDE. Hereafter, an explicit compu-
tation of the field variation is detailed for general magnetic fields and in curvilinear coordi-
nates.

First, it is useful to express the Larmor radius as the perpendicular projection of an arbitrary
vector, ρ⊥ = Pρ = (I −bb)ρ. Then, the idea is to view the desired scalar quantity as a bi-linear
form

K (ρ, X ) = ∣∣(ρ⊥ ·∇∇∇)B
∣∣2 = [(Pρ) ·∇∇∇B ] · [∇∇∇B · (Pρ)] = ρ̂i M̂i j ρ̂

j (3.33)

The hat notation is meant to stress that the components ρ̂i are those of the vector ρ expressed
in an orthonormal (Cartesian) basis. The importance of this statement will become clear later.
The spectral theorem states that an orthonormal basis of eigenvectors always exists for matrix
M . In other words, ρ becomes an eigenvector if rotated correctly. This also means that the
maximum of K (ρ, X ) with respect to ρ, i.e. the maximum eigenvalue λmax of matrix M , will
correspond to the maximum variation of the magnetic field in the perpendicular direction. In
standard Cartesian coordinates (x1, x2, x3) = (x, y, z), M is written

M̂i j = P̂ m
i
∂B̂l

∂xm

∂B̂ l

∂xk
P̂ k

j = [P T DT DP ]i j

where B̂ i = B̂i are the Cartesian components of the magnetic vector field and P̂ i
j = δi

j −
B̂ i B̂ j

B 2 .

For the purely-sheared magnetic field example given in equation (3.21), the Jacobian matrix
M̂ reduces to

M̂i j = k2B 2
0

1 0 0
0 0 0
0 0 0

 ,

and the maximum eigenvalue is λmax = k2B 2
0 , which implies that a linear expansion in Larmor

radius does notice the shearing of field-lines and the presence of parallel currents.

Representing the field and its derivatives in Cartesian coordinates is not always convenient
because those coordinates are not native to the geometry of the system. Cylindrical or flux
coordinates are preferred for applying this criterion in the case of toroidal magnetic fields that
are relevant to tokamak and stellarator physics. As explained in appendix A.1.1, if (u1,u2,u3)
are those coordinates, the Jacobian matrix ∇∇∇B in equation (3.33) is a covariant derivative,

∇∇∇B = ∂

∂u j
(B i ei )∇∇∇u j = ∂B i

∂u j
ei∇∇∇u j +B k ∂ek

∂u j
∇∇∇u j = (∂ j B i +Γi

j k B k )ei∇∇∇u j = B i
; j ei∇∇∇u j (3.34)

or alternatively

∇∇∇B = Bi ; j∇∇∇ui∇∇∇u j = (∂ j Bi −Γk
i j Bk )∇∇∇ui∇∇∇u j = (∂ j Bi −Γi j ,k B k )∇∇∇ui∇∇∇u j (3.35)

where ei = ∂x
∂ui the covariant basis, ∇∇∇ui the contravariant basis, B i the contravariant and Bi

covariant components of the magnetic field, Γi j ,k is recognised as the Christoffel symbol of
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first type and Γi
j k = g i lΓ j k,l of second type. The scalar product in curvilinear coordinates is

now expressed as a contraction with the metric tensor, a ·b = ai b j gi j = ai b j g i j = ai bi = ai bi .
The tensor M becomes (multiple possibilities)

M i j = P i k B l
;k glmB m

;n P n j = P i k Bl ;k g lmBm;nP n j

with P ab = g ab − B a B b

B 2 .

If the M tensor is diagonalised in the curvilinear basis, the amplitude of the variations will
be expressed along a non-orthonormal basis, which is not desired. The tensor must first be
transformed to an orthonormal basis before diagonalisation

K (ρ, X ) = ρ̂k êk ·ei M i j e j · êl ρ̂
l = ρ̂k ∂xk

∂ui
M i j ∂xl

∂u j
ρ̂l .

The relevant matrix to diagonalise is thus composed of the following product of matrices

M̂i j = [ΛP T DT GDPΛT ]i j = [V T GV ]i j (3.36)

with V = DPΛT , Λi j = ∂xi

∂u j , D i
j = B i

; j and Gi j = gi j (or Di j = Bi ; j and G i j = g i j ). The maxi-

mum eigenvalue of M̂ , λmax (X ) = max[eig(M̂)], will then provide the local estimate of the
maximum variation of the magnetic field in Cartesian coordinates. It is straightforward to find
the eigenvalues of M̂ . One is zero due to the projection in the perpendicular direction, i.e.
det(M̂) = 0. The remaining pair is obtained via the quadratic equation λ2 − trace(M̂)λ+b = 0,

λ± = 1

2
trace(M̂)± 1

2

√
trace(M̂)2 −4b

where b = M11M22 − M 2
12 + M11M33 − M 2

13 + M22M33 − M 2
23. λ+ is evidently the maximum

eigenvalue and is noticed to be bounded inferiorly by trace(M̂) (quicker to evaluate).

Finally putting all the pieces together, the criterion that must verify GCDE is∣∣(ρ⊥ ·∇∇∇)B
∣∣

B
=

√
λmaxρ⊥

B
= m

q

v⊥
B 2

√
λmax =

√
2m

q

H⊥
q

√
λmax

B 2 =
√

2λmax

B 3

m

q

µ

q
¿ 1. (3.37)

where m is the particle mass, q its charge, v⊥ = ρ⊥qB/m the perpendicular velocity, H⊥ =
1
2 mv2

⊥ the energy in the perpendicular direction and µ = mv2
⊥/2B = H⊥/B the magnetic

moment, which is an adiabatic constant of the particle motion.

Applied to toroidal devices where the magnetic field strength B ≈ B0R0/R, the field variation
approximately corresponds to the gradient of the magnetic field, which is

√
λmax ≈ B0/R0 on

axis. Considering fusion alphas (4He+2) for example, the factor
√

2m/q ≈ 2.04 ·10−4 [kg/C]1/2

and
√

H⊥/q =p
3.5 MeV/2 = 1.323 ·10−3 [eV]1/2 so criterion (3.37) coarsely corresponds to

0.27/B0R0 ¿ 1. The ratio 0.27/B0R0 represents a few percent in tokamaks with a large major
radius and a strong magnetic field like ITER. In spherical tokamaks like MAST where R0 = 0.8m
and B0 = 0.5T, the variation length-scale due to gradients corresponds to 10% of the Larmor
radius for alpha particles at 80keV. As it is argued in this paper, not only gradients give rise to
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field variations but also curvature, parallel currents and the shearing of field-lines. Therefore,
the value of

√
λmax is higher than |∇∇∇B | and the range of “valid” energies for first-order guiding-

centre theory is all the more reduced (i.e. quadratically).

Applied to the purely-sheared magnetic field of equation (3.21), the criterion reads

kρ⊥ = kv⊥
ΩC

¿ 1,

meaning that the error between the guiding-centre and the average particle trajectory is of
order kv⊥/ΩC , as intuitively expected from the discussion of full-orbits in section 3.4 and from
the drift ordering. It is noted that first-order GCDE do not account for such field variations
due to parallel currents and field-line shearing although they appear in criterion (3.37) at
linear order in a Larmor radius expansion. A second-order treatment of the guiding-centre
Lagrangian would compensate for Baños drifts arising from this field variation.

Criterion (3.37) is used in VENUS-LEVIS as a trigger to switch between GCDE and full-orbit
equations in the algorithm presented in section 3.6. It is also applied in section 5.1.1 to the
case of Neutral Beam Injection (NBI) fast particles in a Mega-Ampère Spherical Tokamak
(MAST) helical core equilibrium in order to inspect the regions of strong field variation and
reveal the features of this magnetic configuration.

3.5.1 Toroidal coordinates with geometric toroidal angle

The field variation can be estimated with algebraic expressions of reasonable length in curvi-
linear coordinates where the toroidal angle is equal to the geometric angle. Derivatives of the
magnetic field can be evaluated either in the covariant or the contravariant representation.
For example, the matrix of interest M̂ =V T GV is written

Mmn =Vi m g i j V j n Vi m = Bi ; j P j k ∂xm

∂uk
(3.38)

where xm = xm = (x, y, z) are Cartesian coordinates, uk curvilinear coordinates. The perpen-
dicular projection is written as the following contravariant tensor

P j k = g j k − B j B k

B 2 ,

the covariant derivative is

Bi ; j = ∂ j Bi −Γk
i j Bk = ∂ j Bi −Γi j ,l B l ,

and the Christoffel symbol of first type is expressed as

Γi j ,l =
∂R

∂ul

∂2R

∂ui∂u j
+ ∂Z

∂ul

∂2Z

∂ui∂u j
+R

[
∂R

∂ui
δ3

jδ
3
l +

∂R

∂u j
δ3

i δ
3
l −

∂R

∂ul
δ3

i δ
3
j

]
. (3.39)
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Another option is to lean on

Mmn =V i
m gi j V j

n V i
m = B i

; j P j k ∂xm

∂uk
(3.40)

where the covariant derivative is the mixed tensor

B i
; j = ∂ j B i +Γi

j k B k

and the Christoffel symbol of second type is used

Γi
j k = ∂ui

∂R

∂2R

∂u j∂uk
+ ∂ui

∂Z

∂2Z

∂u j∂uk
+ 1

R
δi

3δ
3
j
∂R

∂uk
+ 1

R
δi

3δ
3
k

∂R

∂u j
−Rδ3

jδ
3
k

∂ui

∂R
. (3.41)

In theory, the two options (3.38-3.40) yield identical results but in practice, computing equa-
tion (3.40) is numerically more stable around the singular magnetic axis. In flux coordinates,
divergent metric terms such as ∂2R/∂u j∂uk are naturally multiplied by terms going to zero
like ∂ui /∂R in the Christoffel symbol of second type Γi

j k . Such cancellation happens later in
the matrix multiplication of (3.38) which makes it more prone to truncation errors.

3.5.2 Field variation constituents in MHD equilibrium fields

The criterion (3.37) is valid for any type of magnetic field. In the context of MHD equilibria, it
is instructive to identify its main constituents. The linearisation of the magnetic field around
the guiding-centre position involves the derivative of the vector field in the form of a Jacobian
matrix ∇∇∇B = ∂i B j (working in Cartesian coordinates for simplicity). The entries of this matrix
are not all independent and some of them can be written in terms of known differential
operators such as the divergence, curl or gradient, ∇∇∇ ·B = 0, ∇∇∇×B = J and ∇∇∇B . The force
balance equation J ×B =µ0∇∇∇p is also used to draw links among the matrix components.

For example, using the vector identity ∇∇∇B = 1
2∇∇∇(B ·B)/B = b ·∇∇∇B +b × (∇∇∇×B), the parallel

field variation is expressed as a gradient term

b ·∇∇∇B =∇∇∇B + (∇∇∇×B )×B

B
= 1

B

(
B∇∇∇B +µ0∇∇∇p

)= 1

B
∇∇∇

(
B 2

2
+µ0p

)
.

where the force balance equation was used to introduce ∇∇∇p. The perpendicular component
of this gradient term is equal to the magnetic curvature,

κ= b ·∇∇∇b = b ·∇∇∇B

B
−b

(
b ·∇∇∇B

B

)
= 1

B 2 ∇∇∇⊥
(

B 2

2
+µ0p

)
.

By considering only perpendicular field variations ρ⊥, the criterion (3.37) does not take
curvature into account. The projector P can be simply replaced by the unity matrix I in
equation (3.33) to include κ.

Another point of view is to separate the Jacobian matrix into symmetric and anti-symmetric
parts as ∂i B j = 1

2

(
∂i B j +∂ j Bi

)+ 1
2

(
∂i B j −∂ j Bi

)
. The anti-symmetric part can be expressed as
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the current (curl of the magnetic field) by

∂i B j −∂ j Bi = (δm
i δ

n
j −δn

i δ
m
j )∂mBn = εi j k ε

kmn∂mBn︸ ︷︷ ︸
[∇∇∇×B ]k

= εi j k J k

The linear derivative of criterion (3.37) is thus broken up into

ρ ·∇∇∇B = [
ρ ·∇∇∇B

]
A + [

ρ ·∇∇∇B
]

S = 1

2
ρ× (∇∇∇×B )+ 1

2
(ρ ·∇∇∇B +∇∇∇B ·ρ).

Considering only perpendicular Larmor radii written ρ⊥ =−b × (b ×ρ), the anti-symmetric
part becomes[

ρ⊥ ·∇∇∇B
]

A =−[
b × (b ×ρ)

]× (∇∇∇×B ) = J × [b × (b ×ρ)] = b[J · (b ×ρ)]− (b ×ρ)(J ·b)

= b
(
ρ · J ×B

B

)
+ J||ρ×b =µ0

ρ ·∇∇∇p

B
b + J||ρ×b

revealing the importance of parallel currents in the evaluation of the perpendicular field
variation.

The symmetric part has the property that its trace is zero, by virtue of ∂i B i ≡∇∇∇·B = 0. One
diagonal component can thus be expressed in terms of the other two. Three components
depend on ∇∇∇B . Hence, out of the six elements of the symmetric part of the Jacobian matrix,
two cannot be associated to any of the curl, divergence nor gradient differential operators.

Parallel currents in axisymmetric MHD equilibria

The parallel current can be expressed in terms of pressure and current density profiles in
axisymmetric MHD equilibria via the Grad-Shafranov equation (2.7). The magnetic field and
the current are reminded to be

B = F (Ψ)∇∇∇φ+∇∇∇φ×∇∇∇Ψ J =∇∇∇×B =∆∗Ψ∇∇∇φ− dF

dΨ
∇∇∇φ×∇∇∇Ψ

where ∆∗Ψ=−µ0
d p
dΨR2 −F dF

dΨ results from the Grad-Shafranov equation, d p/dΨ is the pres-
sure gradient with respect to the poloidal flux Ψ and dF /dΨ the gradient of the poloidal
current. The parallel current therefore reduces to

J ·B

B 2 = 1

B 2R2

(
F∆∗Ψ− dF

dΨ
|∇∇∇Ψ|2

)
=−µ0

d p

dΨ

F

B 2 − dF

dΨ
(3.42)

where B 2 = (F 2 +|∇∇∇Ψ|2)/R2 was used.

Parallel currents in 3D MHD equilibria

In 3D ideal MHD equilibria, parallel currents can be shown to be locally infinite on rational
surfaces (Boozer, 1981; Grad, 1967). This is an unresolved issue for ideal MHD equilibrium
codes such as VMEC. Resistive effects would relax these singular current sheets in creating
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Figure 3.4 – Pressure and q-profile of the devices considered

magnetic islands and reconnection. This topic is slightly out of scope of this thesis.

Using Boozer coordinates to represent the magnetic field as in equation (2.14) and current
density as in (2.16), the parallel current conveniently reduces to

J ·B

B 2 = I ′J −J ′I
JΨ′−IΦ′ +

∂Bs
∂θ I + ∂Bs

∂φ J

JΨ′−IΦ′

where I and J are respectively poloidal and toroidal current,Ψ andΦ poloidal and toroidal
magnetic flux. The denominator, corresponding to

p
g B 2, is reminded to be non-zero. The

first term is a secular parallel current. The second term is the resonant part leading to infinite
Pfirsch-Schlüter currents. The derivative of the poloidal current I ′ or toroidal current J ′ can
be interchanged by using relation (2.17) in favour of the derivative of pressure and volume p ′

and V ′. The parallel current is thus expressed as

J ·B

B 2 −
∂Bs
∂θ I + ∂Bs

∂φ J

JΨ′−IΦ′ = J ′

Φ′ +
µ0J

4π2

p ′

Φ′
V ′

p
g B 2 = dJ

dΦ
+ µ0

4π2

d p

dΦ

dV

dΦ

J

J ι−I
(3.43)

= I ′

Ψ′ +
µ0I

4π2

p ′

Ψ′
V ′

p
g B 2 = dI

dΨ
+ µ0

4π2

d p

dΨ

dV

dΨ

I

J −qI
(3.44)

where q = 1/ι is the q-profile (iota-profile) and V is the volume contained inside the flux-
surface s.

3.5.3 Field variation map of various devices

Criterion (3.37) is applied to various experimental fusion devices to map the field variation
that a particle feels with a given Larmor radius. The goal is to illustrate the range of energies
above which first-order guiding-centre equations become approximate for solving the motion
of fast ions. Various constituents are also displayed to identify from what kind of derivative
terms the field variation consists of. It is reminded that only a fraction of each constituent
will appear in the final criterion since |X +Y | ≤ |X |+ |Y |. Figure 3.4 displays the pressure and
q-profile that were used to generate the equilibria with VMEC.
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D+ at E⊥ = 100KeV (ρL ∼ 6.5cm)
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Figure 3.5 – (left) Field variation criterion (3.37) applied to Solov’ev MHD equilibrium with B0 = 1T,
R0 = 1m,Ψed g e = 0.05Wb, a = 0.4, e = 2 for a deuterium ion at E⊥ = 100keV. (right) inverse scale-length
of the total perpendicular field variation and various derivatives that enter in its composition at mid
plane as a function of the major radius.

First, we consider a low aspect ratio Solov’ev analytic MHD equilibrium (see appendix B.1.1
for more details) where the magnetic field on axis is set to B0 = 1 [T], the major radius R0 = 1
[m], the magnetic flux at the last closed flux-surface Ψed g e = 0.05[Wb], the minor radius
a = 0.4[m] and the elongation e = 2. These parameters approximately correspond to a MAST
plasma. As seen on figure 3.5, the field variation reaches 7−8% of the total field strength
everywhere in the plasma for a deuterium ion at E⊥ = 100 keV. On the high-field side, the
variation is mainly due to the perpendicular gradient of B , as depicted by the green curve
nearly aligning with the red curve (maximum variation in the perpendicular direction) on
the right plot of figure 3.5. On the low-field side, the gradient fades and the field variation
is caused by parallel currents (purple curve). According to equation (3.42) and the fact that
d p/dΨ=−const and F (Ψ) = F0 for Solov’ev equilibrium, the parallel current is proportional
to 1/B 2 ∼ R2. Curvature, which arises from perpendicular currents (in blue), is relatively low
compared to the other components. GCDE are acceptable for the study of hot particles below
this range of energies, typically NBI, but may not be applicable for Ion Cyclotron Resonance
Heating (ICRH) nor fusion alphas in the MeV range.

In a standard JET equilibrium with a monotonic q-profile starting at q0 ≈ 1, the field variation
is between 5−7% for an alpha particle at E⊥ = 3.5MeV, as seen on figure 3.6. The low variation
due to the strong magnetic field and the large aspect ratio justifies the use of GCDE for the
study of fusion ions in this device. The main component arises again from gradients (green
curve on figure 3.6). The field variation in the core bulges due to parallel currents, caused
by a large dF /dΨ term in equation (3.42). This is related to having low magnetic shear and
a q-profile close to unity in the core (see figure 3.4). Perpendicular current is weak in this
example, explained by the low value of β∼ 0.6%. According to the criterion (3.37), GCDE are
fairly adequate to track fast particles such as fusion alphas in JET. Most guiding-centre codes
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Figure 3.6 – (left) Field variation criterion (3.37) of a typical Joint European Torus (JET) equilibrium
with B0 = 2.5T, R0 = 2.95m,Ψed g e = 10Wb and Itor = 1.9MA for a fusion alpha at E⊥ = 3.5MeV. (right)
inverse scale-length of the total perpendicular field variation and various derivatives that enter in its
composition at mid-plane as a function of major radius.

4
2He at E⊥ = 3.5MeV (ρL ∼ 17.5cm)
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Figure 3.7 – (top) Field variation criterion (3.37) at various toroidal angles within a low shear W7X
plasma with B0 = 2.38 [T], R0 = 5.62 [m],Ψed g e = 1.9Wb for a fusion alpha at E⊥ = 3.5MeV. (bottom)
inverse scale-length of the total perpendicular field variation across the mid-plane atφ= 0◦ (left bottom
plot) and φ= 36◦ (right bottom plot) where the configuration is up-down symmetric.

however do not include the Baños drift from parallel currents.

In the complex geometry of a standard W7X plasma, the field variation for alpha particles
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Figure 3.8 – (left) Field variation criterion (3.37) of a MAST hybrid scenario plasma with B0 = 0.5T,
R0 = 0.93m,Ψed g e = 0.68Wb and Itor = 545kA for a deuterium ion at E⊥ = 10keV. (right) inverse scale-
length of the total perpendicular field variation and various derivatives that enter in its composition at
mid-plane as a function of major radius.

at E⊥ = 3.5MeV can be as as low as 2−3% in some regions (high-field side at φ = 36◦) but
can reach 10−12% in others (high-field side at φ = 0◦ or low-field side at φ = 36◦), as seen
on the top plot of figure 3.7. At φ= 0◦, the variation is caused by the strong gradient related
to the narrow width of the plasma, as shown on the left bottom plot of figure 3.7. At φ= 36◦,
neither the gradient nor the curl terms account for the field variation on the low-field side,
which suggests that the origin is geometric. Indeed, the shape of the flux-surfaces varies quite
dramatically from one toroidal angle to the other, forming a sharp cusp at φ= 36◦. The reason
for such a large field variation despite weak curvature, gradient and shearing is worth being
further explored (possibly the effect of field-line torsion). Nevertheless, it seems reasonable to
use GCDE in W7X to solve the motion of rapid ions such as fusion alphas.

In MAST hybrid scenario plasmas, the field variation is already large compared to the Larmor
radius of a deuterium ion at the energy of E⊥ = 10keV, as seen on figure 3.8. This is mostly due
to the low aspect ratio and the low magnetic field of B0 = 0.5T. The perpendicular gradients
(green curve) contribute almost entirely to the field variation in the outer regions. Parallel
currents have an enhancing effect in the core where the low-shear q-profile is near unity. This
example indicates that GCDE may not be applicable to trace fast particles in MAST, at least
not when the perpendicular energy is in the order of 10keV. It will be verified in chapter 5
that for NBI, GCDE correctly replicate the dynamics of passing particles. For ICRH and fusion
products, a higher order guiding-centre scheme or a full-orbit approach is necessary.

3.6 Full-orbit to guiding-centre switching

Solving the full-orbit equations is computationally heavy. Worse, the smaller the Larmor
radius, the harder it is to resolve the small gyration of the particle around the field-lines and a
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Figure 3.9 – Banana orbit (white curve on the left plot) in a MAST axisymmetric equilibrium of a D+
ion with H = 10 KeV, v||0/v = 0.5 and ρ0 = 0.14 computed using GCDE/full-orbit switching given a
threshold for criterion (3.37) of 6%. The background colours in the left plot highlight the field variation
felt by the particle (dark black patch is above the threshold) and light grey lines depict flux surfaces.
The top right plot shows the evolution of the particle’s radial coordinate ρ =p

Φ/Φe , where Φ is the
poloidal magnetic flux (Φe its value on the last closed flux-surface). The middle right plot displays the
field variation from equation (3.37) felt at the guiding-centre position (black). The bottom right plot
shows the relative error in energy (solid black line) and relative error in toroidal momentum (dashed
red line) in time.

full-orbit calculation becomes less precise than using a guiding-centre formulation. It is useful
to be able to switch instantaneously between GCDE and full-orbit equations and to focus
numerical resources only where the GCDE are inadequate. The procedures presented in this
section are directly applicable to single particle orbit tracing, e.g. for comparing or switching
from a guiding-centre to full-lorentz formulation, but are also relevant for simulating fast
particle populations, starting from an analytic distribution in terms of constants of the guiding-
centre motion and generating distributions of full-orbits with matching properties; in the case
of strongly varying electromagnetic fields, for which the guiding-centre approximation may
break down, both distributions are expected to evolve differently.

Figure 3.9 shows an example of a 10 KeV D+ ion undergoing a banana orbit in an axisymmetric
equilibrium of MAST. When its guiding-centre enters an area of the magnetic configuration
where the field variation criterion (3.37) is above the arbitrary threshold choice of 6%, the
algorithm switches between GCDE and full-orbit equations and vice-versa when (3.37) is
below 6%.

The mapping between particle and guiding-centre variables is defined at the same order as
the guiding-centre equations of motion because the guiding-centre phase-space is basically a
contraction (average) of the particle’s (Littlejohn, 1982). The techniques described hereafter
are strictly speaking valid up to first order in a ρL expansion. They are however found to
minimise the divergence between guiding-centre trajectories and full-orbits. Indeed, a small
discrepancy is induced when switching from guiding-centre to particle variables, as observed
on the bottom right plot of figure 3.9 showing the relative increase of energy and relative
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Figure 3.10 – De-trapping of the same particle as in figure 3.9 due to the action of Monte-Carlo
operators simulating Coulomb collisions with the background plasma Albergante et al. (2012). The
particle receives random kicks in energy H and pitch-variable v||/v which perturb its orbit and its
collisionless constants of motion to greater extent than the switching between guiding-centre and
particle phase-space.

increase of toroidal momentum (both constants of motion). The guiding-centre trajectory
follows the average particle motion with an error that scales proportionally to |(ρL ·∇∇∇)B |/B
as explained in section 3.5. Divergences are minimised by making sure that constants of
motion match in the two phase-spaces and the switching process is triggered in an area of the
magnetic field where its variation is small. A second order expansion as in the work by Belova
et al. (2003) would help improve the transition between guiding-centre and full-orbit variables,
including for example the Baños drift term (see equation 3.32). The algorithm is especially
appropriate in conjunction with various Monte-Carlo operators (for e.g. Coulomb collisions
with the background, charge exchange, anomalous transport, etc.), where the random kicks
perturb the particle’s motion to greater extent than the switching process, as observed in
figure 3.10.

Figure 3.11 illustrates how a collection of particle orbits (in green), each initialised with a
different gyro-phase around the same guiding-centre position (in red) using formulae (3.53-
3.50), tend to deviate after a few gyro-periods in MAST axisymmetric equilibrium. The dark
green dots on figure 3.11 mark the position of those particles at consecutive times. The initial
ring of particles (on the left-hand side of figure 3.11) is progressively stretched and deformed.
The initial parallel velocity slightly differs for each particle around that ring such that particles
stream down the guiding-centre line at different speeds. This behaviour is aggravated at larger
gyro-radius and higher energy, due to the neglect of the Baños drift term (3.32). It is noticed
however that the guiding-centre trajectory passes exactly through the tube formed by the ring
of particles, which indicates that the guiding-centre approximation in the plane perpendicular
to B agrees better than in the parallel direction. Small deviation in particle trajectories with
respect to their guiding-centre is an issue for barely trapped or passing particles, for which
those changes can equate to a totally different orbit topology. For this family of orbits, it seems
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Figure 3.11 – Collection of particle orbits (in green), each initialised with a different gyro-phase around
the same guiding-centre position (in red). Dark green dots represent the position of these particles at
consecutive times (beginning on the left-hand side). H+ ions at H = 20KeV, v0||/v = 0.43, ρ0 = 0.4 with
Larmor radius ρ⊥ ≈ 5.8cm evolved for t f = 5 ·10−5s.

that even the notion of trapped or passing guiding-centre is somewhat indistinct.

3.6.1 From particle to guiding-centre variables

The mapping from the particle coordinates (x , v ) to the guiding-centre coordinates (X , v||,µ)
is a surjection in the sense that an infinite number of particles share the same guiding-centre.
At first order, the guiding-centre position is calculated from the particle variables as

X = x −ρL(x) = x + m

qB(x)
v ×b(x). (3.45)

After setting the guiding-centre position, it is important to ensure that the guiding-centre
energy and the particle energy are equal, since they are identical constants of motion in the
presence of static electromagnetic fields, i.e.

H = 1

2
mv2 +qΦE (x) = 1

2
mgi j (x)v i v j +qΦE (x) = 1

2
mv2

||+µB(X )+qΦE (X ) =HGC .

The particle toroidal momentum and the guiding-centre toroidal momentum in axisymmetric
systems are also supposed to match, i.e.

Pφ = q Aφ+mvφ = q Aφ(x)+mgiφ(x)v i = q Aφ(X )+mv||bφ(X ).

From the two previous equations, even for non-axisymmetric or time-varying fields, it is
reasonable to express the guiding-centre velocity variables as a function of the particle phase-
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space coordinates in the following way

v|| = B(X )

Bφ(X )

{
giφ(x)v i + q

m

[
Aφ(x)− Aφ(X )

]}
(3.46a)

µ= 1

2

m

B(X )
[gi j (x)v i v j − v2

||]+
q

B(X )
[ΦE (x)−ΦE (X )]. (3.46b)

In magnetic fields relevant for tokamak and stellarator equilibria, the toroidal component
of the vector potential is, up to a gauge choice, equal to the poloidal magnetic flux Aφ =
−Ψ(ρ). Equations (3.46) are simplified by linearly expanding in gyro-radius, for example
Aφ(x)− Aφ(X ) ≈−ρL ·∇∇∇Ψ andΦE (x)−ΦE (X ) ≈ρL ·∇∇∇ΦE =−ρL ·E .

Neither the energy nor the toroidal momentum of the particle can be seen to change on
figure 3.9, as steps in H and Pφ are instead due to switching from guiding-centre to particle
coordinates.

3.6.2 From guiding-centre to particle variables

Changing from the guiding-centre to the particle phase-space is not as straight-forward, in
the sense that the direction of ρL in the perpendicular plane to b can be chosen arbitrarily.
The motion of the guiding-centre does not depend on the initial angle around the guiding-
centre, namely the gyro-angle, property known as phase anholonomy (Littlejohn, 1988). The
question is then what is the simplest and most correct displacement to impose from the
guiding-centre to the particle position and in what proportion v|| and v⊥ must be set knowing
that the magnetic field (and thus the projection of the particle’s velocity) slightly differs from
one position to the other. Rigorously, one would make sure that the average over a gyro-period
recovers exactly the guiding-centre position but this is understandably very tedious.

Clearly, it is important that the energy of the guiding-centre and the energy of the particle
match, thus fixing the modulus of v , v2 = v2

||+ v2
⊥ is one step. It is then reasonable to assume

that the ratio between parallel and perpendicular velocity, v|| and v⊥, is defined at the position
of the guiding-centre X via the guiding-centre velocity variables (µ and ρ||). The parallel
velocity is then supported by the magnetic field at that position as

v|| = v||
B (X )

B(X )
⇐⇒ v i

|| = v||
B

B
·∇∇∇ui = v||

B i

B
(3.47)

The perpendicular velocity can be seen as a combination of two orthogonal vectors perpen-
dicular to B (X ). Let s be the radial flux label of a generic flux coordinate system (s,u, v), such
that B ·∇∇∇s = 0. Let the first vector be perpendicular to flux surfaces, namely

v⊥⊥ = v⊥
∇∇∇s

|∇∇∇s| ⇐⇒ v i
⊥⊥ = v⊥

g si√
g ss

.

The second perpendicular velocity vector lies therefore within (tangent to) a flux surface, but
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still perpendicular to the magnetic field,

v⊥|| = v⊥
B

B
× ∇∇∇s

|∇∇∇s| ⇐⇒
v s
⊥|| = 0

vu
⊥|| = v⊥p

g sspg

Bv
B

v v
⊥|| =− v⊥p

g sspg

Bu
B

.

Combining v⊥⊥ and v⊥||, the total perpendicular velocity is written generically as

v⊥ = v⊥⊥ cosα+v⊥|| sinα (3.48)

where α is the gyro-angle extended to curvilinear coordinates. It is important to note that the
velocity vector v = v||+v⊥, and therefore its components v i , are constructed at the position
of the guiding-centre X . This is valid in the plasma rest frame where the gyro-averaged
component of the electric field is zero.

The particle is shifted from the guiding-centre position using a vector proportional to the
Larmor radius, x = X +ρL , as

ρL = m

qB

B

B
×v = mv⊥

qB

B

B
×

( ∇∇∇s

|∇∇∇s| cosα+ B

B
× ∇∇∇s

|∇∇∇s| sinα

)
= ρL

(
− ∇∇∇s

|∇∇∇s| sinα+ B

B
× ∇∇∇s

|∇∇∇s| cosα

)
.

(3.49)

Similarly to the transformation of particle to guiding-centre, it is recommended to do this
displacement in Cartesian coordinates if the transformation from Cartesian to curvilinear
coordinates is known (or if an inverse mapping or fast root finding algorithm is available).
Otherwise, it helps to perform this operation in a pseudo-Cartesian coordinate system where
the basis vectors are nearly unit vectors, and then invert back to curvilinear coordinates (see
section 3.6.3). After this translation, the components of the velocity must be re-evaluated at
the particle’s position, thus respecting parallel transport of this vector

v i (x) = v ·∇∇∇ui (x) = v j (X )e j (X ) ·∇∇∇ui (x) = ∂ui

∂xk

∣∣∣∣∣
x

∂xk

∂u j

∣∣∣∣∣
X

v j = [Λ−T (x)Λ(X )]i
j v j (X ). (3.50)

Process (3.50) guarantees that the particle’s energy remains equal to that of the guiding-centre.
Unfortunately, the translation slightly modifies the parallel and perpendicular projection of
the particle’s velocity due to the variations of the field (direction and amplitude). This is why
the choice of gyro-angle in equation (3.48) can create a small discrepancy between full-orbit
and guiding-centre trajectories.

For most toroidal MHD equilibrium plasmas, the dominant source of field variation appears
from the gradient of the field strength. The gyro-angle can be automatically chosen such that
the modulus of the magnetic field varies the least from the particle position to the guiding-
centre position. The norm of the perpendicular velocity at both positions is nearly the same

v2
⊥(X ) = 2µ

m
B(X ) ≈ 2µ

m
B(x) = v2

⊥(x)
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3.6. Full-orbit to guiding-centre switching

The same argument applied to HGC = 1
2 mv2

|| +µB + qΦE shows that the parallel velocity
v2
||(X ) ≈ v2

||(x)+q[ΦE (x)−ΦE (X )]/2m. To set the particle position, the Larmor radius vector
ρL is thus chosen perpendicularly to ∇∇∇B

x = X +ρL(X ) = X ± ρL
B ×∇∇∇B

|B ×∇∇∇B |
∣∣∣∣

X
(3.51)

where ρL =
√

2
B(X )

m
q
µ
q ≈

√
2

B(x)
m
q
µ
q . With this prescription, the perpendicular velocity vector

at the guiding-centre position is determined as

v⊥(X ) = q

m
ρL ×B (X ) = v⊥

∇∇∇B −b(b ·∇∇∇B)

|B ×∇∇∇B |
∣∣∣∣

X

The total velocity vector of the particle at the guiding-centre position is

v (X ) = v||(X )b(X )+v⊥(X )
!= v (x)

and is assumed to be the same at the particle position. In Cartesian coordinates, this means
that the components of the velocity vector are equal at both locations. In curvilinear coordi-
nates, these components must be re-evaluated by parallel transport because the basis vectors
change as in equation (3.50). Notice that this procedure could be exploited to implement a
general curvilinear Boris-Buneman integrator.

Ideally, this operation preserves the modulus of the velocity vector, v2 = gi j (x)v i (x)v j (x) =
gi j (X )v i (X )v j (X ), and ensures that the particle’s energy is defined equally to the guiding-
centre’s. Applying several coordinate transformations (matrix multiplications) is however
sensitive to truncation error, as observed from the relative increase in energy in the bottom
plot of figure 3.9.

Matching Pφ from the guiding-centre to the particle position is not enforced in this method.
Depending on the field variation, the small induced discrepancy (see red dashed curve in
bottom right plot of 3.9 and the top right plot showing secular motion in ρ) will accumulate
over successive switches causing an artificial drift (minuscule change in the bounce tips
position). This mismatch is much smaller than the action of Monte-Carlo operators in slowing-
down simulations, as observed on figure 3.10, and is controlled by adjusting the switching
threshold.

3.6.3 Small vector displacements in curvilinear coordinates

In Cartesian coordinates, x = X +ρL is simply written xi = X i + ρ̂i
L , where ρ̂i

L are the Cartesian
components of the Larmor radius vector. In curvilinear coordinates, the coordinates are
formally written ui (x) = ui (X +ρL). This non-linear equation is solvable if the mapping from
Cartesian to curvilinear coordinates is known. This mapping is not often provided and only
the transformation from curvilinear to Cartesian is available. Then, one relies on root finding
algorithms (slow) or linearisation (fast). For current applications, it is sufficient to expand at
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Chapter 3. Particle motion and guiding-centre drift

lowest order in gyro-radius, i.e.

ui (x) = ui (X )+ρL(X ) ·∇∇∇ui +O(ρ2
L) = ui (X )+ρi

L(X )+O(ρ2
L) (3.52)

where ρ j
L =ρL ·∇∇∇u j are the components of the Larmor radius in curvilinear coordinates. From

the general definition of gyro-angle (3.49), the coordinates of the position in the curvilinear
system are expanded at first order as

ρi
L = ρL

(
− ∇∇∇s

|∇∇∇s| sinα+ B

B
× ∇∇∇s

|∇∇∇s| cosα

)
= ρL

(
− g si√

g ss
sinα+ εi j s

p
g

B j

B

1√
g ss

cosα

)
(3.53)

where right-hand side terms are evaluated at the guiding-centre position.

From prescription (3.51), those components are

ρi
L = ρL

B ×∇∇∇B

|B ×∇∇∇B | ·∇∇∇ui = ρL
εi j k

p
g

B j

B

∂k B

N

where

N =
√

|∇∇∇B |2 − (b ·∇∇∇B)2 =
√

(∂mB)g mn(∂nB)− (
B l∂l B

)2 /B 2

Flux coordinates are however singular near the magnetic axis and this expansion can lead to
sensitive results when the norm of the basis vectors diverge. For this reason, it is preferable to
linearise in a pseudo-Cartesian system. For example, if u1 = ρ is a radial flux label, u2 = u is a
poloidal angle and u3 = v is a toroidal angle, the pseudo-Cartesian coordinates are defined∣∣∣∣∣∣∣

X = (R0 +aρ cosu)cos v
Y = (R0 +aρ cosu)sin v
Z = aρ sinu

(3.54)

where R0 is the major radius and a the minor. Then, the small displacement is written in the
pseudo-Cartesian system as

X i (x) ≈X i (X )+ρL ·∇∇∇X i =X i (X )+ρ j
L(X )

∂X i

∂u j

where the jacobian matrix ∂X i

∂u j is easily obtained from (3.54) and ρ j
L =ρL ·∇∇∇u j are again the

components of the Larmor radius in curvilinear coordinates (3.52). After this operation, the
X i coordinates are easily inverted back to the original curvilinear coordinates.

3.7 Conclusions

This chapter mainly focuses on the equations of motion of charged particles in general mag-
netic fields. The strong relation between the topology of field-lines and particle orbits is
illustrated with the use of curvilinear coordinates in both the full-orbit formulation and the
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3.7. Conclusions

guiding-centre approach. Several choices of variables are proposed for deriving first-order
GCDE. The resulting equations are proven to be algebraically identical. The parallel velocity is
used as a pivot variable in the non-canonical guiding-centre Lagrangian, in which anisotropy
and parallel perturbations can be (trivially) included. By studying analytic full-orbits in a
simple example of purely sheared magnetic field, it was realised that the Baños drift term is
missing in the first-order Lagrangian treatment of GCDE. This term appears to be important in
low-aspect ratio devices, where the parallel current and shearing of field-lines can significantly
contribute to the variation of the magnetic field at the scale of energetic ion Larmor radi. A cri-
terion is proposed to map the regions with strong field variation. The importance of gradients,
curvature and curl of B is analysed for a few fusion devices, including JET, Wendelstein-7X
(W7X) and MAST. A 0.27/B0R0 ¿ 1 estimation is proposed for fusion alpha particles in large
aspect ratio machines. The field variation criterion is used in VENUS-LEVIS to switch from
guiding-centre to a full-orbit treatment of the particle motion. The difficulty of mapping a
4-dimensional to a 6-dimensional phase-space is addressed and the source of discrepancy is
discussed.
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4 VENUS-LEVIS and numerical methods

Numerical methods are indispensable to provide quantitative as well as realistic predictions of
fast ion transport in fusion plasmas. Various orbit solving codes exist, each having advantages
and limitations. Diversity is important in order to cover various aspects of fast ion dynamics.

One of the earliest guiding-centre codes is ORBIT (White and Chance, 1984). It pioneered
guiding-centre theory and is still used to investigate fast ion motion in various devices as
well as their interaction with MagnetoHydroDynamics (MHD) instabilities, especially Alfvèn
waves. The guiding-centre equations are expressed in canonical variables in order to benefit
from the convenient representation of the magnetic equilibrium in Boozer coordinates (see
section 2.3.3). Such formulation of the drift equations is intrinsically Hamiltonian, but only
applies to nested flux-surface equilibria and small electromagnetic perturbations, which
are constrained to the form δA = αB , i.e. δB = ∇∇∇× (αB), where B is the magnetic field at
equilibrium (for which α= 0).

The drift orbit solver of the HAGIS code (Pinches et al., 1998) is similarly formulated in terms
of Hamiltonian guiding-centre equations based on toroidally symmetric magnetic equilibria
and Boozer coordinates. It additionally calculates the evolution of α via δf feedback of the
particle distribution into a set of wave equations. It is extensively used for the study of fast ion
interaction with Toroidal Alfvèn Eigenmode (TAE).

Over the years, codes have been designed in order to keep up with research developments
that consider non-axisymmetric magnetic configurations in tokamaks. The OFMC code (Tani
et al., 2012) is a pioneer in the investigation of fast ion losses due to magnetic ripple, the error
field from the test blanket modules (TBMs) and edge-localised mode (ELM) mitigation coils.
The non-Hamiltonian formulation of its guiding-centre equations may be suitable for the
study of supra-thermal populations (neutral beam injection) in conjunction with Monte-Carlo
collision operators but potentially problematic in the case of highly energetic ions with large
Larmor radii (α-particles).

The ASCOT code (Hirvijoki et al., 2012), which primarily focuses on fast particle losses and heat
deposition on the wall of the vacuum vessel, reproduces the results of previously mentioned
codes using non-canonical Lagrangian guiding-centre equations, derived for axisymmetric
magnetic equilibria in straight field-line (Boozer) coordinates. In this case, the approach
is identical to ORBIT or HAGIS. Time-dependent magnetic and electric perturbations are
implemented here again via the parallel vector potential and electrostatic potential. Static
Resonant Magnetic Perturbations (RMPs) have been studied by adding to the equilibrium the
vacuum field generated by the external RMP current coils. Full-orbit equations are provided.
Field quantities are interpolated and transformed to Cartesian coordinates using PSLINE
techniques, originally suited for data smoothing. ASCOT’s primary aim appears to be the
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realistic modelling plasma facing components to calculate heat-loads from fast particles but,
with a plasma model limited to axisymmetry, losses are only the result of external perturbations
or ad-hoc MHD activity, which somewhat limits the realism of the approach.

Some codes just focus on solving full-Lorentz equations (exact solver, 6D phase-space), by-
passing the issues related to guiding-centre formulations and the adiabatic expansion of
magnetic moment. The major drawback of such codes is computational efficiency; their
range of applicability is limited to specific problems, where the number of particles to track
is not too high. CUEBIT (McKay et al., 2008) is an example of a full-orbit code that has been
applied to heavy impurity transport in rotating plasmas using ad-hoc axisymmetric circular
or Solov’ev analytic equilibria (Solov’ev, 1968) in cylindrical coordinates. The full-orbit code
SPIRAL (Kramer et al., 2013) is used to quantitatively study a variety of fast ion phenomena
in tokamaks. The axisymmetric equilibrium and vacuum fields are based on experimental
measurements of the poloidal flux, reconstructed with EFIT (Lao et al., 1985). MHD activity is
added via an interface with the linear resistive two-fluid code M3D-C1 (Jardin et al., 2008). Fast
ion distribution profiles are imported from TRANSP/NUBEAM simulations (Pankin et al., 2004)
and the effects of high harmonic fast wave heating is addressed. The pragmatic approach
of SPIRAL depends on the precise evaluation of the electromagnetic fields and robust time-
integration schemes via the NAG numerical libraries. It delivers quantitative results of fast ion
losses and heat-loads on the plasma-facing components.

In this chapter, the development of the orbit code VENUS-LEVIS is detailed. VENUS-LEVIS
was inspired by the VENUS code (Fischer et al., 2002), but has been redesigned and rewritten
from scratch in FORTRAN 2003 in order to match modern performance, modularity and clarity
criteria. Capable of addressing various phenomena related to fast particles, one of the main
goals of the VENUS-LEVIS project is to reconcile methods from guiding-centre theory with full-
orbit equations in general three-dimensional magnetic geometry, thus providing a versatile
and flexible orbit solver. It is suited for the study of fast particles in tokamaks as well as
in stellarator devices. The outcome of VENUS-LEVIS’s runs is a self-consistent (Particle-In-
Cell (PIC)) estimation of the saturated fast ion distribution, power deposition, losses and
flux-averaged moments (fast ion density, pressure, current, etc.). It is typically used to study
the impact of 3D global magnetic field configurations on fast ion losses, fast ion transport,
power deposition from heating devices such as Neutral Beam Injection (NBI) or Ion Cyclotron
Resonance Heating (ICRH).

4.1 Code description

VENUS-LEVIS excels at solving the trajectories of an ensemble of Klimontovich markers (Ay-
demir, 1994). The evolution of supra-thermal distributions is assessed by calculating mo-
ments of the distribution at regular intervals called diagnostic times, as depicted on figure 4.1.
Between diagnostic times, particles are pushed in phase-space using general curvilinear coor-
dinates Guiding-centre Drift Equations (GCDE) (3.12) or full-orbit equations (3.7). Although
lower order schemes can be loaded, a fourth-order Runge-Kutta integrating scheme is gener-
ally used in both cases. An adaptative time-step is employed for simulations over long times
(several slowing-down times), in order to focus numerical effort around the delicate regions of
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diagnostic time

particles

CPU

Figure 4.1 – Sketch of the steps carried out by VENUS-LEVIS. The code is trivially parallelised by letting
each processor solve the dynamics of only a subgroup of markers.

the equilibrium, like near the magnetic axis, the internal boundary of a 3D kink displacement
(see section 5.2) or near the last closed flux-surfaces of a confined plasma. For finer precision
around those areas, the time-step d t is set inversely proportionally to the particle’s velocity
v (Kovanen and Core, 1993), proportionally to the guiding-centre phase-space Jacobian (de-
nominator of equations of motion) Bl W ∗l as well as to the radial flux label s. The adaptive
RK4 time-step is thus set as

d t =C
sα

v
Bl W l =C

sα

v

p
g Bl B∗l

where C is a control parameter and α some arbitrary power relaxing the dependency on s
away from the magnetic axis (typically α= 1/4). The varying time-step for full-orbit equations
is usually set as a fraction of the gyro-period, d t ∝ qB/m.

VENUS-LEVIS handles full 3D magnetic fields in arbitrary coordinate systems. This is a key
advantage making it possible to import magnetic configurations from various MHD equi-
librium codes, such as VMEC or ANIMEC or stability codes, such as TERPSICHORE (Anderson
et al., 1990) or MINERVA (Aiba et al., 2009), or to represent analytic magnetic fields, such as
Solov’ev equilibria, or arbitrary fields in plain Cartesian coordinates. The components of
the electromagnetic field and the metric elements are controlled in separate modules such
that the coordinate system is replaceable at compile time and the formulation stays gen-
eral. The magnetic components and field representation used in VENUS-LEVIS are derived in
section 2.3.3 and B.1.

The magnetic fields and properties of the background plasma remain fixed throughout a
simulation. The influence of the background plasma over energetic particles is emulated via
Monte-Carlo collision operators which account for both slowing down and pitch angle scat-
tering phenomena, as described in section 4.5. At each time step, a series of kicks increment
the particles energy and pitch-angle to reproduce Coulomb interaction with the background
plasma.

The challenging task of following particles over long (slowing-down) timescales, while resolv-
ing the frequent crossing of particles through the magnetic axis and other difficult regions
of the 3D equilibrium, has required the development of a robust interpolation scheme that
produces a continuous representation of the fields. This unconventional scheme is based on
cubic splines in the radial direction and Fourier reconstruction in the poloidal and toroidal di-
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Figure 4.2 – VENUS-LEVIS flow chart

rection, most suited for equilibria generated by codes that minimise the poloidal and toroidal
mode spectrum, such as VMEC (Hirshman and Whitson, 1983) or ANIMEC (Cooper et al., 2009).
Proper boundary conditions must be imposed on the cubic splines in order to deal with
the singular nature of the magnetic axis. This is especially important for non-axisymmetric
configurations, where orbits naturally and periodically come close to the magnetic axis. The
spline-Fourier method for computing derivatives makes the implementation in general curvi-
linear coordinates of both guiding-centre and full-orbit equations of motion convenient. The
gain in accuracy is claimed to be worth the additional computer resources compared to faster
algorithms, noting that the technique requires low amounts of memory.

The various steps carried out within a VENUS-LEVIS run are summarised on the flow-chart of
figure 4.2.

Figure 4.3(a) illustrates a full-orbit and guiding-centre motion computed with VENUS-LEVIS
in the case of a trapped ion (banana orbit) in a typical axisymmetric equilibrium from VMEC.
The equilibrium is based on MAST hybrid-like plasmas where the reversed q-profile has its
minimum qmi n close to unity1. This setup is also the host of a 3D MHD equilibrium code
solution known as the helical core (Cooper et al., 2011b) which has the characteristics of
a saturated ideal internal kink. Figure 4.3(b) shows the orbit (full and guiding-centre) of a
passing ion in this particular configuration, confined in the inner kinked region (depicted
by the tilted flux surface in transparent yellow). To further illustrate the versatility of the
formulation and its application to 3D magnetic configurations, figure 4.4 displays the orbit of
a deeply trapped 3He2+ ion heated by ICRH up to H = 1MeV in W7X stellarator2.

In all these examples, VMEC native coordinates were used to represent the fields and to evolve
the equations of motion.

In addition to the application to fast ion transport described in this thesis, it is mentioned
that phenomena like runaway electrons can be investigated, thanks to the implementation of

1Characteristic values of the toroidal magnetic field on the magnetic axis are B0 = 0.4T, major radius R0 = 0.95m,
minor radius a = 0.54m and qmi n ∼ 1 at ρmi n ∼ r /a = 0.435.

2Characteristic values of the toroidal magnetic field on the magnetic axis are B0 = 2T, major radius R0 = 10.9m,
minor radius a = 0.6m.
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4.1. Code description

(a) Trapped (banana) D+ ion at H = 10KeV, v0||/v =
0.55, ρ0 = 0.7 with a Larmor radius ρ⊥ ≈ 5.6cm in ax-
isymmetric equilibrium.

(b) Passing D+ ion at H = 10KeV, v0||/v = 0.6, ρ0 =
0.22 with a Larmor radius ρ⊥ ≈ 4.1cm in helically
kinked core equilibrium.

Figure 4.3 – Orbits computed by VENUS-LEVIS in Mega-Ampère Spherical Tokamak (MAST) equilibria
using the guiding-centre equations (red) and full-orbit equations (green). Blue transparent surface
represents the axisymmetric last closed flux-surface of the considered MAST equilibrium. Yellow
transparent surface is the 3D flux-surface at the average radial position of the particle.

Figure 4.4 – Deeply-trapped 3He2+ at H = 1MeV, v0||/v = 0.05, ρ0 = 0.6 with a Larmor radius ρ⊥ ≈
6.2cm. Guiding-centre calculation in red and full-orbit in green. Blue transparent surface represents
the last closed flux-surface of W7X stellarator equilibrium.
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Figure 4.5 – Duration of a given particle simulation based on an axisymmetric equilibrium from ANIMEC
(11 poloidal modes) using different interpolation techniques as a function of the number of time steps.

relativistic guiding-centre equations (C.16-C.17). Anomalous transport is also modelled with
another set of Monte-Carlo operators built in VENUS-LEVIS (Albergante et al., 2012).

4.2 Spline-Fourier interpolation

Solving the motion of charged particles requires the precise evaluation of the electromagnetic
field and derivatives along its trajectory. For realistic and experimentally relevant simulations,
the magnetic structure is provided by an MHD equilibrium code, in our case VMEC/ANIMEC,
TERPSICHORE (Boozer representation) or MINERVA, as a series of scalars on a finite number
of grid points. In most codes, fast and simple schemes are deployed over large 3D meshes
(tri-linear, tri-cubic, p-splines, etc. . . ) but the accuracy of those finite element techniques is
rather limited. Smoothness of the equations of motion is crucial, especially in 3D equilibria,
for simulations over long timescales with the intention of obtaining saturated NBI or alpha
populations (typically ∼10’000 bounce periods or half a million gyro-turns), or else numeri-
cal error rapidly accumulates and ruins the convergence properties of the time-integration.
Hereafter, a convenient scheme is proposed, automatically guaranteeing continuity and ana-
lyticity of the fields as well as their derivatives, regardless of the number of grid points. It is a
combination of cubic splines in the radial direction and Fourier modes in the poloidal and
toroidal directions. A reason for this choice is that most equilibrium codes readily deliver a
decomposition in sine and cosine functions for the toroidal and poloidal angles of the equilib-
rium flux surfaces, as well as all components (covariant and contravariant) of the magnetic
field. VMEC/ANIMEC, in particular, yields a minimum Fourier spectrum representing the MHD
magnetic equilibrium studied (typically ∼ 12 modes for axisymmetric cases, ∼ 130 modes for
3D cases). Recomposing the field quantities at every time-step - an a priori computationally
expensive task - actually protects the order of the integration scheme. In conjunction with
a high-order integrator (RK4 or better), the spline-Fourier technique competes well against
faster and more economical solutions in terms of precision versus Computer Processing Unit
(CPU)-time. Figure 4.5 shows that it is half the speed of tri-linear interpolation and takes just
20% more time than tri-cubic interpolation in the case of an axisymmetric equilibrium.
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4.2. Spline-Fourier interpolation

The spline-Fourier technique occupies far less computer memory than other mesh-based tech-
niques, for which the poloidal and toroidal directions are discretised using a massive amount of
grid points only to obtain comparable precision. Derivatives represent additional fields to store
in memory when using mesh-based techniques, while they are automatically produced with a
single spline-Fourier field. A low memory imprint is useful on super-computing machines
where many processors communally share the memory of a single node. The spline-Fourier
technique might even be appealing for Graphics Processing Unit (GPU) implementations. On
the down side, the number of operations per iteration grows proportionally to the number of
modes used, such that, in the case of 3D magnetic fields, it effectively becomes 10 to 15 times
slower than tri-linear interpolation. Nevertheless, the precision acquired of the computed
trajectories is worth the extra CPU time. Conservation properties, e.g. equations (3.19-3.20)
and (3.8-3.9), are degraded by the imprecision involved in numerical time-integration, by
data interpolation and ultimately by floating-point errors. Unlike mesh-based techniques,
the accuracy of the spline-Fourier interpolation technique is independent of the number of
grid points or the number of modes, as seen on figure 4.6. By virtue of the fourth order Runge-
Kutta scheme, orbits satisfy conservation of energy and toroidal momentum at a convergence
rate equal to the fourth power of the fixed time-step. While tri-linear and tri-cubic methods
saturate (horizontal lines in figure 4.6) because the number of available grid points is fixed,
the spline-Fourier technique reaches machine precision, limited by floating-point errors. By
reducing the number of poloidal grid points by a factor four, the saturation point of tri-linear
or tri-cubic methods rises by at least an order of magnitude. A similar loss of precision is
observed when reducing the number of radial grid points. To reach the convergence properties
of the spline-Fourier technique with finite-difference methods in the case of 3D fields, the
mesh has to be so fine that the limiting factor is the available amount of CPU memory. The
trend on super-computing machines is to increase the number of processors per node but
not necessarily providing more memory. These mesh-based techniques appear less suited for
those newer architectures.

4.2.1 Fourier recomposition

In a more detailed description of the spline-Fourier scheme, let the variables (s,u, v) define
the coordinate system where s =Φ/Φedge ≈ r 2/a2 is the radial variable proportional to the
toroidal magnetic flux, u is a poloidal angle and v is the geometric toroidal angle. Any quantity
Y (s,u, v) from VMEC/ANIMEC, TERPSICHORE or MINERVA is expressed either as3

Y = ∑
m,n

Ymn(s)cos(mu −nv) or Y = ∑
m,n

Ymn(s)sin(mu −nv).

To speed up the Fourier reconstruction, instead of calling the implicit cosine or sine functions
for each m,n couple (computationally expensive), the list of cos(mu −nv) and sin(mu −nv)
is generated by consecutive multiplication of unity in the complex plane by e i u and e−i v , then

3For simplicity, stellarator symmetry is considered here such that quantities are either purely cosine or purely
sine functions. It is straightforward to relax this condition.
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Figure 4.6 – Convergence study of a trapped ion at H = 30 KeV, v||/v = 0.7, ρ0 = 0.74 with Larmor
radius ρ⊥ ≈ 5.4cm evolved for t = 3 ·10−4s, using different interpolation routines. The time-step d t is
normalised to the gyro-period τL . (left) maximum relative energy variation ∆E/E0 = |1−E/E0|. (right)
maximum relative toroidal momentum variation ∆Pφ/Pφ0 = |1−Pφ/Pφ0|. The tri-linear and tri-cubic
mesh involved 288 radial times 256/64 poloidal grid points multiplied by 3 to include derivatives,
whereas spline-Fourier required 288×4 radial coefficients times 11 modes.

taking the real part for cosine, respectively the imaginary part for sine. For example,

cos(mu −nv) = Re
[

e i u . . .e i u︸ ︷︷ ︸
m×

e−i v . . .e−i v︸ ︷︷ ︸
n×

]
(4.1)

Since multiplication comes with a small floating-point error, the cumulative error increases
proportionally to the mode number, as depicted on figure 4.7(a). Therefore, this fast multipli-
cation technique is used if the number of modes to reconstruct is low (< 100). The obtained
speed-up is between 1.5 and 2 as shown on figure 4.7(b).

Thanks to Fourier reconstruction, derivatives along u or v are analytic operations. For example,
if Y is a cosine based function, its first derivative along the poloidal direction is reconstructed
as

∂Y

∂u
=− ∑

m,n
mYmn sin(mu −nv).

Derivatives along the toroidal direction and higher-order derivatives have similar expressions.
These expressions are crucial to yield smooth and continuous guiding-centre or full-orbit
equations, where derivatives appear in the calculation of metric elements or field curvature
and gradients.

4.2.2 Radial cubic splines

The radial direction in ANIMEC is discretised on a linear grid in flux label {si }i=1,Ns and only
a finite number of Fourier coefficients {Ymn,i } are known. Cubic splines are used to ensure
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Figure 4.7 – Properties of the fast multiplication scheme.

analyticity and continuity of functions Ymn(s). This choice over higher or lower order interpo-
lation methods is justified by the fact that the equations of motion contain, at worst, second
derivatives; cubic splines happen to be globally continuous functions up to second derivatives.
Other methods of interpolation using a reduced number of grid-points (linear, quadratic,
cubic, Bézier, polynomial, etc. . . ) are continuous only on portions of the mesh, such that
moving from one segment to the next triggers spurious discontinuities in first and second
derivatives.

In defining cubic splines, each discretised Fourier coefficient is represented by a collection of
Ns −1 third-degree polynomials. For interval s ∈ [si , si+1],

Ymn(s) = Pmn,i (s) = Amn,i +Bmn,i (s − si )+Cmn,i (s − si )2 +Dmn,i (s − si )3. (4.2)

By virtue of this formulation, derivatives in s are exact, i.e. they are provided by (mn indices
are dropped for simplicity hereafter):

dY

d s
(s) = P ′

i (s) = Bi +2Ci (s − si )+3Di (s − si )2 d 2Y

d s2 (s) = P ′′
i (s) = 2Ci +6Di (s − si ).

Coefficients Ai , Bi , Ci and Di are uniquely defined via the following linear system of equations

Pi (si ) = Yi Pi (si+1) = Yi+1 P ′
i (si+1) = P ′

i+1(si+1) P ′′
i (si ) = P ′′

i−1(si ) (4.3)

This requirement essentially means that those splines, as well as their first and second deriva-
tives, are continuous functions from one interval to the next, ensuring that the equations
of motion are continuous and smooth throughout the radial direction. The spreading of
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numerical error is thus minimised and longer orbit simulations are made possible.

In order to solve the linear system above, it is practical to define t = s−si
si+1−si

and express the
cubic polynomial in its symmetric form, i.e.

Pi (s) =Qi (t ) = (1− t )Yi + tYi+1 + t (1− t ) [(1− t )ai + tbi ]

which trivially satisfies the first and second conditions of (4.3), Qi (0) = Pi (si ) = Yi and Qi (1) =
Pi (si+1) = Yi+1. The third condition of (4.3) is automatically respected if, for ki ≡ P ′

i (si ),{
ki = Yi+1−Yi+ai

si+1−si

ki+1 = Yi+1−Yi−bi
si+1−si

⇐⇒
{

ai = ki∆i+ 1
2
−δi+ 1

2

bi =−ki+1∆i+ 1
2
+δi+ 1

2

where ∆i+ 1
2
= si+1 − si and δi+ 1

2
= Yi+1 −Yi were defined4. Finally, the condition of second

derivative continuity, last of (4.3), yields a linear system of equations for coefficients {ki }i=1,Ns

ki−1

∆i− 1
2

+2

(
1

∆i− 1
2

+ 1

∆i+ 1
2

)
ki + ki+1

∆i+ 1
2

= 3

 δi− 1
2

∆2
i− 1

2

+
δi+ 1

2

∆2
i+ 1

2

 . (4.4)

This system is self-consistent (closed) when boundary conditions are prescribed, of which
various choices are discussed in the next section 4.2.3. The linear system (4.4) is visualised as
a matrix multiplication, M~k =~v , where M is a tri-diagonal symmetric matrix, with diagonal
elements {di }i=1,Ns and upper-diagonal and lower-diagonal elements {ui }i=1,Ns−1,

di = 2
(
∆−1

i− 1
2
+∆−1

i+ 1
2

)
ui =∆−1

i+ 1
2

vi = 3
(
δi− 1

2
∆−2

i− 1
2
+δi+ 1

2
∆−2

i+ 1
2

)

The desired coefficients are obtained by inverting M , i.e.~k = M−1~v . This task is performed in
O(Ns) steps with the so-called Thomas algorithm (see Thomas, 1949). The original polynomial
coefficients of equation (4.2) are finally recovered using the following relations

Ai = Yi Bi = ki Ci =
3δi+ 1

2
− (ki+1 +2ki )∆i+ 1

2

∆2
i+ 1

2

Di =
(ki+1 +ki )∆i+ 1

2
−2δi+ 1

2

∆3
i+ 1

2

.

Notice that, for equally-spaced grid points, ∆i+ 1
2
= ∆, the matrix elements, as well as the

Thomas algorithm, are somewhat simpler.

4.2.3 Spline boundary conditions

Various boundary conditions can be imposed on the linear system (4.4), thus providing distinct
physical constraints.

4The 1
2 notation highlights the direction of the difference, which is convenient when it comes to applying parity

transformations.

70



4.2. Spline-Fourier interpolation

Plasma boundary : The so-called natural or free-end condition is applied at the last-closed
flux-surface (sNs = 1), for which the second derivative is set to zero P ′′

Ns−1(sNs = 1) = 0, yielding

dNs = 2∆−1
Ns− 1

2
vNs = 3δNs− 1

2
∆−2

Ns− 1
2

Magnetic axis : The choice of boundary conditions for the magnetic axis is critical because it
is a singular point in toroidal coordinates. Also, in 3D configurations, particle orbits can often
cross its path. The boundary condition must respect the fact that, at s = 0, no fields depend
on the poloidal angle. Therefore modes with m 6= 0 are set to zero on the axis. Additionally,
imagining that the radial direction continues to negative values as if the poloidal angle was
flipped by 180 degrees, modes with m = 0 are even functions of s, and modes with m 6= 0
odd. Boundary conditions for even/odd functions must reflect the fact that, if the positive
grid points were duplicated onto the negative side (yielding double the amount of grid points
{si }i=−Ns ,...,Ns with s−i =−si ), the spline would pass through Y−i =±Yi . It is seen hereafter that
there is no need to double the number of points; oddness or evenness can be ensured with a
specific set of boundary conditions.

Under the so-called parity transformation (i →−i ), coefficients are altered as

∆−i+ 1
2
= s−i+1 − s−i =−si−1 + si =∆i− 1

2
δ−i+ 1

2
= Y−i+1 −Y−i =±(Yi−1 −Yi ) =∓δi− 1

2

which, in matrix language, means that the parity operator P , acting on M and ~v , possesses
the properties that P M = MP and P~v =∓~v . It is therefore concluded that~k transforms under
parity as5

P~k = P M−1~v = M−1P~v =∓M−1~v =∓~k.

Since k−i =∓ki , the negative axis is redundant and the system can be solved on the positive
axis only.

In the case where the first grid point s0 = 0 (∆ 1
2
= s1), odd boundary conditions are similar to

the natural condition in that the second derivative is zero (inflection point), whereas even
boundary conditions imply that the first derivative is zero and the function has an extremum
on the magnetic axis. This statement is summarised in the following table:

even (s0 = 0) odd (s0 = 0)

k0 = 0, u0 = 0 Y0 = 0
d1 = 2(s−1

1 +∆−1
3
2

) d0 = 2
s1

v1 = 3

(
δ 1

2
s−2

1 +δ 3
2
∆−2

3
2

)
v0 = 3 Y1

s2
1

These conditions are referred to as full-mesh axis boundary conditions.

If the first positive grid point s1 is not on the magnetic axis, then s0 =−s1,∆ 1
2
= 2s1, δ 1

2
= Y1∓Y1

and the table of axis boundary conditions becomes:

5This could have been deduced from the fact that the derivative of an even/odd function is odd/even.
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even (s1 6= 0) odd (s1 6= 0)

d1 = 1
2 s−1

1 +2∆−1
3
2

d1 = 3
2 s−1

1 +2∆−1
3
2

v1 = 3δ 3
2
∆−2

3
2

v1 = 3

(
Y1

2s2
1
+δ 3

2
∆−2

3
2

)

These conditions are referred to as half-mesh axis boundary conditions. In practice, with half-
mesh splines, one extra negative grid point is included, so that interpolation in the interval
between −s1 and s1 is made possible. This extra segment satisfies k0 = ∓k1 and its spline
coefficients are given by

even (s0 =−s1) odd (s0 =−s1)

A0 = A1 A0 =−A1

B0 =−B1 B0 = B1

C0 = B1
2s1

C0 = 3
2s1

(
A1
s1

−B1

)
D0 = 0 D0 = 1

2s2
1

(
B1 − A1

s1

)
=− C0

3s1

Figure 4.8(a) illustrates the relevance of boundary conditions for particles skirting the magnetic
axis, where the correct half-mesh boundary conditions (left-hand side of figure 4.8(a)) were
exchanged with full-mesh ones (right-hand side of figure 4.8(a)). With the wrong boundary
conditions, the motion of this H+ ion describing a potato orbit looks rather unphysical in the
vicinity of the magnetic axis. Such a particle would end up on vastly incorrect orbit if it were
deflected by a collision during its passage near the magnetic axis.
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(a) Boundary conditions impacting the potato orbit of an H+ ion
at H = 50 KeV, v||/v = 0.6, ρ0 = 0.59 with Larmor radius ρ⊥ =
7.7cm. On the left, the correct half-mesh boundary conditions
are being used and on the right, erroneous full-mesh boundary
conditions.
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(b) Effect of basing cubic splines on different
grids for potato trajectories close to the mag-
netic axis. In the case of uniform grid in flux
(in dashed red), a spurious wobble appears
because the singular terms of the equations
of motion are poorly represented by cubic
functions.

Figure 4.8 – Effect of boundary conditions and grid substitution on particle orbits skirting the singular
magnetic axis
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4.2.4 Grid substitution

As mentioned previously, the radial variable is proportional to the magnetic flux, i.e. propor-
tional to the square of minor radius s ∼ r 2/a2. Consequently, when approaching the magnetic
axis, the coordinate system becomes singular and induces divergent terms, for example in
R(s,u) ≈ Rmajor +Rminor

p
s cosu, ∂sR ∝ 1/

p
s. Cubic splines based on a uniform grid in s will

poorly represent these divergences. It is advised to make 1/
p

s terms appear explicitly. This is
done by constructing the splines over an alternate grid defined by some function w(s), such
that

Pi (s) = Ai +Bi [w(s)−w(si )]+Ci [w(s)−w(si )]2 +Di [w(s)−w(si )]3 =Qi (w)

and derivatives become

P ′
i (s) = dQi

d w

d w

d s
= [

Bi +2Ci (w −wi )+3Di (w −wi )2]w ′(s).

Choosing an equidistant grid on an axis scaled by w(s) =p
s is convenient because derivatives

of Qi (w) splines are now regular functions in s as the singular part is supplemented by w ′(s) =
1/(2

p
s). By virtue of this trick, inertial forces in the equations of motion due to the polar-like

coordinate system have the correct behaviour when particles come close to the magnetic axis,
as seen on figure 4.8(b).

4.2.5 Interpolated integrals

The integral of flux quantities is often required, e.g. for computing the vector potential A,
entering in the definition of toroidal momentum Pφ ∼ Aφ = −Ψ, as in equations (3.20) or
(3.9). Compared to other finite element techniques, integrating cubic splines is a straight-
forward analytic operation, which preserves continuity and smoothness throughout the radial
direction. Without continuous integrals, implicit conservation properties (energy and toroidal
momentum conservation in time-independent axisymmetric cases) of the equations of motion
are concealed.

Spline integrals are split into two parts,∫ s

s1

Y (s′)d s′ =
∫ si

s1

Y (s′)d s′+
∫ s

si

Pi (s′)d s′ = ∑
j<i

I j +
∫ s

si

Pi (s′)d s′

The first part is progressively recorded at the construction of the spline as an extra coefficient
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Ii for each interval6. The second integral is expressed as∫ s

si

Pi (s′)d s′ =(
Ai −Bi wi +Ci w2

i −Di w3
i

)
(s − si )

+ (
Bi −2Ci wi +3Di w2

i

)∫ s

si

w(s′)d s′

+ (Ci −3Di wi )
∫ s

si

w2(s′)d s′

+Di

∫ s

si

w3(s′)d s′

where the various integrals involving powers of w(s) are prescribed functions.

4.3 External fields (vacuum fields)

In addition to equilibrium fields, arbitrary perturbations can be included in the total magnetic
field of VENUS-LEVIS. The external magnetic field δB is algebraically added to the equilibrium
Beq such that the total magnetic field is B = Beq +δB . The perturbed field is handled in an
independent module and can be provided in a different coordinate system, e.g. cylindrical
coordinates. The components are then transformed to curvilinear coordinates and added
to the equations of motion (3.12), which entails computing the covariant and contravariant
components of δB , i.e. δB i and δBi , as well as derivatives like ∂ j (δBi ) and ∂ j (δB i ). In both
curvilinear representations, the total magnetic field becomes the sum of the equilibrium and
external field as

B i = B i
eq +δB i Bi = Beq,i +δBi B =

√
B i Bi (4.5a)

∂ j B = 1

2B
∂ j B 2 = 1

2B
(Bi∂ j B i +B i∂ j Bi ) [∇∇∇×δB ]k = εi j k

p
g
∂i (δB j ) (4.5b)

The modulus of the magnetic field B in equation (4.5a) involves the quadratic contraction of
the equilibrium plus external field, so do ∇∇∇B terms in equation (4.5b). This way of making the
external field appear in B as well as in ∇∇∇B ensures that the equations of motion are exact, even
for arbitrarily large perturbations. This is more rigorous than other methods, where those
quantities are assumed to emanate only from the equilibrium magnetic field.

An application of the external field module is the study of fast particle losses due to resonant
magnetic perturbations (RMPs). The latter are purposely induced magnetic fields, produced
by external current coils, in order to mitigate instabilities near the edge of the plasma known
as edge-localised modes (Edge Localised Mode (ELM)s). Although RMPs have been proven to
be beneficial (Evans et al., 2006), they could also be responsible for deteriorating fast particle
confinement and enhancing hot ion losses (Garcia-Munoz et al., 2013b). By forcing a 3D
magnetic structure upon the plasma, RMPs spoil tokamak axisymmetry at the boundary,
producing magnetic islands and stochastic regions. However, the plasma responds by partially

6It is assumed that the integral is zero on the first grid point, i.e. I1 = 0
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absorbing the RMP field (screening). Consistent modelling of the interaction between RMP
and plasma involving screening, edge turbulence, magnetic reconnection and other physics
has been attempted and compared in various codes (Turnbull, 2012). In VENUS-LEVIS, the
external field module is used to include the vacuum RMPs. The complete discussion of RMPs
is left to the later chapter 6.

The vacuum magnetic field created by the RMP coils is computed in a program called Coil.Sphell
(Cooper et al., 2004). This code solves the Biot-Savart law on a mesh, integrating the con-
tribution of each filament with current IC for every coil C (Miyamoto, 1989, section 2.3d)

δB (r ) = µ0

4π

∑
C

IC

∫
C

d l × (r − r ′)
|r − r ′|3 =∑

C

NC∑
i=1
∆BCi (r ) (4.6)

where d l is an infinitesimal displacement along the filament at position r ′ and ∆BCi is the
magnetic field produced by the straight segment i (delimited by points xi and xi+1) of the
closed current loop C

∆BCi = µ0IC

4π

si × ri

|si × ri |
∫

sinθ

R2 dl = µ0IC

4πri sinθi
(cosθi −cosθ′i )

si × ri

|si × ri |
(4.7)

where ri = r −xi and si = xi+1 −xi , cosθi = si · ri /|si ||ri | and cosθ′i = si · ri+1/|si ||ri+1|.

The raw RMP magnetic field δB is provided on a 3D cylindrical mesh in orthonormal cylindri-
cal coordinates. Tri-cubic interpolation (Lekien and Marsden, 2005) is applied to the data in
order to yield a smooth and continuous representation of the components of the RMP field as
well as its derivatives at any given R, Z and φ position

δB = δ̂B
R

êR + δ̂B
Z

êZ + δ̂B
φ

êφ (4.8)

where êM are the orthonormal vectors forming the cylindrical basis. The components of
each field are ultimately expressed in VMEC’s flux coordinate system (s,u, v), where s =Φ/Φe

is the radial variable proportional to the toroidal magnetic fluxΦ (Φe is its value on the last
closed flux-surface), u the poloidal angle and v = φ the geometric toroidal angle. Convert-
ing the components of δB from orthonormal cylindrical to flux coordinates relies on the
knowledge of R(s,u, v) and Z (s,u, v), which are extracted from VMEC’s output and interpolated
in VENUS-LEVIS using the dedicated spline-Fourier scheme. The method to transform the
vacuum fields into flux coordinates is

δB i = [Λ−1]i
j δ̂B

j
δBi =Λ j

i δ̂B j Λ=


∂R
∂s

∂R
∂u

∂R
∂v

∂Z
∂s

∂Z
∂u

∂Z
∂v

0 0 R

 (4.9)

It is straight-forward to find analytic expressions for the derivatives of the matrixΛ, as well as

the derivatives of δ̂B
(R,Z ,φ)

such that it is possible to represent all quantities listed in equations
(4.5b) avoiding the use of finite differences thus preserving precision and smoothness. The
divergence-free condition for the vacuum RMP field is respected in cylindrical coordinates
with a maximum discrepancy of ∇∇∇·B ∼ 10−5 [T/m] on the last closed flux-surface, closest to
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the coils. This error is barely affected by the component transformation and is small compared
to the effect of Monte-Carlo collision operators on particle transport. The evaluation of these
metric elements would not have been tractable without the spline-Fourier interpolation
routine described in section 4.2.

4.4 Neutral Beam Injection module

The source of markers for NBI simulations is calculated externally to VENUS-LEVIS with the
help of a pre-existing set of Matlab routines (Albergante, 2011). Code development was
required to make them compatible with 3D fields. It was also necessary to implement a fast
and robust algorithm to map Cartesian coordinates to flux coordinates. The methods behind
the NBI module are fairly straight-forward and are briefly mentioned in this section.

First, the user prescribes the characteristics of the NBI Positive Ion Neutral Injectors (PINIs)
or uses preset values for the following list of fusion devices: International Thermonuclear
Experimental Reactor (ITER), DEMO, ASDEX, Tokamak à Configuration Variable (TCV), MAST,
Joint European Torus (JET), TFTR, DIII-D, Textor. The information required is: number of
PINIs, starting and end points of the NBI beam, energies and fractions of the injected neutrals,
charge and mass ratios, surface of the PINIs (surface of emission) and angle for the beam
spread. One beam-line per PINI is traced across the magnetic equilibrium and subdivided in
many small segments that are verified to remain within the plasma boundaries. The position
of these segments are mapped from Cartesian coordinates into flux-coordinates using a
dedicated C++ subcode called inverse2Dmap (Pfefferlé and Albergante, 2015). The value of
the background density and temperature are interpolated from experimental profiles (flux
functions). The profiles are used in the following ionisation equation to estimate the number
of neutrals still in the beam

Nb(l ) = Nb(0)e−
∫ l

0 neσeffdl ′

where l is the length along the beam-line from the entry point of the plasma, ne the electron
density, σeff the ionisation/stopping cross-section. Markers are then evenly distributed along
the beam-line and assigned a weight proportional to the ionisation rate d Nb/dl . Finally, a
random perpendicular deviation is set for each marker in order to account for beam spread.
The velocity is projected on the magnetic field so that only the energy E and the pitch-variable
λ= v||/v are recorded for each marker.

4.5 Monte-Carlo collision operators

To settle a factor 2 problem in previous work (Albergante, 2011, section 4.3 and references
therein), the Monte-Carlo collision operators of VENUS-LEVIS is rederived in detail from
Fokker-Planck equations. The variation in time of the hot particle distribution function fα due
to Coulomb collisions against multiple species fβ is generically expressed as the divergence of
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a collisional current as

d fα
d t

= δ fα
δt

∣∣∣
col l

=∑
β

C [ fα, fβ] =−∑
β

∂

∂v
· Jα/β.

In the rest frame of the plasma, the distribution functions of the background species are
assumed Maxwellian

fβ = nβ

(
mβ

2πTβ

)3/2

e
−mβv2

2Tβ = nβp
π3v3

β

e
− v2

v2
β Tβ =

1

2
mβv2

β.

In this case, the collisional current can be shown to reduce to (NRL Plasma Formulary, 2009,
p.35)

Jα/β =−µαβ
mβ

ν
α/β
s v fα− 1

2
ν
α/β
|| v

(
v · ∂ fα

∂v

)
− 1

4
ν
α/β
⊥ (v2I −v v ) · ∂ fα

∂v
(4.10)

where µαβ = mαmβ/(mα+mβ) is the reduced mass and the collision frequencies are given by
(NRL Plasma Formulary, 2009, p.31)

ν
α/β
0 =

Z 2
αZ 2

β
e4 lnΛ

4πε2
0

nβ

m2
αv3

= cαβ
nβ

m2
αv3

(4.11a)

ν
α/β
s = mα

µαβ
ψ(xα/β)να/β

0 (4.11b)

ν
α/β
⊥ = 2

(
ψ+ψ′− ψ

2xα/β

)
ν
α/β
0 (4.11c)

ν
α/β
|| = ψ

xα/β
ν
α/β
0 (4.11d)

and xα/β = v2

v2
β

= mβv2

2Tβ
, Zα,β is the number of charges, e the electric charge, lnΛ the Coulomb

logarithm, ε0 the vacuum permittivity and

ψ(x) = 2p
π

∫ x

0
d t

p
te−t ψ′ = dψ

d x
= 2

p
xp
π

e−x . (4.12)

The ψ function is determined in terms of the error functionΦ as

ψ(x)+ψ′(x) = 2

π

∫ x

0

d tp
t

e−t = 2p
π

∫ p
x

0
e−y2

d y =Φ(
p

x),
p

x
dΦ

d
p

x
= dψ

d x
(4.13a)

Ψ(
p

x) = ψ(x)

2x
, Ψ(z) = Φ− zΦ′

2z2 (4.13b)

where the special functionΨwas defined in anticipation of its later appearance in the final
collision operator.

By using spherical velocity coordinates v = v êv , the collision operator simplifies after pursuing
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the following intermediate steps,

∂

∂v
ν(v) = ∂ν

∂v

∂v

∂v
= ∂ν

∂v
v

∂

∂v
· (νs v fα

)= 1

v2

∂

∂v

(
v3νs fα

)
∂

∂v
·
[
ν||v

(
v · ∂ fα

∂v

)]
= ∂

∂v
·
(
ν||v v

∂ fα
∂v

)
= 1

v2

∂

∂v

(
v4ν||

∂ fα
∂v

)
∂

∂v
·
[
ν⊥

(
v2I −v v

) · ∂ fα
∂v

]
= ∂ν⊥

∂v ��
���

��
v · (v2I −v v

) · ∂ fα
∂v

+ν⊥ ∂

∂v
·
[(

v2I −v v
) · ∂ fα
∂v

]
.

The right term of the last equation is identified as the Lorentz collision operator LC , con-
veniently expressed as a function of the pitch-variable λ = v||/v and the gyro-phase ξ as

LC = 1

2

∂

∂v
·
[(

v2I −v v
) · ∂
∂v

]
= 1

2

[
∂

∂λ

(
1−λ2) ∂

∂λ
+ 1

1−λ2

∂2

∂ξ2

]
. (4.14)

The second term of (4.14) is dropped invoking gyro-phase invariance of the distribution
functions. Collecting all the pieces, the collision operator against Maxwellian species becomes

C [ fα, fβ] = 1

2
ν
α/β
⊥ LC fα+ 1

v2

∂

∂v

[
v3

(
µαβ

mβ
ν
α/β
s fα+ 1

2
ν
α/β
|| v

∂ fα
∂v

)]
(4.15a)

= να/β
λ

LC fα+ 1

v2

∂

∂v

[
v2ν

α/β
E

(
v fα+

Tβ
mα

∂ fα
∂v

)]
(4.15b)

where the pitch-variable and energy frequencies are defined as

ν
α/β
λ

= cαβnβ

m2
αv3

(
ψ+ψ′− ψ

2xα/β

)
= cαβnβ

m2
αv3

[
Φ

(
v

vβ

)
−Ψ

(
v

vβ

)]
(4.16a)

ν
α/β
E = cαβnβ

mαmβv3ψ= cαβnβ
mαTβv

Ψ

(
v

vβ

)
. (4.16b)

The form of equation (4.15b) and the frequencies of equation (4.16) are consistent with the
derivation by Boozer and Kuo-Petravic (1981).

The two terms in (4.15b) can be considered separately to construct the Monte-Carlo pitch-
angle scattering and slowing-down scheme. We first focus on the random kicks on the pitch-
variable. The moments of a generic function g (λ) are expressed as

< g >=
∫ 1

−1
g (λ) fαdλ.

By rewriting the Lorentz collision operator (να/β
λ

is independent of λ) as

δ fα
δt

∣∣∣
λ
=∑

β

ν
α/β
λ

LC fα =∑
β

{
∂

∂λ

(
ν
α/β
λ

λ fα
)
+ 1

2

∂2

∂λ2

[
ν
α/β
λ

(
1−λ2) fα

]}
,
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the full time-derivative of < g > is easily expressed after integrating by parts as

d

d t
< g >=∑

β

ν
α/β
λ

[
−< d g

dλ
λ>+1

2
< d 2g

dλ2 (1−λ2) >
]

.

The average effect of collisions on g (λ) =λ is thus found to be

d <λ>
d t

=−∑
β

ν
α/β
λ

<λ>

and on the standard deviation g (λ) =λ2

d <λ2 >
d t

=∑
β

ν
α/β
λ

(1−3 <λ2 >)
dσ2

d t
= d

d t

(<λ2 >−<λ>2)=∑
β

ν
α/β
λ

(1−<λ2 >).

As in the work by Boozer and Kuo-Petravic (1981), this knowledge is used to construct the
random pitch-angle scattering and slowing-down increments of λ (final result below).

Focusing now on the energy term of the collision operator, the moments from a generic
function k(v) = K (E), where E = 1

2 mαv2, are

< K >=
∫ ∞

0
k(v) fα4πv2d v.

Noticing that dE/d v = mαv , the energy collision operator is written in the following conve-
nient form in order to compute various moments

δ fα
δt

∣∣∣
β,E

= 1

v2

∂

∂v

{
v2 fα

[
ν
α/β
E v

(
1− Tβ

ν
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E
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ν
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E Tβ

mαv

]}
+ 1

v2

∂2

∂v2

[
v2 fα

Tβ
mα

ν
α/β
E

]

so that the full time-derivative of < K > becomes

d

d t
< K >=∑

β

[
−< dk

d v
νE v

(
1−Tβ

d lnνα/β
E

dE

)
>+2 < dk

d v

ν
α/β
E Tβ

mαv
>+< d 2k

d v2

ν
α/β
E Tβ

mα
>

]
.

Concerning the effect of collisions on K (E) = E ,

d < E >
d t

=∑
β

[
−< mv2ν

α/β
E

(
1−Tβ

d lnνα/β
E

dE

)
>+2Tβ < να/β
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]
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β

2να/β
E

[
E −

(
3

2
+ E

ν
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E

dνα/β
E

dE

)
Tβ

]
> .

Assuming that fα ∝ δ(E −E0) is a delta-function for each marker, the time-variation of the
mean energy simplifies to

δE0

δt
=−∑

β

2να/β
E

[
E0 −

(
3

2
+ E0

ν
α/β
E

dνα/β
E

dE

)
Tβ

]
.
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where να/β
E and dνα/β

E /dE are evaluated at E0.

Noticing that dE 2/d v = m2v3 and d 2E 2/d v2 = 3m2v2, the variation of K (E) = E 2 is

d < E 2 >
d t

=∑
β

[
−< 4E 2ν

α/β
E

(
1−Tβ

d lnνα/β
E

dE

)
>+10Tβ < Eνα/β

E >
]

.

The standard deviation thus becomes

dσ2

d t
= d

d t

(< E 2 >−< E >2)= 4
∑
β

ν
α/β
E TβE0

Finally, the effective Monte-Carlo kicks on numerical marker α are constructed as

∆λ=−∑
β

ν
α/β
λ

λ∆t +Rλ

√(
1−λ2

)∑
β

ν
α/β
λ
∆t (4.17)

∆E =−∑
β

2να/β
E ∆t

[
E −

(
3

2
+ E

ν
α/β
E

dνα/β
E

dE

)
Tβ

]
+2RE

√∑
β

ν
α/β
E TβE∆t (4.18)

where Rλ,E =±1 are random plus or minus signs and ∆t is the minimum time-step among
characteristic collisional times τ= 1/ν and the RK4 time-step.

The resulting Monte-Carlo scheme is the same as in the ASCOT code (Hirvijoki et al., 2012).
Hirvijoki et al. (2013) have recently found a more consistent formulation of the guiding-centre
collision operators. Future work will include these new results in VENUS-LEVIS.

4.6 MAST neutron camera synthetic diagnostic

A virtual diagnostic of MAST neutron camera is implemented in VENUS-LEVIS in order to
compare simulations of fast ions with experimental measurements. This virtual diagnostic
is detailed in this section because it plays a role in section 5.3.1 where simulated fast ion
redistribution patterns in MAST Long-Lived Modes (LLMs) are compared against neutron
camera signals.

The neutron camera system collects neutrons emitted from the plasma due to fusion reactions.
The advantage of this experimental diagnostic is that it captures processes only triggered
by fast particles, thus yielding a representative measure of the fast particle density. A lead
collimator makes its field of view comparable to a narrow cone, pointing through the plasma
at mid-plane (see figure 4.9). At every point in space, there is a small probability that fast
particles undergo fusion processes and produce neutrons. This probability is estimated via
well tabulated fusion cross-sections, as explained hereafter. Assuming that neutrons are
emitted isotropically from fusion processes (valid in the centre of mass of the colliding ions,
but assumed in the lab frame), the number of neutrons pointing towards the detector is
proportional to the neutron production rate dR/dV (x), i.e. the number of neutrons produced
per seconds in volume dV . The signal of the detector ε is the sum over the field of view of
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4.6. MAST neutron camera synthetic diagnostic

Figure 4.9 – Mid-plane cut of MAST showing the geometry of the lines-of-sight (red lines) and the field
of view (green limiting lines) of the neutron camera diagnostic. Courtesy of Cecconello et al. (2012).

the produced neutrons. Because of the small opening, the signal is approximated as the line
integral of the neutron production rate times the detector’s surface. This quantity depends on
the impact parameter b which represents the minimal distance between the line-of-sight and
cylindrical axis (blue arrows on figure 4.9). For an arbitrary choice of axis where the line of
sight is along the y direction, the signal is roughly proportional to

ε(b) ∝
∫

FoV
G(x)

dR

dV
dV ≈ SNC

∫
d y

dR

dV
(b, y,0) = 2SNC

∫ Rmax

b

dR

dV

(
b,

√
r 2 −b2,0

) r drp
r 2 −b2

where G(x) is the solid angle of the neutron detector seen at x , SNC the surface of the detector
and Rmax the maximum radius of the plasma.

In fact, the precise evaluation of the neutron camera signal based on the production rate is
performed with the LINE2 code (Cecconello et al., 2010). This code takes into account the
exact geometry of the field of view and sensitivity of the detector and produces better results
than the coarse estimation of ε(b) above.

4.6.1 Neutron production rate or emissivity in VENUS-LEVIS

Neutron emissivity is computed at diagnostic time for each marker of the fast ion distribution,
for which fusion reactions between fast particles and the background plasma are taken into
account. Assuming a beam-on-target process, the fusion rate per unit volume is equal to the
reactants’ densities times the process’s reactivity (Miley and Towner, 1975)

dR

dV
(x) =∑

t ,b
nt (x)nb(x) <σv >bt (4.19)
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where the reactivity between beam species b and target species t is the sum over all configura-
tions at a given position x

<σv >bt (x) =
Ï

d v3
bd v3

t ft (x , vt ) fb(x , vb)|vt −vb |σbt (|vt −vb |). (4.20)

In equation (4.20), fb is the beam distribution function, ft the target distribution function and
σbt the fusion cross-section between reactants b and t . The background plasma constitutes
the target reactants and the fast ion population the beam reactants. The fusion cross-sections
are experimentally tabulated functions, for which various parametrisations exist. In the range
of energies from keVs to a few MeVs, an accurate parametrisation is given by Bosch and Hale
(1992) as

σbt (|vt −vb |) =
S(Ecm)

Ecm
e−

BGp
Ecm (4.21)

where Ecm = µ
2 v2 is the energy in the centre of mass, v = |vt − vb | the norm of the relative

velocity,µ=
(

1
mb

+ 1
mt

)−1 = mb mt
mb+mt

the reduced mass, BG =παZb Zt
√

2µc2 the so-called Gamov
constant, α≈ 1/137 the fine-structure constant, c the speed of light, Z the reactants’ charge
and

S(E) = A1 +E(A2 +E(A3 +E(A4 +E A5)))

1+E(B1 +E(B2 +E(B3 +EB4)))
(4.22)

the astrophysical factor expressed as a Pade fraction of polynomials. The Pade coefficients
Ai and Bi of relevant fusion reactions are gathered in table 4.1. It was not possible to find
the exact parametrisation of the reaction T +T → 4He +2n in the literature but only linear
approximations (Mikkelsen, 1989) or a logarithmic polynomial (Slaughter, 1983), valid for
a smaller range of energies. For the study of deuterium NBI, this reaction is irrelevant and
none of the presented results depend on its use. The astrophysical factor S(E) for various

D +T →α+n D +D → T +p D +D →3 He +n 3He +D →α+p

BG [
p

keV] 34.3827 31.397 31.397 68.7508
A1 6.927 ·104 5.557 ·104 5.3701 ·104 5.7501 ·106

A2 7.454 ·108 2.1054 ·102 3.3027 ·102 2.5266 ·103

A3 2.05 ·106 −3.2638 ·10−2 −1.2706 ·10−1 4.5566 ·101

A4 5.2002 ·104 1.4987 ·10−6 2.9327 ·10−5 0
A5 0 1.8181 ·10−10 −2.5151 ·10−9 0
B1 6.38 ·101 0 0 −3.1995 ·10−3

B2 −9.95 ·10−1 0 0 −8.553 ·10−6

B3 6.981 ·10−5 0 0 5.9014 ·10−8

B4 1.728 ·10−4 0 0 0

Table 4.1 – Gamov constant BG and Pade coefficients Ai , Bi parametrising the astrophysical factor of
equation (4.22) for E in keV of various fusion reactions so that the cross-section of equation (4.21) is in
units of millibarn (10−31m2). Courtesy of Bosch and Hale (1992).

fusion processes is displayed on figure 4.10(a) and the resulting cross sections (probability) on
figure 4.10(b). Among those fusion reactions, those that produce neutrons are of interest for

82



4.6. MAST neutron camera synthetic diagnostic

10
0

10
1

10
2

10
2

10
3

10
4

centre of mass energy [keV]

[a
.u

.]

 

 

DT→α+n

DD→T+p

DD→
3
He+n

3
He D→α +p

(a) Astrophysical factor of most
probable fusion reactions.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

centre of mass energy [keV]

σ
 [
b
a
rn

]

 

 

DT→α+n

DD→T+p

DD→
3
He+n

3
He D→α +p

(b) Cross sections of most probable
fusion reactions.

10
0

10
1

10
2

10
3

10
−30

10
−28

10
−26

10
−24

10
−22

fast ion (beam) energy [keV]

re
a
c
ti
v
it
y
 [
m

3
/s

]

 

 

DT→α+n

TD→α+n

DD→
3
He+n

(c) Beam-target reactivity in the
cold-target approximation for vari-
ous neutron producing fusion reac-
tions.

Figure 4.10 – Astrophysical factor, cross-section and beam-target reactivity as a function of the energy
of the centre of mass.

the virtual diagnostic, i.e.

Tt +Db → 4He +n D t +Tb → 4He +n

D t +Db → 3He +n Tt +Tb → 4He +2n

In our PIC simulations, the background target is considered as a Maxwellian distribution with
temperature Tth(x), and the beam distribution is represented by the discretised klimontovich
distribution of numerical markers

ft (x , v ) = nt (x)p
π3vth(x)3

e
− v2

v2
th fb(x , v ) =∑

k
wkδ(x −xk )δ(v −vk )

such that the fusion rate is expressed as

dR

dV
(x) =∑

t ,k
wkδ(x −xk )nt (x) <σv >kt (4.23)

where

<σv >kt (x) = 1p
π3v3

th

∫
d v3

t |vt −vk |σ(|vt −vk |)e
− v2

t
v2

th

The integral over all velocity space is performed in spherical coordinates after the change of
variable v = vt −vk and redefinition of the exponents

v2
t = v2 +2v ·vk + v2

k = v2 +2v vk cosθ+ v2
k d v3

t = d v3 = v2 sinθd vdθdφ

where (θ,φ) are the spherical angles between vk and v and v = |v | = |vt −vk | is the modulus
of the relative velocity. The integral is easily performed over both angles such that only the

83



Chapter 4. VENUS-LEVIS and numerical methods

integral over the modulus v remains

<σv >kt =
2πp
π3v3

th

∫ ∞

0
d v v3σ(v)e

− v2+v2
k

v2
th

∫ π

0
dθ sinθe

− 2v vk cosθ

v2
th

= 1p
πvth vk

∫ ∞

0
d v v2σ(v)

[
e
− (v−vk )2

v2
th −e

− (v+vk )2

v2
th

]
.

The cross-section is redefined for convenience with respect to the relative velocity as

σ(v) = 2S(µ2 v2)

µv2 e−
b
v where b = 2παZb Zt c

Finally, the beam-target reactivity of a given fusion process is calculated at each point in space
as a function of the beam velocity as

<σv >kt=
2

µ
p
πvth vk

∫ ∞

0
d vS

(µ
2 v2)e−

b
v

[
e
− (v−vk )2

v2
th −��

��

e
− (v+vk )2

v2
th

]
(4.24)

The contribution of the second term being always smaller than e−v2
k /v2

th , it is reasonable to
neglect it. To further simplify, the beam-target reactivity is computed in the limit where the
background temperature is low, i.e. vth → 0 (cold target approximation). With this assumption,
the exponential becomes a Dirac function and the integral is easily resolved as

1p
πvth

e
(v−vk )2

v2
th

vth→0−→ δ(v − vk ) ⇐⇒ <σv >k
vth→0−→ 2S

(µ
2 v2

k

)
µvk

e
− b

vk =σvk (4.25)

Figure 4.10(c) displays the beam-target reactivity calculated in the cold-target approximation
for neutron producing DD and DT reactions. The curve for a tritium beam and a deuterium
target differs from that of a deuterium beam and tritium target because the beam velocity
as well as the centre-of-mass energy are different at equal beam energy (due to the mass
difference).

4.7 Hybrid kinetic-MHD model

The formulation of an interface between the MHD stability code MINERVA (Aiba et al., 2009)
and VENUS-LEVIS is described in this section. Concluding results have not yet been obtained
because theoretical and code development is still in progress. It seems however important to
present the modelling approach as well as the current status of the implementation in order
to help future progress. This section thus focuses on laying-out the key ingredients of the
interface as well as the theoretical background.

MINERVA is an advanced code developed by the Japan Atomic Energy Agency for realistic
modelling of MHD modes, such as internal kink modes, ELMs and Resistive Wall Mode (RWM),
in the presence of plasma rotation. It is one of the few codes that treat linear MHD stability
in toroidally rotating systems self-consistently. In particular, it is employed to analyse high

84



4.7. Hybrid kinetic-MHD model

pressure experimental plasma results in JT-60U, the Japanese tokamak experiment. It has
for example clarified when plasma rotation can stabilise or destabilise RWM (Aiba et al.,
2013). So far, however, kinetic effects from supra-thermal particles are neglected. Energetic
particles play an important role on the stability of slowly growing MHD modes like the internal
kink mode and the RWM. Quantitative results are needed to understand the interaction of
energetic particles with toroidal rotation. At the present time, few numerical codes can handle
consistently and quantitatively both fast particles and rotation. We therefore propose to
combine the MINERVA MHD code and the PIC code VENUS-LEVIS with the long-term goal to
simulate the interplay between plasma rotation, energetic particles and linear MHD modes
such as ELMs, internal kink modes and RWM. The MHD model is extended by adding non-
ideal (kinetic) components to the existing MHD equations, thereby applying an alternate
kinetic closure. The interface between MINERVA and VENUS-LEVIS permits many physical
effects to be explored. The novelty and strength of the model reside in the self-consistent
treatment of plasma rotation and the accurate tracking of fast particle orbits in the equilibrium
fields.

The interface works as follows. MINERVA provides the equilibrium fields and solves the evolu-
tion of a spectrum of MHD perturbations. The most unstable is transferred to the orbit solver,
which, using a delta-f PIC method, evaluates the perturbed hot pressure tensor by integrating
the unperturbed particle trajectories and calculating deviations from a given equilibrium
distribution function via a dedicated weight equation, before returning the perturbed hot
pressure tensor to MINERVA for the next iteration of the process. Growth rates and frequencies
of the modes studied are assessed and compared with known results in limiting cases. The
interface is basically a numerical representation of analytic work by Porcelli et al. (1994) and
Helander et al. (1997), extending the results by exactly solving the dynamics of fast particles
and retaining all perturbed components.

4.7.1 MINERVA fields and perturbations with toroidal rotation

Unless specified otherwise, equilibrium quantities are denoted in the remaining of this section
with a subscript 0 as in B0 and perturbed quantities with a δ prefix as in δA.

Equilibrium quantities

MINERVA establishes a standard axisymmetric MHD equilibrium in the presence of toroidal
rotation v0 = R2Ω(Ψ)∇∇∇ζ=Ω(Ψ)eζ, by solving the isothermal Grad-Shafranov equation (2.3.1).
The fields are represented within VENUS-LEVIS using a straight field-line coordinates (Ψ̄,θ,ζ)
where ζ = −φ the geometric toroidal angle7, Ψ̄ = p

Ψ/Ψe the radial variable proportional
to the poloidal magnetic flux and θ the poloidal angle such that the coordinate system is
field-aligned. The equilibrium magnetic field is written as in equation (2.5)

B0 = F (Ψ̄)∇∇∇ζ+∇∇∇ζ×∇∇∇ψ

7The ζ angle is opposite to the geometrical angle φ such that the coordinate system is right-handed.
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where the poloidal magnetic fluxΨ, current profile F , coordinate jacobian
p

g Ψ̄ and q-profile
are related, by virtue of the straight field-line coordinate system, by

B0 ·∇∇∇ζ
B0 ·∇∇∇θ

= F |∇∇∇ζ|2
ψe∇∇∇θ · (∇∇∇ζ×∇∇∇ψ̄)

=
F
p

g ψ̄
ψe R2 = q(s) ⇒ p

g ψ̄ = qψe R2

F

By virtue of ideal Ohm’s law, the toroidal flow implies a radial electric field in the non-rotating
frame of reference (lab frame)

E0 =−v0 ×B0 =Ω∇∇∇Ψ ΦE0 =−
Ψ∫

0

Ω(Ψ′)dΨ′

The details of the representation are given in appendix B.1.2 without rotation8. MINERVA actu-

ally uses the radial variable s =
√
Ψ̄ instead of Ψ̄which requires precaution when converting

radial components and radial derivatives.

Linear perturbations

The linear MHD stability problem is assessed by computing the evolution of the perturbed
fluid displacement ξ according to the Frieman-Rotenberg equation (Frieman and Rotenberg,
1960). The fluid displacement induces a perpendicular electromagnetic perturbation δA
corresponding to

δA = ξ×B0 δΦE = ξ ·E0 = (ξ ·∇∇∇Ψ)Ω.

MINERVA extracts the most unstable toroidal mode and generates the perturbed vector poten-
tial δA (complex field) as

δA(s,θ,ζ, t ) =∑
m
δAm(s)e i mθe−i nζe(γ+iω)t (4.26)

where γ is the growth rate and ω the mode frequency9. The covariant components of the
vector potential in coordinates ui = (s,θ,ζ) as

δA = δAs∇∇∇s +δAθ∇∇∇θ+δAζ∇∇∇ζ= δAi∇∇∇ui

So, δAs = δA ·es , δAθ = δA ·eθ and δAζ = δA ·eζ where ei = ∂x/∂ui . Each mode component
δAi m (complex number) is treated as a cubic spline over a non-equidistant grid in s (see cubic
spline techniques section 4.2.2). Radial derivatives of the splines are taken with respect to s as
δA′ ≡ dδA/d s. VENUS-LEVIS then evaluates the magnetic field using the usual relation

δB =∇∇∇×δA =∇∇∇δA j ×∇∇∇u j = ∂iδA j∇∇∇ui ×∇∇∇u j = ∂iδA j
εi j k

p
g s

ek

8The expressions in that section stay valid for the components of the magnetic field when rotation is included,
but the current components have to be slightly modified. This is easily performed by using the results of sec-
tion 2.3.1.

9Frequency and growth rate are normalised to the Alfven frequency γ̄= γ/ΩA and ω̄=ω/ΩA
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where
p

g s is the jacobian of the flux-coordinates (s,θ,ζ). Hence,

δB s = (∂θδAζ−∂ζδAθ)/
p

g s ← (i mδAζ+ i nδAθ)/
p

g s

δBθ = (∂ζδAs −∂sδAζ)/
p

g s ← (−i nδAs −δA′
ζ)/

p
g s

δBζ = (∂sδAθ−∂θδAs)/
p

g s ← (δA′
θ− i mδAs)/

p
g s

A few adjustments are necessary to plug these components in the GCDE since they are written
with respect to the radial variable Ψ̄=Ψ/Ψe = s2

∇∇∇s =∇∇∇ψ̄ d s

dψ̄
= ∇∇∇ψ̄

2s
es = ∂x

∂s
= ∂x

∂ψ̄

dψ̄

d s
= 2seψ̄

p
g s = es ·eθ×eζ = 2s

p
g ψ̄

The components to be converted from s to Ψ̄ are thus

δAψ̄ = δA ·eψ̄ = δA · es

2s
= δAs

2s

δB ψ̄ = (∂θδAζ−∂ζδAθ)
esp
g s

·∇∇∇ψ̄= (∂θδAζ−∂ζδAθ)/
p

g ψ̄

δBθ,ζ = (∂ζ,θδAs −∂sδAζ,θ)/2s
p

g ψ̄

4.7.2 Fast ion contribution via δ f PIC scheme without rotation (preliminary)

Vlasov equation in non-canonical coordinates

Starting from the non-canonical phase-space Lagrangian,

L (zµ, t ) =Λα żα−H(zµ, t ) =ΛM żM

where Greek letters run from 1 to 2N and capitalised Latin letters from 0 to 2N with z0 ≡ t , the
motion in non-canonical phase-space zM (q, p, t ) is formally governed by

żα = Γα(zµ, t ) =Παβ (
∂βH +∂tΛβ

)
ż0 = ṫ = 1

where the last equation for z0 = t is the closure to the otherwise under-determined system of
equations. Let f (q, p, t ) = f (zµ, t ) be a fast ion distribution function, i.e. a physical measure of
the number of particles in volume d qd p =p

Ωd zµ

f (zµ, t )d qd p = f (zµ, t )
p
Ωd zµ,

where
p
Ω = J is the Jacobian of the transformation from canonical to non-canonical co-

ordinates (see equation C.11). Without collisions nor particle sources, the total number of
particles is constant such that the following continuity equation is stated

1p
Ω

∂

∂zM

(
żM

p
Ω f

)
= 1p

Ω

∂

∂t

(p
Ω f

)
+ 1p

Ω

∂

∂zα

(
żα

p
Ω f

)
= 0.
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By virtue of the Hamiltonian treatment of the equations of motion, the Jacobian satisfies
Liouville equation implying that phase-space volume is conserved (see equation A.63),

∂
p
Ω

∂t
+ ∂

∂zα

(p
Ωżα

)
= 0

Thus, despite working with non-canonical coordinates, the distribution function evolves
according to the well-known Vlasov equation

d f

d t
= ∂ f

∂t
+ żα

∂ f

∂zα
= ∂ f

∂t
+Γα ∂ f

∂zα
= ΓM∂M f = 0. (4.27)

Linear Vlasov equation and δ f method

MINERVA perturbations result from a linear treatment of the MHD equations and are con-
sidered small. This suggests the use of the so-called δf method, for which the fast particle
distribution function is split in an equilibrium part feq and a δ f term as explained hereafter.

Without electromagnetic perturbations, the guiding-centre Lagrangian is axisymmetric and
independent of time as well as gyro-angleΘ (see equation 3.10)

L0(t , X ,ρ||,µ,Θ) = (A0 +ρ||B0) · Ẋ + m

q
µΘ̇−

(
1

2

q

m
ρ2
||B

2
0 +

µ

q
B0

)
ṫ . (4.28)

This Lagrangian gives rise to a set of GCDE (see equation 3.12), which are put in the form of
żM = ΓM

0 (zM ). The motion is characterised by conservation of three constants (Ct ,Cφ,CΘ) =
(−E ,Pφ,mµ/q), namely energy, adiabatic magnetic moment and toroidal momentum. By the
Noether theorem, these constants of motion correspond to the conjugate momentum of the
symmetry variable (Cary and Littlejohn, 1983)

Ci = ∂L0

∂żi
⇒ d0Ci

d t
= ∂L0

∂zi
= 0 (4.29)

where d0 is a notation to mention differentiation with respect to the unperturbed trajectories.
The unperturbed constants of motion are explicitly identified as

E = µ

q
B0 + 1

2

m

q
v2
|| µ= mv2

⊥
2B0

Pφ = A0,φ+ m

q
v||b0,φ =−Ψ+ mv||F

qB0
.

A distribution feq (Ci ) that is written as a function of the constants of motion automatically
respects the unperturbed Vlasov equation

d0

d t
feq = ΓM

0 ∂M feq =
�
�
�∂ feq

∂t
+Γα0

∂ feq

∂zα
= d0Ci

d t

∂ feq

∂Ci

(4.29)= 0

In the presence of MINERVA electromagnetic perturbations, the equations of motion originate
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from the total Lagrangian L

L (t , X ,ρ||,µ,Θ) = (A +ρ||B ) · Ẋ + m

q
µΘ̇−

(
1

2

q

m
ρ2
||B

2 + µ

q
B +δΦE

)
ṫ

where A = A0 +δA and B = B0 +δB .

Perturbed and unperturbed terms are distinguished in the equations of motion and in the
distribution function as

żα = Γα = Γα0 +δΓα f = feq +δ f

Given the linear treatment of MHD stability and the small amplitude of δA in MINERVA, the
Vlasov equation is expanded at first order10

0 = d

d t
f = (ΓM

0 +δΓM )∂M ( feq +δ f ) =�����ΓM
0 ∂M feq +δΓM∂M feq +ΓM

0 ∂Mδ f +O(δ2) = 0

The equilibrium distribution function being a function of the unperturbed constants of motion,
the first phase-space gradient term is equal to δΓM∂M ≡ Ċi

∂
∂Ci

. The second term describes the
evolution of δ f under the unperturbed motion. The linear Vlasov equation is rearranged as

d0

d t
δ f =−Ċi

∂ feq

∂Ci
=−∂L

∂zi

∂ feq

∂Ci
(4.30)

where zi is the symmetry variable leading to conservation of Ci without perturbations. The δ f
distribution is thus solved by integrating the right-hand side along unperturbed trajectories.
Similarly to δ f , the total Lagrangian L is evaluated along unperturbed orbits. It is possible to
isolate the symmetry-breaking components of the Lagrangian at first order

L −L0 = δL +O(δ2) δL = δL
∣∣
0 = (δAi +ρ0

||δBi )Γi
0 −

(
µ

q
+ v0

||ρ
0
||

)
δB||−δΦE

whereδL represents the evaluation of the perturbed Lagrangian along unperturbed trajectories
and the magnetic strength was expanded at first order as

B 2 = (B0 +δB ) · (B0 +δB ) = B 2
0 +2δB ·B +O(δ2) = B 2

0 +2δB||B0 +O(δ2)

B =
√

B 2 = B0 +δB||+O(δ2).

Without plasma flow (no electric drift), the unperturbed guiding-centre motion is written in
terms of parallel motion and perpendicular drift due to curvature and gradients (see equa-
tions 3.13 and 3.14) as,

Ẋ =Γ0 = v0
||b0 +V 0

B V 0
B = b0 ×

(
µ

q
∇∇∇B0 + v0

||ρ
0
||κ0

)
/B∗0

||

where κ0 is the curvature of the equilibrium magnetic field and B∗0
|| = b0 · (B0 +ρ0

||∇∇∇×B0).

10The approach can be extended to a non-linear treatment. In this case, the evolution of δ f would have to be
solved in VENUS-LEVIS along perturbed trajectories.
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Noticing that δA ·B0 = 0 in this gauge, the perturbed Lagrangian term δL conveniently reduces
to

δL = (δA +ρ0
||δB ) ·V 0

B − µ

q
δB||−δΦE . (4.31)

Recalling equation (4.26), the electromagnetic perturbations are described with a unique
toroidal mode number, frequency and growth rate. Thus,

∂t L
∣∣
0 = (γ+ iω)δL ∂φL

∣∣
0 =−i nδL ∂ΘL

∣∣
0 = 0

so that the δ f equation finally becomes

d0

d t
δ f =

[
(γ+ iω)

∂ feq

∂E
+ i n

∂ feq

∂Pφ

]
δL (4.32)

This expression is consistent with the kinetic response of the work by Porcelli et al. (1994)
and Helander et al. (1997). It is however remarked that the guiding-centre Lagrangian is
a truncation of the particle Lagrangian. Treating the perturbations as an extra term δL

modifies the definition of the guiding-centre variables and constants of motion. The correct
approach (future work) consists of yielding the total guiding-centre Lagrangian from the
particle Lagrangian with the use of Hamiltonian truncation schemes such as Lie perturbation
theory (Brizard, 2000; Brizard and Hahm, 2007; Krommes, 2010). We realised that this subtlety
was not properly resolved in the current manuscript and acknowledge the fact that only the
kinetic contribution to the δ f is obtained (missing adiabatic terms).

Weight equation and PIC scheme

The benefit of solving the linear δ f equation (4.32) is to obtain various moments, in particular
the perturbed pressure from hot particles. This is performed analytically in some simple
cases, but for more general applications, we employ VENUS-LEVIS to solve the fast particle
dynamics and compute δf numerically via a Monte-Carlo PIC scheme. The idea is to sample
the fast particle distribution with a finite number of Klimontovich markers and evolve their
weights along their unperturbed trajectories (Aydemir, 1994). Let P (q, p, t ) = P (z, t ) govern the
Monte-Carlo sampling, i.e. the marker probability density function. Moments of the physical
distribution f are formally calculated as

I [A] =
∫

A(z) feq (z, t )
p
Ωd z +

∫
A(z)δ f (z, t )

p
Ωd z

= I0[A]+
∫ (

Aδ f

P

)
︸ ︷︷ ︸

g

P
p
Ωd z = I0[A]+< g >
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In the situation where | f − feq | = |δ f | ¿ | f |, the expected value < g > is estimated with N
markers on unperturbed trajectories z j (t ) as

< g >N→∞←− 1

N

N∑
j=1

g j = 1

N

N∑
j=1

A(z j (t ))δ f (z j (t ), t )

P (z j (t ), t )
=

N∑
j=1

w j (t )A j (t )

where the weight w j (t ) ≡ δ f (z j (t ), t )/N P (z j (t ), t ) becomes an attribute of the marker, to be
evaluated along its unperturbed trajectory. Since the probability density function P satisfies
its own Vlasov equation d0P/d t = 0, the weight evolves according to

d0

d t
w j = 1

N

d0

d t

(
δ f

P

)∣∣∣∣
j
= 1

N P j︸ ︷︷ ︸
∆ j (t )

d0

d t
δ f

∣∣∣∣
j

(4.32)= ∆ j (0)

[
(γ+ iω)

∂ feq

∂E
+ i n

∂ feq

∂Pφ

]
j

δL j (t )

where ∆ j (t) = ∆ j (0) = ∆ j actually represents the phase-space volume sampled by marker
j . This coefficient has to be calculated for each marker at initialisation. The linear Vlasov
equation is integrated in VENUS-LEVIS with a RK4 scheme alongside the GCDE.

Phase-space loading

Proper sampling of phase-space is important to reduce the noise from the Monte-Carlo
scheme. There are various choices to initialise the position of markers in phase-space, the
most effective being P ≡ feq , called importance sampling in the work by Aydemir (1994). When
the physical distribution is not a simple product of phase-space variables but an intricate
5D-function, importance sampling numerically requires a loading technique such as the
acceptance-rejection method (Saucier, 2000, section 3.4). This technique is computationally
slow and under-performing. A hybrid technique is discussed hereafter.

Markers are loaded uniformly using a Hammersley sequence (Hammersley and Handscomb,
1964) in a set of coordinates U = (E ,λ, s,θ,ζ), where λ = v||/v . Let Z = (µ,ρ||, s,θ,ζ) be the
guiding-centre phase-space and C the canonical particle phase-space. ∆ j is the volume
represented by marker j in C , i.e.

∆ j ∝ d pd q = mq
p
Ωd z = JC→U dU = mq

p
ΩJZ→U dU

where

mq
p
Ω= JC→Z

(C .11)= mqBB∗
||
p

g JZ→U =
p

2mE

qB 2

Instead of loading uniformly in (E , s), it may be useful to replicate some features of the
equilibrium distribution, for example an exponential behaviour in energy or a bunching
at a specific radial position. For this, the inverse transformation technique is applied to
populate phase-space (Saucier, 2000, section 3.1) according to one-dimensional distribution
functions pE ,s(X ). First, the cumulative distribution P (X ) is constructed (either analytically
or numerically interpolated), such that P ′(X ) = p(X ). Then, the inverse function is used to
generate X from the uniformly distributed number Y ∈ (0,1) of the Hammersley sequence, i.e.
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X = P−1(Y ). The inversion is performed via simple root finding algorithm (Newton’s method).
Knowing that dY = P ′d X = pd X , additional Jacobians appear in the phase-space volume
coefficient, such that we obtain

∆ j ∝
B∗
||

B

p
g

ps

p
E

pE

To settle the overall normalisation of ∆ j , the markers are temporarily borrowed to sample the
properties of the equilibrium distribution function feq . The physical number of hot particles,
approximated by Monte-Carlo scheme, can be used to set the normalisation of ∆ j as

Nhot =
∫

feq d pd q =
∫ (

feq

P

)
Pd pd q ≈ 1

N

N∑
j=1

feq (z j )

P (z j )
=

N∑
j=1
∆ j feq, j

Evaluation of the perturbed hot pressure

At every diagnostic time, the position, velocity, energy and weight of each marker are recorded.
At the end of a simulation, an independent post-processing routine is launched to calculate
the hot perturbed pressure. The perturbed pressure is evaluated as a moment of the δ f
distribution

δP⊥(x , t ) = m
∫

d v3 v2
⊥

2
δ f (x, v, t ) ≈ m

2V

∑
j∈V

w j v2
j ,⊥

δP||(x , t ) = m
∫

d v3v2
||δ f (x, v, t ) ≈ m

V

∑
j∈V

w j v2
j ,||

where V = p
g∆s∆θ∆ζ is a small volume around x . Then, it is Fourier decomposed in the

poloidal and toroidal direction using the basis e i mθ−i nζ. Each mode is found as

δPmn(s, t ) =
∫

dθdζ

2π
δPe−i mθ+i nζ ≈ m

σ

∑
j∈σ

w j v2
j e−i mθ j+i nζ j

where σ=<p
g >∆s is the volume of a flux shell.

Since the perturbations have the form e(γ+iω)t , a Laplace transform is performed to retrieve
the kinetic response of hot particles as

δP̂mn(s,Γ) =
∫ T

0
d tδPmn(s, t )e−Γt

where Γ is chosen equal to (γ+ iω).

The idea of the interface is to return quantities δP|| and δP⊥ to MINERVA for the next iteration,
solving MHD equations as an initial value problem. The contribution from hot particles to
the pressure tensor will either provide external drive or will damp the MHD mode studied.
Ultimately, the stability problem is addressed in the presence of toroidal plasma rotation.
Before this, the guiding-centre equations have to be extended with the correct centrifugal
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force terms and the linear Vlasov equation modified with the appropriate perturbations. This
is the subject of an ongoing collaboration with our colleagues in Japan working on MINERVA.

4.8 Conclusions

This chapter highlights the main features of the VENUS-LEVIS code, replacing the VENUS
guiding-centre code with a modern design. Flexibility is obtained by separating different
sub-parts into independent and interchangeable modules. For example, one module takes
care of pushing particles via the RK4 stepper, another deals with interpolation of the fields
via the spline-Fourier technique, another includes external vacuum fields, another handles
Coulomb collisions via Monte-Carlo kicks, another captures moments of the distribution
using a full-f or δf approach, another controls the virtual neutron camera diagnostic, etc...

The spline-Fourier technique is capable of computing metric elements with high accuracy
anywhere inside the magnetic equilibrium, thus yielding a globally continuous and smooth
representation of the fields. Convergence and conservation properties (energy and toroidal
momentum) of energetic particle trajectories are obtained with the spline-Fourier technique,
where other finite difference methods persistently fail. Even if the amount of operations
using spline-Fourier interpolation grows proportionally to the number of employed modes,
thus being slower than mesh-based methods, its accuracy and low memory imprint makes it
remarkably advantageous for deploying on super-computing facilities or GPU architectures.
The fine-tuning of boundary conditions, as well as the possibility to scale the radial grid
arbitrarily (for example, linear versus square root) considerably improves the computation of
the orbits approaching the singular magnetic axis.

A method to include in curvilinear coordinates arbitrary external fields on top of equilibrium
is briefly discussed. The NBI module is upgraded to 3D flux geometries, providing realistic fast
ion sources in saturated MHD equilibria. The Monte-Carlo collision operator for slowing-down
and pitch-angle scattering is revised. A virtual neutron camera diagnostic is implemented
so that comparisons between numerical simulations and experimental data can be made.
The formulation of a hybrid kinetic-MHD interface between VENUS-LEVIS and MINERVA is
presented. This project is the basis of a numerical tool to assess the interaction between MHD
modes and fast particles in rotating plasmas with great consistency.

The clean architecture of VENUS-LEVIS is suitable for code extensions and long-term devel-
opment. This numerical tool thus provides a robust platform for the study of fast particle
motion in 3D magnetic fields which will hopefully continue to evolve. Beyond the applica-
tions of this thesis, VENUS-LEVIS is pertinent for addressing confinement of energetic ions in
stellarator MHD equilibrium, leaning on a guiding-centre and/or full-orbit treatment of the
equations of motion. An example of ongoing applications is the consistent establishment of
ICRH populations in Wendelstein-7X (W7X) via the SCENIC platform (Jucker et al., 2011).
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5 NBI fast ion redistribution in saturated
ideal internal kink

VENUS-LEVIS and techniques described in previous chapters are applied to the investigation
of fast ion redistribution in saturated ideal internal kinks. Our analysis focuses on the Mega-
Ampère Spherical Tokamak (MAST) experiment, for which numerical results are conveniently
compared against experimental measurements. This work was performed in collaboration
with people at Culham Centre for Fusion Energy (CCFE) in the UK who gathered fast ion data
in MAST and people at Uppsalaa university in Sweden who processed data concerning the
neutron camera. Obtained results are the object of two publications (Pfefferlé et al., 2014,
2015a).

In this chapter, we discuss the representation of saturated ideal internal kinks with the helical
core equilibrium from VMEC. This solution is described in detail, in particular applying the
field variation criterion (3.37). The use of Guiding-centre Drift Equations (GCDE) (3.12) is
verified to describe the motion of hot particles in the kinked core as faithfully as full-orbit
equations (3.7). The Neutral Beam Injection (NBI) external module, described in section 4.4,
is employed to produce initial sources of markers respecting the characteristics of MAST
Positive Ion Neutral Injector (PINI) and the kinked geometry of flux-surfaces. Applying the
slowing-down algorithm discussed in section 4.5, the hot distribution function is evolved
in the guiding-centre approximation over slowing-down timescales until saturation occurs
between constant injection, losses and thermalisation due to Monte-Carlo collisions.

5.1 Phenomenology and modelling

Due to the high-β and low aspect ratio of the MAST machine, the drift excursion of colli-
sionless fast ions is relatively large. Because of the low confining magnetic field, between 0.3
and 0.6 T, energetic particles that may arise from fusion reactions between beam ions and
the bulk plasma (beam-thermal contribution) or between injected nucleons (beam-beam
contribution) or, to negligible extent, among thermal particles, have such large Larmor radii
that they are immediately lost. Hence, the confined fast ion population in MAST originates in
majority from NBI, which produces deuterium ions at 3 different energies 60keV, 30keV and
20keV. These populations constitute a minority compared to thermal species such that the
plasma evolution and geometry are essentially determined by bulk ions and electrons. The
magnetic configuration as well as large-scale plasma instabilities are well described within the
MagnetoHydroDynamics (MHD) model. Fast particles are viewed as an additional population
that can provide external drive for energetic particle modes such as fishbones, which arise
from resonance between trapped fast ion motion and the internal kink mode. Experimentally,
the interaction between hot particles and the bulk plasma is revealed by burst-like behaviour
with rapid chirping down of the mode frequency, as seen for example on figure 5.1(a) between
t = 0.15s and t = 0.27s. In hybrid scenario plasmas, the fishbones eventually evolve into
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Long-Lived Modes (LLMs) (Chapman et al., 2010). The confinement of fast particles seems to
be degraded (Cecconello et al., 2012) in those steady-state saturated modes. Transports codes
are not capable of reproducing the fast particle transport patterns seen for instance in neutron
camera traces. Instead, the dynamics of fast ions in 3D magnetic configurations are studied
here using VMEC and VENUS-LEVIS. The important aspects of LLMs are briefly summarised
to support our modelling approach. The phenomenology of LLMs is described for MAST by
Chapman et al. (2010), for Tokamak à Configuration Variable (TCV) by Reimerdes et al. (2006)
and for National Spherical Tokamak eXperiment (NSTX) by (Menard et al., 2005).

(a) frequency spectrogram of the MHD activity mea-
sured by Mirnov coils during hybrid pulse #26887 show-
ing the appearance at t = 0.27s of a LLM lasting for
t ≈ 0.1s before soft disrupt of the plasma at t = 0.37s.

(b) amplitude of the n = 2 mode with respect to the
n = 1 mode as a function of time, deduced from the soft
x-ray emission.

(c) q-profile at various moments during the LLM phase
of pulse #21781, determined by the EFIT code and MSE
measurements.

(d) rotation profile at various moments during the LLM
phase for pulse #21781 determined by charge exchange
recombination spectroscopy.

Figure 5.1 – Phenomenology of the MAST LLM. Courtesy of Chapman et al. (2010).

MAST advanced tokamak scenario profiles are obtained in the experiments with a low plasma
density and early NBI heating. The frequency sweeping n = 1 mode evolves into a saturated
mode with the structure of an ideal internal kink, as seen by the dominant n = 1 amplitude
on figure 5.1(a) after t = 0.27s as well as figure 5.1(b) showing the ratio between the n = 2 and
n = 1 amplitude. During the LLM phase, NBI heating prevents qmi n of the reversed q-profile
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from crossing unity, avoiding an n = 1 reconnecting mode until the plasma locks and ends
abruptly. As seen on figure 5.1(c), the reconstructed q-profile flattens in the core region but
stays at around unity1. In both MAST (Hua et al., 2010) and TCV (Graves et al., 2013) the long
lived helical modes, occurring when the minimum value of q is just above unity, appear to be
absent of magnetic islands near q = 1. Small islands on neighbouring surfaces are often seen
and are to be expected (Brunetti et al., 2015).

Fast ion transport from the core, as is evident from bolometer measurements but also from
neutron camera signals (black circles vs red squares on figure 5.2), explains the absence of
fishbone activity during LLMs. Reduction in heating efficiency due to fast ion loss from the
core, would explain in part the large drop in beta (e.g. figure 3 of Chapman et al. (2011)), and
consequent reduction in non-inductive current which ordinarily helps to sustain the hybrid
configuration. While a reduction in bootstrap current normally follows from the reduced beta,
the change in NBI current drive efficiency is best assessed with dedicated simulations that
correctly account for fast ion confinement in helical equilibria. The effects of a helical core on
calculations of fast ion confinement has received little attention thus far, at least compared
to the effects of toroidal ripple (Goldston et al., 1981) and Resonant Magnetic Perturbations
(RMPs) (Kim et al., 2012). In contrast to ripple and RMPs, the 3D distortion associated with a
helical core during hybrid scenario operation probably reaches 10% of the minor radius as
observed from soft X-ray reconstruction of the mode geometry (Hua et al., 2010). The large
amplitude of the ideal saturated kink is also deduced from the complete flattening of the
strong NBI induced toroidal flow in the core region (see figure 5.1(d)) and the rigid rotation of
the helical deformation, V̂φ =ΩR . From the failed attempt by transport models, e.g. TRANSP, to
reproduce the fast ion redistribution patterns observed in the presence of LLMs (see figure 5.2),
it is clear that the 3D distortions of the magnetic field are too large to be treated with a linear
model from originally axisymmetric plasmas. Calculations of fast ion confinement during
LLMs require the inclusion of realistic 3D magnetic field geometry.

Fast particle transport in the presence of 3D fields has been addressed by various authors,
notably interested in confinement of energetic ions in stellarators (Dettrick et al., 1998). Boozer
representations (Boozer, 1982) often prevail, with the advantage of making flux quantities
appear explicitly but with the drawback of a complex coordinate system. If the numerical
treatment of stellarator equilibrium is recommended in Boozer coordinates, helical kinks in
tokamaks requires an undesirably large Boozer spectrum, as will be seen hereafter. Some
effects of 3D magnetic perturbations have been carried through δA|| terms and the redefinition
of v|| (White and Chance, 1984). Corrections to toroidal precession rate have been derived and
particle loss, e.g. in the fishbone oscillation, have been investigated. However, these models
are valid for small deviations from axisymmetry and obviously neglect parallel magnetic
perturbations that become large in the case of large kink deformation. Orbits in high n helical
systems have also been categorised using expansions of the second adiabatic moment for
particles only slightly departing from field-lines (Cary et al., 1988). That approach does not
apply to the special case of n = 1 helical core, for which orbits are more exotic, radial drift is

1It is noted that the q-profile is calculated with the EFIT code; a 2D equilibrium is reconstructed according to
the experimental constraints from the motional stark effect (MSE) diagnostic. Given the 3D nature of the LLM, it is
not clear if the measured flattening of the q-profile is a geometric effect or the true evolution of the field-line pitch
on the flux-surfaces (if existent).
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Figure 5.2 – Neutron camera signal before the onset of the LLM (black circles) and during LLM activity
(red squares). Agreement with TRANSP simulations before the LLM (black curve), but largely unsuccess-
ful fit during the LLM phase despite the fine-tuning of diffusion coefficients (blue curve). Improved fit
of data with ad-hoc parametric model (red curve). Courtesy of Cecconello et al. (2012).

larger and the full magnetic field must be taken into account.

Numerically reproducing internal kink states is usually performed with MHD stability codes
like XTOR (Lütjens et al., 2009), for which the linear evolution and non-linear saturation of
MHD modes is addressed as an initial value problem. The resulting fields are accurate for MHD
stability analysis, but are not always sufficiently smooth for solving energetic particle orbits,
even less so if orbits are followed over slowing-down timescales. For reversed shear q-profile
with qmi n slightly above unity, equilibrium codes like VMEC (Hirshman and Whitson, 1983)
or ANIMEC (Cooper et al., 2009) conveniently bifurcates into two sister solutions although an
axisymmetric boundary is prescribed (Cooper et al., 2010); a standard axisymmetric solution
and another with an n = 1 helical displacement of the magnetic axis and a kinked core. These
3D helical configurations qualitatively and quantitatively resemble saturated states modelled
by XTOR in the ideal MHD limit (Brunetti et al., 2014). The smoothness and simplicity of VMEC
output, which is Fourier decomposed in toroidal and poloidal angles, is better suited for orbit
solving, where the precision and continuity of the field components is crucial for computing
fast particle full-orbits and guiding-centre trajectories. The core plasma is largely unaffected
by non ideal MHD effects providing qmi n > 1; VMEC is valid for non-resonant surfaces avoiding
the formation of an infinite current sheet. Another advantage of VMEC is that, with one helical
and one otherwise identical axisymmetric solution for the same boundary and plasma profiles,
the direct effect of the helical field on particle transport can be assessed. Therefore, fast ion
redistribution is determined by solving with VENUS-LEVIS the motion of NBI fast ions in the
helical core produced with VMEC.

5.1.1 Helical core equilibrium solution from VMEC

The coordinate system, field representation and vector components are derived in appendix B.2.1.
The geometry of the flux-surfaces is obtained from VMEC under the condition of stellarator
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symmetry (see section 2.4) as a Fourier series. The metric is reconstructed in VENUS-LEVIS
with the spline-Fourier interpolation scheme (see section 4.2) as

R(s,u, v) = ∑
mn

Rmn(s)cos(mu −nv) Z (s,u, v) = ∑
mn

Zmn(s)sin(mu −nv) (5.1)

where s =p
Φ/Φe is the radial variable proportional to the normalised toroidal magnetic flux,

Ψe is the value at q95, u the poloidal angle on each flux surface2 and v = φ the geometric
toroidal angle. VMEC flux-coordinate system is neither orthogonal nor straight field-line, which
required a general and flexible treatment of the equations of motion. Section 3.3.1 explains
the used GCDE and section 3.2 the full-orbit equations.

The parameter δh , which measures the distance between the helical and axisymmetric mag-
netic axis normalised to the minor radius a, is used to characterise the various helical equilibria.
The minor radius a is extracted from the Fourier components of the m = 1,n = 0 mode on the
edge (s = 1) and δh from the m = 0,n = 1 mode on the magnetic axis (s = 0),

δh =
√

R01(0)2 +Z01(0)2

a
a =

√
R10(1)2 +Z10(1)2. (5.2)

compressed flux-surfaces

uncompressed

δh

axisymmetric mantle

helical core

Figure 5.3 – (left) 3D representation of the helically kinked flux surfaces of the VMEC bifurcated equilib-
rium. (right) poloidal cross-section isolating the helical core and axisymmetric mantle. The helical
displacement δh measures the shift of the magnetic axis with respect to the axisymmetric centre.

As shown on figure 5.3, the flux-surfaces of the bifurcated equilibrium are kinked in the core
region but return to axisymmetry beyond a certain radial position, approximately coinciding
with the location of qmi n . The rapid transition from helical to axisymmetric flux-surfaces leads
to their compression on one side of the core at u − v =π, where gradients become sharp. The
other side at u − v = 0 is a wide area where the surface are uncompressed and the value of the
flux is slowly varying with respect to a radial coordinate perpendicular to the flux-surfaces.

2Notice that u = const correspond to non-planar surfaces
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Figure 5.4 – Profiles based on experimental data from MAST (shot #26887) and resulting q-profile for
the helical state in VMEC.

The input profiles of the modelled MAST equilibrium are shown on figure 5.4. The bulk
electron density and temperature profile (figure 5.4(a)) are taken from actual experimental
data measured as a function of the major radius and fitted to the radial variable ρ =p

s of
the axisymmetric branch. The bulk ion density is considered to be equal to the electron’s,
invoking quasi-neutrality and neglecting impurities. The bulk ion temperature is set identical
to the electron temperature, relying on steady-state thermal equilibrium of both species. The
pressure profile (figure 5.4(c)) corresponds to the summed product of density and temperature
over ion and electron species. The current density (figure 5.4(b)) is a best fit of the experimental
profile using quadratic/cubic/linear polynomials (Cooper et al., 2011c). The bootstrap current
is disregarded for the reason that neoclassical contributions are difficult to model for such
large deviations from axisymmetry. Neoclassical transport coefficients could be calculated
numerically with, for example, the DKES code (Hirshman et al., 1986b). Feeding back the
resulting bootstrap current within VMEC until obtaining a stable helical core solution is tedious
and the impact on the kinked deformation will be marginal. Plasma rotation is also neglected
because of its inconsistent representation in non-toroidally symmetric flows (issue with
magnetic pumping). The toroidal velocity of passing NBI ions at 10−75keV is at least an order
of magnitude faster, so dropping out rotation seems a reasonable momentary assumption.

The bifurcation between axisymmetric and helical state is very sensitive to the iota-profile
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Figure 5.5 – Resulting helical displacement as a function of qmi n and corresponding reduction of VMEC
Jacobian. Red diamonds denote the equilibria used in VENUS-LEVIS for NBI redistribution simulations
discussed later on.

(figure 5.4(d)) or q-profile (figure 5.4(e)), which is shaped by the current density profile. A
series of helical cores were obtained by varying the normalisation of the total current between
333kA and 340kA, effectively bringing qmi n closer to unity (see black crosses on figure 5.5). As
seen on that figure, the helical displacement grows up to a maximum of δh ∼ 0.27 while qmi n

flirts with unity. Because flux surfaces become strongly compressed in the region between
the helical core and the axisymmetric mantle, namely the transition region, the Jacobian of
the VMEC coordinate system can approach zero (see right plot of figure 5.5 and figure 5.9(d)).
This indicates that that a current sheet is forming in the limit qmi n = 1. In reality, if qmi n

reached unity, finite resistivity would lead to the formation of magnetic islands (tearing and
reconnection) which would eventually smooth the abrupt transition out. To be consistent with
the ideal MHD treatment, a choice of 6 equilibria with qmi n > 1 depicted with red diamonds
on figure 5.5 are used in later fast ion simulations.
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Figure 5.6 – Maximum amplitude of poloidal m and toroidal n modes for the largest helical displace-
ment of δh = 0.23. Colour scale is logarithmic, i.e. amplitude is Xmn = 10C where C is the colour.

VMEC converges, with a minimal set of poloidal and toroidal modes, to an equilibrium state
that respects the MHD force balance to machine precision. We have chosen a spectrum of
poloidal modes m = 0,1, . . . ,11 and toroidal modes n =−6,−5, . . . ,5,6 over a radial grid of 288
points (equidistant inΦ/Φe ). Although a rigorous convergence study of VMEC’s solutions has
not been carried out, it is agreed that additional mode content as well as a larger number of
radial points does not significantly improve the precision of their representation. As illustrated
on figure 5.6, the amplitude of modes with higher mode number decays to the extent where
extra precision unnecessarily impedes the spline-Fourier interpolation (see figure 4.5 and
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comments of section 4.2).
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Figure 5.7 – Largest poloidal and toroidal core modes from VMEC bifurcated helical solution with
δh = 0.23. The value on axis of the m = n = 0 mode has been subtracted. The dominant m = 1,n = 0
mode exceeds the limits of the plots and grows to a maximum of R10 = 0.5m and B10 =−0.3T at the
edge.

As seen on figure 5.7 displaying the largest modes in the spectrum, the helical core equilibrium
is characterised by a dominant m = 0,n = 1 helical mode (kink) and various n 6= 0 side-bands
that spoil axisymmetry in the core. These modes fade to zero just beyond the qmi n surface. A
large m = 1,n = 0 mode (blue cropped curve on figure 5.7) linearly increases with the radial
label. Although it is expected in the axisymmetric case, its interpretation is different in the
kinked case because the reference for the poloidal angle is now the helical magnetic axis. The
coordinate system near the magnetic axis is approximated as

R ≈ R0 −δh cos v +ρ cosu Z ≈−δh sin v +ρ sinu (5.3)

such that the poloidal angle u is pictured as the angle formed with a horizontal plane crossing
the helical axis. Because of this helical viewpoint, the 3D equilibrium spectrum should not be
confused with that an ideal internal kink, which is usually considered as small deviations from
axisymmetry.

φ = 0
o

φ = 81
o

φ = 163
o

φ = 244
o

φ = 325
o

Figure 5.8 – Field strength of the helical core solution with δh = 0.23 at various toroidal angles. The
behaviour of B is largely axisymmetric, corresponding to the standard tokamak 1/R dependency.

In fact, the field strength B is mostly axisymmetric even though the geometry of the flux-
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surfaces in the core is helical, as observed on figure 5.8 showing B on a poloidal cross-section
at various toroidal angles. This tokamak-like behaviour spoils helical symmetry and, in
addition to the induced toroidal current, makes such magnetic configurations different from
classical stellarator equilibria. It seems that the helical core solution actually resembles the
state of quasi-axisymmetric stellarators.
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Figure 5.9 – (left) Constant poloidal angle lines in different coordinate systems at a fixed toroidal angle
φ = 23 degrees in the largest helical displacement of δh = 0.23. (right) Jacobian of the coordinate
transformation at a fixed toroidal angle φ = 23 degrees as a function of radial label ρ for different
poloidal angles in the largest helical displacement of δh = 0.23.

The transition between the helical core and the axisymmetric mantle is smoother than the ana-
lytic picture of the ideal internal kink mode modelled as a top-hat function. The representation
of the transition region is numerically challenging but crucial for solving fast particle orbits.
The implemented guiding-centre equations (3.12) are inversely proportional to the coordinate
Jacobian

p
g such that, in VMEC coordinates, small inaccuracies in the field values lead to

greatly varying force terms. In the straight field-line Boozer coordinates, for which the Jaco-
bian is proportional to B 2 ∼ 1/R2 and apparently far from zero (see figure 5.9(c)), the transition
region exhibits extreme bending of constant poloidal angle curves (see figure 5.9(a)). This
leads to strong variations of the metric elements, implying that terms like ∂θB and Bs = B ·es

have rapidly varying dependencies in the Boozer angles so that the GCDE will also contain
large force terms (see equations C.25 derived in the appendix). In practice, Boozer coordinates
are numerically disadvantageous to represent this particular equilibrium because more than
1000 Fourier modes must be kept to calculate the straight field-line metric. In contrast, using
VMEC coordinates, the constant poloidal angle curves are more regular (see figure 5.9(b)), with
the advantage that fewer modes are required (about 2 orders of magnitude less). The numeri-
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Chapter 5. NBI fast ion redistribution in saturated ideal internal kink

cal difficulties with Boozer coordinates has led to the abandon of a canonical formulation of
GCDE in favour of a more general treatment with non-canonical coordinates, as derived in
section 3.3.1. The issues with the transition region also initiated the implementation of the
spline-Fourier interpolation scheme described in section 4.2, which is essentially designed to
ensure continuity in poloidal and toroidal angles, and continuity up to second derivative in
the radial direction. The spline-Fourier technique guarantees the smoothness of the orbits
even when the Jacobian is close to zero and does not allow flux-surfaces to artificially cross
each other, which can happen with mesh-based and finite element interpolation techniques.
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Figure 5.10 – Field variation criterion |(ρ⊥ · ∇∇∇)B |/B (equation 3.37) represented on R − Z planes at
successive toroidal angles and applied to MAST helical core of δh = 0.23 and a D+ ion with E⊥ = 10 KeV,
ρL ∼ 5.5 cm. Gray dashed lines depict flux-surfaces; at φ= 0, the compressed region is around u =π
and uncompressed around u = 0.

Due to the low-aspect ratio of MAST and its relatively high beta value, the perpendicular varia-
tion of the magnetic field |(ρ⊥ ·∇∇∇)B |/B , whose evaluation is derived in section 3.5, is sizeable
even in the axisymmetric case (see related analysis of MAST field variation in section 3.5.3).
The widest problematic region for first-order GCDE is located on the low field side of the core
where the field variation can rise up to 12% for deuterium ions with E⊥ = 10 KeV (ρL ∼ 5 cm),
as seen on figure 5.10 showing a map of the field variation at various toroidal angles in an
equilibrium with a helical core of amplitude δh = 0.23. Figure 5.11(a) plots the maximum
eigenvalue of |∇∇∇B |max/B at mid-plane (bold red curve). It also shows various constituents
such as perpendicular gradients |∇∇∇⊥B |/B , curvature |B × (∇∇∇×B)|/B 2 and parallel currents
|B · (∇∇∇×B )|/B 2. The dominant contribution is due to the perpendicular gradient of |B | (exact
contribution) as in the axisymmetric case (see section 3.5.3). This is deduced from the fact
that the green curve falls right under the bold red curve on figure 5.11(a) in the high-field side
between 0.4m and 0.6m and in the low-field side between 1.25m and 1.4m. In the region be-
tween 0.6m and 1.2m, the gap formed between the maximum field variation and the gradient
is due to parallel currents and field-line shearing, as observed from the rising purple curve
(partial contribution3). The core region is characterised by low shear close to the resonant
layer, which explains the formation of parallel currents. The latter spike in the region where the
flux-surfaces are tightly compressed (R = 0.6m on figure 5.11(a)). The discrepancies between

3Only a fraction of the parallel current enters in the maximum field variation which is why the purple curve
exceeds the red curve in the core region. The correct fraction is determined by projecting in the perpendicular
direction to the magnetic field.
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Figure 5.11 – Characteristics of the transition region between the helical core and the axisymmetric
mantle of the MAST δh = 0.23 distorted equilibrium.

guiding-centre and full-orbit calculations are expected to be magnified in this region, mostly
affecting the interpretation of the parallel velocity, as discussed in section 3.5 and in analogy
with particle orbits in the purely-sheared magnetic field example of section 3.4. In principle,
second-order terms such as the Baños correction 1

2
m
q µv||b · (∇∇∇×b) (see equation 3.31) should

be included in the definition of the guiding-centre Lagrangian in order to account for strong
parallel currents. The implementation of these corrections is not straight-forward and is the
subject of on-going work.

Figure 5.11(b) traces the path of a single field-line at a given flux label in the transition region on
the periodic plane (θ,φ) (geometric poloidal and toroidal angles). The field-lines are observed
to avoid the compressed flux-surface zone; the φ−θ = 0 uncompressed region is more densely
visited by field-lines than the φ−θ =π compressed region such that their bending (S-shape)
is more pronounced in the latter region. Even though the flux-surface average shear of the
q-profile is weak (zero at qmi n), the local pitch of the field varies extensively at different
poloidal and toroidal angle on a flux-surface but also from one surface to the next. Field-lines
are locally strongly sheared, analogously to the example of section 3.4. In the limit where
the q-profile reaches unity and in the framework of ideal MHD, an infinite current sheet will
form. As previously argued, resistive effects would however soften the sharp transition in
generating magnetic islands and a different approach for generating the equilibrium should
be considered for the resonant q case.

5.2 Particle orbits in helical cores, drift surfaces and drift islands

Without providing an exhaustive classification of orbits in helical cores, the following general
statements are made. Two properties of the helical core equilibrium guarantee the confine-
ment of fast particles. First, the outer region effectively acts as a pinch, in which confinement

105



Chapter 5. NBI fast ion redistribution in saturated ideal internal kink

is preserved by virtue of axisymmetry. Particles that stay in the axisymmetric mantle will
exhibit usual bounce or banana motion. Second, as argued in section 3.3.1, the topology of
guiding-centre trajectories is analogous to perturbed field-lines, at least for passing particles.
The assumption of nested flux-surfaces in VMEC automatically implies the integrability of
field-line equations (see section 2.2 and 2.3.2). As a consequence of the KAM theorem and the
first-order expansion of GCDE, the guiding-centre motion (especially that of passing particles)
will mostly remain quasi-periodic (Lichtenberg and Lieberman, 2010) and the trajectories
will align on smooth drift-surfaces. Orbits near rational surfaces will be subject to resonance
(in the Hamiltonian sense), thus forming drift-islands. Orbit losses will consequently not
increase in the presence of the internal kink structure and super-banana transport should
not be observed. The helical distortion of the core provokes exotic drift orbits similar to those
found in stellarators but different in that the field strength is not helically symmetric but
mostly axisymmetric.

Guiding-centre calculations
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Figure 5.12 – 3D trajectories of typical 10 KeV co-passing (v||/v = 1) deuterium guiding-centre in
the helical core equilibrium with displacement δh = 0.23: in the helical core (black curve) and in the
axisymmetric mantle (red dotted curve). Orbits are here calculated in VENUS-LEVIS with first-order
GCDE (3.12).

Two examples of deeply-passing guiding-centre trajectories (computed in VENUS-LEVIS using
first-order GCDE) are shown on figure 5.12, one in the helical core (black) and the other
in the axisymmetric mantle (red). Because of the small deviation of drift surfaces from the
flux-surfaces, passing particles in the helical region have, on top of the bounce motion, a
slower bounded radial excursion with respect to the helical axis, as shown on figures 5.13(a).
Figure 5.13(c) displays two orbits of trapped-particles on the R −Z plane (again using GCDE
to solve their motion). Trapped particles are typically able to wander in and out of the kinked
region causing perturbed banana orbits.

A significant fraction of particles regularly skirt the magnetic axis (see figure 5.13(b) but
also 5.14(b)) because drift surfaces naturally intersect it. This is a major difference with
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Figure 5.13 – Typical fast deuterium orbits in the helical core equilibrium; (left) two perturbed bananas
initialized at different minor radii, (right) particle frequently passing close to the magnetic axis.

axisymmetric cases where difficulties with the magnetic axis only occur through collisional
processes. Due to the singular nature of flux coordinate systems, trajectories close to the axis
require finer computational effort, which makes helical core simulations heavier. The region
where flux surfaces are compressed is also numerically challenging and remains the main
source of error in the simulation. It covers a limited region in real space such that particles
spend little time there. Spurious particle motion is damped thanks to the robust spline-Fourier
representation of the equilibrium and convergence of energy conservation is numerically
achieved.

Full-orbit calculations

As discussed earlier in this chapter but also in section 3.3.1, the existence of drift surfaces is a
consequence of the guiding-centre formulation. It is not obvious that full-orbits will follow
such smooth structures in the presence of the helical core. In axisymmetric magnetic fields,
drift surfaces are a direct consequence of the conservation of toroidal momentum and the
adiabatic invariance of the magnetic moment. In helical states, the fact that drift surfaces exist
indicates that there is a non-trivial constant of motion, possibly a combination of toroidal
and poloidal momentum, related to the symmetry behind the (forced) existence of nested
flux-surfaces. On a poloidal cut at a fixed toroidal angle, drift surfaces are reduced to closed
contours, progressively drawn by the punctures of the guiding-centre trajectory across that
same vertical plane. Figure 5.14(a) shows such guiding-centre trajectories, computed from full
particle orbits4. As long as particles do not transit from the helical region to the axisymmetric
outer mantle, helical drift surfaces are clearly present despite using full-orbit equations (see
equation 3.7). If particles transit out of the core, their motion is randomised by successively
following helical and axisymmetric drift surfaces (see figure 5.14(b)). These Poincaré plots
prove that particle confinement is not necessarily degraded by the presence of the helical

4To locate the guiding-centre position in curvilinear coordinates, the switching algorithm of section 3.6.1 is
employed.
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Figure 5.14 – Poincaré section of the guiding-centre trajectories of a set of 10 KeV D+ ions initialised at
ρ =p

Φ/Φe = 0.22 and φ= θ = 0 but with different pitch-variable λ= v||/v . The guiding-centre position
are traced from the particles’ full-orbit in this MAST δh = 0.23 helical core.

kink. The existence of drift-surfaces in a full-orbit computation allows us to conclude that the
dynamics of fast ions are correctly portrayed by GCDE. Finally, it demonstrates the robustness
of VENUS-LEVIS to solve the motion of charged particles in extremely distorted curvilinear
coordinates.

In anticipation to the next section on NBI deposition, it is mentioned that MAST PINIs emit
neutrals at the energy of 60 KeV. Larmor radii of trapped particles at these energies are a few
centimetres large, but since injection is tangential, the kind of fast particles produced are
almost exclusively passing, especially in the core region close to the helical magnetic axis. It is
instructive to focus on single particle orbits with initial pitch-variable λ= v||/v close to unity
(small magnetic moment). For particles with a pitch-variable equal to unity (zero magnetic
moment), the guiding-centre equations trivially reduce to v|| = v = const. For maximum value
of the pitch-variable λ = v||/v = ±1, drift surfaces are closest to flux-surfaces (see red and
purple curves on figure 5.14(a)). On Poincaré sections of figure 5.15, it is observed that, while
all deeply counter-passing particles travel around the plasma magnetic axis (figure 5.15(b)),
some deeply co-passing particles circulate on drift surfaces that do not enclose the helical
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Figure 5.15 – Poincaré cut of drift surfaces created by 10 KeV D+ ions initially with v||/v = ±1 as
computed using full-orbit equations in MAST helical core with δh = 0.23 displacement.

magnetic axis in the region of uncompressed flux-surfaces (figure 5.15(a)). Those co-passing
particles move around a helical drift axis, positioned on the opposite side of the magnetic axis
inside the kinked core. Consecutive punctures through the poloidal plane circle around what
appears to be a new helical axis. The q-profile being close yet always above unity, the expected
behaviour without drift effects would be that of field-lines, wrapping around each flux-surface
in the same poloidal direction (clockwise). Instead, starting at a specific radial position, these
co-passing particles are able to complete more than a poloidal turn after one toroidal turn,
boosted by the drift correction ρ||B appearing in the guiding-centre Lagrangian. Although
the orbit definitely qualifies as passing, because v||/v = 1 is constant (no magnetic mirror),
the result is that successive punctures seem to reverse, effectively creating the structure of a
drift-island. This pattern is not observed for deeply counter-passing particles with identical
initial conditions except v||/v = −1, because the drift term is odd in v|| with respect to the
motion along the field lines. It is mentioned that the size of the drift island scales with the
energy, consistent with a drift effect. The important consequence of this exotic motion is a
reduction of fast ion density and pressure in the core, as well as particle bunching in the area
of uncompressed flux surfaces. That behaviour is in part responsible for off-axis redistribution
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Chapter 5. NBI fast ion redistribution in saturated ideal internal kink

of NBI fast particles, evidenced by MAST neutron camera traces and illustrated numerically in
the slowing-down simulations presented in the next section.

In full-orbit calculations, particles develop non-zero gyro-motion even though their pitch-
variable is initially equal to unity (zero Larmor radius). The magnetic moment µ= mv2

⊥/2B ,
the lowest-order adiabatic invariant, is indeed not constant as the particle gyrates around the
variations of the magnetic field. Instead, the magnetic moment oscillates around an average
value. Second-order corrections to the drift equations like Baños terms are proportional to the
magnetic moment. Deviations are expected to be minimal for deeply-passing particles where
µ∼ 0. The troublesome region of compressed flux-surface is geometrically very small such
that few NBI particles are deposited in it. A low fraction of guiding-centres cross through this
area, similarly to the field-lines avoiding the compressed region (see figure 5.11(b)).

The investigation of fast particles with larger Larmor radii, e.g. resulting from Ion Cyclotron
Resonance Heating (ICRH) or fusion processes, in similar MAST magnetic configurations
will however require the use of higher-order GCDE or a full-orbit approach. The switching
techniques described in section 3.6 in conjunction with the field variation criteria of section 3.5
should greatly help completing fast ion confinement simulations on moderate computational
resources.

5.3 Slowing-down simulations of NBI distributions

With the knowledge gathered in previous sections, the redistribution of NBI hot particles
due to saturated ideal internal kink modes is now addressed. VENUS-LEVIS is employed to
follow the guiding-centre motion of several hundred thousand markers over slowing-down
timescales, including the action Monte-Carlo kicks (see section 4.5). The sampled spawning
of markers constitutes the source term of the slowing-down approach. The random Monte-
Carlo kicks act on the energy (slowing-down) and pitch-angle (scattering) of the markers in
order to emulate Coulomb collisions with the background plasma. Each marker is followed
until it reaches a multiple of the thermal energy (an arbitrary factor of 3 was chosen for the
simulations presented here), after which it is no longer considered part of the hot particle
distribution. This mechanism represents the sink of the slowing-down model. Eventually
the source and sink term balance out such that the distribution saturates. The saturated
distribution is considered to model the deposition of fast particles due to NBI. Moments of
the saturated distribution, such as density, current and pressure, are compared for various
equilibria increasing the helical displacement. MAST NBI ions enter the plasma at around 60
KeV, an energy at which collisions are rare. It takes about ∼ 0.05s for the whole distribution to
slow-down, which is why a precise and robust orbit solver is necessary. The combination of
long marker following time, and the radial drift excursions of particles in the core region due
to the three-dimensional geometry, means that many markers will pass close to the magnetic
axis and the transition region.

The initial position, velocity and weight of all markers are pre-computed according to the
characteristics of MAST PINIs and the temperature and density profiles used to generate
the equilibrium (see figure 5.4). The details of the external NBI routines in charge of marker
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Figure 5.16 – Deposition rate of NBI markers. The purple line depicts the path of the helically displaced
magnetic axis.

deposition are described in section 4.4. The particularity here is that 32 virtual PINIs are
placed every 1/32nd of a turn to account for the rotation of the plasma relative to the neutral
beam. In this way, particles are evenly deposited around the kinked equilibrium instead of at
a preferential angle with respect to the helical core. The birth position of NBI markers is not
perfectly axisymmetric, as seen on figure 5.16(b) where the 32 beam-lines are clearly identified.
This toroidal pattern is washed out during slowing-down simulations such that increasing the
number of duplicated PINIs does not significantly improve the final saturated results. In the
presence of the kink, the ionisation rate has an additional and important toroidal dependency,
as noticed on figure 5.16(b) by the weak colour imbalance between the left side (where the
magnetic axis passes through the hot-spot) and the right side (where the magnetic axis is
too far inside the device). This asymmetry is caused by the helical geometry of flux-surfaces
and the fact that temperature and density profiles are 3D flux functions. Consequently, the
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Figure 5.17 – Comparison of flux-surface average deposition rate (NBI birth profile) between axisym-
metric equilibrium and helical core.

flux-surface average of the deposition rate is flatter in the helical core than in the axisymmetric
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case, as depicted on figure 5.17.
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Figure 5.18 – Saturated flux-surface averaged density profile of MAST NBI fast particles and its evolution
in time for an increasing helical displacement δh .

The (helical) flux-surface averaged density profiles of the saturated NBI distributions are
shown on figure 5.18(a). They are observed to progressively hollow out near the magnetic
axis as the helical displacement δh increases, which is a combination of two effects. First,
the fast ion birth profile starts flatter than in the axisymmetric case. Secondly, as evidenced
in the previous section, particles undergo large radial drifts due to the 3D geometry of the
kink, which also contributes to erase gradients in the density profile. For the most extreme

δh = 0.00 δh = 0.06 δh = 0.10 δh = 0.15 δh = 0.19 δh = 0.23

Figure 5.19 – Hot particle density shifting from the magnetic axis to the uncompressed region as the
helical displacement expands (φ= 23.2 degrees)

helical core, the density profile peaks off-axis, resulting from the bunching of co-passing
particles in the uncompressed flux-surface region. The poloidal cut of the fast ion density
at a fixed toroidal angle on figure 5.19 confirms that the hot particle density gradually shifts
from the core (magnetic axis) to the uncompressed flux-surface region of the equilibrium as
the helical displacement becomes large. These simulations show that, in the presence of very
large helical kinks, NBI particles, supposed to heat the plasma around the magnetic axis, are
in fact deposited at an off-axis location. Such off-axis heating will have a degrading effect on
the plasma, not least on the driven current.

Similar flattening and off-axis peaking appears in the fast ion pressure and current profiles,

112



5.3. Slowing-down simulations of NBI distributions

φ = 15
o

φ = 75
o

φ = 135
o

φ = 195
o

φ = 255
o

φ = 315
o

Figure 5.20 – The NBI fast ion density follows the helical geometry forming a hot spot in the uncom-
pressed flux-surface region of the most extreme helical displacement δh = 0.23.

which could partially explain why fishbones disappear during LLM activity, i.e. the LLM effi-
ciently removes the fast ion pressure gradient drive for fishbones. Additionally, the resonance
between fishbones and toroidal drift precession is modified in 3D such that there are many
(weaker) characteristic frequencies.
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Figure 5.21 – Estimation of the effect of a hollow beam current profile on the q-profile.

The beam current drive (see figure 5.21(a)) is coarsely estimated by multiplying the saturated
hot ion current by the following drag factor jd = 1− (

1−1.46
p
εAZ

)
/Ze f f , where ε= r /R0 =

ρa/R0, Ze f f ≈ 1.66 and AZ ≈ 1.5 (Connor and Cordey, 1974; Start et al., 1980)5. The values in
figure 5.21(a) are compared with an axial ohmic current density of 1.2 k A/m2. The predicted
off-axis current drive will tend to accentuate the q-profile reversal, as quickly deduced from
the approximate relation for perturbation to the safety factor qki nk ≈ q I /Iki nk . Figure 5.21(b)
shows a recalculation of the total q-profile, given the beam driven current of figure 5.21(a).
It is noted that the LLM redistribution of NBI current drive goes against the flattening of the
q-profile and will tend to delay the time at which q becomes rational, and in this sense it
is seen that the LLM is beneficial, as pointed out by Menard et al. (2006). Notice that the
modification of the bootstrap current due to 3D and the change in the bulk pressure has not

5Note that the derivation of the drag factor assumes axisymmetry. A more elaborate neoclassical treatment
should be used to adjust for the helical geometry.
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Chapter 5. NBI fast ion redistribution in saturated ideal internal kink

been calculated. This effect may be more important than the change in current density just
described. On-going work is addressing the topic of bootstrap in 3D equilibrium.

5.3.1 Comparison with experimental neutron camera data

Experiments have reported that helical kinks affect fast particle confinement. The effect is
evidenced in particular by neutron camera data (Cecconello et al., 2010), a reliable diagnostic
that has the advantage of being directly proportional to fusion processes between fast ions
and background deuterium, thus providing a clean measure of hot particle densities.
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Figure 5.22 – Comparison between experimental time traces of neutron emission and simulated signals
in increasing helical amplitude. (left) Time evolution of the neutron emissivity during growing and
shrinking phase of LLM at different major radii; (right) Virtual neutron emissivity as a function of
helical displacement. Black, red and green data match the corresponding curves in both plots.

Considering a series of MAST discharges around pulse #26887, Cecconello et al. (2012) observe
that, before the onset of the LLM, the neutron emissivity is maximal in the area around the
magnetic axis represented by the black time-trace on the upper left plot of figure 5.22. The
neutron emissivity drops in the core region as soon as the LLM appears (see Mirnov time-trace
on the lower left plot of figure 5.22), to the benefit of the outer region (small increase of the
green curve R = 1.2m on the top left plot of figure 5.22). The total neutron rate however
remains constant during the LLM activity (central left plot of figure 5.22), which suggests
that global confinement is not lost but fast particles are mostly redistributed. During the
LLM phase at t = 0.33s, the neutron signal as a function of the impact parameter (green
squares on figure 5.23(a)) is flatter and broader than the signal at t = 0.25 (black data points
of figure 5.23(a)) and reaches its maximum on the high-field side of the machine. This is a
counter-intuitive result in the context of 2D equilibrium and is partly why transport models
fail to replicate experimental time-traces. As the mode fades away (Mirnov coils on figure 5.22),
the neutron production in the central region nearly returns to its initial intensity, suggesting
that fast ions move back into the core.

These experimental facts are qualitatively recovered by VENUS-LEVIS simulations. We com-
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Figure 5.23 – Comparison between MAST experimental neutron camera traces around pulse #26887
(Cecconello et al., 2012) (top) and virtual diagnostic from saturated NBI distributions (bottom). The
black (red) signal on the top plot represents the neutron emission before (after) LLM activity. It com-
pares with the black curve on the bottom plot from numerical simulations based on an axisymmetric
equilibrium. The top green data during LLM is put in relation with the bottom green dashed curve
from neutron emission in helical core.

pare them via a synthetic diagnostic of the neutron camera, whose details are presented in
section 4.6.1. The virtual diagnostic computes the probability for each marker to participate
in fusion reactions with the deuterium background according to beam-on-target rates of DD
reactions (Bosch and Hale, 1992; Miley and Towner, 1975). The toroidally averaged fusion
rate, obtained at the end of each slowing-down simulation, is considered to model the instan-
taneous neutron emission. In the axisymmetric equilibrium, shown on figure 5.23(b), the
emission is focused around the magnetic axis in the core plasma. In the largest helical core
(figure 5.23(c)), the neutron rate is broader both vertically and horizontally forming a bean
shape that is more intense on the high-field side. This pattern is the geometric consequence of
toroidally averaging the fast ion hot-spot in the uncompressed region pictured on figure 5.20.

The final step to compare against neutron camera traces is to integrate the simulated fusion
rate along the line of sight of the detector as a function of the detectors tangent radius. For
more realistic results, this integration is performed by the LINE2 code (Cecconello et al., 2010),
which accounts for the detailed geometry, field of view and sensitivity of MAST neutron camera.
In accordance with experimental traces as a function of the impact radius, there is a drop in
the central region and a peaking on the high-field side of the neutron emissivity. This already
occurs in our NBI simulations for a relatively small helical core of δh = 0.06. The drop is slightly
more pronounced in the largest kink with δh = 0.23 (in turquoise on figure 5.23(a)) but the
progression is not as severe as from the axisymmetric case (black curve on the same graph).
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The right plot of figure 5.22 is an estimate at a fixed tangent radius of the varying neutron
emission with the helical displacement. This graph is put in relation with the time evolution
of the neutron camera signal on the top plot of figure 5.22. In both cases, the signal drops
significantly in the direction of the (axisymmetric) magnetic axis at impact radius R = 1 [m]
(black diamonds), stays constant at radius R = 1.1 [m] (red diamonds) and slightly increases at
R = 1.2 [m] (green diamonds). These numerical results indicate that the 3D geometry of helical
cores strongly and rapidly affects NBI redistribution, although preserving global confinement
of fast particles. If the camera were positioned higher (line-of-sight above the mid-plane),
neutron counts would be expected to actually increase during a LLM phase due to the off-axis
bunching of NBI ions broadening the hot ion density in the z-direction.

5.4 Conclusions

NBI fast ion redistribution observed in MAST hybrid experiments is accurately modelled
by tracking the particle motion in 3D magnetic fields. The saturated state of ideal internal
kink modes are conveniently reproduced with stationary helical core equilibria in VMEC. The
accurate representation of the kinked geometry of flux-surfaces is important, especially in
the region where they are compressed against the axisymmetric outer layers where parallel
currents can develop. The spline-Fourier interpolation scheme is vital to yield smooth guiding-
centre and full-orbit equations of motion in the curvilinear flux coordinate system. The
presence of drift-surfaces and drift islands, resulting from the perturbation of field-lines on
nested tori, suggests confinement of passing particles. The quasi-axisymmetric behaviour of
the field strength in the core and the outer axisymmetric mantle guarantees good confinement
of trapped particles. In addition to asymmetric ionisation, the helical drift pattern created by
particles bunching in the uncompressed region causes off-axis NBI heating, off-axis current
drive and off-axis neutron emission. The toroidal average of the hot density produces a bean
shape neutron production rate that is stronger on the high-field side, exactly like the ones
found on neutron camera traces.

In this simple but realistic model, redistribution is a direct consequence of axisymmetry
breaking and flux-surface kinking. Fine-tuning of diffusion coefficients or the inclusion of
anomalous transport was not necessary to explain redistribution mechanisms. Results would
be further improved by taking into account the effect of plasma rotation and the correction
to bootstrap current in generating three-dimensional equilibria. Plasma rotation is expected
to have an important effect on the motion of particles, giving rise to centrifugal forces in the
rotating frame (radial electric field and E ×B flows in the laboratory frame) that shift the orbit
topology outwards and change the fraction of passing/trapped particles. Work is on-going to
include the effect rotation in the GCDE and full-orbit equations. Bootstrap current is expected
to affect the equilibrium calculation and to lesser extent the amplitude and geometry of core
helical deformations.

The assumption of nested flux-surfaces and stationary equilibrium, which is considered as
an important limitation of our model, should be relaxed to allow for the formation of tearing
islands as well as regions of stochastic field-lines. In this paradigm, fast ion transport will
be enhanced by diffusion across the stochastic layers. However, this requires more sophisti-
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cated representations of the magnetic layout, for example using equilibrium codes like HINT2
(Suzuki et al., 2006), PIES (Krommes and Reiman, 2009), SIESTA (Hirshman et al., 2011) or
SPEC (Hudson et al., 2012) or non-linear fluid codes such as XTOR. The first class of codes are
however incompatible with plasma rotation. Fluid codes like XTOR require heavy computa-
tional resources and produce fields that are less smooth than equilibrium codes. Drift-surfaces
and conservation properties may not be recovered due to numerical imprecision.
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6 Effect of Resonant Magnetic Perturbation
on NBI fast ion confinement

In this chapter, VENUS-LEVIS is employed to investigate fast particle losses due to Resonant
Magnetic Perturbations (RMPs) with the goal of comparing two contrasting models. Either the
RMP field is added to the axisymmetric equilibrium as an external vacuum field (magnetic
islands but no plasma response), or an ideal 3D magnetic equilibrium is established including
the RMPs (nested flux-surfaces assumed). Accurate slowing-down simulations show different
transport properties between the two RMP field models. The approach and results obtained
has led to a short publication (Pfefferlé et al., 2015b).

Coils to generate RMPs have been identified as a means to influence deleterious edge magneto-
hydrodynamic instabilities known as Edge Localised Modes (ELMs). The prospect of using
these coils in normal tokamak operation has led to a very active field of research. First used
extensively in the DIII-D tokamak, RMPs were observed to completely eliminate ELMs while
maintaining a steady-state high-confinement (H-mode) plasma (Evans et al., 2004). This
success is theoretically interpreted by a reduction of edge pressure gradients due to stochastic
field-lines induced by the RMPs. Convinced by the beneficial effect, other machines have
implemented RMP coils and achieved varying levels of ELM mitigation. In Joint European
Torus (JET), type-I ELMs were actively controlled with n = 1 perturbation fields (Liang et al.,
2007) and mitigated with n = 2 fields (Liang et al., 2013). In the Axially Symmetric Divertor
Experiment (ASDEX) Upgrade (AUG), significant reduction of plasma energy loss associated
with type-I ELMs was observed (Suttrop et al., 2011b). In Mega-Ampère Spherical Tokamak
(MAST) however, RMPs actually triggered ELMs in ELM free H-mode periods with n = 3
and increased their frequency (Kirk et al., 2010). A similar destabilising effect was found in
National Spherical Tokamak eXperiment (NSTX) (Canik et al., 2010). These experimental
results are not well understood theoretically, in particular the plasma response to the applied
magnetic perturbations and the effective level of stochasticity. This aspect is studied both
experimentally (Chapman et al., 2013; Moyer et al., 2012; Schmitz et al., 2008; Suttrop et al.,
2011a) and via numerical modelling (Bird and Hegna, 2013; Canik et al., 2012; Chu et al.,
2011; Ferraro, 2012; Huysmans et al., 2009; Liu et al., 2012). An overview comparing various
theoretical and numerical approaches is reported by Turnbull et al. (2013).

Another important aspect related to RMPs is the induced loss of fast particles on the plasma
facing components. Fast ion transport and loss has indeed been observed to increase in the
presence of RMPs, in particular causing heat-loads at specific toroidal angles on the wall
(Garcia-Munoz et al., 2013a,b) and enhancing prompt losses (Zeeland et al., 2014). The strong
effect of RMPs on hot populations is evidenced by various numerical simulations. Most
approaches use the so-called “vacuum-RMP” model, where the magnetic field due to the RMP
current coils is summed perturbatively on top of a 2D axisymmetric tokamak equilibrium
(Asunta et al., 2012; Shinohara et al., 2012; Tani et al., 2012). This approximation, in line with
the study of transport due to magnetic ripple, ferritic inserts and Test Blanket Module (TBM)
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(Kurki-Suonio et al., 2009; Oyama et al., 2012; Tani et al., 1981), allows for stochastic field-lines
but neglects altogether the plasma response. Asunta et al. (2012) claim that fast particle losses
simulated with the vacuum-RMP model would represent a “worst-case” scenario, arguing
that the plasma would in reality damp or screen the effect of RMPs. Kramer et al. (2013),
Garcia-Munoz et al. (2013b) and Zeeland et al. (2014) have investigated fast ion transport in
the perturbed fields from the linear resistive runs of the M3D-C1 code and have found opposing
results. In this case, RMPs appear to have been amplified locally in the plasma, thus living up
to the same resonant perturbations.

The aim of this chapter is to contrast the vacuum-RMP model with the so-called “equilibrium-
RMP” model, where a 3D magnetic equilibrium is established in the presence of RMP coil
currents using the free-boundary VMEC code (Hirshman et al., 1986a). Retrospectively, this
idea has been considered by Spong (2011) in combining VMEC and the DELTA5D (Spong, 2006)
codes and to lesser extent by Garcia-Munoz et al. (2013b) by using VMEC and the GOURDON
codes. The equilibrium-RMP model, in assuming nested flux-surfaces with a single magnetic
axis, does not allow for the formation of magnetic islands nor the appearance of stochastic
field-lines inside the last closed magnetic flux-surface. This somewhat goes against the
intuitive interpretation of the effect of RMPs. However, it properly accounts for the plasma
response in the sense that a saturated ideal equilibrium state is produced, satisfying ideal
MagnetoHydroDynamics (MHD) force balance. The simulations presented here, in contrast
to previous assertions on fast particle transport related to RMPs, show that the large 3D
structures induced by the RMPs can cause important drifts, in effect increasing fast ion losses,
which disproves that the vacuum-RMP approach overestimates particle losses. Self-consistent
3D equilibrium states, which allow internal island structures and stochastic domains, would
provide the basis for a more elaborate and precise evaluation of fast particle orbits (for example
with HINT2 (Suzuki et al., 2006), PIES (Krommes and Reiman, 2009), SIESTA (Hirshman et al.,
2011) or SPEC (Hudson et al., 2012)).

According to the Chirikov criterion (Chirikov, 1979), measuring the overlap of magnetic islands,
MAST plasmas with RMPs, in line with many other machines, should be characterised by
broad stochastic regions. However, the expected mitigating effect has not been seen on type I
ELMs (Nardon et al., 2009), pointing to an important plasma response. To compare the two
RMP models, the effect of MAST n = 3 coil configuration is studied on fast ion populations
from neutral beam injection (Neutral Beam Injection (NBI)). Realistic ion sources are produced
according to the characteristics of MAST positive ion neutral injectors (Positive Ion Neutral
Injector (PINI)s) as described in section 4.4, with a tangential radius of 0.9m, an opening
of 21.8cm×8.25cm and a beam spread of 0.6◦. The NBI distributions are evolved within the
VENUS-LEVIS code using the set of phase-space Lagrangian derived Guiding-centre Drift
Equations (GCDE) (see equation 3.12). Fast ion losses resulting from the two different RMP
models are assessed.

6.1 Coil configuration and compatibility with stellarator symmetry

VMEC calculations are purposely launched with the constraint of stellarator symmetry. In this
context, an axisymmetric equilibrium is automatically up-down symmetric, corresponding
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to Double Null Diverted (DND) discharges. To generate consistent stellarator symmetric 3D
fields, a compatible RMP coil configuration must be carefully chosen1.

MAST is equipped with a set of internal RMP coils consisting of six upper coils spaced toroidally,
every 60◦ above the mid-plane, and 12 bottom coils, every 30◦ below. The first top and bottom
coils are aligned. Each of them is composed of 4 turns of an aluminium alloy filament that
can carry up to 1.4kA of current (total of 5.6kAt). Different current patterns can produce
a range of perturbations with toroidal mode numbers from n = 1 to 6. In order to respect
stellarator symmetry, a matching number of upper and lower coils must be activated so
that the maximum mode number in our model is limited to n = 3. In the case of n = 3
perturbations, the current pattern in the the upper coils is a repeated (+,−), where the positive
sign means a counter-clockwise current loop, i.e. a right-hand rule vector pointing out of
the torus, and a negative sign means a clockwise current loop, i.e. a right-hand rule vector
pointing inside the torus. With the 12 lower coils, 4 different phases (90◦ increments) can
be imposed to strengthen the n = 3 perturbation. The 4 phases are obtained by cyclically
permuting and repeating the current pattern (+,0,−,0) in the lower coils. In what follows,
0◦-phase corresponds to the current pattern with an "even" parity (figure 6.1(a) and 6.2(a)) and
180◦-phase to "odd" parity (figure 6.1(b) and 6.2(c)), where the top and bottom activated coils
are aligned and the bottom coils repeat the sequence ±(+,0,−,0). The 90◦ and 270◦ phases
refer to an alternating activation where the bottom coils repeat ±(0,+,0,−) (figure 6.1(c), 6.2(b)
and 6.2(d)).

For each current phase, the entire coil setup (including TF coils) must be given a toroidal offset
(angle with respect to φ= 0) to enforce stellarator symmetry; the current J has to become a SS
axial-vector (see equation B.11), i.e. JR (R,−φ,−Z ) =−JR (R,φ, Z ), Jφ(R,−φ,−Z ) = Jφ(R,φ, Z )
and JZ (R,−φ,−Z ) = JZ (R,φ, Z ). The offset φ1 indicates the toroidal position of the centre
of the first top coil. Figures 6.1(a), 6.1(b) and 6.1(c) justify the various combinations2. For
0◦-phase (even parity, figure 6.1(a)), the first and last coils (top and bottom) are symmetrically
disposed at φ1 = 30◦ and φ6 = −30◦. The direction of the current in the lower horizontal
segment (red vector Jφ) of the first top coil is then the same as the direction of the current in
the upper horizontal segment of the last bottom coil. The direction of the current in the right
vertical segment (blue vector JZ ) of the first top coil is the same as the direction of the current
in the left vertical segment of the bottom coil. For 180◦-phase (odd parity, figure 6.1(b)), the
first top and bottom coils are centred at φ1 = 0 so that the direction of the current in the lower
horizontal segment (red vector Jφ) of the top coil is the same as the direction of the current
in the upper horizontal segment of the bottom coil. The direction of the current in the right
vertical segment of the top coil (blue vector JZ ) is the same as the direction of the current in
the left vertical segment of the bottom coil. A similar reasoning applies to ±90◦-phases to yield
a toroidal offset of φ1 =±15◦ (figure 6.1(c)).

The vacuum field δBRMP , calculated with Coil.Sphell (Cooper et al., 2004) (see section 4.3),
is either directly sent to VENUS-LEVIS for the vacuum-RMP model or to VMEC that will include

1After some confusing results, it appeared that the coil configuration used initially in this study was incompatible
with stellarator symmetry.

2If the bottom coils are mirrored from the top coils, the paths are defined in the opposite direction such that an
additional change of sign must be considered in the coil file.
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Figure 6.1 – Schematic justification of the toroidal offset of the centre of the first coil in order to satisfy
stellarator symmetry of the n = 3 RMPs.
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(a) 0◦-phase (b) 90◦-phase

(c) 180◦-phase (d) 270◦-phase

Figure 6.2 – Stellarator symmetric RMP coil configuration and magnetic field generated in the vacuum
for different current patterns.
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Figure 6.3 – Comparison of the field-line structure in response to 0◦-phase current pattern for the
equilibrium-RMP (left) and vacuum-RMP (right) model.

this additional vacuum field in a free-boundary calculation thus yielding the equilibrium-RMP
model. VENUS-LEVIS is readily capable of handling 3D equilibrium fields and solving the
equations of motion in VMEC’s native coordinate system. Code development was required to
include the RMP field as an external vacuum field, a rather challenging task that is described in
section 4.3. The RMP field is algebraically added to the equilibrium prior to calling the GCDE
(3.12), yielding exact equations for arbitrary large perturbations (respecting the guiding-centre
approximation). Since Coil.Sphell calculates the vacuum fields on a cylindrical mesh, the
metric is used to convert each component into curvilinear flux-coordinates. This task is greatly
facilitated by the spline-Fourier interpolation scheme (see section 4.2), especially to compute
covariant derivatives.

6.2 Plasma response and magnetic field structure of the contrast-
ing RMP models

With regards to the magnetic structure induced by RMPs, the main difference between the
two approaches is presented on figure 6.3. The latter shows the points where the magnetic
field-lines cross the R-Z plane at a given toroidal angle (Poincaré section of the field-line
tracing) for the case of MAST n = 3 RMP coil configuration with a current of 1400A per turn for
a total of 5600A per coil (4 turns). In the equilibrium-RMP model (left plot of figure 6.3), the
magnetic field-lines lie on 3D nested flux-surfaces that are slightly deformed with respect to
the nearly axisymmetric unperturbed equilibrium (dashed lines), whereas in the vacuum-RMP
model (right plot of figure 6.3), the magnetic field-lines draw out a series of magnetic islands
(with n = 3 periodicity half-way between the axis and the edge) and large stochastic regions.

Figure 6.4 shows the difference between the total magnetic field and the nearly axisymmetric
unperturbed equilibrium for the two models. In the vacuum-RMP approach, δB only depends
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Figure 6.4 – Modulus of the perturbed magnetic field |δB | = |Btot −Bno RMP| at a toroidal angle where
the amplitude is maximum. Colour bar indicates the percentage with respect to the unperturbed
field. Flux surfaces of the unperturbed equilibrium are indicated by dashed lines and the last-closed
flux-surface at q95 in solid black. In the vacuum-RMP model (top), this map corresponds to the vacuum
field. In the equilibrium-RMP model (bottom), the plot informs on the penetration of RMPs and the
plasma response.
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Figure 6.5 – Normal displacement of the last closed flux-surface δb(u, v) =√
(R −RnoRMP )2 + (Z −ZnoRMP )2 between the RMP-perturbed 3D equilibrium and the 3D equilibrium

without RMPs for varying current patterns. δb is evaluated at s = 0.98 and equal (u, v) coordinates.
Field-line trajectories are represented with black dots in order to highlight that the dominant m = n = 3
perturbation aligns with the field-line pitch. The q-value at s = 0.98 is approximately 5.

on the geometry of the coils, as it portrays the vacuum field without plasma, which explains
why plots in figure 6.4(a) are smooth. In the vacuum-RMP model, the maximum amplitude of
the field due to RMPs is approximately 0.6% of the unperturbed field. In the equilibrium-RMP
model, δB results from the combined effect of flux-surface deformations and adjustments
of the magnetic field to the MHD force balance. A more complex pattern is thus observed in
the plots of figure 6.4(b), with the strongest response for the current pattern of 0◦-phase coil
activation (even parity). The RMP field is observed to propagate within the plasma, actually
enhancing (resonantly) the amplitude of the perturbations. Similar enhancement has been
reported in linear MHD studies (Liu et al., 2011, 2012), especially the component that is
resonant to the external kink mode (Haskey et al., 2014). The amplitude of δB exceeds 1% of
the unperturbed field with the 0◦-phase current pattern and decreases to a moderate value in
the ±90◦-phases. In the 180◦-phase case, δB is slightly weaker than the vacuum RMP field,
which suggests that the plasma is actually screening the perturbations.

Looking at the normal displacement of the last-closed flux-surface in the equilibrium-RMP
model (figure 6.5), the boundary is seen to be most distorted for the 0◦-phase current pattern
(even parity), with a maximum displacement of 3cm. The edge is practically unperturbed for
the 180◦-phase case (odd parity) as if the flux-surfaces were insensitive to the application of
RMPs in this particular current pattern3. In all situations of figure 6.5, the distorted boundary
has a dominant m = n = 3 mode structure whose iso-contours align with the magnetic field,
as highlighted by the displayed field-line trajectory (black dots in figure 6.5). This corresponds
to a perpendicular edge displacement, expected from the external kink-like response.

The spectrum of the equilibrium-RMP configuration, where unperturbed modes are removed,
is displayed on figure 6.6 for even and odd coil parities (0◦ and 180◦ phases). Although there
is an order of magnitude difference in the spectrum between even and odd coil parities, a
dominant m = n = 3 component is identified in both cases. It is observed in figure 6.6(b) that
only odd multiples of 3, i.e. n =±1×3,±3×3, . . . are resonant with the applied perturbation.

3It may also be possible that odd parity RMPs cause deformations that are incompatible with stellarator
symmetry. A stability analysis (full 3D) should be carried out to verify this interpretation.
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Figure 6.6 – Maximum amplitude of the modes present in the equilibrium-RMP which are not in the
unperturbed equilibrium.

The spectrum is broader and smoother for even parity (figure 6.6(a)).

6.3 Slowing-down simulations, saturated loss rates and energy de-
pendency of even parity coil configuration

With the goal of comparing the effect of vacuum-RMP and equilbrium-RMP approaches on
fast ion losses, a series of three slowing-down NBI simulations were performed in the even
parity coil configuration. From the plasma response analysis above, this coil activation is
expected to yield clear differences. Populations of fast ions from NBI with varying beam
energies were evolved, first in an axisymmetric MAST equilibrium, then in the presence of
vacuum-RMP fields and finally in the equilibrium RMP configuration. Collisionality with the
background plasma was included via the set of Monte-Carlo operators of section 4.5 based
on experimental temperature and density profiles to model slowing-down and pitch-angle
scattering (self-collisions among energetic particles are neglected). Loss rates are compared
in the three cases after obtaining saturated fast ion distributions, when continuous particle
injection is balanced by particle loss and thermalisation. Such distributions are evolved over
slowing-down time-scales of 100ms.

Figure 6.7(a) shows the steady-state energy flux across the last closed flux-surface normalised
to the total injected power as a function of the toroidal angle φ. On figure 6.7(b), purple
dots depict where on the θ−φ plane particles have left the plasma, to be compared with the
patterns of |δB | on the last closed flux-surface. In both RMP models, fast ion losses clearly
follow the n = 3 periodicity of the coil configuration, as the three maxima are situated on the
mid-plane at the same toroidal location where the RMP perturbation points outwards (red
colour, matching the situation of figure 6.2(a) in the vacuum-RMP case).

In the equilibrium-RMP case (top plot of figure 6.7(a)), the maxima gradually increase with
the beam energy, whereas losses seem to stay relatively constant in the vacuum-RMP model
(bottom plot of figure 6.7(a)). This fact is better illustrated in figure 6.8, which shows the
percentage of total injected power lost through the last closed flux surface as a function of
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Figure 6.7 – Steady-state Deuterium ion losses across the last closed flux-surface for the even parity
RMP current pattern.
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state regime where particle injection is balanced by losses and thermalisation (slowing-down due to
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Figure 6.10 – Volume integrated saturated density profiles, normalised to the total number of confined
particles in the absence of RMPs.

the beam energy. Although increased losses are expected at higher beam energies because
particles have larger drift orbits, two extra mechanisms are at play here: diffusion losses due to
parallel transport in the stochastic field-lines (relevant in the vacuum-RMP model) and losses
through 3D drifts (relevant in the equilibrium-RMP model). At low energies (< 30 keV), losses
are most significant in the vacuum-RMP model, whereas at high energies, the equilibrium-
RMP model presents the largest amount. Typical injection energy of the MAST NBI system
is around 56keV, and thus, perhaps surprisingly, the equilibrium-RMP model yields a higher
estimation of the loss rate than the vacuum-RMP model at realistic injection energy.

Losses end up decreasing with energy from around 20keV in the vacuum-RMP model and in
the situation without RMPs. This is because more energetic neutrals are ionised closer to the
magnetic axis of the plasma (see figure 6.9 showing the deposition flux-averaged density as a
function of minor radius) and are less affected by the action of RMP, thus better confined in
the plasma. In the equilibrium-RMP model, losses do not stop rising, indicating that the 3D
deformation of flux-surfaces influences the trajectories of a larger fraction of particles, also
near the core (see penetration maps in figure 6.4).
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(a) vacuum-RMP model (b) equilibrium-RMP model

Figure 6.11 – Phase-space coordinates of lost particles due to RMPs, characterised by prompt losses at
injection energy (pronounced arcs), diffusive losses (sparse clouds of point) and kinetic resonances
(straight lines)

Figure 6.10 shows the saturated cumulative particle density normalised to the total number of
confined particles in the absence of RMPs. These curves represent the fraction of particles
enclosed by a given flux-surface s. Comparing the left graph of figure 6.10 where particles
are injected at 8keV with the right graph of figure 6.10 where the beam energy is 75keV, the
fraction of particles near the core is larger at higher injection energy. At 8keV injection, in the
vacuum-RMP model (fine dashed curve on the top plot of figure 6.10), it is seen that the RMP
field spoils the confinement of fast particles starting from around s = 0.3. This is expected
from the presence of magnetic islands and stochastic regions, as shown on the Poincaré plots
of figure 6.3. In the equilibrium-RMP model (dash-dotted line on the left plot of figure 6.10),
only particles beyond s = 0.45 are lost because the drift motion away from field-lines is small at
8keV. At the injection energy of 75keV (right plot of figure 6.10), losses are now more significant
in the equilibrium-RMP model than in the vacuum-RMP model, consistent with the crossing
of the lines in figure 6.8. It is seen that particles are affected closer to the core starting from
s = 0.1, because drift orbits are considerably larger and, in the equilibrium-RMP case, because
the 3D perturbation propagates all around the plasma (see figure 6.4).

6.4 Prompt losses, diffusion and resonances

To give a clearer interpretation of the loss mechanisms, lost particles are plotted in velocity
space in figure 6.11. Various patterns are identified. For each family of NBI beam energies,
prompt losses are identified on arcs of constant velocity v2 = v2

||+v2
⊥ at their initial injection
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(a) Banana orbit at HGC = 30keV with k = 1 (3
bounces per toroidal turn)

(b) Barely passing particle at HGC = 30keV with
k = 1/4 (3 poloidal turns for 4 toroidal)

Figure 6.12 – Selection of resonant guiding-centre orbits (lost) for which the bounce/transit motion
and precession drift divide into rational numbers matching the RMP periodicity.

energy (arrows in figure 6.11(a)). RMPs are observed to enhance prompt losses by perturb-
ing the axisymmetric equilibrium, in effect preventing conservation of toroidal momentum.
Particles subject to prompt losses are mostly located near the plasma edge where the per-
turbations are strongest. Prompt losses are reduced at higher NBI beam energy, because
ionisation takes place deeper in the core. The arcs of prompt losses are somewhat thicker in
the equilibrium-RMP model.

The velocity space of figure 6.11 is also filled with lost particles that have entered, via Coulomb
scattering or stochastic field-line diffusion, a portion of unconfined phase-space. This mecha-
nism is obviously slower than prompt losses but can affect a larger fraction of NBI populations.
The equilibrium-RMP model is observed to broaden this fraction, in particular enhancing
losses of deeply-trapped particles (see cyan circle near the v|| = 0 on the left of figure 6.11(b)).
For NBI, the portion of deeply-trapped particles is very low, especially at higher beam energies
for which ionisation takes place closer to the magnetic axis. RMPs might provoke higher loss
rates in the case of Ion Cyclotron Resonance Heating (ICRH) or fusion alpha fast particles.
Modelling of the effect of RMPs on those populations in a DEMO reactor configuration design
with VENUS-LEVIS is planned for future work.

Two diagonal lines (in gold-yellow) are noticed on both plots of figure 6.11, one through the
bulk of the losses and one at the edge of the lost distribution, beyond the passing/trapped
limit. These losses correspond to resonances between the bounce/transit motion and the
precession drift. In analogy with swinging a child in a playground, a particle that successively
passes through the maximum RMP field will be forced out of the plasma after a few turns. This
resonance condition is expected to be

ωpoloidal

ωtoroidal
= nk = p

q
(6.1)

where n = 3 is the RMP periodicity, k ∈Q is a rational number,ωpoloidal is the bounce frequency
for trapped and poloidal transit frequency for passing particles, ωtoroidal is the average toroidal
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drift (precession). For passing particles, p ∈N corresponds to the number of poloidal turns
within q ∈N toroidal rotations. Figure 6.12 highlights two possible resonances among other.
Figure 6.12(a) is a banana orbit where the bounce frequency precisely matches the precession
drift such that after one full toroidal rotation, the particle returns close to its initial position.
But, because of this, the RMPs pull the particle out after 3 full turns. The first distinct line
through the bulk of the lost distribution in figure 6.11 is composed of such kind of trapped par-
ticle resonances with k = 1. Figure 6.12(b) shows a passing particle that undergoes 4 toroidal
turns while completing 3 poloidal transits. The edge of the lost distribution in figure 6.12(b) is
the consequence of the resonant behaviour of passing particles with k = 1/4. The condition ev-
idently depends on the initial pitch angle and the particle energy. It is conjectured that the coil
phase has an incidence on the fraction of lost particles by modifying the resonance condition,
especially for passing particles, but this has yet to be verified. Compared to the vacuum-RMP
model, the equilibrium-RMP model gives rise to a higher number of resonance possibilities. It
especially affects a larger fraction of passing particles, yielding a thicker resonance line (purple
dashed circle) on the right plot of figure 6.11(b).

6.5 Conclusions

In conclusion, numerical simulations indicate that fast ions are sensitive to the application of
RMPs. There is however a significant difference between modelling their effect via the addition
of a vacuum field to a 2D unperturbed equilibrium and establishing a 3D MHD equilibrium
embodying the perturbation. The spline-Fourier interpolation scheme offered the opportunity
for accurate comparison. In the equilibrium-RMP model, the assumption that the RMP field
is embedded in a 3D equilibrium is convenient because the solution, rapidly found in VMEC,
corresponds to a saturated plasma state (satisfying the minimal energy principle applied to
ideal MHD).

The RMP field in the equilibrium-RMP model is seen to propagate throughout the plasma and
become enhanced in some cases. The strongest response occurs for a 0◦-phase of the current
pattern where the deformation of the last closed flux-surface reaches 3cm. With a 180◦-phase
activation, flux-surfaces are hardly perturbed and the field inside the plasma is similar to the
vacuum-RMP field. More elaborate studies should however include resistive effects for a more
realistic description of plasma screening.

In slowing-down simulations, it is observed that fast ion losses are dominated by 3D drifts
rather than magnetic field stochasticity at the typical beam energies of the MAST NBI setup,
a somewhat counter-intuitive result given the stochasticity of the field and the unaltered
penetration of the vacuum-RMP case. The RMPs affect particles close to the last-closed flux-
surface by causing prompt losses. Via Coulomb collisions and parallel field-line diffusion,
ions can randomly be ejected out of the plasma. This mechanism is slower but affects a larger
fraction of the NBI population. Losses occur through drift resonances, when the poloidal
and toroidal average motion have a rational ratio. In this case, particles get dragged out after
many turns. The equilibrium-RMP model is seen to increase all loss channels due to a deeper
penetration of the RMPs and a more complex RMP pattern (flux-surface deformation and
magnetic field enhancement).
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6.5. Conclusions

The two models (vacuum-RMP and equilibrium-RMP) may provide an upper and lower
approximation of the real situation: the vacuum-RMP model does not take into account the
plasma response, the equilibrium model neglects the formation of internal stochastic field
lines and island structures. Each model comes with a specific loss mechanism, that scales
differently with energy. By weighting both contributions, it may be possible to provide a more
accurate estimate of RMP losses.

The singular current sheets that form at rational surfaces are not determinant for the study
of fast ion transport, at least not at the level of guiding-centre theory. Additional gyro-orbit
effects are low for tangential NBI because most particles are deeply passing and have a small
gyro-motion. Such effects will however play an important role for energetic populations with
larger gyro-radii, for example in the case of ICRH or fusion alphas. Future work will investigate
the transport of hot particles due to RMPs switching between guiding-centre and full-orbits
equations (see section 3.6). Ongoing work is devoted to extending the coordinate system
beyond the last-closed flux-surface, such that VENUS-LEVIS will be able to follow particles up
to the wall.
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As findings were summarised in the conclusions of each chapter, the following chapter is more
of a synthesis and a discussion of perspectives for future research.

This thesis addressed the challenging problem of solving fast particle motion in a category
of 3D magnetic fields occurring in fusion devices. The main outcome of the work is an orbit
solving code, VENUS-LEVIS, that allows a flexible investigation of fast ion transport in 3D satu-
rated MagnetoHydroDynamics (MHD) configurations. The use of curvilinear flux coordinates,
highlighting the intricate relation between magnetic field-line geometry and particle orbits, is
at the centre of the code’s design. In this context, the spline-Fourier interpolation scheme of
section 4.2 significantly helps the numerical implementation of the curvilinear coordinate
framework, avoiding issues faced with finite-difference techniques altogether. The benefits
of the spline-Fourier technique as well as the Lagrangian approach to full-orbit (section 3.2)
and Guiding-centre Drift Equations (GCDE) (section 3.3.1) are reflected in the computed
trajectories and the underlying Hamiltonian properties are faithfully recovered. In axisym-
metric systems, such expected properties are conveniently used as validation criteria. In 3D
equilibrium fields with nested flux-surfaces, in particular in the helical core solution of VMEC
(section 5.1.1), the presence of drift-surfaces is a non-trivial outcome of particle simulations
(section 5.2).

First-order guiding-centre theory is extensively used in orbit codes, although a quantitative
justification is not generally given. The criterion derived in section 3.5 proposes a straight-
forward evaluation of the field variation at linear order in Larmor radius around the guiding-
centre. It is reported that parallel currents lead to a parallel drift identified as the Baños
drift, which appears at second-order in the guiding-centre expansion of the Lagrangian. This
term has a small incidence on the orbits of Neutral Beam Injection (NBI) fast ions, but is of
concern in the case of fusion alphas or energetic particles from Ion Cyclotron Resonance
Heating (ICRH) in tokamaks like Mega-Ampère Spherical Tokamak (MAST), Joint European
Torus (JET) or the International Thermonuclear Experimental Reactor (ITER). Deviations
occurring between guiding-centre and full-orbit trajectories in a purely-sheared magnetic
field (section 3.4) justifies the need for the switching algorithm of section 3.6. This technique
will both improve the quality of fast ion simulations and reduce CPU consumption in future
simulations.

MAST Long-Lived Modes (LLMs) are considered in this work as ideally saturated MHD states,
conveniently modelled with the 3D helical core solution of VMEC. The existence of nested
flux-surfaces is a strong assumption, but provides a suitable viewpoint for interpreting fast ion
redistribution in internal plasma deformations. Helical drift-surfaces and helical drift-islands
are an expected consequence of field-line integrability on magnetic flux-surfaces. From the
KAM theorem, these helical orbit topologies are expected to be preserved in more general
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treatments of saturated ideal internal kinks. The methods proposed can be used to predict the
level of off-axis NBI fast ion deposition and potentially help optimise various heating scenarii
in tokamaks like ITER or DEMO. The robust numerical techniques devised are immediately
transferable to the study of fast ion confinement in stellarator equilibria.

The side-by-side comparison of Resonant Magnetic Perturbation (RMP) implementations
highlights the conceptual difference in modelling approaches. The application of external
non-axisymmetric perturbations triggers field-line stochasticity. The idea that breaking flux-
surfaces would yield more losses appears to be correct only for low energy drift orbits and, by
extension, for thermal particles. However, allowing 3D deformations of nested flux-surfaces,
which is topologically equivalent for field-line tracing to the situation without RMPs, has a
more significant impact on drift orbits at realistic NBI beam energies. These conclusions illus-
trate the importance of the plasma response to RMPs in fast ion simulations and encourages
further investigation.

More generally, the work carried out in this thesis reminds how challenging and sensitive
numerical modelling can be. It conveys the message that, to some extent, it is more important
(and exciting) to understand the underlying physics than provide untenable quantitative
predictions. Testing the range of applicability of a model usually provides an opportunity for
improvements and further discoveries.

7.1 Perspectives and future expansions

The VENUS-LEVIS code can certainly be improved and applied to the study of other fast ion
related phenomena. There is room for numerical optimisation and plenty of benchmarking
opportunities.

7.1.1 Code development

A fourth-order Runge-Kutta is usually used to solve the equations of motion. A selection of
lower-order schemes is implemented. More evolved techniques, such as implicit schemes have
not been attempted. For full-orbit solving, it would make sense to use an energy conserving
Boris-Buneman integrator. The latter would have to be adjusted to the curvilinear formulation,
which is not straight-forward. This scheme might be prone to high truncation error due to
multiple coordinate transformations and might not perform better than RK4.

The NBI module is sufficient for qualitative results but should be improved for quantitative
and systematic studies. The beam attenuation, and hence the weights of the markers, is only
determined from a single beam-line shone in the plasma. The approach is valid when the
beam spread is narrow and the profiles do not vary too rapidly. A more realistic injection
method should consider multiple beam-lines with a random orientation within the parameters
of beam spread. Furthermore, the linear sampling along the beam-line is not optimal for
an exponential beam attenuation. The marker population is composed of a large group of
tracers with small weights and a fraction with large weights. If the weight assignment was
better balanced, statistics from the Particle-In-Cell (PIC) sampling would be improved and
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simulations would require fewer markers.

Recent work by Hirvijoki et al. (2013) shows that the Monte-Carlo Coulomb collision operator
is valid for a full-orbit approach, but only at zeroth-order for guiding-centres. VENUS-LEVIS
could easily be corrected to include their resulting guiding-centre collision operator. The
effect on saturated distributions, which is expected to be small, should be reassessed in a
series of benchmarks against ASCOT.

The switching algorithm should be systematically exploited in slowing-down simulations.
Full-orbit trajectories could be followed until the Larmor radius causes a field variation below
a given threshold, then, GCDE would be solved until thermalisation, reducing Computer Pro-
cessing Unit (CPU) consumption. The transition from particle to guiding-centre coordinates
has a minimal impact on the trajectories. The technique however requires more fine-tuning
to pass from guiding-centre to particle variables where a small discrepancy in the toroidal mo-
mentum causes the orbit to gently drift out of shape. Second-order guiding-centre expansion
will help perform this switching in a more consistent way.

Instead of switching directly to full-orbit equations, it may be more efficient to use a higher-
order guiding-centre formulation of the GCDE. This entails expanding the guiding-centre
Lagrangian at second (or third) order in the Larmor radius and apply the gyro-averaging
techniques from Littlejohn (1983). The Baños drift would become a correction to the parallel
velocity, and other terms will also appear in the perpendicular drift. Guiding-centre and
full-orbits would compare better and the adiabatic conservation of the magnetic moment
would be more accurate.

The representation of magnetic fields should be extended beyond the last-closed flux-surface
in order to follow particles up to the wall. This will soon be done by extrapolating the flux-
surface coordinate system in order to preserve the advantages of the spline-Fourier technique
and avoid swapping coordinate systems. In doing so, estimates of heat-loads on plasma facing
components from fast particles can be predicted.

7.1.2 Physics applications

With the formulation of curvilinear full-orbit equations, accurate simulations are possible in
various 3D magnetic equilibria. VENUS-LEVIS can be applied to the study of highly energetic
ions in stellarators. An ongoing project to upgrade the SCENIC package (Jucker et al., 2011) is
exploiting this feature to simulate ICRH heating in Wendelstein-7X (W7X). First, a saturated
ICRH distribution is obtained from guiding-centre calculations in the presence of ICRH Monte-
Carlo kicks. Then, only the tail of the marker distribution is evolved with full-orbit equations
in the full electric field produced by the ICRH waves. The goal is to capture higher-harmonic
resonances.

The study of RMPs will be continued, first by taking a closer look at the plasma response to
the external perturbations and yielding a clearer understanding of the magnetic equilibrium
solutions found with VMEC. These stellarator symmetric states correspond to minimum MHD
energy configurations but they may be unstable if the stellarator symmetry condition is relaxed.
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Without this constraint, the coil configuration can be arbitrarily rotated to see if similar RMP
patterns are obtained. VENUS-LEVIS is extended to include asymmetric equilibria from VMEC
and fast ion losses will be addressed in Single Null Diverted (SND) configurations, for which a
stronger impact on losses due to RMPs is expected. A similar approach will be applied to the
investigation of ITER Test Blanket Module (TBM), magnetic ripple and ferritic inserts.

VENUS-LEVIS can assist experiments in the analysis of fast ion transport in the presence of 3D
MHD structures. The comparison with neutron camera signals could be used to estimate the
size of internal kinked structures. More virtual diagnostics can be implemented to compare
fast ion simulations with other experimental traces, for example, from the FILD detectors or
FIDA signals.
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A Mathematical complements

A.1 Curvilinear coordinates

Curvilinear coordinates are convenient when dealing with magnetic fields and the motion of
charged particles. Scale separations and simple dependencies appear from a smart choice
of coordinates. The fundamental theorems of Hamiltonian/Lagrangian mechanics are in
fact based on the existence of canonical coordinates which explicitly display the system’s
underlying symmetries. The connections between various domains of physics that explicitly
use curvilinear coordinates, for example general relativity, gauge theories in quantum field
theory, result from profound theorems of differential geometry. The algebra of curvilinear
equations possesses generality and unfolds elegantly. The drawback of using curvilinear
coordinates is that the complexity of the algebra sometimes overrides physical intuition.

In this section, a short review of curvilinear coordinates is given in order to familiarise the
reader with the notations and properties that are used throughout the thesis as well as in
the implementation of magnetic equilibrium and equations of motion in the VENUS-LEVIS
code. The objective is not to present curvilinear coordinates with great rigour, because it
would imply presenting an unnecessary amount of mathematical definitions and theorems
just to define what is a vector, a scalar product, etc. but remind at least how they should be
manipulated. For more details and further reading, the reader may refer to D’Haeseleer (1991);
Grøn and Hervik (2007, chapter 2).

A.1.1 General definitions and properties

Let us start with a Cartesian coordinate system in Rn equipped with the Euclidean norm and
assume that the implied properties are well understood.

A vector is represented with its Cartesian components as v = v̂1ê1 +·· ·+ v̂n ên = v̂ i êi , where
Einstein summation convention is used, and will be used hereafter. (ê1, . . . , ên) is a Cartesian
orthonormal basis1 with the property that êi · ê j = δi j . As known from linear algebra, we could
have chosen a non-orthonormal basis (e1, . . . ,en) to represent the vector as v = v i ei . The
components v i (upper indices) are called contravariant components. The non-orthonormal
basis vectors are expressed in terms of the Cartesian basis vectors by a linear transformation

ei =Λ j
i ê j [Λ−1]i

k ei = êk . (A.1)

The matrixΛ corresponds to the projection of the non-orthonormal vectors on the Cartesian

1Unless specified otherwise, the hat notation will refer to the Cartesian coordinate system.
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basis

Λ
j
i = ei · êkδ

j k ≡ ei · ê j . (A.2)

The transformation must satisfy detΛ 6= 0, otherwise the non-orthonormal basis vectors is not
linearly independent and does not form a complete basis. The contravariant components of
the vector v = v i ei = v iΛ

j
i ê j = v̂ j ê j are seen to transform as

v̂ j = v iΛ
j
i v̂ j [Λ−1]k

j = vk , (A.3)

in the opposite way than the basis vectors (A.1), contra-variant (row-vector).

e1

e2

e1

e2

Figure A.1 – Non-orthonormal basis
vectors (in black) and dual basis vec-
tors (in grey). The blue boxes have
unit area representing the scalar
product between basis vectors and
their dual.

For every basis, there exists a unique list of vectors, called
the dual basis (e1, . . . ,en) , such that

e i ·e j = δi
j . (A.4)

Figure A.1 pictures a non-orthonormal basis and its dual
in R2. Notice that, by orthonormality, the Cartesian basis
and its dual is the same list of vectors, i.e. ê i ≡ êi . From
(A.2) and (A.4), the relation between the dual basis and the
Cartesian basis is contravariant as in (A.3)

ê j = e iΛ
j
i ê j [Λ−1]k

j = ek . (A.5)

In the dual basis, a vector is expressed with covariant components as v = v̂ j ê j =Λ j
i v̂ j e i = vi e i ,

transforming as

vi =Λ j
i v̂ j [Λ−1]i

k vi = v̂k (A.6)

just like the basis vectors (A.1), co-variant (a column vector).

The scalar product between non-orthonormal basis vectors yields

ei ·e j =Λk
i δklΛ

l
j = [ΛΛT ]i j ≡ gi j (A.7)

what is called the metric tensor. Notice that detg = det[ΛΛT ] = detΛ2 6= 0. The scalar product
between dual basis vectors defines its inverse

e i ·e j (A.5)= [Λ−1]i
kδ

kl [Λ−1] j
l = [Λ−TΛ−1]i j = [(ΛΛT )−1]i j = g i j i.e. g i j g j k = δi

k (A.8)

The metric tensor is used to change representations (go from lower to upper indices and
vice-versa)

v i = e i ·v = e i ·e j v j = g i j v j vi = ei ·v = ei ·e j v j = gi j v j (A.9)
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lines of constant u1

lines of constant u2

u1
1

u1
2 u1

3

u2
1

u2
2

u2
3

~e1 =
∂~r
∂u1 |u2

~e1 = ~∇u1

~e2 =
∂~r
∂u2 |u1

~e2 = ~∇u2

Figure A.2 – Basis vectors and dual vectors naturally arising from curvilinear coordinates. Lines of
constant u1(r ) are in black, lines of constant u2(r ) in grey. Moving along one of these grey curves
means varying u1 only; the tangent red vector to this curve ∂r /∂u1 forms a covariant basis vector.
Moving along one of the black curves means varying u2 only; the tangent blue vector ∂r /∂u2 forms the
other covariant basis vector. Moving perpendicularly away from the black curve (perpendicular to the
blue tangent vector) means following the gradient of u1; ∇∇∇u1 (dashed red) forms a dual contravariant
basis vector. Moving perpendicularly away from the grey curve (perpendicular to the red tangent
vector) means following the gradient of u2; ∇∇∇u2 (dashed blue) forms the other dual contravariant basis
vector. Because of the bending of the constant ui lines, basis vectors of same kind are not necessarily
orthogonal.

Scalar products and contractions are thus expressed in multiple ways. If w = w j e j = w j e j ,

v ·w = v i ei ·e j w j = gi j v i w j or v ·w = vi e i ·e j w j = g i j vi w j (A.10)

and even simpler

v ·w = v i ei ·e j w j = v i wi = vi w i . (A.11)

In Cartesian coordinates, the metric tensor is the unity matrix δi j and without surprise, the
scalar product is Euclidian v ·w = δi j v̂ i ŵ j = v̂1ŵ1 +·· ·+ v̂n ŵn .

The Cartesian basis (ê1, . . . , ên) is fixed everywhere in Rn as a global basis, but imagine that the
non-orthonormal basis varies (smoothly) from one point in space to the other, such that the
basis vectors (and thus the metric) depends on the position2 r . Locally, the previous properties
would still hold true, only that we now expect the basis to vary with r as ei (r ) and e i (r ).

Consider a list of (scalar) functions (u1(r ), . . . ,un(r )) such that the ui = const hyper-surfaces
uniquely intersect at the point r . This defines a new coordinate system, that is related to the

2In Cartesian coordinates, the position vector is r = x̂1e1 +·· ·+ x̂n en , where the components are equal to the
coordinates x̂i = x · êi . In general however, it must be remembered that the components of r , xi = r ·∇∇∇ui , do not
match the coordinates ui .
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Cartesian coordinate system via the invertible (non-linear) mapping, or diffeomorphism3,
ui (r ) and r (ui ). It turns out that the list of ∂r

∂ui ≡ ei forms a covariant basis and the list of
∂ui

∂r =∇∇∇ui ≡ e i the dual contravariant basis. Indeed, as pictured on figure A.2,

∂r

∂ui
·∇∇∇u j = ∂x̂k

∂ui

∂u j

∂x̂k
= ∂u j

∂ui
= δ j

i Λ
j
i =

∂x̂ j

∂ui
gi j = ∂r

∂ui
· ∂r

∂u j
(A.12)

where the basis transformationΛ j
i is identical to the Jacobian matrix of the coordinate map-

ping. In relation to the Cartesian basis, notice that

ei = ∂x̂ j

∂ui
ê j and e i =∇∇∇ui = ∂ui

∂x̂ j
ê j (A.13)

In the basis formed by the curvilinear coordinates, vectors are expressed in terms of covariant
(lower indices) and contravariant (upper indices) as

v = v i ∂r

∂ui
= v j∇∇∇u j i.e. v i (r ) = v ·∇∇∇ui v j (r ) = v · ∂r

∂u j
. (A.14)

In curvlinear coordinates, the components generally depend on the position even if the vector
v is constant everywhere, because the basis vectors and the projection now vary in space.
Conversely, a vector whose components are fixed in space is not necessarily constant, since it
is supported by basis vectors that are changing in space. This is where curvilinear coordinates
actually become powerful; if one finds a coordinate system in which physical quantities
(components) have simple dependencies, part of the dynamics is transferred to the problem of
solving the geometry (topology). In most cases, evaluating the precise geometry of the physical
system (field-lines, orbits, etc. . . ) comes after finding the underlying physical properties, such
as constants of motion, average motion, limiting cases, etc.

Christoffel symbols

Since the basis vectors vary in space, it is difficult to compare components at different positions.
This fact affects the definition of derivatives, which are essentially a mathematical way of
comparing the values of a function at infinitesimally close positions. Derivatives involving
vector components will have to be compensated by the variation of the basis vector. The
variation of the covariant basis vectors with respect to the contravariant basis is recorded in a
coefficient Γk,i j called the Christoffel symbol of first kind

Γk,i j ≡ ek ·∂i e j = ∂r

∂uk
· ∂2r

∂ui∂u j
⇐⇒ ∂i e j = Γl ,i j∇∇∇ul . (A.15)

3An invertible function that maps one differentiable manifold to another, such that both the function and its
inverse are smooth.
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The same variation with respect to the covariant basis defines the Christoffel symbol of second
kind

Γk
i j ≡∇∇∇uk ·∂i e j =∇∇∇uk · ∂2r

∂ui∂u j
= g klΓl ,i j ⇐⇒ ∂i e j = Γl

i j el (A.16)

Notice from these definitions that the Christoffel symbol is symmetric in the lower indices
Γk

i j = Γk
j i . The variation of the contravariant basis is indirectly found by differentiating the

orthonormality condition

0 = ∂i

(
∇∇∇uk ·e j

)
= ∂i∇∇∇uk ·e j +∇∇∇uk ·∂i e j ⇐⇒ ∂i∇∇∇uk =−Γk

i j∇∇∇u j (A.17)

The most convenient way of computing the Christoffel symbol is usually by equation (A.15).
Alternatively, a relation between the Christoffel symbol and the derivatives of the metric tensor
can be established as

∂i g j k = ∂i
(
e j ·ek

)= ek ·∂i e j +e j ·∂i ek = Γk,i j +Γ j ,i k

and by using the symmetry properties of the metric tensor and the Christoffel symbol, it is not
hard to show that

Γk,i j =
1

2

(
∂i gk j +∂ j gki −∂k gi j

)
Γl

i j =
1

2
g lk (

∂i gk j +∂ j gki −∂k gi j
)

. (A.18)

An interesting property of the Christoffel symbol of second kind is

Γl
i l =

1

2

(
g l k∂i gkl +�����g l k∂l gki −�����g lk∂k gi l

)
= 1

2
g kl∂i gkl =

1

2
∂i ln g = ∂i ln

p
g (A.19)

where the relation between the determinant and the trace of a matrix lndetG = tr lnG was
used as well as the fact that d lnG =G−1dG .

Covariant derivatives

Now, consider a trajectory in Rn parametrised by t (not necessarily representing time) as
r (t) = (x̂1(t), . . . , x̂n(t)) = (u1(t), . . . ,un(t)). The tangent vector to the curve is automatically
obtained via

dr

d t
= d x̂ j

d t
ê j = dui

d t

∂x̂ j

∂ui
ê j

(A.13)= dui

d t
ei

where the contravariant components of the tangent vector is identified in Cartesian coordi-
nates as d x̂i /d t and in curvilinear coordinates as dui /d t .

Imagine that there is a scalar field (i.e. a function depending on space) Φ(r ) evaluating a
physical quantity like density, electrostatic potential, etc., and we are interested in measuring
the rate of change of this quantity along the trajectory. We would write

dΦ

d t
= dr

d t
·∇∇∇Φ= du j

d t

∂r

∂u j
·∇∇∇ui ∂Φ

∂ui

(A.12)= u̇ jδi
j
∂Φ

∂ui
= u̇i∂iΦ
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where the compact notation ∂
∂ui = ∂i and dui /d t = u̇i is introduced for convenience. From

the first equality, the rate of change is shown to be the projection of the gradient of the field on
the tangent vector to the curve dr /d t . The scalar product yields a quantity that is independent
on the choice of coordinates. The rate of change of a scalar function along a given curve is
thus universally represented by the contraction of the contravariant components u̇i of the
tangent vector dr /d t and the covariant components ∂iΦ of the gradient ∇∇∇Φ.

Now imagine a vector field B (r ) = B̂ i (r )êi = B i (r )ei (r ) = Bi (r )∇∇∇ui (r ) like the magnetic field,
the electric field, the fluid flow, etc. We expect the rate of change of this vector along the curve
to be a vector. In Cartesian coordinates, it would be expressed as

dB

d t
=

(
dr

d t
·∇∇∇

)
B = ˙̂xi∂i B̂ j ê j

but in curvilinear coordinates, the components of the derivative are corrected by the Christoffel
symbol

dB

d t
= d

d t

[
B i ei

]
= dB l

d t
el +B j de j

d t
= u̇i

(
∂i B l el +B j∂i e j

)
(A.16)= u̇i

(
∂i B l +B jΓl

i j

)
︸ ︷︷ ︸

B l
;i

el

or

dB

d t
= d

d t

[
Bi∇∇∇ui

]
= u̇i

(
∂i B j∇∇∇u j +Bk∂i∇∇∇uk

)
(A.17)= u̇i

(
∂i B j −BkΓ

k
i j

)
︸ ︷︷ ︸

B j ;i

∇∇∇u j

The derivative of a vector along a curve precisely defines the covariant derivative ∇∇∇B , whose
contravariant and covariant are

B i
; j = e j · (∇∇∇B ) ·∇∇∇ui = ∂ j B i +B kΓi

k j Bi ; j = ∂ j Bi −BkΓ
k
i j Bi ; j = gi k B k

; j (A.20)

The individual components of the covariant derivatives represent the variation of the vector
components along the curves traced by each curvilinear coordinate. With this definition, the
covariant derivative can be verified to transform as a tensor when changing coordinates, for
example, from the Cartesian coordinates

B i
; j = [Λ−1]i

kΛ
l
j B̂ k

;l =
∂ui

∂x̂k

∂x̂ l

∂u j

∂B̂ k

∂x̂ l
= ∂ui

∂x̂k

∂B̂ k

∂u j

(A.3,A.12)= ∂ui

∂x̂k

∂

∂u j

(
∂x̂k

∂ul
B l

)

= ∂ui

∂x̂k

∂x̂k

∂ul

∂B l

∂u j
+B l ∂ui

∂x̂k

∂2x̂k

∂ul∂u j
= ∂ j B i +B lΓi

j l

A.1.2 Special case of R3

In plasma physics, we usually deal with three-dimensional space. Curvilinear coordinates in
R3 have a repertoire of properties that are useful to highlight.
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Vector product

The vector product provides a direct relation between covariant and contravariant basis4. In
Cartesian coordinates, the vector product (or cross product) is defined by

ê1 = ê2 × ê3 ê2 = ê3 × ê1 ê3 = ê1 × ê2 (A.21)

Introducing the purely anti-symmetric Levi-Cività symbol

εi j k ≡ êi · (ê j × êk ), εi j k ≡ ê i · (ê j × êk ) ⇒ εi j k ê i = ê j × êk , εi j k êi = ê j × êk , (A.22)

the vector product of any given vectors is conveniently expressed in Cartesian coordinates as

v ×w = v̂ i ŵ j êi × ê j = εi j k v̂ i ŵ j êk (A.23)

In curvilinear coordinates, the cross product between covariant basis vectors is in fact along
the direction of the third contravariant vector

ei ×e j
(A.1)= Λl

iΛ
m
j êl × êm = εlmnΛ

l
iΛ

m
j ên (A.5)= εlmnΛ

l
iΛ

m
j Λ

n
k ek = detΛεi j k ek (A.24)

where detΛ≡ εlmnΛ
l
1Λ

m
2 Λ

n
3 =−εlmnΛ

l
2Λ

m
1 Λ

n
3 = sign(σ)εlmnΛ

l
σ1
Λm
σ2
Λn
σ3

. Therefore, the vector
product provides a means of exchanging covariant to contravariant basis vectors (rather than
using the metric tensor)

∇∇∇u1 = e2 ×e3p
g

∇∇∇u2 = e3 ×e1p
g

∇∇∇u3 = e1 ×e2p
g

(A.25)

where e1 · (e2 ×e3) = detΛ≡p
g . Conversely, one finds

∂r

∂u1 =p
g∇∇∇u2 ×∇∇∇u3 ∂r

∂u2 =p
g∇∇∇u3 ×∇∇∇u1 ∂r

∂u3 =p
g∇∇∇u1 ×∇∇∇u2 (A.26)

and ∇∇∇u1 · (∇∇∇u2×∇∇∇u3) = 1/detΛ= 1/
p

g . The vector product between any vector in curvilinear
coordinates is thus expressed as

v ×w = v i w j ei ×e j =p
gεi j k v i w j︸ ︷︷ ︸

[v×w ]k

∇∇∇uk and v ×w = vi w j∇∇∇ui ×∇∇∇u j = εi j k

p
g

vi w j︸ ︷︷ ︸
[v×w ]k

ek

(A.27)

It is useful to define the following object in order to simplify the notation and write "covariant"
expressions (that look identical in every coordinate system)

εi j k =p
gεi j k = ei · (e j ×ek ) εi j k = εi j k

p
g

=∇∇∇ui · (∇∇∇u j ×∇∇∇uk ) (A.28)

ε can be shown to be a tensor.

4More generally, this statement would hold true in the framework of differential forms with the use of the
exterior product.
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Divergence and curl operators

Assuming that the vector calculus identities are well known in Cartesian coordinates, the curl
operator is very simply written in curvilinear coordinates with the covariant components.
Reminding that ∇∇∇×∇∇∇ f = 0 for any given function f , the curl of the vector A = Ai∇∇∇ui is written
as

∇∇∇× A ≡∇∇∇A j ×∇∇∇u j = ∂i A j∇∇∇ui ×∇∇∇u j (A.27−A.28)= ∂i A jε
i j k ek (A.29)

By the symmetric properties of the Christoffel symbol, the curl is represented with the compo-
nents of the covariant derivative as [∇∇∇× A]k = A j ;iε

i j k .

The divergence operator is best expressed with the contravariant components A = Ai ei =
1
2 Aipgεi j k∇∇∇u j ×∇∇∇uk . Reminding that ∇∇∇· (∇∇∇ f ×∇∇∇g

)=�����(∇∇∇×∇∇∇ f )×∇∇∇g −∇∇∇ f ×�����(∇∇∇×∇∇∇g ) = 0, the
divergence is written as

∇∇∇· A = 1

2
εi j k∇∇∇

(p
g Ai

)
·
(
∇∇∇u j ×∇∇∇uk

)
= 1

2
∂l

(p
g Ai

)
εi j k∇∇∇ul ·

(
∇∇∇u j ×∇∇∇uk

)
= 1p

g
∂l

(p
g Ai

) 1

2
εi j kε

l j k = 1p
g
∂l

(p
g Al

)
(A.30)

= ∂l Al + Al∂l ln
p

g
(A.19)= ∂l Al + AkΓl

kl = Al
;l

A.1.3 Examples

Cylindrical coordinates

x

y

~eφ

~eφ

~eR, ~∇R

~eR

~∇φ ~∇φ

Figure A.3 – Basis vectors of the cylindrical coordinate system

Fusion relevant devices are usually toroidal, therefore cylindrical coordinates are often used
as an intermediate step to calculate the metric elements in a more sophisticated curvilinear
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A.1. Curvilinear coordinates

system. Considering coordinates (r 1,r 2,r 3) = (R,φ, Z ), it follows that∣∣∣∣∣∣∣
x = R cosφ
y = R sinφ
z = Z

∂x̂i

∂r j
=

cosφ −R sinφ 0
sinφ R cosφ 0

0 0 1

 (A.31)

√
ĝ = det

[
∂x̂i

∂r j

]
= R ĝi j = ∂x̂k

∂r i

∂x̂k

∂r j
=

1 0 0
0 R2 0
0 0 1

 . (A.32)

As deduced from the diagonal form of metric tensor ĝi j , the vectors of the contravariant basis(
∂x
∂R , ∂x

∂φ , ∂x
∂Z

)
= (eR ,eφ,eZ ) are mutually orthogonal, and only the norm of |eφ| = R is different

from unity. The covariant basis is formed by (∇∇∇R,∇∇∇φ,∇∇∇Z ) = (eR ,eφ/R2,eZ ). The orthonormal
cylindrical basis is (êR , êφ, êZ ) = (eR ,eφ/R,eZ ) = (∇∇∇R,R∇∇∇φ,∇∇∇Z ). Thus, the components of the
vector field B in cylindrical coordinates are

B R,Z = B ·∇∇∇R, Z = B ·eR,Z = BR,Z Bφ = B ·∇∇∇φ= B̂φ

R
Bφ = B ·eφ = RB̂φ

The components of the Christoffel symbol of first type Γi , j k = ∂x
∂r i · ∂2x

∂r j∂r k are mostly zero except
for

ΓR,φφ =−R Γφ,Rφ = Γφ,φR = R =⇒ ΓR
φφ =−R Γ

φ

Rφ = Γφ
φR = 1

R
(A.33)

Therefore the covariant derivative is written as

B i
; j =

∂R B R ∂φB R ∂Z B R

∂R Bφ ∂φBφ ∂Z Bφ

∂R B Z ∂φB Z ∂Z B Z

+

 0 −RBφ 0
Bφ

R
B R

R 0
0 0 0


or alternatively

Bi ; j =

∂R BR ∂φBR ∂Z BR

∂R Bφ ∂φBφ ∂Z Bφ

∂R BZ ∂φBZ ∂Z BZ

+

 0 −RBφ 0
−RBφ RB R 0

0 0 0

 .

The divergence in cylindrical coordinates is found either via

∇∇∇·B = B i
;i = ∂R B R + B R

R
+∂φBφ+∂Z B Z = ∂R BR + BR

R
+ 1

R
∂φB̂φ+∂Z BZ

or via

∇∇∇·B = 1p
g
∂l

(p
g B l

)
= 1

R
∂R (RB R )+∂φBφ+∂Z B Z = 1

R
∂R (RBR )+ 1

R
∂φB̂φ+∂Z BZ .
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The curl is

∇∇∇×B = (∂φBZ −∂Z Bφ)∇∇∇φ×∇∇∇Z + (∂Z BR −∂R BZ )∇∇∇Z ×∇∇∇R + (∂R Bφ−∂φBR )∇∇∇R ×∇∇∇φ
= (∂φBZ −R∂Z B̂φ)

eR

R
+ (∂Z BR −∂R BZ )

eφ
R

+ [∂R (RB̂φ)−∂φBR ]
eZ

R

=
(

1

R
∂φBZ −∂Z B̂φ

)
êR + (∂Z BR −∂R BZ )êφ+ 1

R
[∂R (RB̂φ)−∂φBR ]êZ

In the case where only the mapping from curvilinear to cylindrical coordinates is available,
the transformation from curvilinear to Cartesian coordinates is facilitated by using the chain
rule ∂x̂ i

∂u j = ∂x̂ i

∂r k
∂r k

∂u j . Metric elements of the curvilinear system are then expressed with respect
to the cylindrical variables as

gmn = ∂x̂i

∂um

∂x̂i

∂un = ∂r j

∂um

∂x̂i

∂r j

∂x̂i

∂r k

∂r k

∂un = ∂r j

∂um ĝ j k
∂r k

∂un = ∂R

∂um

∂R

∂un + ∂Z

∂um

∂Z

∂un +R2 ∂φ

∂um

∂φ

∂un

(A.34)

and the Jacobian of the coordinate transformation as

p
g = det

[
∂x̂i

∂r k

]
det

[
∂r k

∂u j

]
= R det

[
∂r k

∂u j

]
= R εi j k ∂R

∂ui

∂φ

∂u j

∂Z

∂uk
. (A.35)

If one of the coordinates is the geometrical toroidal angle, say u3 = φ, the Jacobian conve-
niently reduces to

p
g =−R

(
∂R

∂u1

∂Z

∂u2 − ∂R

∂u2

∂Z

∂u1

)
. (A.36)

Toroidal coordinates

R0

r

θ

R

φ

~er

~eφ

~eθ

x

z

y

Figure A.4 – Toroidal coordinate system.

In tokamaks, the basic coordinate system is made of toroidal coordinates. Considering coordi-
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A.2. Lagrangian and Hamiltonian formalism

nates (t 1, t 2, t 3) = (r,θ,φ), it follows∣∣∣∣∣∣∣
x = (R0 + r cosθ)cosφ= R cosφ
y = (R0 + r sinθ)sinφ= R sinφ
z = r sinθ

∂x̂i

∂t j
=

cosθcosφ −r sinθcosφ −R sinφ
cosθ sinφ −r sinθ sinφ R cosφ

sinθ r cosθ 0


(A.37)

√
ĝ = det

[
∂x̂i

∂t j

]
=−r (R0 + r cosθ) ĝi j = ∂x̂k

∂t i

∂x̂k

∂t j
=

1 0 0
0 r 2 0
0 0 (R0 + r cosθ)2

 . (A.38)

Notice that the Jacobian is negative because it forms a left-handed coordinate system. As
deduced from the diagonal form of metric tensor ĝi j , the vectors of the contravariant basis(
∂x
∂r , ∂x

∂θ , ∂x
∂φ

)
= (er ,eθ,eφ) are mutually orthogonal. The norms of |eθ| = r and |eφ| = R are

different from unity. The covariant basis is formed by (∇∇∇r,∇∇∇θ,∇∇∇φ) = (er ,eθ/r 2,eφ/R2). The
orthonormal cylindrical basis is (êr , êθ, êφ) = (er ,eθ/r,eφ/R) = (∇∇∇r,r∇∇∇θ,R∇∇∇φ).

A.2 Lagrangian and Hamiltonian formalism

Lagrangian and Hamiltonian mechanics are a mathematical treatment of dynamical systems
that applies not only to various realms of physics, from basic mechanics to quantum physics,
but also more generally to a large category of problems in economy, statistics, biology, etc. The
point of view is rigorously anchored in mathematics and the connections with fundamental
theorems of differential geometry are profound. Using Lagrange or Hamiltonian methods
sometimes seems superfluous, a little bit like cracking a nut open with a bulldozer, but often
the solutions unroll with an enjoyable level of elegance and consistency and reveals much
more about the physical properties of the studied system than when more direct methods are
employed.

In this section, some useful aspects of Lagrangian mechanics are highlighted, in particular
the extension to phase-space variables and the underlying symplectic algebra relating the
Lagrangian to the Hamiltonian formalism. The reader may refer to Goldstein et al. (2001) for
more introductory and physical explanations and Arnol’d (1989) for more mathematical and
rigorous proofs.

The Lagrangian L is a scalar function of independent coordinates q i (t ), their derivatives q̇ i (t )
and time. The coordinates q i (t ) represent all the possible “evolutions” or trajectories that lead
the system from one state A to another state B . The following functional, called the action
integral, measures the likely-hood or "cost" for each trajectory

S[q] =
∫ B

A
L (q i , q̇ i , t )d t (A.39)

In classical mechanics, the system evolves according to the minimum action principle or
D’Alembert principle, i.e. the system always chooses a path for which the action is minimal. It
is interesting to mention that quantum mechanics can be interpreted in terms of a minimum
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action principle by realising that all paths are possible only that their probability exponentially
decays away from classical evolution. Applying the minimum action principle to S yields a set
of differential equations of motion, called the Euler-Lagrange equations

δS = 0 ⇐⇒
∫ B

A
d t

[
∂L

∂q i
δq i + ∂L

∂q̇ i
δq̇ i

]
= 0 ⇐⇒

∫ B

A
d t

[
∂L

∂q i
− d

d t

(
∂L

∂q̇ i

)]
δq i = 0

where, in the last step, an integration by parts was performed assuming that δq̇ i = dδq i /d t
and that the perturbations vanish at the end-points, i.e. δq i (A) = δq i (B) = 0. This equation
being valid for arbitrary perturbations, it is equivalent to solving

d

d t

(
∂L

∂q̇ i

)
= ∂L

∂q i
(A.40)

Notice that these equations are unchanged if the Lagrangian is altered by a full time-derivative

L ≡L + d f

d t
, (A.41)

a property closely related to gauge invariance in electrodynamics.

The structure of the Euler-Lagrange equations reminds of Newton equations d pi /d t = ∂i L
after identifying the canonical momenta

pi (q i , q̇ i , t ) = ∂L

∂q̇ i
−→ q̇ i (q i , pi , t ) (A.42)

The canonical momenta enter in the Legendre transform of the Lagrangian with respect to q̇ i ,
namely the Hamiltonian

H (q i , pi , t ) = pi q̇ i −L (A.43)

where summation over repeated indices is assumed. The Hamiltonian of the system often
represents its energy. The equations of motion, known as Hamilton equations are written

q̇ i = ∂H

∂pi
ṗi =−∂H

∂q i

∂L

∂t
=−dH

d t
(A.44)

Euler-Lagrange and Hamilton equations (A.40 and A.44) are qualified as dual; there is no
difference in treating mechanical systems with either formalism, except for the sake of sim-
plicity. Hamiltonian method is arguably more powerful and elegant when there is underlying
symmetry but Lagrangian methods should not be considered as less correct.

Hamilton equations can be derived from a variational principle by introducing the phase-space
Lagrangian (Goldstein et al., 2001, chapter 8.5)

L(q i , q̇ i , pi , ṗi , t ) = pi q̇ i −H (q i , pi , t ) −→ S =
∫

Ld t (A.45)
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This Lagrangian is formally different from the usual Lagrangian in the sense that q̇ i as well as
ṗi have been promoted to independent quantities. The minimal action principle now holds
for the two sets of canonical coordinates q i and pi , yielding

d

d t

(
∂L

∂q̇ i

)
− ∂L

∂q i
= 0 ⇒ ṗi + ∂H

∂q i
= 0 (A.46)

d

d t

(
∂L

∂ṗi

)
− ∂L

∂pi
= 0 ⇒ ∂H

∂pi
− q̇ i = 0 (A.47)

the usual Hamilton equations.

A.2.1 Phase-space Lagrangian and non-canonical Hamilton equations of motion

Phase-space Lagrangian is useful when the problem is formulated in terms of non-canonical
coordinates5 (Cary and Brizard, 2009). Let us consider a change of coordinates zα = zα(q i , pi , t )
and its inverse [q i , pi ](zα, t ). Then

q̇ i = ∂t q i + żα∂αq i (A.48)

where the notation ∂t ≡ ∂
∂t and ∂α ≡ ∂

∂zα . The phase-space Lagrangian becomes

L(zα, żα, t ) = pi∂αq i żα+pi∂t q i −H (zα, t ) =Λα żα−H (A.49)

whereΛα = pi∂αq i and H =H −pi∂t q i .

The Euler-Lagrange equations read

0 = d

d t

(
∂L

∂żα

)
− ∂L

∂zα
= ∂tΛα− (∂αΛβ−∂βΛα)żβ+∂αH ⇐⇒ Ωαβ żβ = ∂αH +∂tΛα (A.50)

where the tensorΩ is defined as

Ωαβ = ∂αΛβ−∂βΛα =−
{

zα, zβ
}
=−

(
∂q i

∂zα
∂pi

∂zβ
− ∂q i

∂zβ
∂pi

∂zα

)
(A.51)

The components of Ω are equal to the so-called Lagrange brackets of the non-canonical
coordinates. Finding the inverse ofΩ, namely Π, such that ΠαβΩβγ = δαγ , allows us to write
the equations of motion as

żα =Παβ(∂βH +∂tΛβ) (A.52)

Equations (A.52) are a form of Hamilton equations of motion for non-canonical coordinates.
They have the combined advantage of having an underlying Hamilton structure and being
flexible in the use of meaningful coordinates.

5Coordinates in which the equations of motion do not have the symplectic structure of equations (A.44).
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A.2.2 Lagrange and Poisson brackets

To understand what is hidden behind the non-canonical equations of motion, let us writeΩ
as

Ωαβ =
∂Zµ

∂zα
ωµν

∂Z ν

∂zβ
or Ω= DTωD (A.53)

where Z = (q, p) is the 2N vector of canonical coordinates , Dα
β
= ∂Zα

∂zβ
= (DT ) α

β
the Jacobian

matrix of the transformation from canonical to non-canonical coordinates and

ω=
(

0 −IN×N

IN×N 0

)

is the symplectic matrix. We recognize (A.53) as the transformation of a 2-covariant tensor. A
canonical transformation is defined as a change of phase-space variables that preserves the
symplectic expression of the phase-space Lagrangian, i.e. ΩC = DT

CωDC =ω (Goldstein et al.,
2001, chapter 9.4). A non-canonical transformation will implicitly preserve the symplectic
structure but mix-up the writing.

We see that detΩ= (detD)2 > 0. Therefore, the inverseΠ is guaranteed to exist. Namely,

Π= (D−1)Tω−1D−1 or Παβ = ∂zα

∂Zµ
σµν

∂zβ

∂Z ν
(A.54)

where σ=ω−1 =−ω and (D−1)α
β
= ∂zα

∂Zβ the Jacobian matrix of the transformation from non-
canonical to canonical coordinates.

It is interesting to notice from (A.54) thatΠ is also the matrix formed by the Poisson brackets of
the new coordinates

Παβ = ∂zα

∂q i

∂zβ

∂pi
− ∂zβ

∂q i

∂zα

∂pi
= [zα, zβ] (A.55)

Hence, the Poisson brackets of any two functions f and g can now be expressed in the new
coordinate system as

[ f , g ] = ∂α f Παβ ∂βg (A.56)

and again, a canonical transformation is such that the Poisson brackets are purely symplectic,
i.e. ΠC =σ. We now realize that the equations of motion (C.12) are the full time-derivative of
the coordinates under the action of the Hamiltonian flow, i.e.

żα = [zα, H ]+∂t zα (A.57)

This confirms that there is no loss of structure in the change of coordinates and all properties
of the Hamiltonian formalism are retained.
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A.2.3 Liouville theorem and other properties

The important Liouville theorem is still valid after a non-canonical phase-space transfor-
mation, as shown hereafter. From (A.51) and (A.53) we conclude that Ω is a 2-covariant
anti-symmetric tensor. It can be represented by a differential 2-formΩ= 1

2Ωαβ d zα∧d zβ. We
notice thatΩ= dΛ= d(Λαd zα) by construction, i.e. Ω is an exact form. Since d 2 = 0, we have
dΩ= 0, i.e. Ω is a closed form. This is a useful property, equivalent to stating the following
Jacobi identity

∂αΩβγ+∂βΩγα+∂γΩαβ = 0. (A.58)

This equation can be inverted to involve the Poisson matrix. Starting fromΠαβΩβγ = δαγ , we
have

∂µΠ
αβΩβγ+Παβ∂µΩβγ = 0 ⇒ ∂µΠ

αδ =−Παβ∂µΩβγΠ
γδ (A.59)

and contracting (A.58) withΠµαΠνβΠσγ, we find

Πµα∂αΠ
νσ+Πνα∂αΠσµ+Πσα∂αΠµν = 0 (A.60)

It is not difficult to show that this identity corresponds to the well-known property of Poisson
brackets, which is one of the defining properties of a Lie algebra

[ f , [g ,h]]+ [g , [h, f ]]+ [h, [ f , g ]] = 0 (A.61)

for any functions f , g and h.

We will use the above identities to prove Liouville theorem for non-canonical coordinates. That
the dynamics satisfy Liouville theorem is an advantage when solving the problem numerically.
It basically states that phase-space volume is conserved under Hamiltonian flow. Another way
of phrasing it is that the Hamiltonian flow is incompressible

“divv” = (∂q ,∂p ,∂t ) · (q̇ , ṗ, ṫ ) =
�
�
�∂ṫ

∂t
+ ∂q̇

∂q
+ ∂ṗ

∂p
= ∂2H

∂q∂p
− ∂2H

∂p∂q
= 0 (A.62)

Switching to non-canonical coordinates, the divergence is adjusted to “div v” = 1
J

∂
∂zM (J v M ),

where J = detD =p
Ω is the Jacobian of the transformation from canonical to non-canonical

coordinates. Liouville theorem is then

∂
p
Ω

∂t
+ ∂

∂zα

(p
Ωżα

)
= 1

2
p
Ω

∂Ω

∂t
+ 1

2
p
Ω

∂Ω

∂zα
żα+

p
Ω
∂żα

∂zα
= 0 (A.63)

Even if this equation is justified by the properties of coordinate transformations, it is instructive
to check it explicitly.

First, we express the derivatives ofΩ. Starting with the relation between the determinant and
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trace of a matrix, lndetM = tr ln M we derive

∂Ω

∂zα
=ΩΠβγ∂αΩγβ =−ΩΠβγ∂αΩβγ (A.64)

∂Ω

∂t
=−2ΩΠαβ

∂2Λβ

∂zα∂t
(A.65)

Then, we unfold ∂α żα using equations of motion (C.12) and identity (A.59)

∂żα

∂zα
= ∂αΠαβ

(
∂βH +∂tΛβ

)+Παβ ∂2Λβ

∂zα∂t

=−Παγ∂αΩγδΠ
δβ

(
∂βH +∂tΛβ

)︸ ︷︷ ︸
żδ

+Παβ ∂
2Λβ

∂zα∂t

and after re-ordering and relabeling indices, we have

∂żα

∂zα
=−1

2Π
βγ(∂βΩγα+∂γΩαβ)żα+Παβ ∂

2Λβ

∂zα∂t
(A.66)

Gathering and plugging all pieces from (A.64-A.66) into (A.63) shows the validity of Liouville
theorem for non-canonical coordinates

−����
���p

ΩΠαβ
∂2Λβ

∂zα∂t
− 1

2

p
ΩΠβγ

(
∂αΩβγ+∂βΩγα+∂γΩαβ

)
żα+����

���p
ΩΠαβ

∂2Λβ

∂zα∂t
= 0 (A.67)

Notice how Jacobi identity (A.58) enters in the final step of the proof.

Finally, we may think of J = p
Ω as a phase-space density in the sense that

p
Ωd z2N =

d q N d pN is a phase-space volume with well-behaved time-evolution.
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B.1 Axisymmetric representations

B.1.1 Analytic Solov’ev equilibrium

Solov’ev equilibrium is an axisymmetric solution of the Grad-Shafranov equation in the
particular case where the current profile F is constant and the pressure profile p is a linear
function of the poloidal fluxΨ (Solov’ev, 1968), namely

F = B0R0 µ0p(Ψ) = 1+e2

a2R2
0e2

2Ψb(Ψb −Ψ)

whereΨb is the poloidal flux at the last closed flux surface, R0 the major radius, B0 the magnetic
field strength at the magnetic axis, µ0 the vacuum permeability, a the minor radius and e the
elongation. Given these particular profiles, the Grad-Shafranov equation admits the following
solution for the poloidal magnetic flux as a function of cylindrical coordinates

Ψ(R, Z ) = Ψb

a2R2
0

[
(R2 −R2

0)2

4
+ R2Z 2

e2

]
.

Recognising the equation of an ellipse, it is reasonable to define the radial variable ρ ∈ [0,1] as
ρ2 =Ψ/Ψb and the poloidal angle θ such that

R2 = R2
0 +2aR0ρ cosθ Z = eaR0

R
ρ sinθ.

Letting (ρ,θ,φ) define the new curvilinear coordinate system, the Jacobian is expressed as

p
g

(A.36)= −ea2ρR0
R0

R
.

The Jacobian being negative means that the chosen coordinates define a left-handed system.

First derivatives, that are useful to construct the metric tensor, are written as

∂R

∂ρ
= a0R0

R
cosθ

∂R

∂θ
=−Z

e
∂Z

∂ρ
= a0R0

R

(
e sinθ− Z

R
cosθ

)
∂Z

∂θ
= ρa0R0

R

(
e cosθ+ Z

R
sinθ

)
.

Second derivatives, that enter the Christoffel symbol and the variation of the metric tensor,
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are expressed as

∂2R

∂ρ2 =− 1

R

(
∂R

∂ρ

)2 ∂2R

∂θ2 =−1

e

∂Z

∂θ

∂2R

∂θ∂ρ
=−1

e

∂Z

∂ρ

and

∂2Z

∂ρ2 = ea0R0 sinθ

R2

∂R

∂ρ

(
−2+3

ρ

R

∂R

∂ρ

)
∂2Z

∂θ2 =−Z +3ρ cosθ
Z

R

∂R

∂ρ
+ 3

e2

Z 3

R2

∂2Z

∂ρ∂θ
= e

∂R

∂ρ
+eρ

∂2R

∂ρ2 +2
Z

R

a0R0 sinθ

R
− 3

e

Z 2

R2

∂R

∂ρ
.

The axisymmetric magnetic field B = F∇∇∇φ+∇∇∇Ψ×∇∇∇φ is thus written

B = B0R0∇∇∇φ−2Ψbρ∇∇∇φ×∇∇∇ρ = B0R0

R2 eφ− 2Ψbρp
g

eθ

such that the covariant, contravariant and wedge components of the field required in the
equations of motion are

Bφ = B0R0 Bφ = B0R0

R2 W φ =−B0ea2ρ
R3

0

R3

Bθ = gθθBθ Bθ = 2ΨbR

ea2R2
0

W θ =−2Ψbρ

Bρ = gρθBθ Bρ = 0 W ρ = 0

where

gρθ =−ρ a2
0R2

0

R2

[(
1−e2 + Z 2

R2

)
cosθ sinθ+e

Z

R

(
1−2sin2θ

)]
gθθ = ρ2 a2

0R2
0

R2

[
e2 +

(
1−e2 + Z 2

R2

)
sin2θ+2e

Z

R
sinθcosθ

]

Because the current profile F is constant, ∇∇∇×B = Kφ∇∇∇ρ×∇∇∇θ. From the fact that the magnetic
field satisfies MHD force balance, (∇∇∇×B )×B =µ0∇∇∇p =− 1+e2

e2a2R2
0

4Ψ2
bρ∇∇∇ρ, the components of

∇∇∇×B are

K ρ = 0 K θ = 0 Kφ = 1+e2

e

2Ψbρ

R

Notice that this means that the toroidal current Jφ = (∇∇∇× B) · ∇∇∇φ = Kφ/
p

g = −2Ψb(1 +
e2)/e2a2R2

0 is negative for a positively oriented poloidal field (Ψb > 0). This affects the inter-
pretation of co-passing and counter-passing particles.
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Finally, the magnetic field strength (square) is expressed as

B 2 = B 2
0 R2

0

R2 + 4Ψ2
bρ

2

e2a2R2
0

[
e2 +

(
1−e2 + Z 2

R2

)
sin2θ+2e

Z

R
sinθcosθ

]
and its relevant derivatives

∂B 2

∂ρ
=−2a0R0 cosθ

(
B0R0

R2

)2

+ 8Ψ2
bρ

e2a2
0R2

0

[
e2 −2

Z 2

R2

+
(
1−e2 +4

Z 2

R2

)
sin2θ+ 1

e

Z

R

(
3e2 −2

Z 2

R2

)
cosθ sinθ

]
and

∂B 2

∂θ
= 2ρa0R0 sinθ

(
B0R0

R2

)2

+ 8Ψ2
bρ

e2a2
0R2

0

[
2e

Z

R

+
(
1−e2 +4

Z 2

R2

)
cosθ sinθ− 1

e

Z

R

(
3e2 −2

Z 2

R2

)
sin2θ

]
.

B.1.2 Axisymmetric straight field-line coordinates (MINERVA, PEST)

From the general representation of axisymmetric equilibrium magnetic fields, B = F (Ψ̄)∇∇∇ζ+
∇∇∇ζ×∇∇∇Ψwhere the toroidal angle is the reversed geometric angle ζ=−φ, the radial variable is
chosen as Ψ̄=Ψ/Ψe (poloidal magnetic flux) and the poloidal angle θ is defined such that
the coordinate system is field-aligned, i.e. that the local pitch of the field is the q-profile flux
function

B ·∇∇∇ζ
B ·∇∇∇θ = F |∇∇∇ζ|2

Ψe (∇∇∇ζ×∇∇∇Ψ̄) ·∇∇∇θ = F
p

g

Ψe R2 ≡ q(Ψ̄).

Reversing the toroidal angle ensures that the coordinate system (Ψ̄,θ,ζ) is right-handed when
F , q and Ψe are positive profiles. The jacobian of the coordinate transformation is thusp

g = q
FΨe R2 > 0.

The contravariant components of the magnetic field are

Bθ = B ·∇∇∇θ = Ψep
g
= F

qR2 Bζ = B ·∇∇∇ζ= q
Ψep

g
= F

R2 .

Since ∇∇∇ζ =
p

g
R2 ∇∇∇Ψ̄×∇∇∇θ = qΨe

F ∇∇∇Ψ̄×∇∇∇θ, the magnetic field is conveniently expressed in the
wedge-representation as

B = qΨe∇∇∇Ψ̄×∇∇∇θ+Ψe∇∇∇ζ×∇∇∇Ψ̄=Ψe∇∇∇Ψ̄×∇∇∇(qθ−ζ)

and, up to a gauge choice, the vector potential is

A =Q∇∇∇θ−Ψ∇∇∇ζ
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where Q is the integral of the q-profile inΨ, i.e. dQ
dΨ =ΨeQ ′ = q .

The covariant components are Bζ = F , Bθ = gθθBθ and BΨ̄ = gΨ̄θBθ, where the metric elements
are computed as

gΨ̄θ =
∂R

∂Ψ̄

∂R

∂θ
+ ∂Z

∂Ψ̄

∂Z

∂θ
gθθ =

(
∂R

∂θ

)2

+
(
∂Z

∂θ

)2

.

Concerning ∇∇∇×B =−F ′∇∇∇ζ×∇∇∇Ψ̄+K ζ∇∇∇Ψ̄×∇∇∇θ, the MHD force balance equation (∇∇∇×B )×B =
µ0∇∇∇p =µ0p ′∇∇∇Ψ̄ is invoked to yield

K Ψ̄ = 0 K θ =−F ′ K ζ =−q

(
F ′+µ0p ′ R2

F

)
where p(Ψ̄) is the pressure profile and µ0 the vacuum permeability.

The field strength is calculated as

B =
√

F 2

R2 + gθθ(Bθ)2 = F

R

√
1+ gθθ

q2R2

and its derivatives as

∂B

∂Ψ̄
=

(
F ′

F
− ∂R

∂Ψ̄

1

R

)
B + (Bθ)2

B

[
1

2

∂gθθ
∂Ψ̄

− gθθ

(
q ′

q
+ ∂R

∂Ψ̄

1

R

)]
∂B

∂θ
=−∂R

∂θ

1

R
B + (Bθ)2

B

(
1

2

∂gθθ
∂θ

− gθθ
∂R

∂θ

1

R

)
.

where

1

2

∂gθθ
∂Ψ̄

= ∂R

∂θ

∂2R

∂Ψ̄∂θ
+ ∂Z

∂θ

∂2Z

∂Ψ̄∂θ

1

2

∂gθθ
∂θ

= ∂R

∂θ

∂2R

∂θ2 + ∂Z

∂θ

∂2Z

∂θ2

The q-profile, the current profile and the pressure profile, as well as the geometry of flux
surfaces and the mapping to cylindrical coordinates, have to be prescribed. MINERVA is an
example of a stability code providing a Fourier decomposition of those fields, which is then
interpolated in VENUS-LEVIS with the spline-Fourier technique described in section 4.2.

B.2 3D representations with nested flux surfaces

B.2.1 VMEC/ANIMEC coordinates

VMEC/ANIMEC coordinates are flux coordinates (s,u, v), where s =Φ/Φb is the radial variable
proportional to the toroidal magnetic flux, u the poloidal angle and v = φ corresponds to
the geometrical toroidal angle. The coordinate system is neither orthogonal nor straight, but
it has the property that the number of Fourier modes representing the MHD equilibrium is
minimum. The magnetic field is deduced from the following vector potential in terms of flux
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functionsΦ(s) =Φb s andΨ(s) and the additional field λ(s,u, v)

A =λ(s,u, v)∇∇∇s +Φ∇∇∇u −Ψ∇∇∇v.

In the wedge representation, the magnetic field becomes via

B =∇∇∇× A = (Ψ′+∂vλ)∇∇∇v ×∇∇∇s + (Φ′−∂uλ)∇∇∇s ×∇∇∇u.

The q-profile is thus given by q(s) = 〈B v /B u〉 =Φ′/Ψ′, where < . > means flux-surface average.

The output of VMEC/ANIMEC readily provides the mapping to cylindrical coordinates in the
form

R(s,u, v) = ∑
mn

Rmn(s)cos(mu −nv)

Z (s,u, v) = ∑
mn

Zmn(s)sin(mu −nv)

which is used in VENUS-LEVIS to calculate various elements of the metric via the results of
section A.1.3. The covariant and contravariant components of the magnetic field B u , B v , Bs ,
Bu and Bv , as well as the magnetic field strength B , are similarly decomposed in Fourier series.
VMEC/ANIMEC output includes cosine based functions Bmn , B u

mn , B v
mn , Bu,mn , Bv,mn , Rmn and

sine based functions Bs,mn , Zmn and also provides flux functions such as the iota profile
ι(s) and the toroidal magnetic fluxΨ′(s). Remaining quantities required in the equations of
motion are derived without difficulty via the spline-Fourier algorithm of section 4.2.

B.3 Stellarator symmetry jargon

The condition of stellarator symmetry is an adaptation to toroidal systems of the concepts
of parity and time-reversal. Let us consider the discrete transformation on the cylindrical
coordinates

I : (R,φ, Z ) → (R,−φ,−Z ) (B.1)

and its action on an arbitrary field (pullback operation) as

(I M)(R,φ, Z ) = (M ◦ I )(R,φ, Z ) = M(R,−φ,−Z ). (B.2)

An important property of this transformation is, by virtue of the definition of partial derivatives
for a given function f

(∂R f )(R,φ, Z ) = lim
h→0

f (R +h,φ, Z )− f (R,φ, Z )

h
,

159



Appendix B. MHD equilibria

that I commutes with the radial partial derivative

(I (∂R f ))(R,φ, Z ) = (∂R f )(R,−φ,−Z ) = lim
h→0

f (R +h,−φ,−Z )− f (R,−φ,−Z )

h

= lim
h→0

(I f )(R +h,φ, Z )− (I f )(R,φ, Z )

h
= (∂R (I f ))(R,φ, Z )

but anti-commutes with the toroidal and vertical partial derivative

(I (∂φ f ))(R,φ, Z ) = (∂φ f )(R,−φ,−Z ) = lim
h→0

f (R,−φ+h,−Z )− f (R,−φ,−Z )

h

= lim
h→0

(I f )(R,φ−h, Z )− (I f )(R,φ, Z )

h
= lim

h→0

(I f )(R,φ+h, Z )− (I f )(R,φ, Z )

−h

=−(∂R (I f ))(R,φ, Z )

(and similarly for ∂Z ). The commutation of partial derivatives with the transformation I is
summarised as

I∂R = ∂R I I∂φ =−∂φI I∂Z =−∂Z I . (B.3)

Then, the gradient operation ∇∇∇ f = ∂R f ∇∇∇R +∂φ f ∇∇∇φ+∂Z f ∇∇∇Z becomes

I∇∇∇ f = (∂R I f )(I∇∇∇R)− (∂φI f )(I∇∇∇φ)− (∂Z I f )(I∇∇∇Z )

The curl operation∇∇∇×B = (∂φBZ−∂Z Bφ)∇∇∇φ×∇∇∇Z+(∂Z BR−∂R BZ )∇∇∇Z×∇∇∇R+(∂R Bφ−∂φBR )∇∇∇R×
∇∇∇φ

I∇∇∇×B =−(∂φI BZ −∂Z I Bφ)RI eR + (−∂Z I BR −∂R I BZ )RI eφ+ (∂R I Bφ+∂φI BR )RI eZ

In the jargon of parity transformations and their effect on various tensor objects, we define

a “stellarator symmetric (SS) scalar” a function f such that respects

I f = f ⇐⇒ f (R,−φ,−Z ) = f (R,φ, Z ). (B.4)

The covariant components of the gradient∇∇∇ f = ∂R f ∇∇∇R+∂φ f ∇∇∇φ+∂Z f ∇∇∇Z automatically
form what is called a “SS polar-vector”

I∂R f = ∂R f I∂φ f =−∂φ f I∂Z f =−∂Z f ,

a “SS polar-vector” a vector field respecting

I [VR ,Vφ,VZ ] = [VR ,−Vφ,−VZ ]. (B.5)

Because the metric elements gi j = diag(1,R2,1) are SS scalars, the contravariant compo-
nents of a SS polar-vector also satisfy

I [V R ,V φ,V Z ] = [V R ,−V φ,−V Z ].
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The contraction of two SS polar-vectors V and W is a SS scalar

IV ·W = IVR IW R + IVφIW φ+ IVZ IW Z =VRW R +VφW φ+VZ W Z =V ·W .

The vector product of two SS polar-vectors V and W is also a SS polar-vector

I [V ×W ]R,φ,Z = [IVφIWZ − IVZ IWφ, IVZ IWR − IVR IWZ , IVR IWφ− IVφIWR ]
(B.6)

= [VφWZ −VZ Wφ,−(VZ WR −VRWZ ),−(VRWφ−VφWR )]. (B.7)

The curl of a SS polar-vector ∇∇∇×V is also a SS polar-vector (∇∇∇ acting like a polar-vector)

I [∇∇∇×V ]R,φ,Z = [I∂φVZ − I∂Z Vφ, I∂Z VR − I∂RVZ , I∂RVφ− I∂φVR ] (B.8)

= [∂φVZ −∂Z Vφ,−∂Z VR +∂RVZ ,−∂RVφ+∂φVR ], (B.9)

a “SS pseudo-scalar” a function g such that

I g =−g ⇐⇒ g (R,−φ,−Z ) =−g (R,φ, Z ). (B.10)

The covariant components of the gradient ∇∇∇g forms what is called a “SS axial-vector”

I∂R g =−∂R g I∂φg = ∂φg I∂Z g = ∂Z g ,

a “SS axial-vector” a vector field respecting

I [JR , Jφ, JZ ] = [−JR , Jφ, JZ ] =−[JR ,−Jφ,−JZ ] or I [J R , Jφ, J Z ] = [−J R , Jφ, J Z ]. (B.11)

The contraction of two SS axial-vectors B and J is a SS scalar

I J ·B = I JR I B R + I JφI Bφ+ I JZ I B Z = JR B R + JφBφ+ JZ B Z = J ·B .

The contraction of a SS axial-vector B and a SS polar-vector E is a SS pseudo-scalar

I E ·B = I ER I B R + I EφI Bφ+ I EZ I B Z =−ER B R −EφBφ−EZ B Z =−E ·B .

The vector product of two SS axial-vectors B and J is a SS polar-vector

I [J ×B ]R,φ,Z = [I JφI BZ − I JZ I Bφ, I JZ I BR − I JR I BZ , I JR I Bφ− I JφI BR ] (B.12)

= [JφBZ − JZ Bφ,−(JZ BR − JR BZ ),−(JR Bφ− JφBR )]. (B.13)

The vector product of a SS axial-vector B and a SS polar-vector E is a axial-vector

I [E ×B ]R,φ,Z = [I EφI BZ − I EZ I Bφ, I EZ I BR − I ER I BZ , I ER I Bφ− I EφI BR ] (B.14)

= [−EφBZ +EZ Bφ,EZ BR −ER BZ ,ER Bφ−EφBR ]. (B.15)
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Similarly, the curl of a SS axial-vector is an axial-vector

I [∇∇∇×B ]R,φ,Z = [I∂φBZ − I∂Z Bφ, I∂Z BR − I∂R BZ , I∂R Bφ− I∂φBR ] (B.16)

= [∂φBZ −∂Z Bφ,−∂Z BR +∂R BZ ,−∂R Bφ+∂φBR ]. (B.17)
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C Orbit equations

C.1 Relativistic non-canonical phase-space Lagrangian Guiding-centre
Drift Equations

In this section, the guiding-centre equations are derived in general curvilinear (non-canonical)
coordinates from the relativistic guiding-centre phase-space Lagrangian (Brizard and Chan,
1999; Grebogi, 1985)

LGC (X , p||;µ,ζ; t ) =
(

q A +p||
B

B

)
· Ẋ + m

q
µζ̇−HGC (C.1)

where X is the position of the guiding centre, q and m the charge and mass of the considered
particle, p|| = mγv|| its relativistic momentum along the field-line, ζ the ignorable variable
characterizing the gyro-angle, µ= p2

⊥/2mB the (adiabatically) conserved magnetic moment
associated with the fast gyro-motion, A(X , t ) and B (X , t ) =∇∇∇×A the magnetic vector potential
and magnetic field. The guiding-centre Hamiltonian is given by

HGC (X , p||;µ; t ) = mc2γ+qΦ γ= 1√
1− v2

c2

=
√

1+ 2µB

mc2 +
p2
||

m2c2 (C.2)

andΦ(X , t ) the electrostatic potential.

The form of phase-space Lagrangian (C.1) is interesting; the first part is written as the scalar
product of two spatial vectors. It indicates it is possible to preserve the vector notation through-
out the computation. It also means that the solution can be expressed without specifying the
choice of spatial coordinates.

In the presence of anisotropy, it is customary to express the free current density K and the
magnetic field intensity H , connected one to another by ∇∇∇× H = K . The relation between
B and H is modelled by H = σB , where σ(X ,B) is the permittivity of the medium. This
description is adequate to embed the fire-hose stability criterion (Grad, 1966)

σ(s,B) ≡ 1− µ0

B

∂P||
∂B

∣∣∣∣
s
= 1− µ0(P||−P⊥)

B 2 > 0 (C.3)

and the mirror stability criterion

τ(s,B) ≡ ∂(σB)

∂B

∣∣∣∣
s
= 1+ µ0

B

∂P⊥
∂B

∣∣∣∣
s
> 0 (C.4)

where P||(P⊥) is the parallel(perpendicular) background pressure (Grad, 1966).
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Instead of the parallel momentum p||, it is convenient to use some sort of parallel gyro-radius
in order to make the magnetic field intensity appear explicitly. It is proportional to the distance
along the field-lines covered by the guiding-centre over a gyro-period (anisotropy included).

ρ|| =
p||
q H

= v||
σωc

⇐⇒ v||(X ,ρ||;µ; t ) = ρ||
q H

mγ
(C.5)

Adjusting the guiding-centre Lagrangian to the new coordinates and normalizing by q yields

l (X ,ρ||, t ) = (A +ρ||H) · Ẋ −h = A∗ · Ẋ −h (C.6)

with

h = m

q
c2γ+Φ , γ=

√
1+ 2µB

mc2 +
q2ρ2

||H
2

m2c2 . (C.7)

Equations (C.1-C.7) are a coordinate-free generalisation of the treatment of Cary and Brizard
(2009), with the additional dependency of anisotropy and relativistic effects.

Since ρ|| (formally p||) does not have a ρ̇|| term in the Lagrangian, its redefinition does not
affect the structure of the equations of motion1. Many authors (Cooper et al., 2007; Hirvijoki
et al., 2012; White and Chance, 1984; White et al., 1982) have made use of this property in
order to include δA||(X , t) perturbations, defining for example ρc = ρ||+δA||/H . This trick
is only valid if the perturbations are much smaller than the original axisymmetric magnetic
field (for the static application of interest here). Indeed, the main assumption of guiding-
centre physics is that particles gyrate rapidly around the field-lines traced out by the total
magnetic field. If the perturbations are large, the direction of the total field can become very
different from the original equilibrium and the guiding-centre derivation is inconsistent from
the start (perturbations are stored only in the vector potential but not in the direction of
reference for velocity space). In this derivation, A is recognized as the full 3D vector potential,
implicitly including equilibrium and perturbations, if any. A (and thus B ) is assumed to vary
smoothly in space and slowly in time, according to the guiding-centre approximation. Adding
faster and finer perturbations is only possible if the guiding-centre Lagrangian is expanded
at higher-order in Larmor radius (5D, gyrokinetics) or if the full Lorentz equations (6D) are
considered. The formalism presented here is compatible with time-varying electromagnetic
fields in general, but is applied to saturated equilibria such as the internal kink in section 5.1.1
and RMPs in section 6.3, where A describes the vector potential of a 3D magnetic equilibrium
configuration from VMEC or other equilibrium codes.

The Euler-Lagrange equations of (C.6) based on coordinates zα = (z0, zi ) = (ρ||, X ) can be
arranged as

Ωαβ żβ = ∂αh +∂t A∗
α (C.8)

1If there was aΛρ̇|| term in the Lagrangian, the change of coordinate defined by ρ|| = f (ρnew , X , t ) would imply
ρ̇|| = ˙ρnew∂ρnew f + Ẋ∇∇∇ f +∂t f . These extra terms would be distributed to the spatial variables affecting their
equations of motion.
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where the anti-symmetric tensorΩαβ = ∂αA∗
β
−∂βA∗

α is the Lagrange brackets of non-canonical
coordinates

Ωαβ =

1×1 1×3 0 ∂ρ|| A
∗
j

3×
1

−∂ρ|| A
∗
i ∂i A∗

j −∂ j A∗
i

3×3

=
(

0 H j

−Hi B∗kεki j

)
(C.9)

where εi j k =p
gεi j k is the Levi-Cività tensor,

p
g = [∇∇∇z1 · (∇∇∇z2 ×∇∇∇z3)]−1 is the Jacobian of the

spatial coordinate system and B∗ =∇∇∇× A∗ = B +ρ||K the modified magnetic field.

p
Ω is the Jacobian of the transformation from canonical to non-canonical coordinates, a mea-

sure of phase-space density in the sense that mq
p
Ωd z3dρ||dµdζ= d q3d p3 is an infinitesimal

volume of phase-space. The evolution of phase-space under the Hamiltonian flow, and that ofp
Ω, is well-defined by Liouville equation,

∂
p
Ω

∂t
+ ∂

∂zα

(p
Ωżα

)
= 0 (C.10)

which is important for establishing a Vlasov equation and essential for the numerical imple-
mentation of a consistent weighting scheme in a full- f or delta- f PIC approach.

To express
p
Ω without effort, the following reasoning is applied. The determinant of any

anti-symmetric matrix is equal the square of its Pfaffian2, detΩ= pf(Ω)2. Written as a p-form,
Ω= 1

2Ωαβd zα∧d zβ and its Pfaffian is related by Ω2

2 = pf(Ω)d z0 ∧d z1 ∧d z2 ∧d z3. Thus,

pf(Ω) =
p
Ω= 1

2
(∂αA∗

β)(∂γA∗
δ)εαβγδ = (∂0 A∗

i )(∂ j A∗
k )εi j k = Hi [∇∇∇×A∗]ipg = H ·B∗pg =σBB∗

||
p

g .

(C.11)

Phase-space density (i.e.
p
Ω) can become zero in two ways: the spatial coordinate system is

singular at some point (polar coordinates) or ρ||K|| starts competing with B . In the first case, a
change of coordinates will remove the singularity (pseudo-Cartesian coordinates) but in the
second, it means that Larmor radius corrections are of the same order as the magnetic field
strength and that the guiding-centre approximation breaks down.

Finding the inverse ofΩ, namelyΠ the Poisson brackets (Arnol’d, 1989) such thatΠαβΩβγ = δαγ ,
permits the equations of motion to be written as3

żα =Παβ(∂βh +∂t A∗
β). (C.12)

2The Pfaffian is a polynomial of the entries of anti-symmetric 2n ×2n matrices. The determinant of any anti-
symmetric matrix A is equal to the square of its Pfaffian, detA = pf(A)2 (Muir, 1882). In the context of differential
forms, one can associate to A a bi-vector ω= 1

2 Ai j ei ∧e j , where (e1, . . . ,e2n ) is a basis of R2n . The Pfaffian is then

defined as ωn

n! = pf(A)e1 ∧ . . .∧e2n .
3In the end, it is equivalent to the expression żα = [zα, H ]+ ∂t zα, i.e. the evolution of the non-canonical

variables in the Hamilton picture.
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Appendix C. Orbit equations

Inverting the Lagrange matrix is possible only if its determinantΩ is non-zero. Π is verified to
be

Παβ = 1

H ·B∗

(
0 −B∗ j

B∗i −Hkε
ki j

)
(C.13)

where εi j k = εi j k /
p

g the contravariant components of the Levi-Cività tensor. Thanks to Π,
the equations of motion in general coordinates become

żα =
(
ρ̇||
Ẋ i

)
=Π

(
∂ρ||h

∂ j h +∂t A∗
j

)
(C.14)

where

∂ρ||h = ρ||q
mγ

H 2 = v||H and ∂i h +∂t A∗
i = µ

qγ
∂i B + v||ρ||∂i (σB)−Ei +ρ||∂t Bi ≡−E∗

i

(C.15)

the modified electric field. Finally, the guiding-centre drift equations in general coordinates
are written

ρ̇|| =
E∗

j B∗ j

Hl B∗l
=

E∗
j W ∗ j

Hl W ∗l
= E∗ ·B∗

HB∗
||

(C.16)

Ẋ i = v||
HB∗i

Hl B∗l
+ εi j k

p
g

Hk E∗
j

Hl B∗l
= v||

HW ∗i

Hl W ∗l
+εi j k

Hk E∗
j

Hl W ∗l
=

[
v||

B∗

B∗
||
+ E∗×b

B∗
||

]i

(C.17)

where W i (X i , t) = B ipg is a notation for the components of the magnetic field in the so-
called wedge-representation, where B =W i εi j k

2 ∇∇∇X j ×∇∇∇X k . These equations for (ρ||, X i ) are
consistent with (Littlejohn, 1983) and a generalisation of previous work (Cooper et al., 2011a).
The main features of drift theory are easily recognisable. At lowest order, the motion is along
the field-lines, as seen in the v||B/B term. The electric field induces a E×B drift, the gradients
of B induce a B×∇∇∇B drift and the time-variation a B×∂t B drift. The so-called curvature drift
appears in the ∇∇∇×B term.

The contravariant (upper index as in B i ) and covariant (lower index as in Hi ) components of
each field, as well as the coordinate transformation and the metric elements, are provided
separately from the equations of motions. The coordinate system is in effect determined a
posteriori. This makes the representation of the electromagnetic field interchangeable and
not limited to toroidal geometry. The list of quantities required by the above guiding-centre
equations is W i , Hi , Ei , ∂i B , ∂t Hi and K i =p

g [∇∇∇×B ]i . A selection of field representations in
flux coordinates was shown in the section B.1.

C.1.1 Guiding-centre Drift Equations in straight field-line coordinates

The GCDE derived in work by White and Zakharov (2003); White and Chance (1984) and
previous work by Cooper et al. (2011a) using canonical coordinates are recovered in this sec-
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C.1. Relativistic non-canonical phase-space Lagrangian Guiding-centre Drift Equations

tion, considering the time-independent anisotropic MHD equilibrium expressed in Boozer
coordinates. This is an algebraic exercise that shows how the phase-space Lagrangian tech-
nique applies to a specific choice of coordinates. The same notation and assumptions as in
section 2.3.3 are used. We only let the covariant representation of the magnetic field contain
the anisotropy

H =σB = Hs(s,θ,ϕ)∇∇∇s +J (s)∇∇∇θ−I (s)∇∇∇ϕ (C.18)

where H is the magnetic intensity, s =Φ/Φb the radial flux label proportional to the toroidal
flux, θ and ϕ are the poloidal and toroidal angles, J = µ0 J and I = µ0I are respectively
toroidal and poloidal current fluxes, and the permittivity σ(s,B) satisfies the fire-hose stability
criterion and the mirror stability criterion (Grad, 1966). The magnetic field is written in
contravariant components in terms of flux functionsΨ(s) andΦ(s) as in equation (2.13).

B =∇∇∇ϕ×∇∇∇Ψ+∇∇∇Φ×∇∇∇θ = 1p
g

(
Ψ′eθ+Φ′eϕ

)
(C.19)

The scalar product between the magnetic field and the magnetic intensity (contraction of
covariant and contravariant representations) has a simple dependency

H ·B = JΨ′−IΦ′
p

g
=σB 2 > 0. (C.20)

The current is computed as

∇∇∇∧H =J ′∇∇∇s∧∇∇∇θ+I ′∇∇∇ϕ∧∇∇∇s+∇∇∇Hs ∧∇∇∇s = 1p
g

[
(I ′+∂ϕHs)eθ+ (J ′−∂θHs)eϕ

]
(C.21)

such that

B∗ = B +ρ||∇∇∇∧H = 1p
g

[
(Ψ′+ρ||I ′+ρ||∂ϕHs)eθ+ (Φ′+ρ||J ′−ρ||∂θHs)eϕ

]
(C.22)

and

p
Ω=p

g H ·B∗ =JΨ′−IΦ′+ (
ρ||JI ′−IJ ′+J∂ϕHs +I∂θHs

)
(C.23)

The modified electric field is

−E∗ = µ

qγ
∇∇∇B + v||ρ||∇∇∇(σB) =

(
µ

qγ
+ v||ρ||τ

)
︸ ︷︷ ︸

CB

∇∇∇B + v||ρ||B
∂σ

∂s

∣∣∣∣
B
∇∇∇s (C.24)
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Appendix C. Orbit equations

Collecting all pieces, the Boozer coordinate equations of motion of a particle in anisotropic
MHD plasma at equilibrium are

ρ̇|| =− CBp
Ω

[
∂θB(Ψ′+ρ||I ′+ρ||∂ϕHs)+∂ϕB(Φ′+ρ||J ′−ρ||∂θHs)

]
(C.25a)

ṡ =∇∇∇s · Ẋ = CBp
Ω

(J∂ϕB +I∂θB) (C.25b)

θ̇ =∇∇∇θ · Ẋ = 1p
Ω

[
v||σB

(
Ψ′+ρ||I ′+ρ||∂ϕHs −ρ||I ∂ lnσ

∂s

∣∣∣
B

)
−CB (I∂sB +Hs∂ϕB)

]
(C.25c)

ϕ̇=∇∇∇ϕ · Ẋ = 1p
Ω

[
v||σB

(
Φ′+ρ||J ′−ρ||∂θHs −ρ||J ∂ lnσ

∂s

∣∣∣
B

)
−CB (J∂sB −Hs∂θB)

]
(C.25d)
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