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Abstract

The digitization of our most common appliances has led to a literal data deluge, some-
times referred to as Big Data. The ever increasing volume of data we generate, coupled
with our desire to exploit it ever faster, forces us to come up with innovative data pro-
cessing techniques. Interestingly, the information we often look for has a very specific
structure that distinguishes it from pure clutter. In this thesis, we explore the use of
structured representations to propose new sensing techniques that severely limit the
data throughput necessary to recover meaningful information.

In particular, we exploit the intrinsic low-dimensionality of light field videos using tensor
low-rank and sparse constraints to recover light field views from a single coded image
per video frame. As opposed to conventional methods, our scheme neither alters the
spatial resolution for angular resolution nor requires computationally extensive learning
stage but rather depends on the intrinsic structures of light fields.

In the second part of this thesis, we propose a novel algorithm to estimate depth from
light fields. This method is based on representation of each patch in a light field view
as a linear combination of patches from other views for a set of depth hypotheses. The
structure in this representation is deployed to estimate accurate depth values.

Finally, we introduce a low-power multi-channel cortical signal acquisition based on
compressive sampling theory as an alternative to Nyquist-Shannon sampling theorem.
Our scheme exploits the strong correlations between cortical signals to recover neural
signals from a few compressive measurements.

Key words: structured sparsity, affine rank minimization, inverse problems, compressed
sensing, computation photography, light fields, depth estimation, cortical signals
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Résumé

La digitalisation des technologies de notre quotidien meéne & un véritable déluge de
données. Ainsi le volume toujours croissant de ces données et notre désir de pouvoir les
exploiter toujours plus vite, nous pousse a inventer de nouvelles méthodes de traitement
de l'information toujours plus efficaces. Par chance, I'information qui nous intéresse
posséde souvent une structure tres particuliere et qui la distingue du désordre. Dans
cette theése, nous explorons l'utilisation de représentations structurées et proposons de
nouvelles modalités de capture de signaux limitant fortement la quantité de données

nécessaires pour remonter a I'information pertinente.

En particulier, nous exploitons la faible dimension intrinseque de vidéos du champ lu-
mineux au moyen d’un modele tensoriel combinant des contraintes de rang faible et de
parcimonie et montrons qu’il est possible de reconstituer le champ lumineux a partir
d’une seule image codée par trame. Par rapport aux méthodes conventionnelles, notre
technique ne souffre pas de dégradation de la résolution spatiale ou angulaire et ne
nécessite aucune étape de pré-calcul.

Nous proposons également un nouvel algorithme d’estimation de la profondeur d’une
scene a partir de mesures du champ lumineux. Cette méthode se base sur une représen-
tation tres structurée du champ lumineux que nous exploitons au moyen de contraintes

de parcimonie structurée.

Finalement, nous développons une méthode de mesure de signaux d’activité corticale
basée sur ’échantillonnage compressif en vue de réaliser un systeme a basse consom-
mation d’énergie. La technique que nous proposons utilise la structure particuliere des
corrélations entre canaux dans le systeme au moyen d’'un modele parcimonieux structuré

par groupes.

Mots clefs : parcimonie structurée, minimisation de rang faible, probleme inverse, échan-
tillonnage compressif, photographie computationnelle, champ lumineux, estimation de

profondeur, signaux corticaux
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Chapter 1

Introduction

Due to the technological advancements of today, there has been a rapid increase in
accumulation of massive amount of data. The data flood in areas like image/signal
processing, e-commerce, information retrieval and business has led to modern algorithms
which deploy diverse information to address complex problems. Besides the fundamental
interest in the ability to collect high-dimensional data, the insights gained from the data
plays more important role. Therefore, developing efficient computational methods based
on data structures is necessary to extract useful information from data.

Designing feasible algorithms to exploit data structures needs handling data with as
many as billion variables. For example, the plenoptic function [2] was introduced as a
ray-based model of all visual information: spatial, angular, and temporal light variation
and the spectrum. The amount of data produced by plenoptic samples makes this
problem extremely difficult. For instance, in a light field video recorded at 30 Hz, with
11.1 Megapixel resolution, 10 x 10 angular samples, and three color channels—about 100
billion light rays (~ 100 GB of raw data) have to be recorded, processed, and stored
per second. In functional Magnetic Resonance Images (fMRI), each image contains
more than 50000 voxels which produces thousands of terabytes of data during each
acquisition. In addition to image and video processing applications, massive amount
of high-dimensional data is also being gathered from social media, and web relevant
data. In such application domains, data routinely lie in thousands to even billions of
dimensions, with a number of samples sometimes of the same order of magnitude.

However, high-dimensional data are highly redundant. Due to redundancy, the informa-
tion volume is much smaller than the data volume. Tremendous amount of work has
been conducted over past decade to develop methods that exploit the extensive data
redundancy. Many successful methods take advantage of the fact that most correlated
structures in data have sparse representation in a suitable orthogonal basis or dictionary.

For example, JPEG encodes few important coefficients of discrete cosine transform.



Chapter 1. Introduction

Although sparsity intends to represent data structures, this model cannot consider
the relation between the sparse coefficients. For example, wavelet transform not only
sparsely represents images but also the wavelet coefficients have strong relations with
each other [11]. Recently, more advance sparse coding techniques known as structured
sparsity [7, 74, 89, 172] have been introduced to leverage both sparsity and the correla-
tions between the data variables.

Furthermore, the large number of redundant samples in high-dimensional data gives rise
to intrinsic low-dimensionality of high-dimensional data. For example, recommender
systems have huge data volume that often replete with missing entries. Many techniques
such as matrix completion [25, 85] have been introduced to leverage the intrinsic low-
dimensionality of the data to fill the missing ratings.

In addition to the potential that high-dimensional data bring, the huge flow of data
requires more efficient sampling techniques and poses limitations on the existing tech-
nology. For example, the high data rate of wireless implantable neural recording systems
results in unacceptable transmission power which can pass the limit of safety concerns.
The compressive sensing paradigm [9, 23, 41] leverages data structures to greatly reduce
the sampling rate, while preserving the overall data quality. In the case of neural im-
plants, for instance, the compressive sensing can provide a low-power acquisition system
to respect the safety conditions [31, 142].

In short, the richness of high-dimensional data offers the potential to improve the al-
gorithms, however the new models require to exploit the data structures to effectively
address the challenges in high-dimensional data.

1.0.1 Outline

In the following, we present a brief summery of each chapter.

From Sparsity to Structure Modeling

In Chapter 2, we extend data structures beyond sparsity and introduce structured spar-
sity norms to leverage correlations between data variables. In addition, we explain a set
of tools to exploit the intrinsic low-dimensionality of data.

Computational Light Field Imaging

In Chapter 3, we introduce computational camera as a mean to exceed the limitation
of analogue photography. Furthermore, we explain a set of modifications either on lens
or sensor of cameras to build computational light field cameras. We observe that the
available computational light field cameras either sacrifice spatial resolution, use multiple



devices/images or an extensive dictionary learning phase to acquire angular resolution.

Tensor Low-rank and Sparse Light Field Photography

High-quality light field photography has been one of the most difficult challenges in
computational photography. Combining coded image acquisition and compressive re-
construction is one of the most promising directions to overcome limitations of conven-
tional light field cameras. In Chapter 4, we present a new approach to compressive
light field photography that optically codes light field views into a single camera sensor
and exploits a joint tensor low-rank and sparse prior (LRSP) on natural light fields.
As opposed to available light field acquisition models, our method does not require a
computationally expensive learning stage but rather models the intrinsic redundancies
of high dimensional visual signals using a tensor low-rank prior. This is not only compu-
tationally more efficient but also more flexible with respect to camera parameters such
as aperture sizes and baseline.

A Convex Solution to Disparity Estimation from Light Fields

In Chapter 5, we present a novel convex approach to the reconstruction of depth from
light fields. Our method exploits the similarity between patches from light field views
to estimate disparity. The proposed scheme looks for the best representation of each
patch as a linear combination of other patches for a set of depth candidates such that
each depth hypothesis is either chosen or discarded. To achieve this, we model the
structure raised in the patch representation via group sparsity. We keep numerical
complexity at bay by restricting the space of solutions and by exploiting an efficient
Primal-Dual algorithm [124]. Our formulation recovers accurate depth values even for

specular surfaces and shows promising performance.

Low-Power Compressive Multi-channel Cortical Recording

We use sparse structured representations for a different problem in Chapter 6 and pro-
pose a power-efficient approach for wireless monitoring of brain activity based on com-
pressive sampling. We show that high-dimensional multi-channel cortical signals can
be efficiently sampled by a smaller number of linear measurements than dictated by
the Nyquist sampling theorem. Our scheme exploits the strong correlations of cortical
signals in Gabor transform to recover the multi-channel neural signals from the com-
pressive measurements. Leveraging the group structure of the Gabor coefficients results
in more accurate signal recovery in contrast to sparse recovery which does not consider
the dependency between the Gabor coeflicients.
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1.0.2 Main Contributions

Considering the challenges and potentials in high-dimensional data, the premises of this
thesis can be summarized as: 1) the algorithms concentrate on data structures. 2) the
degree of freedom of data volume is much smaller than data dimension. 3) the acquisition
systems should avoid sampling the flow of redundant information. The summary of the
main contributions of this thesis is as given.

Tensor Low-rank and Sparse Light Field Photography

e We present a computational camera system that facilitates efficient acquisition of
light field image and video.

e We introduce a mathematical framework that models intrinsic low-dimensionality
of light fields using tensor low-rank and sparse priors. We show that this model
captures redundancy in the high-dimensional plenoptic function well and allows
for new optical setups to be derived.

e We design and implement the prototype of a compressive light field camera that
is evaluated by both simulation and experiments.

e In addition to the proposed camera prototype, we show that the proposed tensor
low-rank and sparse model is universal with respect to baseline and number of
views.

Light Field Disparity Estimation

o We present a novel model for light field disparity estimation to represent a light field
image patch as a linear combination of other light field patches. This representation
satisfies a group sparse model and depends only on a group of light field patches
of the same disparity.

e Occlusions are handled uniformly in our framework as a sparse component and
this brings more robustness than in traditional matching methods.

e We introduce a robust and globally optimal solution for light field patch matching
based on a preconditioned primal-dual algorithm [124], which allows to match a
light field patch in all the views to estimate the disparity map.

Low-Power Compressive Multi-channel Cortical Recording

¢ We design and prototype a novel compressive iEEG recording system with sam-
pling rate far below the Nyquist rate based on correlations between neural channels.



e Our scheme is highly power efficient and significantly reduces the area overhead
resulting in an improved power-area product.






Chapter 2

From Sparsity to Structure
Modeling

Sparsity is a key concept in many scientific domain. Sparse approximations have gained
a lot of attention in various signal and image processing problems such as deconvolution,
compression, image deblurring and denoising. Sparsity has become so appealing since
for most signal classes there is a sparse representation in a suitable basis or dictionary.
That is they can be represented by a small number of coefficients while the remainder
is either zero or negligible.

Clearly sparsity is linked to compression, e.g. JPEG compressed images are obtained by
thresholding the coefficients of Discrete Cosine Transform (DCT) of each image block
of 8 x8 to keep a few important coefficients. Except from a compression tool, the
introduction of sparsity in signal processing [32] resulted in extensive usage of sparse
linear models in various inverse problems.

In a sparse model, each coefficient of signal is processed independent of other coefficients.
Although this approach results in low-complexity algorithms, the sparse representation
ignores the relations between coeflicients. For example, JPEG2000 exploits not only
sparsity of wavelet coefficients but also the fact that the location of large wavelet coef-
ficients have a specific structure. Therefore, coding the coefficients according to their
structures allows the algorithm to achieve higher compression in compare with a naive
coder that deals with each coefficients independently. In brain imaging based on func-
tional Magnetic Resonance (fMRI) or magnetoencephalography (MEG), a set of voxels
that represents a brain activity has small localized spatio-temporal activation patterns
(e.g. see [62] and references therein). Similarly, the time-frequency representation of
audio signals in Modulated Discrete Cosine Transform (MDCT) arranges the significant
coefficients in a specific order [89].
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These problems along with many others motivate the need of efficient prior constraints
to incorporate signal patterns as a the prior knowledge beyond the sparse assumption.
In this chapter, we introduce a family of norms that can model a large variety of signal
patterns.

2.1 Mathematical Framework

2.1.1 Notation

We denote vectors with bold lower case letters, matrices with bold upper case ones and
tensors with italic letters. For any integer i in the set [[1;n]] ={1,...,n}, the ith element
of a vector xe R" is denoted by x;. Similarly, the entry of a matrix Xe R"*™ on the i-th

row and j* column is denoted as X; i

Let xe R" and ye R"” be two n-dimensional vectors. Then the inner product between x
and y is defined as <x,y>=x'y, where -' is the transpose operator. The squared ¢,
norm of a vector is defined as ||x||§ £<x,x>. More generally, the ¢4 norm of a vector is
defined

n
Ixld £ %17, VYgell,o0),
i=1

Ixlloo £ max |wjl. (2.1)
i€[[L;n]]

The support of x is denoted by supp(x) = {i :x; #0,1 < i < n}. Consequently, the #supp(x)
is the number of non-zero entries of x, which is known as ¢y pseudo-norm, i.e.

Ixllo = #supp(x).
For matrices X,Y € R the inner product is defined as <X, Y>2 Tr(X'Y) £ P Z;"zl X;iYij.
The rank of a matrix (denoted by r) is the number of non-zero singular values of the

matrix. The associated norm to the inner product is called the Frobenius norm, which
is defined as

n m r
X122 Tr(X"X) = Zl lef.j = Zlaf, (2.2)
i=1j= i=

where o0; is the i-th singular value of X. The operator norm of a matrix is equal to its

largest singular value !

Xl £ 0. (2.3)

Loy is the biggest singular value of a matrix.
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The nuclear norm of a matrix is equal to the sum of its singular values
N r
Xl =) 0. (2.4)
i=1

Since singular values are all positive the nuclear norm is equal to ¢; norm of the vector
of singular values.

2.1.2 Linear Inverse Problems

Let assume y € R™ is an m-dimensional signal obtained from the original signal x through
a bounded linear operator A :R"” — R™ and corrupted by some additive noise n, i.e.

y=AX +n (2.5)

This problem casts as a linear inverse problem, where the operator A and y are known
and the aim is to estimate the unknown signal/image x. For example, in deconvolution
problem y represents the blurred image, x, whose size is the same as y (i.e. m=n), is
the sharp image, and the operator A is the blur kernel. The estimation of latent sharp
image x from the blurred image y is known as image deblurring. Compressive Sensing
(CS) acquisition recovers the signal x form m linear measurements with m < n [23]. In
this case the operator A is the sampling operator generated from a random distribution.
The goal of this problem is to recover the original signal x by solving the equation (2.5).
Unfortunately, this task seems to be impossible as the problem is ill-posed. However,
given some conditions on A, it is possible to recover x from y using some prior knowledge
on X. The goal of priors is to bias problems towards desired solutions known in advance.
Thus priors are able to avoid overfitting or transfer an ill-posed problem to a well-posed
problem. One well-known prior is the Tikhonov prior [152] that is to improve the
conditioning of problems. Sparsity of wavelet coefficients and gradient values, known
as Total Variation (TV), [104, 134] is another popular prior that promotes piecewise
smooth solution. The classical regularization reads

X =argmin |y—-A®X) ||§+/1f(x), (2.6)

xeRn
where f(-) is some penalty term on x depending on the choice of structures to be imposed
on x. A is a weight to control the influence of each term which should be set with respect
to noise level. Note that depending on the statistical behavior of noise other fidelity
penalties replace the £, norm. The problem (2.6) also has equivalent constraint form as

k=argmin f(x) s.t. y—-AX|2<e, (2.7)

xeRn

where € is a bound on noise level.



Chapter 2. From Sparsity to Structure Modeling

2.1.3 Short Reminder on Convex Optimization

We assume that the penalty term is a convex lower-semicontinuous (l.s.c.) and a proper
function on R”. This condition ensures the existence of a minimizer to problem (2.6).

Let us recall the proximity operator of a l.s.c. function introduced by [13, 111].

Definition 2.1.1 (Proximity operator). Let J:R" — R" be a Ls.c. convex function. For
any 7 € (0,00), the proximity operator of J is denoted by prox,;:R" — R" is defined as:

1
prox,;(z) éargmin nJ(a)+ §||Z—a||§- (2.8)

acRn

If the proximity operator to the prior constraint f(-) exists, then the solution to problem
(2.6) can be obtained by using proximal algorithms. The most well-known example of
the proximity operator is the shrinkage given by the Tikhonov regularization and the
soft-thresholding prompted by the ¢; norm. The interested readers can refer to [13] for
more example of proximity operators. One of the most popular methods for solving
problem (2.6) is the Iterative Shrinkage/Thresholding Algorithm [37, 49] (ISTA), where
each iteration involves matrix-vector multiplication followed by a shrinkage step. Note
that ISTA belongs to a general family of forward-backward splitting algorithms [35],
which combines a gradient step followed by a proximity calculation at each step. The
forward-backward algorithm is described in Algorithm 1.

Algorithm 1: Forward-backward splitting algorithm

Initialization: xe R"”,y =0 (A)
while not converged do
| Xna1 =proxy ;(xn — 7AT (Y= AX;)
Y

Although backward-forward algorithm has simple updates, it has slow convergence in
practice. We refer to [35] for more efficient algorithms and their accelerations e.g. FISTA
[14] as a fast variant of ISTA.

Generalized Soft Thresholding

The soft thresholding operator is a point-wise operator, given z€ R" the soft thresolding
on z for a threshold 7 is defined as

8y (z;) = sign(z;) - max(z;| — n,0) £ sign(z;)(|z:| — ) (2.9)

+

10
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The soft thresholding can be defined in form of generalized thresholding as follows

8n(zi) = sign(z;)(lz:| - n), (2.10)
= 2 (1zil - 1)
T

8n(zi) =2i(1-Q;(z)),.

Q;(z;) is the shrinkage coefficient and is different for each element of z. The general soft
thresholding is useful to unify different proximity operators.

2.2 Sparse Representation

Sparsity looks for the smallest number of coefficients to represent a signal in a basis
or dictionary and do not consider the possible relations between data variables. Sparse
representation in the context of optimization is modeled by the ¢y pseudo-norm. Let
assume the signal x € R"” is expressed in some domain ® € R”, i.e. x=®a, where a € RP
is the decomposition of x in ®. Then the linear inverse problem (2.5) is defined as

y=AX)+n=A@a)+n=Ya+n. (2.11)
Sparse regularization in form of (2.6) follows

%= Yargmin |y-Yal3+Alallo. (2.12)

acRP

However, inducing sparsity with £y pseudo-norm is NP-hard. In practice to circumvent
this problem either greedy methods and relaxation of the ¢y pseudo-norm is used. Greedy
methods such as Iterative Hard Thresholding (IHT) [17] are relatively fast algorithms,
however their performance are not guaranteed and only under strict conditions can
solve sparse regularization [153]. The relaxations replace the ¢y pseudo-norm by convex
surrogate such as the ¢; norm [32] and these methods have guarantees but in exchange

for slow convergence.

Iterative Hard Thresholding

Iterative Hard Thresholding (IHT) retrieves sparse solutions by fixing the maximum
number of non-zero coefficients to some constant S, i.e. IHT solves the S-sparse problem

% = Wargmin ||y—‘Pa||§ s.t. allo=<S. (2.13)

acRP

11
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IHT updates involve multiplications by ¥ and W' as well as two vector additions. The
IHT at each iteration solves

ani1 = Hs(an+¥T(y-Yan), (2.14)

where Hg is the hard thresholding operator that keeps the S largest coefficients and

ignores the remaining ones.

Convex Relaxation

The ¢; norm relaxation of the sparse recovery problem was introduced in the context
of sparse representation by Chen et al. [32] and in sparse regression by Tibshirani [151].
Thereafter, sparse regularization has found different applications notably in compressive
sensing [23, 41].

Within the context of least-square regression, sparse regularization is known as Least
Absolute Shrinkage and Selection Operator (LASSO) [151] and in signal processing is
known as Basis Pursuit (BP). Sparse representation of signal x in @ is

argmin [|x—®al3+Allal;. (2.15)

acRP

In statistics, the LASSO formulate the sparse recovery problem as

argmin |z—TBI3+AlBll, (2.16)
PeRP

where I' € R™*” is the observations described by p variables and z € R" denotes the desired
solution. The LASSO formulation can be employed in the context of classification where
z would be the discrete entries to be classified.

The ¢; norm can be employed to solve linear inverse problem. Using BP formulation as

%= Wargmin |y-WYal3+Alal;. (2.17)

aeRP

The sparse regularization problem (2.15) can be solved by the forward-backward algo-
rithm 1. The proximity operator of £; norm is coefficient-wise soft thresholding

prox, ., (@;) = sign(a;)(la;| =n), . (2.18)

12
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Geometric Intuition of /;-norm Ball

We consider sparse recovery in regularization form (BP), however the regularization
problem is equivalent to the constraint problem for some pu=0

%=WYargmin |y-Yal5 st. lali<p, (2.19)
acRp

which indicates the solution to sparse linear regression depends on the geometry of the
41 ball. Figure 2.1 compares when the ¢, or £, norms are used as the constraints. Since
the ¢, ball is isotropic, the regularization does not favoring any particular direction.
However, the ¢; ball is anisotropic and the singular points of ¢; ball are located on axis-
aligned linear subspaces in RP. if the hyperplane corresponding to the data constraint
is tangent to the ball at any of those points, ¢; ball promotes sparsity.

LR
-~ ~ -
- -~
~ -
- ~
-~ -~
- -~
-~ S
e
~

v

v

(a) lalh (b) llall3

Figure 2.1: Comparison between ¢; ball (on the right) and ¢, ball (on the left). The ¢;
ball has singular points on axes, the red line depicts the data constraint. One can observe
that the ¢; norm unlike the £, norm results in a sparse solution, i.e. the constraint line
intersects the ¢; ball on axis which leads to thresholding some coefficients to zero. While,
the isotropic shape of the £, norm cannot promote sparsity.

2.3 Structured Sparsity Inducing Norms

Relation between data variables in real word problems motivates constraints that raise
structures. For instance, in Figure 2.2 significant data coefficients are organized along
horizontal or vertical lines. As explained, the ¢; norm only looks for sparse solution
and does not encode information about the structures of coefficients. In this section,
we define a set of constraints known as structured sparsity inducing norms where all
sparse patterns do not have equal probability. For example, group sparsity leverages a
group structure between data variables such that all coefficients inside a group are either
accepted or rejected together.

13
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Santour (Dulcimer) Time [s]

Figure 2.2: Sparsity cannot model relations between data coefficients. For instance,
the time-frequency representation of a piece of Santur shows that the coefficients are
structured into groups.

2.3.1 Structured Sparsity Norms with Disjoint Grouping

We observed in Figure 2.2 that one way to incorporate signal patterns in the sparse
model is to group the coefficients such that the coefficients within a group are compared
together. In order to index the coefficients and their corresponding groups, each coeffi-
cient is indexed by a pair of (g, k) where g is the group index and k is the index of the
coefficients in group g.

Definition 2.3.1 (Mixed ¢, 4-norm). Let x€R" be a vector indexed by (g, k) € N2 and
wg be a positive weight of group g, then the mixed ¢ ;-norm is defined as

a. 1

ng,m|”)z) : (2.20)

K

k=1

G
Xl pg = D wg
§=1

The appropriate choice of group weights wy is important when the groups have different
size. The sparse recovery problem in (2.17) is redefined as

%=Wargmin |y-¥al5+Alalpg. (2.21)

aeRP

Group Lasso

A practical choice of (p, q) = (2,1), this choice of grouping promotes variables in the same
group to be jointly selected or set to zero. In the context of least-square regularization,
this choice is known as the group Lasso [155, 172] and in signal processing community
as joint sparsity [51]. The group Lasso has shown to have applications in various fields
such as in Machine learning [117, 172], image/signal processing [62, 88] and to improve

14
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the learned model for a block structured data [133, 146].

The proximity operator of the group Lasso is a group version of the generalized thresh-
olding [89]. The proximity operator of the group Lasso for each coordinate reads

nywg
ProXyi,,, Xg k) :Xg,k(l - ) ) (2.22)
+

lIxgll2

where |[Xgll2 is the £ norm of groups. In form of the generalized thresholding the
shrinkage factor is defined as

_NvWs

Ixgll2

Qi (2.23)

The interpretation of (2.22) is straightforward. If a group ¢, norm is less than the shrink-
age coeflicient (n,/Wy), the whole group is ignored, otherwise the non-zero coefficients
in the group are kept and shrunk.

Elitist Lasso

We change the order of norms in the group Lasso, i.e. (p,q) =(1,2) and the mixed norm is
¢1y1,2. This norm is called the Elitist Lasso [89] in signal processing and Exclusive Lasso
in Machine learning society [176]. The Elitist Lasso promotes sparsity in group members
while imposing equal importance to each group. Recall that the group Lasso looks for
a sparse set of active groups and favors dense coefficients within groups. However, the
Elitist Lasso keeps all groups and shrunk entries within each groups. That is the Elitist
Lasso promotes the most dominant elements of each group and ignores the others, which
explains why it is called the Elitist Lasso.

To compute the proximity operator of Elitist Lasso, we define dg i = [Xg |/ wg,x and sort
them in descending order for each group to obtain a new order ag [89]

agyl Zagyz Z,...Zag’K Vg. (2.24)
We define Ky as

e (2.25)

~ K ~ ~
dngg >n2kil wz‘zl(dg'k_dg>Kg)’
ag,Kg+1 SNYis, w§ (ag,k - ag,Kg)~

Kg corresponds to the largest member of ag and to the last element when all members
are equal. Finally, the proximity operator of ¢, is given

n K,
PIOX; .y, (Kg k) = 5800kg i) | ekl = T = e gkl (2.26)
4 +
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where =, = lefi 1 wé. In generalized thresholding form, the shrinkage factor is

K,
1 +775wg |Xg,k|

Qg i (2.27)

The shrinkage of the Elitist Lasso unlike the group Lasso is not proportional to the energy
of groups, instead it is proportional to the cumulative norm of the greatest member of
groups. In addition, the shrinkage is not fixed for group members but it varies among
the coefficients. In a given group, a coefficient is set to zero if its value is a fraction of
the cumulative norm of the dominant coefficients in that group.

2.3.2 Structured Sparsity Norms with Overlapping Groups

As explained the group Lasso discards all coefficients inside a group. Therefore, the
groups are independent and a coefficient cannot belong to different groups. Though this
structure can be of interest for some applications, there are tasks that require dependency
among the groups (e.g. background subtraction [11, 71], dictionary learning [84], and
wavelet based denoising [127]).

When there is no overlap between groups, discarding a group sets all its element to
zero, therefore the group Lasso selects a small number of dense groups. However, in the
overlapping case, if a group is ignored its entries are set to zero, though they belong to
other groups which are not shrunk to zero. That is in the overlapping case the groups
may not be dense [74]. Figure 2.3 illustrates three overlapping groups. If the penalty
sets the first and third group to zero, what remains is the second group with non-zero
members that do not belong to either the first or third groups (for more information see
[74]). However, there is no closed form solution for the proximity operator of this penalty,
authors in [74] suggested an iterative scheme to solve (2.21) using the overlapping group
Lasso.

Hierarchical Structure

One of the interesting overlapping group structure is the Hierarchical structure. More
precisely, an element of the tree structured vector x may be selected if all its ancestors
in the tree are also selected. Figure 2.4 displays an example of groups for this structured
sparsity model. The hierarchical structure has various applications, for example in
wavelet-based denoising [11, 71, 76], prediction of cognitive tasks using fMRI [75], and
hierarchical dictionary learning [76].
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g1 + --|- o

Gs g3

G1 o ll2 =0 .

G| Ixnllz=0

Figure 2.3: Overlapping group Lasso. Top: Decomposition of x into groups. Bottom:
Shrinking any group to zero removes its member from the result. In this example the
first and third groups are set to zero, the solution contains those members of second
group that neither belong to the first nor to the third group.

Figure 2.4: Hierarchical structured sparsity. Left: example of a tree structured vector
and corresponding groups. Right: example of a sparsity pattern induced by the hierarchi-
cal structured norm. The groups {5,6}, {5}, and {4} is set to zero (colored). The non-zero
entries {1,2,3} are connected. In hierarchical form a node is selected if its ancestors are
also selected and if a entries is discarded all its descended will be ignored.

Latent Group Lasso

The group Lasso with overlapping results in groups which are not dense. For instance,
Figure 2.3 illustrates three overlapping groups where the group Lasso penalty leads to
the shrinkage of the first and third groups. The non-zeros coefficients are not the entire
second group but the members of the second group which do not belong to either the
first or the third group. Obozinski et al. [116] defined the Latent Group Lasso to model
this structure. The latent group Lasso keeps all elements of a group, despite they also
belong to another discarded group. Let define a set of latent variable zg such that zg; =0
for all elements that do not belong to g. The latent group Lasso is represented by the

17



Chapter 2. From Sparsity to Structure Modeling

Zg, + F + Zy3 - %

g3 ||Z93||2 =0

Figure 2.5: Latent group Lasso. Top: Decomposition of x into latent vectors. Bottom:
applying latent group Lasso to the decomposition removes those latent variables that do
not belong to any selected groups. In this example, the zg and zg, are shrunk to zero,
unlike to group Lasso with overlapping, all variables in the second group are kept.

penalty

. Z E(gz :xr
argmin ng”Zg”g s.t. § §

) (2.28)
ZeRN*Y Zgi =0, Vge¥y, idg,

where wyg is a positive weight associated to each group. Intuitively, x is expressed as the
sum of latent variables (see Figure 2.5). Applying group sparsity to the latent vectors
shrinks some zg to zero, since we impose Y. ¢e Zg =X, X; is non-zero if it belongs to a group
that is not shrunk to zero. Therefore, in contrast to the group Lasso with overlapping
that promotes non-dense groups, the latent group Lasso leads to dense latent groups.
The linear inverse problem (2.21) using latent group Lasso solves the following

- . Y geqPg =0,
x=W argmin |y-Yal3+1 ) wglBelz st geare _
aeRP, feRP~Y gey Bgi=0, VgeY, igg.

(2.29)

2.3.3 Three-level Structured Sparsity

We assumed that coefficients are divided into groups, however one can cluster the groups
and add a third layer of grouping. Therefore, a coefficient is indexed by a triplet (c, g, k)
where ¢ represents clusters. The three-level mixed norm has applications, for example,
in audio processing [89] and image denoising [36].

Definition 2.3.2 (Three-level mixed norm: ¢, 4 ,-norm). Let x € R" be a vector indexed

18
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by (¢,g,k) eN® and w be a positive weight, then the mixed ¢, 4 ,-norm is defined as
y (6, 8 p.q

C G K % 2 %
x|l w,p,q,r = (Z ( Z ( Z wc,g,klxc,g,klp) ) ) . (2'30)
c=1\g=1\k=1

We restrict our choice of the three-level mixed norm to #,,; 2. This norm promotes sparse
groups similar to the Elitist Lasso when the third layer is not considered. The last layer
of £, norm favors coefficients that have important contribution in the cluster and discards
other coefficients. To define the proximity operator of the ¢,,512, we assume that the
weight is constant for members of a group, i.e. V we g = wcg. Similar to the £ norm,

we define an intermediate variable

IxIl2
We

deg = (2.31)

oq

’

Then for each ¢, we obtain a new variable Elc,g by sorting d¢g, i.e. V g, dcg+1=<dcg,.
Likewise to (2.25) for ¢;, norm a new indexing G, is obtained. Finally the proximity
operator of the £,,212 norm is given by [89]

G
Ny We,g zgil vV wc,g”xc,g”z

1 +nEwC ”Xc,g”Z

, (2.32)

+

proxpyz,, ,Xeg k) =Xegkf1

where =, = Zg;l We,g.

2.4 Simultaneous Structure Modeling with Sum of Con-
straints
In some applications, the aforementioned structured sparsity norms cannot model mul-

tiple structural information in data. A popular methodology to leverage simultaneous
patterns is to combine multiple structure promoting constraints.

2.4.1 Sum of the Group Lasso and Sparsity

Gramfort et al. [63] defined a linear inverse problem for M/EEG sensors that deploys the
group Lasso to insure a few active sources in a given time window. However, the group
Lasso favors dense groups and does not promote sparse source estimation. In order to
recover a set of groups with sparse coefficients, the authors proposed to simultaneously
impose sparsity and group Lasso on the coefficients as

F® =nlxllz + plixly, (2.33)
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01 6_21>
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Figure 2.6: Comparison between the sparsity pattern promoted by ¢; norm, €31 mixed
norm and ¢»1 + ¢ penalties. ¢1 norm does not promote any structure and the non-zero
coefficients are scattered. ¢2; mixed norm favors for dense group structure. €o; + ¢;
promotes structured group with intra-sparsity.

where the regularization parameters n and g control the density of the groups. Figure 2.6
visualizes the ¢; norm, ¢5; and some of the norms. We observe that ¢, + ¢, promotes
a sparser solution in comparison to the group Lasso.

Let x € R" be double indexed (g,k). The proximity operator of the ¢, +¢; is given
by [63]

Xg k 1- n
PLOXp .1, +ul-I, Kg k) = IXg, k| (gl = 1), \/Zlk< , (Ixg k|—77)2 ' (2.34)
) = » + +

2.5 Non-convex Structured Sparsity

We mainly focused on the convex penalties to impose structures of the underlying signals,
however there are many non-convex approaches introduced to address signals structures.
For instance, Baraniuk et al. [11] proposed a framework to model the inter-dependencies
in data coefficients. This framework models signal structures using a union-of-subspaces
to decrease the degree of freedom of a signal by permitting specific supports of coeffi-
cients.

An S-sparse signal x € R" lives in KgcR", a union of () S-dimensional subspaces. This
structured sparsity scheme favors certain configuration of the coefficients, i.e. certain
subspaces in Kg are allowed. To formally state the structure model, let A represents a
possible configuration of entries of x and A€ represents its complement.
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Definition 2.5.1 (see [11]). A structured sparsity model Ag is defined as the union of
As canonical subspaces of S-dimension

As
As=JixIa; e R%,Af =0}, (2.35)
i=1

where {A1,...,Ay,} is the set of all possible indices of x, with |A.|=S.

Signals from Ag are called S-model sparse. To recover the underlying signal from the
linear inverse problem (2.5), the model based scheme modified CoSaMP algorithm [114]
merely by replacing the best S-term sparse approximation step by the best S-structured
sparse approximation. It is clear that Ag c K, therefore the model based algorithm at
each step requires to search over As subspaces of Ag rather than Kj.

2.6 Intrinsic Low-dimensionality

The Big Bang-like explosion of information about everything from the World Wide Web
to science and engineering is being propelled by massive amounts of high-dimensional
data continuously produced and stored at decreasing cost. The quickening pace of data
collection presents a challenge as well as an opportunity, as a result scientific advances
are becoming more and more data-driven.

To address the curse of dimensionality, we rely on the fact that though such data lie
on high-dimensional space, their intrinsic dimensionality is low, i.e. they lie on some
low-dimensional subspace [44] or some low-dimensional manifolds [150].

One can stack the data points into columns of a matrix. Since the high dimensional
data is supposed to have intrinsic low-dimensionality, the underlying matrix would be
a (approximately) low-rank matrix. Low-rank matrices has been utilized in many appli-
cations, for instance, low-rank matrices play a central role in large-scale data analysis
and dimensionality reduction, including system identification [109], collaborative filter-
ing [144] and Principal Component Analysis (PCA) [80].

2.6.1 Matrix Completion

In many practical problems, one would like to recover the data matrix from a set of know
entries. For example, in recommender systems such as Netflix, users provide ratings on
a subset of entries in a database, and the vendors would like to know if based on the
available ratings they can estimate ratings of missing entries.

However, in many problems, we know the data matrix is structured such that it has
intrinsic low-dimensionality, i.e. it is low-rank or approximately low-rank. Let assume
the data matrix X is a square n x n matrix of rank r. The matrix X has n? entries but it
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has 2n—r)r degree of freedom!. When the rank is small the degree of freedom is smaller
than the number of entries. Specially, for high dimensional data, the information (degree
of freedom) is much less than the data dimension. Then the problem is to recover a low-
rank matrix from a small set of observations. In signal and image processing the low-rank
structure is used to fill in the missing entries of a large low-rank matrix, this problem
is known as matrix completion [25, 85, 130]. Filling the Netflix rating database [25],
or denoising the corrupted entries of a video sequence [77] are examples of the matrix

completion.

Clearly, one cannot recover all forms of low-rank matrices. For instance, if the underlying
matrix has one non-zero entries. Clearly, one cannot guess the entries of the matrix till
almost all elements of the matrix are observed. In addition, it is impossible to recover a
low-rank matrix, even a rank—1 matrix, from a sampling set which avoids any column
or row of the matrix. For instance, if the sampling set avoids any entry of the first row,

no method can estimate the unobserved row.

Let assume the set Q corresponds to the location of observed entries ((i,j) € Q if X; j
is observed), the projection operator Pq is the orthogonal projection onto the matrices
supported on Q

X;i, (i,))eQ,
P =40 Y (2.36)
0, (i,)) ¢ Q.
The observed entries of X is defined as
Y=P0X). (2.37)

If the number of measurements is sufficiently large, and the observed entries are uni-
formly distributed, one might hope that there is only one low-rank matrix related to
these entries. The intrinsic low-dimensionality assumption on the data can recover the
underlying low-rank matrix from the observed entries through

X=argmin rank(X) s.t. Y=PoX). (2.38)

Xe[RnXm
Similar to ¢p minimization, the rank minimization problem is an NP-hard [47]. In prac-
tice, there are two approximation techniques to address this problem, greedy algorithms
such as ADMiRA [94] or convex relaxation using the tightest convex envelope for rank

1The degree of freedom of a nx n matrix of rank r interprets as follows: one selects the first r columns
of the matrix with n degree of freedom. Then the remaining columns is the linear combination of the
first r columns which gives r degree of freedom for the remaining columns, namely the r coefficients of
the linear combination. Thus the degree of freedom of a rank r matrix is

rn+(n—-r)r=2n-r)r
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constrain [25, 28]. Let C be a given set, the convex envelope of a function f:C —R is
defined as the largest convex function b such that b(x) < f(x) Vx e C. That is among all
convex functions that lower bound f, b is the best approximation. Therefore, b can be
used to approximate f for a convex minimization [131].

Definition 2.6.1 (see [47]). For a given matrix X e R™"™, |X|| <1, we have rank(X) =
[IX]l«, the nuclear norm is the tightest convex lower bound of the matrix rank.

Finally, we can relax the matrix rank minimization by the nuclear norm minimization.
Therefore, the low-dimensional data recovery can be relaxed to nuclear norm minimiza-
tion [25, 131] as follows

X=argmin [X|l. s.t. Y=PqX). (2.39)
XeRnXm
To calculate the proximity operator of the nuclear norm of matrix X the Singular Value
Decomposition (SVD) is computed as X = UZV'. The proximity operator of nuclear
norm is defined as

prox,;.X) =U(z-7),V'. (2.40)

2.6.2 Low-rank Matrix Recovery

We extend the linear inverse problem (2.5) to the case where underlying data lie on
some low-dimensional subspace. Let assume that the original data points are stacked
into columns of the matrix X € R”*¥ and the observed m-dimensional vector y € R is
obtained through the linear operator A : R"™* — R™.  We can exploit the intrinsic low-
dimensionality assumption on data to recover it from the linear measurements. Thus,
the affine rank minimization reads

Xzargmin rank(X) s.t. ly—AX2<e, (2.41)
Xeﬂ&nxm

where € is a bound on the measurement noise. Similar to matrix completion problem,
we can relax the affine rank minimization to nuclear norm minimization as follows

X=argmin [X|l. st. [y-AXl2<e. (2.42)
XERnXm

2.6.3 Robust Principal Component Analysis

PCA is one of the mostly used statistical tool for dimensionality reduction. However,
PCA performance is limited when the observation is corrupted. In many applications
such as image/video processing and web data analysis, it is impossible to have per-
fect noiseless data. However, the corrupted data values are uncorrelated to the low-
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dimensionality of data. Candes et al. [29] proposed Robust PCA to recover a low-rank
matrix Le R"¥ from noisy observation X € R”** which reads

X=L+S. (2.43)

The matrix S € R?*¥ separates the noisy observation from the low-rank matrix which can
have arbitrarily large entries but it is assumed to be sparse with unknown support. To
recover the low-rank matrix and the sparse corrupted values from the noisy observation,
the Robust PCA solves

argmin |L||l. +AlSll; s.t. L+S=X, (2.44)
L SeRnxk

the parameter A controls the balance between between the two terms.

We define Ry £ R™** x R"*¥ by the Cartesian product of R”** and a point in Ry is defined
as X2 (X;,Xz) € Ry. The inner product in Ry is defined as

X,Y) £ (X1, Y1) + (Xp,Yo)
= trace(XlTYl) + trace(XzTYz). (2.45)

The norm on Ry induced by inner product is
IXllg, = X, X) = IX1llF + X2/, (2.46)

where |-||r is the matrix Frobenius norm.

Proposition 2.6.1. For any point X=(X1,X2) € Ry and a function fX) = fiXy) + LX),
the proximity operator of f is defined as

prozp(X) = (progv,]f1 X1), proz,y, (Xg)). (2.47)

Proof. Since X is defined in Ry, then (4.17) yields

, 1
prox, »(X) = argmin f(X) + 5 XY,
YeRy

. 1 2
= argmin 7)f1(X1) + pf2X2) + - IX - Ylip,
YeRy 2

. 1 2 1 2
=argmin nfi(Xy) + - IX; = Y15 + pf2X2) + - 1X2 = Y21
YeR, 2 2

= (proxnf1 X1, Prox,, (Xg)).
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If we define M = (L, S), the proximity operator for the sparse and low-rank decomposition
is calculated by

ProX; g4y, M) = (proxy M), prox,, (). (2.48)

It is obvious that not any arbitrary matrix can be composed into the low-rank and sparse
components. For instance, if the data matrix X has one non-zero value, then since X is
both low-rank and sparse, one cannot differentiate between the low-rank and the sparse
components. Therefore, the low-rank component should not be sparse.

Another important condition arises when the sparse component is low-rank. For example,
this can occurs when all non-zero values of the sparse component lie on a few columns.
Then, it is clear that one cannot differentiate the sparse component from the low-rank
component. To avoid such situations, one can assume that the sparsity pattern of the
sparse component is selected from a uniform distribution.

2.6.4 Matrix Completion from Corrupted Data

This problem seeks for a low-rank matrix L from a few observations where some of
them are corrupted. Similar to the matrix completion, let the set Q represents the
observed entries and Pq is the orthogonal projection onto Q. The matrix completion
from corrupted data reads

argmin |L|l. +AlISl; s.t. PqoL+S)=Y. (2.49)
L,SeRnxk

In words, PCA seeks among all possible solution the one that matches the observed
corrupted data and also minimizes the weighted sum of the nuclear norm and ¢, norm.

2.7 Conclusion

In this chapter, we have explored several approaches for structural modeling based on
convex optimization where prior knowledge allows to favor certain patterns. Traditional
sparse constraint can easily be extended to these priors to express more complex struc-
tures which makes these constraints a powerful tool to promote prior knowledge on
high-dimensional data. In the following chapters, we will present several applications
where we are going to benefit from these tools to improve the performance of our algo-
rithms.
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Chapter 3

Computational Light Field
Imaging

Traditional cameras are designed to model what a single human eye can observe: a
two-dimensional colored image. The advent of image processing and digital camera tech-
nology has provided the capacity to exceed the limitation of analogue photography and
introduce computational photography. Omne of the main goals of computational pho-
tography is to design camera systems which record visual information that cannot be
acquired by traditional cameras. The computational camera would capture the visual in-
formation that allows new imaging modalities such as motion deblurring, hyper-spectral
imaging and light field imaging. In this chapter, we provided a review on research that
has been conducted on light field imaging using different computational techniques. This
review will be served in the following chapter to introduce a new light field acquisition
system which addresses the limitation of available light field camera designs.

3.1 What is a Computational Camera?

Traditional cameras consist of a sensor and a standard lens (see Figure 3.1(a)) which
projects the rays passing through the lens onto the sensor. In other words, traditional
cameras sample the complete set of rays emitted from a scene.

A computational camera is inspired by the diversity of perceptual system and improved
by the advances in camera technology, image processing and optical fabrication. A
computational camera is the combination of modified optics and a computation unit to
acquire highly detailed visual information of a scene [174]. Figure 3.1(b) demonstrate
a schematic of a computational camera where, in contrast to traditional cameras, the
scene rays are coded and deviated by the optics to a different pixel location.
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Sensor
Sensor
q Modified
Lens I Optics \
Image N\ mage  Computation
(a) Traditional Camera (b) Computational Camera

Figure 3.1: Comparison of traditional cameras and computational cameras. (a) Tra-
ditional cameras linearly project those rays passing through the lens to produce image.
(b) Computational cameras capture coded rays through modified optics and the compu-
tation unit decodes the captured rays to produce the final image [174].

Images acquired by computational cameras are optically coded and their raw format
may not be even visually informative. However, the information can be retrieved by
using computation. The combination of computation and the specific optical design
leads to a special type of imaging systems that can potentially enhance spatial, temporal,
spectral and directional resolution of the imaging system. The enhancement achieved by
the computerized acquisition promotes diverse applications in medical imaging, remote
sensing, surveillance and automated fabrication.

3.2 Light Field Fundamentals

light fields describe the amount of light traveling in every direction through every point
in space, time and wavelengths'. Light field was introduced to computer graphics in
the 1990s [2, 59, 97]. A complete light field is described by 7-dimensional plenoptic
function L(x,y,z,¢,0,1,t), where (x,y,z) is spatial coordinates, (¢,60) is the direction of
the ray, A is light wavelength, and ¢ is time. For given time and wavelength, the light
field is limited to 5-dimensional space. However, the 5-dimensional representation can
further be reduced to 4-dimensional in free space (regions free of occluders) because the
radiance? does not change along its propagation line [59, 97].

The 4-dimensional light field can be represented in several ways, as demonstrated in
Figure 3.2. Though all representation are essentially the same, among all possible rep-
resentation we use position (u,v) and direction (s,t) parameterization (Figure 3.2(d)).
Since in this parameterization the light field transform is simple linear operations.

IWe describe light in ray optics and the wave nature of light, i.e. polarization, diffraction and
interference are ignored.
2 Radiance is the measure of the amount of radiation per surface per steradian (steradian is the SI

unit of solid angle). The SI unit of radiance is
sr-m?

28



3.2. Light Field Fundamentals

L(ela ¢17927 ¢2)

L(z,y,0,9)

Figure 3.2: Light field representation. (a) Two-spherical point parameterization (b)
A point on a surface and its direction (c) Two-plane parameterization( the light slab
representation). (d) A point on a plane and tangent direction.

In Figure 3.3, we represent 2-dimensional light field using the position and direction
parameterization. We observe that a ray passing through a scene point will form a line
in the position and direction space. The slope of the line is the inverse of the distance
of the point to the reference plane.

3.2.1 Basics in Light Field Operations

A camera consists of a number of optical elements. Mathematically speaking, a camera
projects high-dimensional light fields onto a 2-dimensional image. The input light passes
a number of optical elements to reach the camera sensor. Most optical devices apply
a linear operation on light fields. Therefore, a camera can be defined as a set of linear
transforms in the light field space. In this section, we provide an insight into various
optical devices usually employed for design of a computational camera [53, 174].

1) Space: when the light field propagates from one plane to another parallel plane,
it will shear in dimension. The shear slope is equal to the inverse distance between
the two parallel planes.

2) Lens: focuses the rays and shears the input light fields. The amount of shear is
of slope 1/ f, where f is the focal length of the lens.
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A 4

Reference Plane

Figure 3.3: Light field representation in s-u plane. All the rays passing through a scene
point becomes a line in s-u space with slope equal to the inverse distance of the point
from the reference plane.

3) Prism: deviates the incoming rays by angle 8 = a-(n—1), where a is the angle of
the wedge of prism and n is the refractive index of the glass. In the s—u space a
prism translates light fields along the s dimension.

4) Diffuser: scatters light rays. Diffusers of various scattering patterns can be pro-
duced by changing their holographic profile. In s— u space, a diffuser acts as a
convolution in the s dimension and the convolution kernel depends on the scatter-
ing pattern of the diffuser [175].

5) Intensity Modulator: attenuates the intensity of light rays. Intensity modu-
lators can be made from many materials such as photomasks [95], liquid crystal
display (LCD) [98], liquid crystal on silicon (LCOS) [113] and digital micromirror
devices (DMD) [43]. The color filter is a type of intensity modulator which atten-
uates wavelengths. An intensity modulator in s— u space performs dot product in
the u dimension.

3.3 Coding Strategies for Computational Light Field Cam-
eras

The design space of computational cameras is large and their design criterion includes
performance and complexity of cameras. There is no unique design criterion for compu-
tational cameras. The optical design of computational cameras is classified into different
approaches. We are going to explain each design strategy for computational light field
cameras.
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3.3.1 Sensor Side Coding

In sensor side coding, an optical element is placed between the sensor and lens, therefore
the sensor observes modulated light fields in both dimensions. One advantageous of the
sensor side coding is that the acquisition system is compact and everything is placed
inside the camera.

Object

Pinhole Array

b f
Film

Figure 3.4: The Ives’s light field camera. 1-dimensional representation of the Ives’s light
field camera [73]. This camera consists of an array of pinholes in front of a conventional
camera to capture different light rays.

The first light field camera known as Process of Making Parallax Stereograms was pro-
posed by Ives [73] in 1903. This light field camera consists of an array of pinhole cameras
with the same focal distance which is placed at the focal plane of a conventional camera.
Figure 3.4 represents the schematic of the Ives’s light field camera. In the Ives’ light
field camera, the light rays are project through the pinhole array to different position
on the film, therefore the pinhole array is an ideal ray separator. Let L(x,6) denotes
a 2-dimensional light field represented by the two-plane parametrization. The aperture
of a camera allows only those rays that pass through the aperture to enter the camera.
The light field after the aperture is given by

La(x,0) = L(x,0)A(x,0), (3.1)

where A(x,0) is the optical transfer function of the aperture. For the Ives’ camera
the aperture is an array of pinholes, therefore A(x,0) =} 52__ 6(x—nb) where b is the

distance between pinholes. The light field sampled after the pinhole array reads

La(x,0)=L(x,0) ) &(x—nb). (3.2)

n=-00

We assume that the light field is band limited, i.e. L(x,0) =0 V|w,| = Wy, lwgl = wg,. The
Fourier transform of the light field after passing through the pinhole array reads (more
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detail in [55])

N X 27
Lalwy,wg)=— Y Llwx+n—,wp). (3.3)
n=—o00

b

Sl

Therefore the light field after the pinhole array is the replications of the original light
2
field shifted by n% These rays arrive at the film after traveling the focal length

N X . 21
La(wy,wg) = Z Lwyx+n—,wg+ fwy). (3.4)
n=-—oo

b

Sl

Therefore the light field is sheared along angular frequency. This process is similar to the
principle of modulation in telecommunications where a base band signal is modulated to
transmit over a communication channel. The receiver demodulate the signals to recover
the base band signal. In essence, the Ives’ camera follows the same principle. Since the
film only response to zero angular frequency, it captures only the thin slice along the
intersection of the light field spectrum with the w, axis. Therefore, the process of the
demodulation is to rearrange the frequency response of the sensor to reconstruct the
original light field. Finally, the recovered 1-dimensional Fourier coefficients of the sensor
is reshaped to the 2-dimensional Fourier coefficients and an inverse Fourier transform
is applied to recover the light fields. The light field acquisition by the Ive’s light field
camera is shown in Figure 3.5.

Lippmann introduced a light field camera by replacing the pinhole array of the Ive’s
camera with a lens array [99]. In contrast to a pinhole a lens captures more light,
therefore the Lippmann camera, called Integral Camera, provides higher quality images.
Figure 3.6 show the diagram of an integral camera. In this diagram, L; is the distance
between the sensor and the microlens array and L, is the distance between the microlens
array and the main lens. The light rays incident on the image sensor based on their
incident angle. The position, size and focal length of the microlens array controls the
angular and spatial resolution of acquired light fields.

Ng et al. [115] introduced a specific design for Lippmann camera known as Lytro (see
Figure 3.7) where they chose the distance between the microlens array and the sensor
(L1) to be equal to the microlens focal length f. To minimize the pixel waste the f-
number of the main lens is equal to the f-number of the microlenses. In Lytro, there
is a trade-off between the angular and spatial resolution and the spatial resolution is
sacrificed for angular resolution.

The Raytrix camera [1] has successfully implemented a plenoptic camera that achieves
higher resolution than Lytro. The microlens array has hexagonal pattern to increase the
density of microlenses and decrease the pixel waste. Furthermore they use microlenses
of three distinct focal lengths to improve the spatial sampling of the scene, therefore the
Raytrix camera achieves higher spatial resolution comparing to Lytro.
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Figure 3.5: Spectral Reconstruction in Ives’ light field camera. Top right: bandlimited
light field of the scene. Top left: spectral modulation of the light field after the pinhole
array. Bottom right: light field spectal at the film, the distance f between the pinhole
array and the film shears the spectral by fw,. Bottom left: spectral reconstruction of
the light field from the film observation. The reconstruction consists of the re-assembling
the light field spectrum and implying inverse Fourier transform to recover the original
light field.

Microlens Array Main Lens

0
0

0

Ly Lo

Film

Figure 3.6: Integral Camera. The Lippmann camera consists of a main lens and an
array of microlenses in front of the sensor to project different images corresponding to
different angular views on the film.

Another extension of the Ives’ camera is to replace the pinhole array by a mask in front
of the sensor. Then light fields are modulated by the mask and sheared to arrive at
the sensor due to the distance between the mask and sensor. Veeraraghavan et al. [158]
proposed to use a mask which is sum of several cosine functions. Similar to the analysis
of the Ives’ camera, the mask modulates light fields into several identical copies of light
fields in front of the sensor, i.e. the mask behaves similar to the pinhole array of the
Ives’ camera.
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Raytrix leytro

Figure 3.7: Comercial light field cameras. Left: Raytrix camera achieves higher spa-
tial resolution by using three layers of microlenses. Right: Lytro sacrifises the spatial
resolution to increase the angular resolution.

Marwah et al. [107] proposed a light field camera design similar to Lippmann’s camera
where they replace the microlens array with a mask. The mask weights each light field
view and the weighted views are averaged by the camera sensor. The light field views
are recovered from the coded sensor image using a light field dictionary learned on a
set of known light fields. Marwah’s light field camera is the first hand-held light field
camera that employs the full sensor resolution and requires a single shot to capture a
light field of 5x5 views. However, their model is limited to small baseline and number of
views since it is practically impossible to learn a light field dictionary when the baseline
is large or light fields have many views.

Sensor
Mask

Figure 3.8: Light field camera using single coded projection. Marwah et al. [107] in-
troduced a light field camera that captures light field from single coded projection of
the scene. Unlike the Lippmann’s camera, this light field camera does not trade spatial
resolution for angular resolution

3.3.2 Coded Aperture

An optical element is placed close to pupil plane of a camera to code its aperture.
Therefore the coded aperture modulates the Point Spread Function (PSF) of imaging
systems. The PSF of pupil coding scheme using Fourier optics (incoherent light) is
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described by Fresnel transform [58, 174] as follows
k(x) = |F (W (x0)Q(x)I, (3.5)

where & (-) is the Fourier transform, W(:) is the aperture coding mask, Q(:) is a focus
dependent term, and k(x) is the PSF function. The captured image (blurred image)
is the convolution between the sharp image and the PSF. In coded aperture, since the
PSF is known one can use demodulating techniques such as sparse assumption on the
gradient of the sharp image to recover the latent sharp image [96].

Traditional cameras project scenes onto a 2—dimensional sensor that integrates angular
information. However, if one could modify the aperture such that it blocks all rays
except those from a specific region of the aperture, then the angular information is
preserved. Liang et al. [98] proposed a light field camera that blocks undesired light
rays and captures rays from specific regions of the aperture at each time (see Figure 3.9).
Therefore, unlike the light field camera based on Lippmann model, this camera does not
trade spatial resolution for angular resolution. However, the scene needs to be static
while the camera captures rays passing through the different areas of the aperture. To
acquire a light field with n views, the camera requires n exposures using a programmable
aperture. This camera multiplexes light fields at each exposure to increase the light
exposure and decrease the acquisition time, then the light field views are recovered from
the linearly multiplexed light rays.

Multiplexing Pattern

Figure 3.9: Coded aperture light field acquisition [98]. Using a programable mask (LCD
or a scroll of paper patterns) behind the aperture to block specific region of the aperture
to avoid angular integration by the sensor.

3.3.3 Object Side Coding

In the object side coding approach, some optical elements are attached to a traditional
camera. Since the optical surface is not homogeneous, the coding strategy results in
spatial modulation of light fields. The combination of traditional cameras and object
side coding approach provides extra visual information of the scene using multiple ob-
servations.

Light field cameras based on the integral camera require the arrangement of microlenses
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in front of cameras sensor. Georgeiv et al. [54] introduced a light field camera using an
array of prisms in front of camera main lens as shown in Figure 3.10. Each prism has
different angle of deviation, therefore the prisms divide FOV into multiple regions and
the camera sensor observes an array of virtual images each corresponding to different
view points projected by the prisms. This light field camera similar to Lippmann’s
camera scarifies the spatial resolution to increase the angular resolution. We should
note that in practice a negative lens in front of each prism is used to increase the FOV.

- W oy N

L AL AT

Figure 3.10: Light field camera using an array of prisms and negative lenses [54]. The
prisms have different deviation angle to project an array of virtual images corresponding
to different angular views on the sensor.

3.3.4 Camera Arrays

o Object

1r

ar

A
I
|
[
!

Camera Array

ar

1
[

Figure 3.11: Camera array. Camera array with overlapping FOV for light field acquisi-
tion [167].

A single camera is used to capture the input light field from a fixed point-of-view. There-
fore, it is intuitive to capture the light fields by moving a single camera through a frozen
scene. However, the advent of inexpensive image sensors has allowed to propose light
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field acquisition systems that use a number of low-cost small cameras to capture more
visual information [143, 167].

Wilburn et al. [167] have design a high performance camera array where all cameras have
overlapping Field-of-View (FOV) and each of them capture an slice of 4-dimensional light
fields (Figure 3.11). Moreover, the camera array is used for High Dynamic Range (HDR)
panoramic video, synthetic aperture photography, high-frame-rate video capturing. In
contrast to previous hand-held light field cameras, the camera array provides higher
FOV, however due to the cost and size of a camera array, it impossible to use it for
many practical applications.

3.4 Discussion

We have explained different approaches for light field acquisition. These approaches are
either sacrifice the spatial resolution to acquire angular resolution or they assume the
scene is static for sequential acquisition. Marwah’s light field camera [107] was the first
camera that does not trade spatial resolution for angular resolution. However, the model
is limited to small baselines and require a heavy dictionary learning stage.

There are strong correlations between light fields dimensions, for example, the correla-
tions in angular and time have not been deployed by any of the discussed acquisition
schemes. Therefore, instead of learning a dictionary for light fields one can use these
correlations to develop efficient computational light field acquisition systems.
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Tensor Low-rank and Sparse
Light Field Photography

4.1 Introduction

The plenoptic function [2] was introduced as a ray-based model for light that encom-
passes all visual information: spatial, angular, and temporal light variation as well as the
color spectrum. So what makes it hard to design a camera that captures the plenoptic
function in a single image? The shear amount of required plenoptic samples makes this
a “big data” problem with extreme challenges for camera optics, sensor electronics, and
computation.

However, high-dimensional visual signals are highly redundant. Compression algorithms,
for instance, exploit this fact to minimize the memory footprint of images and videos.
Moreover, recent proposals have shown that images [42], videos [68], and light fields [107]
can be recovered from only a few measurements using sparsity-constrained optimization.
In this paper, we present a new mathematical framework for efficient high-dimensional
visual signal processing, acquisition, and storage. We demonstrate that there is a large
amount of correlation between the dimensions of time-varying light fields, which can be
exploited by a low-rank prior applied to the five-dimensional tensor space containing
spatial, temporal, and angular light variation. This prior is a good model for exploit-
ing view-independent and slow-moving scene parts whereas an additional sparse term
captures view-dependent effects and fast motions.

We also propose a light field camera design that is well-suited for capturing coded pro-
jections of the plenoptic function that can be reconstructed by the proposed algorithms.
In contrast to existing, dictionary-based light field capture systems [107], our tensor
low-rank and sparse light field recovery does not require a learning phase, which is com-
putationally expensive (tens to hundreds of hours). Further, the LRSP prior is flexible
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Figure 4.1: Light fields exhibit a tremendous amount of correlation within their spatial,
angular, and temporal dimensionality. We propose a new tensor low-rank and sparse
(LRSP) prior to model these correlations. The proposed LRSP prior is especially useful
for compressive light field photography, where a high-dimensional signal is recovered
from only a few lower-dimensional measurements. In addition, we propose a new camera
setup that is well suited for compressive light field photography. Together, the optical
and mathematical methods are much more flexible than previous techniques and allow
for light fields to be recovered from a single or a few shots.

enough to be applied to a wide range of scenes and optical systems. In particular, we
make the following contributions:

4.2 Related Work

Compressive Computational Photography Compressive sensing has been em-
ployed in image and video acquisition [10, 106, 135, 136, 159, 161], but these approaches
are often depth-dependent. The compressive rendering scheme [138, 139] exploits spar-
sity of the entire light field in Fourier transform to address an inpainting problem. Com-
pressive sensing for camera arrays has been addressed, but either requires the knowledge
of disparity [69] or the method relies on image alignment [120]. Measurements taken
with most light field cameras contain aliasing; a variety of approaches has recently been
proposed to exploit this optical effect using advanced reconstruction algorithms to im-
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prove image resolution [16, 21, 103, 108, 123, 140, 149, 160, 163]. All of these approaches
use some type of super-resolution algorithm that uses linear optimization to reconstruct
a higher-resolution light field and cannot be used for compressive light field acquisition.
Nonlinear, sparsity-constrained approaches have also been proposed [4, 6, 171]. Most
recently, these have been shown to recover high-resolution light fields from a single coded
image [107]. This method however is based on a computationally expensive 4D light field
dictionary learning stage which is extremely slow and memory intensive; extending this
dictionary learning to 5D space-time-angle light field patches is currently intractable.

We introduce tensor low-rank and sparse light fields as a computational photography ar-
chitecture that generalizes compressive light field photography. The proposed techniques
are more flexible than previously-proposed dictionaries [107], we show that temporal
variation and other plenoptic dimensions [2] can easily be integrated into the proposed
framework, and we demonstrate our techniques with a prototype compressive light field
video camera.

Multilinear Methods in Computer Graphics The global structure of multilinear
datasets is exploited either by modeling it in matrix format, for instance in image align-
ment [122], video denoising and background subtraction [29, 78] or using tensor algebra
in multilinear image-based rendering [157], BRDF [93] representation, multispectral re-
flectance field acquisition with a light stage [3] and subsurface scattering [121] acquisition
as well as 3D display [166]. The method most closely related to ours is [3], where low-
rank and sparse priors are employed for efficient capture and recovery of lighting- and
wavelength-dependent material reflectance properties with a multi-spectral light stage.
While similar in spirit, we address a completely different application—Ilight field video
capture—which uses a vastly different optical setup and we also employ a different for-
mulation for low-rank and sparse tensor factorization. The proposed methods facilitate
novel applications in computational optics and photography.

4.3 Background on Tensor Algebra

Tensors naturally arise in many multi-dimensional problems where data are indexed by
several variables, for example in a hyperspectral cube is index by three variables; a
video sequence is indexed by two spatial variables and one temporal variables; an in-
depth survey on tensor related applications can be found in [87]. This section briefly
reviews some concepts of tensor algebra more details are included in Appendix A. A
tensor is a multi-dimensional array of data which is the generalization of matrices to
higher dimensions. The number of dimensions of tensors is called mode or order. A
mode N tensor is denoted as & € R™M* ™ A vector is a mode-1 tensor and a matrix
is a mode 2 tensor.
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4.3.1 Tensor Low-rank Approximation

In literature different notion of rank for tensors have been introduced. One anal-
ogous of tensor decomposition to matrix decomposition is CANDECOMP (CP) [34,
87]decomposition which factorizes the tensor into sum of rank one tensors and the rank
is equal to the minimum required rank one tensors to form the factorization. For a
mode-N tensor & € R™* > the CP decomposition is defined as

R

%:Zugl)ou?)o...ougm, (4.1)
i=1

o represents the vector outer product. The CP decomposition is NP-hard, therefore the

nuclear norm of a tensor is not tractable. However for a fixed rank, we can factorize a

tensor into CP components by Alternating Least Square (ALS) [87].

The other tensor decomposition is called Tucker decomposition [87] which factorizes a
tensor into a core tensor € and a set of factor matrices U

%:nglu(l) X2U(2) Xg---XNU(N), (42)

Here, x; is tensor-matriz product. The Tucker decomposition is also known as higher-
order SVD [92] (HOSVD). The HOSVD is a generalization of matrix SVD to higher
order tensor decomposition. The HOSVD decomposition applies matrix SVD to tensor
unfolding along each mode. The HOSVD-rank of a mode-N tensor & is a N-dimensional
vector whose i-th entry is the matrix rank of mode-i unfolding of the tensor

rank(N) = (rank(X(l),X(g),...,X(N)). (43)

The mode-i tensor unfolding metricize a tensor into a matrix along mode-i. Unlike CP
decomposition, the Tucker decomposition is easy to calculate but one needs to define a
rank for each tensor mode. However, the CP decomposition using ALS approximates
the tensor with a certain number of rank one tensors independent of the structures of
the different tensor unfoldings.

The definition of n-rank motivates a convex model for low-rank tensor approximation
based on the minimization of the sum of nuclear norms obtained from tensor unfoldings
[52, 102]. However, Mu et al. [112] show that the sum of nuclear norms for tensor
unfolding does not represent the tensor structure and this model is similar to nuclear
norm minimization of the matrix shaped from the tensor unfolded along just one mode.

Another convex surrogate for tensor approximation is the square norm, which is matrix
reshaping of a tensor unfolding [112]. However, unlike nuclear norm which is the tightest
convex envelop to matrix rank [131], the square norm for tensor rank is not the tightest
convex envelop to tensor rank.
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The square norm reshapes a tensor into a matrix such that the produced matrix is
more balanced (square) and also preserved the low-rank property of the tensor. Let
X e RN and j e [N] £11,2,...N. Then the matrix Z1j is defined as

j N
Zij = reshape(%(l), H n;, H ﬂi)- (4.4)

=1 i=j+!

Z1j) is generalization of the tensor unfolding. When j =1, %};; is nothing but Z.
However, for j > 1, %)) becomes a more balanced matrix. Therefore, %;} is more
balanced matrix and also preserves the low-rank property of the tensor [112]. We assume
Z has the same length along all modes, and we define X = ‘%[L%J] then | X102 1%«
is called the square norm of tensor & .

4.3.2 Low-rank Tensor Recovery

Similar to matrix completion explained in Section 2.6.2, we can define tensor recovery
from a set of linear measurements. Given a linear map A : R™* 7™ — R™ and the
measurement vector b € R™, we look for a low-rank tensor & € R™>* X" — R™ that
fulfills the linear measurements b =A(%) + n. As explained, the notion of tensor rank is
not unique.

The definition of ranky) motivates to recover a low-rank tensor using tensor ranky, as
follows

argmin rankX;) s.t. [b-A&)l2<e, (4.5)
xX
where rank(X(;)) is the rank of different tensor unfoldings. Similar to low-rank matrix

recovery, the matrix rank is replaced by nuclear norm as the tightest convex envelop of
rank. Therefore, Eq.(4.5) is redefined as

N
argmin Y Xyl s.t. [b—A@)l: <e. (4.6)
x i=1

The low-rank tensor recovery from sum of the nuclear norms of tensor unfoldings has
widely used in [3, 52, 92, 102].

Oymak et al. [119] has shown that thought it seems trivial to recover the simultaneous
structures of an object by combining the convex relaxations of each structure, the re-
covery is not more successful than the best single regularizer. Mu et al. [112] used this
proof to show that the sum of nuclear norms for tensor unfolding does not represent
the tensor structure and the number of required measurements to recover the low-rank
tensor is the same as number of measurements required to the tensor unfolded along

43



Chapter 4. Tensor Low-rank and Sparse Light Field Photography

just one mode.

One could use the square norm of the tensor and recover the low-rank tensor from the
linear measurements as follows

argmin |Xg s.t. [b-A&)l.:<e. (4.7)
X

4.4 Motivation

Our choice of a low-rank prior for light field, or the plenoptic function in general, is
motivated by a simple insight. Light fields have smooth variation between views and
frames. Thus static light fields are highly redundant in angular dimension in addition
to the spatial redundancy of individual views. To further clarify the smooth behavior
of light field in angular direction, we plot a 2D light field in Figure 4.2 which shows the
direct link between parallax and rank. We observe that when the objects are in the focal
plane (disparity equal to zero), there is no parallax so the structures in the light field
are constant along the angular dimension, i.e. the rank of the 2D light field matrix is
equal to 1. For objects out of focal plane, the amount of disparity is increased, however
the variation between views is still smooth. Thus light fields are highly redundant along
the angular direction. This means light field angular rank is small in comparison to the
maximum possible rank: the number of views.

When objects move in time, the captured light field frames changes smoothly. Thus
similar to the angular direction, the light fields represent highly correlated structures in
time. Intuitively, the intrinsic dimensionality of light fields is significantly lower that the
size of light fields and the actual information is contained within some lower-dimensional
manifold. We exploit the redundancy in spatial, angular and motion of 5D light fields
using a low-rank prior. The low-rank structure of static light fields is also discussed
in [65, 108].

Similar to Heber et al. [65], one way to exploit the light field low-rank structure is to
reshape views into column vectors and concatenate them in the columns of a matrix.
However, this model is sub-optimal, since the low-rank structure on matrix assembled
from the light field views promotes a global pattern and cannot consider different degree
of freedom of individual dimensions of the light field. We preserve the original structure
of light fields by representing 5D light fields with 5D tensors which independently models
the correlated structure of each dimension.

In practice, we reduce the computational cost of our light field structure modeling scheme
by working in parallel on independent 5D light field patches. The size of light field
patch depends on the amount of parallax and motion in the scene. For a fixed patch
size, increase in the amount of parallax and motion decrease the similarity between
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Optical Setup Light Field

0 5 10 15 20

Figure 4.2: The amount of parallax in a light field (top) is directly related to its rank
(bottom). The same is true for motion in the temporal domain (not shown); the proposed
tensor low-rank prior models this in a unified manner for high-dimensional visual signals.

views. Thus, one needs to adapt the spatial size and the number of frames grouped
in light field patches with respect to the amount of parallax and motion so that the
correlations in light field patches are preserved. Therefore, the patch size can influence
on the maximum tolerated parallax and motion modeled by our proposed scheme.

4.5 Low-rank and Sparse Light Field Tensors

4.5.1 Which Tensor Low-rank Model

Unfortunately, as explained, the notion of a high-dimensional singular value decomposi-
tion (SVD) is not clearly defined. In order to choose, the best tensor low-rank approx-
imation, we compared all mentioned tensor low-rank approximations w.r.t. speed and
quality. For the comparison, we randomly select 1000 patches from each light field, then
we compare different tensor low-rank approximations on a tensor completion scenario
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where a random subset of 10% of pixels from each patch is selected. Figure 4.3 shows
the employed light field datasets and the corresponding selected patches. Table 4.1
demonstrates performance of different tensor low-rank approximations.

(b) Medival [164]
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(d) Dragon [107] (e) Jelly Beans [167]

Figure 4.3: Light field datasets employed for comparison of different low-rank tensor
model. A sub set of 1000 light field patches from each dataset is selected to choose the
best tensor low-rank model.

Low-rank Performance [dB] | Speed [sec]
Model LR LR
CP 33.83 18.80
HOSVD 31.61 2.34
Square norm 25.40 1.53

Table 4.1: Average performance of different low-rank tensor models. The comparison is
based on inpainting with a compression ratio of 10 applied to a random selection of 1000
light field patches. We observe that CP outperforms other tensor low-rank schemes, but
is also slower.

We choose to work with CP as a general low-rank tensor model. This not only provides
the best quality but is also more flexible than HOSVD, because CP is oblivious to the
actual dimension where the signal is low rank. HOSVD on the other hand requires a
specific rank to be assigned to each dimension a prior.
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4.5. Low-rank and Sparse Light Field Tensors

4.5.2 Why Low-rank and Sparse Decomposition?

Light fields cannot always be perfectly represented as low-rank tensors. For example, a
large amount of parallax or motion, specularity, reflections, and the noise of acquisition
devices can distort the similarity between views. However, the distortion has sparse
structure. This argument is supported by Figures 4.4 and 4.5, where the remainders
between target light fields and rank-6 CP decompositions are shown. Inspired by robust
Principle Analysis (RPCA) [29], we decompose the light fields into the low-rank and
sparse components to improve the reconstruction performance. RPCA with exactly the
same principle is employed in various computer vision problems (e.g., [78, 122]).

9 x 9 views 17 x 17 views
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Figure 4.4: Tensor low-rank approximations of two datasets. The proposed low-rank
model is, as opposed to previously-employed dictionaries, flexible enough to apply to
datasets with a different number of views (here 9x9 and 17 x 17 views) or other param-
eters. The coherence within the light fields is exploited by the low-rank prior—even for
a relatively large amount of parallax, reconstructions are faithful. The remaining error
is concentrated around depth discontinuities and therefore sparse. This observation mo-
tivates our choice of a combined tensor low-rank and sparse framework for light field
photography.

We compare a variety of possible choices for low rank and sparse priors in Figure 4.6 and
conclude that CP as a tensor low-rank model combined with a discrete cosine transform-
based sparsity prior is the best choice among the ones tested. So why not simply use
the dictionaries of light field atoms for 5D light field videos? Dictionaries for high-
dimensional visual data have a lot of advantages, but also two major disadvantages: a)
they require a dictionary learning phase and b) the dictionary only models structures
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Figure 4.5: Low-rank approximation of a single light field video patch. If there is no
motion and little parallax (top), the patch can be well represented by a low-rank tensor.
The same is true for an in-focus object that has no parallax and some motion (bottom).

well that were also part of the training data. For a), compute times can be extremely
long (tens of hours or days for a 4D light field) or even prohibitive (we were not able to
learn dictionaries on 5D light field videos). Whereas a large set of training light fields
should be sufficient to learn a good dictionary, oftentimes not all possible configurations
of f-number settings, scene types, depth ranges, or other scene properties are available
to learn from. Hence, the proposed model is more tractable and also more flexible.

4.6 Light Field Acquisition and Synthesis

4.6.1 Coded Light Field Acquisition

A video y(x,t) for a conventional camera sensor is formed by integrating the incident,
time-varying light field I (x,v, ) over its angular domain Q, as

y(x, 1) :f L(x,v,t) dv. (4.8)
Q,

In this formulation, vignetting and other angle-dependent effects are absorbed by the
light field. Whereas the recorded video y varies over the sensor surface! x and over time
t, all angular variation of the light field is irreversibly lost.

Light field photography is concerned with the design of camera systems that preserve the
desired angular information optically, such that it can be recovered using computation.
In the most general sense, the optical image formation can be expressed as a convolution
along the plenoptic dimensions

y(x, t')=f f Lx,v,tym(x—x',v,t-t')dxdvdrt. (4.9)
a.Ja,Jo,

I'We consider a single dimension x and v in both space and time, respectively. Extensions to the full
4D case are straightforward.
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Center View with Selected Patch Single Frame of Light Field
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Figure 4.6: Compressibility of light field video. We randomly sample a set of 5D light
field patches of size 9x9x5x5x5 (top left) and solve an in-painting problem to compare
how well different priors perform. The simulation is run 20 times and the resulting peak
signal-to-noise ratios (PSNR) averaged. For 4D DCT (magenta plot) and light field
dictionaries (cyan plot), we apply the 4D prior to each temporal slice separately. Dic-
tionaries of light field atoms by Marwah et al. [107] are optimized for high compression
ratios, so they perform best in that area but quickly fall below other priors when the
conditions are different from those of the training phase. All low-rank priors and also
DCT5 take advantage of correlations in space, time, and angle. Low-rank modeled by
CP combined with a 5D DCT (blue plot) always performs better than any alternative
approaches.

As discussed in Chapter 3, a variety of different light field acquisition schemes have been
proposed, each one resulting in different tradeoffs. For the purpose of this paper, we
only consider a subset of all possible convolution kernels m: the ones allowing for coded
optical attenuation, but no ray mixing or refraction. This simplifies the image formation
to

y(x, 1) =f IL(x,v,ym(x,v,t)dv. (4.10)
Q,

In discretized form, this is a coded projection of an order-3 light field tensor £ € R"**"™*P
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to an order-2 video tensor % € R"*P:
U =P (L), (4.11)

where & : R"*™*P — R"*P is the linear projection operator incorporating the effect of
the modulation kernel m. The number of spatial, angular, and temporal samples is n,
m, and p, respectively. Although % is technically a matrix in this intuitive “flatland”
model, in practice we work with order-5 light field tensors that are coded in order-3
video tensors. Hence, we use tensor notation for both quantities.

The specific choice of the kernel in (4.10) is unique in that it allows the measured video
tensor % to be subdivided into small spatio-temporal windows—neighboring windows
in the light field tensor space are not linked by their angles, which could be the case for
general convolution kernels (4.9).

4.6.2 Low-rank and Sparse Light Field Tensors

As discussed, light fields containing a moderate amount of parallax and scene motion can
be well approximated by a low-rank prior. View-dependent effects and larger amounts
of parallax or motion result in sparse remainders. Robust principal component analy-
sis (RPCA), as introduced by Candés et al. [29], models exactly this problem and is
employed in various computer vision problems (e.g., [78, 122]). We follow RPCA and
represent the light field tensor as the sum of a low-rank and a sparse tensor £ =%+ ..
Then (4.11) becomes

Y =P (R+S), (4.12)

where £, € R P are low-rank and sparse, respectively. We allow % to be sparse
in some transform domain W(&), which is expressed by the operator W :R™"™P —
R™"™*P_ Motivated by the experiment shown in Figure 4.6, we use a high-dimensional
discrete cosine transform (DCT) for ¥ and the CANDECOMP (CP) decomposition for
R throughout this paper. The CP decomposition [34, 87] of an order-3 tensor £ is the
sum of vectors aligned with the dimensions of the tensor:

r

B = Z ug-X) ouE_V) ou'?

i?
i=1

(4.13)

where r is the rank of # and ug.x) e R, ug.") eR™, ug.t) €RP for i =1,...,r. Figure 4.7

schematically demonstrate our optical setup and light field tensor decomposition.

We follow general convex formulations for robust PCA and define the light field low-rank

50



4.6. Light Field Acquisition and Synthesis
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Figure 4.7: Visualization of optical setup and light field tensor decomposition. The
proposed camera design optically overlays multiple images onto a single sensor (left).
A patterned attenuation mask optically codes the images before they are integrated
by the sensor. We represent light field videos as high-dimensional tensors (center) and
formulate their reconstruction from coded sensor images as a compressive tensor low-
rank and sparse recovery problem.

and sparse tensor decomposition by solving the following objective function
argmin [V (A)l
{#,S}
to subject ¥ -2 (Z+L)|5<e, (4.14)

where € is the sensor noise level and ¢; norm of a tensor is defined as absolute sum of
its elements.

4.6.3 Efficient Light Field Synthesis

To solve (4.14) we resort to the parallel prozimal algorithm (PPXA) described by Com-
bettes et al. [35]. For this purpose, the Lagrangian form of the objective is solved as

argmin A | (A) 1 + 1% = 2 (% + )5, (4.15)
{R,S}

where the inequality constraints are incorporated into the objective function. Although
there exists a weight A that corresponds to the sensor noise level €, in practice neither
is known exactly and needs to be approximated by a user-defined value. We list all
algorithmic parameters in Section 4.8.

Parallel Proximal Algorithm

In this section, we explain more detail on PPXA and how it scales with different con-
straints on data. PPXA is derived from the Douglas-Rachford algorithm [35] and looks
for a minimizer of sum of multiple functions. Each function f; can be a prior constraint
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on the solution or on the data acquisition scheme. This form of optimization looks for
the solution of

argmin fj(x) + -+ + f,(x). (4.16)
xeRN
PPXA is an iterative method at each iteration the proximity operator of all functions
are calculated, which can be computed in parallel, and their results are averaged; the
process is continued until convergence to a point. Algorithm 3 describes PPXA to solve
(4.16).

Algorithm 2: Parallel Proximal Algorithm
Initialize:
z1eR",..., 2, eR", xeR", y>0;
while not converged do
fori=1,...,n do
L Pi — prOXnyfi (z;);
p—(p1+--+pn)n;
fori=1,...,ndo
L Zi —Zi +2p—X—p;;
| x=p.

Extension of PPXA to Tensor Low-rank and Sparse Light Field Decomposi-

tion

The PPXA algorithm solves (4.15) by iteratively computing the proximity operators for
each objective term and averaging them. Similar to robust PCA (see 2.6.3), we define
Ry £ R™ P x R™™*P by the Cartesian product of R™*P and a point in Ry is defined
as X = (%1,2) €Ry. The inner product in Ry is defined as

(X W) 2 (X, PN) + (X, D). (4.17)
The norm on Ry induced by this inner product is
X g, = (X, Z) =120l + I X2, (4.18)

where |-||r is the matrix Frobenius norm.

Proposition 4.6.1. For any point & = (Z1,%2) € Ry and a function f(X)= fi(Z1)+
(X)), the proximity operator of f is defined as

prox, ¢ (X) = (prox, (1), proxy 1, (X2)). (4.19)

Proof. Proof is similar to proposition 2.6.1 in Section 2.6.3. O
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4.6. Light Field Acquisition and Synthesis

Pseudo-code for solving (4.15) using PPXA is outlined in Algorithm 3. All intermediate
variables %, Z;; are tensors of the same size as the light field and &, Zq2), o/, 41,2
represent concatenations of two such tensors. The proximity operators of our problem
are

2
.
X - Z ug.x) ouMo ug.t)

proxcp (¥) =argmin z ;
i=

{u(x.v,t)}
(X)) =" (S, (¥ (X)), (4.20)
(4.21)

)

2

ProXg.|,

where 1 € (0,00) is a scalar, Z is an intermediate slack variable, 57} (X)) =sign(X) (X |-n)+
is a soft-thresholding operator as explained in Section 2.1.3, and proxgp (%) computes
the CP decomposition of & using alternating least squares.

To compute the proximity operator of the data term ||% — P (Z# + F) II§, we vectorize Z
and matrices the operator & to matrix P such that %, = PZ,ec. The operator P will
have block diagonal structure and each blocks of P contains the modulation values of a
pixel in the light field patch. The proximity operator of the data term reads

prox

. 1
o113 () = argmin |% -2 (D)5 + — 1 Z - X3
z 2n

= I+7P P Zvec + 1P  Wec) (4.22)

As discussed in more detail by Combettes et al. [35], proximal splitting methods basically
split up an objective function, such as (4.15), into a set of sub-problems, each of which
can be solved conveniently by applying a simple proximity operator. Convergence of
this iterative scheme is only guaranteed for a sum of convex sub-problems. Although
the CP decomposition is not convex, in practice we observe quick convergence.

Algorithm 3: Low-rank and Sparse Light Field Tensor Decomposition via Parallel
Proximal Algorithm

1: initialize & = (21,%>), Z1 = (211,312),

2: Zo = (ZFo1,Z22), %i,zijeRnmep

3: while not converged do

4: ) — (prOXCP (Z11) »y PTOXp 1.1, (212))

5: oAy — (prOXT]H'”Z (Zo1+Z22) ,pI‘OXn”_Hz (Zn +Zgz))
6: A — (A + o) 2

7 Z(l,z) — .:Z(l,g) +29f - X — «Q¢(1,2)

8: X=oA

9 BR=X1,F =%
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—Qk

:\ i‘

Target Light Field

—

=

Target Light Field

asredg [eotuouR))

View 5-5, Frame 5 View 1-1, Frame 1 View 5-5, Frame 5 View 1-1, Frame 1
asredg GO

Sensor Image

Figure 4.8: Light field decompositions. We recover a light field video with 5x5 views
and 5 frames (top left, 2 frames are shown) from a coded video consisting of 5 coded
sensor images (bottom left). The reconstruction algorithm operates on a patch-by-patch
basis and splits the signal into low-rank (top, bottom, center right) and canonical sparse
(top right) or DCT5 sparse (bottom right) components, exploiting correlations in space,
time, and angle. The reconstructed light field for the first and last frames are shown (top,
bottom, center left). The low-rank part contains most of the information whereas the
sparse captures high-frequency details and other view-dependent effects. Decomposition
using DCT5 sparse improves the performance and allows to recover areas with higher
amount of parallax. In contrast to canonical sparse for DCT5 the low-rank and sparse
component are not well separated since the smooth areas also have sparse representation
in DCT5.

4.7 Analysis

4.7.1 Interpreting Light Field Decompositions

We show two views of a short light field video sequence and corresponding views of
the low-rank and sparse components in Figure 4.8. Most parts of this scene are well-
approximated by a tensor low-rank representation. Yet, the 5D discrete cosine transform
helps to recover high-frequency edges and areas with larger amounts of parallax. We
also illustrate the low-rank component as well as the sparse component of two selected
patches. In the first patch (red), the out-of-focus high frequency structures are mostly
blurred out in the low-rank component while the sparse component contains the edges.
The second patch (blue) is almost constant in both angle and time, thus it is well-
represented by the low-rank part.
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4.7. Analysis

4.7.2 What are good optical setups?

In all experiments in this paper, we use masks that contain random Gaussian patterns as
modulation codes. Throughout the capture process, the codes are changed for successive
frames of the video. To satisfy the restricted isometry property, employed codes should
be mutually incoherent in angle and time. This property is derived for sparse priors [22]
but also exists for low-rank priors [25, 129]. Basically, the optical codes should be as
random as possible w.r.t. each other such that the diversity of the sampling process is
maximized. In Section 4.8, we present a new compressive light field camera prototype
that allows us to code all light fields views independently and which could scale to large
baselines.

4.7.3 How many measurements are necessary”?

It is important to understand the conditions under which low-rank and sparse compo-
nents can actually be recovered. Usually this is given as the order of the number of
required measurements given some properties of the projection operator & (“the mea-
surement matrix”). Oftentimes, the degree of freedom of a tensor is used to derive an
expression for the required number of measurements in the literature. The degree of
freedom of a generic order-k tensor with rank r is rk + knr, where n = max{n;;i € [k]}
is the largest dimension of the tensor. The degree of freedom for a combined low-rank
and sparse tensor is d; = rk 4+ knr+ | (#)lo. Recall that || -|lg denotes the number of
non-zeros elements entries in a tensor. Wright et al. [170], for instance, showed when the
measurements are taken from a Gaussian random distribution, the minimum number of
required measurements to decompose a matrix into low-rank and sparse components is
O (log?(m)(2nr —r2) +1Slo)), i.e. O(log’(m)dp), where d, is the degree of freedom of
a low-rank matrix. Rauhut et al. [129] give an expression for the minimum number
of required measurements to recover a low-rank tensor from linear measurements as
O(log(k)d,). Disregarding what the actual number is, it is proportional to the degree
of freedom of the tensor and therefore to its rank. We experimentally verify this in the
following subsection by varying parallax and motion of the tensor, hence its rank.

4.7.4 How does the Algorithm Degrade?

We evaluate reconstruction quality w.r.t. varying amounts of parallax and scene motion
in Figure 4.9. All target light fields contain a resolution chart with some amount of
parallax over 5x5 simulated views and motion over 5 frames. The plot shows that it is
easier to recover motion than parallax (top right), which is intuitive because parallax
is integrated by the sensor. Overall, relatively about (=5 pixels) of both parallax and
motion can be recovered well with the simulated setup. Nevertheless, the quality of the
proposed method is still better than that achieved with light field dictionaries (lower
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right). High-frequency details are successfully recovered with the proposed algorithm.
For this experiment, we used the dictionary provided by Marwah et al. [107] on their
project website.

Single-shot Performance
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Figure 4.9: Performance analysis for a single-shot compressive light field camera. The
intrinsic dimensionality of the light field depends on the amount of motion and paral-
lax in the scene. We evaluate reconstruction quality of the proposed algorithm w.r.t.
these parameters (right). As opposed to a sparse-only reconstruction with a light field
dictionary (left, bottom) by Marwah et al. [107], our approach is capable of recovering
high-frequency details (left, center) for a high-contrast resolution chart with observed
parallax that is as much as the patch size (=5 pixels).

4.8 Implementation

Hardware We built a proof-of-concept prototype light field camera that is optimized
for the proposed algorithms (Figure 4.10). The special property of this device is that
intermediate images, showing the individual views of the light field, are generated in
mid air (yellow boxes). These can be independently modulated before they are optically
combined on the sensor. Through the system is designed to capture light fields with
2 x 2 views through a lens array with a single sensor, it can be extended to more views
by some modification to the design, such as use of prism sets or Fresnel plates. The
array has a baseline of 6.5 cm and the optical setup consists of an entrance lens (L1,
f=25 cm, D=15 cm) that feeds converging light into a set of four smaller lenslets (LL1,
f=10 cm, D=2.54 cm). The image of each lenslet is projected on the mask plane (see
Figure 4.10). As discussed in Section 4.7.2, the mask pattern is a random distribution
and printed on a transparency with 50800 DPI by http://www fineline-imaging.com/.
In light field video acquisition, in order to increase the incoherency between consequent
acquisition, we slightly displace the mask. However, one could programmed a motor
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4.8. Implementation

Figure 4.10: Prototype compressive camera. The device uses a relay lens system that
allows for multiple images of the same scene to be multiplexed on a single sensor. The
primary images are formed on the mask by L1+LL1 and these images are optically coded
and re-imaged by L2+LL2. The images show the same scene over a range of viewpoints
and each one is independently modulated by an optical code on a printed transparency.
The parameters are: dy=45 cm, dy =10 cm, dy =14 cm, d3 =9 cm, dy =8 cm.

for the displacement. In general, LCDs could be replaced the printed mask but the
resolution of LCDs are limited and the resolution of the mask imposes a limitation on
the resolution of reconstructed light field. Thus, we preferred a printed mask to the
available LCDs.

Each image under the lenslets is optically multiplied by a different random pattern. The
masked images are then re-imaged by a set of secondary lenslets (LL2, f=10 cm, D=
1.27 ¢cm) and overlaid via L2 (f=20 cm, D=7.5 cm) on the camera sensor to form the
light field projection operator outlined by Equation 4.11. More compact setups could
be realized using aberration-corrected optical elements. The monolithic entrance lens
is not necessary and could be replaced by smaller elements resembling the curvature
of corresponding pieces of a large lens (similar to fresnel lenses but with high imaging
quality). This would remove the need for a large front lens and make the system more
scalable for wider baselines. The baseline currently achieved is limited by the size of
that entrance lens. However unlike the simple lenslet array our design does not suffer
from dividing the sensor area and unlike previous single-sensor coded aperture it doesn’t
have major aperture overlap between adjacent views. We emphasize that the proposed
mathematical technique is more resilient w.r.t larger baselines than previous methods,
as evaluated in Figure 4.6.

Optics Implementation

The purpose of the prototype was to practically demonstrate the concept, and therefore,
we did not use advanced optical elements as in professional photography camera. For
alignment we used a single point source at the depth of field that was aligned with the
center of the large entrance lens. This is also the symmetry axis of the system. Next the
LL1 lenses are aligned along with LL2 lenses so that all the images of the point source
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Figure 4.11: Different views of the same object are overlapped on the camera sensor.

created by lenslets are fully overlapped and are all in focus (4.11 ). We kept the L1 fixed
and did the final fine alignments with slight adjustments of L2 and camera position.

During the acquisition we had to cover the setup so that the ambient light does not
interfere with the measurements. Also to avoid cross talks due to adjacent lens glares,
we used a plate with circular apertures to cover the rest of the large lens.

Mask Implementation and Calibration

We used a Gaussian mask as explained in the main text. The Gaussian pattern was
quantized to 64 levels and dithered and then printed on a single transparent polymer
substrate with 50800 DPI. It is important to note that this is not the resolution of the
mask since an array of 10 by 10 pixels were used to make the dithered pattern of one
pixel.

Since it was printed as a single piece when we moved the mask in the mask slot all
the four figures were affected and therefore we did not have to change the pattern for
individual views. To calibrate the mask accurately one should have independent x-y
alignment control on each mask with accuracy level down to resolution of the mask.
The masks should then be aligned in a way so that the grids of all masks from all the
views are overlapping on the camera sensor. This can be a time consuming alignment
in research level prototypes — specially when the mask should be moved or changed
for every frame. However, for an industrial setup with prefabricated frames and mask
holders or with spatial light modulators such repetitive alignment is not necessary. We
believe that part of our artifact in recovery is because of such misalignments in the
masks. On the camera side we disabled the white balance function and recorded the
images in RAW format to avoid compression loss.
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4.9. Results

4.8.1 Alignment and Specifications

The optical system resembles a macro light field photography system or a single lens
imaging system (with L1-L2 compound lens) combined with a 4f system between the
(LL1 and LL2) lenslets (Figure 4.10). Depending on the required field of view, resolution
of the mask, and the distance of the object to the lens (dp) the rest of the geometry
(dy, da, ds, dy) can be aligned or predicted based on ray transfer matrix analysis. We
experimentally aligned the system so that the plane of focus is also the parallax-free plane.
Larger dy would form smaller images and force denser masks which would be ultimately
limited by the diffraction limit and sensitivity of the camera. LL1 lenslets are flush to
the L1 lens to allow the largest possible baseline. Stretching the LL1 array all the way to
the peripheral of L1 can induce undesired relative aberration in the images on the side
and thus some compensation elements would be required for aberration correction. The
current prototype has f/7.5 and each view has approximately f/18. Unlike the case of
coded aperture where adjacent views share the same aperture here the different lenslets
have non-overlapping views but at the same time each view is imaged by the entire
sensor. The system is extendable to larger baselines if the large entrance lens is replaced
with prism pieces, however the main drawback is that a higher optical complexity is
required compared to a conventional camera lens.

4.8.2 Software

For the physical experiments, light fields with 2 x 2 views are reconstructed from a single
sensor image with a resolution of 400 x 400 pixels. The resolution of the prototype
is currently limited by the printed mask resolution re-imaged on the sensor, and the
accuracy of the calibration. Reconstruction is performed independently for each light
field patch using a sliding window reconstruction. The patch size is chosen to contain
the maximum amount of observed parallax in the scene. We used window sizes of 20 x 20
pixels with a varying number of time frames, as indicated for a specific dataset. A single
4D or 5D light field patch is recovered for each window location. Overlapping patch
reconstructions are averaged for the final result. Processing time is about 8 hours for
the sliding patch reconstructions on a computer with 4 nodes each with 4 cores at 2.2
GHz and 8 GB RAM. The rank threshold is set to r =6 and the sparsity penalizing
parameter is A =0.05. The solver usually converges in average within 300 iterations.

4.9 Results

Figure 4.1 shows a light field comprising 81 views recovered with the proposed algo-
rithmic framework. We simulate a coded sensor image by multiplying each view by a
Gaussian random code and summing over the modulated images. A reconstruction can
faithfully estimate the target light field from two captured images.
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As explained in Section 4.7.3, the minimum number of measurements to perfectly recover
light fields depends on the degree of freedom of the light field tensor which is a function
of number of views and parallax (rank). For light fields with high number of views such
as Figure 4.1 (81 views), one cannot recover the static light fields with a single shot.
However, when light fields video is captured the correlation along the motion can also
be exploited. Therefore, light fields video can be recovered from single measurement
from each frame. Figure 4.12 represents a static light field captured by camera array
with 17 x 17 views. We recovered the light field with 5 measurements. Figure 4.13 shows
a static 2 x 2 light field similar to the prototype recovered from a single measurement
using the proposed tensor low-rank and sparse model.

Figure 4.12: A 17 x 17-view light field is reconstructed by 5 coded measurements using
the low-rank and sparse model. The number of shots required to recover light fields from
coded measurements depends on the degree of freedom of the light field tensor which is
a function of parallax and number of views.

High-quality light field recovery from a single measurement is possible with the proto-
type configuration when the modulation codes introduce a high degree of randomness
in the measurements Figure 4.14 demonstrates a set of scenes captured with the proto-
type compressive light field camera and reconstructed with the proposed low-rank and
sparse light field recovery. Finally, we also show reconstructions of a light field video
in Figure 4.15. For this experiment, we manually move the object for 7 frames of a 9-
frame sequence. A five-dimensional tensor low-rank and sparse reconstruction benefits
from the coherence in time and angle of the light fields to recover the views from coded
measurements in time. The former benefit is available when the optical codes change for
each captured frame. Observed reconstruction quality is best when the motion between
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Coded Sensor Image Reconstrlct

Figure 4.13: A single, coded sensor image containing all images of a light field at one
frame is shown in the center. The proposed low-rank and sparsity-constrained optimiza-
tion techniques allow for the full light field to be recovered from a single shot.

frames is small, though for scenes with a large amount of motion one could employ
motion estimation and compensation techniques, such as [120].

4.9.1 Low-resolution Mask

The reconstruction resolution is bound by the resolution of the mask. In the proposed
prototype, we benefit from high resolution printed mask to generate images with high
resolution. Though we can improve the mask by replacing the printed mask by higher-
resolution and dynamic spatial light modulators to improve image resolution, we use
low-resolution printed mask to study the reconstruction quality of the prototype as a
function of mask resolution.

We capture a scene with a low-resolution printed transparency that contains a random
code. The printer is an Epson Stylus Photo 2200 and provides high-contrast and resolu-
tions up to 1440 dpi. Compare to the coded image sensor captured with high resolution
mask in the main paper, the transparency feature sizes of the low-resolution mask are
relatively large in the sensor image (Figure 4.16, left). Unfortunately, large mask fea-
tures partially destroy local randomness by blurring out high frequencies. To recover
the light field, we need to downsample the captured image to the mask resolution, in
which case the proposed reconstruction is successful (Figure 4.16, right).

Finally, we also show reconstructions of a light field video captured with low-resolution
mask in Figure 4.17. For this experiment, we manually move the object for the last 5
frames of the sequence. A five-dimensional tensor low-rank and sparse reconstruction
benefits from static parts of the scene (first few frames) by effectively having more
measurements and also by the signal being low-rank in time.
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Recovered Views
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Coded Sensor Image Coded Sensor Image

Coded Sensor Image

Figure 4.14: Light field reconstruction from prototype camera. These scenes are cap-
tured in a single, coded sensor image (bottom) each. The tensor low-rank and sparse
recovery exploits light field correlation in space and angle to recover all 4 views from the
coded image (top). Parallax is observed in the reconstructions.

4.10 Discussion

In this paper, we present a new approach to compressive light field photography. By
combining tensor low-rank and sparse priors on the high-dimensional signal, we are able
to efficiently model light field images and videos. We propose an efficient solver for
the recovery problem and also a prototype device that allows for high-resolution light
fields to be captured that have a wider baseline than previously-described single-device

solutions.

Benefits and Limitations The proposed compressive camera offers a higher reso-
lution than conventional, microlens-based light field cameras. Yet, these come at the
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Figure 4.15: Reconstruction of light field video. We capture 9 frames of a dynamic
target. For each frame, a coded sensor image is recorded—the codes vary in each frame.
In this example, high-dimensional signal recovery exploits correlations in space, time,
and angle to recover the light field motion and parallax. Effectively, capturing a video
with dynamic optical codes increases the available measurements for static or moving
objects.

cost of increased significantly reconstruction times. Compared with learned light field
dictionaries, the proposed framework does not require a learning phase and is therefore
also not bound to the capture parameters of the training scenes. This saves a signifi-
cant amount of compute time and also makes the proposed framework more flexible and
widely applicable. We believe that distributed compute infrastructures, such as cloud
computing, have the potential to significantly reduce the reconstruction times.

Although the proposed framework is developed for light field videos with an arbitrary
number of views and frames, the prototype we built is currently limited to four views and
a few frames. The number of views is restricted by the size and cost of employed optical
elements and the number of frames is limited by the fact that we record all animations in
a stop-motion fashion by manually moving scene and mask while capturing coded light
field projections. The prototype was designed only to experimentally verify the proposed
framework. Optical aberrations and a low resolution of the printed masks place a limit
on the resolution we currently achieve.
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Figure 4.16: Light field reconstruction from prototype with low-resolution mask. The
scene is captured in a single, coded sensor image (left) and subsequently recovered via
tensor low-rank and sparse recovery. Parallax is observed in the reconstructions (right).
Compare with high resolution masked employed in the main paper we observe that the
mask feature sizes on the coded sensor image (left) are relatively large. Therefore, the
local randomness of the mask is destroyed. We address this issue by downsampling the
captured sensor image to the resolution of mask.

Future Work We would like to speed up processing times using cloud computing and
improve the quality of the prototype design. Chromatic aberrations can be reduced
using compound lens systems. Higher-resolution and dynamic spatial light modulators,
instead of printed masks, will significantly improve image resolution and automate the
capture process. Instead of using a single large imaging lens in the prototype, we would
like to experiment with custom elements that do not require a monolithic lens but in-
stead are a collection of independent compound lenses. Finally, we would like to further
increase the baseline of the prototype and add more cameras to the array. The pro-
posed mathematical framework also has applications in reducing the number of devices
in camera arrays. We evaluate this application extensively in the supplement using simu-
lations. Finally, we would like to incorporate the color spectrum, polarization, and other
properties of light into our framework. Although a few approaches have been proposed
to use related techniques for multi-spectral and lighting-dependent reflectance acquisi-
tion [3], a comprehensive and unified framework for compressive plenoptic or reflectance
acquisition would be very interesting.

Conclusion Analyzing and exploiting redundancies of high-dimensional visual signals
is the key to future camera designs. The proposed algorithmic framework is a step
towards a new generation of computational imaging systems that follow this paradigm.
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Figure 4.17: Reconstruction of light field video with low-resolution printed modulation
mask. As in the static light field, the lower resolution mask decreases the resolution
of recovered light field video. In this example, we capture nine frames of a dynamic
target. For each frame a coded sensor image is recorded — the codes vary in each frame.
In this example, high-dimensional signal recovery exploits correlations in space, time,
and angle to recover the light field video. When the object is mostly static (first five
frames), reconstruction quality is higher than for fast motion, because the signal is
well-represented by the 5D low-rank prior. Effectively, capturing a video with dynamic
optical codes increases the available measurements for static or slow-moving objects.

System designs at the intersection of optics and compressive computation, such as the
proposed, facilitates higher resolutions, lower cost, new form factors, wider baselines,
and many other benefits for computational photography.
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Chapter 5

A Convex Solution to Disparity
Estimation from Light Fields

The estimation of a disparity map from multiple images is one of the very well studied
problems in computer vision. Some of the most dramatic improvements in this field
occurred with the introduction of novel numerical frameworks and their corresponding
theory. A non-exhaustive list of such breakthroughs are the early work on space carving
[90], the level set formulation and the variational framework [46], the Markov random
field framework with polynomial-complexity solvers [19], the L;-Total Variation opti-
mization framework [173] and, more recently, convex formulations that aim for global
optimality [126]. In this work, we look at a novel approach based on recent primal-dual
optimization techniques. Our approach is also convex as in the most recent develop-
ments, but we work with discrete labels (the possible disparity values).

Our formulation is based on a linear model of the data where a patch in an image
is written as a linear combination of patches in other views. The key idea is that
ideal Lambertian objects generate views that look alike (modulo foreshortening) and
therefore corresponding patches live approximately on a 1D manifold. When objects
are not Lambertian, they generate effects, such as specularities, that change with the
pose of the camera. One can notice, however, that these effects are typically rare ( i.e.
, they happen only on some of the views) and spatially local. Hence, a natural way to
model image patches of non Lambertian objects is by using an additive model where one
of the two factors is sparse and the other is low-rank. If a finite set of possible depth
candidates for a patch is available, one can then verify which hypothesis best fits the
low-rank 4+ sparse model. Our strategy is therefore a competition between the different
disparity hypotheses. We essentially allow the data to be explained by a simultaneous
linear combination of all low-rank + sparse models. However, we force coeflicients to
focus on only a few of the models (where each model corresponds to a single disparity
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hypothesis) via group-sparsity penalty terms. We expect that coefficients be mostly
non-zero at the true disparity as this is the case that gives the fit with the sparsest set
of outliers. Notice that the individual coefficients of each linear combination are not
important, and indeed, typically, infinite solutions might be possible especially at the
correct disparity. However, as long as coefficients have most non-zero values at only one
group, we can still correctly identify the disparity.

While this approach seems straightforward, in practice it faces considerable dimension-
ality challenges because data is replicated several times due to the patch-based model
and the number of disparity hypotheses. This makes operations such as matrix inver-
sion, often encountered in optimization schemes, impossible to carry out. To address
these challenges we propose a primal-dual approach that results in simple element-wise
thresholding operations and 2 (global) matrix multiplications at each step.

5.1 Related work

Light field disparity estimation: One of the first approaches to compute light field
depth exploits linear structures in light fields through a line fitting algorithm [18]. Other
methods use more traditional stereo reconstruction techniques to match the correspond-
ing pixels in light field images, such as block-matching techniques [15] or clustering
methods to identify similar pixel matches [12, 50]. Ziegler et al. [177] proposed a Fourier-
based technique to compute depth values. To achieve higher global coherence, light field
depth estimation methods employ a global cost function to impose smoothness on the
estimated depth values [40, 86, 162]. A limitation common to all these methods is that
they optimize a global cost function that is not convex. Therefore, the estimated depth
map depends on the initial input. Moreover, fine details are lost because a coarse-to-
fine multi-resolution technique is often used to avoid ending in weak local minima. Our

approach overcomes these limitations by introducing a convex formulation.

Multiview stereo methods: Multiview techniques require detecting and handling
outliers [5, 72]. The difficulty of outlier modeling is due to the unstructured nature of
errors produced by outliers. However, these errors can only influence a small part of the
image and are therefore sparse in a canonical basis [5, 169]. An alternative to explicit
occlusion modeling is to match only reliable pixels and fill the unmatched correspon-
dences via regularization [83, 147]. However, as explained in [148], these methods are
prone to artifacts. Multiview stereo methods employ a large number of images [57, 82] to
compute the full geometry of a scene and often yield a smooth geometry. Our light field
disparity estimation yields a representation that falls in the middle: it is more complete
than in stereo techniques, but less than in multiview stereo.

Sparse representation: The similarity of image structures in a dataset is used in
data clustering [45, 101] to determine the low-dimensional subspace of high dimensional
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data. Many schemes exploit data similarity to represent image correspondences in a
dataset [100, 169]. In contrast to these clustering techniques, our proposed disparity
estimation scheme looks for the best representation of each patch within a set of clusters.
The clusters are generated from a number of disparity hypotheses, such that the members
of a cluster are either chosen or discarded together. To achieve this we introduce a
coupling term between the coefficients via group sparsity.

In this work, we estimate disparity from light fields by representing patches of a desired
light field view with an overcomplete dictionary. The elements of the dictionary are
patches of other views reprojected back onto a reference view for a given set of disparity
candidates. If sufficiently many patch samples are available, patches of the reference view
can be written as a linear combination of patches from the correct disparity hypothesis.
This representation is naturally group sparse, since only a single disparity candidate of
the dictionary can be assigned to a given patch. This representation can be recovered

efficiently via group sparsity minimization [172].

5.2 Multiple views and light fields

We consider capturing several images of the same static scene by translating a camera
on the x—y plane, where z is aligned to the camera optical axis, or, equivalently, by
employing a camera array, or a plenoptic camera, where all the camera sensors lie on the
same plane. More in general, we can describe the captured data as a 4D light field L:
Qx0 — [0,+00) where Q = RV*M denotes the spatial domain (the pixel coordinates within
each image) and © the angular domain (the camera center coordinates). We consider
cameras arranged in a regular lattice and denote with A =[Ay A)] T € R? the displacement
between a camera and its north-west neighbor. Then, we define ® = {[Ayi A, j]Tli =
1...n,j=1...m} as the 3D camera center of the (i, j)-th camera is located at [Ayi A j 07T,
For simplicity, we use the notation Lij(x,y) to denote L(x,y,1i, j).

A visible plane in the scene, parallel to the images planes of the cameras, will generate
images in the light field L that are related to each other by a shift or disparity p:Q—
[0, +00), for simplicity we denote p(x,y) by p. In formulas, this can be written as

Lij(x,y) =Lpq(x—pAx(p—1),y—pA,(q— ) (5.1)

for all (x,y) that fall within the spatial domain of both light field views and for all (i, j)
and (p,q) camera pairs.

A common approach to estimating the disparity p is then to pose a variational problem
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of the form

rr})ini Z>i®(Li,j(x,y)—Lp,q(x—p(p— DAx,y—p(g— Ay +T(p), (5.2)
q’i’ﬁx’y

where @ is some robust penalty term for departures from zero and T is a regularization
term for the unknown disparity p such as total variation. This problem is non-convex
and therefore finding the global optimum is a very challenging task. While good solu-
tions have been obtained for the above problem, recent efforts have produced convex
variational formulations [56, 126] with high-quality disparity reconstructions. Both of
these methods work with continuous representations. However, one of the key differ-
ences between these two methods is that, while [126] achieves convexity by increasing
the problem dimensionality, [56] achieves convexity by fixing the structure tensor with
some initial approximate disparity estimate. Our method follows the strategy of the
first approach and also results in a high-dimensional representation. However, we do
not rely on any initial estimate (although it might considerably speed up the conver-
gence). Moreover, as we describe in the next sections, our convex formulation is entirely
in the discrete domain and exploits the quantization of the disparity values.

5.3 A patch-based image formation model

Our first step is to rewrite the problem (5.2) as a patch matching problem. Let us define
the patch operator Py, as the mapping that extracts the W x W patch whose top-left
corner lies at (x,y) of an image I, i.e.,

Pry(D) = T (x+ X0, ¥ + Y0)} xg,76=0,...W—1- (5.3)

We define the output of the patch operator to be a patch rearranged as a column vector
whose W? elements have been rearranged in lexicographical order. Consider extracting
one patch from each view of a light field, except for the (i, jo)-th one (for example, this
could be the central view), given a disparity p and collecting all the patches in a matrix
Qﬁyy e RW x(nm=1) Thjg operation can be described via

Q%) = Papa,(p-io)y-p, a—jo Lpg) - Y (P, @) # (g, o)} (5.4)

If p is the true disparity of a fronto-parallel object in space, then all the columns in
Qﬁyy will be identical to each other (in the ideal Lambertian case) and identical to the
column vector Py, (L;, j,). We also denote the latter vector with the symbol yy . More in
general however, noise, non-Lambertianity, shadows, occlusions, inter reflections and so
on need to be taken into account. Since we believe that most of the time the Lambertian
approximation will hold, we consider all the other image distortions as infrequent and
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use a sparse representation to model them, i.e.,

Yay = Qi,ycg,y_*'ex,y» (55)

o
X,y

entries. The coefficients in cgyy determine the linear combination of vectors in ngy that

where ¢, is a nm—1 column vector and ey is a W? column vector with few non-zero

generate yy,y. When the disparity p corresponds to the true solution, any cﬁ,y such that
1Tc§,y =1 will satisfy the above equation. Vice versa, when the disparity is incorrect
and the scene has sufficiently rich texture, there should not exist any vector cﬁ,y that
satisfies (5.5). Thus, we propose to force the disparity p to take values only from the
set {p1,p2,...,pp} and extend (5.5) to

T .
Yx,y = [Qﬁ,ly Qg,zy Qif}] [cﬁ}ycgfy " ‘cif}] +exy =QxyCxyt+exy, (5.6)

where the W2 x (nm—1)D matrix Qy,y and the (nm—1)D vector ¢y, are implicitly defined
by the equation to the right.

5.4 Depth estimation

Based on the model (5.5), a first formulation for estimating disparity through patch
matching is

1
in- Y 2
e 2 I1Vx,y = Qu,yCxy —€xylls + pllexyl, (5.7)
e 25

where p >0 is a constant determining the degree of sparsity of ey, ey yll1 denotes the
¢! norm of eyy, and ¢ and e are the column vectors obtained by stacking vertically
all the vectors ¢y, and ey, respectively. Since the total number of patches within the
image domain is MN, where M=M-W +1 and N=N-W +1, the e vector has MNW?
elements and the ¢ vector has MN(nm—1)D elements.

As explained in the previous section, we aim at concentrating the coefficients of ¢y, on
the patches belonging to just one disparity hypothesis. If this is the case, then, given
Cyx,y, one can estimate the disparity at a pixel (x,y) by using

0 = argmax ||c§yy||2,1. (5.8)
PE{p1,-..,.OD}

The same problem can be written in the following compact form
1 2
nélenglly—Qc—ellz +ulell, (5.9)

where the column vector y has been obtained by stacking all the yy ,, and Q is a block
diagonal matrix whose blocks are the matrices Qy,y. To encourage the concentration
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of nonzero entries in a single disparity block of ¢y, we propose to minimize the mixed
{31 norm of ¢y ). Finally, since the disparity is a smooth map, we add a vector-valued
isotropic total variation (TV) regularization term

1Velz1 = Y1/ lery —€xery 2+ llex,y — €xyal, (5.10)
X,y

where V denotes the finite gradient in the spatial domain (and can be written in matrix
form). By minimizing this term we encourage c coefficients to be similar across the
spatial domain. The complete minimization problem can be written as follows

1
rrcnenglly—Qc—ellﬁ + pllelly + AlVellg,1 +ylicllz,1, (5.11)

where A,y >0 are two constants. This is a convex problem and therefore it has the de-
sirable property of converging to the same global optimum given any initialization. The
minimization of problem (5.11) presents several challenges due to its high dimensionality,
which we address in the next section.

5.5 Primal-dual formulation

One immediate issue of a primal solver for problem (5.11) is that it requires inverting very
large matrices that are not easily diagonalized. To avoid such computational difficulties,
we consider the primal-dual method, which is a first order algorithm, it does not require
matrix inversions and enjoys fast convergence rates [126].

Firstly, we rewrite problem (5.11) in a more compact way by combining all the unknowns
c and e into a single variable x, and by defining 3 new functions F;, F», and F3 as follows

o1
F1(Ax-y) = Eny—Qc—en% (5.12)
Fo(Ilex) = [lelly (5.13)
F5(BX) = Vel + %ncnz,l, (5.14)

where A = [Q I], with I; the identity matrix, Ilex=e and B= [V %Id]THc, with IMex = c.
Notice that all the above functions are convex in the variable x. Then, our primal
formulation becomes

rrg{inFl(Ax—y) + uF> (Iex) + AF3(Bx). (5.15)

To solve the primal problem we can compute the gradients of the cost function and set it
to zero. An immediate observation is that the gradient will yield in the best case linear
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systems with non-diagonal matrices. For example, the first term F;(Ax—y) yields
0
S F1ax—y) =ATAx-Ay, (5.16)
'

which requires dealing with the matrix ATA. To avoid that, we use the primal-dual
method. This method is based on the Legendre-Fenchel (LF) transform. Given a func-
tion F, the LF transform yields a conjugate function F* such that

F*(z) = sup(x,z) — F(x). (5.17)

The conjugate function F* is by construction convex and when F is also convex, then
the LF transform F** of the conjugate F* is again F. When the conjugate functions F},
F;, and F; can be computed easily and possibly in closed-form, then it is convenient to
consider the primal-dual problem

min max <Ax-vy,z; > —F (z)) + p <Ilex,zp > —puF, (22)
X 71,7p,Z3

+ A <Bx,z3 > —AF; (z3), (5.18)
which we write in more compact form as

minmax < Kx,z> —F(z) (5.19)
X z

where K= [AT ullf ABT]T, z=[z] z] z]17, and F(2) = Fy (z1) + uF; (22) + AF; (z3). To solve
the above saddle point problem, we need to define the proximity operator, which is our
fundamental computational tool to deal with the conjugate functions.

5.5.1 Proximity operator

The main result that we will exploit here is Moreau’s identity. Given the conjugate F*
of F we have that

ProX, g+ (z) = 2 — 0proxg,, (z/ o) (5.20)
and hence we can compute the proximity operator of the conjugate function F* directly
by using the proximity operator of the function F.

5.5.2 Primal-dual algorithm
The primal-dual algorithm to solve problem (5.19) is defined in Algorithm 4.

In algorithm 4, while the bottom two iterations are straightforward, the first one on the
dual variable z requires computing the proximity operator of the conjugate functions
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Algorithm 4: The primal-dual algorithm to solve (5.19)

1: initialize 6 € (0,1], 7o|K|? <1
2: while not converged do

3. 2] = proxgp (2] + o (AX" ~y))
1 _ -
zy*! = prox, g (23 + opllex")
zy*! = proxgp; (2" + 0ABX")

Xn+1 =x" - TKTZn+1
Xn+1 — Xn+1 +0(Xn+1 _Xn)

Fy, F;, and F;. The first two functions are relatively easy to obtain as the conjugate
functions can be computed in closed-form

0 if Hzol) =
+o0o otherwise

1
Fi @) = 55, (F (z2)}s = { (5.21)

where s=1,..., MNW?. Hence, we can readily obtain the first two steps of the primal-
dual algorithm

1 _ z, _
Zt = U+1(zf+a(Ax"—y)), {zg+1}s=9{0u({a—i+ﬂex”}3), (5.22)

where s=1,..., MNW? and Hgy denotes the element-wise thresholding operator
Hou(@ =min{opy, |z|} sign(z). (5.23)

The last term F; is more involved. We compute the update equation by exploiting
Moreau’s identity

ProX, (z3 + 0ABX") = 23 + 0 ABX" — 0 AProxg, (,1) (25 / (0 1) + BX"), (5.24)

so that we only need to compute proxg,,4)- Notice that F3(z3) is the £1/¢ norm |z3l2,1.
Thus, we need to evaluate

1 1 1
ro z"/(oA) +Bx") = argmin —||—z" +Bx" —z|? + —|Izll2 1. 5.25
p XFa/(U/U( 3 (o) ) gz 2”0/1 3 ”2 0/1” ||2,1 ( )

The solution is computed in closed-form and results in a block soft-thresholding

1
ProxXp, ;g1 (23 /(0A) + BX") = 8142 (azg + BX”) (5.26)
with
{S1/on @a)}, = 123} max{O 1—;} (5.27)
HIOWTET Y = " oAllzshllz '
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and where blocks are indexed by b=1,...,(3MN - M — N)D, since z3 is a (3MN - M —
N)D(nm —1) dimensional vector.! Finally, by plugging the last expression in the prox-
imity operator of F;, the last update equation becomes

{prox, p; (z5 + oABX")}), ={z3 + 0 ABX"}), (5.28)

1
-1 -max<0,1-— — )
( { [{zg + o ABX"}p 2 })

where b=1,...,BMN-M-N)D.

In all update equations there are no matrix inversions and calculations are therefore
highly parallelizable. The final algorithm is summarized in Table 5.

Algorithm 5: Primal-dual algorithm for disparity estimation from light field data.

e eie 1s N2 TN W2 IN—M—N _
1: initialize z; e RMNW Xl, z, € RMNW "1, 7z € RBMN-M-N)D(nm-1)x1

2: while not converged do
3 2l =@'+o@AX"-y)/(c+])

{ZEH—I}S = j'cap({zg/(,uo') + X"} )
it = ProXg p; (2" + 0 ABX")

Xn+1 =X"—‘L’KTZn+1
)-(n+1 — Xn+1 + 9(xn+1 _xn)

5.5.3 Implementation details

Because of the discretization, the dimensionality of the problem is quite high. One
approach to managing such dimensionality is to use block coordinate descent [154], where
one works iteratively on different subsets of the variables. In this work, we consider
a simple and efficient approximation: we consider restricting the possible disparities
P1,---,pp to a small but carefully selected subset and always work with that subset. To
gain additional freedom, at each pixel (x,y) we make a different choice of such subset.
Our strategy is to evaluate the function

gry©@) =), Y. OULij(x, 1)~ Lpq(x—pAc(p=1i),y—pDy(G~])) (5.29)
L,jp>i,q>]j

for as many p values as possible. Then, we sort gy, in ascending order and take the

disparities corresponding to the first 5 values of g ,. We then also add 5 more disparity

candidates by selecting the disparities of neighboring pixels (in a 4-neighborhood struc-

ture) corresponding to the smallest cost. The purpose of this second group of disparity

1The total variation term introduces 2 blocks for any pixel in Q except for the left hand side column
and the bottom row of pixels (total blocks is 2(M -1)(N - 1)). These two rows of pixels, except for the
bottom right corner, introduce only one block (total blocks (M —1)+ (N —1)). Finally, the block sparsity
term introduces MND blocks.
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candidates is to allow (spatially) smooth disparity estimates.

5.6 Experimental results

We study the performance and robustness of our light field disparity estimation frame-
work on different datasets, Buddha [164], Watch [1], Amethyst and Truck from the Stan-
ford light field archive.? We compare our results with two light field depth estimation
schemes [86, 162], and convex formulations [125]. Our parameters are: u=0.6 and y=1
for all datasets, and A =0.1 for Amethyst and Truck. We work with 5 x 5 pixels patches
(W =5). Our algorithm is also demonstrated in the limit case where there are only two
views (stereo). The group sparsity constraint can still work quite successfully. Another
important factor is the input image size. We find that the method works better with
high resolution images. However, it can also perform reasonably well on low-resolution
data. In contrast, [86, 162] are challenged with few views and/or low-resolution images.
The runtime of our algorithm is higher than [86]. If parallelism is fully exploited the
ideal running time is about 1-3 minutes depending on the resolution and number of
views. In our experiments, we search through 200 disparity candidates to determine the
10 candidates.

Figure 5.1 compares our scheme with simple plane sweep disparity search (independently
at each pixel). We observe that our scheme imposes the global smoothness on the
estimated disparity while the plane sweep fails to provide a smooth disparity map. As
expected, the number of views used in the disparity estimation problem improves the
depth estimate considerably. In our approach, an increase in the number of views results
in more samples per disparity candidate in the Q matrix, therefore a better chance of
fitting data more reliably. This is clearly noticeable in Figure 5.1 and Figure 5.2. We
compare qualitatively our disparity estimation algorithm with the techniques introduced
in [66, 162] in Table 5.1. It is clear that our scheme provides a better reconstruction
quality. In Figure 5.4, we illustrate how the patch size W has an immediate effect on the
recovered depth map. As is well known, the larger the patch, the less noisy the depth
estimate is. However, increases in patch size also affect the performance of the algorithm
in the recovery of small details.

Table 5.1: Qualitative results for Buddha shown in Figure 5.1. The table shows the
percentage of pixels with relative depth error of more than 0.2%, 0.5% and 1%.
4 views 3 views [66] [162]
1% | 0.5% | 0.2% 1% 05% | 02% | 1% | 0.5% | 0.2% | 1% | 0.2%
0.13 1033 | 1.9 0139 | 0.33 | 1.99 | 1.15 | 2.44 | 15.05 | 2.9 | 60.4

2See http://lightfield.stanford.edu.

76


http://lightfield.stanford.edu

5.7. Conclusions

5.6.1 Convex labeling
Given c, the disparity p is determined at each pixel (x,y) independently by solving

pry= argmax [kl (5.30)
P€{p1,...,PD}

However, one can introduce a convex labeling by fitting a convex function per patch to
the estimated ¢y, and impose a smooth prior such as TV constraint on the recovered
disparity to solve an inpainting problem.

0 =argmin A|Vpll2— fe(p), (5.31)
0

where A >0 is a constant and f¢ is the convex function fitted to ¢y . This formulation
can help to remove the disparity noise however it can smooth some details.

5.6.2 Multiview Depth Estimation

We test our light field depth estimation technique on the Middlebury dataset® with
stereo methods [178], two light field depth estimation schemes [86, 162], and convex
formulations [125, 126]. Our parameters are: p=0.6 and y =1 for all datasets, then
A =0.5 for Venus, A =0.15 for Cone.

One aspect we would like to point out is that the number of views used in the depth
estimation problem improves the depth estimate considerably, this is clearly noticeable
in Figure 5.6. Our algorithm is also demonstrated in the limit case where there are only
two views (Figure 5.7). The group sparsity constraint can still work quite successfully.

5.7 Conclusions

We have presented a novel convex formulation to estimate depth from light field data.
The method is based on a careful discretization of disparity values and exploits a linear
patch-based formulation to represent patches in one view with patches in other views.
The proposed model can easily be extended to handle simple departures from the ideal
Lambertian model. For example, the current model can already handle contrast changes
due to illumination (these changes would be reflected in the magnitude of the coefficients
of ¢). The problem of depth estimation is cast as a minimization problem subject to
group sparsity constraints and spatial smoothing. To gain computational efficiency we
use the primal-dual method. This results in an algorithm where each dual variable
update can be computed easily, independently and efficiently. Our experiments show
that this method competes well with the state of the art.

3http://vision.middlebury.edu/stereo/data,/
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A
(a) True depth (b) Sweep (c) stereo

A

(d) 3 views (e) 4 views

(g) 4 views 1% (h) 3 views 1% (i) stereo 1%

(k) 4 views 0.2% (1) 3 views 0.2% (m) streo 0.2% (n) [66] 0.2%

Figure 5.1: Disparity estimation of Buddha dataset. From left to right, top row shows:
the center view, the ground truth, the depth map obtained by plane sweep depth search
(independently at each pixel). Middle row: the estimated depth map using different
number of views, and the depth map obtained from [162]. Bottom: the estimated
disparity in areas with error more than 1% are highlighted in red. We observe that an
increase in the number of views improves the reconstruction quality and our scheme
provides sharpe edges while the depth map estimated using [162] blurs the edges and
has staircasing artifacts.
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(a) Input (b) Initial (c) 4 views

(d) [162] (e) [126]

Figure 5.2: Disparity estimation of Amethyst dataset from a camera array. (a) One of
the input images. (b) Initial depth estimate (plane sweep depth search) (c) Estimated
disparitity using our scheme. (d-e) Estimated depth map using [162] and [126]. Notice
how we obtain a reasonable estimate of the top part of the stone, while competing
methods either fail or obtain a noisier estimate.
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b Mgy T
B‘M,:ﬁ”‘“ﬂw-: -
PRy,

8 gy
hq W

(a) Center view (b) 4 views (¢) Manufacturer

(d) [162]

Figure 5.3: Depth estimation with the Raytrix plenoptic camera (handheld light field
camera). We compare our algorithm with the reference depth provided by the manu-
facturer and [162]. Our scheme on a handheld light field camera yields a more detailed
depth map.

(e) [162]

Figure 5.4: Disparity estimation of Truck dataset acquired by a camera array. We
assess the influence of patch size in our scheme. Increasing the patch size results in a
less noisy, but also smoother, depth map. In comparison to [86, 162], our algorithm
provides sharper edges with a noisier background. This is due to two main reasons: 1)
The initial 10 disparity candidates selected among 200 candidates do not contain the
true disparity value, which can be improved by working on 200 candidates using block
coordinate descent [154]. 2) The selection of the highest coefficients in ¢ may lead to
noisy disparity which can be addressed by imposing smoothness in the final estimation
of the disparity from the coefficients of c.
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R
s D

(a) Input (b) Independent Labeling (c) Smooth Labeling

Figure 5.5: Comparison of smooth disparity estimation with independent disparity es-
timation. We observe that smooth labeling can remove some noise as the result of
improper initial candidate selection (specially in smooth area), however it smooths out
some details with respect to independent disparity labeling.

(b) Ground truth (c) [178] (stereo) (d) [86] (8 views)

QL_

(e) Initial stereo (f) stereo (g) 4 views (h) 8 views

Figure 5.6: Disparity estimation from the multiview: Venus dataset. On the top row
we show (left to right): one input image, the ground truth depth map, the estimate of
[178] for the stereo case and that of [86] for 8 views. On the bottom row we show (left
to right): our initial depth estimate (plane sweep depth search), our final result with 2,
4 and 8 views.
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(a) Input 7 (b) Grounci truth  (c) [125] (Ste;eo) (d) Sweel‘) H (e) stereo |

Figure 5.7: Disparity estimation from stereo images: Cone dataset. Top image is one of
the input images. Bottom row (left to right): the ground truth depth map, the estimate
of [125] for the stereo case, our initial depth estimate (plane sweep depth search), and
our final result with 2 views.
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Chapter 6

Low-Power Compressive
Multi-channel Cortical Recording

6.1 Introduction

Wireless monitoring of brain activity through implantable devices is a promising technol-
ogy enabling advanced and cost-effective diagnosis and treatment of brain disorders such
as stroke, Parkinson’s disease, depression and epilepsy [110, 137]. Recording from mul-
tiple sites, however, introduces a major technological bottleneck as the large bandwidth
requirement for data telemetry which is not easily achievable by state-of-the-art wireless
technology. The increased power consumption of transmission for large recording arrays
can cause major safety and biocompatibility concerns regarding the applicability of such
devices. Thus, some type of data reduction prior to telemetry is needed to meet the

requirements of an implantable device.

Compressive sensing has been recently studied in the context of biological signals (e.g.
ECG [39, 105], EEG [30] and iEEG [70]) to tackle the data rate issue. When compared
to thresholding and activity-dependent recording, CS has the advantage of preserving
the temporal information and morphology of the signal for the entire recording period.
It is also possible to apply CS along with other methods (such as interpacket redundancy
removal, Huffman coding [105] or dynamic power management of the front-end LNA) in
order to further relax the stringent energy and bandwidth requirements of implantable

system.

While the majority of research presented in literature focus on power minimization of
the implantable system, there is also a stringent need to minimize the circuit area
in order to include the highest number of recording units into the available die area.
Large-scale recording of cortical activity is particularly important in the case of dis-
eases like epilepsy which spread over wide regions of cortical area. The state-of-the-art
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Figure 6.1: Block diagram of (a) the analog single-channel CS, (b) the digital single-
channel CS and (c) the proposed multichannel CS architectures.

research targeting such applications progresses toward minimally invasive flexible and
dense recording arrays with high-resolution recording capability of intracranial EEG
(iEEG) signals [145, 168]. The high resolution (i.e., small spacing of recording sites)
provides the capability of capturing higher frequency activity than traditionally record-
able by large widely-spaced electrodes, giving a profound insight into the fundamental
mechanisms underlying such abnormalities. Electrocorticographic signals recorded from
human cortex can be used as an alternative to invasive spike recordings through pene-
trating electrodes, in order to control prosthetic limbs in BMIs as shown in [48].

The common microelectronic approach to CS ([30, 33, 91]) consists of on-the-fly com-
pression of consecutive samples of each recording unit over time, either in analog (Figure
6.1(a)) or digital (Figure 6.1(b)) domain. Even though this approach results in a signif-
icant energy efficiency, its large area usage disqualifies the concept for a multichannel
recording interface which should include the circuits supporting many channels in a lim-
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Figure 6.2: System-level view of the proposed multichannel compressive sensing method
used in an implantable neural recording interface [141]. The neural signals sensed at the
electrode sites are amplified, randomly projected, summed up and digitized through a
single on-chip ADC. An RF unit placed within a burr hole in the skull transmits the
compressed and digitized data originating from several recording chips to an external
receiver and powers the implanted system.
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Figure 6.3: Measurement setup for clock and pre-recorded iEEG signal generation along
with our proposed iEEG compressive acquisition chip

ited die area. To overcome this issue, a new multichannel measurement scheme (Figure
6.1(c)) along with an appropriate recovery scheme are proposed, which encode the whole
array to a single compressed data stream. In the proposed approach, the compression
is carried out in the analog domain, and in a multichannel fashion. This technique
circumvents the need to place one ADC per channel and results in a significant area
saving. Figure 6.3 shows our iEEG compressive acquisition chip on the measurement
board. Based on our acquisition technique, a wireless monitoring system consisting of
several recording/compressing units is proposed (Figure 6.2). Taking benefit of the area-
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efficient implementation of CS, the number of recording units implantable on the cortex
which satisfy the energy constraints of the system is scaled up by a factor equal to the
compression ratio.

6.2 An Introduction to Compressive Sampling

Let x € R” represents a vector with S non-zero coefficients, an S—sparse vector. According
to compressive sensing, it is possible to recover x with m <« n non-adaptive linear mea-
surements [9, 22, 23, 41]. The compressive acquisition is modeled similar to linear inverse
problem where the general linear operation is replaced by a specific measurement\sensing
matrix A:R" — R™. The compressive measurements are formed by

y=Ax. (6.1)

The goal is to recover the vector x form the observation vector y. Unfortunately, this
problem is ill-posed and there are many solutions that fulfill the acquisition model (6.1).
However, we know that the original signal is sparse, therefore we can exploit the prior
knowledge on the signal and just look for the signals that are sparse and fulfill (6.1).
This means that we do not look for any signal but the sparse constraint restricts the
problem to a sparse solution therefore the signal recovery problem becomes well-posed
given the measurement matrix is properly constructed. In general, the sparsity level of
the signal is not known in advance. A natural way is to search for the sparset solution
that satisfies the measurement constraint y = Ax. As explained in Section 2.2, the sparse
recovery reads

X=argmin [x]|; s.t. y=Ax. (6.2)

xeRn

The solution to the problem (6.2) is equal to the original vector x if the measurement
matrix is appropriately constructed.

In the CS literature, one of the largely used tools to ensure a successful recovery of a
sparse or compressible vector x from the linear measurements is the Restricted Isometry
Property (RIP) [26, 27].

Definition 6.2.1 (Restricted Isometry Property). Matrix A € R™*" satisfies the
restricted isometry property for all S-sparse vector x € R” and a small restricted isometry
constant 6g<1 if

(1-69)IxI5 < IAX]I5 < (1 +635) [IxIl5. (6.3)

For orthogonal matrices the isometry constant is equal to zero for any sparsity level.
The RIP condition implies that the eigenvalues of the restricted matrix AgAS are in
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[1-06s,1+6g] for any subset 2 <{1,...,n}. RIP is a strong condition for practical designs,
yet we can hope that if a measurement matrix satisfies RIP condition with a sufficiently
small constant dg, then a perfect reconstruction of the S—sparse vector x can be acquired
from the observations y even in the presence of small perturbation.

For ¢y minimization if one was able to find the S—sparse vector through ¢y minimization
and if A satisfies the RIP of order 2S then there is a unique solution to y = Ax. However,
the relaxed ¢; minimization requires a stronger sufficient condition to guarantee the
exact recovery of the original vector x.

Theorem 6.2.1 ([128] ). Let matriz A€ R™™ satisfies RIP of order 2S with constant
0s< % Then every S—sparse vector X € R" is the unique solution to the problem (6.2).

The above theorem guarantees that if the measurement matrix satisfies the RIP of order
2S with 8 sufficiently sparse, then the exact recovery of the original signal is possible.
However, this theorem is for a perfect scenario where the signal is exactly S—sparse
and the acquisition is noise-free, which is not realistic in real problems. The following
theorem shows that if we consider a stronger condition on the measurement matrix, we
can recover a meaningful solution from the compressive acquisition in the presence of
measurement noise and if the signal is not exact-sparse.

Theorem 6.2.2 ([24] ). Let A be an m—by—n matriz with the restricted isometry con-
stant 8os < V2 —1. Suppose that the noisy measurement y = AX+n where ||nll2 <€ rep-
resents the additive measurement noise, then the recovered vector from the compressive
measurements can be recovered by

X=argmin x|, s.t. [y—Ax|;<e. (6.4)

xeR™
Then the following relation

N lIx—xsll1
[x—%|l2 < Coe + C,——, 6.5
2= Coet C1—< (6.5)
for some constants Co, Cy depends only on 82s. The vector Xg is the best S—term approx-
imation!

In (6.1), the first term is originated from the presence of measurement noise and the
second term measures the deviation of the vector x from the exact sparse representation
XsS.

1The best S—term approximation of a vector x € Rn reads

argmin [[x—-x2ll2 s.t. lXsllo < S.
xgeRM

This approximation keeps the S highest entries of x and thresholds the remaining coefficients to zero.
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6.2.1 Random Sampling

We discussed the sufficient condition based on RIP to recover an exact sparse or compress-
ible vector form compressive measurements. In the previous section, we have presented
sufficient conditions based on the RIP that guarantee stable and accurate reconstruc-
tions of sparse or compressible signals. However, we have not mentioned so far how
to construct such good sensing matrices. In this section, we present several matrices
constructed using a random process and satisfying the RIP with high probability.

Sub-Gaussian Matrices

Gaussian matrices and Bernoulli matrices are example of sub-Gaussian matrices. A
Gaussian matrix is formed by identically and independently sampling a Gaussian dis-
tribution .A(0,1/m), where m is the number of measurements. Likewise, a Bernoulli
matrix takes i.i.d. samples in {-1/y/m,1/\/m} with equal probability.

Theorem 6.2.3 ([8] ). Let matriz Ae R™"™ be a sub-Gaussian matriz. The matriz A

will satisfy the RIP of order S and constant ds <0 with overwhelming probability if
m = CSlog(n/S), (6.6)
for some constant C.

This result indicates that the number of required measurements to recover a signal
sampled by sub-Gaussian matrices is proportional to the sparsity of the signal. Therefore,
the sub-Gaussian matrices are optimal for compressive acquisition.

We should mention that the sub-Gaussian measurement matrices are universal with
respect to the sparsity domain, i.e. the number of measurements require to recover
the signal is independent of the sparsity domain. This property has advantage in real
applications since we do not need to adapt the sensing strategy of the signal to the
sparsity basis.

6.2.2 Sub-Sampled Orthonormal Matrices

The sub-Gaussian matrices though have nice features such as universality and optimal
number of measurements, they are not limited for practical applications. Since the sub-
Gaussian matrices are hard to implement in hardware and the recovery algorithms using
these matrices is slow. One way to achieve better sensing matrices is to randomly select
m column vector of an orthonormal Q € C™" as the discrete Fourier and Hadamard
matrices. Practically, these sensing matrices are important because they can be stored
efficiently and computation with these matrices is much faster that sub-Gaussian ma-

88



6.2. An Introduction to Compressive Sampling

trices. However, the number of measurements required to recovery a signal sensed by
these matrices is higher than sub-Gaussian matrices and unlike sub-Gaussian matrices
they are not universal.

Let consider the vector x is sparse in some orthonormal basis ® € R and A e R"™*" is
a sub-sampled measurement matrix, then

=Ax=A%a, 6.7
y

where a is an S—sparse vector. In order to check whether the sensing matrix satisfies
the RIP, we introduce mutual coherence.

Definition 6.2.2 (Mutual Coherence). Let ®,¥ be two orthonormal matrices. The
mutual coherence is defined as

p(®,¥)= max |<®;,¥; > (6.8)
<I,

1<i,j<n

The mutual coherence satisfies n™z < p(®,¥) <1 [128]. The minimum coherence is
obtained when both matrices are incoherent, e.g. Fourier transform and the identity
matrix (canonical basis) are maximally incoherent. The minimum coherence is when at
least one column vector in both matrices is the same.

The relation between mutual coherence and RIP of a sub-sampled matrix follows.

Theorem 6.2.4 ([128]). Let A€ R™" be an uniformly sub-sampled matriz form the
orthonormal matriz Q € C™", and ® e R™*™ an orthonormal basis. With probability at
least 1— n"’l‘)gs("), if

m= C5 *nu?(A, ®)Slog* (n), (6.9)

for some constant C,y > o, then the matrix ,/%AT(D, satisfies the RIP of order S with
constant 63<9.

The above theorem indicates that the number measurements for exact recovery of sparse
signal is proportional to u? (A,®). This means when the sensing matrix is not universal
the number of measurements is quadratic with respect to the mutual coherence. The
ideal situation is when the mutual coherence is minimum, in this case the number of
measurements is optimal as with sub-Gaussian matrices. However, when the mutual
coherence is maximum g = 1, the number of required measurements is equal to the
dimension of the vector.
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6.3 Multichannel Neural Compressive Acquisition

As discussed, compressive sensing exploits the known structures in the signals to lower
the required sampling ratio below the Nyquist rate, while providing a signal recovery of
acceptable quality.

In the case of multichannel neural recording, measurement limitations such as die area
and power consumption suggest the use of a multichannel compression technique rather
than acquiring each channel separately. Therefore, it is important to consider a mea-
surement scheme which fulfills the physical constraints of the system. Let X € RZ*"
represent the multichannel iEEG signal where d is the dimension of the signal in each
channel and in a defined time-window called compression block and n is the number of

dxn _, pd which transposes the input

channels. We define a reshaping operator P : R
matrix and vectorizes the resulting matrix by concatenating its columns after each other.
The linear compressive measurements are obtained by acquiring m = p/d measurements
from columns of X, i.e. m measurement at each time-sample from all channels, where
p < dxn is the total number of measurements. Hence, the multichannel sensing matrix

Apic € RUMDX(AM s represented as follows

Al 0 e 0 a}’l a;’n
0 Ay -+ 0 a?vl al?’”

Anic = : T, : A= : .. : (6'10)
0 0 - Ay a™ ... g

L L

where A; € R™*" and a; is uniformly selected from {0,1} to approximate a measurement
matrix similar to the Bernoulli matrix. The schematic of neural compressive acquisition
is demonstrated in Figure 6.4. The multichannel measurement vector y € R is defined
as

y=Ayc PX) (6.11)

6.4 Multichannel Neural Recovery from Compressive Mea-
surements

Wideband neural signals consist of high amplitude spikes followed by a long period of low
activity. As a consequence, the neural signals have a sparse structure in time domain.
The lower frequency EEG signals have a sparse representation in Gabor or wavelet
domains [70]. The multichannel neural signals have high inter-channel dependencies,
as the signals recorded by the adjacent channels, depending on the spatial resolution
and pitch of the electrodes, are delayed or scaled version of each other. Therefore,
it is important to consider a model in order to employ the cross-correlations in the
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Figure 6.4: Neural signal acquisition model. A 16-channel neural signal is compressed
to a 4-compressive measurements.

multichannel iEEG signals to efficiently reconstruct the underlying neural data.

6.4.1 Sparse Recovery

The simplest neural recovery from the compressive acquisition is to exploit the sparsity of
the neural signals in the Gabor transform. The recovery of the multichannel iEEG signal
from the compressive measurements explicitly employs a multichannel Gabor transform
®pic. The underlying neural signals in channels share similar structures. Hence, the
transform domain of the multichannel signal is a block-diagonal matrix which presents
the Gabor transform along the diagonal and is defined as

ovc=Lio®=|. . |, (6.12)

® € R¥*4 is the Gabor transform, I,, is the identity matrix of size nx n, and ® represents
the Kronecker product. Then we use ¢; minimization to recover the neural signals X
from the compressive measurements y using the following convex minimization

argmin @) Xvecl1 s.t. y=ApcPX) (6.13)
XEIRan

where Xyec is the vector form of X which includes the concatenation of its columns. The
measurement consistency in the recovery algorithm (y = Ayjc P(X)) pertains to obtaining
a signal X which is in accordance with the measurements y through the measurement
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matrix Ayc, i.e. (6.13) recovers a signal (X) which is sparse in the Gabor transform and
satisfies the measurement consistency constraint.

6.4.2 Mixed Norm Recovery

The multichannel neural signals have high inter-channel dependency, as the signals
recorded by the adjacent channels are delayed or scaled version of each other, depending
on the spatial resolution and pitch of the electrodes which indicates the propagation of
neural activity within the brain. The dependent structure of multichannel neural signals
suggests the design of a recovery model which exploits the similarity of neural signals.
The Gabor coefficients of iEEG signals recorded by adjacent channels in a Gaussian win-
dow are shown in Figure 6.5(a). The Gabor coefficients are observed to follow similar
activity among neural channels for each frequency.

As discussed in Section 2.3, we explained that the sparse prior induces coefficient-wise
sparsity without considering the inter-channel correlation between coefficients. However,
the neural recovery should also model the cross-correlations of iEEG signals to improve
the reconstruction quality. An appropriate model for multichannel neural signals should
highlight the group structure of Gabor coefficients, i.e. the model should lead to a
sparsity on the number of active frequencies and promote similar activity on the neural
channels for the selected frequency.

We model the dependency of neural signals using the group Lasso (the mixed ¢, norm).
As explained in Section 2.3.1, the group Lasso discards or retains a group of coefficients
together, since the same threshold is applied to the £5 norm of each group. However,
¢1 norm shrinks each coefficient independently. Consequently, the ¢, recovery does not
model the block structure of the neural signals.

However, the group Lasso respects the group structure of neural signals and imposes
sparsity on the group of coefficients rather than each coefficient independently. Thus,
the mixed ¢ ; norm promotes dense blocks for a sparse number of frequencies. Figure 6.5
compares the recovered Gabor coefficients of multichannel neural signal employing sparse
and group Lasso recovery in a Gabor window with the Gabor coefficients of the original
neural signal. In Figure 6.5, we observe that the recovered Gabor coefficients using
the group Lasso yield the same structure as of the original multichannel neural signals.
Furthermore, the sparse recovery (Figure does not respect the group structure of neural
signals and results in recovery of Gabor coefficients which are sparse and independently
spread along different frequencies for each neural channel. This behaviour is explained
by the fact that the sparse recovery does not consider the group structure of neural
signals. The solution to the multichannel neural recovery using the mixed ¢, norm is
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Figure 6.5: The structure of Gabor coeflicients of multichannel neural signals in a Gabor
window. (a) Original neural singals: the Gabor coefficients represent group structure
along frequencies. (b) ¢; norm: the Gabor coefficients are scattered and recovery does
not respect the group structure. (¢) Group Lasso: the joint recovery preserves the group
structure of Gabor coefficients.

obtained by replacing the ¢; norm by the mixed norm as

Yyie argmin  [layicllzr st. y=Pve P@vc anio). (6.14)
apceRIT

6.5 Microelectronic Architecture

In this section we briefly describe our sensing architecture more detail is included in [70,
142]. The system architecture of the proposed spatial compression scheme to realize
the multichannel sampling strategy presented in the previous Section is depicted in
Figure 6.6.
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Each channel of the recording scheme contains a low-noise amplifier (LNA) for boosting
the low-amplitude recorded signals in the front-end of the system. The amplified signals
of the individual channels are sampled on Cg and kept constant during m measurements.
The linearity of the track-and-hold circuit is guaranteed by using PMOS source-to-bulk
connected source-followers. The sampled signal charges the holding capacitor in the
first half cycle of the clock. In the second half, the holding capacitors of all channels are
connected to the integrating capacitor, based on the random value controlling the in-pixel
switch. Thus, the signals of all channels in the array are multiplied by the instantaneous
random value and summed together on Ciyp (Cint > Cpp). The compressed voltage
Vout (1) can be written as:

Caori(mMVi(n—-1/2)+...+ CHORn2 (M) Vi (n—1/2)
Cuopri(n) +...+ CaPruz(n) + CinT

: (6.15)

where V;(n) is the tracked level of the signal originating from channel number i at time
nT, with T being the period of the clock signal. ¢r;(n) is the level (1 or 0) of the random
sequence applied to i™® channel at time nT and n is the number of channels.

In the proposed method, compressive samples are acquired from different locations and
electrodes in the spatial domain, rather than over time. As a significant advantage, this
design encodes the full array to one single data which is digitized using a single ADC.
As a benefit of compressive sensing, the sampling rate of the latter ADC is n/m times
smaller than the sampling rate of the unique ADC which is required in a non-compressed
but time-multiplexed topology. Thus, the cost of implementation in terms of in-pixel
area and power is much less than previous topologies, including non-compressed and
single channel compressed schemes. Using a differential topology (Figure 6.6), the non-
linearity and DC components caused by the source follower buffer circuit are partially
removed. As an alternative, an active integrator can be used to perform the full array
randomized integration and boost the signal level at the cost of an additional operational
transconductance amplifier. The required speed of this amplifier is proportional to the
size of the array which dictates the measurement number m. The compressed signal
(Vout in Figure 6.6) passes through a variable-gain amplifier (VGA) to further boost
the level of the signal and drive the ADC.

6.5.1 Pseudo Random Matrix Generation

The actual implementation of compressive sensing requires an efficient generation of the
measurement matrix in terms of power consumption and area overhead. In a single
channel approach, each channel needs to be loaded with g sequences, building the rows
of the measurement matrix. Multiplication and integration in the analog domain (or
summation in digital domain) is performed in g paths. In the proposed spatial com-
pression scheme on the other hand, each channel is loaded with only one sequence. The
measurement matrix supporting the first m measurements required for recovering the
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Figure 6.6: Proposed multichannel compressive acquisition scheme for iEEG recording.

first sample of each channel is created by taking the first m values of the in-channel se-
quences. Pseudorandom sequences which exhibit low coherence with any fixed sparsity
basis [33] are a proper choice for the implementation of the measurement matrix.

In this design, the sequence generation is achieved by XORing the multiple outputs
of maximum different length Pseudo Random Bit Sequence (PRBS) generators (Fig-
ure 6.6). Considering a test recording array of 4 x4 and a value of m equal to 4
(Ratio Compression =4), the 16 sequences driving the individual channels are generated
by XORing the states of a 4-bit PRBS generator with another 5-bit PRBS generator.
True Single-Phase Clocked (TSPC) flip-flops are used resulting in very low power con-
sumption and a compact implementation. A small number of 9 flip-flops and 16 XOR
gates is sufficient to generate the required sequences for 16 channels. While a single
channel compression block has to be physically designed for a specific predefined g and
redesigned for different compression ratios, the proposed scheme is easily adaptable for
different values of m by simply adjusting the clock frequency. The same circuit can be
used for different compression ratios and the only change is in the reconstruction code
which receives m as a parameter. Therefore, the proposed scheme can be perfectly tuned
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to find the appropriate compression ratio based on the diagnostic and medical consid-
erations which impose the acceptable level of loss in the recovered data with respect to
the original neural signal.

6.6 Experimental Results

{41 . Bias
g Generator
3

5% 2% Channels
a1 2%

Summing stage

B

Gain stage

1.525mm

ADC, bias
generators,
PRBS generator

Summing Stage, Gain
PRBS Gen.  Stage

(a) (b)

ADC

Figure 6.7: (a) Microphotograph of the chip and an individual channel’s layout, (b)
power breakdown of a 16-channel compressive sensing array.

The microphotograph of the fabricated chip is shown in Figure 6.7(a). The total current
consumption of the chip including the buffers and bias generators is 140 pA drawn from
a 1.2 V power supply, corresponding to effective current of 8.75 A per channel. The
achieved power density of the system is 7.2 mW/cm?, significantly below the safety limit
of 80 mW/cm? [156] for an implantable system. The contribution of different blocks of
the system to the total power consumption is shown in Figure 6.7(b).

In order to demonstrate the effectiveness of the proposed acquisition model, a long
segment of multichannel iEEG signal recorded from subdural strip and greed electrodes
implanted on the left temporal lobe of a patient with medically refractory epilepsy
have been used as the input. The signals are recorded during an invasive pre-surgical
evaluation phase to pinpoint the areas of the brain involved in seizure generation and
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Figure 6.8: One channel of human intracranial EEG recording using strip and greed
electrodes implanted on the left temporal lobe. The recovery SNR is calculated by
averaging over 100 blocks of signal in the low-voltage fast activity region.

to study the feasibility of a resection surgery. This data includes minutes of pre-ictal,
ictal and post-ictal activities sampled at 32 kS/s, using Neuralynx. The signals recorded
by 16 adjacent channels of a greed of the electrodes are applied into the proposed CS
system.
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Figure 6.9: Comparison of recovery performance using different reconstruction methods
for a block of length 1024 and compression ratio of 4; (a) sparse recovery SNRcyy =
21.3 dB; (b) group Lasso recovery SNRcy; =28.04 dB.
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Figure 6.10: Comparison of mixed norm and sparse recovery performance for different
compression ratios. SNRs are averaged over 20 compression blocks.

6.6.1 Recovery Performance

As previously explained, we employ Gabor transform as the sparsity domain of neural
signals for multichannel neural recovery based on sparse and mixed norm methods. The
recovery SNR of the reconstructed signal (%) with respect to the original signal (x) is
calculated from

SNR = —20log,,llx — £ll2/llxll2 (6.16)

for each recording channel (e.g. SNRcy represents the recovery SNR of first channel).
The mean SNR of 16 channels are averaged over 100 blocks of the signal, as shown in
Figure 6.8. The performance of the circuit is validated for low-voltage fast activities
which are shown to be associated with seizure onset. The reconstructed signals versus
the original signals corresponding to one block of a single channel data using ¢; and
{51 norm minimization are shown in Figure 6.9(a) and Figure 6.9(b). The length of
each compression block (d) is equal to 1024 samples and is equivalent to 256 msec at a
4 kHz sampling frequency. The digitized data after ADC is used for recovery. As shown
in these figures, applying the ¢,; recovery on the compressed data produced by the
adjacent channels results in an improved recovery performance, compared to the sparse
recovery. The averaged SNRs using the ¢; and ¢,; recovery are 16.64 and 21.80 dB,
respectively. Based on the statistical analysis reported in [67], a minimum SNR of
10.45 dB (corresponding to a PRD of 30 %) is acceptable to maintain the diagnostically
important data in the recovered signal, e.g. for successful seizure detection. Reducing the
number of measurements to m =1, i.e. CR =16 results in average SNR =13.72 dB, using
?,1 recovery. Thus, the system is able to successfully recover low-voltage iEEG signals
compressed by a ratio as high as 16. Figure 6.10 presents the average reconstruction SNR
for sparse and joint recovery for different compression ratios. The achieved compression
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ratios vary within the range of 16/15 up to 16, corresponding to CR = 16/m, where m is
an integer number between 1 and 15.

As confirmed by the average SNR, the system is potentially able to recover the signal over
the entire recording period, with some tolerable loss (i.e. SNR >10.45 dB). However, the
amplitude and frequency of the recorded signals can significantly vary, depending on the
distance between the microelectrodes and their surface area [20]. The amplitude of the
very high frequency oscillations (250 —500) recorded using macroelectrodes [79] is much
smaller (5-30 versus 100 —1250 pV) than human fast ripples recorded from smaller
microelectrodes [20]. The amplitude of the fast ripples recorded by the high-density
arrays will expectedly fall within the range of tens-hundreds of microvolts, which is
efficiently recovered at the output of the system, as shown in Figure 6.9.

The required time for the reconstruction of the 1024—length epochs of the multichannel
signal is 1.12 second per channel, using a 2.66 GHz processor with 4 GB of RAM. To
achieve a real-time performance, the speed of the reconstruction could be improved by
hardware implementation of the algorithm on FPGA and using custom acceleration
techniques.

6.6.2 Effect of Circuit Non-idealities and Non-adjacent Channels

A second database consisting of multichannel intracranially recorded signals of the slices
of a rat somatosensory cortex under bicuculline, which blocks the synaptic inhibition and
consequently mimics the epilepsy, is applied to the CS recording system. This signal
includes epileptiform burst activity and extracellularly detected spikes. However, the
verifiable signals of this database are associated with electrodes randomly located on
the array. Consequently, these channels exhibit limited synchronous activity during the
seizure, compared to the previous database. This effect is reflected in relatively lower
recovery SNR of neural signals presented in Table 6.1. SNR is evaluated for each channel
and for the multichannel signal, by comparing Xye. with the reconstructed multichannel
data stream (defined as SNR).

Table 6.1: Recovery Quality In the Presence of Noise.

Performance Metric Gabor Transform, ¢, recovery, CR = 4
xQN¢ v QN x QN v QN MAT
xcktN? xcktN v cktN v cktN LAB
SNRc1 14.83 [dB] | 14.64 [dB] | 14.75 [dB] | 14.32 [dB] | 15.12 [dB]
SNRr 10.82 [dB] | 10.52 [dB] | 10.76 [dB] | 10.23 [dB] | 10.97 [dB]

%Excluding the quantization noise.
bExcluding the noise of the circuit.
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In order to study the effect of circuit non-idealities (such as quantization and ther-
mal noise) on the recovery performance, a comparison of SNR is also presented in Ta-
ble 6.1. The reconstruction results are compared by including and excluding different
noise sources in simulations. The results are compared to the recovery performance of
the compressed signal generated by matrix multiplication in MATLAB, using the same
matrix as the output of the on-chip PRBS generator. CS can improve the attainable
signal fidelity in the presence of sensor noise as shown in [31]. Although the recon-
struction performance of a CS system is not as good as a simple quantizer for noiseless
inputs [61], for more practical noisy signals recorded by the sensors, CS achieves a better
performance, i.e. lower energy and improved PRD (Percentage Root-Mean Squared Dif-
ference) [31]. The CS system filters some of the input noise during reconstruction [31],
and consequently is a correct choice for noisy environments such as a neural interface.
Otherwise expressed, the recovery algorithm discards the coefficients below a certain
threshold in the sparse representation of the signal. The discarded coefficients can be
interpreted as filtered noise.

The recovery performance of the proposed system is marginally affected by the quantiza-
tion noise of the ADC, as confirmed by the results of simulations presented in Table 6.1.
Excluding the circuit noise in simulations (thermal and flicker) results in a negligible im-
provement of the recovery performance which confirms the robustness of the CS system
against non-idealities induced by the circuit. Consequently, the specifications related to
the resolution of the ADC, the required noise performance of the analog front-end and
the summing stage preceding the ADC and therefore the total power consumption and
area of the chip can be further relaxed without jeopardizing the recovery performance.

6.6.3 Architecture Performance Comparison

Table 6.2 summarizes the performance of the system and presents a comparison with
published works. In this table, compression power and area refer to the extra power
consumption and area usage of the signal digitization, compression and thresholding
blocks which are commonly added to the total power consumption and area of the
analog front-end. The authors in [33] apply compressive sensing on a single-channel
pre-recorded EEG data by acquiring measurements in the digital domain. The power
saving is significant while the area overhead is not addressed. Due to the youthfulness
of the field and the lack of similar electronic architectures that use CS in brain im-
plants, we have compared our results with a Discrete Wavelet Transform (DWT)-based
design [81] for intra-cortical implants and several additional systems based on spike/AP
detection [60, 64, 118, 132] for implantable neural recording applications. While the
design in [81] mainly addresses the area-efficiency of the implantable system and pro-
poses an architecture that sequentially evaluates the DW'T of the multichannel data in
the digital domain, our results outperform this approach in terms of area and power
efficiency. In addition, high compression ratios are achieved by means of the following
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thresholding and redundancy removal stages, while the DW'T by itself does not result in
any data compression. Thresholding, however, results in a significant loss of the signal in
non-spiking regions while a more precise recovery is achieved at much lower compression
ratios (e.g. at CR=2 in [81]).
threshold values of different channels and additional blocks such as controllers, address

The chip includes several memory registers containing

generator and buffer units which degrade the power and area efficiency of the system.
Some of the reported spike detector systems achieve significant data reduction [64, 132]
with negligible overhead in terms of compression power and area [132]. However, the
patient-specific threshold setting in such systems can result in design complexity in a
real neural interface in addition to the loss of signal in non-spiking regions. Furthermore,
the transmitted signal may not be acceptable to the clinicians who usually prefer to have
access to the entire iEEG data, even though somewhat lossy, for a thorough neurological
examination.

Table 6.2: Comparison of system performance with published literature.

’ Parameter \ [33] \ [132] \ [64] \ [60] \ [81] \ Ours ‘
Tech. [um CMOS] 0.09 0.13 0.5 0.18 0.5 0.18
Power supply [V] 0.6 1.2 3.3 1.8 - 1.2
Comp.% method DCS | PWL SD? SD AP det. | DWT SD | MCS
Number of channels 1 1 100 16 32 16
Comp. area [mm?] 0.103 0.080 < 0.160 | > 0.0475 0.18 0.008
Comp. power [pW] 1.9 1.18 27 > 96 95 0.95
Sampling rate [kS/s] | <20 90 15 30 25 4
CR <10 125 150 48 <20 <16

%Compression
bSpike Detection

6.7 Conclusion

A new multichannel architecture for compressive recording of cortical signals at the sur-
face of the cortex is proposed. In addition to the area efficiency, the proposed method is
easily adaptable to different compression ratios, depending on the sparsity of the input
signals. The power efficiency resulting from the compressive sensing methodology in
addition to the minimal area cost, make this approach highly relevant for power- and
area-constrained multichannel sparse signal acquisition. This approach can be investi-
gated in other applications than neural recording, which require data recording from
multiple nodes. Extensive system-level analysis and simulations confirm the relevance
and efficiency of the system for high-density recording applications, compared to alter-
native compression methods.
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Chapter 7

Conclusion

This thesis argues that many problems in machine learning and signal processing produce
massive amount of data but with inherent structures. We believe the data deluge requires
a set of new strategies to establish connection between data acquisition and processing.
As a first step toward this goal, this thesis presents solutions that prove fruitful focus
on this aspect. Our approach leverages data structures to propose accurate algorithmic
schemes based on convex optimization tools to gain insights from high-dimensional data.

In this thesis, we show that considering data structures to design feasible algorithms is a
key that leads to rigorously reduce the acquisition time, sampling rate and transmission
power and also provides promising methods to extract information and recover the miss-
ing data points in the data flood. We believe the structure modeling of high-dimensional
data stretches far beyond the applications addressed in this thesis. The structures do
not restrict to the ones identified in this thesis and in fact we are at the early stage
of modeling the structures and yet there are many complicated structures to be inves-
tigated such as underlying structures in social networks and connection between brain
regions.

In the following, we explain the possible future direction of the applications discussed in
this thesis. We hope that this thesis inspires follow-on work to leverage data structures
to acquire information from high-dimensional data.

7.1 Future Work

7.1.1 Toward Ultimate Plenoptic Camera

The light field cameras explained in this thesis assume that some light field dimensions
are constant. However, as discussed in this thesis, there are strong correlations in all
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light field dimensions which are not yet explored. For instance, multi-spectral light fields
shown in Figure 7.1 demonstrates correlations between spectral, spatial and angular
dimensions. Therefore, leveraging the correlations in all light field dimensions should
be the purpose of future light field photography. However, prior to addressing the
correlations in all light field dimensions, we need to develop new acquisition techniques
to sample the plenoptic function. Similar to the coded acquisition, the computational
photography techniques based on compressive sensing framework can be used to capture
the full light field function.

3

3=490nm 3=550nm - & 4 s & ])=580nm & A 4 A =640nm

Figure 7.1: Multi-spectral light fields with 10 spectral channels and 5 x5 views. The
light field is captured using a X-Y translation table and a multi-spectral camera [165].

As discussed in this thesis, camera arrays or lenslet arrays provide accurate reconstruc-
tion of light fields. Light field views acquired with these methods are arranged on a
regular lattice and the displacement between them is linear. Thus modeling the correla-
tions between views can avoid the scene geometry. Another promising avenue of research
is to acquire light fields using unstructured grids [38]. This acquisition model requires
an interactive system to guide the user to cover the scene from different viewpoints.
However, to derive the correlations model between light field views, we need to consider
more sophisticated structures and the modeling cannot discard the scene geometry.

7.1.2 Cortical Recording

There is a wide possibility of hardware improvements for the explained cortical signals
acquisition scheme such as investigation for more advance power efficient acquisition
implementation. Another promising line of research is an adaptive measurement scheme
to incorporate the interaction between the encoder and decoder in the acquisition process
to design an ultra-low power acquisition process. A part from the encoder investigation,
on the decoder side deploying models to better leverage the correlations between neural
channels can be further explored. For instance, the neural channels can be modeled
as several independent active source where the measurements are acquired from the
linear combination of these sources. In addition, for epilepsy seizure detection one
can re-design the neural recording process such that directly acquire the seizure at the
encoder and transfer the seizure to the decoder or the seizure detection can be performed
directly on measurements or a coarse reconstruction of neural channels instead of their
full reconstruction.
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Appendix A

Tensor Algebra

This section briefly reviews some concepts and notations for tensor algebra required for
light field photography. We refer the interested readers to relevant literature [34, 87].

A tensor is a multi-dimensional array of data which is the generalization of matrices
to higher dimensions. The number of dimensions of tensors is called mode or order. A
mode N tensor is denoted as & € R™M* ™ A vector is a mode-1 tensor and a matrix
is a mode 2 tensor.

Fibers are associated to vectors in a tensor. A fiber is defined by fixing all modes
except one in a tensor. For example, mode-k fibers are all vectors derived by fixing

{nl;-nrnk—l» Nit1ye00) nN}

Slices are obtained by fixing all but two tensor indices. Slices are two-dimension section
of tensors, we adopt the convention that the first unfixed index is the row index and the
second is the column index of the slice.

A rank one mode-N tensor is constructed from the outer product of N vectors
Z=uPou?o...ou™, (A.1)

o represents the vector outer product. Each element of the tensor is the product of the
corresponding vector elements, i.e.

. oo — ., @ ... (N)
Xiyigyyiy = Up " O Uy 7O 2O U 7

(A.2)

A.0.3 Matricization and Tensor-Matrix Product

There are many ways to assemble a tensor to a matrix, a convenient way to unfold a
tensor to a matrix along mode-k is a matrix of dimension ng x (ny -+ Rg_1 Ry --nN). The
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mode-k unfolding of tensor & is denoted as X(). Mode-k tensor unfolding maps tensor
element (iy,is,...,7y) to matrix element (ig, j) such that

N m—1
j=1+ Y (m=DJm JIm= [] np (A.3)
m=1,m#k p=1,p#k

The tensor-matriz product, also known as mode-k product, of a tensor & € R™* >N and
a matrix A € R™*" is denoted as

@Z%XkAERnlxnzn-xnk,lxmxnkﬂ><~~~an. (A4)

Each element of the product computes

ng

Yitseonik—tsjloTks1rmin = Z Xty l—1yik Eest e iN By ik (A'5)
ir=1

for jr=1,2,...,m. The tenor-matrix product can be expressed in tensor unfolding format
Y = AX;. (A.6)
For distinct modes in a series the order of multiplication does not matter, i.e.

%‘XkAXjB:%‘X]‘AXkB. (A?)

A.0.4 Kronecker and Khatri-Rao Product

The Kronecker product of matrices A€ R™*" and Be R/**, denoted as A®B, results in a
matrix of dimension mj x nk

A;B ApB ... A,B
AB A»pB ... Ay;B
A®B= ) ] ) (A.8)
ApmB AppB ... ApuB
The Khatri-Rao product between A € R™ " and B e R/*" is defined by
AoB:[a1®b1a2®b2---an®bn], (Ag)

a. and b. are column vectors of A and B. The Khatri-Rao and Kronecker products are
identical for vectors.
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A.0.5 Inner Products and Tensor Norms

Inner product of two tensors & and & of the same size is defined as

ny N
(XY= Y Xigyin Vitin: (A.10)

i1:1 inzl
The induced tensor norm from inner product is defined as

12 1Ip = VAZ, 2Z). (A.11)

A.0.6 Tensor Decomposition

Unlike matrices, tensor rank is not uniquely defined. In this section, we discuss different
tensor decomposition techniques to approximate a tensor with a few components.

CANDECOMP/PARAFAC decomposition

The CP decomposition factorizes a tensor into a sum of rank-one tensors

k
%=Zu(,1)ou(.2)o~-ouE.N). (A.12)
i=1

14 l

The rank of tensor & is equal to the minimum number of rank one tensors that sum to
Z.

For matrices the best k-rank approximation is given by the first k components of the
matrix SVD. That is for the matrix A the best k-rank approximation is

k
A= ZO’,’U,’OV,' (A13)
i=1

For tensor approximation the best (k-1)-rank approximation is not a factor in the best
k-rank approximation [87]. This yields that the tensor decomposition is not sequential.

To determine the best rank approximation of a tensor most algorithms try for different
ranks until the desired approximation. Having fixed the best rank approximation, we
can factorize a tensor into CP components by Alternating Least Square (ALS) [87]. To
express the decomposition, we choose a mode-3 tensor and the best k-rank approximation
boils down to

k
min |2 - [0V, 0@, 0%y, (0D, 02, 09]1=Y ulVou® oul®. (A.14)
@ = 14 1 1

The ALS algorithm fixes U® and U® and solves the minimization for U, and then

107



Appendix A. Tensor Algebra

fixes U® and UWV computes the minimization for U® and follows the same procedure
for U®. The algorithm repeats these steps till a convergence is achieved. Having fixed
all but UY, we can employ tensor unfoldings to have the following minimization

min|2 - U0 o U) T, (A.15)
Khatri-Rao product simplifies the minimization to
U =Xy U¥ o U(Z))(U(S)TUB) * U(Z)TU(Z))T, (A.16)

* represents the matrix elementwise product. The CP decomposition for higher-order
tensor is explained in Algorithm 6.

Algorithm 6: ALS algorithm to compute CP decomposition of mode-N tensor with k
components [87].

Initialization: X € R™%*k for n=1,...,.N
while not converged do
for n=1,...,N do
P=UuL"gW ...« gr-D"gr-D , ge+D)T g+ , g g,
L U =X,y UV oUW o 0 UMD o gD o...o UD)Pt 7

Tucker Decomposition

The Tucker decomposition is a form of tensor decomposition that factorizes the tensor
into a core tensor multiplied by a matrix along each mode. The Tucker decomposition
of mode-N tensor [87] is :

%zchlU(l) X2U(2) Xg--'XNU(N). (Al?)

The elementwise Tucker decomposition is defined as:
oo W@, ,m
— D@2
xilig...iN - Z Z e Z Cr1r2~~-rNur1 urz "'urN .
1

rn=1r=1 rnN=

Tucker decomposition in matrix format is calculated by
X =U0"CUV ..U VeuVe...e uUM)T, (A.18)
The n-rank of a tensor &', denoted as rank, (%), is the column rank of X, i.e. & has

rank(, = (Ry, Ry, ..., Ry). The n-rank defines unfolding rank of a tensor and it should not
be confused by the tensor rank which is the minimum number of rank one tensors.
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Tucker decomposition is known as higher-order SVD (HOSVD) [92] . HOSVD is a
generalization of matrix SVD to higher order tensor decomposition. The HOSVD de-
composition applies matrix SVD to tensor unfolding along each mode. The HOSVD
decomposition of a mode-N tensor is defined in Algorithm 7.

Algorithm 7: HOSVD decomposition of a mode-N tensor with ranky(ry,7,...,rn) [87].

for n=1,...,N do
L U = first 7, singular values of X,

%z%xlU(”T XZU(Z)T X3z XNU(N)T

A.0.7 Square Norm

The definition of rank ) motivates to recover a low-rank matrix by the convex minimiza-
tion of Y; A;lIX(jll« from linear measurements. This approach for tensor recovery from
sum of nuclear norms obtained from tensor unfoldings has widely used in [3, 52, 92, 102].
Oymak et al. [119] has shown thought it seems trivial to recover the simultaneous struc-
tures of an object by combining the convex relaxations of each structure, the recovery is
not more successful than the best single regularizer. Mu et al. [112] used this proof to
show that the sum of nuclear norms for tensor unfolding does not represent the tensor
structure and the number of required measurements to recover the low-rank tensor is the
same as number of measurements required to the tensor unfolded along just one mode.
The notion of Square norm, which is matrix reshaping of a tensor unfolding, for con-
vex low-rank tensors recovery is introduced in [112]. However, the number of required
measurements for convex surrogate of tensor rank recovery is higher than non-convex
model [112, 129]. The reason can be explained by the fact that unlike nuclear norm for
matrix recovery which is the tightest convex envelop to matrix rank [131], the square
norm for tensor rank is not tight.
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