
Safety-Liveness Exclusion
in Distributed Computing

Victor Bushkov
EPFL, IC, LPD

victor.bushkov@epfl.ch

Rachid Guerraoui
EPFL, IC, LPD

rachid.guerraoui@epfl.ch

Abstract
The history of distributed computing is full of trade-offs between safety and liveness. For instance,

one of the most celebrated results in the field, namely the impossibility of consensus in an asynchronous
system basically says that we cannot devise an algorithm that deterministically ensures consensus agree-
ment and validity (i.e., safety) on the one hand, and consensus wait-freedom (i.e., liveness) on the other
hand.

The motivation of this work is to study the extent to which safety and liveness properties inherently
exclude each other. More specifically, we ask, given any safety property S, whether we can determine
the strongest (resp. weakest) liveness property that can (resp. cannot) be achieved with S. We show that,
maybe surprisingly, the answers to these safety-liveness exclusion questions are in general negative. This
has several ramifications in various distributed computing contexts. In the context of consensus for exam-
ple, this means that it is impossible to determine the strongest (resp. the weakest) liveness property that
can (resp. cannot) be ensured with linearizability.

However, we present a way to circumvent these impossibilities and answer positively the safety-
liveness question by considering a restricted form of liveness. We consider a definition that gathers
generalized forms of obstruction-freedom and lock-freedom while enabling to determine the strongest
(resp. weakest) liveness property that can (resp. cannot) be implemented in the context of consensus and
transactional memory.

1 Introduction

The correctness of a distributed algorithm is expressed through safety and liveness properties [30, 1, 33, 29].
These properties can be defined as sets of histories (traces). More specifically, a safety property is defined
as a prefix-closed and limit-closed set of well-formed histories [29]. Whereas, a liveness property is defined
as a set of histories that permits any finite well-formed history, i.e., for every finite history there exists a
continuation of that history in the liveness property [29].

Because a liveness property basically states that certain ’good’ events should eventually happen while a
safety property states that certain ’bad’ events should never happen, it occurs sometimes that a safety prop-
erty makes it impossible to guarantee a liveness property, i.e., when the ’bad’ and the ’good’ coincide. For
example, it is impossible to implement a consensus shared object using only asynchronous read/write shared
memory while ensuring both wait-freedom, a liveness property, and agreement and validity, a safety prop-
erty [8, 28]. The history of distributed computing is full of such trade-offs [7, 19, 37, 22, 13, 14, 6, 12, 4].

We ask the questions of safety-liveness exclusions: namely if we can determine, given any safety property
S, the strongest (resp. weakest) liveness property that can (resp. cannot) be achieved with S. In the context
of consensus for instance, this would mean determining the strongest liveness property that can be ensured
while still ensuring consensus safety. Given that consensus is at the heart of state machine replication [26,
32, 11, 27], addressing such questions could enable us to determine the maximum availability (liveness) to be
expected if the consistency (safety) of a shared distributed service needs to be preserved. More specifically,
given S and L the sets of safety and liveness properties respectively, we seek to determine if there is a mapping
fw : S→ L (resp. fs : S→ L) that maps every safety property S ∈ S onto the weakest (resp. strongest) liveness
property L ∈ L that cannot (resp. can) be achieved with S.

When the strongest possible liveness property in a given context is known to be implementable with a
given safety property, the answer to the above question is trivial. In many cases, however, the question is
more challenging. We show in this paper that, maybe surprisingly, in the general case, it is impossible to
determine the strongest (resp. weakest) liveness property that can (resp. cannot) be achieved with a given
(non-trivial) safety property. In other words, the safety-liveness exclusion mappings do not exist.

We proceed as follows. We consider a general asynchronous shared-memory distributed system, in which
any number of processes can fail by crashing, and we say that a liveness property excludes a safety property of
a shared object if every implementation of that object which ensures the safety property, violates the liveness
property. We then show that there is no strongest liveness property that does not exclude a given safety
property in a non-trivial case, and give a necessary and sufficient condition when there is a weakest liveness
property that excludes a given safety property.

• If Lmax is the strongest possible liveness property among all liveness properties (Lmax is a liveness
property that requires progress for all non-crashed processes), then the first result states the following.
If there exists a strongest liveness property that does not exclude a given safety property, then such
property must be Lmax.

• The fact that a liveness property L excludes a safety property S means that there is an adversary w.r.t.
L, i.e., an entity that plays against an implementation ensuring S and that decides on the schedule and
inputs of processes to win the game by having the implementation violate L. Our second necessary and
sufficient condition states that there is a weakest liveness property that excludes safety property S iff
for all adversaries w.r.t. Lmax, the intersection of their behavior is also a behavior of an adversary w.r.t.
Lmax.

For all common safety properties studied in the literature and all common liveness properties, it is possible
to find two adversaries the intersection of which behavior is not a behavior of an adversary, e.g. by considering
two adversaries that make processes invoke operations with different arguments or different process identi-
fiers, which results in two disjoint behaviors. Thus, for all common safety properties which are impossible to
implement together with a corresponding strongest liveness property Lmax, we have two impossibility results.

1

They basically state that there are no safety-liveness exclusion mappings.
A corollary of our impossibilities is, for instance, that there is no strongest liveness property that can be

implemented (resp. no weakest liveness property which is impossible to implement) together with consensus
safety, i.e., agreement and validity. Also, we can now answer questions such as the one raised in [4], about
the existence of a weakest transactional memory (TM) liveness property which is impossible to implement
together with opacity [15] and the existence of a strongest TM liveness property implementable with opacity∗.
We show that there are no such liveness properties. In fact, our impossibilities can be applied to many
other contexts, such as k-set agreement [3] or high-level object implementations from registers [19] to show
that there is no strongest implementable liveness property (resp. no weakest non-implementable liveness
property).

One way to circumvent our impossibilities is to restrict the definitions of liveness and safety, i.e., basically
to consider subsets S ⊆ S and L ⊆ L, so that it is possible to find mappings fw : S→L and fs : S→L .
We explore a restricted definition of liveness that covers properties of non-blocking systems and includes
properties that require either minimal or maximal progress and which are either dependent or independent
of a scheduler.† Our restricted definition combines the notions of k-obstruction-freedom [35] and l-lock-
freedom. While k-obstruction-freedom is a dependent maximal progress guarantee that requires progress
of every process in a group of less than k processes which execute alone, l-lock freedom is an independent
minimal progress guarantee that requires progress of at least l correct processes. We define a liveness property
as a union of l-lock-freedom and k-obstruction-freedom, where l ≤ k, and call such a property (l,k)-freedom.
Being general enough, (l,k)-freedom covers liveness properties of shared objects considered most commonly
used in literature and allows us to positively answer the safety-liveness exclusion question for many common
safety properties. For example, considering consensus in a read-write shared memory system of n processes,
the strongest implementable liveness property is (1,1)-freedom and the weakest non-implementable is (1,2)-
freedom; while for TM implementations the strongest implementable liveness property is (1,n)-freedom and
the weakest non-implementable is (2,2)-freedom. Finally, we show that (l,k)-freedom has its own limitations
by giving an example of a TM safety property for which we cannot find a weakest liveness that excludes the
safety property.

The rest of the paper is organized as follows. Section 2 recalls basic definitions of a shared memory sys-
tem. Section 3 defines safety and liveness properties. Section 4 poses the safety-liveness exclusion problem.
There we give our impossibility results for the general case. Section 5 describes one way to circumvent the
impossibility results. Section 6 concludes the paper by discussing alternative ways.

2 System Model

We consider a general shared memory system of n asynchronous processes which might stop by crashing.
The processes interact with each other only by performing atomic primitives on base objects. Base objects are
shared objects, like read/write registers, test-and-set, compare-and-swap and etc., which are usually provided
by the hardware and which are used to implement higher level shared objects. We assume that each process
is sequential in the sense that after invoking a primitive, the process cannot invoke another primitive until it
receives a corresponding response.

A shared object is defined by its type. A shared object type T p is a tuple (St, Inv,Res,Seq), where St is
the set of all possible states of the object, Inv is the set of all possible invocations on the object, Res is the set

∗It was shown in [4] that in the case of TM shared objects [18, 21, 34], it is impossible to ensure both opacity and local progress,
the strongest liveness property. However, the question whether there exists a weakest TM liveness property that excludes opacity or
a strongest TM liveness property that does not exclude opacity remained open.

†A non-blocking system is a one in which no process p can prevent other processes from making progress once p crashes, i.e. stops
participating in a computation. A maximal [23] progress guarantee requires progress for all processes while a minimal [23] progress
guarantee requires progress for some processes. A dependent [23] progress guarantee depends on the scheduling of processes while
an independent [23] progress guarantee has the same requirement irrespectively of how processes are scheduled.

2

of all possible responses from the object, and Seq ⊆ Inv×St×St×Res is the sequential specification of the
object. An implementation I of a shared object of type T p is a set of algorithms {I1, . . . , In} on base objects
such that each algorithm Ii corresponds to a process pi. When process pi invokes invi on I, where inv is some
invocation from Inv, it executes algorithm Ii with invi as an input of the algorithm. When executing algorithm
Ii process pi performs steps which could be an invocation, a response, or an atomic operation on base objects
and local computations. The order in which processes take steps is determined by an external entity called
a scheduler over which processes have no control. The system is asynchronous in the sense that a scheduler
may delay any process for an arbitrary long period of time and there is no way for one process to determine if
some other process is crashed or delayed.

We use the widely known I/O automata model of asynchronous shared memory systems [29] in which
invocations and responses are input and output actions of an automaton. An I/O automaton A is a 4-tuple
(states(A),sig(A), init(A), trans(A)) [29, 33], where:

• states(A) is a (finite or infinite) set of states,

• init(A)⊆ states(A) is a set of initial states,

• sig(A) = (in(A),out(A), int(A)) is an action signature, which partitions the set of all actions acts(A) =
in(A)∪out(A)∪ int(A) into input actions in(A), output actions out(A), and internal actions int(A),

• trans(A)⊆ states(A)×acts(A)× states(A) is a transition relation.

An execution of an I/O automaton A is a finite or infinite sequence of alternating states and actions s0 ·a1 ·
s1 · a2 · s2 · . . . such that: (I) s0 ∈ init(A), (II) (si,ai+1,si+1) ∈ trans(A) for every i ∈ {0,1,2, . . .}, (III) if the
sequence is finite, it should end with a state. The longest subsequence of an execution of A consisting only
of actions from in(A)∪out(A) is called a history. An action a ∈ acts(A) is enabled at a state s ∈ states(A) if
there exists a state s′ ∈ states(A) such that (s,a,s′) ∈ trans(A).

Let A1 and A2 be two I/O automata. Automata A1 and A2 are compatible if out(A1)∩ out(A2) = /0,
int(A1)∩ acts(A2) = /0, and int(A2)∩ acts(A1) = /0. The composition A1×A2 of compatible I/O automata
A1 and A2 is an I/O automaton A such that:

• states(A) = states(A1)× states(A2),

• init(A) = init(A1)× init(A2)

• sig(A) = (in(A),out(A), int(A)) is such that:

– int(A) = int(A1)∪ int(A2)∪ (in(A1)∩out(A2))∪ (in(A2)∩out(A1))
‡,

– in(A) = (in(A1)∪ in(A2))\ int(A),

– out(A) = (out(A1)∪out(A2))\ int(A),

• ((s1,s2),a,(s′1,s
′
2)) ∈ trans(A) iff for every i ∈ {1,2} the following holds:

– if a ∈ acts(Ai), then (si,a,s′i) ∈ trans(Ai),

– if a /∈ acts(Ai), then si = s′i.

‡Since in our model we assume invocations and responses with unique process identifiers, there is no invocation or response event
which is associated with more than one process. Therefore, unlike [29, 33], we use a simplified definition of composition when input
and output actions, that are used for communication between components, are hidden by becoming internal actions.

3

An implementation I = {I1, . . . , In} of a shared object of a type T p = (St, Inv,Res,Seq) is modeled by
the composition AI = AI1 × . . .×AIn ×AB. Automaton AB models the behavior of all base objects used in
the implementation (which can be represented as the composition of all automata corresponding to each
base object). Each I/O automaton AIi models the behavior of algorithm Ii such that: states(AIi) is the set
of all states of Ii and init(AIi) is the set of initial states of Ii, {invi|inv ∈ Inv} ⊆ in(AIi), {resi|res ∈ Res} ⊆
out(AIi). Output actions from out(AIi) \ {invi|inv ∈ Inv} are input actions of base objects and input actions
from in(AIi)\{resi|res ∈ Res} are output actions of base objects.

A process pi is pending in a history h of AI if h|pi ends with an invocation, where h|pi is the longest
subsequence of h consisting only of acts(AIi). Note that h|pi does not include input and output actions of AIi

which are used for communication with base objects modeled by AB, this is so since such actions become
internal in the composition AI = AI1 × . . .×AIn ×AB. Process pi is pending at a state s if s is reachable
from an initial state by executing history h in which pi is pending. An I/O automaton AI is input-enabled
if for every process pi, every invocation inv ∈ Inv, and every state s of AI the following holds: if process pi
is not pending at state s, then invi is enabled at state s. Let hi be a history consisting only of actions from
{invi|inv ∈ Inv}∪{resi|res ∈ Res}, then history hi is well-formed, if h is a sequence of alternating invocations
and responses starting with an invocation. A history h of an I/O automaton AI is well-formed if for every AIi

history h|pi is well-formed. Herein, we consider only well-formed histories and require each I/O automaton
AIi to be input-enabled.

To model process crashes, we augment the model with a special input action crashi [29] and a special
state scrashed,i of AIi corresponding to each process pi. At state scrashed,i, no action of AIi is enabled, and from
every state s 6= scrashed,i of AIi , there is a transition (s,crashi,scrashed,i). When an I/O automaton AIi executes
action crashi, it means that process pi crashes and stops executing any steps. Process pi crashes in history
h, if h has a crashi action. Otherwise, process pi is said to be correct in history h. For every object type
T p = (St, Inv,Res,Seq) we denote by exti(T p) the set ({invi|inv ∈ Inv}∪{crashi}∪{resi|res ∈ Res}) and by
ext(T p) the set

⋃
1≤i≤n exti(T p).

3 Correctness properties

3.1 Safety

A safety property states that some ’bad’ events will never happen. For example, linearizability [24], serializ-
ability [31], and opacity [15], safety properties of shared memory systems, require that processes never receive
responses which result in an inconsistent view of a shared memory system. A safety property is defined as a
prefix-closed and limit-closed set of histories [1, 29].

Definition 3.1. A safety property S of a shared object of type T p = (St, Inv,Res,Seq) is a non-empty set of
histories consisting of actions from ext(T p) such that (1) if h ∈ S, then every prefix of h is in S, and (2) if
h1,h2, . . . is an infinite sequence of finite histories in S such that h j is a prefix of h j+1, for every j, then the
unique infinite history which is the limit of h1,h2, . . . is also in S. Implementation I of T p ensures safety
property S if every finite history of AI is in S.

We assume that each safety property does not contain histories which cannot be implemented, i.e. we
assume safety properties S such that for any history h ∈ S, there exists an implementation I such that h is a
history of AI and I ensures S. We also make an additional assumption that a safety property should allow at
least one response for any invocation that executes sequentially from an initial state. Specifically, we require
that for each inv ∈ Inv and each process pi there exists res ∈ Res such that invi · resi ∈ S.

3.2 Liveness

A liveness property states that some ’good’ events will eventually happen. For example, wait-freedom [19, 23]
states that every operation by a correct process should eventually return a response. Starvation-freedom [2, 23]

4

states that every correct process that tries to acquire a lock should eventually succeed. Local progress [4] states
that every correct process should eventually commit its transactions.

A liveness property is a property which permits every finite history [30, 1, 29]. For I/O systems, a liveness
property states that an input is eventually returned a corresponding output [33]. In particular, for shared
memory systems, a liveness property states that some process is eventually returned a desirable response,
i.e. makes progress [23, 25, 35]. For each shared object type, there is a property that requires progress
for all correct processes, the strongest liveness requirement that can be expected. For example, for shared
registers, the strongest liveness requirement is wait-freedom. Starvation-freedom is the strongest liveness
requirement for lock-based implementations. For TM objects, the strongest liveness requirement is local
progress. Hence, for every shared object type we assume a property Lmax which states the strongest liveness
requirement. Formally, with each shared object type T p = (St, Inv,Res,Seq) we associate some set Lmax of
histories consisting of actions from ext(T p) such that every finite history h consisting of actions from ext(T p)
is a prefix of some history in Lmax, i.e. there exists a history h′ such that h ·h′ ∈ Lmax. Like fairness properties
are defined in [38], we define each liveness property as a weakening of Lmax:

Definition 3.2. A set L of histories consisting of actions from ext(T p) is a liveness property of a shared object
of type T p if Lmax ⊆ L.

Let I be an implementation of an object of type T p. Intuitively, implementation I ensures liveness property
L if every fair history of AI is in L. The restriction to fair histories is necessary because a liveness property
cannot require progress from processes which do not get fair turns from a scheduler to perform steps [10]. An
execution e of I/O automaton AI is fair if any of the following holds: (I) if e is finite, then no action, other
than crash actions, is enabled in the final state of e, or (II) if e is infinite, then for every process pi execution
e has either infinitely many actions of AIi or infinitely many occurrences of states at which no action, other
than crashi, of AIi is enabled. A history h of AI is fair if there exists a fair execution e of AI such that h is the
longest subsequence of e consisting only of input and output actions. Denote by f air(AI) the set of all fair
histories of AI . Implementation I ensures liveness property L if f air(AI)⊆ L.

The stronger/weaker relation on properties is defined in the standard way [38]. Property L1 is weaker than
property L2 (L2 is stronger than L1) if every implementation that ensures L2 also ensures L1. It easy to see
that L1 is weaker than L2 iff L2 ⊆ L1.

4 Safety-liveness Exclusion

A liveness property states that some good events should eventually happen, while a safety property states that
some bad events should never happen. Safety and liveness properties exclude each other when the bad events
of the safety property coincide with the good events of the liveness property. In the case of shared memory
systems, this translates into the impossibility of implementing a shared object that ensures both properties.
Let S and L be respectively a safety and a liveness properties of a shared object of type T p.

Definition 4.1. Liveness property L excludes safety property S if there is no implementation I of an object of
type T p such that I ensures both S and L.

For example, if T p is the consensus object type and the set of all possible implementations of T p is
restricted to implementations that use only read-write registers as base objects, then the impossibility result
in [8, 5, 28] states that wait-freedom excludes agreement and validity. Another example is the exclusion
of local progress and opacity for transactional memory object type [4]. Below we address the following
questions: when is it possible to determine a weakest (resp. a strongest) liveness property which excludes
(resp. does not exclude) a given safety property? Basically we ask the following question: if S and L are the
sets of all safety and liveness properties under given general definitions, what is the largest subset S ⊆ S for
which there exists a map fw : S → L (resp. fs : S → L) that maps every safety property S ∈S onto the
weakest (resp. strongest) liveness property L ∈ L that excludes (resp. does not exclude) S.

5

4.1 Weakest non-implementable liveness

Definition 4.2. A liveness property L is the weakest liveness property to exclude a safety property S if (1) L
excludes S and (2) for any liveness property L′, if L′ excludes S then L′ is stronger than L.

In order to reason about the existence of a weakest liveness property that excludes S, we define a subset of
S which we call an adversary set. Informally, an adversary set w.r.t. L and S is a set of histories such that for
every implementation I ensuring S there exists a history of I which is in the adversary set and not in L. The
existence of an adversary set w.r.t. L and S implies that there is an adversary, which decides on a sequence of
steps produced by a scheduler and on invocations sent to implementation I, such that for any implementation
the adversary makes I produce an execution that violates L.

Definition 4.3. An adversary set w.r.t. L and S is a non-empty set of histories F such that: (1) F ⊆ S, (2)
F ⊆ L, where L is the complement of L taken over all well-formed histories, and (3) for every implementation
I ensuring S there is a history h ∈ f air(AI) such that h ∈ F.

It is easy to see that L excludes S iff there is an adversary set w.r.t. L and S. The following theorem gives a
characterization of safety properties for which it is possible to find a weakest liveness property that excludes
them.

Theorem 4.4. Let F(Lmax) be the set of all adversary sets w.r.t. Lmax and S, and let Gmax =
⋂

F∈F(Lmax)

F. There

exists a weakest liveness property that excludes S iff Gmax ∈ F(Lmax).

Proof. Necessary condition: Let Lw be the weakest liveness property that excludes S. Since Lw excludes S,
there exists an adversary set FLw w.r.t. Lw and S.

We first prove that Lw = FLw . Assume that Lw 6= FLw . By the definition of FLw , FLw ⊆ Lw, and therefore
Lw ⊆ FLw . Because Lw 6= FLw and Lw ⊆ FLw , there is a history h such that h ∈ FLw and h /∈ Lw. Because h ∈ FLw

and Lw ⊆ FLw , then Lw∪{h} ⊆ FLw , and consequently FLw ⊆ Lw∪{h}. Consider liveness property Lw∪{h},
FLw is an adversary set w.r.t. Lw∪{h} and S, because FLw ⊆ Lw∪{h}. Therefore, Lw∪{h} excludes S and, by
the definition of Lw, Lw∪{h} is stronger than Lw, i.e. Lw∪{h} ⊆ Lw. This contradicts the fact that h /∈ Lw.

Next, we prove that for every F ∈ F(Lmax), FLw ⊆ F . Assume that there is F ∈ F(Lmax) such that FLw * F .
Consider set F , F is a liveness property because F ⊆ Lmax (by the definition of F), and therefore Lmax ⊆ F .
Since F ⊆ F , then F is an adversary set w.r.t. F and S, i.e., F excludes S. Since F excludes S, F is stronger
than Lw, i.e. F ⊆ Lw. Since FLw * F and Lw = FLw , then there exists a history h′ such that h′ /∈ Lw and h′ ∈ F .
This contradicts the fact that F ⊆ Lw.

Since FLw ⊆ F for every F ∈ F(Lmax), then FLw ⊆Gmax. By the definition of FLw , for every implementation
I there is h′′ ∈ f air(AI) such that h′′ ∈ FLw ⊆ Gmax. Thus, Gmax is an adversary set w.r.t. Lmax and S.

Sufficient condition: Because Gmax ⊆ Lmax (by the definition of an adversary set Gmax), then Lmax ⊆Gmax,
i.e. Gmax is a liveness property. Since Gmax ⊆ Gmax and Gmax ∈ F(Lmax), then Gmax is an adversary set w.r.t.
Gmax and S. Hence, Gmax excludes S.

Consider some liveness property L which excludes S. There is an adversary set FL w.r.t. L and S. Since
Lmax ⊆ L and FL ⊆ L, then FL ⊆ Lmax. Therefore, FL is an adversary set w.r.t. Lmax and S. Since Gmax is the
intersection of all adversary sets w.r.t. Lmax and S, Gmax is a subset of every adversary set w.r.t. Lmax and S.
From Gmax ⊆ FL ⊆ L it follows that L ⊆ Gmax. Thus, we showed that every liveness property that excludes S
is stronger than Gmax. By definition, Gmax is the weakest liveness property that excludes S.

For every object type T p and most symmetric safety properties S of T p, i.e. safety properties the require-
ments of which are the same for all processes irrespectively of process identifiers, it is possible to find two
adversary sets F1 and F2 w.r.t. Lmax and S such that F1∩F2 = /0, and consequently Gmax /∈ F(Lmax). Therefore,
Theorem 4.4 means that for most safety properties there is no weakest liveness property that excludes the
given safety property. We have the following two corollaries:

6

Corollary: consensus implementations from registers. A consensus shared object is used by pro-
cesses to agree on some value from a set of proposed values. Each process proposes its own value v by
invoking operation propose(v) on a consensus object and receives as a response some value v′ (decides
value v′). Formally, agreement and validity, a safety property of consensus objects, states that all pro-
cesses decide the same value and the decided value is the value proposed by one of the processes. Wait-
freedom [19], a liveness property of consensus objects, states that every correct process eventually decides.
Consider implementations of consensus that use only read/write registers as base objects. In that case, it
is shown in [5] that if two processes propose different values, then there is an execution in which both of
them take infinite number of steps and at least one of them does not decide a value. Hence, there exists an
adversary set F1 = {propose1(v) · propose2(v′), propose1(v) · v1 · propose2(v′), propose1(v) · propose2(v′) ·
v1, propose1(v) · propose2(v′) · v′1, propose1(v) · propose2(v′) · v2, propose1(v) · propose2(v′) · v′2} w.r.t. wait-
freedom and agreement and validity, i.e. F1 is the set of all histories in which two processes propose different
value and one of those two processes does not decide. The proof of the impossibility result does not depend on
whether process p1 invokes the propose operation first or not, consequently, the set of histories, in which p2
invokes propose before p1, F2 = {propose2(v) · propose1(v′), propose2(v) · v2 · propose1(v′), propose2(v) ·
propose1(v′) · v2, propose2(v) · propose1(v′) · v′2, propose2(v) · propose1(v′) · v1, propose2(v) · propose1(v′) ·
v′1} is also an adversary set. Since F1∩F2 = /0, it follows that Gmax = /0.

Corollary 4.5. There is no weakest liveness property of consensus objects which excludes agreement and
validity when these objects are implemented only from read/write registers.

Corollary: transactional memory. Transactional memory (TM) allows to enclose sequential code within
atomic transactions which are executed concurrently. Transactional code contains accesses to transactional
variables which can be read or written, these variables can be accessed only within transactions. Each transac-
tion is executed only by one process. Processes in a TM implementation can invoke the following transactional
operations: start which requests to start a new transaction and returns either ok or an abort event A, x.write(v)
which writes value v to transactional variable x within a transaction and returns either ok or an abort event A;
x.read which reads a value from transactional variable x within a transaction and returns either a value v or
an abort event A; tryC which requests to commit a transaction and returns a commit event C or an abort event
A. The sequential specification Seq of a TM object is such that if a transaction commits, then all the changes
made to transactional variables within the transaction are made visible to other processes, and if a transaction
aborts, then all the changes are discarded.

Opacity [15], a safety property of TM implementations, states that every transaction, even aborted, ob-
serves a consistent state of the system. Specifically, history h ensures opacity if for every finite prefix h′ of
h there exists a sequential history s such that s is equivalent to some completion comp(h′) of h′, s preserves
the real time order of comp(h′), and s respects the sequential specification Seq. A completion comp(h) of
history h is any history derived from h by appending tryC ·A for every transaction which does not invoke a
commit request in h and by appending either an abort event A or a commit event C for every transaction which
invokes a commit request but does not receive a corresponding response in h. Two histories h1 and h2 are
equivalent if for every process pi, h1|pi = h2|pi. History h1 preserves the real time order of history h2 if for
any two transaction T1 and T2 in h2 if T1 receives an abort or a commit event, i.e. completes, before T2 invokes
start in h2, then T1 completes before T2 starts in h1. In TM implementations requiring that each operation
returns a response is not enough because such requirement can be trivially ensured simply by aborting every
transaction. To make progress transactions should be able to eventually commit. Therefore, the set of ’good’
events is restricted to commit events. Local progress [4], the strongest liveness property of TM implementa-
tions, requires that every correct process is eventually given a chance to invoke a commit request tryC() and
eventually one of the commit requests tryC() is returned a commit response C. In other words local progress
requires that for every correct process eventually there is a transaction which is not aborted. It was shown
in [4] that it is impossible to implement a TM object which ensures both opacity and local progress. Consider
the adversary set defined by the following strategy [4]:

7

1. Step 1. Process p1 invokes start1 and waits until it receives as a response ok1 or A1. If the response is
A1 the adversary repeats Step 1. Otherwise, process p1 invokes x.read1() and waits until it receives as
a response v′1 or A1. If the response is A1 the adversary repeats Step 1. Otherwise, the adversary goes
to Step 2.

2. Step 2. Process p2 invokes start2 and waits until it receives as a response ok2 or A2. If the response
is A2 the adversary repeats Step 2. Otherwise, process p2 invokes x.read2() and waits until it receives
as a response v′′2 or A2. If the response is A2, the adversary repeats Step 2. Otherwise p2 invokes
x.write2(v′+ 1), and waits until it receives as a response ok2 or A2. If the response is A2, then the
adversary repeats Step 2. Otherwise, p2 invokes tryC2() operation and waits until it receives a response
C2 or A2. If the response is A2, the adversary repeats Step 2. Otherwise the strategy goes to Step 3.

3. Step 3. Process p1 invokes x.write1(v′′+ 1) and waits until it receives as a response ok1 or A1. If the
response is A1, then the adversary goes to Step 1. Otherwise p1 invokes tryC1() operation and waits
until it receives a response C1 or A1. If the response is A1, the adversary goes to Step 1. Otherwise the
adversary stops.

Let F1 be the set of all histories produced by the adversary set described by the above strategy, i.e. the
set of histories that result from applying the strategy to every possible TM object implementation that ensures
opacity. In [4] it is shown that every history which ensures opacity and which is produced by the above
strategy violates local progress. Therefore, F1 is an adversary set w.r.t. local progress and opacity. Let us
exchange processes in the above strategy so that process p1 plays the role of p2 and vice versa and let F2
be the set of all possible histories produced by the resulting adversary. Set F2 is an adversary set w.r.t. local
progress and opacity since the impossibility result does not depend on process identifiers. Since local progress
is the strongest liveness property of TM objects, then F1,F2 ∈ F(Lmax). However F1∩F2 = /0, because every
history from F1 begins with start1 invocation and every history from F2 begins with start2. Since F1∩F2 = /0,
it follows that Gmax = /0.

Corollary 4.6. There is no weakest liveness property of TM objects which excludes opacity.

4.2 Strongest implementable liveness

Definition 4.7. Liveness property L is the strongest liveness property that does not exclude a given safety
property S if (1) L does not exclude S, and (2) for any liveness property L′ if L′ does not exclude S then L′ is
weaker than L.

Before proving the theorem which states that Lmax is the only possible strongest liveness property that
does not exclude S in case when such a property exists, we prove the following lemma first.

Lemma 4.8. The strongest liveness property that an implementation I ensures is Lmax∪ f air(AI).

Proof. By contradiction, assume that there is a liveness property L such that I ensures L and Lmax∪ f air(AI)
is not stronger than L, i.e., Lmax ∪ f air(AI) * L. Because L is a liveness property, Lmax ⊆ L. And because
I ensures L, then f air(AI) ⊆ L. From Lmax ⊆ L and f air(AI) ⊆ L it follows that Lmax ∪ f air(AI) ⊆ L. This
contradicts the fact that Lmax∪ f air(AI)* L.

Theorem 4.9. If there is a strongest liveness property that does not exclude S, then it should be Lmax.

Proof. Let Ls be the strongest liveness property that does not exclude S. By definition, there is an implemen-
tation Is which ensures both Ls and S. By Lemma 4.8, Ls = Lmax∪ f air(AIs).

Assume that Ls 6= Lmax, i.e. f air(AIs)\Lmax 6= /0. We first prove that every history in f air(AIs)\Lmax does
not include responses. Assume, by contradiction, that there is history h ∈ f air(AIs) \ Lmax which includes

8

a response. Let resk be the first response in h, i.e. h = h′ · resk · h′′ and h′ does not include any responses.
Consider a trivial implementation It which does not return responses for any invocation. Let AIt be an I/O
automaton that models It . Notice that since the implementation is trivial it does not require any base objects.
Because It does not return responses, then every history of AIt consists only of invocations and probably
some crash events, and therefore, history h is not a history of f air(AIt). By Lemma 4.8, implementation It
ensures liveness property Lt = Lmax ∪ f air(AIt), note that Lt is not weaker than Ls since h /∈ f air(AIt) and
h ∈ f air(AIs)\Lmax. Let ht be some history of AIt . Because ht consists only of invocations and probably some
crash events, which are input actions of AIs , and AIs is input-enabled, ht is also a history of AIs . Because Is
ensures S, ht ∈ S. Thus, every history of AIt is in S and therefore It ensures S. Hence, Lt does not exclude S.
This contradicts the facts that Ls is the strongest liveness property that does not exclude S and Lt is not weaker
than Ls.

Next we prove that for any history h ∈ f air(AIs) \ Lmax, for any process pl , and for any response resl ,
h ·resl /∈ S holds. Assume, by contradiction, that there is a history h∈ f air(AIs)\Lmax, a process pl , a response
resl such that h · resl ∈ S. Let invl be the invocation in h corresponding to response resl , i.e. h · resl|pl =
invl · resl . Consider history invl · resl ∈ S. Let I be an implementation such that I ensures S and invl · resl is a
history of AI .

Consider a trivial implementation Ib such that: (1) when algorithm Ib
l , corresponding to pl , receives

invocation invl the first time it returns resl , and for the second instance of invl it stops without returning any
response, (2) when Ib

l receives an invocation other than invl it stops without returning any response, and (3)
every algorithm Ib

j , where j 6= l, once it receives any invocation, it stops without returning any response.
Formally, implementation Ib can be described by an I/O automaton AIb = AIb

1
× . . .×AIb

n
(because I does not

use any base objects AB is omitted from the composition) such that:

• for every 1≤ i≤ n, in(AIb
i
) = {invi|inv ∈ Inv}∪{crashi} and out(AIb

i
) = {resi|res ∈ Res};

• when AIb
l

executes invl from an initial state, AIb
l

changes its state to a state sl at which only crashl and
output action resl are enabled. Let sl

en be a state of AIb
l

such that there is a transition (sl,resl,sl
en) in AIb

l
;

note that from state sl
en every invocation is enabled. For every invocation inv′ ∈ Inv, when AIb

l
executes

inv′l from sl
en, AIb

l
changes its state to a state sl

1 at which only crashl action is enabled;

• for every invocation inv′′ ∈ Inv, such that inv′′ 6= inv, when AIb
l

executes inv′′l from an initial state AIb
l

changes its state to a state sl
2 at which only crashl action is enabled;

• for every j 6= l and for every invocation inv′ ∈ Inv, when AIb
j

executes inv′j from an initial state, AIb
j

changes its state to a state s j
1 at which only crash j action is enabled.

Let h′ be any history of AIb such that h′ contains a response. Because Ib returns a response only for the first
instance of invl , it follows that the response in h′ is resl and invl · resl is a prefix of h′|pl . Because invl · resl
is a history of AI and AI is input-enabled, then h′ is also a history of AI . Because I ensures S, it follows that
every such history h′ is in S. Let h′′ be any history of AIb such that h′′ does not contain a response. Because
AI is input-enabled, h′′ is also a history of AI and, consequently, h′′ ∈ S. Hence, every history of AIb is in S
and, consequently, Ib ensures S. Because (1) h|pl = invl , and (2) state sl of I/O automaton AIb

l
is reachable by

executing invl from an initial state, and (3) at sl output action resl is enabled then every execution of AIb , to
which history h corresponds, is not fair, and consequently h /∈ f air(AIb).

By Lemma 4.8, implementation Ib ensures liveness property Lb = Lmax ∪ f air(AIb). Hence, Lb does not
exclude S. Because h ∈ Ls and h /∈ Lb, liveness property Lb is not weaker than liveness property Ls. This
contradicts the facts that Ls is the strongest liveness property that does not exclude S and Lb does not exclude
S.

9

We proved that for every history h ∈ f air(AIs) \ Lmax the following holds: (1) h does not contain any
responses and (2) there is no process pi and response res such that h · resi ∈ S.

Let h be any history in f air(AIs) \Lmax and let invi be some invocation in h by a process pi which does
not crash in h. Let resi be a response such that invi · resi ∈ S and let I′ be an implementation which ensures S
and which has invi · resi as its history. Because AI′ , an I/O automata model of I′, is input-enabled, it follows
that every history h′ such that h′ includes a single response and h′|pi = invi · resi is a history of AI′ . Because I′

ensures S, it follows that every such history h′ ∈ S. This contradicts the fact that h · resi /∈ S.

Corollary: consensus objects. Consider those implementations of consensus that use only read/write
registers as base objects. Since Lmax, which is wait-freedom, is impossible [5] to ensure together with agree-
ment and validity using only registers, then we have the following corollary:

Corollary 4.10. There is no strongest liveness property of consensus objects which does not exclude agree-
ment and validity when these objects are implemented only from read/write registers.

Corollary: transactional memory. Because Lmax, which is local progress, is impossible [4] to ensure
together with opacity, then we have the following corollary:

Corollary 4.11. There is no strongest liveness property of TM objects which does not exclude opacity.

5 Circumventing the Impossibilities

In this section we show that if we restrict the space of liveness properties, then it is possible to determine
weakest (strongest) liveness property that excludes (does not exclude) a safety property in certain cases.

5.1 (l,k)-Freedom

Instead of giving a general set-theoretic definition of liveness, we give a definition based on the notion of
progress [23]. Accordingly, liveness properties can be classified into properties which require either maxi-
mal or minimal progress and which are either dependent or independent of a scheduler. Maximal progress
properties require progress for every correct process, while minimal progress properties require progress for
some correct processes. Wait-freedom, which requires progress for every correct process, and obstruction-
freedom, which requires progress only for processes that eventually run without step contention, are examples
of maximal progress properties. Lock-freedom, which requires progress for at least one correct process, is
an example of a minimal progress property. Wait-freedom and lock-freedom are examples of independent
progress properties, while obstruction-freedom is an example of dependent progress property. We give a
definition of liveness that encompasses both maximal and minimal progress and dependent and independent
guarantees.

Intuitively, we say that a process makes progress in an execution if it eventually receives ’good’ responses
in that execution for its invocations. However, for different object types, the notion of a ’good’ response might
be different. For example, for objects like consensus or registers, any response is a ’good’ response; but for
TM objects ’good’ responses are those which do not abort transactions. Therefore, we assume that for each
object type T p = (St, Inv,Res,Seq) there is a fixed subset of responses GT p ⊆ Res which are necessary to
make progress. We say that a correct process pi makes progress in a fair execution e if e contains infinitely
many responses from {resi|res ∈ GT p}.

Between the independent progress guarantee of wait-freedom and the dependent progress guarantee of
obstruction-freedom lie intermediate maximal progress guarantees that can be satisfied only when up to k
processes are scheduled to take steps. Such progress guarantees are grouped into k-obstruction-freedom
properties. k-Obstruction-freedom [35] states that if at any point in an execution there are at most k pro-
cesses taking steps, then all these processes should make progress. Likewise, between the maximal progress
guarantee of wait-freedom and the minimal progress guarantee of lock-freedom lie intermediate independent

10

progress guarantees that require progress for at least l processes. We introduce the notion of l-lock-freedom
to group such guarantees. l-Lock-freedom states that at least l processes should make progress if there are at
least l correct processes in an execution or all processes should make progress if there are less than l correct
processes in an execution.

l-Lock-freedom and k-obstruction-freedom are different kinds of progress requirements. We combine
these two kinds of requirements into a more general one. Specifically, we define (l,k)-freedom, where l ≤ k.

Definition 5.1. A fair execution e ensures (l,k)-freedom if the following holds. If at most k processes take
infinitely many steps in e, then

• if at least l processes are correct in e, then at least l processes make progress in e,

• if less than l processes are correct in e, then all correct processes make progress in e.

Observe that if a process is correct in e (i.e. it does not crash) it does not necessary mean that it takes
infinitely many steps in e, e.g. a correct process might be prevented from taking steps by the implementation
which does not enable steps after certain state. Notice that if LFl is the set of all executions that ensure l-lock-
freedom and OFk is the set of all executions that ensure k-obstruction-freedom, then LFl ∪OFk is the set of all
executions that ensure (l,k)-freedom. An implementation I is (l,k)-free if every fair execution of I ensures
(l,k)-freedom.

Liveness properties defined as (l,k)-freedom are not totally ordered. For example, consider (1,3)-freedom
and (2,2)-freedom properties. An execution in which only two processes take steps and only one of those two
processes makes progress ensures (1,3)-freedom but does not ensure (2,2)-freedom. An execution in which
only three processes take steps and none of those three processes makes progress ensures (2,2)-freedom but
does not ensure (1,3)-freedom. Therefore, (1,3)-freedom and (2,2)-freedom are incomparable to each other.
However, despite the fact that (l,k)-freedom properties are not totally ordered, it is possible to find weakest
non-implementable and strongest implementable (l,k)-freedom properties in most cases.

5.2 Consensus and TM examples

Consider implementations of consensus that use only read/write registers as base objects. The impossibility
of consensus from registers [5] says that if two processes invoke two propose(v) operations with different
arguments, then there is an adversary set that produces a fair execution in which none of the two processes ever
decides a value. Consequently, (1,2)-freedom excludes agreement and validity in the case of implementations
from registers. Because (1,1)-freedom, which is obstruction-freedom, is the only consensus liveness property
which is weaker than (1,2)-freedom and which is possible [20, 17] to implement using registers, we have the
following theorem.

Theorem 5.2. For implementations of consensus from read/write registers (1,1)-freedom is the strongest
(l,k)-freedom property that does not exclude agreement and validity and (1,2)-freedom is the weakest (l,k)-
freedom property that excludes agreement and validity.

As another example, consider TM shared objects. In [4] it is shown that any non-blocking liveness prop-
erty which is biprogressing is impossible to implement in the TM context with safety properties like strict
serializability [31] or opacity [15] in a system of two processes. A biprogressing liveness property is a prop-
erty which requires progress for at least two correct processes. In the case of (l,k)-freedom properties, the
weakest biprogressing property is (2,2)-freedom. Since in the TM context it is possible [9] to implement
(1,n)-freedom, which is the strongest property that requires progress for at most one process, together with
opacity, we have the following theorem.

Theorem 5.3. For TM implementations (1,n)-freedom is the strongest (l,k)-freedom property that does not
exclude opacity and (2,2)-freedom is the weakest (l,k)-freedom property that excludes opacity.

11

It is worth noting that in case of (l,k)-freedom liveness properties, the strongest implementable TM live-
ness property, (1,n)-freedom, is not weaker than the weakest non-implementable TM liveness property, (2,2)-
freedom. In fact, these two properties are incomparable.

k

l
1 2 3 n

1

2

3

n

(1,2)-freedom

(1,1)-freedom

(a) S is agreement and validity of consensus.

k

l
1 2 3 n

1

2

3

n

(2,2)-freedom

(1,n)-freedom

(b) S is opacity of TM.

Figure 1: (l,k)-Freedom properties can be represented as points on a two-dimensional plane. The more a
point located to the right and the higher it is, the stronger the corresponding (l,k)-freedom property is. White
points indicate (l,k)-freedom properties that do not exclude a given safety property S, and black ones exclude
S.

5.3 Limitations of (l,k)-freedom: a counterexample

Even though (l,k)-freedom allows to circumvent the safety-liveness exclusion impossibility for consensus and
TM from Section 4, there are still some safety properties for which it is not the case. For instance, consider
the following safety property S of TM. A TM history h ensures S if the following hold:

1. h ensures opacity, and

2. for any three (or more) concurrent transactions T1,T2,T3, . . . in h, executed by different processes
p1, p2, p3, . . ., respectively, if (1) there exists a number t s.t. for each process pi ∈ {p1, p2, p3, . . .},
Ti is the t-th transactions in h|pi and (2) each Ti invokes tryC()i after at least other two transactions
from {T1,T2,T3, . . .} receive a response for a start() j operation in h, where j 6= i, then T1,T2,T3, . . .
should be aborted in h.

In other words, safety property S requires opacity plus an additional requirement that if three or more
transactions have the same timestamp t and invoke a commit request tryC() after any two of them receive a
response for starting a transaction request start(), then such transactions should be aborted. In [4] it is shown
that (2,2)-freedom is impossible to implement together with opacity. Because S includes the requirement of
opacity, then in the TM context (2,2)-freedom excludes S. In order to show that (1,3)-freedom excludes S,
consider the following adversary:

1. Step 1. Processes p1, p2, p3 concurrently invoke start() request to start a transaction and each waits for
a response which should be either ok or A. Once each of the three processes receives a response, the
adversary goes to Step 2.

12

2. Step 2. Processes which did not receive an abort event A at Step 1, concurrently invoke tryC() request
to commit their transaction and each waits for a response which should be either C or A. If each process
receives an abort event A, the adversary goes to Step 1. Otherwise the adversary stops.

Assume that the adversary terminates, i.e. there exists a history h such that some process commits in
h. Without loss of generality assume this process to be p1. Let the committing transaction T1 be a t-th
transaction of p1. According to the adversary, the three processes invoke new transactions concurrently to
each other, and consequently the committing transaction is concurrent to the other two t-th transactions of p2
and p3. According to the adversary, T1 invokes tryC() only after p2 and p3 receive responses for start() at
Step 1 (which eventually happens because of (1,3)-freedom). Thus the conditions of the second requirement
of property S are satisfied, and consequently, transactions T1,T2,T3 should be aborted - a contradiction. Since
the adversary never terminates, none of the three correct processes receives a commit response. Therefore the
history produced by the adversary violates (1,3)-freedom.

In order to show that there is no weakest (l,k)-freedom property non-implementable with S we show that
(1,2)-freedom, which is weaker than both (1,3)-freedom and (2,2)-freedom, is implementable with S. Below
we give a simple TM implementation, which is a modification of algorithm AGP from [16], the purpose of
which is to show that (1,2)-freedom does not exclude S.

The main idea of the implementation is the following. The implementation uses a single shared compare-
and-swap object which holds a version number and a value of each transactional variable. Additionally, it
uses a shared snapshot object of n registers, where n is the total number of processes. When a process pi starts
a new transaction, it increments its local timestamp, writes the new timestamp to the i-th register, and copies
the content of the compare-and-swap object to its local memory. The process performs transactional reads
and writes using only the local memory. When the process invokes a commit request it first takes the snapshot
of the registers and checks if at least two other processes have a greater timestamp. If so, the transaction is
aborted. Otherwise, the process tries to update the compare-and-swap object with a new version number and
new values from its local memory. The version numbers are used to ensure opacity, while the timestamps are
used to ensure the second requirement of S.

Lemma 5.4. Algorithm I(1,2) implements a TM that ensures S and (1,2)-freedom.

Proof. Consider any history h of I(1,2). Within this proof, we say that a transaction Tk reads version w if Tk is
returned in starti a tuple (version,oldval), where version = w. We say that Tk commits version w if Tk reads
version w−1 and is returned value true from operation compare-and-swap on C in tryC().

The first requirement of S (Opacity). Observe that the version number stored in object C can only increase
with time. Hence, if a transaction Ti precedes a transaction Tk in h, then Ti cannot read a version higher than
the version read by Tk. Note also that from any set of transactions that read the same version w at most one
transaction can commit version w+1. Therefore, there exists a total order� on the set of transactions in h,
such that, for all transactions Ti and Tk in H, Ti� Tk if:

• Ti precedes Tk in h; or

• Ti reads a version wi, Tk reads a version wk, and wi < wk; or

• Ti reads a version wi and Tk commits version wi +1.

Let h′ be the completion of history h such that a transaction Tk in h′ is committed in h′ iff Tk commits
some version in h. Let s be the following sequential TM history:

s = h′|Tσ1 ·h′|Tσ2 · . . . ,

where Tσ1� Tσ2� . . . and h′|Tσ j is the longest subsequence of h′ consisting only of invocations and responses
of Tσ j . Clearly, s is equivalent to h′ and s preserves the real-time order of h. Every transaction Tk that is

13

uses: C—compare-and-swap object; R[1, . . . , n]—snapshot object (other variables are process-local)
initially: C = (1,(0,0, . . .)), R[1, . . . ,n] = (0, . . . ,0) version =⊥, timestamp = 0, and count = 0 (at

every process pi)

operation start()i
timestamp← timestamp+1
R[i]← timestamp
(version,oldval)←C.read
values← oldval
return oki

end

operation xm.read()i
return values[m]i

end

operation xm.write(v)i
values[m]← v
return oki

end

operation tryC()i
snapshot← R.scan()
for j← 1 to n do

if snapshot[j]≥ timestamp then
count← count+1

end
end
if count ≥ 3 then

count← 0
return Ai

end
count← 0
if C.compare-and-swap((version,oldval),(version+1,values)) then

version←⊥
return Ci

else
version←⊥
return Ai

end
end

Algorithm 1: Algorithm I(1,2) implementing a TM that ensures S and (1,2)-freedom.

14

aborted in s does not commit any version, and so Tk does not change the state of base object C. Hence,
aborted transactions are effectively invisible to other transactions. Every transaction Tk that is committed in s
reads some version w and commits version w+ 1. Since the version number stored in C never decreases,
no other transaction commits version w+ 1 in h. transaction Tk thus reads the current snapshot of t-variable
values from C, modifies the snapshot locally within operations read and write, and then atomically changes
the state of C from the old snapshot, with version number w, to the new snapshot, with version number w+1.
Therefore, all transactions that follow Tk in s observe all the values written to t-variables by Tk, and by all
preceding transactions that are committed in s. Therefore, history respects the sequential specification Seq of
TM objects, and so history h ensures opacity. This means that, TM implementation I(1,2) ensures opacity.

The second requirement of S. Observe that each time a process starts a new transaction it increments its
timestamp by 1 and announces the new timestamp to other processes by updating the corresponding register
R[i]. Let h be any history of I(1,2) and let T1,T2,T3, . . . be any three (or more) concurrent transactions in
h, executed by different processes p1, p2, p3, . . ., respectively, s.t. there exists number t s.t. for each pi ∈
{p1, p2, p3, . . .}, Ti is the t-th transactions in h|pi and each Ti invokes tryCi after some other two transactions
are returned a response for a start() j, where j 6= i and j ∈ {1,2,3}, operation in h.

Because each T1,T2,T3, . . . is the t-th transaction of a corresponding process, when T1,T2,T3, . . . execute
start(), the timestamps of each process becomes t and is written to the corresponding register. Since each
T1,T2,T3 invokes tryC() after some other two processes get responses for start(), each transaction observes
the new timestamps of the other two transactions. Therefore, count becomes at least 3 during the execution
of tryC() of each of the transaction. And consequently, each of the transaction aborts in h.

(1,2)-Freedom. Consider a fair execution e of I(1,2) and its corresponding history h such that only two
processes take infinitely many steps (and therefore only two processes are correct). Consider any correct
and live, i.e. transaction which is not aborted or committed, transaction Tk in history h. A transaction Tk
can be aborted by I(1,2) only if Tk either it encounters that some other transaction has a higher timestamp
tm or Tk reads some version w and then fails to commit version w+ 1. Since eventually there are only two
processes that take steps, eventually transactions can be aborted only when Tk reads some version w and then
fails to commit version w+ 1; this can happen only if some other transaction by the second correct process
commits version w+ 1. Since a transaction that commits any version cannot be aborted, there are infinitely
many transactions in h that are not aborted, and so history h, and thus also TM implementation I(1,2), ensures
(1,2)-freedom.

6 Concluding Remarks

Our impossibility results mean that if we consider too general definitions of liveness, then it is impossible
to answer questions about strongest (weakest) implementable (non-implementable) liveness property. To
circumvent these impossibility results it is necessary to consider more restricted definitions of liveness. We
have considered one such restriction in the previous section. Here we discuss alternative ones.

For example, we may consider the notion of S-freedom [36], which states that for every set of correct
processes P, where S is a set containing some natural numbers and |P| ∈ S, every process in P should make
progress as long as it does not encounter step contention with processes outside P. A characterization of live-
ness properties of consensus objects is given in [36] which partitions liveness properties into implementable
(using registers only) and non-implementable properties; S-freedom is then shown to be implementable iff
|S| = 1. However, even such restricted definition of liveness does not allow to determine a strongest (or
a weakest) implementable (or non-implementable) liveness property with a safety property like consensus
agreement and validity. Because none of the S-freedom properties with |S| = 1 is comparable to each other,
there is no strongest S-freedom consensus liveness property implementable using only registers.

15

One way to circumvent the issue is to consider a restricted definition of liveness which totally orders all
liveness properties. For example, the notion of (n,x)-liveness [25] states that x processes should be wait-
free and n− x processes should be obstruction-free. It is shown [25] that if x ≥ 1, then it is impossible to
implement a consensus object from registers. Since the set of all (n,x)-liveness properties is totally ordered,
then the strongest (and the only) implementable liveness property is (n,0)-liveness, and the weakest non-
implementable liveness property is (n,1)-liveness. Liveness properties can also be defined based on the notion
of k-obstruction-freedom [35] which states that if processes from a set P, where |P| ≤ k, do not encounter step
contention with processes outside of P, then every process from P should make progress. According to this
definition, the strongest implementable liveness property of a consensus object is 1-obstruction-freedom and
the weakest non-implementable is 2-obstruction-freedom. However, the definitions of liveness in [25, 35]
do not include some common liveness properties, e.g. lock-freedom that requires progress for at least one
process. There is a compromise between how general a definition of liveness should be and the possibility of
totally ordering the defined liveness properties.

7 Acknowledgements

We are very grateful to Cheng Wang who discovered the mistake on the example of an adversary set for
consensus. We also wish to thank the anonymous reviewers for their helpful comments.

This work has been supported by the European Commission under the 7th Framework Program through
the TransForm (FP7-MC-ITN-238639) project and by the European Research Council under the Adversary-
Oriented Computing project (ERC-2013-AdG-339539-AOC).

16

References
[1] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21(4), 1985.

[2] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

[3] E. Borowsky and E. Gafni. Generalized flp impossibility result for t-resilient asynchronous computations. In ACM STOC, 1993.

[4] V. Bushkov, R. Guerraoui, and M. Kapałka. On the liveness of transactional memory. In ACM PODC, 2012.

[5] B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hardware. In ACM PODC, 1987.

[6] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal constructions that ensure disjoint-access parallelism and
wait-freedom. In ACM PODC, 2012.

[7] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed computing. Distrib. Comput., 16(2-3), 2003.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2),
1985.

[9] K. Fraser. Practical lock freedom. In PhD thesis, Cambridge University Computer Laboratory, 2003.

[10] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang. Syst., 34(1), 2012.

[11] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT
News, 33(2), 2002.

[12] S. Gilbert and N. A. Lynch. Perspectives on the cap theorem. Computer, 45(2), 2012.

[13] D. S. Greenberg, G. Taubenfeld, and D.-W. Wang. Choice coordination with multiple alternatives (preliminary version). In
WDAG, 1992.

[14] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In ACM SPAA, 2008.

[15] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In ACM PPoPP, 2008.

[16] R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Morgan and Claypool, 2010.

[17] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-memory computing. Distributed Computing, 20(3):165–
177, 2007.

[18] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Morgan and Claypool, 2010.

[19] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1), 1991.

[20] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an example. In IEEE
ICDCS, 2003.

[21] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized data structures.
In ACM PODC, 2003.

[22] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM, 46(6), 1999.

[23] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, 2011.

[24] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3), 1990.

[25] D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress conditions. In ACM PODC, 2010.

[26] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans. Program. Lang. Syst., 6(2), 1984.

[27] B. W. Lampson. How to build a highly available system using consensus. In WDAG, 1996.

[28] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous processes, volume 4.
JAI press, 1987.

17

[29] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[30] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst., 4(3), 1982.

[31] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4), 1979.

[32] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv., 22(4),
1990.

[33] R. Segala, R. Gawlick, J. Søgaard-Andersen, and N. Lynch. Liveness in timed and untimed systems. Inf. Comput., 141(2),
1998.

[34] N. Shavit and D. Touitou. Software transactional memory. In ACM PODC, 1995.

[35] G. Taubenfeld. On the computational power of shared objects. In OPODIS, 2009.

[36] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

[37] G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared memory environment. Acta Inf, 33, 1996.

[38] H. Völzer and D. Varacca. Defining fairness in reactive and concurrent systems. J. ACM, 59(3), 2012.

18

