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Motivation

• Activity-based approach: modeling the activity participation
patterns

• Not tour-based (no “home” location in pedestrian facilities)

• No hierarchy of dimensions or aggregation (high temporal
precision)
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Literature review

• Tour-based approach [BBA01, SBA11, AZBA12]

• Multiple discrete continuous nested extreme value model [PB10]

• Dynamic scheduling process [Hab11]
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Literature review

Time representation in activity modeling:

• Time is decomposed in tours [BBA01, SBA11, AZBA12]

• Time is allocated to activity types (no sequence) [PB10]

• Time is allocated to activity types (sequentially in time)
[Hab11]
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Literature review

Problems

• tours [BBA01, SBA11, AZBA12]

• no sequence [PB10]

• no pattern utility [Hab11]
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Modeling assumption

• Sequential choice:

1. activity type, sequence, time of day and duration
2. destination choice conditional on 1.

• Motivations:

– Behavior: precedence of activity choice over destination choice
– Dimensional: destinations × time × position in the sequence is

not tractable

Today, we focus on 1. [DB15].
Tomorrow, 16:20, example of 2. on the same data [TDdLB15].
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Observations: activity patterns in a transport hub

Waiting for the train
(on platform 9)

Having a tea
(in Starbucks)

Buying a ticket
(at the machine)

Activity types
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Activity network

· · ·

· · ·

...
...

. . .
...

· · ·

s e

A1

A2

...

Ak

Activity types Activity network

1 2 · · · T Time units

11 / 28



Activity path
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Sampling strategies

• Simple random sampling (SRS)

• Importance sampling
using Metropolis-hastings algorithm [FB13]

– Observation score [Che13]

– Strategic sampling [LK12]
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Metropolis-Hastings sampling of paths
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Metropolis-Hastings sampling of paths

• Sample paths from given distribution, without full enumeration

• To be defined:

– Target weight:
b(i) = exp

(

− µδ(Γ)
)

(1)

Also with non-node-additive utility
– Proposal distribution:

Pinsert =
e−µ̃δSP (origin,v)+δSP (v ,destination)

∑

w e−µ̃δSP (origin,w)+δSP (w ,destination)
(2)

Relies on shortest paths, node-additive cost.
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Utility structure

• Utility of activity pattern:

– time-of-day preferences

– satiation effects: marginal utility decreases with

increasing duration

V (duration) = η ln(duration)

– scheduling constraints: schedule delay
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Observation score

• Node attractivity δv (v)

• Activity-episode length attractivity δa(a)

• Total attractivity:

δ(Γ) =
∑

v∈Γ

δv (v) + r
∑

a∈Γ

δa(a) (3)

• Scale and r estimated based on synthetic data [DB15].
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Strategic sampling

• Target weight:
utility from previously estimated model

• Proposal distribution:
utility from previously estimated model using only time-of-day
preferences (node-additive)
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Case study

• Activity-episode sequences from WiFi traces on EPFL campus
[DFB14]

• Activity network

– 8 activity types
– 24 time units (:00 - :15 / :15 - :59 between 7am and 7pm)
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Results

• 100 elements in the choice set:
SRS vs observation score.

• 10 elements in the choice set:
SRS vs observation score vs strategic sampling.
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Results: SRS, 100 el. in choice set

Attributes Estimates Std. error t-stat

ηClassroom, Shop, Library -0.492 0.168 -2.93

ηLab, Restaurant, Office, Other -0.638 0.167 -3.81

β3 lab episodes -0.998 0.265 -3.77

β4+ lab episodes -0.100 0.0243 -4.12

β3 office episodes -0.505 0.112 -4.49

β4+ office episodes -0.0494 0.0107 -4.62

β3 restaurant episodes -0.352 0.150 -2.34

β4+ restaurant episodes -0.0945 0.0270 -3.50

β3+ shop episodes -1.21 0.321 -3.77

βnb nodes NA afternoon, students -0.941 0.269 -3.50

βnb nodes NA before/after work, employees 0.245 0.0726 3.38

βnb nodes NA work, employees -1.07 0.278 -3.86

βnb nodes classroom morning/afternoon, employees -0.132 0.0296 -4.46

βprimary activity library, students 0.0404 0.0108 3.73

Number of observations = 1734

Number of estimated parameters = 14

L(β0) = −8002.619

L(β̂) = −10.234

ρ2 = 0.999

ρ̄2 = 0.997
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Results: observation score, 100 el. in choice set

Attributes Estimates Std. error t-stat

ηClassroom, Shop, Library -0.484 0.0877 -5.52

ηLab, Restaurant, Office, Other -0.687 0.137 -5.02

β3 lab episodes -0.710 0.146 -4.86

β4+ lab episodes -0.0735 0.0241 -3.05

β3 office episodes -0.427 0.139 -3.08

β4+ office episodes -0.0794 0.0265 -3.00

β3 restaurant episodes -0.0535 0.0122 -4.39

β4+ restaurant episodes -0.731 0.199 -3.67

β3+ shop episodes -0.740 0.250 -2.96

βnb nodes NA afternoon, students -1.10 0.347 -3.17

βnb nodes NA before/after work, employees 0.231 0.0523 4.42

βnb nodes NA work, employees -0.0762 0.0199 -3.83

βnb nodes classroom morning/afternoon, employees -0.0908 0.0460 -1.97

βprimary activity library, students 0.0592 0.0260 2.28

Number of observations = 1734

Number of estimated parameters = 14

L(β0) = −8002.619

L(β̂) = −13.293

ρ2 = 0.998

ρ̄2 = 0.997
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Results: SRS, 10 el. in choice set

Attributes Estimates Std. error t-stat

ηClassroom, Shop, Library -2.48 0.00727 -341.00

ηLab, Restaurant, Office, Other -4.41 1.80e+308 -0.00

β3 lab episodes -3.42 0.00211 -1621.37

β4+ lab episodes -0.372 0.00406 -91.48

β3 office episodes -1.11 1.80e+308 -0.00

β4+ office episodes -0.598 0.00710 -84.27

β3 restaurant episodes -4.54 1.80e+308 -0.00

β4+ restaurant episodes -0.515 0.00418 -123.07

β3+ shop episodes -6.06 0.00167 -3637.41

βnb nodes NA afternoon, students -3.71 1.80e+308 -0.00

βnb nodes NA before/after work, employees 0.886 0.00197 449.89

βnb nodes NA work, employees -0.922 0.00555 -166.01

βnb nodes classroom morning/afternoon, employees -0.856 0.00125 -685.45

βprimary activity library, students 0.267 0.00382 69.75

Number of observations = 1734

Number of estimated parameters = 14

L(β0) = −4157.950

L(β̂) = −0.000

ρ2 = 1.000

ρ̄2 = 0.997
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Results: observation score, 10 el. in choice set

Attributes Estimates Std. error t-stat

ηClassroom, Shop, Library -2.83 0.0400 -70.68

ηLab, Restaurant, Office, Other -4.47 1.80e+308 -0.00

β3 lab episodes -3.06 0.0404 -75.63

β4+ lab episodes -0.484 0.0256 -18.96

β3 office episodes -3.66 0.0772 -47.48

β4+ office episodes -0.575 0.00909 -63.30

β3 restaurant episodes -4.82 0.0462 -104.19

β4+ restaurant episodes -0.530 0.0175 -30.26

β3+ shop episodes -4.80 1.80e+308 -0.00

βnb nodes NA afternoon, students -6.06 0.0608 -99.70

βnb nodes NA before/after work, employees 0.529 1.80e+308 0.00

βnb nodes NA work, employees -0.893 0.0129 -69.37

βnb nodes classroom morning/afternoon, employees -1.02 0.0129 -79.07

βprimary activity library, students 0.284 0.0120 23.67

Number of observations = 1734

Number of estimated parameters = 14

L(β0) = −4157.950

L(β̂) = −0.000

ρ2 = 1.000

ρ̄2 = 0.997
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Results: strategic sampling, 10 el. in choice set

Attributes Estimates Std. error t-stat

ηClassroom, Shop, Library -1.17 0.0469 -24.99

ηLab, Restaurant, Office, Other -1.64 0.0636 -25.86

β3 lab episodes -3.43 0.133 -25.74

β4+ lab episodes -0.188 0.0156 -12.05

β3 office episodes -1.71 0.0575 -29.80

β4+ office episodes -0.204 0.00723 -28.18

β3 restaurant episodes -1.19 0.0900 -13.17

β4+ restaurant episodes -0.135 0.00492 -27.41

β3+ shop episodes -3.20 0.0885 -36.10

βnb nodes NA afternoon, students -1.50 0.123 -12.23

βnb nodes NA before/after work, employees 0.112 0.0185 6.09

βnb nodes NA work, employees -0.502 0.0163 -30.84

βnb nodes classroom morning/afternoon, employees -0.441 0.0193 -22.87

βprimary activity library, students 0.224 0.00725 30.87

Number of observations = 1734

Number of estimated parameters = 14

L(β0) = −4157.950

L(β̂) = −0.000

ρ2 = 1.000

ρ̄2 = 0.997
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Results

• 100 elements in the choice set:
SRS vs observation score.

– SRS gives similar results as observation score

• 10 elements in the choice set:
SRS vs observation score vs strategic sampling.

– preliminary: strategic sampling performs better than SRS,
observation score
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Conclusion and future work

• SRS and importance sampling with observation score generate
dominated alternatives

• Strategic sampling gives the flexibility needed in activity path
choice

• Activity path size for correlation between activity paths

– Primary Activity Path Size (PAPS)
– Activity Pattern Path Size (APPS)
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Thank you
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Importance sampling

for activity path choice

Antonin Danalet, Michel Bierlaire

– antonin.danalet@epfl.ch
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