

STRC

Importance sampling for activity path choice

Antonin Danalet, Michel Bierlaire

Monte Verità, Ascona, Switzerland, April 15, 2015

Outline

Motivation: Activity-based model for pedestrian facilities

Literature review

A path choice approach to activity modeling

Choice set generation

Outline

Motivation: Activity-based model for pedestrian facilities

Literature review

A path choice approach to activity modeling

Choice set generation

Motivation

- Activity-based approach: modeling the activity participation patterns
- Not tour-based (no "home" location in pedestrian facilities)
- No hierarchy of dimensions or aggregation (high temporal precision)

Outline

Motivation: Activity-based model for pedestrian facilities

Literature review

A path choice approach to activity modeling

Choice set generation

Literature review

- Tour-based approach [BBA01, SBA11, AZBA12]
- Multiple discrete continuous nested extreme value model [PB10]
- Dynamic scheduling process [Hab11]

Literature review

Time representation in activity modeling:

- Time is decomposed in tours [BBA01, SBA11, AZBA12]
- Time is allocated to activity types (no sequence) [PB10]
- Time is allocated to activity types (sequentially in time) [Hab11]

Literature review

Problems

- tours [BBA01, SBA11, AZBA12]
- no sequence [PB10]
- no pattern utility [Hab11]

Outline

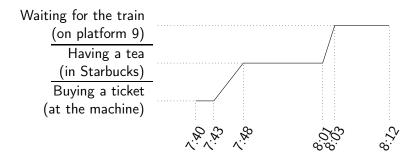
Motivation: Activity-based model for pedestrian facilities

Literature review

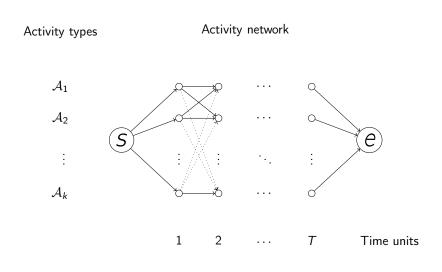
A path choice approach to activity modeling

Choice set generation

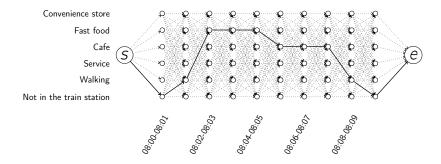
Modeling assumption


- Sequential choice:
 - 1. activity type, sequence, time of day and duration
 - 2. destination choice conditional on 1.
- Motivations:
 - Behavior: precedence of activity choice over destination choice
 - Dimensional: destinations × time × position in the sequence is not tractable

Today, we focus on 1. [DB15].


Tomorrow, 16:20, example of 2. on the same data [TDdLB15].

Observations: activity patterns in a transport hub


Activity types

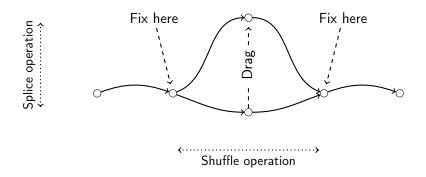
Activity network

Activity path

Outline

Motivation: Activity-based model for pedestrian facilities

Literature review


A path choice approach to activity modeling

Choice set generation

Sampling strategies

- Simple random sampling (SRS)
- Importance sampling using Metropolis-hastings algorithm [FB13]
 - Observation score [Che13]
 - Strategic sampling [LK12]

Metropolis-Hastings sampling of paths

[FB13]

Metropolis-Hastings sampling of paths

- Sample paths from given distribution, without full enumeration
- To be defined:
 - Target weight:

$$b(i) = \exp\left(-\mu\delta(\Gamma)\right) \tag{1}$$

Also with non-node-additive utility

Proposal distribution:

$$P_{\text{insert}} = \frac{e^{-\tilde{\mu}\delta_{SP}(\text{origin}, v) + \delta_{SP}(v, \text{destination})}}{\sum_{w} e^{-\tilde{\mu}\delta_{SP}(\text{origin}, w) + \delta_{SP}(w, \text{destination})}}$$
(2)

Relies on shortest paths, node-additive cost.

Utility structure

- Utility of activity pattern:
 - time-of-day preferences
 - satiation effects: marginal utility decreases with increasing duration

$$V(duration) = \eta \ln(duration)$$

- scheduling constraints: schedule delay

[EBPA07]

Observation score

- Node attractivity $\delta_{\nu}(v)$
- Activity-episode length attractivity $\delta_a(a)$
- Total attractivity:

$$\delta(\Gamma) = \sum_{v \in \Gamma} \delta_v(v) + r \sum_{a \in \Gamma} \delta_a(a)$$
 (3)

• Scale and *r* estimated based on synthetic data [DB15].

Strategic sampling

- Target weight: utility from previously estimated model
- Proposal distribution: utility from previously estimated model using only time-of-day preferences (node-additive)

Case study

- Activity-episode sequences from WiFi traces on EPFL campus [DFB14]
- Activity network
 - 8 activity types
 - 24 time units (:00 :15 / :15 :59 between 7am and 7pm)

Results

- 100 elements in the choice set: SRS vs observation score.
- 10 elements in the choice set: SRS vs observation score vs strategic sampling.

Results: SRS, 100 el. in choice set

Attributes	Estimates	Std. error	t-stat
ηClassroom, Shop, Library	-0.492	0.168	-2.93
η_{Lab} , Restaurant, Office, Other	-0.638	0.167	-3.81
eta_3 lab episodes	-0.998	0.265	-3.77
β_{4+} lab episodes	-0.100	0.0243	-4.12
eta_3 office episodes	-0.505	0.112	-4.49
β_{4+} office episodes	-0.0494	0.0107	-4.62
β_3 restaurant episodes	-0.352	0.150	-2.34
β_{4+} restaurant episodes	-0.0945	0.0270	-3.50
β_{3+} shop episodes	-1.21	0.321	-3.77
$\beta_{\rm nb}$ nodes NA afternoon, students	-0.941	0.269	-3.50
β nb nodes NA before/after work, employees	0.245	0.0726	3.38
$\beta_{\rm nb}$ nodes NA work, employees	-1.07	0.278	-3.86
$\beta_{\rm nb}$ nodes classroom morning/afternoon, employees	-0.132	0.0296	-4.46
β primary activity library, students	0.0404	0.0108	3.73

Number of observations = 1734 Number of estimated parameters = 14 $\mathcal{L}(\beta_0) = -8002.619$ $\mathcal{L}(\hat{\beta}) = -10.234$ $\rho^2 = 0.999$ $\bar{\rho}^2 = 0.997$

Results: observation score, 100 el. in choice set

Attributes	Estimates	Std. error	t-stat
ηClassroom, Shop, Library	-0.484	0.0877	-5.52
η_{Lab} , Restaurant, Office, Other	-0.687	0.137	-5.02
eta_3 lab episodes	-0.710	0.146	-4.86
β_{4+} lab episodes	-0.0735	0.0241	-3.05
eta_3 office episodes	-0.427	0.139	-3.08
β_{4+} office episodes	-0.0794	0.0265	-3.00
β_3 restaurant episodes	-0.0535	0.0122	-4.39
β_{4+} restaurant episodes	-0.731	0.199	-3.67
β_{3+} shop episodes	-0.740	0.250	-2.96
β_{nb} nodes NA afternoon, students	-1.10	0.347	-3.17
$\beta_{ m nb}$ nodes NA before/after work, employees	0.231	0.0523	4.42
β nb nodes NA work, employees	-0.0762	0.0199	-3.83
$\beta_{\rm nb}$ nodes classroom morning/afternoon, employees	-0.0908	0.0460	-1.97
$eta_{ m primary}$ activity library, students	0.0592	0.0260	2.28

Number of observations = 1734 Number of estimated parameters = 14 $\mathcal{L}(\beta_0) = -8002.619$ $\mathcal{L}(\hat{\beta}) = -13.293$ $\rho^2 = 0.998$ $\bar{\rho}^2 = 0.997$

Results: SRS, 10 el. in choice set

Attributes	Estimates	Std. error	t-stat
$\eta_{\sf Classroom, Shop, Library}$	-2.48	0.00727	-341.00
η_{Lab} , Restaurant, Office, Other	-4.41	1.80e + 308	-0.00
eta_3 lab episodes	-3.42	0.00211	-1621.37
eta_{4+} lab episodes	-0.372	0.00406	-91.48
eta_3 office episodes	-1.11	1.80e + 308	-0.00
eta_{4+} office episodes	-0.598	0.00710	-84.27
eta_3 restaurant episodes	-4.54	1.80e + 308	-0.00
β_{4+} restaurant episodes	-0.515	0.00418	-123.07
eta_{3+} shop episodes	-6.06	0.00167	-3637.41
$eta_{\sf nb}$ nodes NA afternoon, students	-3.71	1.80e + 308	-0.00
eta_{nb} nodes NA before/after work, employees	0.886	0.00197	449.89
eta_{nb} nodes NA work, employees	-0.922	0.00555	-166.01
$\beta_{ m nb}$ nodes classroom morning/afternoon, employees	-0.856	0.00125	-685.45
etaprimary activity library, students	0.267	0.00382	69.75

Number of observations = 1734 Number of estimated parameters = 14 $\mathcal{L}(\beta_0) = -4157.950$ $\mathcal{L}(\hat{\beta}) = -0.000$ $\rho^2 = 1.000$ $\bar{\rho}^2 = 0.997$

Results: observation score, 10 el. in choice set

Attributes	Estimates	Std. error	t-stat
ηClassroom, Shop, Library	-2.83	0.0400	-70.68
η_{Lab} , Restaurant, Office, Other	-4.47	1.80e + 308	-0.00
eta_3 lab episodes	-3.06	0.0404	-75.63
β_{4+} lab episodes	-0.484	0.0256	-18.96
eta_3 office episodes	-3.66	0.0772	-47.48
β_{4+} office episodes	-0.575	0.00909	-63.30
eta_3 restaurant episodes	-4.82	0.0462	-104.19
β_{4+} restaurant episodes	-0.530	0.0175	-30.26
β_{3+} shop episodes	-4.80	1.80e + 308	-0.00
$\beta_{ m nb}$ nodes NA afternoon, students	-6.06	0.0608	-99.70
etanb nodes NA before/after work, employees	0.529	1.80e + 308	0.00
β nb nodes NA work, employees	-0.893	0.0129	-69.37
$\beta_{\rm nb}$ nodes classroom morning/afternoon, employees	-1.02	0.0129	-79.07
βprimary activity library, students	0.284	0.0120	23.67

Number of observations = 1734 Number of estimated parameters = 14 $\mathcal{L}(\beta_0) = -4157.950$ $\mathcal{L}(\hat{\beta}) = -0.000$ $\rho^2 = 1.000$ $\bar{\rho}^2 = 0.997$

Results: strategic sampling, 10 el. in choice set

Attributes	Estimates	Std. error	t-stat
ηClassroom, Shop, Library	-1.17	0.0469	-24.99
η_{Lab} , Restaurant, Office, Other	-1.64	0.0636	-25.86
eta_3 lab episodes	-3.43	0.133	-25.74
eta_{4+} lab episodes	-0.188	0.0156	-12.05
eta_3 office episodes	-1.71	0.0575	-29.80
eta_{4+} office episodes	-0.204	0.00723	-28.18
eta_3 restaurant episodes	-1.19	0.0900	-13.17
β 4+ restaurant episodes	-0.135	0.00492	-27.41
β 3+ shop episodes	-3.20	0.0885	-36.10
eta_{nb} nodes NA afternoon, students	-1.50	0.123	-12.23
etanb nodes NA before/after work, employees	0.112	0.0185	6.09
etanb nodes NA work, employees	-0.502	0.0163	-30.84
β nb nodes classroom morning/afternoon, employees	-0.441	0.0193	-22.87
β primary activity library, students	0.224	0.00725	30.87
Number of observations - 1734	•		

Number of observations = 1734 Number of estimated parameters = 14 $\mathcal{L}(\beta_0) = -4157.950$ $\mathcal{L}(\hat{\beta}) = -0.000$ $\rho^2 = 1.000$ $\bar{\rho}^2 = 0.997$

Results

- 100 elements in the choice set:
 - SRS vs observation score.
 - SRS gives similar results as observation score
- 10 elements in the choice set:
 - SRS vs observation score vs strategic sampling.
 - preliminary: strategic sampling performs better than SRS, observation score

Conclusion and future work

- SRS and importance sampling with observation score generate dominated alternatives
- Strategic sampling gives the flexibility needed in activity path choice
- · Activity path size for correlation between activity paths
 - Primary Activity Path Size (PAPS)
 - Activity Pattern Path Size (APPS)

Thank you

STRC:

Importance sampling for activity path choice Antonin Danalet, Michel Bierlaire

- antonin.danalet@epfl.ch

Bibliography I

Maya Abou-Zeid and Moshe Ben-Akiva. Well-being and activity-based models.

Transportation, 39(6):1189–1207, January 2012.

🔋 J.L Bowman and M.E Ben-Akiva.

Activity-based disaggregate travel demand model system with activity schedules.

Transportation Research Part A, 35(1):1–28, January 2001.

Jingmin Chen.

Modeling route choice behavior using smartphone data. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2013.

Bibliography II

- Antonin Danalet and Michel Bierlaire.
 Importance sampling for activity path choice.
 In 15th Swiss Transport Research Conference (STRC),
 page 42, Monte Verità, Ascona, Switzerland, 2015.
- Antonin Danalet, Bilal Farooq, and Michel Bierlaire.

 A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures.

 Transportation Research Part C, 44:146–170, 2014.
- Dick Ettema, Fabian Bastin, John Polak, and Olu Ashiru. Modelling the joint choice of activity timing and duration. *Transportation Research Part A*, 41(9):827–841, November 2007.

Bibliography III

Gunnar Flötteröd and Michel Bierlaire.
Metropolis-Hastings sampling of paths.

Transportation Research Part B, 48:53–66, February 2013.

Khandker M. Nurul Habib.
A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling.

Transportation, 38(1):123–151, July 2011.

Jason D. Lemp and Kara M. Kockelman.
Strategic sampling for large choice sets in estimation and application.

Transportation Research Part A: Policy and Practice, 46(3):602–613, March 2012.

Bibliography IV

Abdul Rawoof Pinjari and Chandra Bhat.

A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays.

Transportation Research Part B, 44(4):562–583, May 2010.

Yoram Shiftan and Moshe Ben-Akiva.

A practical policy-sensitive, activity-based, travel-demand model.

Annals of Regional Science, 47:517-541, 2011.

Bibliography V

Loïc Tinguely, Antonin Danalet, Matthieu de Lapparent, and Michel Bierlaire.

Destination Choice Model including a panel effect using WiFi localization in a pedestrian facility.

In 15th Swiss Transport Research Conference (STRC), page 44, Monte Verità, Ascona, Switzerland, 2015.