STRC 2015

Modeling pedestrian flows in train stations: The example of Lausanne railway station

Flurin S. Hänseler, Michel Bierlaire, Nicholas A. Molyneaux, Riccardo Scarinci, Michaël Thémans
Transportation Center, EPFL

Monte Verità, April 16, 2015
Pedestrian flows in train stations
Pedestrian demand and supply

- train timetable, frequentation data
- historical information
- network layout

Demand estimation

- OD demand
- traffic conditions

Network loading

- link flow counts
- trajectory recordings
Outline

1. Lausanne railway station
2. Data analysis
3. Origin-destination demand estimation
4. Network loading model
5. Conclusions
Outline

1. Lausanne railway station
2. Data analysis
3. Origin-destination demand estimation
4. Network loading model
5. Conclusions
Lausanne railway station: Aerial view
Lausanne railway station: Walking areas

- Pedestrian walking network
- Entrance: centroid with historical information
- Platform: centroid without historical information
- Link with a priori flow estimate based on timetable
- Link equipped with directed flow counter
- Area covered by pedestrian tracking system
Outline

1. Lausanne railway station

2. Data analysis

3. Origin-destination demand estimation

4. Network loading model

5. Conclusions
Pedestrian demand and supply: Data analysis

- train timetable, frequentation data
- historical information
- network layout

Demand estimation

Network loading

link flow counts

trajectory recordings

demand

traffic conditions
Pedestrian movements on January 16, 2013

Animation: https://youtu.be/HHMXTJlQ1kY
Hourly pedestrian demand over a day

Figure: 10-day reference set, 2013
Outline

1. Lausanne railway station
2. Data analysis
3. Origin-destination demand estimation
4. Network loading model
5. Conclusions
Pedestrian demand and supply: Demand Estimation

- Train timetable, frequentation data
- Historical information
- Network layout

Demand estimation

- Demand
- Network loading
- Traffic conditions

- Link flow counts
- Trajectory recordings
OD demand estimation: Overview

• estimation of demand in walking facilities based on
 – train timetable
 – pedestrian counts
 – historical data (travel surveys, sales data)
 – trajectories (validation only)

• demand-inelastic network loading
 – walking speed $v \sim \mathcal{N}(1.34 \text{ m/s}, 0.34 \text{ m/s})$ [Wei92]
 – unique route per OD pair

• case study: morning peak period, Lausanne railway station
 – busiest 30-min period of the day (07:30 – 08:00)
 – 25 arriving and departing trains
Train-induced flows

boarding/disembarkation flows
platform exit flows
platform access flows
Platform exit flows: Model

Figure: Continuous-time, piecewise linear model
Platform exit flows: Simulation

Figure: April 10, 2013, platform #5/6, Lausanne railway station
Total demand in Lausanne railway station

Figure: 10-day reference set, 2013
Average OD demand in Lausanne railway station

- pedestrian walking network
- peak period: 7:30 – 8:00
- origin of streams
 - train platforms
 - city/metro/bus
 - shops
Lausanne railway station
07:30 – 08:00
Year 2013
Flow map of Lausanne railway station (2013)

Figure: 7:40–7:41

- 10 ped/min
- 100 ped/min

0 25 50 75 ≥ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:41–7:42

- 10 ped/min
- 100 ped/min

Legend:

- 0
- 25
- 50
- 75
- ≥ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:42–7:43

- 10 ped/min
- 100 ped/min

Legend:

- 0
- 25
- 50
- 75
- ≥ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:43–7:44

○ 10 ped/min ○ 100 ped/min

0 25 50 75 ≥ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:44–7:45

0 25 50 75 ≥ 100 ped/min

10 ped/min 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:45–7:46

- 10 ped/min
- 100 ped/min

0 25 50 75 ≥ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:46–7:47

0 25 50 75 ≥ 100 ped/min

○ 10 ped/min ○ 100 ped/min
Flow map of Lausanne railway station (2013)

Figure: 7:47–7:48

- 10 ped/min
- 100 ped/min

0 25 50 75 ≥ 100 ped/min
Outline

1. Lausanne railway station
2. Data analysis
3. Origin-destination demand estimation
4. Network loading model
5. Conclusions
Pedestrian demand and supply: Network loading

- train timetable, frequentation data
- historical information
- network layout

Demand estimation

Network loading

traffic conditions

link flow counts

trajectory recordings
Network loading model: Overview

Requirements:

- accurate prediction of travel time and density
- low computational cost, ‘easy’ calibration
- aggregate model (input and output at aggregate level)

Input:

- demand
- network topology
Pedestrian network loading: Space representation

- walkable area
- entry/exit points
- route
 - sequence of areas
Pedestrian network loading: Space representation

- **walkable area**
- **entry/exit points**
- **route** – sequence of areas
- **path** – sequence of cells
Pedestrian network loading: Propagation model

pedestrian fundamental diagram \cite{Wei92}

\[v_f = 1.34 \]

\[k_{jam} = 5.4 \]
Pedestrian network loading: Propagation model

Pedestrian fundamental diagram [Wei92]

speed (m/s)

$\nu_f = 1.34$

flow (#/ms)

$q_{opt} = 1.22$

density (#/m2)

$k_{opt} = 1.75$

$k_{jam} = 5.4$
Level-of-service assessment

<table>
<thead>
<tr>
<th>LOS</th>
<th>Pedestrian density</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 0.179 [ped/m²]</td>
</tr>
<tr>
<td>B</td>
<td>< 0.270</td>
</tr>
<tr>
<td>C</td>
<td>< 0.455</td>
</tr>
<tr>
<td>D</td>
<td>< 0.714</td>
</tr>
<tr>
<td>E</td>
<td>< 1.333</td>
</tr>
<tr>
<td>F</td>
<td>≥ 1.333</td>
</tr>
</tbody>
</table>

Table: Pedestrian walkway LoS density threshold values according to NCHRP

density as indicator for:
- comfort
- performance
- safety

Ref: [Hig00], Exhibit 18-3
Level-of-service assessment
Level-of-service assessment
Level-of-service assessment

Figure: SBB-I-AT-BZU-PFL
Level-of-service assessment
Level-of-service assessment

Figure: SBB-I-AT-BZU-PFL
Pedestrian network loading: PU West, Lausanne

Figure: Pedestrian Underpass West, Lausanne railway station
Pedestrian network loading: PU West, Lausanne

- simulated pedestrian density map
- prediction of travel times, flows and densities
- January 22, 2013, 07:40 – 07:46

<table>
<thead>
<tr>
<th>LOS</th>
<th>[#/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 0.179</td>
</tr>
<tr>
<td>B</td>
<td>< 0.270</td>
</tr>
<tr>
<td>C</td>
<td>< 0.455</td>
</tr>
<tr>
<td>D</td>
<td>< 0.714</td>
</tr>
<tr>
<td>E</td>
<td>< 1.333</td>
</tr>
<tr>
<td>F</td>
<td>≥ 1.333</td>
</tr>
</tbody>
</table>

Animation: http://youtu.be/16_MkoF70Hc
Outline

1. Lausanne railway station
2. Data analysis
3. Origin-destination demand estimation
4. Network loading model
5. Conclusions
Conclusions

• explorative analysis of several pedestrian data sets related to Lausanne railway station

• development of schedule-based origin-destination demand estimator for pedestrian flows in railway stations

• development of pedestrian network loading model for level-of-service assessment in pedestrian facilities in railway stations
Thank you

STRC 2015:
Modeling pedestrian flows in train stations: The example of Lausanne railway station
Flurin S. Hänseler, Michel Bierlaire, Nicholas A. Molyneaux, Riccardo Scarinci, Michaël Thémans
Transportation Center, EPFL
Support by SBB-I-AT-BZU-PFL and EPFL-TraCE is gratefully acknowledged.

- transport.epfl.ch
Bibliography I

Highway Capacity Manual.
Transportation Research Board.

U. Weidmann.
Transporttechnik der Fussgänger.
Schriftenreihe des IVT Nr. 90. Institute for Transport Planning and Systems, ETH Zürich, Switzerland, 1992.

Bidirectional pedestrian stream model with oblique intersecting angle.
S. Xie and S. C. Wong.
A Bayesian Inference Approach to the Development of a Multidirectional Pedestrian Stream Model.