STRC

Destination Choice Model including panel data using WiFi localization in a pedestrian facility

Loïc Tinguely,
Antonin Danalet, Matthieu de Lapparent \& Michel Bierlaire
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

April 16th, 2015

Table of contents

(1) Introduction
(2) Methodology
(3) EPFL case study

- The EPFL campus
- Modelling
- Results
- Validation
- Comments

4 Future work
(1) Introduction
(2) Methodology
(3) EPFL case study

- The EPFL campus
- Modelling
- Results
- Validation
- Comments

4 Future work

The context of the project

Increasing transport demand worldwide and especially in Switzerland

- Need to optimize existing and future multimodal transport hubs (e.g., railway stations, airports)
- Using modern technologies (e.g., Wi-Fi localization) to track, model and understand pedestrians behavior
- Utilize a Bayesian approach to detect pedestrian destination-sequences from Wi-Fi signatures (Danalet et al., 2014).
- Model the sequential choices of activity (Danalet \& Bierlaire, 2015) and destination (here).

What we propose

A general methodology to model pedestrian destination choice using activity episodes sequences from WiFi localization.

- Accounting for panel nature of data.
- Considering field anisotropy

We present an application on the EPFL campus for activity type: eating.

- A catering destination choice model
(1) Introduction
(2) Methodology
(3) EPFL case study
- The EPFL campus
- Modelling
- Results
- Validation
- Comments

4 Future work

An activity episode sequence

The output of the Bayesian approach (Danalet et al., 2014) consists of activity episode sequences.

Nb of observations:						
Start_time	End_time	Floor	Nb of activity episodes:	3, Date: 2012-06-29		
09:55:01	$11: 01: 30$	1	Library_name	Library	533226.888831	152274.939064
11:04:39	$11: 30: 03$	1	Printer_Lib	Printer	533229.919333	152284.564615
11:37:23	$13: 08: 04$	1	Self-service_Lib	Restaurant	533197.354323	152223.135494

Each activity type corresponds to several possible destinations.

Use of activity episode sequences

For each destination, three categories of attributes exist: sequence, activity episode and alternative attributes.

Sequence attributes	Activity episode attributes	Destination attributes
Day of the observation	Activity Type	Capacity
Socio-economic attributes	Start/end times	Price/Quality
Individual specific attributes	Coordinates	Integration
	Floor	Opening hours

The comparison of sequences of a same individual permit to catch the previous choices.

The comparison of successive activity episodes permit to calculate the distance covered (based on a weighted shortest path algorithm).

A dynamic model

The utility function at time t can take into account the choice performed at time $t-1$. It means that the observations and the error terms are not independent anymore.

Wooldridge correction

According to Wooldridge (2002), it is possible to overcome agent effect by defining an unobserved heterogeneity density function c_{i} :

$$
c_{i} \mid y_{i, 0}, z_{i} \sim \operatorname{Normal}\left(\alpha_{0}+\alpha_{1} y_{i, 0}+z_{i} \alpha_{2}, \sigma_{\alpha}^{2}\right)
$$

As a first guess, we consider that $\alpha_{2}=0$:

$$
c_{i}=\alpha_{0} y_{i, 0}+\sigma_{i}
$$

σ_{i} is normally distributed and independent of $y_{i 0} . y_{i 0}$ is the first choice ever made by an individual i.

Three models

The choice of the alternative d at time t performed by i is rewritten as:

$$
y_{d, i, t}=\beta z_{d, i, t}+\rho y_{i, t-1}+\alpha_{0} y_{i, 0}+\sigma_{i}+u_{i, t}
$$

σ_{i} is a time-invariant unobserved effect and $u_{i, t}$ is an error term that is iid over time and individuals. We consider three models:

Static model	Dynamic strict exogenous model	Dynamic with agent effect model
$\rho=0$	$\rho \neq 0$	$\rho \neq 0$
$\alpha_{0}=0$	$\alpha_{0}=0$	$\alpha_{0} \neq 0$
$\sigma_{i}=0$	$\sigma_{i}=0$	$\sigma_{i} \neq 0$

(1) Introduction
(2) Methodology
(3) EPFL case study

- The EPFL campus
- Modelling
- Results
- Validation
- Comments

4 Future work

A map of the EPFL campus

Some facts about the eating establishments

- 9 self-services +6 cafeterias +2 caravans +2 restaurants +2 others $=21$ alternatives.
- Availability of services (e.g., microwaves, sandwiches, drinks...), capacities and prices are similar between destinations of a same type
- The quality (food, cleanness, service) and consumers habits are regularly measured via paper-and-pencil and Internet surveys.
- Crossing the campus on foot takes between 10 and 15 minutes.

Some facts about the activity episodes

- There are 2008 visits of eating establishments during a period of 3 months performed by 192 individuals (students and employees).
- 40% of the visits are made during the lunch period (between 11:30AM and 2PM).
- In average, students and employees walk 175 meters to reach an eating establishment
- Individuals have habits since they usually visit a same destination several times.

Modelling (1)

We develop a linear in parameters Multinomial Logit Model.

$$
P(d \mid D)=\frac{e^{\mu V_{d n}}}{\sum_{j=1}^{D} e^{\mu V_{j n}}}
$$

Parameter	Variable	Variable description	Time period
$A^{\prime} S_{\text {d }}$	1	-	
$\beta_{\text {DIST_LUNCH }}^{\text {TYPE }}$	lunch_distance	distance from the previous activity episode 0 otherwise	lunch
$\beta_{\text {DIST_MORNING }}$	morning_distance	distance from the previous activity episode 0 otherwise	morning
$\beta_{\text {dist_AFTERNOON }}$	afternoon_distance	distance from the previous activity episode 0 otherwise	afternoon
$\beta_{\text {No_distance_av }}$	distance_not_av	1 if no distance is available 0 otherwise	
$\beta_{\text {EVaLUATIontype }}$	evaluation_survey	quality evaluation on a $[1 ; 6]$ scale 0 otherwise	lunch
$\beta_{\text {PRICE_Student }}$	price_min_student	price for the cheapest hot meal if student 0 otherwise	lunch
$\beta_{\text {PRICE_EMPLOYEE }}$	price_min_employee	price for the cheapest hot meal if employee 0 otherwise	lunch

Modelling (2)

Parameter	Variable	Variable description	Time period
$\beta_{\text {TAP_BEER }}$	beer_av	1 if tap beer is available	after lunch
$\beta_{\text {DINNER }}$	dinner_av	1 if dinner is available	0 otherwise
$\beta_{\text {CAPACITY_TERRACE }}$	capacity_terrace	outside number of seats if the weather is good 0 otherwise inside number of seats	lunch
$\beta_{\text {CAPACITY_INSIDE }}$	capacity_inside	0 otherwise	
$\rho_{\text {PREVIOUS_CHOICE }}$	previous_choice	1 if the destination was the previous destination	lunch
$\alpha_{\text {FIRST_CHOICE }}$	first_choice	1 if the destination was the first destination	lunch
σ_{d}	1	0 otherwise	

Obviously more parameters were tested but not kept in the model (because they were not significant or did not make sense).

Results

Results are similar for all three models.

	Static model		Dynamic strict		Dynamic agent effect	
Parameters	Value	t-test	Value	t-test	Value	t-test
$\beta_{\text {DIST_LUNCH_CAFET }}$	-0.00703	-16.69	-0.00633	-14.82	-0.00396	-7.96
$\beta_{\text {DIST_LUNC__REST }}$	-0.00276	-2.18	-0.00256	-2.01	-0.00163	-0.98
$\beta_{\text {DIST_LUNCH_SELF }}$	-0.00646	-19.99	-0.00579	-17.38	-0.00382	-9.96
$\beta_{\text {DIST_MORNING }}$	-0.00379	-5.97	-0.00396	-6.17	-0.00244	-3.15
$\beta_{\text {DIST_AFTERNOON }}$	-0.000606	-1.31	-0.00103	-2.19	-0.000785	-1.32
$\beta_{\text {NO_DISTANCE_AV }}$	-4.89	-13.84	-4.5	-12.92	-3.26	-8.13
$\beta_{\text {EVALUATIO_CAFET }}$	1.79	9.98	1.76	9.54	1.99	8.6
$\beta_{\text {EVALUATIO_SELF }}$	1.88	9.66	1.84	9.19	2.07	8.14
$\beta_{\text {PRICE_STUDENT }}$	-0.0681	-2.07	-0.0579	-1.73	-0.0613	-1.23
$\beta_{\text {PRICE_EMPLOYEE }}$	-0.00537	-0.18	0.000374	0.01	0.00183	0.04
$\beta_{\text {TAP_BEER }}$	0.669	3.62	0.6	3.24	0.801	3.07
$\beta_{\text {DINNER }}$	0.943	3.35	0.986	3.5	0.474	1.31
$\beta_{\text {CAPACITY_TERRACE }}$	0.00162	1.84	0.00148	1.65	0.00234	2.17
$\beta_{\text {CAPACITY_INSIDE }}$	0.00277	1.29	0.00309	1.43	0.00604	2.26
$\rho_{\text {PREVIOUS_CHOICE }}$	0	0	1.76	17.12	0.373	2.85
$\alpha_{\text {FIRST_CHOICE }}$	0	0	0	0	2.21	17.8
$\mathcal{L}(0)$	0	-5035.429	-5035.429	-5035.429		
$\mathcal{L}(\hat{\beta})$	-3238.926	-3104.999	-2328.958			
ρ^{2}	0.36	0.38	0.54			

Comparison of the models

We compare the three models:

- Accounting for panel nature of data and correcting for agent effect issue increase the fit with the data and decrease the t-test of actual determinants.

	Static model	Dynamic strict exogenous	Dynamic with agent effect
$\mathcal{L}(\hat{\beta})$	-3238.926	-3104.999	-2328.958
Number of parameters	34	35	57
	Likelihood ratio test		
Static VS Strict:	$-2(-3238.926+3104.999)=266>3.84$		
Strict VS Agent effect:	$-2(-3104.999+2328.958)=1552>33.92$		

Validation

We calibrate and simulate the models on two distinct samples

	Observed		market shares	Static		estimate
	NB	$\%$	NB	$\%$	NB	$\%$
	0	0%	1	0.2%	1	0.2%
Cafeteria Cafe Le Klee	24	6.4%	29	7.7%	29	7.8%
Self-service BC	17	4.5%	9	2.4%	9	2.5%
Other BM	28	7.5%	22	6%	23	6.2%
Cafeteria ELA	3	0.8%	2	0.6%	2	0.6%
Cafeteria INM	15	4%	17	4.5%	17	4.5%
Cafeteria MX	15	4%	16	4.3%	16	4.3%
Other PH	12	3.2%	7	2%	8	2.2%
Cafeteria L'Arcadie	28	7.5%	29	7.8%	29	7.7%
Self-service L'Atlantide	1	0.3%	1	0.3%	1	0.3%
Restaurant Le Copernic	14	3.7%	15	3.9%	14	3.6%
Self-service Le Corbusier	39	10.4%	34	9%	34	9%
Cafeteria Le Giacometti	29	7.8%	26	7%	27	7.2%
Self-service Le Parmentier	0	0%	1	0.2%	1	0.2%
Self-service Le Vinci	70	18.7%	80	21.3%	78	20.9%
Self-service L'Esplanade	25	6.7%	19	5.2%	21	5.7%
Self-service L'Ornithorynque	14	3.7%	15	4.1%	16	4.3%
Caravan Pizza	12	3.2%	13	3.4%	12	3.3%
Caravan Kebab	21	5.6%	28	7.6%	28	7.5%
Cafeteria Satellite	1.6%	8	2.2%	7	1.9%	
Self-service Le Hodler	6	0.3%	1	0.4%	1	0.4%
Restaurant Table de Vallotton	1					

Results are accurate for both approaches

Comments

It is possible to develop a destination choice model for pedestrians from activity episode sequences.

The distance and the previous choice are highly significant parameters.

- Correcting agent effect issue with Wooldridge approach improves the model
- One needs to specify the time interval between activity episode sequences
(1) Introduction
(2) Methodology
(3) EPFL case study
- The EPFL campus
- Modelling
- Results
- Validation
- Comments

(4) Future work

Future work

Clearly define the time interval between activity episode sequences.

- Develop daily models (e.g., one for Mondays, Tuesdays...)
- Propose a disaggregated (over time and individuals) validation Improve the detection of Points Of Interest.
- Use the data collected from the pedestrian counters to improve the measure of attractivity
Account for more than one candidate of activity episode sequence.
Use the developed methodology in the context of mutlimodal transport facilities.

STRC

Thank you for your attention

Now, your questions

References

Antonin Danalet, Bilal Farooq, Michel Bierlaire (2014). A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures, Transportation Research Part C: Emering technologies

Ben-Akiva, M. and Bierlaire, M. (2003). Discrete choice analysis, in R. Hall (ed.)
Kim, J. and J. Hespanha (2003) Discrete approximations to continuous shortest-path: application to minimum-risk path planning for groups of UAVs, 42nd IEEE International Conference on Decision and Control, 2, ISSN 0191-2216

Matthieu de Lapparent and Michel Bierlaire (2014). Mathematical modeling of behavior , Mathematical modelling of behavior

Pirotte, A (1996) Estimation de relations de long terme sur donnes panel: nouveaux rsultats, Economie \& Prvision, 126, 143-161, ISSN 0249-4744

Wooldridge J. M. (2002), Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity, Michigan State University

