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Abstract

Isogeometric Analysis (IGA) is a computational methodology for the numerical approxima-
tion of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for
which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS), are used
both to represent the geometry and to approximate the unknown solutions of PDEs. Com-
pared to the standard Finite Element method, NURBS-based IGA offers several advantages:
ideally a direct interface with CAD tools, exact geometrical representation, simple refinement
procedures, and smooth basis functions allowing to easily solve higher order problems, includ-
ing structural shell problems. In these contexts, repeatedly solving a problem for a large set
of geometric parameters might lead to high and eventually prohibitive computational cost.
To cope with this problem, we consider in this work the Reduced Basis (RB) method for the
solution of parameter dependent PDEs, specifically for which the NURBS representation of
the computational domain is parameter dependent.

RB refers to a technique that enables a rapid and reliable approximation of parametrized
PDEs by constructing low dimensional approximation spaces. In this work, for the construc-
tion of the reduced spaces we adopt two different strategies, namely the Proper Orthogonal
Decomposition and the greedy algorithm.

In this thesis we combine RB and IGA for the efficient solution of parametrized prob-
lems for all the possible cases of NURBS geometrical parametrizations, which specifically
include the NURBS control points, the weights, and both the control points and weights. In
particular, we first focus on the solution of second order PDEs on parametrized lower dimen-
sional manifolds, specifically surfaces in the three dimensional space. We consider geometrical
parametrizations that entail a nonaffine dependence of the variational forms on the spatial
coordinates and the geometric parameters. Thus, depending on the parametrization at hand
and in order to ensure a suitable Offline/Online decomposition between the reduced order
model construction and solution, we resort to the Empirical Interpolation Method (EIM) or
the Matrix Discrete Empirical Interpolation Method (MDEIM), by comparing their perfor-
mances.

As application, we solve a class of benchmark structural problems modeled by Kirchoff-
Love shells for which we consider NURBS geometric parametrizations and we apply the
RB method to the solution of this class of fourth order PDEs. We highlight by means of
numerical tests, the performance of the RB method applied to standard IGA approximation
of parametrized shell geometries.
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Estratto

L’Analisi Isogeometrica (IGA) è una metodologia computazionale per l’approssimazione nu-
merica delle Equazioni Differenziali alle Derivate Parziali (PDEs). IGA si basa sul paradigma
isogeometrico, secondo il quale le stesse funzioni di base, di solito Non-Uniform Rational B-
Splines (NURBS), vengono utilizzate sia per rappresentare la geometria che per approssimare
le soluzioni delle PDEs. Rispetto al metodo degli Elementi Finiti, IGA offre diversi vantaggi:
diretta interfacciabilità con gli strumenti CAD, rappresentazione esatta delle geometrie, sem-
plici procedure di raffinamento e funzioni di base smooth che consentono di risolvere problemi
di alto ordine, inclusi problemi strutturali di tipo shells. In questo contesto, la risoluzione
ripetuta di un problema per un gran numero di parametri geometrici potrebbe richiedere
costi computazionali eccessivamente elevati. Per far fronte a questo problema, in questa tesi
consideriamo il metodo delle Basi Ridotte per la risoluzione di PDEs parametrizzate, per le
quali, in particolare, la rappresentazione della geometria costruita tramite NURBS dipende
da parametri.

La metodologia RB consente una valutazione rapida, efficiente ed accurata di queste PDEs
parametrizzate tramite la costruzione di spazi approssimanti di piccole dimensioni. In questo
lavoro per la costruzioni di tali spazi ridotti adottiamo due diverse strategie, nello specifico
la Proper Orthogonal Decomposition e un algoritmo greedy.

Lo scopo di questa tesi è l’applicazione di RB al metodo IGA per una risoluzione effi-
ciente di problemi parametrizzati per tutti i possibili casi di parametrizzazione delle geome-
trie costruite tramite NURBS, che nello specifico può riguardare i punti di controllo delle
NURBS, i pesi delle NURBS, o sia i punti di controllo che i pesi. Dapprima ci focalizziamo
sulla risoluzione di PDEs del secondo ordine su manifolds, in particolare su superfici nello
spazio tridimensionale. Consideriamo parametrizzazioni geometriche che causano una dipen-
denza non affine delle forme variazionali sia rispetto alle coordinate spaziali che ai parametri
geometrici. Pertanto, in base alla parametrizzazione considerata e per assicurare una de-
composizione Offline/Online efficiente tra la costruzione del modello di ordine ridotto e la
sua risoluzione, ricorriamo all’ Empirical Interpolation Method (EIM) o al Matrix Empirical
Interpolation Method (MDEIM), confrontandone le prestazioni.

Come applicazione, risolviamo una classe di problemi strutturali modellati da Kirchoff-
Love shells per i quali consideriamo delle parametrizzazioni geometriche ed applichiamo il
metodo RB per la risoluzione di questa classe di PDEs del quarto ordine. Attraverso test
numerici mettiamo in evidenza le prestazioni del metodo RB applicato a problemi definiti su
shells parametrizzate e approssimati tramite IGA.

xi
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Introduction

Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation
of PDEs introduced by Hughes et al. in ([CHB05]). The aim of IGA is to help designers of
Engineering systems to make the computational geometries suitable for the numerical solution
of PDEs, as well as facilitating the interaction of Computer Aided Design (CAD) and Finite
Elements method (FEM) technologies ([CHB09]). IGA makes this possible by considering
a unique geometric model directly usable as an analysis model thanks to the isogeometric
concept, for which the same basis functions are used both to represent the geometry and to
approximate the unknown solutions of the PDEs. The most widely used computational ge-
ometry in Engineering design are NURBS (Non-Uniform Rational B-splines) that are defined
by combinations of B-splines and weights ([PT97]). In this context, all conic sections, circles,
cylinders, spheres, ellipsoids, etc, can be exactly represented by means of geometrical mapping
described by linear combinations of NURBS functions and control points ([PT97]). Based on
the isogeometric concept, in this work, NURBS are used both to represent the computa-
tional domains and to build a basis for the analysis. Compared to classical FEA, IGA offers
several advantages, such as: exact geometrical representation, simple refinement procedures,
and smooth basis functions, eventually globally Ck-continuous, with k ≥ 0. Moreover, IGA
is attractive for solving PDEs under shape and geometrical parametrizations. As a matter
of fact, since the IGA mapping involves only the NURBS control points and the NURBS
basis functions, one can change the geometrical configuration of a computational domain in
a straightforward manner, by considering the position of the NURBS control points or the
weights as parameters.

With this motivation, in this work, we focus on the numerical solution of second or-
der PDEs on parametrized lower dimensional manifolds, specifically surfaces in the three
dimensional space. In this context, the standard case of second order PDEs in the two di-
mensional space is automatically recovered if the control points are in 2D. Moreover, the ad-
ditional regularity of NURBS basis functions used in IGA allows to treat high order problems
([BDQ15, TDQ14]). Thus, as final application, we consider a benchmark class of structural
problems modeled under the Kirchoff-Love shell theory, for which we solve parametrized prob-
lems. In all these cases, the problem is that, if one is interested in evaluating the solution of the
problem for a large number of geometrical parameters or in real time, then the total computa-
tional cost could become extremely high and eventually prohibitive. To overcome this issue, we
consider in this work, the Reduced Basis method ([GP05, Man12, Qua14, QRM11, SVH+06]).

The Reduced Basis (RB) method is a technique that enables a rapid and reliable ap-
proximation of parametrized PDEs (PPDEs) by constructing low dimensional approximation
spaces. Using these spaces for the discretization of the original problem, we can build a re-
duced order model which is a sufficiently accurate approximation of the full order original
problem. Indeed, reduction strategies can be crucial in applications of high complexity. As a
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matter of fact, although the increasing computer power allows nowadays to solve problems of
very large dimension, a computational reduction is still necessary in real-time simulations and
many-query contexts ([GP05, Man12, Qua14, QRM11, SVH+06]). In case of optimal control
or shape optimization problems, for instance, the computational cost is mainly associated to
iterative optimization procedures, requiring recursive evaluations of the quantities of interest.
More in general, in Engineering practice, one could be interested in the solution of a PPDE
that describes a particular phenomenon whose parameters are related to physical properties,
boundary conditions, or loads. In this work, as already anticipated, we are interested in tak-
ing into account shape variations of the computational domains, thus we consider geometric
parameters.

Historically, RB methods have been built upon Finite Element discretizations (e.g. [Man12,
RHP08, VPRP03]) even if spectral elements ([LMR06]), and finite volume ([HO08]) methods
have been considered. In this thesis, we build a RB approximation upon a IGA approxima-
tion. To the best of our knowledge, there is only another work ([MSH15]) devoted to the
application of RB to IGA; in particular, in [MSH15] the construction of the RB method relies
on an Isogeometric Boundary Element Method and the geometric parametrization regards
only the NURBS control points coordinates. Conversely, in this thesis, we consider the more
general case of NURBS geometry parametrization, that, can affect, the control points, the
weights, or both control points and weights. For all these cases, we show, for the first time,
how RB and IGA can be jointly used in an efficient way.

We remark that the crucial point of the RB and IGA coupling regards the affinity assump-
tion. In order to ensure a suitable Offline/Online decomposition between the reduced spaces
construction and the evaluation of the solution of the reduced problem, the bilinear forms
and the linear functionals of the variational formulation must depend in an affine way on the
spatial coordinates and on the geometric parameters. In this manner, at the Offline stage
one can assemble and store the parameter independent structures only once, while at the
Online stage, for each new parameter, one can just evaluate the parameter dependent terms
and solve the reduced system. However, the geometric NURBS parametrizations severally
lead to a nonaffine dependence on these quantities, therefore requiring to resort to suitable
methodologies to restore the affine dependence of the weak formulation of the problem.

We start by considering the case in which the parametrization of the surface concerns
only the NURBS control points coordinates, while the NURBS weights are not parameter
dependent; in this case, to restore the affinity assumption we map the problem on a reference
configuration and appeal to the Empirical Interpolation Method (EIM) ([BMNP04]) to affinely
approximate the parameter dependent terms appearing in the integral formulation of the
problem. Then, we consider the case in which the parametrization concerns also the NURBS
weights. However, we see that, when the NURBS weights are parametrized, the EIM approach
is unusable, since one is unable to define a reference configuration and to apply in an efficient
way EIM to the parameter dependent terms appearing in the integral formulation of the
problem. As a matter of fact, if all the NURBS weights are parameter dependent, the Online
evaluation stage would depend on the full dimension of the problem, which is precisely what
should be avoided to build efficient RB. For these reasons, in order to restore the affinity
of the forms and functionals, we appeal to a recent alternative methodology, the Matrix
Discrete Empirical Interpolation Method (MDEIM) ([NMA15]), which directly operates the
affine decomposition on the matrix and right hand side vector of the parametrized linear
system. Moreover, MDEIM is very general and can be used with both parametrizations of
NURBS control points and weights.
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As final application, we focus on structural problems, specifically on thin shells. We re-
mark that a model derivative reduction method based on a Isogeometric discretization has
already been applied to the vibration analysis and nonlinear structural analysis of 3D problems
([WWS14]). However, in this thesis, we apply RB to thin structures modeled as Kirchoff-
Love shells undergoing geometric parametrizations. We remark that Kirchoff-Love shells have
been analyzed both in the FE framework ([SFR89, ACdSAF03, BB93]) and IGA framework
([KBLW09, CHB09]), even if never in a parametrized context. Finally, we approximate these
models by means of MDEIM and apply, for the first time, the RB method for a rapid and
reliable solution of parametrized fourth order PDEs.

The work is organized as follows:

Chapter 1. We introduce the main elements of IGA by describing B-splines, NURBS,
and refinement techniques. Moreover, we recall the isogeometric concept and introduce
IGA as a method for the numerical approximation of second order PDEs on lower
dimensional manifolds, specifically surfaces in a three dimensional space. Then, we
solve benchmark problems and introduce geometrically parametrized problems.

Chapter 2. We introduce the main features of the RB method and describe the setting
of the parametrized formulations of the problems considered in this work. We show
the steps to follow to obtain a reduced order model and, in particular, describe two
sampling strategies to obtain the low dimensional spaces, namely the Proper Orthogonal
Decomposition (POD) and the Greedy algorithm. Moreover, we recall an a posteriori
error estimation, a fundamental ingredient for the application of the RB method and
for the certification of the reduced solutions.

Chapter 3. We consider a class of problems described by PDEs defined on parametrized
geometries, such that the parametrization affects only the NURBS control points co-
ordinates. We describe EIM as a suitable technique to restore the affinity assumption.
Then, we apply EIM to an academical test problem and solve it by means of the RB
method. Finally, we show some numerical results to validate the procedure.

Chapter 4. We consider a class of problems described by PDEs defined on parametrized
geometries, such that both the NURBS control points coordinates and weights are
parameter dependent. By means of an example, we explain why EIM is not usable. We
then describe the MDEIM as an alternative technique to restore the affinity assumption
and apply it to an academic test problem solved by means of the RB strategy. Finally,
we show some numerical results and a comparison between the EIM and the MDEIM
performances.

Chapter 5. We describe the Kirchoff-Love theory of shells and provide its IGA dis-
cretization. Then, we introduce a parametrized version of this model, apply MDEIM
to restore the affinity assumption and then obtain a RB approximation. Finally, we
present the numerical results for some of the shell course problems.

Conclusions. We draw some conclusions on this work and suggest some further exten-
sions and applications.

All our numerical simulations were performed by means of tools and software based on
GeoPDEs (http://geopdes.sourceforge.net), Matlab (http://www.mathworks.

http://geopdes.sourceforge.net
http://www.mathworks.com
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com), and a IGA library for the implementation of Kirchoff-Love shells models (http:
//sourceforge.net/projects/cmcodes/?source=typ_redirect). The visualiza-
tions were performed by means of ParaView (http://www.paraview.org/).

http://www.mathworks.com
http://www.mathworks.com
http://sourceforge.net/projects/cmcodes/?source=typ_redirect
http://sourceforge.net/projects/cmcodes/?source=typ_redirect
http://www.paraview.org/


Sintesi

L’Analisi Isogeometrica (IGA) è una metodologia computazionale per l’approssimazione nu-
merica delle PDEs introdotta da Hughes et al. in ([CHB05]). Lo scopo di IGA è di aiutare
i designers dei sistemi Ingegneristici nel rendere le geometrie computazionali adatte alla
risoluzione numerica delle PDEs, facilitando l’interazione tra gli strumenti di Computer Aided
Design (CAD) ed il metodo agli Elementi Finiti (FEM) ([CHB09]). IGA rende ciò possibile
considerando un’unica geometria utilizzabile direttamente come modello per l’analisi grazie
al paradigma isogeometrico, secondo il quale le stesse funzioni di base vengono utilizzate
sia per rappresentare la geometria che per approssimare le soluzioni delle PDEs. In questa
tesi utilizziamo le NURBS (Non-Uniform Rational B-splines) sia per rappresentare i domini
computazionali che come funzioni di base per l’analisi. Le NURBS sono definite come combi-
nazione lineare di B-splines e pesi ([PT97]). Tramite le NURBS tutte le sezioni coniche, cir-
colari, cilindriche, sferiche, elissoidali, etc, possono essere rappresentate esattamente tramite
mappe geometriche descritte da combinazioni lineari di funzioni NURBS e punti di controllo
([PT97]). Rispetto al metodo degli Elementi Finiti, il metodo IGA offre diversi vantaggi:
diretta interfacciabilità con gli strumenti CAD, rappresentazione esatta delle geometrie, sem-
plici procedure di raffinamento e funzioni di base smooth con continuità globale eventualmente
Ck, con k ≥ 0. Inoltre, IGA risulta essere particolarmente adatta per la risoluzione di PDEs
soggette a parametrizzazioni geometriche. Infatti, poiché la mappa IGA coinvolge i punti di
controllo delle NURBS e le funzioni di base NURBS, è possibile cambiare una configurazione
geometrica in maniera semplice, considerando la posizione dei punti di controllo o i pesi come
parametri.

Per questi motivi, in questa tesi, ci focalizziamo sulla risoluzione numerica di PDEs del
secondo ordine su manifolds di bassa dimensione, in particolare superfici nello spazio tridi-
mensionale. Inoltre, la regolarità delle funzioni di base NURBS permette di trattare problemi
di alto ordine ([BDQ15, TDQ14]). Pertanto, come applicazione finale, consideriamo una
classe di problemi strutturali modellati da Kirchoff-Love shells e in questo contesto risolvi-
amo problemi parametrici. In tutti questi casi, la risoluzione ripetuta di un problema per un
gran numero di parametri geometrici potrebbe richiedere costi computazionali eccessivamente
elevati. Per far fronte a questo problema, in questa tesi consideriamo il metodo delle Basi Ri-
dotte ([GP05, Man12, Qua14, QRM11, SVH+06]) per la risoluzione di PDEs parametrizzate,
per le quali, in particolare, la rappresentazione della geometria costruita tramite NURBS è
dipendente da parametri.

Il metodo alle Basi Ridotte è una metodologia che consente una valutazione rapida, ef-
ficiente ed accurata di PDEs parametrizzate tramite la costruzione di spazi approssimanti
di piccole dimensioni. Tali strategie di riduzione possono essere fondamentali per appli-
cazioni altamente complesse garantendo grandi riduzioni dei tempi computazionali richiesti
([GP05, Man12, Qua14, QRM11, SVH+06]). Storicamente, il metodo RB è stato costruito
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su discetizzazioni agli Elementi Finiti (e.g. [Man12, RHP08, VPRP03]), ma sono stati con-
siderati anche metodi agli elementi spettrali ([LMR06]) e volumi finiti ([HO08]). In questa
tesi, costruiamo un’approssimazione RB su una discretizzazione IGA, considerando il caso più
generale di parametrizzazione di una geometria costruita tramite NURBS, che può riguardare
i punti di controllo, i pesi, o sia i punti di controllo che i pesi. Per tutti questi casi vediamo,
per la prima volta, come RB e IGA possono essere interfacciate tra loro.

Nella procedura di applicazione di RB a IGA, il punto cruciale riguarda il soddisfacimento
dell’ipotesi di affinità. Al fine di assicurare una decomposizione Offline/Online efficiente
tra la costruzione del modello di ordine ridotto e la sua risoluzione, le forme bilineari e i
funzionali lineari della forma variazionale devono dipendere in maniera affine dalle coordinate
spaziali e dai parametri geometrici. Le parametrizzazioni geometriche che considereremo,
causeranno sempre una dipendenza non affine del problema da queste quantità e vedremo che
qualora la parametrizzazione coinvolge solo i punti di controllo delle NURBS, l’affinità potrà
essere recuperata tramite l’Empirical Interpolation Method (EIM) [BMNP04], mente se la
parametrizzazione riguarda anche i pesi delle NURBS allora dovremo ricorrere ad un’altra
metodologia, il Matrix Discrete Empirical Interpolation Method (MDEIM) [NMA15].

Come applicazione finale, consideriamo, come anticipato, una classe di problemi strut-
turali. In particolare, studiamo strutture sottili modellate da Kirchoff-Love shells e soggette
a parametrizzazione geometrica. I modelli Kirchoff-Love sono stati ampliamente analizzati sia
in ambito FE ([SFR89, ACdSAF03, BB93]) che in ambito IGA ([KBLW09, CHB09]), anche
se non in contesto parametrizzato. Infine, approssimiamo questi modelli tramite MDEIM e
applichiamo, per la prima volta, il metodo RB per una valutazione rapida ed accurata di
PDEs del quarto ordine parametrizzate.



Chapter 1

Isogeometric Analysis

In this chapter we revisit the basic concepts and properties of Isogeometric Analysis (IGA), a
computational methodology for the numerical approximation of Partial Differential Equations
(PDEs) [HCB05, CHB09]. IGA is based on the isogeometric concept, for which the same basis
functions are used both to represent the geometry and to approximate the unknown solutions
of the PDEs. The aim of the methodology is to help designers of Engineering systems in
making the geometries suitable for the numerical solution of PDEs. As a matter of fact,
nowadays designers generate Computer Aided Design (CAD) geometries and use them as
inputs for numerical methods aimed to find approximate solutions to boundary value prob-
lems for PDEs, usually the Finite Element Analysis (FEA) method. To this end, it is also
requested to realize suitable meshes (piecewise approximations of the actual computational
domain) that properly fit the geometries. The result is that the construction of the geometry
and the mesh represents one of the most time consuming steps in FEA and, in addition to
that, the geometrical approximation may introduce errors and can cause significant accuracy
issues. The necessity to break down the barriers between engineering design and analysis
led to Isogeometric Analysis. In IGA the gap between CAD and FEA is ideally filled by
considering a unique geometric model directly usable as an analysis model thanks to the iso-
geometric concept. The most widely used computational geometry technology in Engineering
design are NURBS (non-uniform rational B-splines) [PT97] that can exactly represent all
conic sections, circles, cylinders, spheres, ellipsoids, etc. In this thesis, we will use NURBS
both to represent our computational domains and to build a basis for the analysis. For the
numerical approximation of PDEs, we will consider NURBS-based IGA in the framework of
the Galerkin method to solve elliptic PDEs, although different numerical methods can be
used, such as collocation or least square methods [CHB09]. In the following, we will deal with
geometries that can be modeled as a single patch, a physical domain (surfaces in Rd, d = 2, 3)
topologically representable as a mapping of the parameter domain (a unit square in 2D).

This chapter is devoted to the introduction and description of the main elements and
features of Isogeometric Analysis. In Sections 1.1, 1.2, 1.3, we start by presenting IGA
from a geometric point of view, by describing B-splines, NURBS, and refinement techniques.
In Section 1.4 we describe the isogeometric concept and present IGA based on the Galerkin
method for solving second order partial differential problems defined on manifolds. In Section
1.5 we present a benchmark class of problems. In Section 1.6 we introduce a parametrization
of the IGA domains.

7
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1.1 B-splines

We start by introducing knot vectors, B-spline basis functions, and B-spline geometries that
are the foundamental elements to build NURBS.

1.1.1 Knot vectors

A knot vector Ξ in one dimension is a non-decreasing set of coordinates in the parameter space
such that Ξ = {ξ1, ξ2, .., ξn+p+1}, where ξi ∈ R is the ith knot, with i = 1, ..., n+p+1 the knot
index, p the polynomial degree, and n the number of basis functions used to construct the B-
spline curve (see Section 1.1.2). By convention in 1D the parameter domain is Ω̂ = [0, 1] ⊂ R
and we assume ξ1 = 0 and ξn+p+1 = 1, so that Ω̂ = [ξ1, ξn+p+1]. The interval [ξi, ξi+1) is
called the ith knot span; if repeated knots exist, the corresponding knot span has zero length.
The subdomain bounded by two distinct consecutive knots will be called element of the mesh
in Ω̂. The knot vector can be uniform if the knots are equally spaced in the parameter space,
otherwise it will be non-uniform; in addition Ξ is open, if its first and last knot values are
repeated p + 1 times. The basis functions formed from open knot vectors are interpolatory
at the extremes of the parameter space interval [ξ1, ξn+p+1] in one dimension, but in general
they are not interpolatory at interior knots. We now propose an example in 2D.

Example 1.1. Let us define an open knot vector in parametric direction ξ, Ξ = {ξ1, ..., ξn1+p+1} =
{ξ1, ξ2, ξ3, ξ4} = {0, 0, 1, 1}, where we have chosen polynomial degree p = 1, and a second
open knot vector in parametric direction η, H = {η1, ..., ηn2+q+1} = {η1, η2, η3, η4, η5, η6} =
{0, 0, 0, 1, 1, 1}, where the polynomial degree is q = 2. In the 2D case we have that Ω̂ =
[0, 1]× [0, 1] = [ξ1, ξ4]× [η1, η6] as shown in Fig. 1.1.

1.1.2 Univariate and bivariate B-spline basis functions

Once introduced the knot vector, the B-spline basis functions Ni,p are recursively defined for
the different degrees p by using the Cox-de Boor recursion formula [CHB09]. The B-splines
space built by univariate B-spline basis functions is denoted by

Ŝh := span{Ni,p, i = 1, ..., n}, (1.1)

where the parameter h indicates its finite dimension. Due to the recursive definition of the
B-spline basis functions, the derivatives of these functions are expressed in terms of B-spline
basis functions of lower order. Given a polynomial degree p and a knot vector Ξ, the derivative
of the ith basis function is:

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (1.2)

This formula can be generalized in case of higher order derivatives [CHB09].

In Fig. 1.2 we depict the linear (p = 1) and the quadratic (q = 2) B-spline basis functions
determined respectively by the knot vectors Ξ and H introduced in Example 1.1, with n1 = 2
and n2 = 3. In Fig. 1.3 we depict the linear basis functions generated by the open knot vector
Ξ = {0, 0, 1, 2, 3, 4, 5, 5}, while in Fig. 1.4 we report the quadratic basis functions generated
by the open knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}.

We now list some important properties of the B-spline basis functions.
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Figure 1.1: The open knot vectors of Example 1.1: Ξ = {ξ1, ..., ξn1+p+1} = {ξ1, ξ2, ξ3, ξ4} =
{0, 0, 1, 1}, H = {η1, ..., ηn2+q+1} = {η1, η2, η3, η4, η5, η6} = {0, 0, 0, 1, 1, 1}, and the parameter do-

main Ω̂ = [0, 1]× [0, 1] = [ξ1, ξ4]× [η1, η6] ⊂ R2.
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Figure 1.2: Linear basis functions in parametric direction ξ for the open knot vector Ξ = {0, 0, 1, 1}
and quadratic basis functions in parametric direction η for the open knot vector H = {0, 0, 0, 1, 1, 1}.

P1 Local support property : the support of the B-spline basis functions of degree p is always
p+ 1 knot spans, that is

Ni,p(ξ) = 0 if ξ is outside the interval [ξi, ξi+p+1). (1.3)
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Figure 1.3: Univariate linear basis functions for the open knot-vector Ξ = {0, 0, 1, 2, 3, 4, 5, 5}.
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Figure 1.4: Univariate quadratic basis functions for the open knot-vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}.

As consequence, higher-degree basis functions have support over much larger portions
of the domain than classical FEA functions do. Moreover, in the case of repeated knots,
the support of each basis is still p + 1 knot spans (begins at ξi and ends at ξi+p+1,
including repeated knots) even if some of these knot spans have zero measure.

P2 Each basis functions shares its support with 2p+1 basis functions (including itself), as for
the Lagrangian polynomial basis functions used in FEA. As consequence, the bandwidth
(the number of nonzero entries) of the matrices associated to Galerkin formulations
using B-spline spaces, which we are going to define in Section 1.4.4, does not change if
repeated knots are present.

P3 Partition of unity, that is

∀ξ ∈ Ω̂ :
n∑
i=1

Ni,p(ξ) = 1, ∀p ≥ 0. (1.4)

P4 Nonnegativity : each basis function is pointwise nonnegative over the entire domain, that
is

∀i = 1, ..., n, p ≥ 0, and ξ ∈ Ω̂ : Ni,p(ξ) ≥ 0; (1.5)
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P5 Ni,p is infinitely differentiable in the interior of the knot spans (where it is a polynomial).
Each pth degree function has p−1 continuous derivatives across each knot of multiplicity
one. If a knot ξi has multiplicity mi ≥ 1, Ni,p is only p−mi times continuous across it.

For other properties and a proof of properties P3 and P4 see [PT97].

By means of the tensor product of univariate basis functions {Ni,p, i = 1, ..., n1} and
{Mk,q, k = 1, ..., n2}, in ξ and η parametric directions respectively, we can define bivariate
B-spline basis functions as

Nj(ξ, η) = Ni,p(ξ)Mk,q(η), j = 1, ..., n (1.6)

where n = n1n2. The support of a given bivariate function Nj is [ξi, ξi+p+1] × [ηk, ηk+q+1],
(p+1)×(q+1) knot spans. The number of continuous partial derivatives in a given parametric
direction can be determined from the associated one dimensional knot vector and polynomial
degree as in P5. The B-spline basis functions are pointwise nonnegative and constitute a
partition of the unity since, ∀(ξ, η) ∈ [ξi, ξn1+p+1]× [ηk, ηn2+q+1],

n1∑
i=1

n2∑
k=1

Ni,p(ξ)Mk,q(η) =

(
n1∑
i=1

Ni,p(ξ)

)(
n2∑
k=1

Mk,q(η)

)
= 1. (1.7)

The tensor product B-splines space, spanned by these basis functions, is defined as (1.1).

1.1.3 B-splines geometries

We now see how to use B-spline basis functions to define curves. To build these objects we
need the following elements:

(i) {Ni,p(ξ), i = 1, 2, ..., n}, pth-degree B-spline basis functions defined in the parameter
space on the knot vector Ξ;

(ii) {Bi, i = 1, 2, ..., n} ∈ Rd, control points defined in the physical space in Rd.

By means of these elements a pth-degree B-spline curve in Rd is defined by

C : Ω̂→ Ω ⊂ Rd, C(ξ) =
n∑
i=1

Ni,p(ξ)Bi. (1.8)

The polygon formed by the Bi is called the control polygon and represents a piecewise linear
representation of the curve. We can interpret (1.8) as a transformation, from the parameter
domain Ω̂ to the physical domain Ω, linking the knot vector Ξ in Ω̂ to the control points Bi in
Ω. B-spline curves inherit most of their properties from the basis functions from which they
are built. For instance, B-spline curves have at least as many continuous derivatives across an
element boundary than its basis functions have across the corresponding knot value. There-
fore, B-spline curves of degree p have p− 1 continuous derivatives in the absence of repeated
knots and repeated control points. Another property directly inherited by the basis func-
tions is that of locality: as already said each basis function of order p has support on p + 1
spans, therefore moving a single control point can affect the geometry of not more than p+ 1
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mesh elements (images of the knot spans of non zero size in the physical domain) of the curve.

A B-spline surface in R2 is similarly defined. Given two knot vectors Ξ = {ξ1, ξ2, ..., ξn1+p+1}
and H = {η1, η2, ..., ηn2+q+1}, a bidirectional net of control points, and the tensor product of
the univariate B-spline functions, a B-spline surface is given by

S(ξ, η) =

n1∑
i=1

n2∑
k=1

Ni,p(ξ)Mk,q(η)Bi,k =
n∑
j=1

Nj(ξ, η)Bj (1.9)

where Nj are bivariate B-spline basis functions defined in (1.6), and {Bj} ∈ R2, for j = 1, ...n
and n = n1n2, is called control net. In Section 1.2.1 we will introduce manifolds, in particular
surfaces in R3 with control points in R3. So, surfaces in 2D can be seen as a particular case
of surfaces in 3D, for example when control points have a null third component. Also in this
case, many of the properties of B-spline surfaces follow from their tensor product nature. For
a similar definition of a B-spline solid and its properties see [CHB09].

1.2 Non-Uniform Rational B-splines

We now introduce Non-Uniform Rational B-splines (NURBS). The main difference between
B-splines and NURBS is that B-splines are objects described by piecewise polynomials and
cannot exactly represent conic sections (circles, arcs, cones, pipes, etc.). Conversely NURBS,
exactly represent conic sections and a wider array of objects.

1.2.1 NURBS basis functions and NURBS geometries

As already done for B-splines, we need to construct a basis for the NURBS space from knot
vectors and to build curves, surfaces, and solids by means of a linear combinations of basis
functions and control points. In this way, NURBS inherit all the B-splines properties, except
that they are not piecewise polynomials anymore. In order to build a NURBS basis, we
introduce the weighting function, a real-valued scalar function defined by

W : Ω̂→ R, W (ξ) =

n∑
i=1

Ni,p(ξ)wi, (1.10)

where Ni,p(ξ) is the standard univariate B-spline basis function and wi are the weights (we
assume wi > 0) associated to each B-spline basis function. A univariate NURBS basis function
is given by

Ri,p : Ω̂→ R, Ri,p(ξ) =
Ni,p(ξ)wi
W (ξ)

=
Ni,p(ξ)wi∑n
î=1̂

Nî,p(ξ)wî
, (1.11)

which is a piecewise rational function. The univariate NURBS space over the parametric
domain Ω̂ is denoted by:

B̂h := span{Ri, i = 1, ..., n}. (1.12)

The derivatives of NURBS basis functions are obtained by applying the quotient rule to
(1.11), and we get

d

dξ
Ri,p(ξ) = wi

W (ξ)N ′i,p(ξ)−W ′(ξ)Ni,p(ξ)

(W (ξ))2
, (1.13)
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where N ′i,p(ξ) = d
dξNi,p(ξ) and W ′(ξ) =

∑n
i=1N

′
i,p(ξ)wi.

Using the same approach adopted for B-splines, the linear combination of basis functions
and control points, we arrive to a geometrical mapping for the NURBS curve:

C(ξ) =

n∑
i=1

Ri,p(ξ)Bi. (1.14)

Most of the properties of NURBS are derived from the B-splines: they consitute a partition of
unity, are pointwise nonnegative, and also their continuity and support properties follow from
the knot vector. We also observe that B-splines are a special case of NURBS; as a matter of
fact, if the weights assume the same values, then Ri,p(ξ) ≡ Ni,p(ξ) and the curve is again a
piecewise polynomial.

We define bivariate NURBS basis functions as

Ri,k : Ω̂→ R, Ri,k(ξ, η) =
Ni,p(ξ)Mk,q(η)wi,k∑n1

î=1

∑n2

k̂=1
Nî,p(ξ)Mk̂,q(η)wî,k̂

, (1.15)

where, in order to simplify the notation, we do not indicate their polynomial degree. Finally
we define a NURBS surface of degree p in the ξ parametric direction and degree q in the η
parametric direction as

S(ξ, η) =

n1∑
i=1

n2∑
k=1

Ri,k(ξ, η)Bi,k, (1.16)

with Bi,k the control points in Rd, d = 2 or 3. In order to make the notation of (1.15) simpler,
in next sections we will use the following formulation for bivariate NURBS basis functions,
where we have introduced a reordering of the basis functions

Rj(ξ) :=
Nj(ξ)wj∑n
ĵ=1

wĵNĵ(ξ)
, j = 1, ..., n (1.17)

where Nj(ξ) represent bivariate B-Spline basis functions defined in (1.6), ξ = (ξ, η), and
n = n1n2. The resulting NURBS space over the parametric domain Ω̂ reads as (1.12).

Assuming the notation in (1.17) we can express the NURBS surface (1.16) as a geometrical
mapping F from the parameter domain Ω̂ = [0, 1]κ where the NURBS basis {Rj}nj=1 is defined,

to the physical space Rd where the set of control points {Bj}nj=1, with n = n1n2, is defined.
It follows that

F : Ω̂ ⊂ Rκ → Ω ⊂ Rd, ξ → F (ξ) =

n∑
j=1

Rj(ξ)Bj , (1.18)

where Bj ∈ Rd, j = 1, ..., n and d > κ ≥ 1. In particular, since in this work we focus on the
numerical solution of second order Partial Differential Equations (PDEs) on surfaces [DQ15],
we will always assume κ = 2 and d = 2 or 3. When d = κ = 2, the map F describes a surface
in R2. When κ = 2 and d = 3 the geometry described by F is a lower dimensional manifold
with respect to the physical space, in this case a surface in R3. It is clear that surfaces in
2D can be always seen as a particular case of surfaces in 3D when control points have a third
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Figure 1.5: NURBS surface built as in Example 1.2

null component. In virtue of the geometrical mapping (1.18), we define the space of NURBS
in the physical domain Ω as the push-forward of the space B̂h defined in (1.12) as

Bh = span{Rj ◦ F−1, j = 1, ..., n} = span{Rj , j = 1, ..., n}. (1.19)

We now present two examples of construction of a NURBS surfaces: in Example 1.2 we
build a NURBS surface in 2D, while in Example 1.3 we build a surface in 3D.

Example 1.2. We construct a quarter of an annulus by using the NURBS tensor product
structure. We build univariate NURBS in the radial and angular directions, as already done in
Fig. 1.2. The bivariate NURBS basis is defined by means of the knot vectors Ξ = {0, 0, 1, 1}
(for the radial direction) and H = {0, 0, 0, 1, 1, 1} (for the angular direction) and weights
w1,1 = w1,3 = 1, w1,2 =

√
2/2, w2,1 = w2,3 = 1, w2,2 =

√
2/2, where the subscripts refers to the

parametric directions. By choosing the control points as B1,1 = (1, 0)T ,B1,2 = (1, 1)T ,B1,3 =
(0, 1)T ,B2,1 = (2, 0)T ,B2,2 = (2, 2)T ,B2,3 = (0, 2)T , we obtain the desired NURBS surface
shown in Fig. 1.5.

Example 1.3. We construct a quarter of a cylindrical shell by using the NURBS tensor
product structure. We build the bivariate NURBS basis through the same structures of the
parameter domain Ω̂ used in Example 1.2 to construct a 2D surface. In particular, we use
the knot vectors Ξ = {0, 0, 1, 1} for the axial direction and H = {0, 0, 0, 1, 1, 1} for the an-
gular direction. It follows that we have n = n1n2 = 2 × 3 = 6 basis functions. We as-
sign weights w1,1 = w1,3 = 1, w1,2 =

√
2/2, w2,1 = w2,3 = 1, w2,2 =

√
2/2, control points

B1,1 = (0, 0, 1)T ,B1,2 = (0, 1, 1)T ,
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Figure 1.6: Cylindrical shell built as in Example 1.3

B1,3 = (0, 1, 0)T ,B2,1 = (1, 0, 1)T ,B2,2 = (1, 1, 1)T ,B2,3 = (1, 1, 0)T , and obtain the desired
NURBS surface shown in Fig. 1.6.

1.3 Refinement

There exist several ways to enrich the B-splines and NURBS basis, by leaving the geometry
and the parametrization unchanged in the enrichment process. We will now present the
knot insertion (or h-refinement), the order elevation (or p-refinement), and the k-refinement
methods [CHB09].

1.3.1 knot insertion (h-refinement)

The knot insertion is a refinement technique consisting in the insertion of one ore more
knots in the knot vector. Given a knot vector, we call extended knot-vector the vector
Ξ̄ =

{
ξ̄1 = ξ1, ξ̄2, ..., ξ̄n+m+p+1 = ξn+p+1

}
, such that Ξ ⊂ Ξ̄. We obtain the new n + m

basis functions by applying the recursive Cox-de Boor recursion formula, and the new n +

m control points, B̄ =
{
B̄1, B̄2, ..., B̄n+m

}T
, by applying a linear transformation T of the

original control points B = {B1, ...,Bn}T [CHB09]. Instead of inserting new knots we could
also repeat existing knots, but this will increase their multiplicity, by locally reducing the
continuity of the basis functions (property P5). However the continuity of the curve will be
preserved by computing the control points by means of the transformation T .

1.3.2 Order elevation (p-refinement)

The order elevation procedure consists in increasing the polynomial degree of the basis func-
tions used to represent the geometry. As already said, the basis functions have continuity
p−mi across knots of multiplicity mi, so if we increase the polynomial degree p, mi must be
increased as well if we want to preserve the local continuity of the basis functions. For order
elevation, the multiplicity of each knot value is increased by one, but no new knot is inserted.
A new set of control points is also determined. As with knot insertion, both the geometry
and the parametrization are preserved.
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1.3.3 k-refinement

We finally present the k-refinement procedure that consists in increasing the degree of a
curve and subsequently realizing a knot insertion. This method is very meaningful in practice
because it allows to build the geometry with the desired polynomial degree in each direction
and to refine the mesh of the computational domain in order to improve the accuracy in the
numerical solution of PDEs, as also the p and h-refinements do separately. It is important to
note that the process of order elevation and knot insertion do not commute.

1.4 Isogeometric Analysis on surfaces

In this section we introduce Isogeometric Analysis (IGA) as a method for the numerical
approximation of PDEs. In particular, in this chapter we focus on the numerical solution of
second order PDEs on lower dimensional manifolds, specifically surfaces in a three dimensional
space. In this context, the standard case of solution of second order PDEs on two dimensional
surfaces is automatically recovered if the third components of the computational domains are
null.

1.4.1 The isogeometric concept

The fundamental idea on which IGA is based is the isogeometric concept : the basis functions
used to model the geometry are also used as basis for the approximation of the solution
of PDEs computed by a suitable numerical method. In particular, in the following, we
will use a NURBS-based IGA formulation in the framework of the Galerkin method for
the approximation of PDEs. Given a NURBS basis {Rj}nj=1 as defined in (1.17) in the

parameter domain Ω̂, a general real-valued function ĝ, belonging to the NURBS space B̂h,
can be represented in Ω̂ as

ĝ : Ω̂→ R, ĝ(ξ) ≡
n∑
j=1

Rj(ξ)αj , (1.20)

where coefficients {αj}nj=1 ⊂ R are called control variables. Due to the non-interpolatory
nature of the basis, we can not interpret the control variables as nodal values. The same
function can be defined over the domain in the physical space by using the inverse of the
geometrical mapping (1.18), that is

g : Ω→ R, g(x) = ĝ(ξ) ◦ F−1(ξ). (1.21)

1.4.2 NURBS as a basis for analysis

We start by introducing a problem in the physical domain, expressed in the following varia-
tional form: find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V (1.22)

where V ⊂ H1(Ω) is a Hilbert space, a : V ×V → R a bilinear form obtained by second order
elliptic PDEs, and L : V → R a linear functional. We assume that problem (1.22) is well
posed and consider its Galerkin approximation: find uN ∈ V N such that
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a(uN , vN ) = L(vN ), ∀vN ∈ V N , (1.23)

where V N ⊂ V , N = dim(V N ) < +∞, is a finite dimensional space approximating the infi-
nite dimensional space V.

The adoption of an Isogeometric approach at the spatial discretization stage consists, as
already specified by the isogeometric concept, in choosing the NURBS basis functions for the
definition of the space V N . Let us consider the finite dimensional space B̂h = span{Rj}j∈J ,

where Rj : Ω̂ → R are NURBS in the parameter domain and J is the set of indexes of
these functions. As consequence, the Galerkin approximation space V N is chosen as a finite
dimensional subspace of the space Bh of NURBS defined in (1.19) in the computational domain
Ω, that is V N = V ∩ Bh. With this choice, as anticipated in Eq.(1.20) for a generic function,
we can express the discrete solution of problem (1.23) as

uN (x) =
∑

j∈J :Rj∈V N
αjRj(x). (1.24)

In next section we define the operators involved in the definition of a PDE problem on a
lower dimensional manifold. In Section 1.4.4 we show how to realize the space discretization
and how to choose the space V N in the case of the Laplace-Beltrami equation with Dirichlet
non homogeneous boundary conditions. When the computational domain is a surface in 2D,
this problem can be easily reformulated as the standard Poisson problem in R2.

1.4.3 Functions and differential operators on manifolds

For the mapping (1.18), we introduce its jacobian:

JF : Ω̂→ Rd×κ, ξ → JF (ξ), JF i,j(ξ) :=
∂Fi
∂ξj

(ξ), i = 1, ..., d, j = 1, ..., κ. (1.25)

We also define the first fundamental form of the mapping:

Ĝ : Ω̂→ Rκ×κ, ξ → Ĝ(ξ), Ĝ(ξ) := (JF (ξ))T JF (ξ) (1.26)

and its determinant as:

ĝ : Ω̂→ R, ξ → ĝ(ξ) such that ĝ(ξ) :=

√
det
(
Ĝ (ξ)

)
. (1.27)

Once again, if κ ≡ d the standard case is obtained:

JF (ξ) ∈ Rd×d, ĝ(ξ) ≡ det (JF (ξ)) (if positive). (1.28)

In order to ensure the invertibility of the mapping in Ω̂, we assume ĝ(ξ) > 0 in Ω̂, with
ĝ(ξ) = 0 in subsets Q̂ ⊂ Ω̂ ⊂ Rκ of zero measure in the topology of Rκ.

Let us consider a sufficiently regular function φ ∈ Co(Ω), for which, thanks to the invert-
ibility of the geometrical mapping we have:

φ(x) = φ̂(ξ) ◦ F−1(ξ) and φ̂(ξ) = φ (F (ξ)) . (1.29)
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If φ ∈ C1(Ω), we can define its gradient on the manifold ∇Ωφ and if φ ∈ C2(Ω), we can define
the Laplace-Beltrami operator ∆Ω associated to the manifold Ω. By using the geometrical
mapping, we can rewrite the gradient and the Laplace-Beltrami operator on the manifol, as
[DQ15]:

∇Ωφ(x) = [F (ξ)Ĝ−1(ξ)∇̂φ̂(ξ)] ◦ F−1(ξ), (1.30)

∆Ωφ(x) =

[
1

ĝ(ξ)
∇̂ ·
(
ĝ(ξ)Ĝ−1(ξ)∇̂φ̂(ξ)

)]
◦ F−1(ξ), (1.31)

where ∇̂φ̂ : Ω̂ → Rκ is the gradient operator in the parameter domain. For the differential
we have dΩ = ĝ(ξ)dΩ̂.

1.4.4 The Laplace-Beltrami equation

Let us consider the Laplace-Beltrami problem with Dirichlet boundary conditions defined on
a lower dimensional manifold Ω, a surface in 3D, described by a geometrical map of the form
(1.18). The source function f : Ω → R, f ∈ L2(Ω), the diffusion coefficient δ ∈ R assumed
to be constant, are assigned. Moreover, we assume the Dirichlet datum γ : ∂Ω → R with
γ ∈ H1/2(∂Ω). The problem reads: find u : Ω→ R such that

−∇Ω · (δ(x)∇Ωu) = f in Ω (1.32a)

u = γ, on ∂Ω (1.32b)

In order to rewrite the problem in the variational formulation (1.22) we introduce the test
function space V of the functions satysfing the homogeneous essential boundary conditions:

V = {v ∈ H1(Ω) : v|∂Ω = 0} ≡ H1
0 (Ω). (1.33)

Since non homogeneous boundary conditions are imposed, we introduce a lifting function γ̄
such that γ̄ ∈ H1(Ω) and γ̄|∂Ω = γ. In this way the solution u belongs to a trial function
space Vγ defined as:

Vγ := {v ∈ H1(Ω) : v|∂Ω = γ} (1.34)

and for u ∈ Vγ there exists a unique u0 ∈ V such that u = γ̄+u0. In virtue of this substitution
and assuming δ(x) = δ constant, the variational form of the problem reads as in (1.22) and

a(u0, v) =

∫
Ω
δ∇Ωu0 · ∇Ωv dΩ (1.35)

L(v) =

∫
Ω
fv dΩ−

∫
Ω
δ∇Ωγ̄ · ∇Ωv dΩ. (1.36)

We now approximate this problem by means of the Galerkin method as already done in (1.23).
In this case the problem reads: find uN0 ∈ V N such that

a(uN0 , v
N ) = L(vN ), ∀vN ∈ V N . (1.37)

As previously anticipated, the space V N is chosen as a finite dimensional subspace of the space
V in virtue of (1.19). As a matter of fact, by exploiting the locality of the supports of NURBS
basis functions, we can identify N basis functions that identically satisfy the homogeneous
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essential boundary conditions and by reordering the indexes, we assume: Rj |∂Ω = 0, for
j = 1, ...,N , i.e. N = dim(V N ). These functions represent a basis for the finite dimensional
space and finally V N = span{Rj , j = 1, ...,N}. Since uN0 ∈ V N we have that

uN0 (x) =
N∑
j=1

αjRj(x). (1.38)

Let now uN be the discrete counterpart of u and V Nγ a space such that V Nγ := Vγ ∩ Bh. It

follows that, if γ̄ ∈ V Nγ , there exists a unique uN0 ∈ V N such that uN = γ̄ + uN0 . In general,
since not every function γ̄ belongs to the NURBS space, we have to approximate it with a
function γ̄N such that γ̄N ≈ γ̄. In this way, uN ∈ V Nγ is such that uN |∂Ω = γ̄N |∂Ω ≈ γ. In

practice, for suitable coefficients {γ̄j}nj=1, γ̄N can be built as

γ̄N (x) =
n∑

j=N+1

Rj(x)γ̄j . (1.39)

Notice that γ̄1 = ... = γ̄N = 0 as they have no effect on its value on ∂Ω since {Rj}Nj=1 = 0.
By substituting expressions (1.38) and (1.39) in (1.37) and testing against every basis

function, we obtain the system of equations:

N∑
j=1

∫
Ω
δαj∇ΩRj · ∇ΩRidΩ =

∫
Ω
fRidΩ−

∫
Ω
δ∇Ωγ̄

N · ∇ΩRidΩ i = 1, ...,N (1.40)

that can be written as a linear system:

Aα = L, (1.41)

where A ∈ RN×N is the stiffness matrix, and L ∈ RN is the right-hand side vector. In
particular, the coefficients Aij of the stiffness matrix are given by

Aij =

∫
Ω
δ∇ΩRj · ∇ΩRidΩ, (1.42)

and the coefficients Li, of the right-hand side are given by

Li =

∫
Ω
fRidΩ−

∫
Ω
δ∇Ωγ̄

N · ∇RidΩ. (1.43)

Due to the locality of the supports of NURBS basis functions, A is a sparse banded matrix. As
a matter of fact, although NURBS basis functions have support over much larger portions of
the domain than classical FEA functions do (see P1, section 1.1.2), any basis function shares
its support with 2p + 1 basis functions, as for the Lagrangian polynomial basis functions
used in FEA (see P2, section 1.1.2). As consequence, the larger support of the B-spline basis
functions, does not have any implication on the bandwidth of the stiffness matrix A. By
solving system (1.41), we obtain the vector α and by substituting the {αj}Nj=1 in (1.38), we

can finally write the solution uN as

uN =
N∑
j=1

αjRj +
n∑

j=N+1

γ̄jRj . (1.44)
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The evaluation of the NURBS basis functions, of their derivatives, and of the other data in
points of the physical domain Ω is performed by evaluating their counterpart in the parameter
domain Ω̂. By using the operators defined in Section 1.4.3, the integrals 1.42 and 1.43 can be
rewritten in the parameter domain as follows:

Âij =

∫
Ω̂
δ∇̂Rj ·

(
Ĝ−1∇̂Ri

)
ĝdΩ̂, (1.45a)

L̂i =

∫
Ω̂
f̂RiĝdΩ̂−

∫
Ω̂
δ∇̂ˆ̄γN · ∇̂RidΩ̂, (1.45b)

where f̂(ξ) = f(F (ξ)) and ˆ̄γN (ξ) = γ̄N (F (ξ)). Both the integrals (1.45a) and (1.45b)
are numerically approximated by a suitable quadrature rule (e.g. Gauss-Legendre). Let us

introduce the set K̂h =
{
K̂k

}Ne
k=1

of non-overlapping mesh elements that is a partition of the

parametric domain Ω̂. Let us remark that these are generally taken as the knot spans of
non zero size. Through the parametrization F we simply obtain a partition of the physical
domain:

Ω =

Ne⋃
k=1

F(K̂k) =

Ne⋃
k=1

Kk. (1.46)

We will refer to K̂k and Kk as the mesh elements and we will define a quadrature rule on
every element K̂k. In ordet to do that, we introduce, for each of these rules, the set of
Gauss-Legendre quadrature nodes nk [DR75]

{ξl,k} ⊂ K̂k, l = 1, ..., nk (1.47)

and quadrature weights

{ql,k} ⊂ R, l = 1, ..., nk (1.48)

where k is the elements index, and nk = (p+ 1)(q + 1), with p and q the polynomial degrees
of the univariate B-splines basis functions in ξ and η parametric directions, respectively. The
approximation rule for a function φ ∈ L1(Kk) is∫

Kk

φ dΩ =

∫
K̂k

φ(F(ξ))|ĝ(ξ)|dΩ̂ ≈
nk∑
l=1

ql,kφ(xl,k)|ĝ(ξl,k)|, (1.49)

where xl,k = F (ξl,k) are the images of the nodes in the physical space. We can now numeri-

cally compute the Âij and L̂i coefficients:

Âij =

∫
Ω̂
δ∇̂Rj ·

(
Ĝ−1∇̂Ri

)
ĝdΩ̂ (1.50)

≈
Ne∑
k=1

nk∑
l=1

δ ql,k∇̂Rj(ξl,k) ·
(
Ĝ−1∇̂Ri(ξl,k)

)
ĝ(ξl,k)|K̂k| (1.51)
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L̂i =

∫
Ω̂
f̂(ξ)Ri(ξ)ĝ(ξ)dΩ̂−

∫
Ω̂
δ∇̂ˆ̄γN (ξ) · ∇̂Ri(ξ)dΩ̂ (1.52)

≈
Ne∑
k=1

nk∑
l=1

ql,kf̂(ξl,k)Ri(ξl,k)ĝ(ξl,k)|K̂k| (1.53)

−
Ne∑
k=1

nk∑
l=1

δql,k∇̂ˆ̄γN (ξl,k) · ∇̂Ri(ξl,k)|K̂k| (1.54)

When the computational domain Ω is a surface in 2D, problem (1.32) assume the classical
formulation of the Poisson problem: fund u : Ω→ R such that

−∇ · (δ(x)∇u) = f in Ω (1.55a)

u = γ, on ∂Ω. (1.55b)

In this case, the space discretization procedure and the variational formulation of the problem
are the same seen in this section for a problem defined on a lower dimensional manifold, with
the difference that the operators involved in the formulation degenerate in the ones reported
in Section 1.4.3 for the standard case κ = d = 2.

1.5 Isogeometric Analysis for the solution of benchmark problems

Example 1.4. We consider the numerical solution of the Laplace-Beltrami problem on a
surface in R3, we evaluate the errors between the numerical and exact solution in norm
L2(Ω), and we estimate the convergence orders of the error for the NURBS basis of degrees
p = 2 and p = 3. We recall the definition of the error in norm L2(Ω):

||u− uN ||L2(Ω) =

(∫
Ω

(u− uN )2dΩ

)1/2

. (1.56)

We consider as computational domain Ω a quarter of a cylindrical surface by building the
geometry with p = 1 in axial direction and q = 2 in angular direction (Fig. 1.7). We perform
a k-refinement: first we realize a p-refinement by increasing p of one degree, so that p = q = 2,
then we realize an h-refinement to increase the number of the mesh elements. The resulting
basis functions are C1 continuous. We choose δ = 1, γ = 0, and f such that the exact solution
is u = 2xy sin(5πz). Numerical integration is performed by means of a quadrature formula
with (p + 1)(q + 1) quadrature points in each mesh element. In Fig. 1.8 we report the exact
solution and in Fig. 1.9 we report the numerical solution for different meshes. Then, starting
again from the geometry in Fig. 1.7, we perform a new k-refinement: first we increase p of
two orders and q of one order so that p = q = 3, then we perform the same h-refinement as
before, and solve the same problem. In this case the basis functions are C2 continuous. In
Fig. 1.10 for both the case p = q = 2 and p = q = 3, we verify that the convergence rate of
the errors in norm L2(Ω) is p+ 1, according to the theory [DQ15]. In Table 1.1 we report the
data concerning the computational times requested to assemble and solve system (1.41) and
the errors in norm L2(Ω) for different mesh sizes and for the polynomial degrees considered.
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Figure 1.7: Example 1.4. A quarter of a cylindrical NURBS surface.

Figure 1.8: Example 1.4. Exact solution for Laplace-Beltrami problem.

Example 1.5. We now compute the numerical solution of the Poisson problem (1.55) by
considering as computational domain the quarter of annulus built in Example 1.2 and shown
in Fig. 1.5. We also evaluate the errors between the numerical and exact solutions and
estimate the convergence orders of these errors for the polynomial degrees p = 2 and 3 of the
NURBS basis functions. We recall the definition of the error in H1(Ω) norm as:

||u− uN ||H1(Ω) =

(
||u− uN ||2L2(Ω) +

∫
Ω
|∇Ω(u− uN )|2dΩ

)1/2

, (1.57)

for the definition of the error in norm L2(Ω) see (1.56). In order to improve the accuracy
of the approximate solution we enrich the space Bh, introduced in (1.19), by performing a
k-refinement. In particular, referring to Example (1.2), where we have degrees p = 1 in
radial direction and q = 2 in angular direction, we increase p of one degree in order to have
p = q = 2, and then perform an h-refinement to increase the number of the mesh elements
and obtain C1 basis functions. We choose δ = 1, γ = 0, and f such that the exact solution
of the problem reads u = sin(π3 (x2 + y2 − 1)). Numerical integration is performed by means
of a quadrature formula with (p+ 1)(q + 1) quadrature points in each mesh element. In Fig.
1.11 we report the exact solution, while in Fig. 1.12 we report the numerical solutions for
different meshes. Then, in order to see how the solution approximation improves by increasing
the polynomial degree, always starting from the geometry of Fig. 1.5, we perform a new k-
refinement. In this case, we increase the polynomial degree p (in radial direction) of 2 and the
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1.9.4 uN , Nel = 60 1.9.5 uN , Nel = 250 1.9.6 uN , Nel = 1000

Figure 1.9: Example 1.4. Laplace-Beltrami problem on a quarter of a cylinder surface. Refined
meshes (top), corresponding numerical solutions uN (bottom).
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Figure 1.10: Example 1.4. Convergenge of errors in norm L2(Ω) and reference convergence rate p+1
vs. the mesh size h for p = 2 (left) and p = 3 (right).

polynomial degree q (in angular direction) of 1, and so obtain the desired p = q = 3. We then
perform, also in this case, an h-refinement. In this case the resulting basis functions are C2

continuous. In Fig. 1.10 for both the cases p = 2 and p = 3, we verify that the convergence
rates of the errors in norm L2(Ω) and H1(Ω) are p + 1 and p respectively, according to the
theory [DQ15]. In Table 1.2 we report the data concerning the computational times requested
to assemble and solve system (1.41) and the errors in norm L2 and H1 for different mesh
sizes and for the polynomial degrees considered.
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Table 1.1: Example 1.4. Computational times requested to assemble and solve system (1.41) for the
Laplace-Beltrami problem and errors in norm L2(Ω) for different mesh sizes and polynomial degrees 2
and 3.

Degree Nel N h t [s] ||u− uh||L2(Ω)

P2 60 98 0.1309 0.25 1.15 · 10−2

250 324 0.0814 0.51 8.68 · 10−4

1000 1144 0.0407 1.66 9.75 · 10−5

6250 6604 0.0163 10.34 6.04 · 10−6

25000 25704 0.0082 57.54 7.52 · 10−7

P3 60 120 0.1309 0.38 3.02 · 10−3

250 364 0.0814 0.81 1.03 · 10−5

1000 1219 0.0407 2.84 5.68 · 10−6

6250 6784 0.0163 21.06 1.39 · 10−7

25000 26059 0.0082 115.93 8.69 · 10−9

Table 1.2: Example 1.5. Computational times requested to assemble and solve system (1.41) for the
Poisson problem of Example 1.55 and errors in norms L2(Ω) and H1(Ω) for different mesh sizes and
polynomial degrees 2 and 3.

Degree Nel N h t [s] ||u− uh||L2(Ω) ||u− uh||H1(Ω)

P2 60 98 0.1309 0.345 3.61 · 10−3 9.70 · 10−2

250 324 0.0814 0.63 2.55 · 10−4 1.18 · 10−2

1000 1144 0.0407 1.29 3.79 · 10−5 5.62 · 10−3

6250 6604 0.0163 8.22 2.32 · 10−6 8.90 · 10−4

25000 25704 0.0082 47.45 2.87 · 10−7 2.22 · 10−4

P3 60 120 0.1309 0.40 5.82 · 10−4 1.95 · 10−2

250 364 0.0814 0.76 3.81 · 10−5 2.49 · 10−3

1000 1219 0.0407 2.03 2.51 · 10−6 3.26 · 10−4

6250 6784 0.0163 14.67 6.65 · 10−8 2.16 · 10−5

25000 26059 0.0082 87.57 4.21 · 10−9 2.73 · 10−6
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Figure 1.11: Example 1.5. Exact solution for Poisson problem.

1.12.4 uN , Nel = 60 1.12.5 uN , Nel = 250 1.12.6 uN , Nel = 1000

Figure 1.12: Example 1.5. Poisson problem on a quarter of an annulus. Refined meshes (top),
corresponding numerical solutions uN (bottom).

1.6 Isogeometric Analysis for parametrized domains

In the following chapters we are interested in taking into account shape variations of the
computational domains, for example for the geometries considered in Examples 1.2 and 1.3.
To this end, we will introduce some parameters in the definition of the geometries. Since the
geometrical map (1.18) involves the control points and the NURBS functions, for both the
2D surfaces or the manifolds, the parametrization can concern the control points coordinates,
the NURBS weights, or both the coordinates and weights. In Example 1.6, for instance, we
build a 2D surface such that some of its control points coordinates are parameter dependent.
There is nothing, of course, to prevent us from parametrizing its NURBS weights or both
its coordinates and weights. In Example 1.7, for instance, we consider a surface in 3D such
that some of its weights are parametrized, while in Example 1.8 we assume that both control
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Figure 1.13: Example 1.5. Convergenge of errors in norms L2(Ω) and H1(Ω) and reference conver-
gence rates p and p+ 1 vs. the mesh size h for p = 2 (left) and p = 3 (right).

points coordinates and NURBS weights are parameter dependent.

Example 1.6. We consider the quarter of annulus built in Example 1.2 and depicted in
Fig. 1.5 and modify it by introducing a geometric parameter µ. Let us make, for instance,
the control points B1,2 and B2,2 parameter dependent. We assume that their coordinates are
parametrized by means of a parameter µ that can take values in a prescribed range, µ ∈ [0.5, 1].
In particular, µ refers to the horizontal and vertical coordinates of these control points, as
B1,2 = [µ, µ] and B2,2 = [2µ, 2µ]. Moreover, just in order to show an example regarding
a B-spline surface, we consider the NURBS weights to be all equal to each other by setting
wi,j = 1, for 1 ≤ i, j ≤ 2. In Fig. 1.14 we report the geometric configurations for µ = 0.5,
0.8, 1.
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Figure 1.14: Example 1.6. B-spline 2D geometries with parametrized control points coordinates.

Example 1.7. We consider the cylindrical shell built in Example 1.3 and depicted in Fig.
1.6. Let us make the NURBS weights associated to the points B1,2 and B2,2 to be equal to
a parameter µ ∈ [0.5, 1.2]; the other weights are equal to 1. In Fig. 1.15 we report three
different geometric configurations, for instance for µ = 0.5, 0.8, and 1.2.

Example 1.8. We consider the cylindrical shell built in Example 1.3 and depicted in Fig. 1.6.
Let us make the coordinates of the control points B1,3 and B2,3, and the weights associated
to the control points B1,2 and B2,2 parameter dependent. To do that, we take a parameter
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Figure 1.15: Example 1.7. NURBS manifold with parametrized weights; from left to right µ =
0.5, 0.8, 1.2.

µ = (µ1, µ2) such that B1,3 = [0, 0, µ1], B2,3 = [1, 0, µ1], while the weights of B1,2 and B2,2

are set to be µ2; the other weights are equal to 1. In Fig. 1.16 we report three different
geometric configurations, for instance for µ = (1, 0.5), µ = (1.5, 0.8), µ = (2, 1.2).
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Figure 1.16: Example 1.8. NURBS manifold with parametrized control points coordinates and
weights; from left to right µ = [1, 0.5], µ = [1.5, 0.8], µ = [2, 1.2].

We now suppose to be interested in solving a specific problem on different geometric
configurations of a computational domain. In order to start from the simplest situation, we
consider a geometric parametrization that involves only the control points coordinates. In
Example 1.9, for instance, we suppose to be interested in solving the Poisson problem on the
parametrized geometry built in Example 1.6.

Example 1.9. We are interested in solving the Poisson problem (1.55) with f = 1 and
γ = 0, for different geometric configurations following Example 1.6. It is clear that, for
each parameter sample, it is more convenient to modify the position of the interested control
points before performing a p or a h-refinement. In this case for example, for each parameter
µ we modify the geometry, and then perform a k-refinement such that p = q = 2 and the
total number of elements is 1500. In Fig. 1.17 we report the numerical solutions for the
configurations corresponding to µ = 0.5, 0.8, 1. In Table 1.3 we report the computational times
requested, for a specific parameter sample, to modify the computational domain, assemble the
stiffness matrix and the right hand side vector, apply the boundary conditions by means of
a L2-projection method, and solve the sytstem, for a mesh of 1500 elements and polynomial
degrees 2, 3, and 4 (we refer to these cases as to P2, P3, and P4, respectively). It is clear
that, since by performing a k-refinement the number of degrees of freedom increases, the
computational time requested to perform the actions listed before increases as well, and would
be higher if we make the polynomial degree higher or the mesh finer.
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Figure 1.17: Numerical solutions for Poisson problem of Example 1.9, for polynomial degrees p =
q = 2 on a grid of 1500 elements, for the three geometrical configurations in Fig. 1.14 correspondig to
µ = 0.5, 0.8, 1.

Table 1.3: computational times requested, for a specific parameter sample, to modify the compu-
tational domain, assemble the stiffness matrix and the right hand side vector, apply the boundary
conditions L2-projection method, and solve the sytstem, for a mesh of 1500 elements and polynomial
degrees 2, 3, and 4 (we refer to these cases as to P2, P3, and P4, respectively).

Degree P2 P3 P4

N 1500 1586 1674

Modify geometry 0.20 s 0.24 s 0.37 s

Assemble Matrix and rhs 2.75 s 5.27 s 10.71 s

Apply BCs 0.71 s 0.99 s 1.53 s

Solve linear system 0.04 s 0.04 s 0.06 s

Total time 3.70 s 6.54 s 12.66 s

Similarly to what done in Example 1.9, we could solve the Poisson problem on 2D sur-
faces parametrized with respect to the NURBS weights or both control points coordinates
and weights, or solve the Laplace-Beltrami problem on a surface in 3D, also in this case
parametrized with respect to the control points coordinates, the weights, or both the coordi-
nates and weights. In all these cases the problem would be that, as anticipated in Example
1.9, if we are interested in evaluating the solution of the problem for a large number of pa-
rameters µ, the total time requested for the evaluations could become extremely high and
so computationally prohibitive. That is why in Chapter 2 we appeal to the Reduced Basis
Method (RB), a strategy for the rapid and reliable solution of Parametrized Partial Differen-
tial Equations (PPDEs) allowing large computational savings. In Chapters 3 and 4 we will
finally show how IGA and RB can be jointly used for the practical resolutions of PPDEs. In
particular, we will see that in order to make possible the reduction procedure, we will have
to distinguish and treat differently the case of NURBS with parametrized control points and
the one of NURBS with parametrized weight (or both control points and weights).



Chapter 2

Reduced Basis method for
parametrized elliptic PDEs

In this chapter we introduce the reduced basis (RB) approximation as a technique for the
rapid and reliable computation of the solutions of elliptic partial differential equations (PDEs),
both with affine or non-affine parameter dependence. Reduction strategies can be crucial in
applications of high complexity. As a matter of fact, although the increasing computer power
allows nowadays to solve problems of very large dimensions that model complex phenomena, a
computational reduction is still necessary for real-time simulations and many-query contexts
[GP05, Man12, Qua14, QRM11, SVH+06]. Both these situations are common in Engineering
practice and analysis that requires the prediction of some quantities of interest, as in design,
optimization, and control contexts. These quantities of interest, called outputs, can be related
for example to energies, forces, stresses, strains, flowrates, pressure drops, temperatures or
fluxes. These outputs are usually expressed as functionals of field variables associated with a
parametrized partial differential equation (PPDE) which describes a particular phenomenon.
The parameters, which we shall denote as inputs, are related to geometry, physical proper-
ties, boundary conditions, or loads, and identify a particular configuration of the component.
In this work, as anticipated at the end of Chapter 1, we are particularly interested in the
evaluation of the field variables, solutions of PDEs parametrized with respect to the input
parameter p-vector µ belonging to the input-parameter domain D ⊂ Rp and which represents
geometric parametrizations of the domain.

In Section 2.1 we introduce the main features of RB and provide an overview of the
contents of the rest of the chapter. In Sections 2.2 and 2.3, we present more in detail the
setting of the parametrized elliptic PDEs we are going to consider in this work. In Section
2.4 we describe the main steps and theoretical aspects of the RB method. Finally, in Section
2.5 we recall an a posteriori error estimation, a fundamental ingredient for the application of
the RB method and for the certification of the solutions provided by this method. In Section
2.6 we consider RB for parametrized surfaces.

2.1 Reduced basis: a general framework

In this Chapter and in the rest of this work, we will be interested in the evaluation of the
solutions of PDEs parametrized with respect to an input parameter vector µ ∈ D ⊂ Rp, which
represents geometric parametrizations of the domain. We will thus deal with a relationship

29
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µ→ u(µ), whose evaluation requires the solution of a PPDE. In the elliptic case, for instance,
the problem reads: given µ ∈ D, find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (2.1)

where V is a suitable Hilbert space, while a(·, ·;µ) and f(·;µ), which are parameter dependent,
are the bilinear form and the linear functional associated to the PDE, respectively.

As already said, the repeated solution of problem (2.1) for several different parameters µ
may be computationally prohibitive, thus requiring a suitable model order reduction strategy.
The idea behind the reduced basis approximation technique is that the field variable u(µ),
that actually belongs to the infinite dimensional function space V associated with the PDE,
can be assumed to reside on a low-dimensional and smooth parametrically induced manifold
[RHP08]

M = {u(µ) ∈ V : µ ∈ D} . (2.2)

In general, we cannot find the exact solution of the PPDE, so we replace it with a discrete
approximation for example through a Galerkin method, as the FEA one or IGA, and look for
this discrete solution in a subspace V N ⊂ V of dimension N < +∞. By supposing to solve
problem (2.1) for each µ ∈ D, we can define an approximation MN of the manifold M

MN =
{
uN (µ) ∈ V N : µ ∈ D

}
. (2.3)

The problem is that, in order to get a high fidelity truth approximation uN (µ) for u(µ),
N must be chosen very large, and consequently the evaluation µ → uN (µ) becomes too
expensive in the already cited real-time and many-query contexts. To avoid this drawback,
we adopt a RB approach and, in this way, we build an approximation uN (µ) for uN (µ) of
dimension N � N . To this end, we first build VN , a low-dimensional approximation of
the manifold VN . We do this by selecting a certain number of parameters from the domain
D and compute the corresponding discrete solutions that can be seen as snapshots of the
truth manifold MN ; Then, according to the problem, we define VN , a proper subspace of
VN of dimension N , through a linear combination of these precomputed snapshots, and look
here for the reduced problem solution uN (µ). In this way, through the Galerkin method
we approximate u(µ) with uN (µ) and, in turn, through the RB method we approximate
uN (µ) with uN (µ), where uN (µ) ∈ VN and N � N . This evident dimensional reduction, in
conjunction with the adoption of an Offline-Online procedure that for each µ allows to solve
a problem of complexity independent on N , leads to large computational savings in the class
of problems listed before.

In summary, the main components of the RB approach, that we will explore in depth in
the next paragraphs, are [QRM11, RHP08, SVH+06]:

(i) a rapidly convergent global reduced basis approximation (Galerkin projection) onto a
space spanned by solutions of a PPDE computed in N properly selected parameter
values of the parameter domain;

(ii) a rigorous reduced error estimation for the problem solution, used for both the reduced
basis selection and the certification of the solution;

(iii) an Offline-Online computational procedure that consists of two different phases: an
expensive (with complexity depending on N ) Offline phase in which we generate a small
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reduced basis space; an Online phase (with complexity depending on N) in which, for
each new parameter, we rapidly evaluate the solution of the corresponding RB problem
and the associated a posteriori error bound.

In the following, we will consider coercive linear elliptic partial differential equations, with
affine or non-affine parameter dependence; for parabolic problems, see [GP05, NRP09], for
nonlinear problems, including the incompressible Navier-Stokes equations [VPRP03, CVP05,
VPP03, VP05], and for non-coercive problems [VPRP03].

In this section we refer to a generic Galerkin approximation method for the truth problem.
As anticipated, in several works a finite element discretization approach has been adopted
(e.g. [Man12, RHP08, VPRP03]). Also spectral elements [LMR06], and finite volumes [HO08]
methods have been considered. In this thesis, we will build a RB approximation upon a IGA
approximation, that means that the space V N will be chosen, according to the problem, as a
proper subset of the space of NURBS Bh defined in (1.19), the same NURBS functions used
to build the computational domain. In this respect, as anticipated at the end of Chapter 1,
we will consider geometrical parameters µ which characterize the NURBS geometries and this
parametrization will affect, as consequence, also the forms and functionals of the problems
formulation. At the current state of the art there is another work [MSH15] devoted to the
RB and IGA coupling; in particular, in this work the construction of the RB method relies
on as Isogeometric Boundary Element Method and the geometric parametrization regards
only the control points coordinates. In this thesis, we will consider all the possible cases of
parametrization of a NURBS geometry, that, as already said in Section 1.6, can regard the
control points, the NURBS weights, or both control points and weights. For all these cases
we show how RB and IGA can be jointly used in a feasible way.

2.2 Elliptic parametric PDEs

We introduce the formulation of affinely parametrized elliptic coercive problems in the case
a(·, ·;µ) is a symmetric bilinear form. We consider problems with u(µ) ∈ V , V = V (Ω) a
suitable Hilbert space, and Ω a suitable regular, bounded, and open spatial domain in Rd,
with d = 2 or 3. We also introduce the inner product (·, ·)V , and the induced norm || · ||V ,
associated with the Hilbert space V and assume that [H1

0 (Ω)]ν ⊂ V ⊂ [H1(Ω)]ν , where ν = 1
or ν = d for a scalar or vector field, respectively. Here H1(Ω) =

{
v ∈ L2(Ω),∇v ∈ (L2(Ω))d

}
,

H1
0 (Ω) =

{
v ∈ H1(Ω)| v|∂Ω = 0

}
, and L2 is the space of square-integrable functions over Ω.

We shall assume that the bilinear form a(·, ·;µ) : V × V → R is continuous and coercive
over V for all µ ∈ D, that is

γ(µ) := sup
w∈V

sup
v∈V

a(w, v;µ)

‖w‖V ‖v‖V
< +∞, ∀µ ∈ D (2.4)

∃α0 > 0 : α(µ) := inf
w∈V

a(w,w;µ)

‖w‖2V
≥ α0, ∀µ ∈ D (2.5)

and that f(·,µ) is a continuous functional over V, ∀µ ∈ D. Under these hypoteses, the
Lax-Milgram lemma ensures that problem (2.1) admits a unique solution ∀µ ∈ D.

In order to perform a computationally effective Offline-Online procedure, we will also
assume that the bilinear form a and the linear functional f , are affine in the parameter µ.
Under this assumption, for some finite Ma and Mf , a(·, ·;µ) and f(·;µ) can be expressed as
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a(w, v;µ) =

Ma∑
m=1

Θm
a (µ)am(w, v), ∀v, w ∈ V, ∀µ ∈ D (2.6a)

f(v;µ) =

Mf∑
m=1

Θm
f (µ)fm(v), ∀v ∈ V, ∀µ ∈ D (2.6b)

where Θm
a : D → R, for 1 ≤ m ≤Ma and Θm

f : D → R, for 1 ≤ m ≤Mf are the µ-dependent
functions, while am, for 1 ≤ m ≤ Ma and fm, for 1 ≤ m ≤ Mf are the µ-independent
bilinear forms and linear functionals, respectively. In this way, in the Offline stage we can
compute and store once and for all the µ-independent terms, so that, in the Online stage, for
each new µ we just have to compute the coefficients Θm

a (µ) and Θm
f (µ), multiply them for

the already computed µ-independent terms as in (2.6), and finally solve the problem. It is
clear that this allows large computational savings. Anyway, when the affinity property is not
fulfilled, as it is the case of geometric parametrizations based on NURBS, it can be recovered
by approximating the nonaffine problem through suitable methods, as we will see in Chapters
3 and 4 (see also [BMNP04]).

2.3 Parametrized formulation: a starting point for RB

We consider a linear elliptic problem which respects the hypotheses introduced in Section
2.2. For simplicity we consider a scalar field (ν = 1) in two space dimension (d = 2). In the
following we will be interested in the study of problems involving geometrical parameters.
For this reason, we rewrite problem (2.1) and make the parametric dependence of the domain
explicit. We will refer to this problem, posed in the parameter-dependent domain Ωo = Ωo(µ),
as to the original problem (subscript o), that reads: given µ ∈ D, find uo(µ) ∈ Vo(µ) such
that

ao(uo(µ), v;µ) = fo(v;µ), ∀v ∈ Vo(µ), (2.7)

where Vo(µ) is a suitable Hilbert space defined on Ωo(µ).

As already said, to build a RB space, we have to compute the discrete solutions, for exam-
ple approximated by IGA as we will do in Chapter 3, corresponding to the properly selected
parameters. It means that, if also the computational domain depends on a parameter, these
solutions would be computed on different domains and could not be combined and compared
as RB requires. To avoid this drawback, the snapshots must be computed with respect to
a common spatial configuration. For this reason, we will introduce a reference parameter-
independent domain Ω and define the “transformed”problem on this reference domain. The
original and the reference domains will be linked via a mapping

T (·;µ) : Ω→ Ωo(µ), (2.8)

such that Ωo(µ) = T (Ω;µ). The weak formulation of the reference problem in an abstract
form reads: find u(µ) ∈ V = V (Ω) such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V. (2.9)
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Through the parameter dependent geometric transformation T we have reformulated the
original problem (2.7) in a reference configuration Ω and so obtained a parametrized problem
(2.9) where, as we will see in some practical examples in Chapter 3, the effect of geometry
variations is traced back and limited only to the parametrized data in the formulation of the
problem in Ω. In Chapter 3, we will also see how, in the IGA context, the map T will be
related to the geometric map provided by NURBS in a single patch domain (1.18); we will
also write the reference problem in the reference domain.

2.4 The reduced basis method

Now that we have defined the parametrized problem in the reference domain (2.9), we can
proceed with the construction of its reduced basis approximation. We start by introducing
the truth discrete approximation of problem (2.9). Let V N ⊂ V be a sequence of Galerkin
approximation subspaces of V such that dim(V N ) = N < +∞. The truth approximation of
the reference problem (2.9) reads: for any µ ∈ D, find uN (µ) ∈ V N such that

a(uN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ V N . (2.10)

Now, we can list the principal steps of the actual reduced spaces algorithm construction
[RHP08, Man12, Qua14]:

1. we introduce a positive integer Nmax and a master set of properly selected parameter
values µn ∈ D, 1 ≤ n ≤ Nmax; then, through a sampling strategy that we will detail in
Section 2.4.2, we define, for a given N ∈ 1, ..., Nmax, the Lagrange parameter samples

SN =
{
µ1, ...,µN

}
; (2.11)

2. we solve problem (2.10) for µn, 1 ≤ n ≤ Nmax. In this way, we obtain the solutions
uN (µn) that are often referred to as retained snapshots of the parametric manifoldMN .
With these snapshots, we build the Lagrange RB spaces associated with the Lagrange
parameter samples

VN = span
{
uN (µn), 1 ≤ n ≤ N

}
. (2.12)

For N = 1, ..., Nmax, VN is a N-dimensional subspace of V N . We further observe
that the Lagrange spaces just built are nested (or hierarchical), that is V N1 ⊂ V N2 ⊂
... ⊂ V NNmax ⊂ V N . This is a fundamental condition for the (memory) efficiency of the

resulting RB approximation. It is clear that if the manifoldMN is low-dimensional and
smooth, we could approximate any member of the manifold, i.e. any solution uN (µ)
for some µ ∈ D, in terms of relatively few retained snapshots.

3. through an interpolation procedure (a Galerkin projection) of these precomputed snap-
shots, we build a low-dimensional approximation MN of MN (see Section 2.4.1);

4. Offline-Online procedure. We decouple the computational effort in two stages: an expen-
sive (parameter independent) offline stage and an inexpensive (parameter dependent)
online stage (see Section 2.4.4).
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2.4.1 Galerkin projection

Let us suppose to have already selected the N parameter samples of the set SN defined in
(2.11). In Sections 2.4.2 and 2.4.3 we will detail two strategies to perform such a selection.
For each of these parameters µn, we can compute the retained snapshot uN (µn), that is
the solution of the particular problem dependent on µn, and define the Lagrange RB space
VN associated to the Lagrange parameter samples as already done in (2.12), that is a N -
dimensional subspace of V N . We can now finally compute the reduced approximation uN (µ)
through a Galerkin projection of the PDE onto the space VN : given µ ∈ D, find uN (µ) ∈
VN ⊂ V N such that

a(uN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ VN . (2.13)

As said in Section 2.2, the bilinear form a(·, ·;µ) is coercive and symmetric for any given
µ. Under these assumptions, it defines a (energy) scalar product given by ((w, v))µ :=

a(w, v;µ) ∀w, v ∈ V and the induced energy norm is given by |||w|||µ = ((w,w))
1/2
µ . As

consequence, we have the classical optimality result in the energy norm [RHP08]:

|||uN − uN |||µ ≤ inf
w∈VN

|||uN (µ)− w|||µ, (2.14)

that means that the Galerkin procedure automatically selects the best combination of snap-
shots.

We now apply Gram-Schmidt procedure with respect to the (·, ·)V inner product to the
snapshots uN (µn), 1 ≤ n ≤ N , to obtain mutually (·, ·)V -orthonormal basis functions ζn,
1 ≤ n ≤ N . Then, the RB solution of problem (2.13) can be expressed as:

uN (µ) =
N∑
j=1

uNj (µ)ζj . (2.15)

By taking v = ζi, 1 ≤ i ≤ Nmax into (2.13), and using (2.15), we obtain the set of linear
algebraic equations

N∑
j=1

a(ζj , ζi;µ)uNj (µ) = f(ζi;µ), 1 ≤ i ≤ N (2.16)

for the reduced basis coefficients uNj , 1 ≤ j ≤ N . The system (2.16) can be expressed in
matrix form as

AN (µ)uN (µ) = fN (µ), (2.17)

where (uN (µ))j = uNj (µ), and the matrix AN and the vector fN are given by

(AN (µ))ij = a(ζj , ζi;µ), (fN (µ))i = f(ζi;µ),

respectively.

In Section 2.4.4 we will present the Offline-Online procedure that allows to solve in an
efficient way, with computational costs independent ofN , the linear system (2.17). In Sections
2.4.2 and 2.4.3 we describe, as already anticipated, two methods for the construction of the
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reduced basis, namely the greedy algorithm and the Proper Orthogonal Decomposition (POD)
method.

2.4.2 Sampling strategies: greedy algorithm

In this section we discuss the greedy algorithm as a possible technique to sample the param-
eter space D, construct the Lagrange parameter samples SN , and finally the Lagrange RB
spaces VN . We start by introducing a finite set Ξ of parameters in D that will be used to
understand and assess the quality of the RB approximation and a posteriori error estima-
tors. We also define Ξtrain as the particular samples set that will be used to generate the
RB approximation. The cardinality of Ξtrain will be denoted as |Ξtrain| = ntrain. In the
greedy algorithm that we report below, the term ∆N (µ) will refer to an a posteriori error
bound or error estimator for ‖uN (µ)− uN (µ)‖V , where uN (µ) is the reduced approximation
obtained through a (Galerkin-like) projection of the PDE onto VN as we have seen in Section
2.4.1. The expression of the estimator ∆N (µ) and its role will be better explained in Section
2.5. Finally, we introduce ε∗tol, a chosen tolerance for the stopping criterium of the greedy
algorithm. The greedy sampling strategy then is [RHP08]:

Set S1 =
{
µ1
}

; compute uN (µ1) solving (2.10); compute ∆1(µ1);
V1 = span

{
uN (µ1)

}
;

for N = 2 : Nmax

µN = arg maxµ∈Ξtrain ∆N−1(µ);
εN−1 = ∆N−1(µN );
if εN−1 < ε∗tol

set Nmax = N − 1;
end
compute uN (µN ) solving (2.10); compute ∆N (µN );
SN = SN−1 ∪

{
µN
}

;
VN = VN−1 ∪ span

{
uN (µN )

}
;

end

The idea of the greedy procedure is that, starting with the train sample Ξtrain we adaptively
select N parameters µ1, ...,µN . In particular, at each iteration N , the greedy algorithm ap-
pends to the previously retained snapshots {uN (µn)}N−1

n=1 that particular snapshots uN (µN ),
over all the candidates uN (µ), with µ ∈ Ξtrain, that is worst approximated by VN−1. To
this end, we should compute for each µ ∈ Ξtrain the norm of the error ‖uN (µ)− uN−1(µ)‖V ,
being uN−1(µ) ∈ VN−1. Since it would be computationally disadvantageous, we actually use
the a posteriori error estimator ∆N (µ) for the reduced basis error ‖uN (µ) − uN (µ)‖V (see
section 2.5). Following this procedure we end up with the hierarchical sequence of reduced
basis spaces

VN = span{uN (µn), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax. (2.18)

In order to recover an orthonormal well-conditioned set of basis functions and to guarantee
a good algebraic stability, we apply the Gram-Schmidt process in the (·; ·)V inner product
to the snapshots uN (µ), as anticipated in Section 2.4.1. In this way, we obtain mutually
orthonormal basis functions ζn, 1 ≤ n ≤ N . Moreover, since each basis function ζj is an
element of the truth dimensional space V N , they can be expressed as linear combination of
any basis function {Φk}Nk=1 of V N , that is
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ζi =

N∑
k=1

ζikΦk, 1 ≤ i ≤ Nmax, (2.19)

where ζik = (ζi)k, with ζi ∈ RN . Finally, we define a basis matrix Z ∈ RN×N , 1 ≤ N ≤ Nmax,
having the basis ζn as columns:

(Z)jl = ζj l, i.e. Z = [ζ1, ..., ζN ] ∈ RN×N , 1 ≤ N ≤ Nmax. (2.20)

Finally we can express the basis space VN as VN = span(Z). For a general analysis of greedy
algorithm and related convergence rates see [BCD+11].

2.4.3 Sampling strategies: Proper Orthogonal Decomposition

The POD method allows to define a subspace VN ⊂ V N approximating the data of V N in
an optimal least-squares sense. In particular, the POD technique reduces the dimension-
ality of a system by transforming the original unknowns into new variables (called POD
modes or principal components) such that the first few modes retain most of the energy
present in the system [Man12, BHL93]. The POD method relies on the use of the singu-
lar value decomposition (SVD) algorithm [Vol11]. Let us consider a set of ntrain snapshots
{u1, ...,untrain} = {u(µ1), ...,u(µntrain)} ∈ V N . By performing the SVD on the matrix
U ∈ RN×ntrain having the ntrain snapshots as columns, U = [u1, ...,untrain ], we obtain the
following singular value decomposition of U :

U = VΣWT (2.21)

where

V = [ζ1, ..., ζntrain ] ∈ RN×ntrain (2.22)

and

W = [Ψ1, ...,Ψntrain ] ∈ Rntrain×ntrain (2.23)

are orthogonal matrices whose columns are the left and right singular vectors of U respectively,
and

Σ = diag(σ1, ..., σntrain) ∈ Rntrain×ntrain (2.24)

is a diagonal matrix such that σ1 ≥ σ2 ≥ ... ≥ σntrain ≥ 0 are the computed singular values of
U . The POD basis of dimension N is defined by the first N left singular vectors [ζ1, ..., ζN ]
of U , that correspond to the N largest singular values:

Z = [ζ1, ..., ζN ], 1 ≤ N ≤ Nmax (2.25)

The POD basis is optimal in the sense that, for a basis of size N , it minimizes the least
squares error of snapshot reconstruction,

min
Z∈RN×N

ntrain∑
i=1

‖ui −ZZTui‖22 =

ntrain∑
i=N+1

σ2
i . (2.26)
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As results from (2.26), the error in snapshots representation is given by the sum of the squares
of the singular values corresponding to those left singular vectors not included in the POD
basis. In particular, Nmax is tipically chosen as the smallest N such that:

I(N) =

∑N
i=1 σ

2
i∑ntrain

i=1 σ2
i

> 1− tolPOD. (2.27)

The numerator of (2.27) is often referred to as the energy captured by the POD modes. So
with (2.27) we are requiring that the energy retained by the last ntrain − N modes is equal
to tolPOD, being tolPOD as small as desired. Finally, the basis space VN can be expressed as
VN = span(Z).

2.4.4 Offline-Online procedure

The system (2.16), that we have obtained thanks to Galerkin projection, can be recast in a
set of N linear algebraic equations in N unknowns, and so a system of relatively small size
if compared to (2.10). Unfortunately, some N -dimensional elements (specifically, the basis
functions ζj , 1 ≤ j ≤ N) are still involved in the stiffness matrix and the right-hand side
assembling. However, the affine parameter dependence help us in avoiding this drawback by
allowing a very efficient Offline-Online procedure. As a matter of fact, by using (2.6) and
(2.16), system (2.13) can be rewritten as

N∑
j=1

(
Ma∑
m=1

Θm
a (µ)am(ζj , ζi)

)
uNj (µ) =

Mf∑
m=1

Θm
f (µ)fm(ζi), (2.28)

for 1 ≤ i ≤ N . The equivalent matrix form is(
Ma∑
m=1

Θm
a (µ)Am

N

)
uN (µ) =

Mf∑
m=1

Θm
f (µ)fmN , (2.29)

where

(uN (µ))j = uNj (µ) (Am
N )ij = am(ζj , ζi) (fmN )i = fm(ζi)

for 1 ≤ i, j ≤ Nmax. We notice that in (2.19) we have assembled the Nmax basis functions,
but we will see that in the Online stage we will use only N ≤ Nmax of them. As consequence,
the RB stiffness matrix and RB right-hand side vector can be expressed as follows:

(Am
N )ij = am(ζj , ζi) =

N∑
k=1

N∑
l=1

ζj la
m(Φl,Φk)ζik 1 ≤ i, j ≤ N, 1 ≤ m ≤Ma (2.30)

(fmN )i = fm(ζi) =

N∑
k=1

ζikf
m(Φk), 1 ≤ i ≤ N, 1 ≤ m ≤Mf ; (2.31)

then, we can rewrite (2.30) and (2.31) as

Am
N = ZTAm

NZ, fmN = ZTFm
N (2.32)
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being Z ∈ RN×N the basis matrix defined in (2.20) or in (2.25), if a greedy or a POD sampling
strategy has been adopted respectively, and

(Am
N )kl = am(Φl,Φk), (Fm

N )k = fm(Φk).

By means of this procedure, we can decouple the computational effort required to assemble
system (2.29) in two stages: an Offline stage and an Online stage. The Offline stage consists in

the computation and storage of the matrices {Am
N }

Ma
m=1 and vectors {Fm

N }
Mf

m=1, the snapshots

uN (µn), and the orthonormal basis {ζj}Nmaxj=1 . The Offline operation count depends on Nmax,
Ma, Mf , N . This is an expensive (µ-independent) stage that we likely have to perform only
once. In the Online (µ-dependent) stage, for any given µ, we have to evaluate the parameter
dependent functions Θm

a (µ) and Θm
f (µ) and use the precomputed Am

N , fmN to assemble the
N × N system (2.29) and solve it to finally obtain uN (µ). In this way, we obtain the RB
approximation uN (µ), by assembling a full but very small matrix, whose associated system
has dimension independent of N . In particular, the computational cost of the Online stage
is O(MaN

2) to assemble the matrix and O(N3) to solve the system (2.29) with a direct
method. The Online storage count is, thanks to the hierarchical condition (see Section 2.4),
only O(MaN

2
max). As a matter of fact, for any given N we can extract the necessary RB

N × N matrices (and the N -vectors) as principal submatrices of the larger Nmax × Nmax

matrix (and Nmax-vector). The online cost to evaluate uN (µ) is thus independent of N .

2.5 A posteriori error estimation

The development of a rigorous error bound for the quantity of interest, the solution of the
PDE problem or particular output functionals depending on the solution of the PDE, is crucial
for both the efficiency and the reliability of the RB approximation method.

• As regards to the efficiency, the error bound has a crucial role in the sampling strategy.
In the greedy algorithm, the evaluation of the error for all µ ∈ Ξtrain at each iteration
permits to select properly the basis functions in such a way to achieve the best accuracy
with the smallest number of basis functions.

• As regards the reliability, at the Online phase for each new value of parameter µ ∈ D,
the a posteriori estimator ∆N (µ) permits to bound the error of the RB approximation
with respect to the underlying truth approximation, as we will see in the following of
this section.

However, in order to ensure that the error bound possesses these qualities, we have to place
some requirements on it. In particular, the error bounds must be:

• rigorous, i.e. must ensure the reliability for all N ≤ Nmax and for all µ ∈ D;

• sharp, since an overly conservative error bound can yield inefficient approximations (N
too large with respect to the originally required level of error);

• efficient, i.e. the Online operation count and storage to compute the RB error bounds
must be independent of N .



2.5. A posteriori error estimation 39

An important equation in a posteriori theory is the error residual relationship. In partic-
ular, the error e(µ) := uN (µ)− uN (µ) ∈ V N satisfies

a(e(µ), v;µ) = r(v;µ), ∀v ∈ V N , (2.33)

where r(v,µ) ∈ (V N )′, with (V N )′ the dual space of V N , is the residual, defined as

r(v;µ) := f(v;µ)− a(uN (µ), v;µ), ∀v ∈ V N . (2.34)

We introduce the Riesz representation of r(v;µ)(
ê(µ), v

)
V

= r(v;µ), ∀v ∈ V N . (2.35)

In this way, we are allowed to rewrite (2.33) as follows

a(e(µ), v;µ) =
(
ê(µ), v

)
V
, ∀v ∈ V N (2.36)

and the dual norm of the residual can be evaluated through the Riesz representation

||r(·;µ)||(V N )′ := sup
v∈V N

r(v;µ)

||v||V
= ||ê(µ)||V ; (2.37)

from the coercivity property of the bilinear form a(·; ·;µ), valid ∀µ ∈ D, immediately follows
that

||e(µ)||V ≤
||r(·;µ))||V ′
αN (µ)

=
||ê(µ)||V
αN (µ)

. (2.38)

Moreover, we need a lower bound function αNLB for the bilinear form coercivity constant
αN (µ) defined as

αN (µ) = inf
w∈V N

a(w,w;µ)

||w||2V
, (2.39)

such that

0 < αNLB(µ) ≤ αN (µ), ∀µ ∈ D. (2.40)

With this aim, the so-called Successive Constraint Method (SCM) has been developed
[Man12, HRSP07, RHP08]. SCM is an iterative procedure based on the successive solution
of suitable linear optimization problems. Despite of its generality, SCM often suffers of slow
convergence, thus requiring to use more efficient procedures. In this work, for instance, we will
use the Radial Basis Functions (RBF) procedure. This technique consists in the construction
of suitable radial basis interpolants, through an adaptive choice of the interpolation points
in the parameter space. In this way, it is possible to obtain reliable approximation, whose
Offline construction and Online evaluation prove to be extremely faster [Man12].

By assuming for the moment to have at our disposal the lower bound αNLB(µ) we finally
define the error estimator for the solution
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∆N (µ) := ||ê(µ)||V /(αNLB(µ))1/2, (2.41)

From the inequality (2.38) it follows that

||uN (µ)− uN (µ)|| ≤ ∆N (µ). (2.42)

We also introduce the effectivity indeces associated with this error estimator

ηN (µ) := ∆N (µ)/‖uN (µ)− uN (µ)‖V . (2.43)

The effectivities measure the quality of the proposed estimator. For the rigorousity of the
estimator, we will insist upon effectivity indeces which are greater or equal to 1, while for the
sharpness we will insist on values as close to the unity as possible. Nevertheless, the error
bounds ∆N is not useful without an accompanying Offline-Online computational approach.
The computationally crucial component of all the error bounds introduced is the dual norm
||ê(µ)||V of the residual, which can be indeed computed through an Offline-Online procedure
(see [QRM11, Neg11]). To develop this Offline-Online procedure, we introduce the residual
expansion

r(v;µ) = f(v;µ)− a(

N∑
n=1

uNn(µ)ζNn , v;µ) (2.44)

=

Mf∑
m=1

Θ(µ)fm(v)−
N∑
n=1

uNn(µ)

Ma∑
m=1

Θm
a (µ)am(ζNn , v). (2.45)

From (2.44) and (2.35), it follows that

(ê(µ), v)V =

Mf∑
m=1

Θ(µ)fm(v)−
N∑
n=1

uNn(µ)

Ma∑
m=1

Θm
a (µ)am(ζNn , v), (2.46)

and consequently

ê(µ) =

Mf∑
m=1

Θ(µ)Fm −
N∑
n=1

uNn(µ)

Ma∑
m=1

Θm
a (µ)Lmn , (2.47)

where Fm is the Riesz representation of fm(·) and Lmn is the Riesz representation of am(ζNn , ·),
that is ∀v ∈ V

(Fm, v)V = fm(v), 1 ≤ m ≤Mf (2.48)

(Lmn , v)V = −am(ζNn , v), 1 ≤ m ≤Ma, 1 ≤ n ≤ N. (2.49)

Finally we obtain

‖ê(µ)‖2V =

Mf∑
m=1

Mf∑
m′=1

Θm
f (µ)Θm′

f (µ)(Fm,Fm′
)V +

Ma∑
m=1

N∑
n=1

Θm
a (µ)uNn

(µ)

(
(2.50)

2

Mf∑
m′=1

Θm′

f (µ)(Fm′
,Lm

n )V +

Ma∑
m′=1

N∑
n′=1

Θm′

a (µ)uN ′
n
(µ)(Lm

n ,Lm′

n )V

)
. (2.51)
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Such a decomposition is mandatory in order to efficiently evaluate the error indicator (2.41)
and then to select the snapshots in the greedy algorithm. Anyway, we observe that since this
expression of the dual norm of the residual depends on the number of the affine terms Ma

and Mf , in some cases it can dramatically affects the Offline time required by each step of
the greedy algorithm.

2.6 RB on parametrized surfaces

In Chapters 3 and 4 we will be interested in solving practical examples of problems defined
on parametrized surfaces. As seen at the end of Chapter 1, when a problem has to be
solved for a large set of parameters µ, the total time requested for each evaluation could be
computationally prohibitive. That is why, in both the chapters, we will apply the Reduced
Basis technique.

In Chapter 3 the parametrization of the surface will concern only the control points
coordinates, while the NURBS weights will not be parameter dependent. As test case, we
will consider the Poisson problem on a 2D surface, but the approach that we will describe can
be used for any kind of problem defined on a NURBS geometry, as a surface in 3D, whose
control points coordinates are parametrized, but not its weights. For the practical solution
of the problem considered, we will see that the bilinear forms and the linear functionals of
its variational form, will depend in a nonaffine way on the spatial coordinate and on the
geometric parameter. We recall that, to solve a problem by adopting an RB method, the
affinity assumption must be respected. For this reason, we will appeal to the Empirical
Interpolation Method (EIM) [BMNP04] as a suitable technique to restore the affinity of the
forms and functionals. We stress the fact that, although the test case regards a 2D surface,
the same approach must be followed when considering a problem defined on a surface in 3D
parametrized with respect to its control points coordinates. Moreover, the approach that we
are going to consider is valid for a generic NURBS surface, that means that the weights of the
geometry can assume any fixed value; it follows that the case of parametrized control points
of B-Splines lays in this category.

In Chapter 4 the parametrization of the surface will concern also the NURBS weights.
As test case, we will consider the Laplace-Beltrami problem on a surface in 3D. Also in this
case, the bilinear forms and the linear functionals of its variational form, will depend in a
nonaffine way on the spatial coordinate and on the geometric parameter. Our first attempt
to restore the affinity assumption will be to follow the same procedure adopted in Chapter
3, that is to apply EIM. Anyway, since the weights are parameter dependent, the NURBS
functions are parameter dependent and this fact, as we will see, does not allow to use EIM.
For this reason, in order to restore the affinity of the forms and functionals, we will appeal to
another methodology, the Matrix Discrete Eimpirical Interpolation Method (MDEIM). So we
will see that when the NURBS weights are parametrized, we will be obliged to use MDEIM
no matter if the control points coordinates are parametrized or not.
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Chapter 3

Reduced Basis for IGA:
Parametrized NURBS control
points

In this chapter we consider a class of problems described by PDEs defined on parametrized
geometries. In this context, we are interested in solving the PDE for different configurations
of the computational domain represented by B-splines or NURBS. As anticipated, here we
treat the case where only the NURBS control points coordinates are parametrized, but the
NURBS weights are kept fixed.

In order to solve the problem efficiently for each new parameter µ, namely the control
points coordinates, we apply the RB method. As said in Chapter 2, by adopting this strategy,
the approximated solution corresponding to any new parameter value is taken as a linear
combination of a set of solutions of the same PDE, precomputed on a reference configuration.
In this respect, we investigate how to map the problem defined in the parameter dependent
domain (the original problem) into the one defined in a reference domain (the reference
problem), and how to suitably choose this latter. For the spatial discretization of the problems
of interest, we consider IGA, for which we choose the reduced space as a proper subset of
the space of NURBS Bh defined in (1.19), i.e. the same NURBS functions used to build the
computational domain.

The parametrization of the NURBS control points coordinates induces a non affine geo-
metrical transformation, that in turn induces a nonaffine dependence of the problem and its
formulation with respect to the parameters. We recall that, in order to fully exploit the com-
putational savings allowed by RB, the problem at hand should satisfy the affinity assumption.
If this assumption is not fulfilled, as in this case, it must be restored by means of suitable
methods. In order to restore the affinity of the bilinear form and the linear functional of this
problem, we appeal to the Empirical Interpolation Method (EIM), [BMNP04, GMNP07]. The
idea of EIM is to approximate a non linear function by projecting it onto a low dimensional
subspace. Thus, EIM represents an efficient technique to be applied to complex nonaffine
shape parametrization mappings.

We underline that the procedure of mapping the problem in a reference domain and apply
EIM is valid for a general NURBS surface in 2D or 3D, whose weights assume any fixed
value; in this context, it naturally follows that when the NURBS weights are all equal and
the NURBS surface degenerates in a B-spline surface, the problem can still be solved with
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this procedure. As numerical test, we consider the Poisson problem on a 2D surface in order
to highlight the reduction strategy.

In Chapter 4 we will consider the case in which the NURBS weights are parameter de-
pendent. In this context, we will highlight the limitations of EIM, that could not be used
anymore. For this reason, in order to restore the affinity assumption of the parametrized
problem, we will appeal to another technique, the Matrix Discrete Empirical Interpolation
Method (MDEIM) [NMA15].

3.1 Problem formulation on a parametrized surface

In this chapter we aim to solve a problem defined on a parametrized NURBS surface by
combining IGA and RB. We start by considering a test problem, the Poisson problem on
a 2D computational domain. We recall that, as said in Section 1.4.4, the Poisson problem
(1.55) can be obtained as particular case of the Laplace-Beltrami problem (1.32) when both
the parametric domain Ω̂ and the physical domain Ω are in R2.

In order to exploit the advantages of the RB methodology, we introduce a parametrized
version of the Poisson problem, by making the computational domain parameter dependent.
For instance, we introduce a parameter µ = µ ∈ D ⊂ R for the displacement of some control
points coordinates (as done in Example 1.6). The NURBS weights, instead, are not parameter
dependent but can assume any fixed value. From now on we will refer to the parametrized
computational domain as to Ωo(µ), and indicate with the subscript o (original) all the spaces,
functions, and structures that refer to this domain. In particular, the parametrized geometry
Ωo(µ) is built by means of the NURBS space Bho defined as

Bho(µ) = span{Roj(µ)}nj=1 = span{Roj ◦ F−1}nj=1, (3.1)

where Roj are the NURBS basis functions and F the geometrical mapping defining the
parametrized domain as follows:

F : Ω̂×D → Ωo(µ) ⊂ Rd, (ξ;µ)→ F (ξ;µ) =

n∑
j=1

Roj(ξ)Bj(µ), (3.2)

where Bj(µ) are parametrized control points in Rd, for d = 2. The parametrized version of
the Poisson problem (1.55) then reads: given µ ∈ D, find uo : Ωo(µ)→ R such that

−∇ · (δ∇uo(µ)) = fo(µ) in Ωo(µ) (3.3a)

uo(µ) = 0 on ∂Ωo(µ) (3.3b)

where we have assumed Dirichlet homogeneous boundary conditions. We introduce the weak
formulation of the problem and refer to it as to the original problem. The variational form of
the problem reads: given µ ∈ D, find uo(µ) ∈ Vo such that

ao(uo(µ), v;µ) = Lo(v;µ), ∀v ∈ Vo (3.4)

where Vo = Vo(µ) = H1
0 (Ωo(µ)). The associated parameter dependent bilinear form ao :
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Vo × Vo → R and the linear functional Lo : Vo → R can be expressed as

ao(w, v;µ) =

∫
Ωo(µ)

[
∂w

∂xo1
,
∂w

∂xo2

]
νo(x;µ)

[
∂v

∂xo1
,
∂v

∂xo2

]T
dΩo(µ) (3.5a)

Lo(v;µ) =

∫
Ωo(µ)

fo(x;µ) v dΩo(µ), (3.5b)

where νo ∈ R2×2 is a (symmetric positive definite) diffusivity tensor, in this case νo = δI,
with I ∈ R2×2 the identity matrix, and fo : R2 ×D → R are prescribed coefficients.

As anticipated in Section 2.3, the RB method requires a parameter independent domain
in order to compute and combine the IGA solutions that will be used as basis of the RB
approximation space. For this reason, we need to map the original domain Ωo(µ) to a reference
domain Ω to recast problem (3.4) in the form (2.9).

3.2 Parametrized formulation on a reference domain

In this section we treat the shape parametrization by transforming equation (3.4) in Ωo(µ)
to a new equation on the fixed reference domain Ω. To do this, we use the geometrical map
T between Ω and Ωo(µ) introduced in Section 2.3.

T (·;µ) : Ω→ Ωo(µ), (3.6)

such that Ωo(µ) = T (Ω;µ). The abstract weak formulation of the reference problem reads:
find u(µ) ∈ V such that

a(u(µ), v;µ) = L(v;µ), ∀v ∈ V, (3.7)

where V = H1
0 (Ω) and the bilinear form and the linear functional can be expressed as

a(w, v;µ) =

∫
Ω

[
∂w

∂x1
,
∂w

∂x2

]
ν(x;µ)

[
∂v

∂x1
,
∂v

∂x2

]T
dΩ (3.8a)

L(v;µ) =

∫
Ω
f(x;µ) v dΩ, (3.8b)

ν(x; ·) : R2 ×D → R2×2 is a parametrized tensor given by

ν(x;µ) = (JT (x;µ))−1νo(JT (x;µ))−T det(JT (x;µ)), (3.9)

JT (x;µ) : R2 ×D → R2×2 is the Jacobian matrix of the map T (x;µ), defined as

JT (x;µ)ij =
∂(T )i
∂xj

(x;µ) i, j = 1, ..., d

and det(JT (x;µ)) its determinant. Finally, f(x; ·) : R2 ×D → R is given by

f(x;µ) = fo(x;µ) det(JT (x;µ)).
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Through the parametric transformation, we have reformulated the original problem on a ref-
erence configuration Ω and so obtained a parametrized problem, where the effect of geometry
variations is traced back onto its parametrized transformation tensors. As we will see in
Section 3.4 also Ω will be a NURBS surface.

3.3 Numerical approximation for parametrized problem

We can now derive the numerical approximation of the variational formulation of the problem
at hand through a NURBS-based IGA Galerkin method as done in (1.37) and so look for a
discrete solution of (3.7) in the finite dimensional space V N ⊂ V . Let us suppose to have
already specified how to define the reference domain Ω. In virtue of the isogeometric concept,
the space V N will be built by means of the same NURBS basis functions defining the reference
geometry. In particular, by indicating these functions with Ri, it results that V N = V ∩ Bh,
with Bh = span({Rj}nj=1). Following the same procedure adopted in (1.38) we assume that
the solution is expressed as

uN (x;µ) =
N∑
j=1

Rj(x)uj(µ). (3.10)

By using this expression of uN and choosing v = Ri, 1 ≤ i ≤ N we can rewrite problem (3.7)
as a linear system

A(µ)u(µ) = L(µ), (3.11)

where from (3.8) it results that

(A(µ))ij = a(Rj ,Ri;µ) =

Q∑
q=1

aq(Rj ,Ri;µ), (3.12a)

(L(µ))i = L(Ri;µ). (3.12b)

with Q = 4 and

a1(Rj ,Ri;µ) =

∫
Ω
ν11(x;µ)

∂Rj
∂x1

∂Ri
∂x1

dΩ, (3.13a)

a2(Rj ,Ri;µ) =

∫
Ω
ν12(x;µ)

∂Rj
∂x1

∂Ri
∂x2

dΩ, (3.13b)

a3(Rj ,Ri;µ) =

∫
Ω
ν21(x;µ)

∂Rj
∂x2

∂Ri
∂x1

dΩ, (3.13c)

a4(Rj ,Ri;µ) =

∫
Ω
ν22(x;µ)

∂Rj
∂x2

∂Ri
∂x2

dΩ, (3.13d)

L(Ri;µ) =

∫
Ω
f(x;µ)RidΩ. (3.13e)

In order to fully exploit the Offline-Online splitting, we need to write a and L as in (2.6)
thus expressing them as a linear combination of µ-dependent functions and µ-independent
matrices and vectors. This form is obtained naturally if the problem has an affine parametric
dependence. Unfortunately, this is not our case because νij(x;µ) and f(x;µ), for 1 ≤ i, j ≤ 2,
are non-linear functions of the spatial coordinate x and of the vector parameter µ. Since
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the isogeometric parametrization entails a non affine parametric dependence, we need to
approximate the nonaffinely parametric dependent terms. This procedure will be carried out
by means of the Empirical Interpolation Method in Section 3.5.

3.4 Reference domain

In this section we explain the criteria followed to choose the reference domain Ω. First, let us
summarize how the parametric, the reference, and the original domains interact among each
other in the integration operations involved in the IGA-RB framework:

• RB requires to trace back the bilinear form and the linear functional (3.5) from the
original domain Ωo(µ) to the reference domain Ω (3.8);

• in IGA the assembly of A and L in (3.11) is made at the element level by pulling
back the basis functions having support on a mesh element of the reference domain Kk

(1.46) into the corresponding element of the parameter domain K̂k and then performing
numerical integration by means of quadrature formulas (1.50);

• in a IGA-RB combined methodology, to assemble (3.11), we have first to trace back
problem (3.4) from the original domain Ωo(µ) to the reference domain Ω, obtaining
(3.8) that in matrix form reads as in (3.11); the latter is then pulled back to the
parametric domain Ω̂ to perform the numerical integration (1.50).

In this scenario, in addition to the already known maps F and T , it is convenient to introduce
a new map from the parametric domain to the reference one, S : Ω̂ → Ω. We now recap the
three maps we are considering and give a representation of them in Fig. 3.1

• S : Ω̂→ Ω, map from the NURBS parametric domain to the NURBS reference domain;

• T (µ) : Ω → Ωo(µ), map from the NURBS reference domain to the NURBS original
domain;

• F (µ) : Ω̂ → Ωo(µ), map from the NURBS parametric domain to the NURBS original
domain;

So far, we have referred to a generic reference configuration Ω. Once clarified the scenario
we are dealing with, we can finally proceed with the construction of a proper reference domain
and give an explicit expression of the parametrization T that leads from Ω to Ωo. In practice
there are several techniques for the construction of this parametric domain map T , like the
Free-Form Deformation and the Radial Basis Function techniques (see [Man12]). Anyway, in
a Isogeometric framework the natural choice is to use, in a proper way, the geometrical map F
so to be allowed to directly use its explicit expression (1.18), its jacobian, and its determinant
as requested in (3.5). In this section, with the simple aim to define the reference domain, we
consider as original domain Ωo the one depicted in Fig. 3.2, but the procedure we describe is
independent of the original domain considered.

A first idea could be to assume as reference domain the parametric one. In this way, since
Ω̂ ≡ Ω and S = I, with I the identity map, the map T (µ) would automatically coincide with
F (µ); then, we could easily go from Ωo(µ) back to Ω̂, and perform on it all the operations
illustrated in Section 3.2. To this end, we should simply define a unit square geometry (as the
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Figure 3.1: The three maps S, T , F , and the three domains, parametric Ω̂, reference Ω, original
Ωo(µ), involved in the IGA-RB methodology.

parametric 2D domain) and assemble on it the matrices and vectors of the reduced system
we want to solve. To this end, we have to decide how to properly set the control points and
NURBS weights to represent the unit square.

We start by building Ω by means of the space Bh = span{Ni ◦S−1, i = 1, ..., 4} of B-spline
basis functions of degree p = q = 1 in both directions as in Fig. 3.2. It is clear that in this
way Ωo(µ) and Ω are not built by means of the same NURBS basis functions, since Ωo(µ)
is built by the space Boh = span{Roi ◦ F−1, i = 1, ..., 6} of NURBS basis functions of degree
p = 1 in radial direction and q = 2 in angular direction. The problem is that, when tracing
back the bilinear form and the linear functional from Ωo(µ) to Ω, the basis functions used in
the integration must be the same. In particular, since both the integration on Ωo and Ω are
actually traced back into Ω̂, we should have that B̂oh ≡ B̂h. However, in our case the spaces
Boh and Bh traced back in the parametric domain Ω̂ read as B̂oh = span{Roi, i = 1, ..., 6} and
B̂h = span{Ni, i = 1, ..., 4}, respectively. So we should decide how to set the control points
and NURBS weights in such a way Ω is a 2D unit square built by using the same NURBS
basis functions used to build Ωo(µ) so that B̂oh ≡ B̂h. To this end, we build the square by
choosing p = 1 (in x direction) and q = 2 (in y direction) and by assigning the same NURBS
weights used for the original domain as shown in Fig. 3.3.

With this choice of the reference domain it results that B̂oh ≡ B̂h, F = T ◦ S and as
consequence

JF = J [(F )(ξ)] = J [(T ◦ S)(ξ)] = J [T (S(ξ))]J [S(ξ)], (3.14)

and so
JT = J [T (S(ξ))] = J [F (ξ)](J [S(ξ)])−1 = JFJ

−1
S , (3.15)

and
det(JT ) = det(JT (S(ξ))) = det(JF ) det(J−1

S ) = det(JF )(det(JS))−1. (3.16)

Finally, expressions (3.15) and (3.16) can be substituted in (3.9) and (3.2) for the actual
evaluation of the solution of the reference problem.
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Figure 3.2: If we choose Ω ≡ Ω̂, the NURBS space in the original domain (Boh) and the one in the
reference domain (Bh), if traced back into the parameter domain as B̂oh and B̂h respectively, do not
coincide.

3.5 Empirical Interpolation Method

In this section we apply the Empirical Interpolation Method (EIM) [BMNP04, GMNP07,
BMS14], a technique that allows to efficiently treat nonaffine problems in the RB framework.
As a matter of fact, EIM recovers the assumption of affine parametric dependence thanks to a
suitable approximation of the nonaffine terms appearing in the problem operators. However,
in Chapter 4 we will see that EIM can not be applied if the NURBS weights are parametrized
and in this case we will use another methodology.

We describe EIM for the general case of a non linear function f : Ω×D → f(x,µ) ⊂ R,
depending both on x and µ in a nonaffine way. In particular, we present a discrete version of
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Figure 3.3: The reference domain Ω is assembled as a 2D unit square by means of the same NURBS
basis functions used to build the original domain Ωo(µ). These spaces are traced back into the
parameter domain as B̂oh and B̂h, respectively. In this case B̂oh coincides with B̂h.

EIM that operates on Ωh ⊂ Ω, with Ωh a set of n points in Rd, d = 2 or 3. In the following
we will assume a reordering of the points of Ωh in a matrix structure Q ∈ Rn×d. In the
next section we will consider Ωh to be the set of the quadrature nodes of the computational
domain.

Thus, we aim to approximate f : D → Rn, where fi = f(xi,µ), with xi a row of Q for
i = 1, ..., n. The idea of EIM is to find an approximate expansion of the form

f(µ) ≈ fM (µ) = ΦΘ(µ), (3.17)

where Φ = [φ1, ...,φM ] ∈ Rn×M is a basis that can be computed offline, and Θ(µ) ∈ RM is a
coefficient vector to be computed online. Moreover, as we are going to see in the algorithm,
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EIM seeks a set of indexes F ⊂ {1, ..., n}, |F| = M , such that to each index corresponds a
point of Q and the selected points are called magic points. Being an interpolation procedure,
EIM uses the properly selected indexes (or magic points) and the basis in order to compute
the coefficient vector Θ(µ), by solving the following interpolation problem:

ΦFΘ(µ) = fF (µ), (3.18)

where ΦF ∈ RM×M is the matrix formed by the F rows of Φ, and fF (µ) ∈ RM is the vector
we obtain by evaluating f(µ) in the points of Q whose index is in F . EIM selects both the
interpolation indexes and basis functions by means of a greedy algorithm. Let us denote by
Ξtrain ∈ D a large training set of parameter samples, Mmax the maximum number of terms
in the expansion, tolEIM a fixed tolerance, and select an initial parameter µ1. The EIM
procedure is as follows:

M = 1;
φ1 = f(µ1); compute i = arg max |φ1|; F = {i};
φ1 = φ1/(φ1)i; Φ = [φ1];
for M = 2 : Mmax

solve µM := arg maxµ∈Ξtrain ‖f(µ)− fM−1(µ)‖∞
set φM = f(µM ); Φ = [Φ,φM ];
set σM = Φ−1

F (φM )F ;

compute φM = φM −
∑M−1

j=1 (σM )jφj ;
compute i = arg max |φM |; F = F ∪ {i} ;
if maxµ∈Ξtrain ‖f(µ)− fM−1(µ)‖∞ < tolEIM

Mmax = M − 1;
end

end

In the following we apply EIM to problem (3.7) by applying the previous algorithm to the
parameter dependent functions appearing in the integrals (3.13).

3.6 EIM application

We now apply EIM to the nonaffine bilinear forms and the linear functional in (3.13). More
precisely, we approximate with EIM the coefficients νij(x;µ), for 1 ≤ i, j ≤ 2, and f(x;µ).

So, as done in Section 3.5, we build the sets of indexes Fν11 of cardinality Mν11 ,..., Fν22 of
cardinality Mν22 , Ff of cardinality Mf , and basis matrices

Φν11 = [φν111 , ...,φν11Mν11 ], ...,Φν22 = [φν221 , ...,φν22Mν22 ],Φf = [φf1 , ...,φ
f
Mf ]. (3.19)

First, we choose as set of points Ωh on which to perform EIM the mesh quadrature nodes.
For this reason, we start by realizing the same h-refinement on both the original domain Ωo

and the reference domain Ω; in this way, we have the same number of mesh elements between
the two domains and, since we have built Ωo(µ) and Ω by means of the same basis functions,
they will have the same number of quadrature nodes as well. In the following, we indicate
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with Ωh the set of the images of the quadrature nodes in the reference domain Ω

Ωh = {xl,k ∈ Ω : xl,k = S(ξl,k), for l = 1, ..., Ne and k = 1, ..., nk},

and with Ωoh(µ) the set of the images of the quadrature nodes in the original domain Ωo

Ωoh(µ) = {xol,k ∈ Ωo(µ) : xol,k = F (ξl,k;µ), for l = 1, ..., Ne and k = 1, ..., nk},

where ξl,k are the quadrature nodes in the parametric domain (1.47), Ne is the number of
mesh elements, and nk is the number of quadrature nodes for each mesh element. We notice
that, since the reference domain does not depend on µ, the points of Ωh can be computed
once and for all, while the ones of Ωoh(µ) must be recomputed for each new parameter µ.
We introduce a reordering of the quadrature nodes and a global numbering, and rewrite them
in matrix form as: Q ∈ Rn×d and Qo ∈ Rn×d, with n the total number of quadrature nodes
and d the dimension of the physical space. Then, we perform EIM on this set of points by
following the algorithm reported in the previous section.

Let us focus, for instance, on the term ν11(x;µ). Given the parameter µ1, we modify the
control points coordinates of the original domain, compute Qo(µ), evaluate on this points
JF , the Jacobian of the transformation F , and compute once and for all JS , the Jacobian of
the transformation S in the points of the set Q. Then, computing (3.9) for each point of Qo,
we finally obtain the vector ν11 ∈ Rn. Then, we set φν111 = ν11 and apply the EIM algorithm
illustrated in Section 3.5. Finally, as output of the algorithm, we obtain the set of indexes
Fν11 of cardinality Mν11 and the basis matrix Φν11 = [φν111 , ...,φν11Mν11 ]. In this way we obtain
the desired approximation

ν11(µ) ≈ νM (µ) = Φν11Θν11(µ) (3.20)

where the µ-dependent coefficient vector Θν11(µ) is obtained by solving online the Lagrange
interpolation problem (3.18) that in this case can be rewritten as

Θν11(µ) = (Φν11
F )−1(ν11)F . (3.21)

In practice online, given a parameter µ, we modify the original domain and compute ν11(·;µ)
only in the images of the quadrature nodes corresponding to the indexes of Fν11 , that is in
the images of the magic points, and finally compute (3.21). Moreover, for each basis φν11m , we
define a function ψν11m such that for each quadrature node ξl,k:

ψν11m (ξl,k) = (φν11m )i, (3.22)

where i is the index of that quadrature node in the global numbering introduced at the begin.
The reason of introducing these functions will be clarified later.

By repeating the procedure for the other nonaffine terms, we obtain

νMij (µ) = ΦνijΘνij (µ) for 1 ≤ i, j ≤ 2 (3.23)

fM (µ) = ΦfΘf (µ). (3.24)

In the following, in order to simplify the notation, we will rename ν1 = ν11, ν2 = ν12, ν3 = ν21,
ν4 = ν22. By substituting these expressions in (3.13) we get the final EIM approximate system:

AM (µ)uM (µ) = LM (µ), (3.25)
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that explicitely reads: Q∑
q=1

Mνq∑
m=1

Θ
νq
m (µ)Aqm

uM (µ) =
Mf∑
m=1

Θf
m(µ)Lm, (3.26)

where for example for q=1

A1m
ij = a1(Rj , Ri, ψ

ν1

m ) =

∫
Ω
ψν

1

m

∂Rj
∂x1

∂Ri
∂x1

dΩ, (3.27a)

Lmi = L(Ri) =

∫
Ω
ψfmRidΩ (3.27b)

Here Aqm ∈ RN×N , 1 ≤ q ≤ Q, 1 ≤ m ≤ Mνq , and Lm ∈ RN , 1 ≤ m ≤ Mf . It is now
clear that we have introduced the functions ψ defined in (3.22), just to take into account the
contribution of the basis in the integration. These matrices and vectors do not depend on µ
and can be precomputed offline only once. The other operations required to assemble and
solve system (3.26) are performed online.

3.7 Approximation with RB

The linear system (3.25) has dimension N ×N and we would like to reduce its dimension by
adopting the RB approach. We do that by computing a set of basis by means of a POD or
greedy approach (see Sections 2.4.3 and 2.4.2, respectively) to obtain reduced matrices and
right hand side vectors as in (2.32). In this way, we obtain the following reduced system Q∑

q=1

Mνq∑
m=1

Θνq

m (µ)Aqm
N

uN,M (µ) =
Mf∑
m=1

Θf
m(µ)LmN , (3.28)

that can be rewritten in compact form as

AN,M (µ)uN,M = LN,M (µ), (3.29)

that is a system of dimension N ×N with N � N . Once we have computed the RB solution,
we can recover its full-order expansion as

uNN,M (µ) = ZuN,M (µ). (3.30)

being Z ∈ RN×N the basis matrix defined in (2.20) or in (2.25), if a greedy or a POD sampling
strategy has been adopted respectively.

3.8 Numerical results

In this section we present the numerical results obtained for the solution of problem (3.3), by
performing first an EIM approximation and then a RB reduction. In particular, in the first
example we introduce only one geometric parameter, while in the second one we consider two
geometric parameters.
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Table 3.1: EIM data, one parameter case.

EIM samples 50

EIM tolerance toleim 10−5

Affine matrix components Aqm Qa = 16

Affine rhs components Lm Qf = 2

3.8.1 One parameter case

To solve the problem we take δ = 1, fo(µ) = 1, and consider homogeneous Dirichlet boundary
conditions. As parametrized computational domain we choose the one built in Example 1.6.
We recall that in that case we parametrized the coordinates of two of the control points with
respect to a parameter µ = µ ∈ D = [0.5, 1]. Moreover we recall that the NURBS weights
can assume any fixed value and in this case we chose them to be all equal to one. In Fig. 3.3
we have a representation of both the original domain we are considering and of the reference
domain we build in order to trace back the problem on it. For the solution of the problem
we use NURBS basis functions of degree 2 (in the following we refer to this case as to P2)
meaning that we realize a p-refinement such that p = q = 2 for both the original Ωo and
reference domain Ω, and realize a same h-refinement for the two domains in order to have a
25× 60 grid yielding N = 1500 degrees of freedom (considering only inner nodes).

We start by presenting the results for EIM, used to approximate the parameter dependent
terms in (3.13) by means of a series of affine terms. To perform EIM we choose a tolerance
tolEIM = 10−5 and a train set of 50 parameter values. We obtain Mνq = 4 for 1 ≤ q ≤ Q,
Q = 4, and Mf = 2, and so offline we will finally assemble Qa = Q ×Mνq = 16 matrices
of size N ×N and Qf = 2 right-hand side vectors of size N (that is Mf plus Qa terms,
due to lifting operation that, in this case, do not give any contribution being all null since
homogeneous Dirichlet conditions are imposed). Just to give an idea of which are the magic
points selected by EIM for the terms νq, for 1 ≤ q ≤ 4 and f , we report in Fig. 3.4 their
location on the original configuration. We observe that the points selected to approximate ν2

and ν3 are the same, since ν is a symmetric tensor.

We define the average relative error between the IGA solution uo(µ) (computed on the original
domain) and the solution uM (µ) of the system (3.26) approximated with EIM, defined as

εIGA,EIMave,rel = averageµ∈Ξtest

‖uo(µ)− uM (µ)‖V
‖uo(µ)‖V

. (3.31)

This error, computed over a set Ξtest of 20 samples, is of the order of 10−6. This result
confirms that the EIM procedure provides a good approximation of the original nonaffine
system. In Fig. 3.5 we report the IGA solutions for three different parameters µ and the
correspondent EIM approximations.

We now present the numerical results obtained through the RB approach by considering
first the ones obtained by applying the POD (Section 2.4.3), then the ones obtained by means
of the greedy approach (Section 2.4.2). We refer to these two different approaches as to the
POD-RB and the greedy-RB methods, respectively.
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ν1 ν2 ν3

ν4 f

Figure 3.4: Images of the magic points selected by EIM to approximate the terms ν1, ν2, ν3, ν4, ad
f , respectively.

Concerning the POD-RB method, we recall that during the offline stage we compute a
large set of snapshots and then we transform them into POD modes and the first of these
are the ones that retain most of the energy present in the original variables. Through this
procedure, we choose the dimensionality of the reduced basis N and during the online stage
we solve the reduced system, thanks to a Galerkin projection. For the problem at hand we
took a set of 150 snapshots and applied the POD algorithm by considering a tolerance of 10−6.
In Fig. 3.6 we report the resulting singular values and conclude that the first 8 POD modes
retain most of the energy of the system. Therefore, during the online evaluation, a reduced
system of dimension Nmax = 8 has to be solved. Then, in order to compare the results, we
repeat the procedure for the cases P3 and P4. To do that we consider again the original and
reference domain in Fig. 3.3 and realize on both of them a p-refinement such that p = q = 3
and p = q = 4, and them perform the same h-refinement to obtain a 25 × 60 grid. In this
way we increase the number of quadrature nodes on which EIM is performed. The result is
that EIM returns the same number of affine terms of the case P2 (Mνq = 4 for 1 ≤ q ≤ Q,
Q = 4, and Mf = 2). This results can be justified by the fact that the chosen grid (25×60) is
already fine enough in the P2 case and by increasing the polynomial degree, the quadrature
nodes are so dense and close among each other that the selection of the indexes and basis
realized by the greedy procedure performs more or less in the same way. We then applied the
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IGA, µ = 0.5 IGA, µ = 0.7 IGA, µ = 1

IGA-EIM, µ = 0.5 IGA-EIM, µ = 0.7 IGA-EIM, µ = 1

Figure 3.5: IGA solutions uN (top) and corresponding IGA-EIM solutions uM (bottom) for the
parameters µ = 0.5, µ = 0.7, and µ = 1.

POD algorithm, set with the same parameters (150 precomputed snapshots and a tolerance
of 10−6), to the cases P3 and P4. In Fig. 3.7 we report and compare the resulting singular
values. We observe that the singular values do not change by varying the polynomial degree.
As a matter of fact, the POD procedure works on the operators discretized in the parameters
space and by increasing the polynomial orders the geometry and the parametrization are
preserved (Section 1.3.2) and, as already said, the quadrature nodes are enough close to not
produce a different result. As consequence, since we use the same parameters set Ξtrain for
the three cases, when we assemble the matrices having as columns the computed snapshots
these are strictly correlated among each other and the SVD gives as output the same singular
values.

We now aim to evaluate the error between the solution uo(µ) of the IGA problem on the
original domain, and the solution uNN,M (µ) of problem (3.28), i.e. of the problem approxi-
mated by means of EIM and then reduced by means of POD (EIM-POD-RB problem). We
consider the case of polynomials degree 2. In Fig. 3.8 we show εIGA,EIM−POD−RBave,rel defined as

εIGA,EIM−POD−RBave,rel = averageµ∈Ξtest

‖uo(µ)−ZuPODN,M (µ)‖V
‖uo(µ)‖V

, (3.32)

that is the average relative error between uo(µ) and uNN,M (µ), computed on a set of 20
parameters samples. The error is shown as a function of the number of basis function N
and by considering an increasing number of affine terms Qa, while Qf is kept fixed, being
Qf = 2. We observe that, for fixed values of Qa the error initially decreases with increasing
N , and then becomes constant for N large enough. Moreover, increasing Qa tends to reduce
the error.

We now consider the RB-greedy strategy. We refer to the resulting problem as the EIM-
greedy-RB problem. We consider a set of 150 parameter samples Ξtrain and a tolerance
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Figure 3.6: Singular values of the snapshots matrix for polynomial degree 2. The plot shows that
the first Nmax = 8 POD modes retain most of the energy of the system.
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Figure 3.7: Singular values of the snapshots matrix for polynomial degrees 2, 3, 4. The singular
values do not change by varying the polynomial degree.
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Figure 3.8: Average relative errors εIGA,EIM−POD−RB
ave,rel defined in (3.32), between IGA and EIM-

POD-RB solutions vs N for different values of Qa, computed on a 20 samples parameter vector Ξtest.

of 10−6. The algorithm selects Nmax = 9 basis functions. To test the convergence of the
approximated solutions, we take the same set Ξtest of 20 samples already used in the POD
case. In Fig. 3.9 we report the error εIGA,EIM−greedy−RBave,rel defined as

εIGA,EIM−greedy−RBave,rel = averageµ∈Ξtest

‖uo(µ)−ZugreedyN,M (µ)‖V
‖uo(µ)‖V

, (3.33)

that is the average relative error between uo(µ) and uNN,M (µ), where uNN,M (µ) is the solution
of problem (3.28), approximated by means of EIM, and reduced by means of greedy (EIM-
greedy-RB problem). The error is shown as a function of the number of basis functions N and
by considering an increasing number of affine terms Qa, while Qf is kept fixed, being Qf = 2.
We observe that, for fixed values of Qa the error initially decreases with increasing N , and
then becomes constant for N large enough. Moreover, increasing Qa the error decreases.

In Fig. 3.10 we compare the error between IGA and the reduced problems obtained
through either the POD procedure or the greedy procedure. We do not notice any relevant
differences in their accuracy and rapidity in the prediction of the resulting high-fidelity IGA
solution in the Online stage. Moreover, the two methods lead to a large computational saving
for each online evaluation, which is also similar (Nmax = 8 when using POD and Nmax = 9
when using greedy). These are relatively small dimensions compared to the original high-
fidelity problem with N = 1500 degrees of freedom for the case P2, N = 1584 for P3, and
N = 1674 for P3. This evident dimensional reduction, allows to reduce the times requested to
assemble and solve the IGA system for each parametric evaluation. In Table 3.2 we report the
computational times requested to assemble and solve the IGA problem on the original domain
(3.4), and the ones requested to assemble and solve the EIM-RB problem (3.28) online, for
a single parameter evaluation. The times refer to the 25× 60 grid for the cases P2, P3, and
P4. In particular in this table we just want to highlight the online computational advantage
allowed by the EIM-RB procedure, but do not refer to the times requested offline to assemble
and store the involved structures. In Section 3.8.2 we will compare the POD and greedy
performances for a specific problem. For this reason, we now report the times just for the
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Figure 3.9: Average relative errors εIGA,EIM−greedy−RB
ave,rel defined in (4.20), between IGA and EIM-

greedy-RB solutions vs N for different values of Qa, computed on a 20 samples parameter vector
Ξtest.

EIM-POD-RB problem for N = Nmax = 8, but the ones relative to the online stage of the
EIM-greedy-RB problem would be the same taking N = 8 in that case too. We notice that,
in all the cases, we have a computational saving and that this is larger when increasing the
polynomial degree, that is when increasing the number of degrees of freedom. As a matter
of fact, since EIM selects the same number of points, basis, and thus of affine terms for the
three cases, and moreover we are assuming as reduced dimension N = 8 for all the cases, the
time requested online to evaluate the terms Θ(µ) is almost the same (it is slightly higher
for higher degrees because of the higher time requested to modify the geometry as shown
in table 1.3). On the other hand, the time requested to assemble and solve the full systems
is obviously higher when increasing the polynomial degree since the number of degrees of
freedoms increases as well. For these reasons, we finally conclude that we have the higher
computational saving for the case P4.

3.8.2 Two parameters case

In this section we present the numerical results obtained for the resolution of the same problem
previously studied, but considering that in this case the control point B11 is parametrized with
respect to a parameter µ1 and the control point B22 with respect to another parameter µ2. The
vector parameter µ = [µ1, µ2] can assume values in the parameter space D = [0.5, 1]× [1, 1.5].
To solve the problem we still consider fo(µ) = 1, homogeneous Dirichlet boundary conditions,
NURBS basis functions of degree 2, and carry out a h-refinement of the domain in order to
obtain a 25× 60 grid.

We start by presenting the results for EIM. We choose a tolerance tolEIM = 10−6 and a
train set of 600 parameter values. We obtain Mν1 = 17, Mν2 = 15, Mν3 = 15, Mν4 = 14,
and Mf = 3, and so offline we will finally assemble Qa = 61 matrices of size N × N and
Qf = 3 right-hand side vectors of size N . In Table 3.3 we summarize these data, while in Fig.
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Table 3.2: Computational times tIGA, requested to assemble and solve the IGA problem on the
original domain (3.4), and tEIM−RB, requested to assemble and solve the EIM-RB problem (3.28), for
each parameter evaluation.

Degree P2 P3 P4

Number of parameters 1 1 1

EIM samples number 50 50 50

EIM tolerance toleim 10−5 10−5 10−5

Affine matrix components Aqm 16 16 16

Affine rhs components Lm 2 2 2

N 1500 1586 1674

N 8 8 8

tIGA 3.681 s 6.620 s 12.154 s

tEIM−RB 0.316 s 0.476 s 0.685 s

tIGA/tEIM−RB 11.65 13.91 17.74

Table 3.3: Empirical interpolation method data, 2 parameters case.

EIM samples 600

EIM tolerance toleim 10−6

Affine matrix components Aqm Qa = 61

Affine rhs components Lqm Qf = 3

3.11 we report the images of the magic points selected by EIM for the terms νq, for 1 ≤ q ≤ 4
and f . Then, we compute the average error between the solutions of the IGA system and the
one approximated by EIM on a set of 20 parameters samples, as previously done in (3.31).
This error is of the order of 10−6, accordingly to the chosen tolerance tolEIM = 10−5. In Fig.
3.12 we report, for three different parameters vectors, the numerical solutions of IGA and the
corresponding solutions of (3.26).

We now present the numerical results obtained through the RB approach by considering
first the results obtained by applying the POD, then the ones obtained by means of the greedy
algorithm.

We took a set of 600 snapshots and applied the POD algorithm for the case of polynomial
degree 2. In Fig. 3.13 we report the resulting singular values and conclude that the first 27
POD modes retain most of the energy of the system. So, online a reduced system of dimension
Nmax = 27 has to be solved.

Now, we evaluate the average relative error εIGA,EIM−POD−RBave,rel between the solution of the
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Figure 3.10: Average relative error εIGA,EIM−POD−RB
ave,rel (3.32) and εIGA,EIM−greedy−RB

ave,rel (4.20) vs N
for Qa = 16.

ν1 ν2 ν3

ν4 f

Figure 3.11: Images of the magic points selected by EIM to approximate the terms ν1, ν2, ν3, ν4,
ad f , respectively.
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IGA, µ = [0.5, 1] IGA, µ = [0.8, 1.2] IGA, µ = [1, 1.5]

IGA-EIM, µ = [0.5, 1] IGA-EIM, µ = [0.8, 1.2] IGA-EIM, µ = [1, 1.5]

Figure 3.12: IGA solutions uN (top) and corresponding IGA-EIM solutions uM (bottom) for the
parameters vectors µ = [0.5, 1], µ = [0.8, 1.2], and µ = [1, 1.5].

IGA and the solution of the EIM-POD-RB problem, already defined in (3.32). In Fig. 3.14 we
plot this error computed on a set of 400 parameters samples. As previously done, we report
the error as a function of the number of basis N and by considering an increasing number of
affine terms Qa, while Qf is kept fixed. For fixed values of Qa the error initially decreases
with increasing N , and then becomes constant for N large enough. Moreover, increasing Qa
the error decreases.

We now go back to the original system approximated by EIM and apply the RB strategy
but performing a greedy approach. We consider a set of 600 parameter samples Ξtrain and
a tolerance of 10−6. Under these conditions, the greedy algorithm selects 29 basis functions.
In Fig. 3.16 we report the error εIGA,EIM−greedy−RBave,rel defined in (4.20) computed on the same
Ξtest of 400 samples used in the POD case. The error is shown as a function of the number of
basis N and by considering an increasing number of affine terms Qa, while Qf is kept fixed.
Also in this case, we observe that, for fixed values of Qa the error initially decreases with
increasing N , and then becomes constant for N large enough, and increasing Qa tends to
reduce the error.

In Fig. 3.17 we compare the error between IGA and the reduced problems obtained
through the POD procedure or the greedy procedure. In Table 3.4 we report the computa-
tional times requested to assemble and solve the IGA problem on the original domain (3.4),
and the ones requested to assemble and solve the EIM-RB problem (3.28), for a single param-
eter evaluation. We consider as reduced dimension N = Nmax = 27. Comparing these data
with the ones in Table 3.2, we notice that the time requested to assemble the IGA system for
the P2 case is almost the same, since the grids contain the same number of elements in the
two cases. On the other hand, the time requested to assemble the EIM-RB system is higher
compared to the one of Table 3.2, since in this case we are considering a higher dimension for
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Figure 3.13: Singular values of the snapshots matrix for polynomial degree P2. The plot shows that
the first Nmax = 27 POD modes retain most of the energy of the system.
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Figure 3.14: Average relative errors εIGA,EIM−POD−RB
ave,rel defined in (3.32), between IGA and EIM-

POD-RB solutions vs N for different values of Qa, computed on a 400 samples parameter vector
Ξtest.



64 Chapter 3. Reduced Basis for IGA: Parametrized NURBS control points

the reduced spaces and also because EIM selected a higher number of affine terms. Moreover,
from this table we can compare the POD and greedy sampling strategies performances. We
notice that both the methods yield a computational saving of about 7 times for each online
evaluation, but on the other hand, we notice that the two methods behave differently in the
offline stage since the time requested by the greedy is about twice the one requested by the
POD algorithm. This difference can be explained by the fact that, as anticipated at the
end of Section 2.5, the computational cost for the evaluation of the norm of the residual in
the greedy algorithm, can increase dramatically for a high (let us say 50 or more [MSH15])
number of affine terms. So, since in this case we are dealing with 61 affine terms for the
stiffness matrix and 3 affine terms for the right-hand side, the use of the greedy-RB strategy
is unfavorable for the problem we are studying, but as we will see in Chapter 4, for more
complex problems with a lower number of affine terms, the greedy-RB strategy is preferable.

Table 3.4: Computational times tIGA, requested to assemble and solve the IGA problem on the
original domain (3.4), and tEIM−POD−RB, tEIM−greedy−RB requested to assemble and solve the EIM-
RB problem (3.28), for each parameter evaluation.

Degree P2

Number of parameters 2

Affine matrix components Aqm 61

Affine rhs components Lm 61

Sample train (for POD and greedy) 600

N 1500

POD-RB N 27

greedy-RB N 27

tIGA 3.4286 s

POD construction time (offline) 24.27 min

tEIM−POD−RB (online) 0.4868 s

Greedy construction time (offline) 48.49 min

tEIM−greedy−RB (online) 0.4789 s

tIGA/tEIM−POD−RB 7.0431

tIGA/tEIM−greedy−RB 7.1593

3.9 Conclusions

In this chapter we have considered a class of differential problems defined on surfaces parame-
trized with respect to the control points coordinates, but not to the NURBS weights. We
have considered parametrizations that lead to a non affine parametric dependence in the inte-
grals of the variational form that describes the differential problem and this requires suitable
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Figure 3.15: Average relative errors εIGA,EIM−greedy−RB
ave,rel defined in (4.20), between IGA and EIM-

greedy-RB solutions vs N for different values of Qa, computed on a 20 samples parameter vector
Ξtest.
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Figure 3.16: Average relative error εIGA,EIM−greedy−RB
ave,rel , between IGA and EIM-greedy-RB vs N .
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Figure 3.17: Average relative error εIGA,EIM−POD−RB
ave,rel (3.32) and εIGA,EIM−greedy−RB

ave,rel (4.20) vs N
for Qa = 61.

interpolatory techniques in order to apply the RB method. In particular, we have applied
EIM in order to restore the affine dependence on the parameters. Then, we have considered
as test applied case the Poisson problem defined on a 2D surface parametrized first with
respect to one parameter and then with respect to two parameters. For both the cases we
have approximated the nonaffine terms with EIM and then built two different reduced order
models by means of the POD and the greedy algorithm. The numerical tests have shown a
great accuracy between the reduced models and the full-order one. Moreover, although the
construction of the reduced spaces using POD or greedy is different, we did not remark rele-
vant differences in their accuracy and rapidity in the prediction of the results of the problem
at hand during the Online stage.

In the next chapter we will see that when the NURBS weights are parametrized, indepen-
dently on the fact that the control points coordinates assume fixed values or are parameter
dependent, EIM is not usable anymore since we are unable to define a reference configuration
through the same NURBS functions used to build the original configuration, and to separate,
in the integrals of the problem formulation, the µ-dependent terms, from the µ-independent
terms. For this reason, we will appeal to a new technique, the Matrix Discrete Empirical
Interpolation Method (MDEIM) [NMA15], that represents a variant of EIM. We remark any-
way that MDEIM is not affected by the kind of parametrization considered and so could be
used also when the parametrization affects only the control points coordinates. In this case,
we will see that compared to EIM, it allows to reduce the computational costs associated with
the assembling of the IGA structures.



Chapter 4

Reduced Basis for IGA:
Parametrized NURBS weights

In this chapter, similarly to Chapter 3, we consider a class of problems described by parametri-
zed PDEs defined on parametrized geometries, in order to solve the PDE for different choices
of parametrization of the computational domain. We consider domains built by means of
NURBS basis functions and characterized by geometrical parameters µ. In particular, we
start by considering the case in which only the NURBS weights are parameter dependent, but
not the control points coordinates which are fixed. Then, we generalize the discussion to the
case in which both the control points coordinates and the NURBS weights are parametrized.
In order to efficiently solve the problem for each new parameter µ, that is for each new domain
configuration, we adopt the RB method and for the spatial discretization of the problem, we
consider IGA.

As in Chapter 3, we consider parametrizations that induce nonaffine geometric transfor-
mations and in turns a nonaffine dependence on the parameters of the terms involved in
the problem formulation. We recall that, in order to maximize the computational saving
allowed by the RB method, the problem should satisfy the affinity assumption. This is why
in Chapter 3 we appealed to EIM in order to restore the affinity of the problem. However, in
this chapter we see that when dealing with parametrized NURBS weights, EIM is not usable
anymore since we are unable to define a suitable reference configuration and to identify, in
the integrals of the problem formulation, a µ-dependent contribution (actually µ-dependent
tensorial coefficients to be approximated with EIM), and a µ-independent one to be computed
only once offline. For this reason, we resort to a new technique, the Matrix Discrete Empir-
ical Interpolation Method (MDEIM) [CS10, Ton, NMA15] that represents a matrix version
of the discrete variant of EIM. In order to explicitely show how MDEIM works, we choose as
test problem the Laplace-Beltrami problem on a surface in 3D. We notice that, although we
consider this geometry, the procedure can be used for every problem defined on a geometry
parametrized with respect to the NURBS weights, and in particular also for 2D surfaces.

In Section 4.1 we introduce a parametrized problem on a manifold described by NURBS.
In Section 4.2 we give a reference formulation of the test problem at hand and build a reference
domain Ω by following the same approach described in Section 3.2. However, we show that
this approach is not feasible, since building the reference domain by means of the same
NURBS basis functions used for the original one, induces a parameter dependence on Ω,
that, in this way, cannot represent a reference configuration. Moreover, we show that since

67
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the parametrization affects all the NURBS weights, if we use EIM to restore the affinity of
the integral formulation of the problem, the online evaluation stage would depend on the full
dimension of the problem, which is precisely what should be avoided to build efficient RB.
For these reasons, we exploit an alternative methodology. In Section 4.3 we introduce the
Discrete Empirical Interpolation Method, DEIM, a discrete variant of EIM. In Section 4.4 we
describe a matrix version of DEIM, MDEIM, and explain how it allows to obtain an affine
approximation of the problem at hand. Then, in Section 4.5 we reduce the dimension of this
problem through the RB procedure. In Section 4.6 we report the numerical results for the
problem at hand. In Section 4.7 we solve the problem introduced in Chapter 3 but adopting
the MDEIM approach and compare its computational performances with the EIM ones.

4.1 Problem formulation on a parametrized NURBS manifold

We consider problem (1.32) and introduce a parametrized version of it by assuming that
the geometry of the problem of interest is parameter dependent. We assume Ωo to be the
parametric geometry built in Example 1.7 in which the parameter vector µ = µ ∈ R regards
only two of the NURBS weights, in particular the ones associated to the control points B12

and B22. We refer to this parametrized geometry as to Ωo(µ). This geometry Ωo(µ) is
represented by the NURBS space Bho defined as

Bho(µ) = span{Roj(µ)}nj=1 = span{Roj(ξ;µ) ◦ F−1}nj=1. (4.1)

Here, Roj(ξ;µ) represent the NURBS basis functions defined on the parametric domain Ω̂.
Similarly to the definition given in (1.17), these NURBS basis functions Roj can be expressed
as

Roj(ξ;µ) :=
Noj(ξ)wj∑n
ĵ=1

wĵNoĵ(ξ)
, j = 1, ..., n (4.2)

where Noj are the bivariate B-splines basis functions, defined in (1.6) on Ωo(µ) and, according
to the chosen parametrization, the weights wj associated to the control points B12 and B22

are set to be equal to µ. The mapping F , already introduced in (1.18), can be rewritten by
highlighting the parameter dependence as follows:

F : Ω̂×D → Ωo(µ) ⊂ Rd, (ξ,µ)→ F (ξ;µ) =

n∑
j=1

Roj(ξ;µ)Bj . (4.3)

We notice that, while in the isogeometric map (3.2) the parameter dependence regards the
control points, in the map (4.3), since some of the NURBS weights are parametrized with
respect to µ, the parameter dependence regards the NURBS basis functions. This is the
main difference between the problem studied in the previous chapter and the one we are now
considering.

The parametrized version of problem (1.32) then reads: given µ ∈ D find uo(µ) : Ωo(µ)→
R such that

− δ∆Ωouo(µ) = fo(µ) in Ωo(µ) (4.4a)

uo(µ) = 0 on ∂Ωo(µ) (4.4b)
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We introduce the weak formulation of the problem, which will be referred to as original
problem: given µ ∈ D find uo(µ) ∈ Vo such that

ao(uo(µ), v;µ) = Lo(v;µ), ∀v ∈ Vo, (4.5)

where Vo = Vo(µ) = H1
0 (Ωo) and Ωo = Ωo(µ). The associated bilinear form ao : Vo × Vo → R

and the linear functional Lo : Vo → R can be expressed as

ao(w, v;µ) =

∫
Ωo

(∇Ωow)Tνo(x;µ)∇ΩovdΩo (4.6a)

Lo(v;µ) =

∫
Ωo

fo(x;µ) v dΩo, (4.6b)

where νo : Rd ×D → R2×2, d = 3, is a parametrized (symmetric positive definite) diffusivity
tensor, in this case νo(x;µ) = δI, with I ∈ R2×2 the identity matrix, and fo : Rd × D → R
are prescribed coefficients.
The adopted parametrization entails a parametric dependence on the whole problem. For
what said in Section 2.3, the RB method requires a parameter independent domain in or-
der to compute and combine the IGA solutions that will be used as basis functions of the
RB approximation space. For this reason, in Chapter 3 we properly chose a reference (µ-
independent) domain Ω, and a parametric transformation T between Ω and Ωo(µ), and recast
the original problem onto the reference configuration. In this reference problem, the effect of
the geometric variations, that is the parameter dependence, was traced back and limited to
its parametrized transformation tensors ν(x;µ) and f(x;µ), as highlighted in (3.13). Unfor-
tunately, these parametrized tensors were non linear functions of both the spatial coordinate
x and the vector parameter µ. Thus, we approximated them with affinely parametric depen-
dent terms through the EIM procedure. This is the usual procedure followed when solving a
problem in a RB context, and this is why, also for the case treated in this chapter, we try to
adopt the same approach.

4.2 Parametrized formulation on a reference domain

In this section we transform problem (4.5) into a new one defined on a reference domain Ω.
As already done in Section 3.2, we introduce the map T , between Ω and Ωo(µ)

T (·;µ) : Ω→ Ωo(µ),

such that Ωo(µ) = T (Ω;µ). Assuming to have already defined a proper reference domain Ω
and a transformation T , the weak formulation of the reference problem reads: find u(µ) ∈ V
such that

a(u(µ), v;µ) = L(v;µ), ∀v ∈ V,
where V = H1

0 (Ω) and the bilinear form and the linear functional can be expressed as

a(w, v;µ) =

∫
Ω

(∇Ωw)Tν(x;µ)∇ΩvdΩ (4.7a)

L(v;µ) =

∫
Ω
f(x;µ) v dΩ. (4.7b)
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We now try to identify a suitable reference domain and a parametric transformation T .
We recall that in Section 3.4, in addition to the geometrical map F between Ω̂ and Ωo(µ),
and the map T between Ω and Ωo(µ), we introduced the map S between Ω̂ and Ω. The main
factors that led us to the final choice of the reference domain, shown in Fig. 3.3, where the
following ones:

• Ω must be independent on µ;

• B̂oh (the NURBS space of the original domain traced back into the parameter domain
Ω̂) must coincide with B̂h (the NURBS space of the reference domain traced back into
the parameter domain). Since in the practice both the integration in Ωo and Ω are
traced back into Ω̂ it would not make sense if these space functions were different in the
two cases.

The first strategy we adopt to define the reference domain Ω is the one described in Chapter
3. Thus, as we show in Fig. 4.1, we build Ω as a unit square but using the same NURBS
basis functions used to build Ωo(µ). To this end, we choose the polynomial degrees for the
direction x and y as the ones of the domain Ωo(µ) in the directions xo and yo; moreover, we
assign to the control points P12 and P22 the same weights associated to the corresponding
points B12 and B22 in the original domain. In this way, Ωo(µ) and Ω are built by means of
the same basis functions and B̂oh = B̂h. With this choice, however, the resulting Ω is not
µ-independent. As a matter of fact, when we change the parametric weights on the original
domain, although if Ω is always a unit square, we are actually changing the weights associated
to P12 and P22. It means that, since Ω = Ω(µ), it does not represent a reference configuration
and does not allow to compare and combine the different snapshots and solutions that instead
is what RB actually requires to do. It is now clear why the approach adopted in Chapter 3
is not feasible for parametrizations affecting the NURBS weights. In the following, we try
different approaches in order to define a reference domain and use EIM.

We first try to fix the weights of the reference domain to 1, also when changing that of
the original domain (see Fig. 4.2). In this way Ω is not parameter dependent. However, the
problem is that the basis functions are different between Ωo and Ω, i.e. B̂oh and B̂h are not
the same, and as a consequence, the integration operations would not be comparable between
the two domains.

Thus, we try another kind of approach. We consider as reference domain the one in Fig.
4.1. As already said, in this way we have that B̂oh = B̂h, but the NURBS basis functions
generating Ω are parameter dependent. Anyway, this time the idea is not to directly integrate
on Ω the NURBS basis functions defining this geometry, but something that is µ-independent.
The idea is to make the expression of the NURBS basis functions generating this domain
explicit and try to separate the parameter dependence involved in the NURBS weights and
in the weighting function, from the B-spline basis functions, that are parameter independent,
to finally integrate them. In this way, we aim to bring back the integration of NURBS on Ω
to the integration of B-Spline (parameter independent), and then multiply these integrals for



4.2. Parametrized formulation on a reference domain 71

some parameter dependent coefficients. By considering the bilinear form (4.7a) we find

a(Rj , Ri;µ) =

∫
Ω
∇Rjν(x;µ)∇RidΩ

=

∫
Ω

∂Rj
∂x1

ν11
∂Ri
∂x1

dΩ +

∫
Ω

∂Rj
∂x1

ν12
∂Ri
∂x2

dΩ +

∫
Ω

∂Rj
∂x2

ν21
∂Ri
∂x1

dΩ +

∫
Ω

∂Rj
∂x2

ν22
∂Ri
∂x2

dΩ

= A11
ij (µ) +A12

ij (µ) +A21
ij (µ) +A22

ij (µ).

Let us focus on A12
ij (x;µ),

A12
ij (x;µ) =

∫
Ω

∂Rj
∂x1

ν12
∂Ri
∂x2

dΩ

=

∫
Ω
ν12wj

W (ξ)
dNj
dξ −W

′
ξ(ξ)Nj(ξ)

(W (ξ))2
wi
W (ξ)dNidη −W

′
η(ξ)Ni

(W (ξ))2
,

where ξ = (ξ, η) are the coordinates in the parameter domain, and W ′ξ(ξ) and W ′η(ξ) represent
the derivatives of W (ξ) respect to ξ and η, respectively. For the sake of simplicity, in the
following we write W instead of W (ξ):

A12
ij =

∫
Ω
ν12

wjwi
W 2

dNj

dξ

dNi

dη
dΩ−

∫
Ω
ν12

wjwiW
′
η

W 3

dNj

dξ
NidΩ+

−
∫

Ω
ν12

wjwiW
′
ξ

W 3
Nj

dNi

dη
dΩ +

∫
Ω
ν12

wjwiW
′
ξW
′
η

W 4
NjNidΩ

= Θ1(µ)

∫
Ω
wjwi

dNj

dξ

dNi

dη
dΩ + Θ2(µ)

∫
Ω
wjwi

dNj

dξ
NidΩ+

+ Θ3(µ)

∫
Ω
wjwiNj

dNi

dη
dΩ + Θ4(µ)

∫
Ω
wjwiNjNidΩ.

The idea in the last step is to restore an affine dependence on the parameter with four µ-
dependent coefficients, eventually approximated by EIM,

Θ1(µ) = ν12
1

W 2
, Θ2(µ) = ν12

W ′η
W 3

,

Θ3(µ) = ν12

W ′ξ
W 3

, Θ4(µ) = ν12

W ′ξW
′
η

W 4

and four µ-independent integrals to be assembled Offline. The problem is that, since after
a refinement all the NURBS weights wi for i = 1, ...,N , are affected by the parametrization,
if we put them out of the integrals to restore the affinity assumption, the online evaluation
stage becomes dependent on N and this is what we are trying to avoid since the beginning.

It is now clear that, when dealing with parametrized NURBS weights, we are not able
to define a reference domain and apply EIM on the nonaffine terms present in the integral
formulation. Since we would have the same problems if also the control points coordinates
are parametrized, in the rest of this chapter we refer to the more general case in which the
parametrization affects both the NURBS weights and the control points coordinates. In this
case, it is requested to exploit a new kind of procedure. Since our final goal is to provide an
affine approximation of matrices and vectors, in the Section 4.3 we appeal to a methodology
that represents a variant of EIM, that is the Matrix Discrete Empirical Interpolation Method
(MDEIM). While EIM works on nonlinear functions, MDEIM can be applied directly to the
(IGA) algebraic structures on the original domain Ωo(µ), in our specific case to the matrix
form of problem (4.5). As preliminar to MDEIM, in next section we first describe DEIM.
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Figure 4.1: We choose Ω such that, the NURBS space in the original domain (Boh) and the one in
the reference domain (Bh), if traced back into the parameter domain as B̂oh and B̂h respectively, are
coincident. In this way, however, Ω is still µ− dependent.

4.3 Discrete Empirical Interpolation Method

The Discrete Empirical Interpolation Method (DEIM) is a variant of EIM, and as EIM, its
idea is to approximate a nonlinear function f : D → f(µ) ∈ RN in a low dimensional space
as follows [CS10]

f(µ) ≈ fM (µ) = ΦΘ(µ), (4.8)

where Φ = [Φ1, ...,ΦMf
] ∈ RN×Mf is a basis of functions and Θ(µ) ∈ RMf is the correspond-

ing coefficients vector, with Mf � N . As in the EIM case, the basis is computed only once
offline, while, for each new parameter µ the coefficients Θ(µ) are computed online. The main
difference between EIM and DEIM, is that in the EIM algorithm the selection of both the
basis and the interpolation points is done following a greedy procedure, while DEIM uses the
POD method for the former. We report below the DEIM algorithm:

Input: a set of snapshots Λ = [f(µ1), ...,f(µns)] ∈ RN×ns , a tolerance tol.
[Φ1, ...,ΦMf

] = POD(Λ, tol)
F = arg max|Φ1|
for k = 2 : Mf

compute residual r = Φk −ΦΦ−1
F Φk,F

i = arg max|r|
F = F ∪ i
Φ = [Φ ,Φk]
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Figure 4.2: The only way to make Ω µ-independent is to assign fixed values to all the NURBS
weights, also to the ones corresponding to parametrized weights in the original domain. In this way,
the drawback is that the NURBS space in the original domain (Boh) and the one in the reference
domain (Bh), if traced back into the parameter domain as B̂oh and B̂h respectively, do not coincide
anymore.
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end
Output: a basis Φ ∈ RN×Mf , a set of indexes F ∈ RMf .

The DEIM procedure starts by choosing a set of parameter samples Ξtrain of cardinality
ns and by computing a set of snapshots by sampling f(µ) at the values µ ∈ Ξtrain. Then,
DEIM applies POD (see Section 2.4.3) to extract a basis from the set of snapshots Λ. In the
following lines of the algorithm, DEIM constructs a set of indexes F , such that F ⊂ {1, ...,N},
and |F| = Mf . At each step, the selected index is the one corresponding to the entry of the
residual r where its maximum occurs. As output of the algorithm, we will have a basis
Φ ∈ RN×Mf and the set of indexes F ⊂ {1, ...,N}, |F| = Mf . This set of indexes F is used
in order to compute Θ(µ) that appears in (4.8). To this end, we impose an interpolation
condition in these properly selected entries of the vector f(µ) in the following way: given a
new parameter µ we compute

ΦFΘ(µ) = fF (µ), (4.9)

where ΦF ∈ RMf×Mf , is the matrix formed by the F rows of Φ and fF (µ) ∈ RMf is the
vector formed by the F rows of f . As result,

fM (µ) = ΦΦ−1
F fF (µ). (4.10)

Until now we have just applied DEIM to a generic function. In the next section, we will see
how to directly apply DEIM to the nonaffine parametrized vectors and matrices of problem
(4.5), in order to restore their affine dependence. Since we are not considering the reference
domain anymore, in the following we are going to omit the subscript o, thus implying that
we are always working on physical (original) configurations.

4.4 Matrix DEIM application

By following a procedure similar to the one adopted in Section 1.4.4, we can rewrite problem
(4.5) as a linear system in the following way:

A(µ)u(µ) = L(µ). (4.11)

For what said in the previous section, we can use DEIM directly on the matrix A(µ) (the
case of the right hand side vector L(µ) is treated in the same way) to obtain its MDEIM
affine approximation that can be expressed as [NMA15]

A(µ) ≈ AM (µ) =

Ma∑
m=1

Θm(µ)Am. (4.12)

Thus, we are interested in finding M � N functions Θm : D → R and parameter independent
matrices Am ∈ RN×N , 1 ≤ m ≤Ma, such that (4.12) holds. As already said, these functions
and matrices are computed in the offline stage as we will see later. We start by vectorizing
the matrix A(µ) as a(µ) = vec(A(µ)) ∈ RN 2

; then, (4.12) can be reformulated as: find
{Φ,Θ(µ)} such that

a(µ) ≈ aM (µ) = ΦΘ(µ), (4.13)
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where Φ ∈ RN 2×Ma is a parameter-independent basis, and Θ(µ) ∈ RMa the coefficients
vector:

Φ = [vec(A1), ..., vec(AMa)], Θ(µ) = [Θ1(µ), ...,ΘMa(µ)]T .

Then, we apply MDEIM to obtain the basis Φ and the interpolation indexes F ⊂
{

1, ...,N 2
}

.
Online, given a µ ∈ D we compute am(µ) as

aM (µ) = ΦΘ(µ), with Θ(µ) = Φ−1
F aF (µ).

Finally, by reversing the vec operation, we obtain the approximated matrix AM (µ). We
remark that, with aF (µ) we mean the evaluation of the vectorized matrix a(µ) in the selected
entries F . This operation requires the following offline steps:

• detect the reduced dofs: each index i ∈ F in the vector format corresponds to a couple
of indexes (row-column indexes in the matrix form) (l, j) ∈ I×J , with I, J ⊂ {1, ...,N}.
The reduced dofs consists in the union of the sets I and J ;

• define the reduced nodes of the mesh as the set of nodes associated to the reduced dofs.
In IGA context, each of these nodes represents a control point and thus is associated to
a NURBS basis function.

• detect the reduced elements of the mesh: for each NURBS basis function associated to a
reduced node, we take the elements on which it does not vanish (i.e. where it possesses
support). We recall that the support of NURBS basis functions built by means of
bivariate B-spline basis functions of degree p in one direction and q in the other one is
always (p+ 1)(q + 1) elements.

At the online stage, we just have to assemble the matrix A(µ) in the reduced elements. To
this end, we can use the usual assembler passing as input only the reduced elements, while
keeping the same global and local numbering for the elements and for the basis functions. The
resulting matrix has still dimension N ×N but is extremely sparse, since only the elements
associated to the reduced elements are actually nonzero. Finally

Θa(µ) = Φ−1
F aF (µ), (4.14)

where aF (µ) = [vec(A(µ))]F and analogously

Θf (µ) = Φ−1
F fF (µ). (4.15)

In this way, we obtain the system approximated by MDEIM

AM (µ)uM (µ) = LM (µ), (4.16)

which is the analogue of the EIM one (see (3.25)). More in detail,(
Ma∑
m=1

Θa
m(µ)Am

)
uM (µ) =

Mf∑
m=1

Θf
m(µ)Lm. (4.17)



76 Chapter 4. Reduced Basis for IGA: Parametrized NURBS weights

4.5 Approximation with RB

We can now combine MDEIM with the reduced basis technique. Indeed, system (4.16) is of
dimension N ×N and we would like to reduce its dimension by adopting the RB approach.
We do that by computing a set of basis by means of a POD or greedy approach (see Sections
2.4.3 and 2.4.2) and so obtain reduced matrices and right hand side vectors as in (2.32). In
this way we obtain the following reduced system:

AN,M (µ)uN,M (µ) = LN,M (µ), (4.18)

that can be written explicitely as(
MA∑
m=1

Θa
m(µ)Am

N

)
uN,M (µ) =

Mf∑
m=1

Θf
m(µ)LmN ,

where the Am
N ∈ RN×N are the precomputable matrices of small size, while the weights

Θa(µ) = [Θa
1(µ)...Θa

Ma
(µ)] and Θf (µ) = [Θf

1(µ)...Θf
Mf

(µ)] have been defined in (4.14) and

(4.15).

Once we have computed the RB solution, we can recover the full-order solution as

uNN,M (µ) = ZuN,M (µ), (4.19)

being Z ∈ RN×N the basis matrix defined in (2.20) or in (2.25), if a greedy or a POD sampling
strategy has been adopted, respectively.

4.6 Numerical results

In this section, we present the numerical results obtained for problem (4.4) defined on the
geometry built in Example 1.8, that is a surface parametrized with respect to both NURBS
weights and control points coordinates. To solve the problem we perform first a MDEIM
approximation and then a RB reduction. We take fo(µ) = sin(y), consider homogeneous
Dirichlet boundary conditions, NURBS basis functions of degree 2, and realize a h-refinement
of the domain in order to have a 25 × 60 grid for a total of N = 1500 degrees of freedom
(considering only inner nodes). As anticipated, we consider two geometrical parameters,
namely µ1 for the horizontal and vertical displacement of the control points B12 and B22,
and µ2 for the variation of the weights associated to these control points. The parameter
domain is given by D = [1, 2]× [0.5, 1.2].

We start by presenting the results for MDEIM, used to approximate the parametrized
matrix and right hand side vector of the problem written in the form (4.16). We define a set
of 400 parameter samples Ξtrain and compute the set of the corresponding 400 matrix and right
hand side vectors snapshots. To do that, we have to modify the NURBS geometry for each
parameter sample and assemble the current stiffness matrix A(µ) and right hand side L(µ).
As explained in Section 4.4 we vectorize each of these matrices and reformulate the problem
in the form (4.13). Then, we apply MDEIM to obtain the basis Φ and the interpolation
indexes F ⊂ {1, ...,N 2}. To do that, we apply the POD algorithm to the snapshots matrices
of the vectorized stiffness matrices and right-hand side vectors, respectively. In Fig. 4.3 we
report the resulting singular values (just for the first 20 samples for a better visualization)
and conclude that the first Ma = 15 singular values of the snapshots matrix of the vectorized
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Figure 4.3: Singular values of the snapshots matrix for the rhs (left) and for the stiffness matrix
(right) for polynomial degree 2.

matrices and the first Mf = 13 singular values of the snapshots matrix of the right-hand side
vectors, retain most of the energy of the system.

The MDEIM algorithm returns also the interpolation indexes associated to the selected
bases. By means of these indexes we identify the reduced nodes of the mesh. We already
know that each node corresponds to a NURBS basis function. Finally, for each basis func-
tion, we look for its support. These are the reduced elements. In this way from the selected
control points (reduced dofs) we find the reduced elements and we proceed by assembling A
and L only on these elements. To achieve this goal we employ the usual assembler adopted
for the operators defined on the full mesh, but passing as input only the reduced elements.
As a consequence, the assembling operation requires a very low computational cost since the
number of elements involved is reduced. The resulting matrices and vectors are still of size
N × N and N respectively, but they are extremely sparse since only the entries associated
to the reduced elements are actually non zero. The procedure selects 200 elements (out of
1500). The reduced mesh is shown in Fig. 4.4. It is evident that the reduced elements are
selected by groups of 9; as a matter of fact, for each reduced node, as already said, we iden-
tify the associated basis function, that in this case is originated by bivariate B-spline basis
functions of degree p = 2 in ξ-direction and q = 2 in η-direction, so its support consists of
(p + 1)(q + 1) = 9 elements. We notice that near the boundary, since repeated knots are
present (we recall that we always use open knot vectors, Section 1.1.1) some elements have
zero measure, and the reduced elements appear as groups of 6 elements.

Then, we proceed with the RB approximation by applying the greedy algorithm. In this
case, we do not impose to the greedy algorithm to satisfy tolerance, but rather set a maximum
number of basis Nmax = 30 to be selected, and then verify that they are enough to get the
convergence of the procedure. In Fig. 4.5 we report the following errors
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Figure 4.4: Full mesh (1500 elements) in gray and reduced mesh (200 elements) in orange, for
polynomial degree 2.

εIGA,DEIM−greedy−RBave,rel =meanµ∈Ξtest

‖u(µ)−ZuN,M (µ)‖V
‖u(µ)‖V

, (4.20a)

εDEIM,DEIM−greedy−RB
ave,rel =meanµ∈Ξtest

‖uM (µ)−ZuN,M (µ)‖V
‖uM (µ)‖V

. (4.20b)

We recall that (4.20a) is the average relative error between u(µ), solution of system (4.11),
and uNN,M (µ), solution of problem (4.18), approximated by means of MDEIM, reduced by
means of greedy (DEIM-greedy-RB problem), and reported to the full-order dimension. Sim-
ilarly, (4.20b) represents the average relative error between uM (µ), solution of system (4.16)
approximated by means of MDEIM, and uNN,M (µ). In both the cases, the error, computed
on the set Ξtest, is shown as a function of the number of basis N .

In order to better appreciate the large computational savings allowed by the RB method-
ology, we now report the numerical results obtained for the same problem solved on a finer
computational mesh. In particular, we consider a 50× 125 grid, for a total of 6250 elements.
We also compare the results obtained on this grid for different polynomial degrees. In partic-
ular, we consider NURBS generated by bivariate B-spline basis functions of degrees 2, 3, and
4 in both directions (in the following we refer to these three cases as P2, P3, P4, respectively).
To this end, starting from the non refined geometry (see Fig. 1.16), we perform a suitable p-
refinement to increase the polynomial degree in the interested directions and a h-refinements
to obtain the new mesh. The number of degrees of freedom increases to 6250 in the first case,
to 6426 in the second case, and to 6604 in the third one. For all the considered situations, we
apply MDEIM to obtain the basis Φ and the interpolation indexes F ⊂ {1, ...,N 2}. To this
end, we vectorize the matrices and right-hand side vectors snapshots and apply the POD.
In Fig. 4.6 we compare the results for the three polynomial degrees on the same mesh grid
(the one with 6250 elements). We observe that the singular values do not change by varying
the polynomial degree. As a matter of fact, the POD procedure operates on the operators
discretized in the parameters space; in particular, as seen in Section 2.4.3, it operates on a
matrix having as columns ntrain snapshots computed on ntrain geometrical parameters. As a
consequence, if the geometric parametrization of the computational domain does not change
and we repeat the procedure on the same set of samples, the POD result does not change,
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and this is the case of p-refinement. As a matter of fact, in IGA context, by performing
p-refinement the parametrization and the geometry are preserved (see Section 1.3.2), and
the resulting singular values do not vary. Also in this case, we conclude that Ma = 13 and
Mf = 15 singular vales for the snapshots matrix of A and L retain most of the energy of the
system.

Since we are considering Ma = 13 and Mf = 15 matrix and vector bases for all the
three cases considered, the number of the reduced dofs, associated to the indexes selected by
MDEIM, is the same. However, B-spline basis functions of degree p in ξ-direction and q in
η-direction have support on (p+1)(q+1) elements. As a consequence, higher-degree functions
have support over much larger portions of the domain. Therefore, the procedure selects 210,
324, 449 elements (out of 6250) for the P2, P3, P4 case respectively, as shown in Fig.4.7.

Then, we proceed with the RB approximation by applying the greedy algorithm. Also in
this case, we set a maximum number of basis Nmax = 30 to be selected, as done before, and
then verify that they are enough to ensure the convergence of the procedure. In Fig. 4.8,
4.9, 4.10 we report the errors εIGA,DEIM−greedy−RBave,rel and εDEIM,DEIM−greedy−RB

ave,rel defined as
in (4.20), for P2, P3, and P4. All these plots show that the behavior of the errors is basically
the same up to N = 15, so that the effect of system approximation by means of MDEIM is
negligible in the reduced model. For N > 15, instead, the error between IGA and MDEIM
affects the error of the reduced model. In Fig. 4.11 we compare εIGA,DEIM−greedy−RBave,rel for the
different polynomial degrees and conclude that P3 and P4 have slightly better convergence
properties. However, because of the larger number of reduced elements selected, they require
at the same time higher computational costs.

In order to summarize the obtained results and conclude about the computational advan-
tages and disadvantages of adopting a higher polynomial degree or a finer mesh, in Table 4.1
we report some data concerning 9 different cases for meshes of 1500, 6250, and 10075 elements,
and polynomial degrees 2, 3, 4. In particular in this table we report the computational times
requested to assemble and solve the IGA problem for each parameter evaluation and the ones
requested to solve online the DEIM-greedy-RB problem. In this context we want to remark
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Figure 4.6: Singular values of the snapshots matrices of the vectorized stiffness matrix (right) and
rights hand side vectors (left) for polynomial degrees 2, 3, 4. The singular values do not change by
varying the polynomial degree.

Figure 4.7: Full mesh (6250 elements) in gray and reduced mesh in orange: 210 elements for P2, 324
elements for P3, 449 elements for P4.
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Figure 4.8: Average relative errors for P2 case: εIGA,DEIM−greedy−RB
ave,rel between IGA and DEIM-

greedy-RB vs N (blue) and εDEIM,DEIM−greedy−RB
ave,rel between DEIM and DEIM-greedy-RB vs N (red).

an important difference between FE and IGA. When solving a parametrized PDE with a
FE method, for each parameter evaluation, it is not requested to modify the basis functions,
since they are not parameter dependent. On the other hand, since in IGA the basis functions
used for the analysis are the same used to build the parametric dependent geometry, for each
parameter evaluation, it could be requested to recompute the basis functions. In particu-
lar this happens when the geometry is built by means of NURBS basis functions and the
parametrization affects the NURBS weights. It means that online, for each new parameter,
we have first to modify the NURBS basis functions, and then we can assemble and solve the
reduced system. To keep the computational complexity independent on N , we modify only
the NURBS having support on the reduced elements.

From the data reported in Table 4.1 we conclude that the case that allows the largest
computational saving is the P2 one on the grid made of 6250 elements. So, for this case, we
also perform an analysis about its convergence properties varying the number of terms selected
by MDEIM. In Fig. 4.12 we plot the average relative error between u(µ) and uNN,M (µ),
computed on a set of 400 parameters samples, as a function of the number of basis N and by
considering an increasing number of affine terms Qa and Qf . We observe that, for a higher
number of affine terms considered, the error decreases, and that for a fixed couple Qa, Qf ,
the error decreases by increasing N .
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Figure 4.10: Average relative errors for P4: εIGA,DEIM−greedy−RB
ave,rel between IGA and DEIM-greedy-

RB vs N (blue) and εDEIM,DEIM−greedy−RB
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Figure 4.11: Comparison of the average relative error εIGA,DEIM−greedy−RB
ave,rel between P2, P3, and

P4

Table 4.1: Computational times tIGA and tRB, requested to assemble and solve the IGA problem and
the DEIM-greedy-RB problem respectively, for P2, P3, and P4 cases, and for meshes made of 1500,
6250, and 10075 elements.

Degree Elements N Reduced Ma Mf N tIGA [s] tRB [s] tIGA
tRB

Elements

P2 1500 1500 200 13 15 30 3.43 0.57 6.02

6250 6250 210 13 15 30 11.0 0.67 16.5

10075 10075 213 13 15 30 17.9 0.74 24.1

P3 1500 1586 293 13 15 30 6.12 1.73 3.53

6250 6426 324 13 15 30 22.6 2.06 11.0

10075 10519 350 13 15 30 35.0 3.01 11.6

P4 1500 1674 431 13 15 30 11.5 4.96 2.31

6250 6604 449 13 15 30 42.0 5.96 7.05

10075 10519 478 13 15 30 66.9 6.63 10.1

4.7 MDEIM for parametrized control points: comparison with EIM

In this section, we want to highlight the fact that, since MDEIM directly operates on every
kind of matrix or vector, it can also be used in the first case discussed, where only the control
points coordinates were parameter dependent.

For this reason, we now consider again theparametrized Poisson problem (3.3) introduced
in Section 3.1, defined on the parametrized quarter of annulus of Example 1.6. For the
resolution of the problem, we use the same data reported in Section 3.8.1: δ = 1, fo(µ) = 1,
homogeneous Dirichlet boundary conditions, and µ = µ ∈ D = [0.5, 1]. Moreover, we use
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Figure 4.12: Average relative errors εIGA,MDEIM−POD−RB
ave,rel defined in (3.32), between IGA and

MDEIM-POD-RB solutions vs N for different values of Ma and Mf , computed on a 400 samples
parameter set Ξtest.
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NURBS basis functions of degree 2 (in the following we will refer to this case as to P2)
meaning that we realize a p-refinement of the original domain such that p = q = 2. Finally,
we realize an h-refinement in order to have a 25 × 60 grid yielding N = 1500 degrees of
freedom (considering only inner nodes), exactly as we did in Section 3.8.1.

As already said, in this section we aim to compare the EIM and MDEIM performances on
the problem at hand. So now, instead of computing the affine approximation of the problem
by using EIM, we directly apply MDEIM to the parametrized matrices and vectors appearing
in the problem formulation. To perform MDEIM we used the same tolerance used for EIM,
that is tolMDEIM = 10−5, and the same train set of 50 parameters samples. The result is
that MDEIM entails less affine terms than EIM, in particular 3 for the stiffness matrix and
2 for the right-hand side vector, allowing a larger computational saving in the offline stage.
In Table 4.2 we compare the results provided by EIM and MDEIM for the problem at hand.
Then, since the number of affine terms is small in both cases, we apply the greedy algorithm
with tolerance tol = 10−6 over a 150 parameters samples set. The greedy algorithm provides
as output a reduced space of dimension Nmax = 10.

In Table 4.2 we report the time required to solve online the reduced problem when using
both EIM and MDEIM. Moreover, we compare the speed-up allowed by the two methods; in
particular, the EIM-RB online resolution is about 11.5 times faster than the IGA resolution,
while the MDEIM-RB online resolution is more than 26 times faster than IGA. As expected,
since MDEIM entails less affine terms than EIM, it provides a larger computational saving,
both in the offline and in the online stages, and that is why, in the next chapter we will always
resort to MDEIM to make the problems of interest affine.
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Table 4.2: Data of problem (3.3), EIM-RB and MDEIM-RB results, and computational times required
offline and online.

EIM MDEIM

Number of parameters 1 1

Number of samples 50 50

tol 10−5 10−5

Affine matrix components Am 16 3

Affine rhs components Lm 2 2

N 1500 1500

Greedy tolerance 10−6 10−6

Sample train (greedy) 150 150

Greedy space dimension N 9 10

tIGA 3.68 s 3.68 s

Greedy construction time (offline) 2.43 min 1.09 min

tgreedy−RB (online) 0.32 s 0.14 s

tIGA/tgreedy−RB 11.5 26.28



Chapter 5

Reduced Basis method for
Isogeometric Kirchoff-Love shells

In this chapter, we consider the RB method applied to Isogeometric shell analysis with
Kirchoff-Love elements.

The main objective of shell theory is to predict the stress and the displacement fields
arising in an elastic shell in response to given forces. In classical shell theory one has to
distinguish between thick shells (R/h < 20) and thin shells (20 ≤ R/h), where R is the shell
radius and h is the shell thickness ([KBLW09]). The appropriate theory to describe thick shells
is the Reissner-Mindlin theory where transverse shear deformations are taken into account
([SFR89]). However, for these shells also the Kirchoff-Love theory is applicable, which assumes
that transverse shear deformations are negligible. For very thin shells (1000 < R/h) the
deformations usually cannot be described by geometrically linear behavior and a geometrically
nonlinear description is necessary. For a comprehensive exposition of the theory of elastic
shells, we refer the reader to ([CM08, Cia00]).

In this chapter, we deal with a Kirchoff-Love shell model for which the problem is approxi-
mated by IGA ([KBLW09, MRA13]). The Kirchoff-Love theory of thin shells is characterized
by energy functionals which depend on curvature; consequently, they contain second order
derivatives of displacement and the resulting equilibrium equations in turn take the form of
fourth order PDEs. In this context, Kirchoff-Love model requires C1 continuity between the
elements if spatially approximated with the standard Galerkin method. Indeed, in order to
ensure that the bending energy is finite, the trial and test functions should belong to H2, that
is square-integrable functions whose first and second order derivatives are themselves square-
integrable. In this context, it is not possible to achieve C1 continuity when using Lagrange
polynomial basis functions, as for the Finite Element method. On the other hand, NURBS as
basis functions for the analysis have the significant advantage that the necessary continuities
between elements are easily achieved. As a matter of fact, NURBS, being smooth higher
order functions, allow great geometric flexibility and high order continuities at the same time,
resulting ideally suited as basis functions for Kirchoff-Love shell elements ([BBHH10]).

Since we are interested in solving efficiently parametrized Kirchoff-Love shells, we study
problems defined on parametrized computational domains and evaluate, by means of the
MDEIM-RB strategy, the displacement fields changes under such parametrizations. We apply
MDEIM to restore the affinity of the IGA linear system because, as written in Chapter 4,
it can be used both for parametrized NURBS control points and weights and also because,

87
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Figure 5.1: Shell geometry in the deformed and reference configuration. Picture taken from [COS00].

compared to EIM, it allows a larger computational saving in both the offline and the online
stages.

In Section 5.1 we begin by summarizing the relevant equations of the Kirchoff-Love theory
of shells. In particular, we focus on the linear theory of shells under static loading. In Section
5.2 we proceed with the IGA discretization of the Kirchoff-Love thin-shell theory. In Section
5.3, we are interested in solving the problem previously introduced on a parameter dependent
domain, so we consider a parametrized version of the Kirchoff-Love model and provide a
MDEIM-RB approximation of it. Finally, in Section 5.4 we test the method on a benchmark
class of problems.

5.1 Thin-Shell boundary value problem

We consider a shell, whose thickness h is uniform, in an undeformed configuration character-
ized by a middle surface of domain Ω̄ and boundary Γ̄ = ∂Ω̄ ([COS00]). We apply a load to
the shell that adopts a deformed configuration characterized by a middle surface of domain
Ω and boundary Γ = ∂Ω. In the Kirchoff-Love shell theory transverse shear deformation is
neglected and the director, i.e. the vector normal to the middle surface, remains normal to
the middle surface in the deformed configuration. Therefore, the description of the shell can
be reduced to the description of its middle surface.

For the sake of simplicity, from now on, we consider the Einstein’s convention for which
repeated indexes are summed. In particular, Greek letters refers to indexes assuming values
in the set {1, 2}, whereas Latin indexes in {1, 2, 3}. Let us introduce a system of curvilinear
coordinates

{
θ1, θ2, θ3

}
, and the functions x̄(θ1, θ2) and x(θ1, θ2) providing a parametric

representation of the middle surface of the shell in the reference and deformed configuration,
respectively (Fig. 5.1). Given these functions, we define the corresponding surface basis
vectors as

āα =
∂x̄

∂θα
, aα =

∂x

∂θα
, ā3 =

ā1 × ā2

|ā1 × ā2|
, a3 =

a1 × a2

|a1 × a2|
(5.1)

The two vectors ā1(θ1, θ2) and ā2(θ1, θ2) define the tangent plane to the surface x̄ in (θ1, θ2),
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while ā3(θ1, θ2) in the reference configuration coincides with the normal to the undeformed
middle surface of the shell in (θ1, θ2) and it results that

āα · ā3 = 0, |ā3| = 1; (5.2)

the same considerations are valid for a3 in the deformed configuration.

Then, we define the position vectors r̄ and r of a material point in the reference and
deformed configurations as

r̄(θ1, θ2, θ3) = x̄(θ1, θ2) + θ3ā3(θ1, θ2), −h
2
≤ θ3 ≤ h

2
, (5.3a)

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), −h
2
≤ θ3 ≤ h

2
. (5.3b)

In this context we also have to introduce the covariant components of the surface metric
tensors defined as

āαβ = āα · āβ, aαβ = aα · aβ, (5.4)

and the controvariant components of the undeformed and deformed surface metric tensors,
āαβ and aαβ, respectively, as

āαγ āγβ = δαβ , aαγaγβ = δαβ ; (5.5)

we also note that

dΩ̄ =
√
ādθ1dθ2. (5.6)

By means of these elements, we can define the covariant base vectors in the reference and
the current configurations as

ḡα =
∂r̄

∂θα
= āα + θ3∂ā3

∂θα
, ḡ3 =

∂r̄

∂θ3
= ā3 (5.7a)

gα =
∂r

∂θα
= aα + θ3∂a3

∂θα
, g3 =

∂r

∂θ3
= a3; (5.7b)

therefore, the corresponding covariant components of the metric tensors in both the configu-
rations read as

ḡij = ḡi · ḡj , gij = gi · gj . (5.8)

These metric tensors are used to define the Green-Lagrange strain tensor that reads

Eij =
1

2
(gij − ḡij) (5.9)

which, by using Eqs. (5.7) and (5.8), can be rewritten as

Eij = αij + θ3βij , (5.10)

where αij and βij , that are the non-zero components of the tensors, are related to the defor-
mation of the shell as

αij =
1

2
(ai · aj − āi · āj), (5.11)
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βαβ = aα ·
∂a3

∂θβ
− āα ·

∂ā3

∂θβ
. (5.12)

The terms ααβ, the membrane strains, measure the strains of the surface, while the compo-
nents αα3 measure the shearing of the director ā3, the component α33 measures the stretching
of the director, and the components βαβ, the bending strains, measure the bending or change
in curvature of the shell. We remind that, according to the Kirchoff-Love theory of thin shells,
the director a3 is constrained to coincide with the unit normal to the deformed middle surface
of the shell (aα ·a3 = 0, |a3|), and as consequence the shear strain αα3 vanish identically and
the bending strains becomes

βαβ =
∂āα
∂θβ

· ā3 −
∂aα
∂θβ

· a3. (5.13)

As already said, we confine our attention to linear theory of shell, and thus we begin by
writing

x(θ1, θ2) = x̄(θ1, θ2) + u(θ1, θ2), (5.14)

where u(θ1, θ2) is the displacement field of the middle surface of the shell. The membrane
and bending strains then follow as

ααβ =
1

2
(āα ·

∂u

∂θβ
+
∂u

∂θα
· āβ) (5.15)

βαβ =− ∂u

∂θαθβ
· ā3 +

1√
ā

[
∂u

∂θ1
· (∂āα
∂θβ

× ā2) +
∂u

∂θ2
· (ā1 ×

∂āα
∂θβ

)

]
(5.16)

+
ā3 · ∂āα∂θβ√

ā
[
∂u

∂θ1
· (ā2 × ā3) +

∂u

∂θ2
· (ā3 × ā1)]. (5.17)

By means of the expressions (5.15) and (5.16), we conclude that the deformation of the shell
is completely described by the displacement u of the middle surface that, as a consequence,
in the following we consider as the unknown of the model. Moreover, in the context of the
linearized theory, the undeformed and deformed domains are indistinguishable and so from
now on we do not do any distinction between them.

5.1.1 Equilibrium configuration of elastic shells

The equilibrium configurations are obtained by applying the principle of virtual work which
states that the sum of internal and external work vanish in the state of equilibrium. For
the sake of simplicity, we assume that the shell is linear elastic. Thus, by introducing the
Young’s modulus E and the Poisson ratio ν, we define its strain energy density per unit area
as ([KBLW09])

W (α,β) =
1

2

Eh

1− ν2
Hαβγδααβαγδ +

1

2

Eh3

12(1− ν2)
Hαβγδβαββγδ (5.18)

where

Hαβγδ = νāαβ āγδ +
1

2
(1− ν)(āαγ āβδ + āαδāβγ). (5.19)
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In (5.19), the first term is the membrane strain energy density and the second term is the
bending strain energy density. The membrane stress resultant and the bending stress resultant
are then defined as

nαβ =
∂W

∂ααβ
=

Eh

1− ν2
Hαβγδαγδ, (5.20)

mαβ = ∂W∂βαβ =
Eh3

12(1− ν2)
Hαβγδβγδ, (5.21)

respectively. The internal potential energy is a function of the middle-surface configuration,
which can be written as an integral over the middle surface

Πint[u] =

∫
Ω
W (α,β)dΩ (5.22)

and the external potential energy results

Πext[u] = −
∫

Ω
q · udΩ−

∫
Γ
N · uds, (5.23)

where q are the distributed loads per unit area of Ω and N are the axial forces per unit length
of Γ; in this manner, the total potential energy of the shell results

Π[u] = Πint[u] + Πext[u]. (5.24)

The stable equilibrium configurations of the shell minimize the total potential energy:

Π[u] = inf
v∈V

Π[v], (5.25)

where V is the space of solutions consisting of all trial displacements fields v with finite energy
Π[v]. It is clear from the form of the potential energy, that V may be identified with the
Sobolev space of functions in H2.

The equilibrium condition must be fulfilled for any arbitrary variation of the displacement
variables δu, that in weak form is expressed as

〈DΠ[u], δu〉 = 〈DΠint[u], δu〉+ 〈DΠext[u], δu〉 = 0, (5.26)

where 〈DΠ[u], δu〉 denotes the first variation of Π at u in the direction of the virtual dis-
placement δu,

〈DΠint[u], δu〉 =

∫
Ω

[nαβδααβ +mαβδβαβ]dΩ (5.27)

is the internal work and

〈DΠext[u], δu〉 = −
∫

Ω
q · δudΩ−

∫
Γ
N · δuds (5.28)

is the external virtual work.
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5.2 Isogeometric discretization

We now proceed with the spatial discretization of the shell potential energy (5.24) by means
of IGA ([KBLW09, COS00]) . By using of the Voigt’s notation, we map the second order
symmetric tensors into arrays

n =

n11

n22

n12

 m =

m11

m22

m12

 α =

α11

α22

α12

 β =

β11

β22

β12


Eqs. (5.20) and (5.21) are similarly written as

n =
Eh

1− ν2
Hα (5.29)

m =
Eh

12(1− ν2)
Hβ (5.30)

where

H =

(ā11)2 νā11 + (1− ν)(ā12)2 ā11ā12

(ā22)2 ā22ā12

sym. 1
2 [(1− ν)ā11ā22 + (1 + ν)(ā12)2]

 ,

which replaces (5.19) within the Voigt’s formalism. Then, the internal virtual work (5.27)
can be rewritten as

〈Πint[u], δu〉 =

∫
Ω

[
Eh

(1− ν2)
δαTHα+

Eh3

12(1− ν2)
δβTHβ

]
dΩ (5.31)

We now introduce a set of mesh elements {Kk}Nek=1, that represents a partition of Ω, as
already done in (1.46). In a discretized system with N degrees of freedom, the displacement
vector can be expressed in the form

uN (θ1, θ2) =

N∑
i=1

Ri(θ
1, θ2)ui, (5.32)

where {ui, i = 1, ...,N} are the discrete nodal displacement vectors and {Ri, i = 1, ...,N}
the corresponding NURBS basis functions, define in the parametric domain Ω̂ and ensuring
the C1 continuity between the elements Kk. By applying Eqs. (5.15) and (5.16) to (5.32) we
obtain the membrane and bending strains in the forms

αh(θ1, θ2) =
N∑
i=1

Mi(θ
1, θ2)ui, (5.33)

βh(θ1, θ2) =

N∑
i=1

Bi(θ
1, θ2)ui, (5.34)

respectively, where the matrices Mi and Bi are expressed as



5.3. MDEIM and RB approximation of Kirchoff-Love model 93

Mi =

 Ri,1a1 · e1 Ri,1a1 · e2 Ri,1a1 · e3

Ri,2a2 · e1 Ri,2a2 · e2 Ri,2a2 · e3

(Ri,2a1 +Ri,1a2) · e1 (Ri,2a1 +Ri,1a2) · e2 (Ri,2a1 +Ri,1a2) · e3

 ,

Bi =

Bi1 · e1 Bi1 · e2 Bi1 · e3

Bi2 · e1 Bi2 · e2 Bi2 · e3

Bi3 · e1 Bi3 · e2 Bi3 · e3

 ,

respectively. In the above expressions, (e1, e2, e3) are the basis vectors of an orthonormal
coordinate reference frame, and

Bi1 = −Ri,11a3 +
1√
a

[Ri,1a1,1 × a2 +Ri,2a1 × a1,1 (5.35)

+ a3 · a1,1(Ri,1a2 × a3 +Ri,2a3 × a3)] (5.36)

Bi2 = −Ri,22a3 +
1√
a

[Ri,1a2,2 × a2 +Ri,2a1 × a2,2 (5.37)

+ a3 · a2,2(Ri,1a2 × a3 +Ri,2a3 × a3)] (5.38)

Bi3 = −Ri,12a3 +
1√
a

[Ri,1a1,2 × a2 +Ri,2a1 × a1,2 (5.39)

+ a3 · a1,2(Ri,1a2 × a3 +Ri,2a3 × a3)] (5.40)

where we used the comma to indicate partial differentiation. Finally, by substituting Eqs.
(5.32)-(5.34) into the formulation of the principle of virtual work in Eq. (5.26) we obtain the
equation of equilibrium for the nodal displacements:

Ku = f , (5.41)

where

K =

Ne∑
k=1

∫
Kk

[
Eh

1− ν2
(Mi)

THMj +
Eh3

12(1− ν2)
(Bi)

THBj

]
dΩ ≡

Ne∑
k=1

Kkij (5.42)

is the stiffness matrix and

fi =

Ne∑
k=1

{∫
Kk

qRidΩ +

∫
∂(Kk)∪Γ

NRids

}
≡

Ne∑
k=1

fki (5.43)

is the the right hand side that represents the nodal force vector. These integrals may be
efficiently evaluated by means of suitable numerical quadrature rules (e.g. Gauss-Legendre,
see Section 1.4.4).

5.3 MDEIM and RB approximation of Kirchoff-Love model

In this section we are interested in solving the Kirchoff-Love model defined on parametrized
computational domain, i.e. a parametrized shell. In order to efficiently solve the problem
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for each parameter µ of interest, we provide a MDEIM-RB approximation of the problem,
following the procedure developed in Chapter 4.

We first introduce a parametric version of system (5.41) as follows

K(µ)u(µ) = f(µ). (5.44)

Then, by following a procedure similar to the one adopted in Section 4.4, we can directly use
MDEIM on the matrix K(µ) and right-hand side f(µ) to obtain an affine approximation of
(5.44) as

KM (µ)uM (µ) = fM (µ), (5.45)

that can be explicited as(
Mk∑
m=1

Θk
m(µ)Km

)
uM (µ) =

Mf∑
m=1

Θf
m(µ)fm. (5.46)

Finally, we combine MDEIM with the RB technique as in Section 4.5. With this aim, we
compute a set of basis by means of a POD or greedy approach (see Sections 2.4.2 and 2.4.3)
and obtain the reduced system

KN,M (µ)uN,M (µ) = fN,M (µ), (5.47)

that can be expressed as(
Mk∑
m=1

Θk
m(µ)Km

N

)
uN,M (µ) =

Mf∑
m=1

Θf
m(µ)fmN . (5.48)

5.4 Numerical Examples

In the following the proposed method is shown for some standard numerical benchmark
tests, namely the three problems of the shell course ([BSL+85, BBWR04]): the pinched
cylinder, the pinched hemisphere, and the Scordelis-Lo roof. These problems have been
extensively discussed and treated in literature for the assessment of shell analysis, both in a
FE context ([SFR89, ACdSAF03, BB93]) and in a IGA context ([KBLW09, CHB09]). For
each of the example presented, we first compute the numerical solution by means of the IGA
discretization, then we introduce a parametrization of the geometries of interest and solve the
problems by adopting the RB approach.

5.4.1 Pinched cylinder with diaphragms

The first problem we consider concerns a cylindrical shell pinched under the action of two
diametrically opposite unit loads located within the middle section of the shell ([BSL+85]).
We consider the case in which the cylinder is supported by rigid diaphragms at its ends. The
length of the cylinder is L = 600, the radius is R = 300, the thickness is h = 3, the Young’s
modulus is E = 3×106, and the Poisson ratio is ν = 0.3. Due to the symmetry of the problem,
only one octant of the cylinder is used in the calculation (Fig. 5.2); dimensionless data are
considered. The reference solution uref = 1.8248 × 10−5 is given as the radial displacement
at the point of the applied load (red circle in Fig. 5.2) ([BSL+85]).
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Figure 5.2: Definition of the pinched cylinder problem.

In Fig. 5.3 we report the convergence of the displacement umon under the applied load,
that is our monitored quantity, for different meshes and polynomial degrees. The monitored
displacement converges to the reference solution. From now on, in our calculation, we use
polynomial degrees p = 3 and 35 control points in both directions, yielding N = 3675 degrees
of freedom and 1024 elements. In Fig. 5.4 we report the mesh for the octant of the cylinder
built with these data and the correspondent numerical solution that is symmetrically extended
for visualization purpose.

We are now interested in solving the same problem for different configurations of the
cylinder, namely geometrical parametrizations. In particular, we aim to modify the radius of
middle section of the shell. To this end, we introduce a geometrical parameter µ ∈ [−100, 100]
such that the radius of the middle section of the parameter dependent geometry is R̃ = R+µ.
In this way, the problem is still symmetric and we can study only one octant of the geometry
as previously done. We underline that, in order to ensure the smoothness of the surface
when changing the middle radius and the fulfillment of the symmetry conditions we built
the parametrized cylinder with degree 2 in both directions and set the control points as
in Table 5.1. Then, for the analysis, we performed a k-refinement to obtain degree p = 3
and 35 control points per direction. In Fig. 5.5 we report the meshes corresponding to the
parameters µ = 0, 50, 100,−50,−100. In Fig. 5.6 we plot the monitored displacement umon(µ)
obtained for µ ∈ [−100, 100]. We observe that the monitored displacement is maximum for
µ = −9.09, for which is umon(µ) = 1.9228 · 10−5, and is minimum for µ = 100, for which
umon(µ) = 8.6762 · 10−6. The evaluation of each of these solutions is obtained by solving the
IGA system (5.44) and each evaluation requires about 4.62 s.
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Figure 5.3: Pinched cylinder displacement convergence.

Figure 5.4: Pinched cylinder. One octant of the mesh (left) and numerical solution (right) for
polynomial degree p = 3 and N = 3675 dofs.
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Table 5.1: Control points of the parametrized pinched cylinder. In the following z = L/2.

Bi,j wi,j

B1,1 = (R, 0, 0) w1,1 = 1

B1,2 = (R,R, 0) w1,2 =
√

2/2

B1,3 = (0, R, 0) w1,3 = 1

B2,1 = (R+ µ, 0, z/2) w2,1 = 1

B2,2 = (R+ µ,R+ µ, z/2) w2,2 =
√

(2)/2

B2,3 = (0, R+ µ, z/2) w2,3 = 1

B3,1 = (R+ µ, 0, z) w3,1 = 1

B3,2 = (R+ µ,R+ µ, z) w3,2 =
√

2/2

B3,3 = (0, R+ µ, z) w3,3 = 1

µ = 0 µ = 50 µ = 100

µ = −50 µ = −100

Figure 5.5: Pinched cylinder. Meshes for polynomial degree p = 3 and 1024 elements for the param-
eters µ = 0, 50, 100,−50,−100 (the meshes are symmetrically extended for visualization purposes).
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Figure 5.6: Pinched cylinder. Monitored displacement umon(µ) for µ ∈ [−100, 100].

To solve the problem in a more efficient way, we perform, as anticipated, a MDEIM-RB
approximation. To perform MDEIM we use a tolerance tolMDEIM = 10−6 and a set of 100
parameters samples. In Fig. 5.7 we report the resulting singular values and conclude that
MDEIM entails Mk = 10 terms for the stiffness matrix and Mf = 1 term for the right-hand
side vector. Moreover, the MDEIM procedure selects 88 elements (out of 1024) for the reduced
mesh.

Then, we proceed with the RB approximation. We apply the greedy algorithm with
tolerance tol = 10−6 over a 150 parameters samples set. The greedy algorithm provides
as output a reduced space of dimension Nmax = 20. In Fig. 5.8 we report the numerical
solutions for the IGA, the MDEIM, and the MDEIM-RB problems for the parameters µ =
0, 50, 100,−50,−100. The surfaces are overlapped to the cylinder to highlight the difference
between the undeformed and the deformed configurations. In Table 5.2 we report the data of
the problem, the results provided by MDEIM and greedy algorithm, and the computational
times requested to solve the problem at hand. We conclude that the online evaluation of the
solution of the MDEIM-RB problem is about 10 times faster than IGA one. Finally, in Fig.
5.9 we report and compare the average relative errors between the IGA and the MDEIM-RB
solutions vs N , for 1 ≤ N ≤ Nmax for different values of Mk, computed on a 400 samples
parameter set Ξtest. It is clear that the RB approximation is more accurate if we consider the
maximum number of affine terms selected by MDEIM.
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Figure 5.7: Pinched cylinder. Singular values of the snapshots matrices of the vectorized stiffness
matrices and right hand side vectors for polynomial degrees 3.

Figure 5.8: Parametrized pinched cylinder for µ = 0, 50, 100,−50,−100.

µ = 0 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = 50 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)
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µ = 100 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = −50 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = −100 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)
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Table 5.2: Pinched cylinder. Data of the problems, MDEIM and the greedy algorithm, and computa-
tional times requested offline and online.

IGA

NURBS degree 3

Elements 1024

N 3675

tIGA 4.62 s

MDEIM

Number of parameters 1

Number of samples 100

tol 10−6

Affine matrix components Km 11

Affine rhs components fm 1

Reduced elements 88

Greedy-RB

Greedy tolerance 10−6

Sample train (greedy) 150

Greedy space dimension N 20

Greedy construction time (offline) 9.40 min

tgreedy−RB (online) 0.45 s

tIGA/tgreedy−RB 10.27

N
0 2 4 6 8 10 12 14 16 18 20

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5
Average relative errors vs N over 400 samples

Mk =11, M f =1

Mk =9, M f =1

Mk =7, M f =1

Mk =5, M f =1

Figure 5.9: Pinched cylinder. Average relative error between IGA and MDEIM-greedy-RB solutions
vs N , for 1 ≤ N ≤ Nmax for different values of Mk, computed on a 400 samples parameter set Ξtest.
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5.4.2 Pinched hemisphere

Figure 5.10: Definition of the pinched hemisphere problem.

In the pinched hemisphere, equal and opposite concentrated forces are applied at antipodal
points of the equator ([BSL+85]). The equator is otherwise considered to be free. The radius
of the sphere is R = 10, the thickness is h = 0.04, the Young’s modulus is E = 6.825×107, and
the Poisson’s ratio is ν = 0.3. Due to symmetry, only one quart of the hemispherical shell is
used in the calculation (Fig. 5.10). The hemispherical shape is an example of the geometries
that we can build simply and exactly with NURBS but not in a classical FE setting.

In this case, as reference solution, we consider the radial displacement under one of the
points of the applied loads (red circle in Fig. 5.10) that is equal to uref = 0.0924 ([BSL+85]).
Convergence of the monitored displacement umon at this point is presented in Fig. 5.11. The
solutions converge to uref . From now on, in our calculation, we use polynomial degrees p = 3
and 35 control points in both directions, yielding N = 3675 degrees of freedom and 1024
elements. In Fig. 5.12 we report the mesh for the quarter of the hemispherical shell, while
the solution is symmetrically extended to the entire shell for visualization purposes.

We now solve the same problem for different configurations of the hemisphere. To this
end, we define a parametrized geometry depending on a parameter µ ∈ [−5, 5], whose control
points and weights are reported in 5.3. This NURBS geometry is built with degrees p = 2 for
the two curved directions. We observe that for µ = 0 we obtain the quarter of hemisphere.
With this parametrization, the problem is still symmetric and we can study only one quadrant
of the geometry as previously done. In particular, for the analysis we perform a k-refinement
to obtain p = 3 and 35 control points in both directions. In Fig. 5.13 we report the mesh
built for the parameters µ = 0, 5,−5, while in Fig. 5.14 we plot the monitored displacement
for each µ ∈ [−5, 5]. We observe that the monitored displacement has a monotone behavior
and assumes maximum value for µ = 5, being equal to umon(µ) = 0.1164, and minimum value
for µ = −5, for which umon(µ) = 0.032. The evaluation of each of these solutions is obtained
by solving the IGA system (5.44) and each evaluation requires about 4.82 s.

As previously done, in order to efficiently solve the problem for each parameter µ, we
reduce its dimension by means of a MDEIM-RB approximation. To perform MDEIM we use
a tolerance tolMDEIM = 10−6 and a set of 100 parameters samples. In Fig. 5.15 we report the
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Figure 5.11: Pinched hemisphere displacement convergence.

Figure 5.12: Pinched hemisphere. One quadrant of the mesh (left) and numerical solution (right)
for polynomial degree p = 3 and N = 3675 dofs.

resulting singular values and conclude that MDEIM entails Mk = 15 terms for the stiffness
matrix and Mf = 1 term for the right-hand side vector. Moreover, the MDEIM procedure
selects 117 elements (out of 1024) for the reduced mesh.

Then, we proceed with the RB approximation. We apply the greedy algorithm with
tolerance tol = 10−6 over a 150 parameters samples set. The greedy algorithm provides as
output a reduced space of dimension Nmax = 9. In Fig. 5.16 we report the numerical solutions
for the IGA, the MDEIM, and the MDEIM-RB problems for the parameters µ = 0, 5,−5.
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Table 5.3: Control points of the parametrized hemispherical shell.

Bi,j wi,j

B1,1 = (R, 0, 0) w1,1 = 1

B1,2 = (R,R, 0) w1,2 =
√

2/2

B1,3 = (0, R, 0) w1,3 = 1

B2,1 = (R, 0, R+ µ) w2,1 =
√

2/2

B2,2 = (R,R,R+ µ) w2,2 = 1/2

B2,3 = (0, R,R+ µ) w2,3 =
√

2/2

B3,1 = (0, 0, R+ µ) w3,1 = 1

B3,2 = (0, 0, R+ µ) w3,2 =
√

2/2

B3,3 = (0, 0, R+ µ) w3,3 = 1

µ = 0 µ = 5 µ = −5

Figure 5.13: Pinched hemisphere. Meshes for polynomial degree p = 3 and 1024 elements for the
parameters µ = 0, 5,−5 (the meshes are symmetrically extended for visualization purposes).

The solutions are reported on a same scale, assuming values between the minimum and the
maximum value of umon(µ) for µ ∈ [−5, 5], and the surfaces are overlapped to the hemisphere
in order to highlight the difference between the undeformed and the deformed configurations.
In Table 5.4 we report the data of the problem, the results provided by MDEIM and greedy
algorithm, and the computational times requested to solve the problem at hand. We conclude
that the online evaluation of the solution of the MDEIM-RB problem is about 9 times faster
than IGA one. Finally, in Fig. 5.17 we report and compare the average relative errors between
the IGA and the MDEIM-RB solutions vs N , for 1 ≤ N ≤ Nmax for different values of Mk,
computed on a 400 samples parameter set Ξtest. It is clear that the RB approximation is
more accurate if we consider the maximum number of affine terms selected by MDEIM.
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Figure 5.14: Pinched hemisphere. Monitored displacement umon(µ) for µ ∈ [−5, 5].
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Figure 5.15: Pinched hemisphere. Singular values of the snapshots matrices of the vectorized stiffness
matrices and right hand side vectors for polynomial degrees 3.
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µ = 0 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = 5 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = −5 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

Figure 5.16: Parametrized pinched hemisphere for µ = 0, 5,−5.
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Table 5.4: Pinched hemisphere. Data of the problems, MDEIM and the greedy algorithm, and com-
putational times requested offline and online.

IGA

NURBS degree 3

Elements 1024

N 3675

tIGA 4.82 s

MDEIM

Number of parameters 1

Number of samples 100

tol 10−6

Affine matrix components Km 15

Affine rhs components fm 1

Reduced elements 117

Greedy-RB

Greedy tolerance 10−6

Sample train (greedy) 150

Greedy space dimension N 9

Greedy construction time (offline) 4.60 min

tgreedy−RB (online) 0.54 s

tIGA/tgreedy−RB 8.92

N
1 2 3 4 5 6 7 8 9
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Figure 5.17: Pinched hemisphere. Average relative error between IGA and MDEIM-RB solutions
vs N , for 1 ≤ N ≤ Nmax for different values of Mk, computed on a 400 samples parameter set Ξtest.
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5.4.3 Scordelis-Lo roof

Figure 5.18: Definition of the Scordelis-Lo roof problem.

The Scordelis-Lo Roof is a section of a cylindrical shell. The displacement of the roof is
imposed to be null in the x and y directions at its ends, whereas the side edges are free (Fig.
5.18). The shell is subjected to a uniform gravity load ([BSL+85, MH85]). In our calculation,
the length of the cylinder is L = 50, the radius is R = 25, the thickness is h = 0.25, and the
angle subtended by the roof is 2Φ = 80o; the Young’s modulus is E = 4.32 × 108 and the
Poisson ratio is ν = 0. Due to symmetry, we model only one quarter of the geometry.

In this case, the vertical displacement at the midpoint of the side edge (red circle in Fig.
5.18) is given as the reference solution and the reference value is uref = 0.3024 ([BSL+85,
MH85]). Convergence of the displacement at this location is presented in Fig. 5.19. The
monitored displacements converge to umon = 0.3000 which is slightly lower than the reference
one. In the following calculations we always consider polynomial degree p = 3 and 35 control
points in both directions yielding N = 3675 degrees of freedom and 1024 elements. In Fig.
5.20 we report the mesh for the quarter of the roof shell, while the solution is symmetrically
extended to the entire shell for visualization purposes.

We are now interested in solving the same problem for different configurations of the roof.
To this end, we introduce a geometrical parameter µ ∈ [0, 10] and impose a rigid displacement
of the central section of the cylinder. In this way, the problem is still symmetric and we can
study only one quadrant of the geometry as previously done. In particular, the geometry is
built by means of NURBS of degree p = 2 in both directions and control points and weights
reported in Table 5.5. In Fig. 5.21 we report the mesh built by means of polynomials of degrees
p = 3 and 35 control points, obtained by realizing a suitable k-refinement, in both directions
for the parameters µ = 0, 5, 10, while in Fig. 5.22 we plot the monitored displacement for
each µ ∈ [0, 10]. We observe that the monitored displacement has a monotone behavior and
is maximum for µ = 10, for which umon(µ) = 4.2128, and minimum for µ = 0 assuming the
value umon(µ) = 0.3. The evaluation of each of these solutions is obtained by solving the IGA
system (5.44) and each evaluation requires about 3.79 s.

As previously done, in order to efficiently solve the problem for each parameter µ, we
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Figure 5.19: Scordelis-Lo roof displacement convergence.

Figure 5.20: Scordelis-Lo roof. One quadrant of the mesh (left) and numerical solution (right) for
polynomial degree p = 3 and N = 3675 dofs.

reduce its dimension by means of a MDEIM-RB approximation. To perform MDEIM we use
a tolerance tolMDEIM = 10−6 and a set of 100 parameters samples. In Fig. 5.23 we report the
resulting singular values and conclude that MDEIM entails Mk = 10 terms for the stiffness
matrix and Mf = 5 terms for the right-hand side vector. Moreover, the MDEIM procedure
selects 107 elements (out of 1024) for the reduced mesh.

Then, we proceed with the RB approximation. We apply the greedy algorithm with
tolerance tol = 10−6 over a 150 parameters samples set. The greedy algorithm provides as
output a reduced space of dimension Nmax = 10. In Fig. 5.24 we report the numerical
solutions for the IGA, the MDEIM, and the MDEIM-RB problems for the parameters µ =
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Table 5.5: Control points of the parametrized Scordelis-Lo roof. In the following b =√
R2 +R2 tan(Φ/2)2

Bi,j wi,j

B1,1 = (R cos(90− Φ), R sin(90− Φ), 0) w1,1 = 1

B1,2 = (b cos(70), b sin(70), 0) w1,2 = cos(Φ/2)

B1,3 = (0, R, 0) w1,3 = 1

B2,1 = (R cos(90− Φ), R sin(90− Φ) + µ,L/2) w2,1 = 1

B2,2 = (b cos(70), b sin(70) + µ,L/2) w2,2 = cos(Φ/2)

B2,3 = (0, R+ µ,L/2) w2,3 = 1

B3,1 = (R cos(90− Φ), R sin(90− Φ) + µ,L) w3,1 = 1

B3,2 = (b cos(70), b sin(70) + µ,L) w3,2 = cos(Φ/2)

B3,3 = (0, R+ µ,L) w3,3 = 1

µ = 0 µ = 1.5

µ = 5

Figure 5.21: Scordelis-Lo roof. Meshes for polynomial degree p = 3 and 1024 elements for the
parameters µ = 0, 5, 10 (the meshes are symmetrically extended for visualization purposes.

0, 5, 10. In this case the scales of values do not refer to a common range, since the values
assumed by the solutions for the different parameters differs a lot among them. In Table 5.6
we report the data of the problem, the results provided by MDEIM and greedy algorithm,
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Figure 5.22: Scordelis-Lo roof. Monitored displacement umon(µ) for µ ∈ [0, 10].
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Figure 5.23: Scordelis-Lo roof. Singular values of the snapshots matrices of the vectorized stiffness
matrices and right hand side vectors for polynomial degrees 3.

and the computational times requested to solve the problem at hand. We conclude that the
online evaluation of the solution of the MDEIM-RB problem is about 11 times faster than
IGA one. Finally, in Figs. 5.25 and 5.26 we report and compare the average relative errors
between the IGA and the MDEIM-RB solutions vs N , for 1 ≤ N ≤ Nmax for different values
of Mk and Mf , respectively, computed on a 400 samples parameter set Ξtest. In both the
cases, the RB approximation is more accurate if we consider the maximum number of affine
terms selected by MDEIM.
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µ = 0 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = 5 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

µ = 10 : u(µ) uMDEIM (µ) uMDEIM−RB(µ)

Figure 5.24: Parametrized Scordelis-Lo roof for µ = 0, 5, 10.
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Table 5.6: Scordelis-Lo roof. Data of the problems, MDEIM and the greedy algorithm, and computa-
tional times requested offline and online.

IGA

NURBS degree 3

Elements 1024

N 3675

tIGA 3.79 s

MDEIM

Number of parameters 1

Number of samples 100

tol 10−6

Affine matrix components Km 10

Affine rhs components fm 5

Reduced elements 107

Greedy-RB

Greedy tolerance 10−6

Sample train (greedy) 150

Greedy space dimension N 10

Greedy construction time (offline) 3.86 min

tgreedy−RB (online) 0.33 s

tIGA/tgreedy−RB 11.48
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Figure 5.25: Scordelis-Lo roof. Average relative error between IGA and MDEIM-RB solutions vs
N , for 1 ≤ N ≤ Nmax for different values of Mk, computed on a 400 samples parameter set Ξtest.
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Figure 5.26: Scordelis-Lo roof. Average relative error between IGA and MDEIM-RB solutions vs
N , for 1 ≤ N ≤ Nmax for different values of Mf , computed on a 400 samples parameter set Ξtest.



Conclusions

The main achievement of this work is the application of Reduced Basis (RB) method for the
efficient numerical solution of parametrized PDEs approximated with Isogeometric Analysis
(IGA), with particular emphasis on geometrical parametrizations.

We considered IGA [CHB09, PT97] in the framework of the Galerkin method. In par-
ticular, we focused on the numerical solution of second order PDEs on lower dimensional
manifolds, as surfaces in a three dimensional space, and fourth order PDEs, namely Kirchoff-
Love shell models, parametrized with respect to the NURBS control points, the weights, or
both control points and weights. For all these possible kinds of parametrizations, we analyzed
and implemented, for the first time, a suitable strategy to apply RB to IGA for parametrized
geometries in a feasible way.

Specifically, we studied a class of problems such that the parametrization of the com-
putational domain induces a nonaffine geometrical transformation, that in turn induces a
nonaffine dependence of the problem and its formulation on the parameters and on the spa-
tial coordinates. However, we recall that in order to fully exploit the computational savings of
model reduction, the RB method is based on the affinity assumption [GP05, Man12, Qua14,
QRM11, SVH+06]. With this aim, we developed at the Offline phase affine approximations
of the involved linear operators, finally leading, Online, to inexpensive evaluation of the ap-
proximated operators. The recovery of the affine dependence was the crucial point of the RB
and IGA interfacing procedure.

We started by considering a class of problems defined on NURBS surfaces parametrized
only with respect to the NURBS control points coordinates. In this case, we traced back the
problem onto a parameter independent domain, by explaining how to properly choose this
reference domain and giving an explicit expression of the parametric transformation that leads
from the reference to the original domain. In the problem recast in the reference domain,
the effect of the geometric variations, that is the parameter dependence, was traced back and
limited to its parametrized transformation tensors. As anticipated, these tensors were non
linear functions of both the spatial coordinates and the parameters. Thus, we approximated
them with affine parametric dependent terms through the Empirical Interpolation Method
(EIM) [BMNP04].

Then, we considered the case of geometries with parametrized NURBS weights. In this
case, we realized that the procedure of tracing back the problem in a reference configuration
and apply EIM was not usable anymore. As a matter of fact, being the NURBS functions used
to build the original domain parametric dependent, it was not immediate to build, by means
of the same basis functions, a reference domain. Moreover, we were unable to separate,
in the integrals of the problem formulation, parameter dependent terms, to be efficiently
approximated with EIM, from parameter independent ones. For this reason, in order to restore
the affinity assumption, we resorted to an alternative technique, namely the Matrix Discrete
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Empirical Interpolation Method (MDEIM) [NMA15]. Compared to EIM, MDEIM, allows
to obtain an affine approximation of parameter dependent problem by directly interpolating
the IGA matrices and vectors assembled in the parameter dependent domain. Moreover,
we highlighted that MDEIM can be used both for parametrized NURBS control points and
weights. We compared the performances of EIM and MDEIM and concluded that MDEIM
entails less affine terms than EIM for the approximation of the IGA solutions, thus allowing
a larger computational saving both at the offline and the online stages.

Once recovered an affine approximation of the IGA problem, we built two different reduced
order models by means of the Proper Orthogonal Decomposition (POD) and the Greedy
algorithm. Numerical tests have shown a great accuracy between the reduced models and the
full-order ones. Moreover, although the construction of the reduced spaces using POD or the
greedy algorithm is in principle different, we did not observe noticeable discrepancies in their
accuracy and speedup in the prediction of the results at the Online stage. On the other hand,
we remarked some differences in their behavior at the Offline phase and concluded that, since
the norm of the residual in the greedy algorithm depends on the number of affine terms, the
greedy-RB strategy is preferable to the POD, for problems with a low number of affine terms.

The work carried out shows that the developed RB-IGA method allows large computa-
tional savings for problems defined on complex parametrized NURBS geometries. As ap-
plication we considered a class of structural problems in the context of Kirchoff-Love shell
elements [KBLW09, CHB09, BB93]. Kirchhoff-Love shell theories is one of the main shell
models used, normally referred as thin shell theory. This model requires at least C1 contin-
uous basis functions and this severely limits its application in Engineering, since using the
standard Lagrange polynomials as basis functions this requirement cannot be fulfilled. Con-
versely, in IGA, the C1 continuity of the basis functions is easily achievable. As a matter of
fact, NURBS, being smooth, high order functions, allow great geometric flexibility and high
order continuities at the same time, resulting ideally suited as basis functions for Kirchoff-Love
shell elements. Three benchmarks from shell obstacle courses [CHB09] were used to test our
method: the pinched cylinder, the hemisphere, and the Scordelis-Lo roof problems. For these
problems we proposed a parametrized NURBS representation and solved them by means of a
MDEIM-RB approximation obtaining a significant computational speedup. On a side note,
we remark that, for the first time, the RB method has been applied to the numerical solution
of parametrized fourth order PDEs.

The developed RB-IGA method is thus interesting from both academic and industrial
points of view. As a matter of fact, since IGA is directly interfaced with CAD, a possible future
development of the work could be the implementation of a software based on the RB-IGA
method, allowing real-time evaluations of structural outputs of interest for different NURBS
parametrizations. Moreover, although we focused on structural problems, the methodology
outlined is well suited for several other applications, especially in the context of optimal
control or shape optimization.
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