Efficient Key Exchange
for Wireless Multi-hop Networks

Iris Safaka, Laszlé Czap, Katerina Argyraki

EPFL, Switzerland

Abstract—We present a protocol that enables to create pairwise
keys between nodes in a wireless network, so that the keys are
secure from an adversary, Eve, with unbounded computational
and memory capabilities, but with limited network presence.
Our proposed protocol works over arbitrary multi-hop networks,
unlike previously proposed protocols that only work when nodes
are restricted to be within the same broadcast domain. Multi-
hop networks enable to support a wider range of applications; we
are inspired in this paper by a traffic-anonymization application.
Multi-hop networks are also more interesting technically, as they
offer a much richer palette of opportunities for secrecy, that
include the inherently noisy nature of wireless, the existence of
multiple paths between the network nodes, and interference from
concurrent transmissions. We propose a protocol that leverages
these opportunities, and show that it can create keys at a rate
of tens of Kbps.

I. INTRODUCTION

Current cryptographic key-exchange algorithms are de-
signed around computational hardness assumptions: security
breach cannot be achieved in useful time, since current systems
do not have sufficient computational power. Recent work has
started exploring secret key exchange, where the security of
keys does not rely on the bounded computational capabil-
ities of an eavesdropper, Eve, but instead, on her limited
network presence: on the fact that Eve will not overhear all
transmitted packets in the network due to channel variability
and noise. The feasibility of such protocols for creating keys
between a single pair of nodes over the wireless channel was
demonstrated in [1], [2] and multiple pairs of wireless nodes
in [3]. However, these protocols can only be used when all
participating nodes are within the same broadcast domain, i.e.,
in single-hop networks.

In this paper, we look at arbitrary, multi-hop networks and
design algorithms to create pairwise keys between all pairs
of nodes. Like the protocols in [1], [3], our protocol offers
security againts a computationally unbounded adversary, yet
without being constrained to a single hop network. This is
an important difference from a practical point of view: even
when networks have a small number of nodes, as connectivity
is impaired from distance, interference and other impediments
(e.g. metal obstructions), it is challenging to consistently
maintain a single-hop connected network. This is even more
so the case when the network size increases to tens of nodes,
as can be the case in social applications. We are inspired
in this paper by the following use-case scenario, where we
need to create keys to ensure privacy: in a street protest,

Christina Fragouli
EPFL & UCLA

participants use local communication (e.g. WiFi) to cooperate
and hide the identity of someone who needs to use cellular
Internet connectivity to send reports to the media (and thus
may be a target for the authorities eavesdropping the local
communication).

Key generation over arbitrary networks is also interesting
from a technical point of view. Multi-hop networks pro-
vide two new opportunities for secrecy we can leverage:
interference and multi-path propagation. Interference between
concurrent transmissions (such as caused by the hidden ter-
minal problem) may interfere with Eve’s packet reception
but not with the reception of other legitimate nodes; distinct
packet propagation through multiple paths can ensure that Eve,
located in an unknown but fixed position in our network, does
not have access to all of them, and again misses packets that
legitimate nodes receive. To realize these benefits we need
a customized packet dissemination scheme that balances two
conflicting goals: spreading the packets as efficiently and as
widely as possible among the legitimate nodes, while ensuring
that a significant fraction of packets will not be overheard by
Eve, who could be located in any place within the network.

We propose in this paper a key-generation protocol that
employs such a custom-designed packet dissemination scheme
to maximizes Eve’s uncertainty, together with linear coding
techniques, to generate secure keys. Our protocol is completely
decentralized and does not differentiate between nodes; and it
simultaneously creates pairwise keys between all node pairs in
the network. Through numerical evaluations, we show that our
protocol can generate pairwise keys at rates of tens of Kbps
on average.

We note that we do not advocate our protocols to substitute
existing cryptographic techniques; however, as increasingly the
bulk of our data is carried through wireless, and becomes
vulnerable to new computational attacks, we believe scientists
should start thinking about new techniques and schemes that
can complement the existing practices.

II. SETUP AND BACKGROUND
A. System model

We consider a network of n wireless nodes that form an
ad-hoc network. From the nature of wireless, each node’s
transmission can potentially be received by its neighbors, i.e.,
all nodes within its transmission radius. Each transmission
might get corrupted by noise, channel fading and potentially
interference. When we describe our protocol, we consider as

unicast the transmissions intended to a specific neighbor, and
as broadcast the transmissions intended to any neighbor. We
capture the network structure using two parameters:

e Density expresses the expected number of nodes per unit
network area; it affects the expected number of neighbors that
a node has.

o Number of hops describes the maximum distance (in hops)
between any two network nodes. More formally, in a k-hop
network, for any two nodes (i, 7) in the network there exists
a k-hop path ¢,7rq,...,r,—1,7 with k£ — 1 intermediate nodes
such that every node is the neighbor of its preceding node
along the path; moreover, there exists at least one pair of nodes
for which there is no path with £ — 1 hops.

We make the following simplifying assumptions: the net-
work has a static topology; all nodes have a unique identifier
that is revealed to all other nodes in the network; we have a
connected network, where there exists at least one path be-
tween any two nodes; broadcast transmissions are transmitted
only once, while unicast transmissions may be re-transmitted
for increased reliability, e.g. as in IEEE 802.11. We make
these assumptions to create an easy to attack environment for
Eve; our algorithms can extend to mobile and more uncertain
environments, yet it becomes challenging to analyze how much
(higher) security against Eve we would achieve.

B. Adversary model

We aim for protection against two types of adversaries. First,
a passive adversary, who eavesdrops but does not reveal her
presence with any form of communication, and can be located
anywhere inside the network, at an unknown location. Second,
an honest-but-curious node, who legitimately participates in
the network and honestly follows the protocols, but tries to
breach security using the information at her disposal. In the
following we will call the adversary Eve, without specifying
(unless needed) if she is a passive eavesdropper or an honest-
but-curious node.

We say that Eve experiences an erasure or missed a packet
(she learns nothing about its content), if the packet is not
received by her physical layer (i.e., the reception SNR is not
sufficiently high for her physical layer to lock on the physical
signal). Otherwise, if a packet is received at the physical layer,
we assume that Eve correctly receives it, although the packet
may be corrupted and not propagated to the MAC layer.

We also assume that Eve has access to the same physical
layer (radio technology, number of antennas etc.) as the legit-
imate nodes. However, we assume that Eve may have infinite
memory as well as unbounded computational capabilities at
her disposal; this would follow the model of an adversary
that does not want to reveal her identity by using specialized
equipment, yet has offline access to unbounded resources to
breach security. Moreover, we assume that Eve has perfect
knowledge of the protocols, of the network topology, of the
node identities, and of whether a transmitted random packet
(we later give the definition of such packet) was successfully
received by a receiver node or not (however, she does not
know the content of the packet she has not herself successfully

received). Eve, using her knowledge, she can optimally posi-
tion herself inside the network, and keep her position secret.
However, she has limited network presence; in this paper we
assume she is situated in a single position.'

C. Prior results on key-generation

The idea of linearly combining shared packets for construct-
ing information-theoretically secure keys, has been presented
in [1] and applied in a 1-hop setup in [3]. In an initial step,
legitimate nodes produce and transmit random packets, i.e.,
packets whose payload consists of randomly produced bits;
next, they publicly announce to each other which packets they
correctly received. In a second step, the nodes linearly combine
their common packets to create keys.

We illustrate the key construction step with an example.
Assume that two nodes, Alice and Bob, share the random
packets X7, X7 and X3, and suppose they also know that there
is at least one packet out of these three that Eve does not have.
Then they can both compute K = X7 Xo@® X3, which serves
as a pairwise key, certainly secure from Eve. Note that Alice
and Bob do not need to know which packets Eve has, they only
need to know how many she has. In general, using Maximum
Distance Separable (MDS) codes [5], we can securely create
as many linear combinations as the number of packets Eve
does not have [1].

The key construction step requires that Alice and Bob know
how many packets Eve misses out of their commonly shared;
in other words, they need to know Eve’s channel quality.
In a real-world wireless network, where channel conditions
are highly unpredictable, Alice and Bob could not possibly
have precise knowledge on Eve’s receptions, unless an oracle
would directly reveal this information to them. Instead, they
could attempt to conservatively estimate Eve’s knowledge
based on side observations; for example based on legitimate
nodes’ packet receptions, as proposed in [3]. This heuristic
approach essentially attempts to model the communication
medium by exploiting the knowledge, gained during the public
announcements step, on the honest nodes’ channel quality.

More formally, any pair of nodes can construct a key, as
described next. Let I; denote the set of indexes of the packets
that node ¢ has received in the packet dissemination step. A
pair (4,j) computes:

Cijz‘[iﬂlﬂ (1)

al |I; N I; NI,)

Wij; = max

Le{1l..mI\{i,5}
where ¢;; is the number of packets they share and w;; is the
maximum number of packets that some other node also has.
They also compute an estimation €;; of the number of packets
Eve has overheard out of the ¢;; common packets. The size
of the pairwise key in number of packets is:

k‘i]‘ = Cij — max{wij, Eij}. (3)
I'This assumption can be relaxed to the case where Eve is in multiple

positions, as discussed in [3], [4]; yet we need that Eve is not omnipresent,
and does not successfully receive all transmissions.

Let G;; be the set of ¢;; common packets. The pairwise key
K;; is then computed as K;; = G;;H, where H is a ¢;; x k;;
MDS matrix that both parties know?.

D. Goals and performance metrics

The goal of our key exchange protocol is to set up pairwise
keys between all (’2’) pairs of nodes in an arbitrary k-hop
network, such that the keys are secure from Eve. We use three
metrics to evaluate our protocol [3]:

e Efficiency expresses the amount of traffic produced by the
protocol in order to generate a key K;;, of length |K;;| bits,
between nodes ¢ and j. The achieved efficiency is defined as:

pi = | K
7" total transmitted bits’

e Key rate measures how many secret bits per second are
created between a pair of nodes; the key rate is a function of
the efficiency and the transmission rate.

® Reliability measures the security of our produced keys. If K
denotes a generated key, and E denotes all observations that
Eve has after the key-exchange protocol run, the reliability of
K is defined as:

o HEIE)

where H(K) is the entropy of K, and H (K |E) is Eve’s uncer-
tainty (conditional entropy given her observations) about K.
Ry captures the quality of K, i.e., the amount of information
that Eve learns about it by observing the protocol. Rx = 1
implies information-theoretical secrecy: I(K; E') = 0; in other
words by observing the protocol Eve does not learn anything
about K.

III. KEY EXCHANGE PROTOCOL

Similarly to [2], [3], our pairwise key exchange consists of
two steps: (1) disseminate random packets to create shared
randomness (2) compute a pairwise key between any pair of
nodes on request. Before giving the protocol description, we
illustrate the core design concepts of the packet dissemination
step.

A. Leveraging more than channel noise

The goal of the random packet dissemination is to ensure
that each pair of nodes share a number of common packets the
content of which is not known to Eve. The 1-hop network key-
exchange protocols in [2], [3] simply have one or more sources
generate random packets and broadcast them. For multi-
hop networks, we need a more sophisticated dissemination
protocol, that balances two goals: on one hand maximizing
the number of random packets between every pair of nodes,
and on other other, minimizing the number of packets that
Eve overhears. For instance, having a source generate random
packets and flooding the network with them does not work
well, because Eve ends up overhearing most of these packets,

2Note that finding such a matrix H does not require further communication:
it can be pre-shared or nodes can use the same deterministic algorithm to
compute it.

and thus they cannot be exploited for secrecy. We need a
protocol that efficiently “creates erasures”; we achieve this by
exploiting the following three opportunities wireless networks
offer:

1) Channel noise and fading. Ideally, we would like the
broadcast transmissions to be subject to independent erasures
across the receivers so that Eve does not receive exactly the
same packets as her close neighbors. To achieve this, in the
dissemination protocol we have every node in the network act
as a source, to uncorrelate as much as possible the quality of
reception from a node’s location. Additionally, each source
broadcasts each random packet it generates exactly once
(without retransmissions). Note that we can do this because
we do not care which random packets nodes share, only how
many.

2) Interference from simultaneous node transmissions. Such
interference for example occurs in the IEEE 802.11 protocol
due to the hidden terminal problem. For us this is not a prob-
lem but a blessing in disguise: we would like our dissemination
protocol to incur such interference (yet still not employ a large
number of unnecessary re-transmissions).

3) Multiple paths. If there are two paths between Alice and
Bob in the network, and Eve overhears only one of them, then
if Alice sends X; on one path and X2 on the other, Eve will
receive only one of the two packets. In general, if Alice and
Bob are connected with v paths, while Eve can overhear at
most z < v of these (any z), it is optimal for the key generation
rate if Alice sends to Bob a different packet through each path:
Alice and Bob will share v packets and Eve will learn only 2
of them [6]. To achieve this, we need a dissemination protocol
that sends each packet through a single path.

B. Packet dissemination protocol

Parameters and notation: Every node in the network can
generate random packets and forward these to other nodes.
A random packet has a payload of L symbols over a finite
field IF, and thus has a size of L log g bits. The payload of a
random packet is drawn from the uniform distribution. Each
packet has a unique identifier, that consists of the generator’s
id together with a sequence number, and a field ¢t describing
the maximum number of times this packet can be transmitted
in the network. Whenever a node performs a transmission of a
packet (either generated locally or received by another node) is
referred to as the sender of this packet. Each node broadcasts
at rate %, where) is the number of its neighbors. All nodes
record all overheard packets.

The packet dissemination protocol works as follows:

1) Every node generates and broadcasts N random packets;
it waits a random time between transmissions so that on
average it transmits at rate % In each packet the unique
identifier and the ttl are appended.

2) Upon reception of a random packet p, the receiver checks
if this is first time it received this packet; if yes, the
receiver unicasts an acknowledgment to the sender, oth-
erwise it does not acknowledge.

3) The sender of a packet p selects a forwarder: Let R,
denote the set of nodes that acknowledged p. The sender
chooses a node uniformly at random from R,, and
unicasts a control message to inform the node it is the
selected forwarder. If R, = (), then p is not forwarded
anymore.
4) The selected forwarder of a packet p (the next sender of
p), reduces the ttl field by one and broadcasts it.
Steps 2 to 4 are repeated till the ¢¢l field of all the packets in
the network expires. Note that when broadcasting a packet p
the sender sets a timer 7T),, which defines a time window for
acknowledging. Once T, has expired, step 3 takes place.

Discussion: The ttl determines how far a packet will
propagate; thus it enables to control the trade-off between
creating a large number of common packets between nodes,
while keeping Eve’s chances of overhearing low. Each node
acts as source, so that we generate uniform traffic across the
network, and make packet receptions spatially uncorrelated.
We transmit at random intervals to incur collisions, and at
rate % so that, as the density of the network increases, we do
not cause congestion. By selecting a single forwarder we avoid
flooding and exponential replication of packets; instead, each
packet follows a single random walk through the network, so
that we exploit multi-path erasures.

C. Computation of pairwise keys

After the packet dissemination step, each legitimate node
announces to every other node which packets it has received.
We refer to this operation as the feedback step: Each node ¢
constructs a 1 x n/N vector v;, with a 1 in the mjth position
if the node has received packet j from node m, and a 0
otherwise, and broadcasts v; into the network, using special
packets indicated as feedback packets.

Once the feedback step is completed, on request, any pair
of nodes can compute a pairwise key following the procedure
described in Section II-C.

Estimating Eve’s knowledge: An important step in our
protocol is in estimating €;;, i.e., what fraction of the packets,
that a pair of nodes (i, ;) shares, was overheard by Eve. Our
intuition is that in a multi-hop network, this depends on how
“far from each other” the pair of nodes are: nodes that are
further apart may collect less common packets; yet among the
packets they collect, Eve is likely to have overheard a smaller
amount, since she would not intercept the transmissions in all
paths that connect them. In addition, Eve will aim to position
herself inside the network so as to maximize her probability
of eavesdropping as many paths as possible, i.e., a position
through which the majority of the available paths pass by.

We estimate €;; conservatively, exploiting our knowledge
of the packets that honest nodes have (or not) received. We
form a set £ of the ¢ nodes that have the largest number of
neighbors. Let d;; be the distance between nodes ¢ and j in
hops and let P(d;;) denote the set of all pairs of nodes in the
network with the same distance d;;. Then:

= LNINT 4
€ij 7:%5)%1632(“ 5 N Il 4)

where avgp 4,) denotes average taken over the set P(d;;). In
the above formula: we take the maximum to be conservative;
we select the ¢ nodes with most neighbors to be conservative
(note that the larger the £ the more conservative we are); we
also calculate the average taken over all pairs with distance
d;;, because a similar behavior is expected from pairs at the
same distance. Note that this estimation can be performed as
needed, after the feedback step.

D. Analysis: security of keys

We carry out the analysis for one specific pair of nodes. We
refer to Equations 1, 2, 3 and 4; to simplify notation we omit
the indexes ;; and use %, ¢, w and ¢.

Let e denote the number of packets that Eve has received
from the c packets that the selected pair has in common.
Lemma 2 of [1] ensures that if £ < ¢ — e, then the resulting
key K is perfectly secure, i.e., Rxg = 1. It means that if nodes
knew e, then € = e and they could always create a perfectly
secret key. However, a passive eavesdropper does not give any
feedback, e can only be estimated. Despite of this, we have
that k 4+ w < ¢, which (by the same lemma) implies that keys
are perfectly secure against an honest-but-curious node.

What happens if the estimate of e is not accurate? If w =
max{w, e}, then for any estimate k < ¢ — e holds, meaning
that despite of a wrong estimate Rx = 1. In the case e =
max{w, e}, and e is overestimated (¢ > e), then again k <
¢ — max{w, e} and again Rx = 1. On the other hand, if e
is underestimated and max{w, e} < e, then Eve’s uncertainty
about the key drops. Expressed in reliability:

¢ ma}j{w e} } .

Using reliability we can express the probability that Eve
guesses the key. K has a uniform distribution, hence the
probability of correctly guessing a key of size k packets equals
2~ kExLloga This uncertainty is satisfactory in practice even
if Rg < 1. E.g. if Rg = 0.7 a secret key of length 128 bits
gives a security level of ~ 90 bits.

In the evaluation part we show results for the ideal effi-
ciency (rate) and for the effective efficiency (rate), that is,
the efficiency achieved between a pair of nodes (i, 7), under
perfect knowledge and under estimation of Eve’s packets
respectively. We also show results for the reliability achieved,
which essentially captures the effectiveness of our estimation
technique.

Ry = min{l7 (%)

E. Communication overhead of the feedback

We assume in this paper that we use an efficient all-to-all
broadcast dissemination scheme for the feedback step; indeed,
many such schemes have been explored in the literature [7],
[8]. In Section IV, we evaluate the key rate achieved by our
protocol taking into account only the overhead of the packet
dissemination step; thus we do not take into account the over-
head of the feedback step that would depend on the particular
all-to-all scheme employed. To approximately estimate how
much this overhead could reduce our key generation rate, we
next perform a back of the envelope calculation.

MAC Layer Slot Time 20us
Winin 31 slots
Winaz 1023 slots
SIFS 10us
DIFS 50 ps
PHY header 192 bits
MAC header 272 bits
DATA frame header 464 bits
ACK frame 304 bits

PHY Layer Frequency 2.4 GHz
Basic Rate 1 Mbps
Data Rate 36 Mbps
Tx Power 15 dBm
Sensitivity Threshold -81 dBm
Reception Threshold -71 dBm
Reception Model SNR
SNR Threshold 15 dB

Channel Model | Propagation Model TwoRay
Fading Model Rayleigh
Interference Model AdditiveNoise

Table T
CONFIGURATION OF SIMULATION SETUP

For the dissemination step there are Ty ~ n/Ax (N Llog gx
ttl) bits transmitted in total’, with \ here denoting the av-
erage number of neighbors. For the feedback step we have
Ty ~n[é(n—1)+1] x nN bits, where 0 < § < 1, denoting a
forwarding factor for each node, that depends on the broadcast
protocol used. Thus, our key rate would be approximately
reduced by a constant factor of 1 + u, where p is defined
as follows:

Ty Ax[6(n—=1)+1]xn

== ~ 6
. Ty Llogq x ttl ©)

Example: Assume a k-hop network with £k = 3 and n = 90
in which we disseminate random packets of size 1KB and
ttl = 3, during the dissemination step. In addition, assume
we use a network coding technique as described in [8] for
the feedback step, for which § = 2/ yields an almost 100%
packet delivery ratio. In that case, p ~ 0.67 meaning that the
achieved rate should be divided by a factor of 1 + p = 1.67.
For the same network and for n = 135, the rate should be
divided by a factor of 1 + 1.51 = 2.51.

IV. EVALUATION

We resorted for our evaluation to a simulator, as we were
interested in evaluating the performance of our protocols in
large networks (up to 500 nodes) which was not feasible in
a test-bed. However, as validation of our simulation environ-
ment, we simulated the key generation using parameters that
correspond to the 1-hop test-bed and the network conditions
in [3], and we found very comparable values.

A. Simulation environment

We use the Java-based, discrete event-driven simulator JiST
[9], along with the SWANS library [10], that builds on top of
JiST and provides all the elements needed to simulate ad-hoc
wireless networks. We also used the extensions and bug-fixes
proposed in [11]. In Table I we summarize the configuration
parameters of the simulation setup. We use an IEEE 802.11b/g

3We do not account for re-transmissions, since we assume a MAC layer
where re-transmissions are by default disabled in broadcast mode, as in IEEE
802.11.

compliant MAC configuration and an SNR frame reception
model with an SNR threshold value appropriate for high data
rates [12]. The RTS/CTS functionality is by default disabled.

The signal interference model used in the JiIST/SWANS
simulator is equivalent to the physical model of successful
receptions as defined by Gupta et al. in [13]. This feature
enables to simulate the hidden-terminal effect and exploit
collisions and frame erasures for secrecy.

We simulate a wireless ad-hoc network as a set of n nodes
uniformly at random placed on a square area of dimension x
meters. All nodes have the same communication capabilities
that yield a transmission range of r meters. Under the configu-
ration parameters described above r ~ 200m. Therefore, for a
k-hop network, as defined in Section II, we set x = kx % We
define the unit area as an 1-hop area. We consider networks
with fixed network density per unit area, that is, for a k-hop
area and a given density d we have in total n = k2 x d nodes.

In our protocol, we set ttl = k, the maximum distance
in the network, and the packet payload to 1KB, so that the
resulting MAC frame (including the necessary headers of our
protocol and of other layers) does not get fragmented. We also
position Eve in each configuration to be in the network center,
where we verified that she would have the highest probability
to overhear the largest amount of packets. We also note that in
the key generation rate calculation we do not take into account
the overhead of the feedback step (see Section III-E).

B. Performance evaluation results

Ideal key generation rate: We begin by examining the
ideal key generation rate, that is, the rate achieved by an
ideal world alternative protocol. This protocol operates as
our key exchange protocol, with the only difference that the
nodes are assisted by an oracle to determine precisely the
packets that Eve has missed during the packet dissemination
step, instead of relying on their own estimations. Therefore,
the computed keys are by definition the larger possible and
definitively secure. Fig. 1(a) shows the average key generation
rate achieved by the oracle alternative, over k-hop networks,
with £k =1...5, as a function of the network density.

First, we observed that in all cases we simulated, we could
generate non-zero key rates across (almost) all pairs in the
network, with average values as high as tens of Kbps. Notably,
we observed that in all our simulations, only 24 pairs of nodes
in total experienced zero rate (in particular configurations of
500 nodes, where in each configuration there exist 124750
possible pairs). This is an encouraging result: even in large
multi-hop networks, where nodes are up to five hops apart
from each other, nodes are still able to share a significant
portion of packets and create a non-negligible amount of
secure keys.

Second, for the 1-hop network, we observe that as the
density increases, the key generation rate also increases;
this is because we have more nodes acting as sources, thus
making packet reception almost independent from a node’s
location, and hindering Eve from collecting the same packets

1, — o - —
200 200
0.8
150 ke 150F
0.6/
100} 100}
0.4t
50/ 50t 0zl
= L
0 5 20 0 5 20 0 5 20

10 15
Node density (d)
(a) Ideal key generation rate (Kbps)

Figure 1.

100

90r

801

701

Packets (%)

601

50r

1 2 3 4 5
Network size (in unit areas)

40

Figure 2. Eve’s knowledge on shared packets

as her close neighbors. Uncorrelated packet reception is fur-
ther assisted by interference and multiple paths existence, as
demonstrated by the achieved key rates for a 2-hop network;
the more nodes we have the more probable is that two nodes
are connected through more than one paths, out of which Eve
does not observe at least one.

Finally, for every node density, we observe that as the size
of the network increases, namely for £ > 3, the key generation
rate significantly drops. This is the aggregated result of two
conflicting effects: (1) to create shared randomness over a k-
hop network, each packet needs to be transmitted at least &
times, which correspondingly reduces the key rate; moreover
the amount of common packets that a pair of nodes collects
during the packet dissemination phase is smaller, because
a smaller percentage of the generated packets reaches both
nodes, which in turn reduces the key rate; (2) due to the
existence of interference and multiple paths between two nodes
in larger networks, Eve observes a smaller fraction of the
common random packets that both nodes collect, which boosts
the key rate. We verified these effects in our simulations;
we show here in Fig. 2 the second effect: we examine what
percentage of packets shared between two nodes Eve has
also observed (on average), and we find that this percentage
decreases with the network size.

Effective key generation rate and Reliability: Fig. 1(b)
demonstrates the average key generation rate achieved by our
protocol. In contrast to the oracle-assisted protocol, in our

10 15
Node density (d)
(b) Effective key generation rate (Kbps)

10 15
Node density (d)
(c) Reliability

Performance evaluation results for the key-generation protocol

protocol the nodes need to estimate how many packets Eve
misses, using the technique in Section III-C. We first observe
that our protocol can closely follow the oracle-assisted pro-
tocol’s performance, i.e., our estimator yields rather accurate
estimations on Eve’s knowledge.

What happens if our protocol either overestimates or un-
derestimates Eve’s information? In the former case, the keys
generated are shorter than feasibly possible but certainly
secure from Eve; the effective key rate is smaller than the
corresponding ideal one. In the later case, the keys are larger
but may not be ultimately secure from Eve. The security of
our generated keys are essentially measure by the level of
reliability, as illustrated in Fig. 1(c). We observe that in all
cases the reliability was above 0.8, implying a high level
of security: reliability 0.8 means that the probability of Eve
guessing a key of 1KB is 270-8x8000 — 9-6400 ~ () (recall
that we use random packets of 1KB and the nodes linearly
combine packets of that size to create keys).

V. RELATED WORK

Existing information theoretical results characterize the
largest achievable secret key rate under a variety of idealized
channel models [14]-[17]. The most common setting considers
pairwise secret key generation over a single channel with
a single sender and one or more receivers. Some results
are available for a network setting, most notably secure
network coding for an error-free wired network [6]. The
secrecy capacity of wireless erasure networks is investigated
n [18], but no complete characterization is provided. The
closest theoretical result to this work is [1], that considers
packet erasure channels with public acknowledgments and
uses the key computation algorithm we also employ. Several
practical protocols were recently also proposed that build on
the symmetry and the randomness extracted from the wireless
channel to set up information theoretically secure pairwise
keys [19]-[22]. These techniques require node proximity, and
thus do not naturally translate to multi-hop networks/multiple
keys creation; moreover, they lead to modest key rates. iJam
utilizes artificial interference to increase Eve’s uncertainty
[23]. We also use interference implicitly, as simultaneous
transmissions increase the number of collisions and thus the
amount of missed packets, but we also leverage noise and path

diversity. The setting investigated in [2], [3] can be seen as a
special case of a 1-hop network in our terminology. However,
as noted earlier, the extension for a multi-hop network requires
new techniques and also brings new secrecy opportunities. To
our best knowledge the current work is the first to develop
protocols for secret key exchange in a multi-hop network that
simultaneously exploits channel and network properties.

VI. CONCLUSIONS

We proposed a key exchange protocol that enables to
simultaneously generate pairwise keys between all pairs of
nodes in a large multi-hop network, that are secure from a
computationally unbounded, yet with limited network pres-
ence, adversary. Our evaluation results indicate the feasibility
of high-rate pairwise key generation.

REFERENCES

[1] M. Jafari Siavoshani, S. Diggavi, C. Fragouli, U. K. Pulleti, and
K. Argyraki, “Group Secret Key Generation over Broadcast Erasure
Channels,” in Asilomar Conference on Signals, Systems, and Computers,
2010, pp. 719-723.

[2] S. Xiao, W. Gong, and D. Towsley, “Secure wireless communication
with dynamic secrets,” in INFOCOM, 2010.

[3] 1. Safaka, C. Fragouli, K. Argyraki, and S. Diggavi, “Exchanging
pairwise secrets efficiently,” in INFOCOM, 2013.

[4] K. Argyraki, S. Diggavi, M. Duarte, C. Fragouli, M. Gatzianas, and
P. Kostopoulos, “Creating Secrets out of Erasures,” in MobiCom, 2013.

[51 F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes,
2nd ed. North-holland Publishing Company, 1978.

[6] N. Cai and R. Yeung, “Secure network coding on a wiretap network,”
IEEE Transactions on Information Theory,, vol. 57, no. 1, 2011.

[7]1 S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, “A performance
comparison study of ad hoc wireless multicast protocols,” in INFOCOM,
2000.

[8] C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “A network coding
approach to energy efficient broadcasting: from theory to practice,” Tech.
Rep., 2005.

[9]1 R. Barr, Z. J. Haas, and R. van Renesse, “JiST: An efficient approach to
simulation using virtual machines,” Software: Practice and Experience,
vol. 35, no. 6, pp. 539-576, 2005.

[10] R. Barr, Z. J. Haas, and R. Van Renesse, “Scalable wireless ad hoc
network simulation,” Handbook on Theoretical and Algorithmic Aspects
of Sensor, Ad hoc Wireless, and Peer-to-Peer Networks, 2005.

[11] www.cs.technion.ac.il/~gabik/Jist-Swans/.

[12] G. Pei and T. R. Henderson, “Validation of OFDM error rate model
in ns-3,” 2010, http://www.nsnam.org/~pei/80211ofdm.pdf. [Online].
Available: http://www.nsnam.org/~pei/80211ofdm.pdf

[13] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
Information Theory, IEEE Transactions on, vol. 46, no. 2, 2000.

[14] A.D. Wyner, “The wire-tap channel,” The Bell system Technical Journal,
vol. 54, no. 8, pp. 1355-1387, 1975.

[15] U. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Transactions on Information Theory, vol. 39, no. 3,
pp. 733-742, May 1993.

[16] I. Csiszar and P. Narayan, “Secrecy capacities for multiterminal chan-
nels,” IEEE Transactions on Information Theory, vol. 54, no. 8, 2008.

[17] E. Ekrem and S. Ulukus, “Secrecy Capacity of a Class of Broadcast
Channels with an Eavesdropper,” EURASIP J. Wireless Comm. and
Networking, 2009.

[18] A. Mills, B. Smith, T. Clancy, E. Soljanin, and S. Vishwanath, “On
secure communication over wireless erasure networks,” in IEEE Inter-
national Symposium on Information Theory (ISIT), 2008, pp. 161-165.

[19] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener, “Robust
key generation from signal envelopes in wireless networks,” in ACM
conference on Computer and communications security, 2007.

[20] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam,
“Information-theoretically secret key generation for fading wireless
channels,” IEEE Transactions on Information Forensics and Security,
vol. 5, no. 2, pp. 240-254, 2010.

[21] J. Croft, N. Patwari, and S. K. Kasera, “Robust uncorrelated bit extrac-
tion methodologies for wireless sensors,” in ACM/IEEE International
Conference on Information Processing in Sensor Networks, 2010.

[22] H. Liu, Y. Wang, J. Yang, and Y. Chen, “Fast and practical secret key
extraction by exploiting channel response,” in INFOCOM. IEEE, 2013.

[23] S. Gollakota and D. Katabi, “Physical layer wireless security made fast
and channel independent,” in INFOCOM, 2011.

