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Optimal operation of chemical processes is key for meeting productivity, quality, safety and environmental 
objectives. Both model-based and data-driven schemes are used to compute optimal operating conditions [1]:  
 

- The model-based techniques are intuitive and widespread, but they suffer from the effect of plant-model 
mismatch.  For instance, an inaccurate plant model leads to operating conditions that typically are not 
optimal for the plant and may violate constraints. Furthermore, even with an accurate model, the 
presence of disturbances generally leads to a drift of the optimal operating conditions, and adaptation 
based on measurements is needed to maintain plant optimality. 

- The data-driven optimization techniques rely on measurements to adjust the optimal inputs in real time. 
Consequently, real-time measurements are typically used to help achieve plant optimality. This field, 
which is labeled real-time optimization (RTO), has received growing attention in recent years. RTO 
schemes can be of two types: explicit schemes solve a numerical optimization problem repeatedly, while 
implicit schemes adjust the inputs on-line in a control-inspired manner. 

 
Explicit RTO schemes solve a numerical optimization problem repeatedly. For example, the two-step approach 
uses (i) measurements to update the model parameters, and (ii) the updated model to perform the numerical 
optimization [2]. It has also been proposed to update the model differently. Instead of adjusting the model 
parameters, input-affine correction terms can be added to the cost and constraint functions of the optimization 
problem so that it shares the first-order optimality condition with the plant. The main advantage of the technique, 
labeled modifier adaptation (MA), lies in its proven ability to converge to the plant optimum, even in the 
presence of structural plant-model mismatch [3]. Furthermore, MA is capable of detecting the correct set of 
active plant constraints without additional assumptions. As a static optimization method applicable to continuous 
plants, MA requires waiting for steady state before taking measurements, updating the correction terms and 
repeating the numerical optimization. Hence, several iterations are generally required to achieve convergence. 
The main difficulty lies in the estimation of the steady-state plant gradient at each iteration. 
 
In contrast, implicit RTO schemes, such as extremum-seeking control  [4], self-optimizing control [5] and NCO 
tracking [6], propose to adjust the inputs on-line in a control-inspired manner. In the absence of constraints, or 
when assumptions can be made regarding the set of plant constraints that are active at the optimum, implicit 
RTO methods reduce to gradient control, as the degrees of freedom are adjusted in real time to drive the plant 
cost gradient to zero. Here again, the difficulty lies in the estimation of the steady-state plant gradient, which, in 
addition, must be performed during transient operation. This is achieved via either low-frequency plant 
excitation and corresponding cost measurements (as in extremum-seeking control) or the use of transient 
measurements together with a model of the steady-state gradient (as in self-optimizing control and NCO tracking 
via neighboring extremals, where the required steady-state measurements are simply replaced by the 
corresponding transient measurements) [7]. Implicit RTO is much more challenging when the set of active 
constraints is unknown, as not only the cost gradient has to be inferred from the measurements but also the set of 
active constraints and the constraint gradients. 
 
This contribution proposes a framework for using MA during the transient phase toward steady state, thereby 
attempting to reach optimality in a single iteration to steady state. With this approach, a modified optimization 
problem is solved repeatedly at each optimization instant during transient, with the input-affine correction terms, 



which theoretically depend on steady-state plant quantities, being estimated on the basis of transient 
measurements. Note that such an attempt has already been documented in the literature but, as for the 
aforementioned implicit methods, the “steady-state” gradients were estimated using transient information in the 
framework of both multiple units and neighboring extremals [8]. In contrast, this work estimates the steady-state 
outputs from transient outputs and then uses these estimates “correctly” in the expressions for computing the 
steady-state gradients. For this, we propose to use the best available dynamic model and perform state estimation 
using an Extended Kalman Filter (EKF) framework [9]. Since the model is typically not perfect, one key 
parameter related to the static gain is made adjustable for each input-output pair. This way, the EKF feeds on the 
transient plant outputs and estimates, at the current time t, the corresponding steady-state outputs, which leads to 
the computation of the static gradient. The dynamic model at hand can be seen as a surrogate model that, 
although not sufficiently accurate globally for process optimization, can process measurements to generate an 
estimate of the local gradients. The approach will be illustrated on various numerical examples and then applied 
to the optimization of a continuous stirred-tank reactor.  
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