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« Un modèle n’est rien d’autre qu’un récit, et à travers les erreurs des 

abstractions et modèles  existants (qui fonctionnent bien par ailleurs), 

on trouve le chemin vers de nouveau récits. Le reliquat qui n’entre pas 

dans les équations des théories actuelles contient souvent la clé de 

nouveaux horizons. Les scientifiques ne devraient  donc pas 

considérer leurs erreurs comme négligeables mais au contraire leur 

consacrer un maximum d’attention, car c’est probablement là que 

pourraient se trouver les rudiments d’un système axiomatique 

compétemment nouveau (et peut-être meilleur).Cela est pareillement 

vrai des existences personnelles. » 

 

Tomas Sedlacek 

L’économie du bien et du mal 
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Abstract 

 

Nuclear Magnetic Resonance (NMR) has become an inescapable technique for spectroscopic 

identification. Its main advantage comes from the sensitivity of NMR active nuclei embedded in a 

molecule to their chemical environment. NMR is also used daily in medical imaging. Magnetic Resonance 

Imaging (MRI) is not only remarkably versatile, but has the precious advantage of being non-invasive; 

moreover, the range of radiofrequency used implies that MRI deposit a limited amount of energy in 

tissues under investigation. 

 

Nevertheless, compared to other spectroscopic methods, NMR suffers from a relative lack of sensitivity. 

Indeed as the NMR transitions are low in energy, the difference of populations between the levels 

involved, known as polarization, is extremely low. The NMR signal, which is directly proportional to this 

polarization, is thus many orders of magnitude inferior to the theoretical maximum at full polarization. 

 

Dynamic Nuclear Polarization (DNP) allows one to circumvent this disadvantage by transferring the high 

electron spin polarization to the nuclear spins. This transfer happens via microwave irradiation under 

optimized conditions. The method has been constantly developed since the ‘fifties. A substantial 

breakthrough was achieved in 2003 by Golman, Ardenkjaer-Larsen and their collaborators. They 

proposed to dissolve a sample that has been hyperpolarized at low temperature (at about 1 K) in order 

to inject it into an animal, or, in fine, into a human patient, and to follow its bio-distribution and eventual 

metabolic conversion by MRI. This technique, called Dissolution-DNP (D-DNP), allows a signal increase on 

the order of 10’000, opening the way to many new experimental possibilities. 

 

Research in Dissolution-DNP was largely oriented toward the optimization of 
13

C polarization because of 

its long lifetimes. In the course of this Thesis, an alternative way that takes advantage of the proton (
1
H) 

polarization will be explored. Protons have the advantage that they can be polarized to a higher level in a 

shorter time compared to 
13

C. Unfortunately, once ejected from the polarizer, in solution and at room 

temperature, the high proton magnetization will be short-lived compared to 
13

C. Along the chapters of 

this Thesis, different approaches will be proposed to maximize the advantages of 
1
H polarization, while 

minimizing its inconveniences. 

 

It is possible to use a standard NMR technique, known as Cross-Polarization (CP), to transfer the 

abundant magnetization of hyperpolarized protons to other nuclei like 
13

C, using suitable radiofrequency 

pulse sequences. The advantages of the 
1
H polarization are exploited inside the polarizer, while the 

interesting properties of 
13

C are put to use after dissolution. Still, it is also possible to observe directly the 

proton signal after dissolution. This can be extremely interesting, especially in the context of drug 

screening for pharmaceutical research. Two examples of such methods will be described. Finally, the use 

of hyperpolarized 
1
H signals after dissolution can be greatly improved if their relaxation rates could be 

attenuated. A first way of doing this, consisting in removing the paramagnetic species by filtration, will 

be explored. The use of Long-Lived States (LLS) will also be presented. 

 

Key words: Nuclear Magnetic Resonance (NMR); Dynamic Nuclear Polarization (DNP); Dissolution-DNP 

(D-DNP); proton hyperpolarization; TEMPO free radical; Cross-Polarization (CP); Long-Lived States (LLS); 

drug screening.  
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Résumé 

 

La Résonance Magnétique Nucléaire (RMN) est une technique d’identification spectroscopique 

quasiment incontournable. Son avantage déterminant repose sur la sensibilité de chaque noyau actif en 

RMN d’une molécule donnée pour son environnement chimique. Ainsi, le spectre RMN de chaque 

molécule est différent et permet sa caractérisation sans ambiguïté. La RMN est aussi employée tous les 

jours en milieu hospitalier, en imagerie médicale. L’Imagerie par Résonance Magnétique (IRM) est non 

seulement polyvalente mais offre aussi le précieux avantage d’être non-invasive; de plus, la gamme de 

fréquences utilisées ne dépose quasiment pas d’énergie sur les tissus inspectés. 

 

Cependant, comparée à d’autres méthodes spectroscopiques, la RMN souffre de son relatif manque de 

sensibilité. En effet, vu la faible énergie des transitions RMN, la différence des populations entre les 

niveaux d’énergie impliqués, connue sous le terme de polarisation, est extrêmement faible. Le signal 

RMN, qui est directement proportionnel à cette polarisation, est ainsi inférieur de plusieurs ordres de 

grandeur au maximum théorique correspondant à une polarisation totale.  

 

La Polarisation Dynamique Nucléaire (DNP en anglais) permet de dépasser ce désavantage en transférant 

la haute polarisation des électrons aux noyaux. Ce transfert se fait par le biais d’irradiations micro-ondes 

dans des conditions optimisées. La méthode a été constamment développée depuis les années 50. Elle a 

connu un fort regain d’intérêt en 2003 grâce à l’avancée technique proposée par Golman, Ardenkjaer-

Larsen et leurs collaborateurs consistant à dissoudre un échantillon polarisé par DNP à basse 

température (à environ 1 K) pour l’injecter dans un animal ou, in fine, dans un patient et à suivre sa 

métabolisation par IRM. Cette technique, nommée Dissolution-DNP (D-DNP), peut permettre une 

augmentation du signal de l’ordre de 10'000 ouvrant la voie à de nouvelles possibilités expérimentales. 

 

Vu son temps de vie long, les recherches en Dissolution-DNP ont été largement orientées vers 

l’optimisation de la polarisation du carbone-13. Dans le cadre de cette Thèse, une voie alternative 

consistant à tirer profit de la polarisation du proton (
1
H) est explorée. Le proton à l’avantage de polariser 

par DNP mieux et plus rapidement que le carbone-13. Cependant, une fois en dehors du polariseur, en 

solution et à température ambiante, cette polarisation élevée relaxe aussi très rapidement. Au cours des 

chapitres de cette Thèse, différentes approches vont être proposées qui permettent de maximiser les 

avantages du proton hyperpolarisé tout en minimisant ses inconvénients. 

 

Il est possible d’utiliser une technique standard en RMN, la polarisation croisée (CP en anglais), pour 

transférer à l’aide de séquences d’impulsions radiofréquences l’abondante magnétisation du proton 

hyperpolarisé vers d’autres noyaux, comme le carbone-13, à l’intérieur du polariseur. Ainsi, les avantages 

du proton sont exploités dans le polariseur tout en tirant parti des propriétés intéressantes du carbone-

13 après dissolution.  

 

Il est aussi possible d’observer directement le signal du proton après dissolution. Son utilisation peut être 

extrêmement intéressante, notamment pour l’identification de nouvelles molécules interagissant avec 

des protéines d’intérêt pharmaceutique. Deux méthodes allant dans ce sens seront proposées.  
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Enfin, le signal du proton hyperpolarisé observé après dissolution peut être grandement amélioré en 

maîtrisant sa relaxation. Une première voie consistant à filtrer les espèces paramagnétiques va être 

explorée. L’utilisation d’états de spin à long temps de vie va finalement être présentée. 

 

Mots-clés : Résonance Magnétique Nucléaire (RMN) ; Polarisation Nucléaire Dynamique (DNP) ; 

Dissolution-DNP (D-DNP) ; hyperpolarisation du proton ; radical TEMPO ;  polarisation croisée (CP) ; états 

aux temps de vie longs (LLS) ; Identification de ligands. 
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Chapter	1:		

	

Introduction:	NMR	(in)sensitivity	and	

Dissolution-DNP		

 

1.1 Lack of sensitivity in NMR 

1.1.1 Low polarization  

“It is well known that an assembly of magnetic moments μ embedded in a sample of bulk matter in 

thermal equilibrium at a temperature T will, when placed in a magnetic field H orient themselves 

preferentially in the direction of the field. This orientation is not perfect: there is competition between the 

magnetic energy μH, which tends to orient the moments parallel to the field and the thermal energy kT, 

which destroys the orientation. If N is the number of moments per unit volume, the magnetization M 

along the field will reach the value M = NμP, where P, a number smaller than unity, is called the 

polarization.” (1) 

 

This statement of Anatole Abragam in the Proceeding of the International Conference of Polarized target 

and Ion Sources of 1966 illustrates the central role of polarization in Nuclear Magnetic Resonance (NMR) 

(2-9). The intensity of the main observable in NMR, the macroscopic magnetization M, is proportional 

the nuclear polarization, but, as the ratio μB/kBT is usually a small number, far below unity, the nuclear 

polarization will be extremely modest. The subject of the present Thesis is the development of methods 

that allow one to increase the nuclear polarization as close as possible to unity. 

 

The original motivation of NMR was the measurement of nuclear magnetic moments (μ). The majority of 

all nuclei have a non-vanishing spin angular momentum (I) (see the tables in (8) for example), a vector 

quantity with a magnitude characterized by the nuclear spin quantum number (I): │I│= Ñ[I(I+1)]½, where 

Ñ is the Plank constant divided by 2π. The orientation of the spin angular momentum in space is 

quantized. By definition the value of the z component of I is specified as Iz = Ñm, with the magnetic 

quantum number m = [-I, -I+1, …, I]. It can be shown (2) that the nuclear magnetic moment is collinear 

with the spin angular momentum, and therefore, μ = γI and μz = γIz = γÑm. The proportionality constant 

specific for each nucleus, γ, is known as the gyromagnetic ratio. This moment gives rise to nuclear 

magnetism.  

 

If a large assembly of nuclei with elementary spin moments is immersed in a magnetic field B with a 

magnetic field strength B0, a net macroscopic magnetization M will appear. The energy of a magnetic 

moment interacting with a magnetic field is given by the scalar product E = -μ B, which is E = -μzB0 in the 

presence of a strong magnetic field of amplitude B0 determining the quantization axis z. By definition of 

μz, it results that the interaction between a magnetic moment and a magnetic field will result in 2I+1 
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energy levels, known as Zeeman levels, that are equally spaced in the absence of spins-spins couplings 

and quadrupole interactions, with a spacing given by Em  = -γÑmB0. The relative populations of the energy 

levels, nm, obey a statistical Boltzmann distribution:  

 

0exp expm
m

B B

E mB
n

k T k T

γ   −∝ =   
   

ℏ
 (1.1) 

 

where kB is the Boltzmann constant and T the temperature. As the lowest energy levels will be (slightly) 

more populated, this will give rise to a bulk magnetic moment M, the vector sum of the magnetic 

moments of all individual nuclei. 

 

The strength of this magnetic moment, and therefore of the NMR signal intensity, will depend on the 

difference of populations of the energy levels. For spins with I = ½, which have only two energy levels, 

usually labelled α and β (shorthand for m = ± ½), the polarization can be defined as: 

 

n n
P

n n
α β

α β

−
=

+
 (1.2) 

 

Following Equation 1.1, the ratio of the population of the two levels is given by: 

 

 (1.3) 

 

1 exp1

1 1 exp

B

B

E
n n n n k T

P
n n n n E

k T

α β β α

α β β α

 −∆−  − −  = = =
+ +  −∆+  

 

 (1.4) 

 

And with ( )
2

2

1
tanh

1

x x x

x x x

e e e
x

e e e

− −

− −

− −= =
+ +

 (1.5) 

 

0tanh tanh
2 2B B

BE
P

k T k T

γ   ∆= =   
   

ℏ
 (1.7) 

 

From Equation 1.7, one can easily see that the polarization between two energy levels, and thus the 

signal arising from the corresponding transition, will depend on their energy difference. As shown in 

Figure 1.1, compared to other spectroscopic techniques, NMR involves low energy transitions. Therefore 

the polarization between the levels involved will be extremely low. For example, the proton polarization 

in a typical field of 9.4 T (400 MHz) at room temperature will be only P(1H) ≈ 0.003% (other polarization 

values can be found in Table 1.1). It implies that, compared to other spectroscopies techniques, NMR 

suffers from low sensitivity. 
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Figure 1.1: Typical transition energies in the electromagnetic spectrum (Adapted from PJ Hore (5)) 

In the limit where ΔE/kBT is a small number, which is the case for standard NMR conditions, it is possible 

to make a linear expansion of Boltzmann’s law (since exp(-x) ≈ 1 - x). For low polarization, one obtains 

from Equation 1.4:  

 

0

2 2B B

BE
P

k T k T

γ∆= = ℏ
 (1.8) 

 

Despite its low signal intensity, NMR was developed far beyond the simple measurement of nuclear 

moments. NMR may not be sensitive, but it makes a lot of sense. Even subtle changes in the 

environment of the nuclei can be clearly detected. Therefore NMR became a major and versatile tool in 

the study of finer properties of the analytes, such as chemical structures, reaction rates, chemical 

equilibria, bio-molecular 3D structures, internal motions, etc. It is difficult to find a chemical laboratory 

without an NMR spectrometer. Moreover, its drawback, the low energy of the transitions involved, 

means also that the energy deposition is low. Therefore, when combined with spatial imaging of living 

people, the low energy becomes a powerful advantage. Today, there is no hospital without MRI scanner. 

 

Finally, this low NMR polarization is not the end of the story, and there must be a huge room for 

improvement. This will be the subject of the present Thesis, where methods to push nuclear polarization 

as close as possible to unity will be developed. 

1.1.2 How to improve the NMR signal 

Inspection of Equations 1.7 and 1.8 shows that it is possible to act on three variables to increase the 

nuclear polarization, and thus the NMR signal.  

 

First, one can act on the magnetic field B0. The signal intensity should increase linearly with the field at 

low polarization (Figure 1.2). Nevertheless, the sophistication of the required technology, and thus the 

price of the magnet, does by no means increase linearly with B0. Moreover, the signal-to-noise ratio 

(SNR) does not vary linearly with B0, but with (B0)
3/2. The highest field commercially on offer for the 

moment is limited to 28.2 T (1.2 GHz for 1H), which corresponds to a polarization P(1H) = 0.0096%, still far 

below 1. Usually the rationale behind the purchase of a high field magnet is driven more by increases of 

resolution rather than increases of polarization. 
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Figure 1.2: Proton polarization at different magnetic fields (B0 = 7 T, 9.4 T and 11.75 T) calculated with Equation 1.8. 

One can also act on the sample temperature T. According to Equations 1.7 and 1.8, the polarization will 

be higher at low temperatures. Table 1.1 shows some polarization values as a function of T calculated for 
1H and 13C at B0 = 3.35 T and 6.7 T with Equation 1.7. As the temperature decreases, molecular motions 

are slowed down (τc, the rotational correlation time, increases) and the transverse relaxation time 

constant T2 drops (see Figure 1.3a). As the NMR line-width is inversely proportional to T2 (Δν½(NMR) = 

(πT2)
-1), the peaks will become broader at lower temperatures (Figure 1.3b). Therefore, even if the signal 

intensity increases, the resolution and the SNR will decline at lower temperatures. 

 

Moreover, as can be seen in Table 1.1, at (pumped) liquid helium temperatures, the nuclear polarization 

still remains below 1%. Only the use of dilution refrigerators going to millikelvin temperatures permits 

one to reach a substantial polarization, using the so called “brute force method” (10). Here the main 

drawback is the long spin lattice relaxation time constant T1 (see Figure 1.3a). 

 

Figure 1.3: a) Dependence of T1 and T2 on the rotational correlation time, adapted from PJ Hore (5), calculated with 

1/T2 = ½γ
2
<B

2
>J(ω0) + ½γ

2
<B

2
>J(0) and 1/T1 = γ

2
<B

2
>J(ω0) (11), with J(ω) = 2τc/(1+ ω

2
τc), using γ

2
<B

2
> = 4.5 10

9
 s

-2
 

and ω0/2π = 400 MHz. b) Representation of the NMR linewidth Δν as a function of the transverse relaxation time 

constant T2. 

The last parameter that influences the nuclear polarization in Equations 1.7 and 1.8 is the gyromagnetic 

ratio. Obviously, the experimentalist cannot change the magnetic moment of the nuclei under 

investigation, but it is possible to transfer the polarization of a nuclear species with high gyromagnetic 

ratio, for example 1H, to an insensitive one, like 13C or 15N (Figure 1.4a). Such polarization transfer can be 

done in liquid state NMR via INEPT (12) or NOE (13, 14), and in solids by Cross Polarization (15, 16) (see 
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Chapter 3). The maximal polarization enhancement will be primarily limited by the nucleus with the 

higher γ. 

 

Figure 1.4. a) Polarization values of 
1
H, 

13
C and 

15
N calculated with Equation 1.8 at 300 K and 11.75 T (500 MHz for 

1
H). b) Schematic representation of the proton polarization compared to the electron polarization, both as a 

function of the magnetic field. 

Other factors, like improvements of electronics, cryoprobes, dedicated probeheads, optimization of the 

sample volume and preparation, etc. will also influence the SNR. Nevertheless, combining all of these 

options, the maximal gain will be in the order of a factor ten to fifty. This is far from the theoretical 

maximum of 50 000 – 100 000 that could be expected if the nuclear polarization would have reached a 

value of 100%. As it will be shown in the next Section, Dynamic Nuclear Polarization techniques, which 

transfer the high polarization from electrons to nuclei, can provide such high enhancements, albeit at the 

cost of a few concessions.  

1.2 DNP basic principles and basic experiments 
 

Electrons have a gyromagnetic ratio that is almost three orders of magnitude larger than the one of 

nuclei. For example, γ(e) = 660γ(1H) (Figure 1.4b). The polarization P(e) of electronic spins located on 

paramagnetic atoms or ions is large and may approach 100% at fields and temperatures that can be 

easily achieved. Table 1.1 reports P(e) at different temperatures in magnetic fields of 3.35 and 6.7 T (see 

also Figure 1.5).  
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Figure 1.5: a) Electronic and nuclear (
1
H, 

13
C) polarization calculated as a function of the temperature at B0 = 3.35 T 

with equation 1.7. b) Electronic polarization calculated between 1 and 10 K at B0 = 3.35 and 6.7 T. 

The idea of Dynamic Nuclear Polarization is to transfer the large Boltzmann polarization of the electrons 

to coupled nuclei via microwave irradiation (Figure 1.5a). This idea was first proposed by Overhauser (14) 

and validated by Carver and Slichter (17). The details of the mechanisms of transfer will be developed in 

the Chapter 2. As shown in Figure 1.5 and Table 1.1, the electronic polarization, and therefore the 

expected nuclear enhancement, becomes substantial only below 10 K. Therefore, DNP (among other 

reasons) is usually performed at low temperatures. But, as shown in Figure 1.3, at low temperatures the 

NMR line-widths become abominable. Because one must choose between the primary objectives of 

polarization or resolution, field of DNP has split in two different sub-techniques: Magic Angle Spinning-

DNP (MAS-DNP) and the Dissolution-DNP (D-DNP). 

 

 B0 (T)  1.2 K 2.2 K 4.2 K 10 K 100 K 300 K 

P(e) (%) 
3.35 95.42 77.15 49.02 22.15 2.27 0.75 

6.7 99.89 96.73 79.05 42.23 4.55 1.50 

P(
1
H) (%) 

3.35 0.28 0.15 0.081 0.034 0.0035 0.0011 

6.7 0.57 0.31 0.16 0.068 0.0069 0.0023 

P(
13

C) (%) 
3.35 0.072 0.039 0.020 0.0086 0.00087 0.00028 

6.7 0.14 0.078 0.041 0.017 0.0017 0.00057 

Table 1.1: Electronic and nuclear (
1
H, 

13
C) polarizations in magnetic fields B0 = 3.35 or 6.7 T calculated at different 

temperatures with equation 1.7. 

1.2.1 Magic Angle Spinning-DNP 

MAS-DNP was initially developed by Vriend et al. (18) in 1985, but only became popular after 1992 in the 

wake of the remarkable successes of Griffin and co-workers at MIT (19). Although the expression ‘low 

temperature’, which in this context typically refers to the range 90 < T < 110 K, is fully justified for magic 

angle spinning, it is a bit confusing when comparing with Dissolution-DNP which is usually carried out at 

T = 1.2 K. Indeed, with the MAS-DNP technique, the choice was made to sacrifice some electronic 

polarization compared to Dissolution-DNP, and thus some nuclear enhancement, by running the 

experiments at higher temperatures, where NMR line-widths are narrow enough to extract useful 

information in situ. Compared to Dissolution-DNP, the main advantage is that the transfer of polarization 

is done at the beginning of the experiment, and once this has been achieved, normal solid-state NMR 

sequences can be run, including acquisition of 2D spectra, multiple-scan accumulations, and phase 

cycling.  
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Under favourable conditions, the gain in sensitivity can exceed two orders of magnitude. More typically 

however, an enhancement factor εDNP = 20 is regarded as satisfactory, since it leads to a time-saving of 

(εDNP)2 = 400, thus allowing to achieve in 24 hours what would normally require more than a year. The 

overall DNP efficiency depends, among other factors, on the choice and concentration of the (bi)radicals, 

on the acceleration of the relaxation times that allows one to reduce the recovery delays, on a partial 

quenching of the signal intensity, on the temperature, and on the static magnetic field.  

 

Performing solid-state DNP experiments at high magnetic fields requires several accessories in addition 

to a normal MAS setup. Currently, only gyrotrons can generate microwave fields that are sufficiently 

intense to saturate the EPR transitions, i.e., about 5 W in continuous mode. For NMR spectrometers 

operating at proton frequencies of 400, 600 or 800 MHz (9.4, 14.1 or 18.8 T), the microwave frequencies 

must be 263.7, 395.6, and 527.5 GHz, respectively. A sophisticated ‘corrugated’ low-loss transmission 

line can guide the microwaves from the gyrotron to the sample that is spinning at rates on the order of 

10 < νrot < 15 kHz in a specially designed MAS probe. A suitable set of heat exchangers generates three 

separately controlled jets of nitrogen to cool the sample, support the bearing, and drive the spinning of 

the rotor. Figure 1.6 shows a schematic layout and a picture of the MAS-DNP setup that has been 

running at EPFL since 2010. The main components and their characteristics have been described in detail 

by Rosay et al. (20). 

 

 

Figure 1.6: MAS-DNP set-up at EPFL. Microwaves with a wave-length of 1.14 mm (ca. 5 W at 263.7 GHz) are 

generated by a gyrotron tube inserted into a 9.4 T magnet (A) and transmitted via the transmission line (B) to the 

MAS probe (D) in the NMR magnet (C), in our case a wide-bore 9.4 T magnet with a field-sweep capability for 

proton NMR at 400 MHz that can be used in triple-channel mode (
1
H, 

13
C, 

14
N or 

1
H, 

13
C, 

15
N) or in double-channel 

mode (typically 
1
H plus 

13
C, 

29
Si, or 

27
Al). The zirconia or sapphire rotors with an outer diameter of 3.2 mm are spun 

up to νrot = 16 kHz at temperatures near T = 100 K using three nitrogen gas flows for cooling, bearing and spinning 

(E) that are regulated by a heat exchanger (F) driven with gaseous and liquid nitrogen (G). (Adapted from Veronika 

Vitzthum’s EPFL thesis (21)) 

MAS-DNP has proven to have tremendous potential, for example for the characterisation of 

functionalized nanoporous materials (22-25), for the study of E. coli 13C/15N labelled protein without 

extraction, purification and reconstruction steps (26) as well as for the acquisition of 2D 13C-13C spectra of 

native membrane proteins (27). 
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1.2.2 Dissolution-DNP 

Dissolution-DNP takes the option to separate the site where the polarization is transferred from the 

electrons to the nuclei, the polarizer, and the site where it is detected. The method was invented and 

developed since 2003 by Ardenkjaer-Larsen et al. (28). It is based on the non-trivial idea that the 

polarization that was built up in a static solid at low temperature will survive the phase change to room 

temperature and the transfer to a solution-state spectrometer. The separation between the polarizer 

and the detection apparatus lifts the need for making compromises between the electronic polarization 

and spectral resolution of the NMR spectra.  

 

As there is no need for resolution, the polarizer can run at temperatures as low as 1 K, where the 

electronic polarization is close to unity. Three main pieces constitute a polarizer: a cryostat with pumped 

liquid helium, a magnet to go to optimal P(e) conditions, and a microwave source irradiating at the 

corresponding electronic frequency (see Figure 1.7). Note that practically, the availability of μW sources 

determines the magnetic field of the polarizer.   

 

At EPFL, Dissolution-DNP is performed with home-built polarizers (29-31). In our laboratory, we use a 

continuous-flow 4He cryostat operating at T = 1.2 K which can be inserted into either of two wide-bore 

cryomagnets with B0 = 3.35 or 6.7 T. For B0 = 3.35 T, microwave irradiation at νμw = 93.75 – 94.25 GHz 

generated by an ELVA microwave source provides a maximum power Pμw = 400 mW. The frequency can 

be doubled to 187.5 – 188.5 GHz with 100 mW for operation at B0 = 6.7 T. The apparatus was developed 

in close collaboration with the Paul Scherrer Institute (with Dr. B. van den Brandt, Dr. P. Hautle and Dr. T. 

A Konter). 

 

Figure 1.7: Picture and scheme of the Dissolution-DNP polarizer running at EPFL (Schemes shared by Dr. Pascal 

Miéville). 

Once dissolved and transferred, Dissolution-DNP gives access to record enhancements of the nuclear 

polarization, with εDNP between 100 and 100 000 depending on the relaxation time of the observed 

nucleus and of the transfer time.  There is however a price to pay. This high nuclear magnetization will 

be only available once per dissolution ‘shot’. Therefore, in contrast to MAS-NMR, one cannot simply 
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apply standard NMR sequences to the hyperpolarized sample. The detection sequences always have to 

be adapted, if not reinvented, to conform to this single-shot requirement. 

 

Dissolution-DNP was originally developed in view of in vivo MRI applications. It has been shown that the 

enzymatic conversion of pyruvate into lactate is significantly faster in cancer cells than in healthy tissue 

(32). This opens new perspectives for cancer diagnosis, in particular for prostate cancer. The most 

impressive result up to now is the accomplishment of real-time localized spectroscopy of tumors in 

human patients (33). This can be achieved with a DNP polarizer specially developed for clinical intent, 

where the entire set-up is kept under sterile conditions (34). 

 

The target for dissolution DNP is usually pyruvate that is isotopically enriched with 13C on the quaternary 

carbonyl site, because of its long T1 relaxation time, and its chemical shift that is not hidden by 

background signals, so that the signal-to-noise ratio is maximized after injection into living animals or 

humans. Most peer-reviewed articles on D-DNP are concerned with metabolic imaging of tumors with 1-
13C pyruvate. Nevertheless, the technique can be used in combination with a variety of other NMR or 

MRI methods, using an extensive diversity of different molecules and enhanced nuclei. One can cite for 

example in vitro, as well as in-cell, enzyme metabolism studies (35, 36), drug screening (37) or the 

monitoring of chemical reactions, including the detection of intermediates (38). Further hyperpolarized 

NMR applications can be found in Reference (39). The coupling with ultrafast 1H-13C and 1H-15N HSQC 

(40) is also a nice response to the single-shot requirement of DNP.   

1.3 Typical D-DNP experiments 

 

A Dissolution-DNP experiment can be divided in five steps that happen in three different areas, as shown 

in Figure 1.8. The first one, which is often forgotten but of primary importance, is the sample 

preparation. To preform efficient DNP, the analyte of interest has to be put in contact with paramagnetic 

species, like free radicals. Trityl or TEMPO, and derivatives are usually chosen as polarizing agents. One 

first has to find a solvent to co-solubilize both the analyte and the most appropriate derivative of the 

radicals. Moreover, as the polarizing agent needs, in most cases, to be homogenously distributed, the 

sample should not crystalize upon freezing, but must stay glassy. Therefore, solvents, or mixtures of 

solvents that have such properties should be used, like for example, H2O:glycerol (1:1), H2O:ethanol 

(2:1), H2O:DMSO (2:3), toluene:THF (9:1) or toluene:CHCl3 (2:1). Finally, depending on the cases, the DNP 

process efficiency could depend on the sample protonation, therefore, the solvents cited above could be 

partially deuterated. Once prepared, a sample volume between 5 and 1000 μL (in our laboratory) is 

loaded in the polarizer in the sample space in Figure 1.7. 

 

Once cooled down to liquid helium temperatures (4.2 K) or below at low pressures (T = 1.2 K at p(He) = 

0.82 mbar), the second step, the DNP polarization, can be carried out. This is usually performed in a 

magnetic field of 3.35 T, but it can be done at higher field, like 6.7 T in the majority of the experiments 

presented in the course of this Thesis. The sample is irradiated with microwaves and the electron 

polarization is transferred to the nuclei via different possible mechanisms that will be described in 

Chapter 2. In our laboratory, one can possibly use Cross Polarization to transfer the high proton 

magnetization to heteronuclei, as will be developed in Chapter 3. The microwave irradiation frequency 

can optionally be modulated to decreases the required concentration of the polarizing agents (see 

Chapter 4). Depending on the nuclei and on the radicals used, the DNP build-up can last between 

minutes and hours. At the DNP steady state, the nuclear polarization values can vary between 10 and 

100%.  
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Figure 1.8: Schematic subdivisions of a Dissolution-DNP experiment. 

Once the desired level of polarization is reached, the solid frozen sample need to be transferred to the 

detection apparatus at room temperature. The hyperpolarized sample is rapidly dissolved by a burst of 

hot water preheated to T = 400 K at a pressure of 1.0 MPa. It is then pushed toward the detection 

spectrometer. The life-time of the DNP-enhanced polarization is normally limited by the longitudinal 

(spin-lattice) relaxation time T1, which tends to be short when the sample is travelling through the so-

called ‘death valley’ on its voyage between the polarizer and the NMR or MRI magnet, through an area 

where the field can drop as low as the earth’s field, i.e., about 35 µT, or even below if it is cancelled by 

the stray field of the NMR magnets. This problem can be avoided in part by ‘sandwiching’ the PTFE tube 

that carries the solution (typically a 3 mm outer diameter tube) between rows of small permanent 

magnets. If one uses alloys of neodymium, iron and boron, one can maintain a field close to 1 T during 

the entire voyage (41). In addition, provided the sample contains pairs of spins, the polarization can be 

preserved by a temporary conversion into Long-Lived States. The use of such techniques will be 

developed in Chapter 8. At this point, the electrons needed to build up the high nuclear polarization are 

no longer desired, as they will destroy the magnetization through paramagnetic relaxation. Among other 

things, it is possible to reduce the resulting losses by using Vitamin C (42). A new approach, consisting in 

grafting the polarizing agent onto a nanoporous silica material that can be filtered during dissolution will 

be described in Chapter 7. 

 

Note that in the case of a clinical injection of hyperpolarized material into human patients, a stringent 

quality control of the sample (pH, temperature, concentration, purity, …) has to be carried out. This 

additional step can take about a minute or so. 

 

In the last step, the hyperpolarized material will have reached the NMR or MRI spectrometer. In the case 

of imaging, the analyte still needs to diffuse to its target through the body of the patient or animal. At 

this point, the DNP enhanced experiment can finally start. The range of possible measurements is only 

limited by the imagination of the experimentalist, and by his ability to adapt himself to the single-shot 

requirement. Two examples of experiments using hyperpolarized protons in the context of drug 

screening will be discussed in Chapters 5 and 6.  
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Chapter	2:		

	

A	simple-minded	pictorial	representation	

of	DNP	mechanisms	

2.1 Typical DNP samples and observables 

2.1.1 DNP spectra, polarizations and build-up times 

DNP mechanisms depend on many variables, like the electronic and nuclear concentration, the shape of 
the ESR spectrum, the nuclear gyromagnetic ratio, the electronic and nuclear relaxation rates (T1e, T2e, T1n 
and T2n), to cite only the main variables. Some of these parameters are field and/or temperature 
dependent and cannot be varied experimentally independently from each other, since most of them are 
interdependent. For a DNP experimentalist, there are two observables that can be used as a probe of the 
DNP mechanism under variable conditions: the maximal polarization Pmax(n) that can be reached for one 
or several nuclear spins n like 1H or 13C, and the time constant τDNP(n) that characterizes their DNP build-
up behavior by fitting to a mono-exponential curve. These two observables can be probed for different 
microwave irradiation frequencies νμW, leading to a so-called DNP spectrum. The analysis of the 
influence of different electronic or nuclear parameters on the shape of such spectra, especially on the 
difference in microwave frequencies between the positive and negative optima of the enhancement 
(referred to here as ΔDNP

max(ν)) provides a way to understand and sort out different DNP mechanisms or 
to highlight the effect of each parameter. In Figure 2.1, examples of Pmax(n) and τDNP(n) DNP frequency 
spectra can be seen for n = 1H and 13C at B0 = 6.7 T and T = 4.2 K.   

 

Figure 2.1: DNP frequency dependence of P
max(n) (left) and τDNP(n) (right) for n = 1H (blue) and n = 13C (red) 

measured at B0 = 6.7 T and T = 4.2 K in our polarizer. 1H and 13C DNP build-up curves (center) measured under the 
same conditions with a fixed microwave frequency νμW = 187.7 GHz. 

In this chapter I will first describe in section 2.2 the two main DNP mechanisms, the Solid Effect (SE) and 
the Cross Effect (CE), in a simple graphical way, using mainly the spin “flip-flop” model. I will also 
introduce the third DNP mechanism, known as Thermal Mixing (TM), that occurs especially under 
conditions where D-DNP is performed (3.35 T and 1.2 K).  In Section 2.3, some ways to separate the 
three mechanisms experimentally will be proposed. Finally, in section 2.4, I will propose a simple rate 
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equation model that can simulate the influence on the final polarization Pmax(n) and on the DNP build-up 
time constant τDNP(n) of parameters such as the microwave field strength, the electronic polarization, the 
nuclear relaxation rate and the density of nuclear spins. This model is based on the work of Rosso et al. 
(1-3). For the discussions in section 2.3 and 2.4, I will corroborate simulations of the influence of various 
parameters by recording experimental data. The parameters used with the two models are chosen to 
simulate DNP experiments in a magnetic field B0 = 6.7 T and a temperature between T = 4.2 K and 1.2 K, 
since the majority of the work done for this thesis was realized under these conditions. 

2.1.2 DNP Sample 

The first step in any DNP experiment, sometimes the most time-consuming, is the optimization of the 
sample preparation. The aim is to put the free electrons in contact with the nuclei to be polarized for 
various DNP mechanisms to occur most effectively. 
 
Depending on the nucleus to be polarized, the choice of the radical is of crucial importance. More 
precisely its linewidth is a central parameter, as it will be shown in Sections 2.2 and 2.3. For example, 
radicals with narrow ESR lines, like Trityl (4-6), have shown to polarize low gamma nuclear spins n like 13C 
very efficiently. On the other hand, radicals with broad lines, like TEMPO and its derivatives, are better to  
polarize protons, which represent an advantage or a drawback depending on the situation. Figure 2.2a 
shows the ESR spectrum of 50 mM TEMPOL in D2O:Glycerol-d8 (1:1) acquired in our polarizer at B0 = 6.7 T 
and T = 1.2 K by longitudinally detected ESR (LODESR) with a home built apparatus (7) inspired by the 
work of Granwehr et al. (8). The width at half height Δν½(ESR) = 300 MHz and the total width Δν10%(ESR) = 
680 MHz. This spectrum, or approximations that can be used fitting it, will be used in the simulations of 
Section 2.3. 

 

Figure 2.2 a) ESR spectrum of 50 mM TEMPOL acquired in our DNP polarizer at B0 = 6.7 T and T = 1.2 K. b) 
Schematic distributions of the free radicals (green dots), 1H nuclei (blue dots) and 13C nuclei (red dots) in a standard 
sample of 3 M enriched 1-13C acetate with 50 mM TEMPOL in H2O:D2O:Glycerol-d8 (1:4:5). 

A second optimization that must be done during sample preparation concerns the concentrations of the 
free radicals and of the molecules to be polarized. This will influence the inter-electronic and electron-
nuclear distances and have an impact on many important parameters that play a crucial role for the DNP 
mechanisms. The electron concentration will influence the nuclear and electronic relaxation time 
constants (T1n, T2n, T1e and T2e), but also the electron-electron dipole-dipole couplings (9) and the 
hyperfine electron-nuclei interactions (10) that depend on ree

-3 and ren
-3, the inter-electron and electron-

nuclear distances, respectively. Dipolar and hyperfine interactions play a central role in DNP polarization 
transfer. It is also possible to modulate the density of the spins to be polarized, more precisely the 
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number of spins around each paramagnetic centre, by changing the degree of deuteration of the proton 
sites or the concentration of isotopes labels 13C, 15N, 6Li, 29Si, 129Xe, etc. The inter-spin distances of a 
sample containing 50 mM TEMPOL, the standard concentration used at 6.7 T and 1.2 K, 3 M 1-13C acetate 
and various degrees of deuteration are reported in Table 2.1 and schematized in Figure 2.2b. The 
number of nuclei in a sphere of 1 nm radius and the number of electrons in a sphere of 4.7 nm radius 
around an electronic centre are also reported. This radius of 4.7 nm corresponds to an electron-electron 
interaction of 0.5 MHz (11). These numbers will be used in the simulations in the Section 2.4. 
 

 Spin density 
[spins/cm3] 

Inter-spin distance 
(<d>) [Å] 

Number of spins in a sphere 
with a radius of 

4.7 nm 1 nm 

50 mM TEMPOL 3.0 1019 32  13  
3 M 1-13C acetate 1.8 1021 8.2   7 
10% H2O 6.6 1021 5.3   27 
100% H2O 6.6 1022 2.4   277 

Table 2.1: Spin density and inter-spin distances for a standard sample of 3 M 1-13C acetate with 50 mM TEMPOL 
with 0, 10 and 100 % 1H. The numbers of electrons in a sphere of 4.7 nm radius around an electronic center, and 
the number of 13C and 1H nuclei in a sphere of 1 nm radius around an electronic center under the same conditions. 

A homogeneous distribution of free radicals across the sample is usually believed to be necessary to 
ensure efficient DNP polarization. Indeed, we experimentally observe that it is crucial to prevent the 
crystallization of the sample upon cooling to low temperatures, as this will result in the expulsion of 
radicals to the interfaces between crystallites. The DNP sample is thus usually prepared in a glass-
forming solvent, like pure pyruvic acid, H2O:Glycerol (1:1), H2O:Ethanol (2:1) H2O:DMSO (2:3) or 
Toluene:THF (9:1). 

2.1.3 ESR of TEMPO 

The free radical TEMPO  (2,2,6,6-Tetramethylpiperidine 1-oxyl) or its derivatives will be used as a source 
of unpaired electrons in almost all experiments presented in this Thesis. Different kinds of interactions 
will contribute to the shape of the ESR spectrum of TEMPO.  
 
Due to the delocalization of the unpaired electron on the N-O bond, the electron will be influenced by 
the proximity of the 14N nuclear spin (I = 1). This resulting hyperfine coupling will split the electron 
Zeeman energy levels in three sub-levels corresponding to the three nuclear states of 14N. The amplitude 
of this splitting is described by the hyperfine tensor A(θ,φ), which is orientation dependent, θ and φ 
being the polar and azimuthal angles that describe the orientation of the magnetic field with respect to 
the principal axes of the hyperfine tensor. 
 
In standard DNP samples, the free radicals are homogeneously distributed and randomly oriented. 
Therefore, each electron may experience a slightly different local magnetic field, which gives rise to an 
anisotropic ESR spectrum. This source of broadening is called the g-anisotropy. The electron Landé factor 
can be described by a tensor g(θ,φ). The contributions of the g-anisotropy and of the hyperfine coupling 
A give rise to inhomogeneous broadening. Note that the g-anisotropy depends linearly on B0, whereas 
the hyperfine coupling is field-independent. 
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As the free radical concentration is high, the distance between the unpaired electrons will be short 
enough to observe an additional source of broadening due to the mutual perturbation of neighboring 
spins through dipolar e-e interactions. Under our DNP conditions, especially at high field, this 
broadening, called homogeneous broadening is generally smaller than the inhomogeneous one. Note 
that it is also field-independent. More detailed information on the ESR spectrum of TEMPO under DNP 
conditions as well as simulations of its ESR lineshape can be found in the theses of S. Jannin (12), p. 5-15, 
and of P. Miéville (13), p. 15-24. 
 
The relative magnitudes of the contributions of homogeneous broadening of the EPR linewidth, δ, with 
respect to the inhomogeneous spectral breadth, Δ, has implications on the theoretical model chosen to 
describe the DNP mechanism (Cross Effect vs. Thermal Mixing). Indeed, at high radical concentration 
(high homogeneous broadening), the spectrum is quasi-continuous and the energy levels cannot be 
known in detail, so that a full quantum mechanical approach becomes difficult. Figure 2.3 shows, in an 
exaggerated way, the difference between inhomogeneously and homogeneously broadened ESR 
spectra, as well as the representation of the homogeneous linewidth, δ, and the inhomogeneous 
spectral breadth Δ. 

 

Figure 2.3: Schematic representations of inhomogeneously and homogeneously broadened ESR spectra. 

2.2 Solid Effect, Cross Effect and Thermal Mixing mechanisms 
 
The idea of transferring the large Boltzmann polarization of unpaired electrons to coupled nuclei was 
first proposed by Overhauser in 1952 at an APS meeting and published in 1953 (14). At the same time, 
Carver and Slichter brought the experimental proof of the validity of this suggestion for 7Li (15) and in 
1956 also for 1H (16). This mechanism is now known as the Overhauser effect (OE). Following these 
experiments, additional pioneering DNP works were conducted. In 1957, the transfer of electron 
polarization to nuclei via the irradiation of a forbidden transition was proposed by Jeffries (17). The 
theory and experimental demonstrations of this mechanism, known today as Solid Effect (SE), were then 
further developed (18-21). SE requires the electrons to have EPR spectra with homogeneous linewidths 
(δ) and inhomogeneous spectral breadths (Δ) that must be smaller than the nuclear Larmor frequency (δ, 
Δ < ν0(n)) (18, 22). A signature of polarization through SE is that the maximum positive and negative 
enhancements are separated by 2ν0(n). In 1967, Hwang and Hill (23, 24), following theoretical work by 
Kessernikh et al. (25, 26), showed that at high concentrations of free electrons an additional polarization 
mechanism appears, shifting the maximal enhancement peaks towards each other. This new mechanism, 
called Cross Effect (CE), becomes dominant if Δ > ν0(n) > δ. Finally, if electron-electron interactions are 
strong, the homogeneous EPR linewidth can become larger than the nuclear Larmor frequency (δ > 
ν0(n)). In this case, if the electronic spin diffusion is more efficient than spin lattice relaxation, all 
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electrons that contribute to the ESR line are connected together. The description of DNP mechanisms 
requires the inclusion of this collective interaction between the electrons and the nuclei. Therefore, to 
describe this collective mechanism, a many-particle theory based on quantum statistics and spin 
thermodynamics instead of discrete transitions of single spins is needed. This theory, referred to as 
Thermal Mixing (TM), is based on the description by Provotorov (27, 28) in 1962 of the electron-nuclei 
system under microwave saturation in terms of reservoirs that are in thermal contact, using the spin 
temperature (29-31) concept. In the course of the years, the theory was improved by numerous 
contributions (32-37). New insights recently came from the development of Dissolution-DNP (5, 12, 38, 
39).  

2.2.1 Solid Effect 

The Solid Effect (SE) (40, 41) is a two-spin process involving a single electron (e) coupled by magnetic 
dipole-dipole interactions to a single nuclear spin (n). The energy levels of such an e-n spin system, as 
well as the excess or deficit of their populations with respect to the saturated state, are represented in 
Figure 2.4. For simplicity, the Boltzmann electron and nuclear polarizations are defined as P(e) = 100% 
and P(n) = 0%. The transfer of the electron spin polarization to the nucleus can be induced by an off-
resonance microwave irradiation at frequency νμW = ν0(e) - ν0(n) or νμW = ν0(e) + ν0(n) (where ν0(e), ν0(n) 
are the electronic, respectively nuclear, Larmor frequencies). Irradiating downfield at νμW = ν0(e) - ν0(n), 
one will hit the double-quantum (DQ) transition (flip-flip) of the e-n two-spin system. 
 

 

Figure 2.4: a) Energy level diagram to illustrate the Solid Effect mechanism and deviations of the populations from a 
saturated state: at Boltzmann equilibrium (black); after saturation of the double-quantum (DQ) e-n transition (red); 
or after saturation of the zero-quantum (ZQ) e-n transition (green). b) Schematic representation of the DQ (red), SQ 
(black) and ZQ (green) ESR spectra. The dotted lines DQ and ZQ underline the fact that the transition is forbidden 
and thus has lower probability. Schematic ‘’flip-flop’’ representation of the Solid Effect mechanism via irradiation at 
the DQ (red) or ZQ (green) e-n transition. Schematic NMR spectrum enhanced by SE mechanism.  
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Similarly, upfield irradiation at νμW = ν0(e) + ν0(n) correspond to a zero-quantum (ZQ) transition (flip-flop) 
(See Figure 2.4). Such transitions, often called ‘’forbidden transitions’’ are in reality second-order 
transitions that are partially allowed because of non-secular components of the hyperfine coupling (17, 
18).  
 
The saturation of the DQ transition will lead to a positive nuclear polarization, whereas the saturation of 
the ZQ e-n transition leads to a negative enhancement (Figure 2.4a). The overall nuclear DNP 
enhancement at a given microwave frequency will be given by the superposition of the DQ and SQ 
contributions. If the width of the ESR spectrum becomes larger than the nuclear Larmor frequency, this 
superposition could become destructive. In this case, the mechanism is referred to as “Differential Solid 
Effect” (42). As can be seen in Figure 2.4b, the maxima of the positive and negative enhancements are 
separated by twice the nuclear Larmor frequency. 
 
As it involves a second order transition, SE requires intense microwaves irradiation. The probability of 
such ‘’forbidden’’ transitions is low compared to single-quantum ESR transitions. It is possible to model 
quantum mechanically the Solid Effect to calculate these probabilities and simulate the polarization 
enhancement in such model system. Excellent QM treatments of the DNP mechanism at high field and 
low temperature are proposed by Griffin et al. (41), by Kockenberger et al. (43) and by Vega et al. (44). 

2.2.2 Cross Effect 

Unlike SE which relies on ‘’forbidden’’ second-order transitions, the Cross Effect (CE) (41, 45) mechanism 
is based on allowed transitions.  
 

 

Figure 2.5: a) Energy level diagram for a three-spin system e1-e2-n meeting the condition for the cross effect (CE) 

(ν0(e1) = ν0(e2) - ν0(n)). Transition pathway for CE (ZQ) (green), νμW = ν0(e1) > ν0(e2) and CE (DQ) (red), νμW = ν0(e2) < 

ν0(e1). b) Schematic representation of the coupling pair of electrons involved in the CE (ZQ) and CE (DQ) 
mechanism. Schematic ‘’flip-flop’’ representation of the Cross Effect mechanism. 
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The CE mechanism can be described by a three-spin process involving one nucleus n and two dipolar 
coupled electrons (e1, e2) with EPR frequencies that satisfies the relation ν0(e1) = ν0(e2) - ν0(n). This can be 
the case if e1 and e2 have two different molecular orientations resulting in two different effective ESR 
resonance frequencies. The energy levels of such a 3-spin system are shown in Figure 2.5a. If the two 
dipolar-coupled electrons are separated in frequency by the Larmor frequency of the nucleus, ν0(n), i.e., 
if the CE condition mentioned above is fulfilled, the energy levels αe1βe2αn and β e1α e2βn are degenerate. 
 
The effect of an irradiation at νμW = ν0(e1) > ν0(e2) can be separated into two steps (treating only the 
useful transitions to describe the CE effect): (1) The population of the energy level βe1βe2αn (half of the 
total population if P(e) = 100% and P(n) = 0%) will be excited to αe1βe2αn via a spin flip of e1 at ν0(e1). (2) 
Since the two levels are degenerate, the CE enhancement can occur later on via an energy-conserving 
flop-flip-flop between αe1βe2αn and β e1α e2βn (↑↓↑, ↓↑↓) resulting in an increase of the βn 
population, and thus in a negative nuclear enhancement (See Figure 2.5). In my notation, this CE process 
involving a coupled electron e2 that is lower in energy than the irradiated one is referred as CE (ZQ) as it 
involves a flip-flop between e2 and n. 
 
Similarly, the irradiation at νμW = ν0(e2) < ν0(e1) can be described in two steps. Note that here, in Figure 
2.5a, the μW-excited electron is the central one (e2) and e1-n are coupled. Irradiation at ν0(e2) will 
transfer the population of the energy level βe1βe2βn to βe1αe2βn. Since they are degenerate, a flip-flop-flip 
can occur between βe1αe2βn and αe1βe2αn leading to positive nuclear CE enhancement (See Figure 2.5). 
Again, I refer to this mechanism as CE (DQ), because of the flip-flip of e1 and n involved in the DNP 
enhancement.  
 
In these two descriptions, the fate of half of the total population that resides in the βe1βe2βn state for CE 
(ZQ) and in βe1βe2αn for CE (DQ) is not treated. Indeed, it will also be excited by μW irradiation (at ν0(e1) 
or ν0(e2) respectively), but will relax back via T1e as their excited states are not degenerate. Moreover, 
the overall CE process (μW excitation and energy-conserving CE transition) is in competition with the 
electronic and nuclear relaxation T1e and T1n, as well as with the CE back-transition that is allowed and 
equally probable. This will be treated in more detail in the Section 2.4. 
 
As for the previous description of SE, this model does not say anything about the probability of WCE 
transitions. To access this information, a quantum-mechanical treatment of this 3-spin system should be 
done under μW irradiation (41, 45, 46), but this is beyond the scope of this thesis. 

2.2.3 Thermal Mixing 

The two models presented above neglect the effect of dipole-dipole interactions among the electrons. 
Under such interactions, if the electronic spin diffusion is more efficient than the spin lattice relaxation, 
the electron spin system will respond as a whole to microwave irradiation. The description of the DNP 
process should include such collective effects. A new approach using a many-particle thermodynamic 
description rather than a quantum description of single-particle discrete transitions was developed. This 
mechanism is referred to as Thermal Mixing (TM). The description below is based on reviews by Atsarkin 
(35, 47, 48) and Goertz (49). 
 
The central quantity of the process is the spin temperature (29-31). As shown in Chapter 1, for any 
system with energy levels E1 and E2, with an energy difference ΔE1,2, the ratio n1/n2 of the populations of 
the two energy levels will be given by Boltzmann’s law :  
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It is therefore possible to express a population difference between the two levels E1 and E2 in terms of a 
spin temperature: 
 

( ) ( )( )
1,2

1,2
1 2ln lnB

E
T

k n n

∆
= −

−
 (2.2) 

 
The same rearrangement can be done for the expression of the polarization described in Equation 1.7 in 
Chapter 1.  
 
In the simplest case of thermal equilibrium, T1,2 is given by the temperature of the heat bath surrounding 
the system, i.e., the temperature TL of the lattice. As soon as the system is moved out of equilibrium, T1,2 
will diverge from TL. For example, saturation will heat T1,2 and hyperpolarization will cool it down. The 
parameter T1,2 thus reflects the ordering of the system, no matter by which mechanism it may have 
attained this order. 
 
The spin temperature concept was used by Redfield (31) to describe the evolution of a spin system under 
strong irradiation. Such a system is most simply described in a rotating reference frame (noted here by 
an asterisk *) given by the irradiation frequency νμW (in the case of the electronic spin system). In such a 
frame, the quantization axis is given by the direction of the effective field Beff, the vector sum of the μW 
field B1

* and of the longitudinal field B0
* = Δν/γ (where Δν = νμW - ν0(e) is the offset of the microwave 

frequency and γ is in frequency units). Therefore, when a microwave irradiation is applied with a 
frequency νμW close to the electron frequency ν0(e), the spin temperature (TZe*) of the electron Zeeman 
system is reduced by a factor - Δν/ν0(e). As a result, the corresponding equilibrium temperature in the 
rotating frame is as low as TZe

* = -TL Δν/ν0(e).  
 
Provotorov (27, 28) described the resonant saturation of an electronic system experiencing efficient 
spin-spin diffusion under a weak transverse field in the high temperature approximation. The system is 
described by two reservoirs; the electron Zeeman reservoir Z(e) and the spin-spin subsystem SS(e) 
corresponding to the splitting of the electron spin Hamiltonian in two commuting parts, the Zeeman and 
the truncated dipolar Hamiltonians. Each of these reservoirs possesses its own spin temperature TZe, 
respectively TSSe. Provotorov described the evolution of the two inverse spin temperatures βZe = (kBTZe)

-1 
and βSSe = (kBTSSe)

-1 with two simple rate equations under conditions of arbitrary saturation. If such a two-
temperature model is applicable to the system, the Provotorov equations predict that under microwave 
irradiation at frequency νμW = ν0(e) + Δν, the values of βZe and βSSe become different. Microwave 
irradiation with a frequency that is slightly off-resonance from ν0(e) will push TZe and TSSe away from the 
thermal equilibrium situation where they are equal to the lattice temperature TL. Part of the energy 
quanta hνμW provided by the μW irradiation will be absorbed by the Zeeman system, and the remaining 
part will be either absorbed or emitted by the electronic dipolar system. It is thus possible to cool down 
the electron dipolar bath by irradiation at a frequency slightly different from the electron Larmor 
frequency. Figure 2.6a shows the distribution of the populations across the energy levels if TZe = TSSe = TL, 
or if TSSe ≠ TZe, where TSSe can be positive or negative. 
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Figure 2.6: a) Dynamic cooling of the electronic dipole-dipole reservoir induced through microwave irradiation with 

a frequency shift Δν = νμW - ν0(e). The abscissae give the relative populations in the energy levels and the vertical 
axis represents the energy. b) Schematic representation of the ESR line-shape under the conditions described in a.  
Adapted from (35) and (13). 

The Provotorov equations predict a characteristic distortion of the EPR absorption line-shape under 
conditions of saturation with Δν ≠ 0. Following the population distribution described in Figure 2.6a, if 
spin diffusion is faster than spin-lattice relaxation, the μW irradiation with a slight offset Δν should give 
rise to a region of emission and of increased absorption in the ESR spectrum (Figure 2.6b). Such shapes, 
which are diagnostic of two distinct spin temperatures, were indeed observed experimentally (See 
Reference (35)). 
 
The nuclear spin system can then be included. If the NMR Larmor frequency ν0(n) falls in the range of the 
characteristic electron dipolar linewidth (i.e. if ν0(n) < Δ), energy exchanges between the electron dipolar 
subsystem and the nuclear Zeeman bath are possible. Such exchanges will happen via electron-nucleus 
dipole-dipole interactions and electron-electron flip-flops, i.e., via the same kind of contributions as in 
the CE mechanism. This is why “one can consider the Thermal Mixing process as a generalization of the 

3-spin CE to real many-particle spin-spin interactions” (Atsarkin in (47, 48)). The spin temperature TSSe of 
the electron dipolar bath will tend to become equal to the nuclear Zeeman spin temperature TZn. A 
decrease of TZn corresponds to an increase of the nuclear polarization as P(n) = tanh(Ñν0(n)/kBTZn). 
 
A complete description of the DNP process in thermodynamical language, with the concepts of spin 
temperature, thermal balance, and contacts between heat reservoirs, is thus possible. A schematic 
picture is shown in Figure 2.7. Under microwave irradiation, there are two lattice reservoirs. The first one 
is in the rotating frame, strongly cooled to TL

* = -TL Δν/ν0(e), which acts as a refrigerator for the 
electronic Zeeman subsystem with relaxation rate W1(e). As they are not resonant with the μW 
irradiation, the electron dipolar bath SS(e) and the nuclear Zeeman bath Z(n) are connected to the lattice 
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with a “normal” temperature TL with relaxation rates W1(SS) and W1(n). The cold electron Zeeman bath 
Z*(e) is coupled to the electron dipolar bath via microwave pumping with a rate WμW.  

 

Figure 2.7: Heat flow diagram to illustrate Thermal Mixing (TM). The arrows show the channels of thermal 
exchange. The corresponding rates are the transition probabilities W. 

The reservoirs SS(e) and Z(n) are connected via Thermal Mixing. Using this thermal balance diagram, it is 
in theory possible to calculate the steady-state enhancement of the nuclear polarization. Nevertheless, 
to be able to obtain qualitative predictions, some of the approximations have to be lifted. The model was 
first extended to the case of inhomogeneous EPR broadening with fast spectral diffusion, using the 
concept of spin packets (35). The model was also verified in the low-temperature limit by Borghini (37) 
and a nuclear leakage factor was added by de Boer (36). More recently, a model for partial saturation at 
low temperature was also proposed (12, 38). 
 
The conditions where hyperpolarization of nuclei via Thermal Mixing can happen are actually quite strict. 
The width of the ESR line should be larger than the Larmor frequency of the nucleus to be polarized. 
Furthermore, the electronic spectral diffusion within the EPR spectrum should be faster than the 
electron spin lattice relaxation. These conditions are favoured at low field, at low temperature (longer 
T1e) or at high electron concentration (faster spin diffusion). Interestingly, these requirements are 
fulfilled in standard Dissolution-DNP conditions (3.35 T, 1.2 K, 15-30 mM radicals). A great deal of 
evidence shows that TM is indeed the dominant mechanism under such conditions. Nevertheless, at 
higher fields, e.g., at 6.7 T as in the experiments presented in this thesis, the situation is more 
complicated and a competition between SE, CE and TM happened. This subject will be developed in 
more detail in the Section 2.3. 

2.3 Distinguishing between DNP mechanisms  

2.3.1 Exclusion of mechanisms 

In some cases, the conditions are such that some DNP mechanisms can be readily excluded. If the ESR 
linewidth of radical is smaller than the Larmor frequency of the nuclei to be polarized, neither Cross 
Effect nor Thermal Mixing will be possible and the polarization will happen only through the Solid Effect 
(See Figure 2.9a for an example). Note that the contrary is not true: if Δν½(ESR) > ν0(n), polarization via 
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SE is possible, as shown below. Moreover, as SE happens through a forbidden transition, it is most likely 
that this mechanism will not be favoured if the microwave irradiation field strength is low. For example, 
in our D-DNP polarizer, there is no resonant cavity for μW, so that ν1μW is very low, between 1 and 10 
kHz. Under these conditions, polarization will most likely build up via CE or TM mechanisms, which 
involve allowed single-quantum electronic transitions. 
 
It is also important to remember that Thermal Mixing can occur only if the electronic spectral diffusion is 
fast compared to T1e, especially in the case of inhomogeneously broadened ESR spectra, where the 
electronic magnetization has to diffuse from spin packet to spin packet. In the case of a system of non-
interacting spin packets, only a fraction of the ESR spectrum will be saturated and holes will be burned in 
the ESR line shape. The nuclear polarization will eventually build up via the Cross Effect but not via TM. In 
this context, the usual conditions at 3.35 T and 1.2 K are favourable to the establishment of electronic 
Thermal Mixing. T1e is on the order of 1 s and spin diffusion is fast at high electron concentration (15 - 30 
mM). Nevertheless, T1e decreases extremely fast at higher temperatures, thus excluding TM. Moreover, 
as the g anisotropy is field-dependent, whereas the homogeneous broadening is not, increasing the field 
will slow down spin diffusion (see Figure 2.3 for an illustration). The homogeneous broadening can be 
augmented by increasing the radical concentration, but this will also affect the electronic spin-lattice 
relaxation time. Therefore, at higher fields, like under our conditions at B0 = 6.7 T, Thermal Mixing is less 
favoured, and we should be in a transition regime between TM and CE. Some evidence for this regime 
will be shown in the next Sections. 

2.3.1 Simulations of DNP frequency spectra 

As shown in Section 2.1, a diagnostic tool to distinguish between SE and CE contribution is the inspection 
of the difference Δmax

DNP of μW frequencies between the positive and negative DNP maxima. Indeed, 
with the 2-spin e-n and 3-spin e1-e2-n models used in section 2.2 Δmax

DNP(SE) should be twice as large as 
the nuclear Larmor frequency, and Δmax

DNP(CE) should be equal to ν0(n). Nevertheless, the ESR linewidth 
of the radicals also plays an important role in determining the shape of the DNP frequency spectra. As 
Δν½(ESR) becomes larger than ν0(n), the situation becomes less clear-cut, and Δmax

DNP(SE or CE) deviate 
from 2ν0(n) respectively from ν0(n). 
 
The EPR lineshape of the free radicals can be used to calculate qualitatively the contributions of the Solid 
Effect and the Cross Effect to the DNP frequency spectra. This approach shown below is inspired by the 
one developed by Vega et al. (11, 44, 50, 51). Even if it is used here in a more simplistic way, it allows one 
to see qualitatively the influence of the ESR linewidth. Following the description in 2.2.1 and 2.2.2, the 
contributions of SE to the shape of the DNP frequency spectra can be estimated, taking the fraction of 
electrons at each irradiation frequency νµW that contribute to a net nuclear enhancement (negative + 
positive contributions). Similarly, at each irradiation frequency νµW, the electrons contributing to a net 
nuclear enhancement (negative + positive contributions) by the CE mechanism can be estimated 
considering the product of the electrons irradiated and their coupling partners that match the CE (ZQ) or 
CE (DQ) conditions: 
 

( ) ( ) ( )0 0( ) ( )W SE ESR W ESR WSE a I n I nµ µ µν ν ν ν ν = + − − 
; (2.3) 

( ) ( ) ( ) ( )0 0( ) ( )W CE ESR W ESR W ESR WCE a I I n I nµ µ µ µν ν ν ν ν ν = + − − 
. (2.4) 
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where IESR(νµW) is the ESR intensity at frequency νµW, and aSE , aCE are the contributions of the SE and CE 
mechanisms.  
 
Different DNP frequency spectra for 1H were calculated using equations 2.3 and 2.4 for the SE and CE 
mechanisms described above. A single Gaussian with a central frequency ν0(ESR) = 188.1 GHz (TEMPO at 
6.7 T) and a variable ESR linewidth (Δν½(ESR)) was used and the proton frequency was set to ν0(1H) = 285 
MHz (1H frequency at 6.7 T). As can be seen in Figure 2.8a,b, radicals with ESR lines narrower than the 
Larmor frequency of the nucleus will polarize exclusively through SE mechanism. Under these conditions, 
there is no chance of finding a pair of coupled electrons that can contribute to DNP through the CE 
mechanism.  

 

Figure 2.8: a) Contributions due to the solid effect (SE) calculated with Equation 2.3 using a single Gaussian 
centered at ν0(ESR) = 188.1 GHz with a variable width at half-height Δν½(ESR). ν0(1H) = 285 MHz (proton Larmor 
frequency at 6.7 T). b) CE contributions calculated with Equation 2.4 under the same conditions as in (a). c) 
Difference between the positive and negative extrema of the SE and CE contributions in the DNP frequency spectra 

Δmax
DNP(SE,CE) as a function of the width at half-height Δν½(ESR) for three nuclear Larmor frequencies ν0(n = 1H) = 

285 MHz, ν0(n = 13C) = 71.25 MHz and ν0(n = 15N) = 28.5 MHz, calculated with Equations 2.3 and 2.4 as in (a) and (b). 

With the model used here, the electron contributions are summed over the ESR lineshape, so that 
Δmax

DNP(SE, CE) changes. To show this, Δmax
DNP is calculated as function of the width of the ESR line as 

reported in Figure 2.8c for three different Larmor frequencies, ν0(n) = 285, 71.25 and 28.5 MHz 
representing 1H, 13C and 15N at B0 = 6.7 T. As the ESR linewidth increases, the frequency difference 
between the negative and positive DNP maxima increases. For the SE contribution, Δmax

DNP(SE) starts at 
2ν0(n) and increases when Δν½(ESR)/ν0(n) > 1, i.e., when the electron linewidth becomes larger than the 
nuclear Larmor frequency. For the CE contribution, Δmax

DNP(CE) starts at ν0(n) and increases when 
Δν½(ESR)/ν0(n) > 1. Moreover, for very large ESR linewidths compared to the nuclear Larmor frequency, 
Δmax

DNP(SE) respectively Δmax
DNP(CE) tends to a common value regardless of the nucleus n. 

 
To illustrate the influence of the ESR linewidth of the free radical on the dominant DNP mechanism, two 
experimental DNP frequency spectra are shown in Figure 2.9. In the first example the protons of 
polystyrene (d8:d5 95:5) are polarized by 40 mM BDPA, a narrow linewidth radical (Δν½(ESR) < ν0(1H)), at 
B0 = 6.7 T and T = 4.2 K. As Δν½(ESR) is smaller than the 1H Larmor frequency, it is mainly the Solid Effect 
that contributes to the DNP enhancement. As expected, the difference between the frequencies of 
maximal positive and negative enhancements Δmax

DNP is 2ν0(
1H). Note also the presence of an 

enhancement at νµW = ν0(ESR) via the Overhauser mechanism (data kindly shared by Xiao Ji). This 
mechanism will not be analysed here. In the second example, 3 M sodium acetate-113C in H2O:D2O:Gly-d8 
(1:4:5) was polarized under the same conditions by 50 mM TEMPOL, which has a broad ESR linewidth 
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(Δν½(ESR) = 300 ± 5 MHz). The 1H and 13C intensities are normalized. As shown above, since Δν½(ESR) is 
larger than the 13C Larmor frequency, the µW frequency difference between maximal positive and 
negative DNP enhancements tends to shift to a common value with the one of 1H. Δmax

DNP in both 1H and 
13C DNP spectra is larger than ν0(

1H) and ν0(
13C), respectively.  

 

Figure 2.9: a) Normalized experimental 1H DNP spectrum of polystyrene (d8:d5 95:5) polarized by 40 mM BDPA at B0 
= 6.7 T and T = 4.2 K. b) Normalized experimental 1H and 13C DNP spectra of 3 M 1-13C acetate in H2O:D2O:Gly-d8 
(1:4:5) polarized by 50 mM TEMPOL at B0 = 6.7 T and T = 4.2 K. 

To be informative, the analysis of the DNP spectrum should not only include the ESR linewidth, but also 
the influence of other parameters, such as the microwave saturation of the EPR line, the electronic and 
nuclear relaxation rates and the electronic and nuclear spectral diffusion rates. In recent years, many 
authors have developed advanced models of the DNP mechanism, notably via a full quantum mechanical 
treatment of the Solid Effect and of the Cross Effect, as proposed by Griffin et al. (41) by Kockenberger et 

al. (43, 46) and  Vega et al. (40, 45, 52, 53). It is therefore possible to predict “ab initio” the shape of the 
DNP frequency spectra for different conditions and to compare it to experimental data in order to study 
the contributions of the different mechanisms. This approach was mainly developed in the group of Vega 

(11, 40, 44, 45, 50, 51, 54, 55).  They computed the spin Hamiltonian of interacting 2-spin systems e-n for 
SE or 3-spin system e1-e2-n for CE, diagonalized its matrix representation in the rotating frame of the 
electrons in order to introduce different relaxation rates. Then, solving the Liouville - von Neuman 
equation in the presence of the μW field, the evolution of the system is obtained. Enhancements as a 
function of the microwave irradiation frequency (DNP spectra) can be obtained for both SE and CE 
effects. The fit of experimental data with these two “basis” spectra allows one to determine the relative 
contributions of SE and CE under different conditions (temperature, type of radical, radical 
concentration, μW field strength, etc.) 
 
In their analysis, with a microwave power of 600 kHz, they showed that at temperatures between 20 and 
4 K, the SE contribution to the DNP enhancement becomes dominant with respect to CE. In a recent 
study (54), these authors analysed the influence of the microwave power on the DNP spectra. They 
showed that a reduction of the μW power to ν1μW = 60 kHz almost suppresses the SE contribution and 
increases the CE effect at low temperatures. This trend, also reported by Han et al. (55) agrees with our 
observations at 6.7 T and 1.2 K. This makes sense: since the microwave field strength in our polarizer is 
as low as ν1μW = 1 - 10 kHz, we are far from ESR saturation. 
 
It is possible to fit the DNP spectra shown in Figure 2.9b with an admixture of SE and CE “basis spectra” 
calculated with Equations 2.3 and 2.4, but including the influence of the μW saturation and of electronic 
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spectral diffusion. The Matlab notebook used for the calculations is given in the Appendix of this 
Chapter. A nearly pure (95 %) CE basis shape gives the best fit of the experimental 1H and 13C DNP 
spectra. Moreover, admixtures of CE and SE “basis spectra” are not sufficient to perfectly match the 
experimental data, indicating that under our DNP conditions, Thermal Mixing should still be active. 

 

Figure 2.10: Fit of the DNP spectra of 1H (a) and 13C (b) DNP of 3 M 1-13C acetate in H2O:D2O:Gly-d8 (1:4:5) polarized 
by 50 mM TEMPOL at B0 = 6.7 T and T = 4.2 K with ‘’basic’’ SE and CE contributions calculated using Equations 

shown in the Appendix to this Chapter. The microwave field strength and the bandwidth ΔνµW(SD) simulating 
electronic spin diffusion are varied to obtain ‘’basic’’ SE(νµW) and CE (νµW) responses. For each combination ν1µW 
and ΔνµW(SD), the best RMSD are reported in c (10% (green), 5% (blue) 1% (red). 

2.3.2 Common nuclear spin temperature 

A key difference between the SE/CE and TM mechanisms resides in the fact that in the first case the 
transferred quantity is the electronic polarization, whereas in the second it is the spin temperature. In 
the case of Thermal Mixing, all polarized nuclei should have a common spin temperature, whatever the 
irradiation frequency. Therefore, their steady-state DNP polarizations should be proportional to their 
gyromagnetic ratios γ and their normalized DNP spectra should have the same shape for all nuclei. On 
the contrary, for CE and SE, at least in the limit where the ESR linewidth is not much larger than ν0(n), the 
DNP spectra of each nucleus should be different, with a difference Δmax

DNP between the optima of 2ν0(n) 
for SE or ν0(n) for CE, but the intensity of each DNP spectrum should be the same.  
 
For many isotopes at 3.35 T and 1.2 K, it was shown that different nuclei polarized in the same sample 
shared the same Zeeman spin temperature (39). This is clear evidence that the major contribution stems 
from Thermal Mixing under these conditions. An example of DNP spectra of 1H and 13C of 1-13C sodium 
acetate polarized by 33 mM TEMPO at 3.35 T and 1.2 K is shown in Figure 2.11 (56).  
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Figure 2.11: Microwave DNP spectra measured in a frozen 3 M sodium acetate solution in 67/33 vol% deuterated 
water/ethanol doped with 33 mM TEMPO. Absolute polarizations (left) and corresponding spin temperatures 
(right) (Adapted from (56)). 

Measurements of steady-state DNP polarizations of 3 M 1-13C acetate in the presence of 30 mM TEMPOL 
at 3.35 T at different temperatures show the same trends (57) (see Table 2.2 in Section 2.5.1). 
Nevertheless, if the field is increased to 6.7 T, the Zeeman spin temperatures of 1H and 13C in the DNP 
steady state are no longer the same (58) (see Table 2.3 in Section 2.5.2). This indicates that, under our 
conditions, TM becomes less efficient at higher fields and competes with CE. 
 
It can be seen in Figure 2.9b that, even if they no longer share a common spin temperature, 1H and 13C 
have a DNP spectrum with similar normalized shapes at 6.7 T with an optimized TEMPOL concentration 
(50 mM). Nevertheless, if the free radical concentration is decreased, i.e., if the homogeneous 
broadening is decreased, the positive and negative 13C DNP maxima tend to shift away from the one of 
1H, and Δmax

DNP(13C) shrinks. This can be seen in Figure 2.12 where 1H and 13C DNP spectra of 1-13C acetate 
3 M were recorded for different TEMPOL concentrations at 4.2 K. 

 

Figure 2.12: Comparison between the normalized 1H and 13C DNP spectra of 3 M 1-13C acetate in H2O:D2O:Gly-d8 
(1:4:5) polarized by 50, 25 and 10 mM TEMPOL at B0 = 6.7 T and T = 4.2 K. 

2.3.3 Inspection of the saturated ESR spectrum 

Another way to identify the dominant DNP mechanism could be to observe the ESR spectrum of a DNP 
sample under microwave irradiation. As shown in Figure 2.6 in Chapter 2.2.3, if Thermal Mixing occurs, 
i.e., if electronic spin diffusion is fast enough, a μW irradiation with a slight offset Δν should give rise to 
region of emission and of increased absorption in the ESR spectrum. On the other hand, when spectral 
diffusion within the EPR spectrum is less effective, the microwave pumping should produce a “hole-
burning” effect in the ESR shape.  
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2.4 Simulations of DNP dynamics with rate equations 

 
In this section we discuss an approach, based on the work by Rosso et al. (1-3) using rate equations, to 
see the effect on the CE efficiency of electronic parameters (the μW saturation and the electronic 
polarization) and of nuclear parameters (T1n and the number of protons to be polarized) on the final 
polarization and on DNP build-up rates.  

2.4.1 Cross Effect Model 1 (without spin diffusion) 

This model of rate equations will only be applied here for the Cross Effect mechanism. It can be easily 
adapted to SE. In this first model, the electronic spin diffusion will be approximated by the digitization of 
the ESR spectrum and no nuclear spin diffusion will be considered. The later can be added in a more 
advanced model (section 2.4.2). Only three species will be considered: the fraction of the electrons 
irradiated at the microwave frequency νμW (e(νμW)), in black in Figure 2.13 and 2.14; the fraction of the 
electrons that are coupled to (e(νμW) and satisfy the CE (DQ) condition, resonating upfield at νμW + ν0(n) 
(in red), or the electrons coupled to (e(νμW) and satisfying the CE (ZQ) condition, resonating downfield at 
νμW - ν0(n) (in green); and the nuclei coupled to e(νμW + ν0(n)) or e(νμW - ν0(n)). Each of them can be 
either in the α or β state. 
 
The entire pathway for positive nuclear polarization (CE (DQ)) is drawn in Figure 2.13a. This one can be 
considered in parallel to Figure 2.4.  

 

Figure 2.13: Pathways of the CE (DQ, ZQ) mechanisms described by a model without electronic or nuclear spin 

diffusion. e(νμW) (black) is the irradiated electronic spin, e(νμW + ν0(n)) (red) and e(νμW - ν0(n)) (green) are coupled to 
e(νμW) and polarize their coupled nuclei, n,  via CE (DQ) (a) or CE (ZQ) (b). 
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Starting with eβ(νμW) in the β state, this electron will be excited by microwave irradiation to the α state 
eα(νμW) with a certain rate WμW in competition with the electronic spin lattice relaxation that drives the 
eβ(νμW) and eα(νμW) populations back to Boltzmann equilibrium with a rate W1e. An excited electron 
eα(νμW) can also make an energy-conserving “flop-flip-flip” if it is coupled to an electron resonating at νμW 
+ ν0(n) in the β state, itself coupled to a nucleus in the β state. This transition occurs with a certain rate 
WCE(DQ). The “flip-flop-flop” back-transition has an equal probability, and thus the same rate. Once out 
of equilibrium, the β and α populations of e(νμW + ν0(n)) will return to Boltzmann equilibrium with the 
electron spin lattice relaxation rate W1e, like the nα and nβ populations, but through nuclear spin lattice 
relaxation rate W1n, which is much slower. 
 
The pathway for negative nuclear polarization (CE (ZQ)) is the same except that the nuclear population is 
pushed out of Boltzmann equilibrium through the coupling of eα(νμW) with eβ(νμW - ν0(n)) and nα 
populations. 
 
The rates equations corresponding to the pathway of Figure 2.13 (positive polarization) for the six 
populations are shown in Equation 2.9.  For the sake of clarity, eβ(νμW) and eα(νμW) of Figure 2.13a are 
replaced by e1,β and e1,α, while eβ(νμW + ν0(n)) and eα(νμW + ν0(n)) are replaced by e2,β and e2,α. 
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 (2.3) 

 
The next step consists in setting realistic starting conditions for the 6 populations that will evolve with 
rate equations 2.3. To do so, the ESR spectrum of 50 mM TEMPOL at 6.7 T and 4.2 K is digitized in steps 
of 71.25 MHz. Note that this digitizing step mimics the electronic spin diffusion. For simplicity, it is 
assumed that at νμW, the DNP enhancement occurs only through CE (DQ). Indeed, as can be seen in the 
example described in Figure 2.14, no electrons resonate at νμW - ν0(n), and thus no negative DNP 
enhancement can occur via CE (ZQ).  
 
In our example, we assume that on average the irradiated electrons will have a chance to undergo an 
energy-conserving e1αe2βnβ ↔ e1βe2αnα transition with a coupled electron resonating at νμW + ν0(n) sitting 
in a sphere of 6 nm around e(νμW). Admittedly, this is a rough approximation. In fact, the rate WCE(DQ) 
will depend on the electron-electron dipole-dipole coupling, and thus on the e-e distance. Nevertheless 
to obtain a mere qualitative picture of the effect of electronic and nuclear parameters on the DNP 
process, this approximation is sufficient. In a sample of 50 mM TEMPO, each electron is surrounded by 
25 other neighbouring electrons in a sphere of 6 nm. 
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Figure 2.14: Schematic representations of the irradiated electron e(νμW) (in black), its coupled electrons fulfilling 
the CE (DQ) condition e(νμW + ν0(n)) (in red) and the nuclei (in orange and green) involved in the DNP polarization 
via CE (DQ) mechanism described in our rate equation model. 

In the scheme of Figure 2.14, these 25 electrons that are sufficiently strongly coupled to e(νμW) are 
projected onto a plane for the sake of readability. Normalizing the ESR spectrum so that e(νμW) 
represents 1/25 of the total number of electrons Ne, e(νμW + ν0(n)) will represent 5/25 of Ne in our 
example. So on average, each electron irradiated at νμW will have 5 surrounding electrons that are 
capable of polarizing the nuclei via CE (DQ), i.e., that resonate at νμW + ν0(n), and that are sufficiently 
strongly coupled.  
 
We assume that nuclei sitting in a sphere of 1 nm radius around an electron can be polarized via CE. 
Again, this is a rough approximation because (1) the rate WCE depends on the e-n distance, (2) we only 
consider the core nuclei (a model considering the bulk nuclei polarized via nuclear spin diffusion will be 
described in section 2.4.2). But again, this model is sufficient for our purpose and has the advantage of 
being simple enough to be solved numerically. In the case of our standard DNP sample presented in 2.1.2 
with 10% 1H, 25 proton spins lie within a sphere of 1 nm around e(νμW + ν0(n)). Like for the electron, the 
nuclei presented in the scheme of Figure 2.13 are projected onto a plane for the sake of readability. 
 
The evolution of the 6 populations described by the system of rate equations 2.3 and Figure 2.13 can be 
easily solved numerically with Mathematica (the notebook used to solved this system is given in the 
Appendix of this Chapter). The initial conditions of the populations are given by the definitions of the 
electronic and nuclear polarizations P(e) and P(n): 
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Like before, eβ(νμW) and eα(νμW) are replaced by e1,β and e1,α, while eβ(νμW + ν0(n)) and eα(νμW + ν0(n)) are 
replaced by e2,β and e2,α, for the sake of readability. Ne,0, Ne,D and Nn represent the relative fractions of 
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irradiated electrons e(νμW), of electrons coupled to e(νμW) resonating at νμW + ν0(n), and of nuclei coupled 
to e(νμW + ν0(n)).  
 
Within the limits of the approximations outlined above, it is possible to vary μW, electronic and nuclear 
parameters, to solve numerically the equations 2.3 and to access to the population of the states 
eβ,α(νμW), eβ,α (νμW + ν0(n)) and nα, β for different irradiation times t. The nuclear polarization P(n)(t) is 
calculated as (nα(t)-nβ(t))/(nα(t)+nβ(t)). The fit of P(n)(t) to a mono-exponential function permits one to 
extract the simulated DNP build-up time constant τDNP(n) for different parameters. In the next sections, 
unless specified, these parameters are set by default to: Ne,0 = 1, Ne,D = 5 Ne,0, Nn = 25 Ne,D; P(e) = 0.98, 
P(n) = 0.006; T1e = 1/W1e = 1 s, T1n = 1/W1n = 1000 s; TCE = 1/WCE = 1 s; WμW =  1/5 s-1. 
 
Influence of the CE efficiency, the μW field strength and the electronic polarization: 

 

Figure 2.15: Calculations of P(n) (t) obtained by numerically solving the system of rate equations 2.3, which 
describes the CE model 1 (without nuclear or electronic spin diffusion), varying a) the CE efficiency, b) the 
microwave field strength, c) the electronic polarization. Unless they are varied, the parameters are set to Ne,0 =1, 
Ne,D = 5 Ne,0, Nn = 25 Ne,D; P(e) = 0.98, P(n) = 0.006; T1e = 1/W1e = 1 s, T1n = 1/W1n = 1000 s; TCE = 1/WCE = 1 s; WμW =  
1/5 s-1. The maximal nuclear polarization and the DNP build-up time constant extracted by a mono-exponential fit 
of P(n) (t) are reported. 
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In Figure 2.15, some of the electronic parameters are varied. For each case, P(n)(t) is shown, as well as 
P(n)max and τDNP(n). The rate WCE at which the CE transition occurs is the central parameter of the 
process. It can be seen as a measure of the efficiency of the contact between the electrons and the 
nuclei. WCE competes with the electronic spin lattice relaxation. If 1/WCE is fast compared to T1e (T1e = 1 s 
in our simulations), the maximal polarization reaches a plateau and the DNP build-up is fast (Figure 
2.15a). If 1/WCE = T1e, the CE transition becomes the rate-limiting process, and both P(n)max and τDNP(n) 
become highly dependent on WCE. In fact, introducing an inefficient e-n contact in the model can mimic 
slow electron spin diffusion (2). 
 
Figure 2.15b shows the importance of the microwave field strength. The rate WμW at which the electrons 
are excited competes with 1/T1e. Below the saturation limit, the more intense ν1μW, the more electronic 
spins eα(νμW) are available to polarize the nuclei via the CE process. Increasing ν1μW increases the nuclear 
polarization and shortens the DNP build-up time constants. Once the electrons under irradiation are 
saturated, both P(n)max and τDNP(n) reach a plateau.  
 
Finally, it can be seen in Figure 2.15c that, due to leakage rates, the maximal nuclear polarization is not 
linearly proportional to the electronic polarization P(e). At high polarization levels, P(n)max is extremely 
sensitive to P(e). For example, between P(e) = 100% and P(e) = 95%, with our model, we calculated that 
P(n)max is reduced by 37.5% from 80% to 50%. Similarly, as P(e) increases, the DNP build-up slows down. 
This can be one of the multiple causes of the changes in experimental DNP behaviour observed when the 
field was doubled form 3.35 T to 6.7 T (see Section 2.5).  
 
Effect of the nuclear relaxation time T1n 
 
In the discussion proposed in Section 2.3 based on the analysis of DNP spectra, it was not possible to get 
information about the influence of nuclear parameters on the DNP process. Indeed, unlike free 
electrons, the nuclei only have a minor impact on the shape of the DNP spectrum. With the present 
model based on rate equations, it is possible to describe and predict the influence of some nuclear 
parameters on the final polarization and build-up rates. As it can be seen in Figure 2.13, the nuclear 
relaxation rate 1/T1n will be opposed to the DNP process, driving the hyperpolarized populations back to 
Boltzmann equilibrium. In the same manner as in the theory of Thermal Mixing, this can be referred to as 
a leakage factor (36). If 1/T1n is fast compared to the DNP process, the nuclear populations will never 
reach the same polarizations as the electrons, but will stabilize at a much lower steady-state polarization 
because of the leakage (Figure 2.16a). 
 
It is difficult to correlate information extracted from the analysis of our model with experimental data. 
Indeed, as they are interconnected, it is almost impossible to vary experimentally only one parameter at 
a time. Nevertheless, in the case of T1n, a DNP sample fulfills this mission quite well. A mixture of 
Toluene-d8:THF 9:1 with 50 mM TEMPO at 6.7 T shows drastic changes of proton T1n between T = 4.2 and 
1.2 K. In Figure 2.16b, T1n (1H) varies from 10 s to 1000 s in this small temperature range. Bearing in mind 
that other parameters like P(e), T1e, T2n, etc. are also temperature-dependent, we conclude that in this 
sample Pmax(

1H) and τDNP(1H) depend mainly on T1n. As shown in figure 2.16b, the maximal 1H polarization 
and the build-up time constant measured experimentally as a function of T1n follow the same trend as 
the one predicted with our simple model of rate equations. 
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Figure 2.16: a) Calculation of P(n)(t) obtained by numerically solving the system of rate equations 2.3, varying the 
nuclear relaxation time constant T1n. The other parameters are set to Ne,0 =1, Ne,D = 5 Ne,0, Nn = 25 Ne,D; P(e) = 0.98, 
P(n) = 0.006; T1e = 1/W1e = 1 s; TCE = 1/WCE = 1 s; WμW =  1/5 s-1. The maximal nuclear polarization, as well as the DNP 
build-up time constant are extracted by mono-exponential fit of P(n) (t). b) DNP build-up of Toluene-d8:THF 9:1with 
50 mM TEMPO at B0 = 6.7 T, under μW irradiation (νμW = 188.3 GHz, PμW = 100 mW) and T1n decay as function of 
the temperature, T = 1.2 – 4.2 K. The maximal 1H polarization and the build-up time constant are also reported as 
function of T1n. 

Effect of the density of nuclear spins to be polarized: 
 
A second important nuclear parameter is the density of the nuclei to be polarized, or the number of 
nuclear spins coupled to the electrons involved in the DNP mechanism. In terms of Thermal Mixing 
theory, this can be seen as a “heat load”. Because of T1n relaxation or leakage, the higher the number of 
spins to be polarized by each electron, the lower the final steady-state nuclear polarization. In the same 
manner, the larger the number of nuclei that must be polarized, the longer the build-up time constant 
(Figure 2.17a). 
 
It is quite straightforward to vary the density of the protons spins to be polarized by controlling the 
degree of deuteration of the DNP sample. In Figure 2.17b, the maximal 1H polarizations as well as the 
DNP build-up time constants are shown as a function of the μW irradiation frequency for samples of 1-
13C acetate in glycerol:water (1:1) with 5, 10 or 100% of protons, at B0 = 6.7 T and T = 4.2 K. Even if some 
other parameters, especially T2n, may be perturbed, the proton density is the main variable in these 
experiments. The experimental Pmax(

1H) and τDNP(1H) as function of the number of nuclear spins follows 
the same trend as predicted by the simple rate equation model (Figure 2.17). One can also see that the 
proton density has no influence on the shape of the DNP spectrum. 
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Figure 2.17: a) Calculation of P(n) (t) obtained by numerically solving the system of rate equations 2.3, varying the 
number of nuclear spins Nn coupled to each electron. The other parameters are set to Ne,0 =1, Ne,D = 5 Ne,0; P(e) = 
0.98, P(n) = 0.006; T1e = 1/W1e = 1 s, T1n =1/W1n = 1000 s; TCE = 1/WCE = 1 s; WμW =  1/5 s-1. The maximal nuclear 
polarization and the DNP build-up time constant are extracted by mono-exponential fits of P(n)(t). b) 1H and 13C 
DNP spectra of 3 M 1-13C acetate in water:glycerol (1:1) protonated to 5, 10, 100% at B0 = 6.7 T and T = 4.2 K, under 

μW irradiation (νμW = 188.3 GHz, PμW = 100 mW). The maximal 1H polarizations and build-up time constants are also 
shown as a function of Nn. 

Interestingly, the maximal 13C polarization is also influenced by the proton density, but not the 13C build-
up time constant (Figure 2.17b). An electron eα(νμW) excited by μW can polarize both 1H and 13C spins. If 
the proton concentration increases, there will be less chance for 13C to be involved in DNP mechanism 
with a given excited electron. This explains why free electrons that have bandwidths narrower than 
ν0(

1H), like those of Trityl (4-6), polarize low-γ nuclei like 13C more efficiently. Some experimental results 
will be given in Section 2.5. 

2.4.2 Cross Effect Model 2 (with nuclear spin diffusion) 

Model 1 proposed in Section 2.4.1 describes all nuclei as a single species. Nevertheless, due to the 
distribution of e-n distances, they should be divided at least in two sub-categories: the core nuclei, which 
are close to the electrons, can be polarized, but have short T1n; and the nuclei of the bulk, which are far 
away from the electrons, cannot be polarized directly, but have long T1n. The two populations 
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communicate with each other via nuclear spin diffusion process. This first approximation only simulates 
a contact between the two baths of nuclear species. A real spin diffusion model is beyond the scope of 
this Thesis. 

 

Figure 2.18: Pathways of the CE (DQ) mechanisms described by a model with nuclear spin diffusion. e(νμW) (black) is 

the irradiated electronic spin, e(νμW + ν0(n)) (red) is coupled to e(νμW) and polarize their coupled nuclei, n
core 

(orange),  via CE (DQ). The nuclei of the bulk, nbulk (yellow) are in contact with nuclei of the core via nuclear spin 
diffusion. 

Model 1 can be modified to take nuclear spin diffusion into account. Figure 2.18 shows the schematic 
DNP pathway for positive polarization through CE (DQ) including two nuclear sub-species, the core and 
bulk nuclei, ncore and nbulk. The scheme is the same as in Figure 2.13, except that the polarization of the 
core population is transmitted to the bulk via energy-conserving flop-flip processes with a rate WSD = 
1/TSD. Each nuclear population is brought back to Boltzmann equilibrium with its own relaxation rate W1n 
= 1/T1n. 
 
The system of rate Equations 2.3 has to be slightly modified to take into account the distinction between 
core and bulk nuclei and the nuclear spin diffusion: 
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 (2.5) 

 
The Mathematica code used to solve this system of equations numerically is given in the Appendix of this 
chapter. 
 
The relaxation time T1n of the ncore nuclei close to the electrons can be set to a more realistic short value 
(T1n

core = 25 s was used in the simulations presented above). This results in a lower maximal polarization 
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of the core nuclei. The CE efficiency and the microwave transition rate have to be adapted to simulate a 
realistic polarization. As underlined by Rosso et al. (2), the use of underestimated W1μW and WCE permits 
one to mimic slow spin diffusion, like for Model 1 in Section 2.4.1.  

 

Figure 2.19: Calculation of P(ncore) (t) (black) and P(nbulk) (t) (red-yellow) solving numerically the system of rates 
equations 2.5, varying the nuclear spin diffusion time constant (TSD). The other parameters are set to Ne,0 =1, Ne,D = 
5 Ne,0, Nn

core = 25 Ne,D, Nn
bulk = 125 Ne,D;  P(e) = 0.98, P(n) = 0.006; T1e = 1/W1e = 1 s, T1n

core =1/W1n
core = 25 s, T1n

bulk 
=1/W1n

bulk = 1000 s; TCE = 1/WCE = 0.01 s; WμW =  1/0.1 s-1. The maximal bulk nuclear polarization, as well as the DNP 
build-up time constant are extracted by mono-exponential fit of P(nbulk) (t). 

For diffusion constants that are fast compared to 1/T1n
bulk, the polarization of the bulk will converge 

towards the polarization of the core nuclei. The bulk polarization will diverge from the core polarization 
only if 1/TSD becomes slow with respect to 1/T1n

bulk. In this case, Pmax
bulk(n) will decreases due to T1n 

leakage. This happens only for extremely slow TSD, as can be seen in Figure 2.19. Thus, except for 
extremely low electron and nuclear concentrations, Model 1 with adapted WCE and W1μW is sufficient to 
describe qualitatively the influence of electronic and nuclear parameter on the DNP process.  

2.4.3 How to polarize nucleus 1 through nucleus 2 without microwave? 

As shown in Section 4.2.1, nuclei with different gyromagnetic ratios influence each other in the DNP 
process. In the experiments described below, it is shown that it is possible to transfer polarization of one 
nucleus to another via electrons, without applying any microwaves. This experiment was proposed by 
Goldman et al. in 1973 (59) and is considered as a proof that the Thermal Mixing mechanism is effective. 
In TM language, the contact between two nuclear reservoirs which brings them to a common spin 
temperature is achieved through their contacts with the electronic spin-spin reservoir. In the next 
Section, it will be shown that it is also possible to explain this experiment with the CE rate equations.   
 
For this experiment, we used a sample of 3 M 1-13C acetate in D2O:Glycerol-d8 (1:1) with 30 mM TEMPOL 
at 3.35 T and 1.2 K. As we shall see below, the field is important. The experiment is described in Figure 
2.20a. First, the 1H spins are polarized by microwave irradiation to P(1H) = 40% . Then the microwave 
irradiation is switched off, and the 13C magnetization is destroyed by a train of 90° pulses. The evolution 
of the 13C magnetization is the monitored with small angle (5°) pulses. 
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Figure 2.20: a) Pulse sequence to monitor the spontaneous transfer of polarization from 1H polarized by DNP to 13C. 
b) 13C DNP build-up, destruction of the 13C magnetization followed by the transfer of 1H polarization to 13C. The data 
are acquired on a sample of 3 M 1-13C acetate in D2O:Glycerol-d8 (1:1) with 30 mM TEMPOL at B0 = 3.35 T, T = 1.2 K. 

As can be seen in Figure 2.20b, after its destruction, the 13C polarization comes back to P(13C) ≈ 3%, which 
is well above the Boltzmann polarization P(13C) = 0.0086% (at this field and this temperature) with a fast 
build-up rate. Clearly, the enhanced 1H polarization is transferred to the 13C nuclei. In terms of Thermal 
Mixing theory, one speaks of a contact between the cold 1H spin bath and the hot 13C spin bath. 
 
It is also possible to explain this effect using the “flip-flop” model developed in 4.2.1, as illustrated in 
Figure 2.21. At the starting point ① in Figure 2.21, the polarization of nucleus n1 (1H in our case) is high, 
n1α >> n1β, and the polarization of n2 (13C in this example) vanishes since n2α = n2β. The electrons, although 
they must be highly polarized, should not be fully polarized. This is extremely important, as will be seen 
later. If Pe ≠ 1, it is possible for n1α that is not in Boltzmann equilibrium to be coupled to an electron in 
the higher Zeeman energy state, eα(ν + ν0n1), itself coupled to an electron in its β state fulfilling the CE 
(DQ) condition, eβ(ν). An energy-conserving flip-flop-flop can occur, promoting eβ(ν) to eα(ν), as shown at 
time ② in Figure 2.21. This is the central step of the transfer of polarization of n1 to n2. The promoted 

electron eα(ν) can also be coupled to an electron fulfilling the CE (DQ) condition with n2 (eβ(ν + ν0n2) (③ 

in Figure 2.21). Thus n2 can be polarized via this CE (DQ) mechanism (④ in Figure 2.21). According to this 
model, the highly polarized nucleus n1 transfers its magnetization to n2 via the electron. One has to be 
aware that the model presented in Figure 2.21 is simplified. Indeed, from ① to ②, the couple eα(ν + ν0n1) 
- n1α could also excite an electron on the other side of the spectrum via CE (ZQ). Similarly, n2 could also 
be polarized negatively via CE (ZQ) with an electron eβ(ν - ν0n2) between③ and ④. Moreover, the 
electrons involved in the mechanism do not all belong to a single “spin packet” as in Figure 2.21, 
normally the contribution of all the electrons of the ESR spectrum should be summed. The final 
polarization will thus be given by a superposition of contributions from all possible pathways, which 
could be constructive or destructive. 
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Figure 2.21: Pathway of the transfer of the polarization n1 to n2. The contributions of the electrons of a single “spin 
packet” are assumed to occur exclusively via the CE (DQ) mechanism. The polarization of the nucleus is high, n1α >> 
n1β, and the polarization of n2 (13C) is zero (n2α = n2β). The electrons, even if highly polarized, are not fully polarized 
P(e) ≠ 1. 

Keeping this approximation in mind, one can nevertheless write the rate equations of the eight 
populations involved in this specific pathway:  
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 (2.6) 

 
For the sake of readability, eβ(νμW) and eα(νμW) are replaced by e1,β and e1,α, while eβ(νμW + ν0(n)) and 
eα(νμW + ν0(n)) are replaced by e2,β and e2,α. The Mathematica code used to solve this system of equations 
numerically is given in the Appendix of this Chapter. 
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According to our model, it is important for the transfer of polarization between the two nuclei n1 and n2 
to occur to have some electrons available in the high-energy α Zeeman state. Therefore, the transfer 
from n1 to n2 is disadvantaged if the electron polarization is too high. In Figure 2.22, the evolution of the 
polarization transferred from n1 to n2 is calculated using Equations 2.6, starting with P(n1) = 100%, P(n2) = 
0% and varying P(e), keeping T1n and T1e constant. 

 

Figure 2.22: Calculation of the transferred polarization P(n2) (t) by numerically solving the system of rate equations 
2.6, varying the electron polarization P(e). The other parameters are set to Ne,0 =1, Ne,D = 5 Ne,0, Nn1 = 25 Ne,D, Nn2 = 
7 Ne,D; P(n1) (t=0) = 100%, P(n2) (t=0) = 0%, P(n1) = 0.006, P(n2) = P(n1)/4; T1e = 1/W1e = 1 s, T1n1 =1/W1n1 = 1000 s, T1n2 
=1/W1n2 = 2000 s; TCE1 = 1/WCE1 = 1 s, TCE2 = 1/WCE2 = 4*TCE1. 

If P(e) = 100%, the transfer does not take place at all. By decreasing P(e), i.e., by increasing the 
population of eα, the transfer becomes more and more efficient. 
 
This last result can explain some unexpected observations. Indeed, the transfer of polarization is more 
efficient at B0 = 3.35 T than at 6.7 T. This is counterintuitive because at higher field P(1H) is higher and 
both T1(

1H) and T1(
13C) are longer, which should favour the final polarization transferred to 13C. But the 

electron polarization reaches P(e) = 99.9 % at 6.7 T and 1.2 K, whereas P(e) is only 95.5 % at 3.35 T and 
1.2 K. The fact that the electronic polarization is too close to 100 % can thus be one explanation of the 
loss of efficiency of the transfer of nuclear polarization at higher fields. 
 
To confirm the influence of the electronic polarization predicted by our model, we tried the following 
experiments. A sample of 3 M 1-13C acetate in H2O:D2O:Glycerol-d8 (1:4:5) with 40 mM TEMPOL was 
polarized to P(1H) ≈ 60 % at 6.7 T and 2.2 K. Then, as in Figure 2.20a, the microwave irradiation was 
interrupted and the 13C magnetization was destroyed by saturation. The transfer of polarization was then 
observed with small angle pulses at different P(e) corresponding to different sample temperatures. 



  44 
 

 

Figure 2.23: Polarization transferred from 1H to 13C in a sample of 3 M 1-13C acetate in H2O:D2O:Glycerol-d8 (1:4:5) 
with 40 mM TEMPOL at 6.7 T at variable temperatures between 4.2 and 1.2 K. 1H is always polarized at 2.2 K with 
fμW = 188.3 GHz, PμW = 87.5 mW to keep the starting polarization constant to P(1H) ≈ 60%. 

As can be seen in Figure 2.23, the transfer is extremely inefficient at T = 1.2 K. As the sample 
temperature increases, the maximal polarization transferred to 13C increases until an optimum at T = 3.2 
K. At high temperatures it decreases again, since T1(

1H) and T1(
13C) become too short (because 1H is 

always polarized at 2.2 K, the starting 1H polarization does not vary). Note that the relaxation rates were 
not changed in the simulations in Figure 2.22. Thus this experiment confirms the role of P(e) predicted by 
our simple “flip-flop” model. 

2.5 Real Data 
 
In the end, the only parameters that are relevant for the DNP experimentalist is the maximal polarization 
P

max(n) that can be achieved for the nuclei n to be investigated, and the time 5τDNP(n) needed to reach 
this polarization. As shown in the course of this Chapter, these two parameters depend on many 
different and interdependent parameters. Up to now no single model, even the most ambitious, is able 
to predict these two parameters ab initio. In this last section, we show experimental DNP build-up curves 
recorded under different conditions, for different types of radicals and fields. 

2.5.1 DNP at 3.35 T 

This field was chosen because, due to radar research, solid-state microwave sources operating at νμW ≈ 
94 GHz are commercially available. This frequency corresponds to the electron Larmor frequency at B0 = 
3.35 T. Originally, Dissolution-DNP was developed to enhance magnetic resonance imaging. 13C was 
chosen as a target nucleus because 1) carbon is present in many molecules that play a role in biology, 2) 
labelling techniques for such molecules are available, 3) there is no in vivo background in contrast to 1H, 
4) quaternary carbons have long T1’s in liquid phase at room temperature, therefore the DNP 
magnetization created in the polarizer will be able to survive after dissolution. Trityl, a radical with 
narrow lines, was specially developed to polarize 13C (4-6). Indeed, as it does not polarize protons, 
leakage through T1(

1H) will not harm the polarization. At T = 1.2 K and B0 = 3.35 T, Trityl can polarize 
carbon-13 up to P(13C) = 36 % with a long build-up time constant of 2300 s (60) (Figure 2.24a). With such 



  45 
 

τDNP(13C), one has to wait between 2 and 4h to reach a maximal polarization. This is long but still 
acceptable. Apart from its price, Trityl has the drawback that it is hard to solubilize in aqueous solution. 
An alternative consists in using nitroxyl radicals such as TEMPO with broad ESR lines. Nitroxyl radicals can 
polarize protons efficiently (P(1H) = 40%, τDNP(1H) = 70 s at 1.2 K), which is an obvious advantage if one 
wants to work with this nucleus, but nitroxyl radicals are a drawback for 13C DNP since the maximal 
direct polarization is low, i.e.,  P(13C) = 10%, τDNP(13C) = 325 s at 1.2 K. Nevertheless, with nitroxyl radicals, 
one can benefit of reasonably fast 13C build-up rates and extremely short τDNP(1H) (57, 61) (Figure 2.24b). 

 

Figure 2.24: a) Typical DNP build-up of 1-13C pyruvic acid with 15 mM Trityl at 1.2 K and 3.35 T (60) b) Typical 1H 
(blue) and 13C (red) DNP build-up curves of 3 M 1-13C acetate with 30 mM TEMPOL in D2O:Glycerol-d8 (1:1) at 1.2 K 
and 3.35 T (57, 61). 

The DNP build-up time constants and the maximal polarization for 1H and 13C measured at 3.35 T at 
different temperatures are reported in Table 2.2. 
 

T (K) P(1H) (%) τDNP(1H) (s) P(13C) (%) τDNP(13C) (s) εDNP(1H/13C) 

1.2 40 70 10 324 4 
2.2 24 57 6 267 4 
3 12 32 3 222 4 

4.2 8 22 2 158 4 

Table 2.2: 1H and 13C polarizations and corresponding build-up time constants of 3 M 1-13C labelled acetate with 30 
mM TEMPOL in 100% deuterated water:ethanol (2:1) at B0 = 3.35 T for variable temperatures. 

2.5.2 DNP at higher fields 

As shown in Section 2.4, at high polarization, even small increases in P(e) can have drastic effects on the 
final nuclear polarization. The elongation of the nuclear T1(n) is also beneficial for P

max(n). Therefore, 
increasing the field could be useful for DNP. Studies at 4.5 T with Trityl (62) and at 5 T with TEMPO (63) 
report increases in nuclear polarization, albeit at the price of longer build-up time constants, which 
become prohibitive for Trityl. A second difficulty is to find sources that can irradiate at higher microwave 
frequencies. In our laboratory, the DNP polarizer used at 3.35 T was adapted by doubling both the 
microwave frequency and the field. The superconducting magnet designed for 7.05 T (Oxford 
Instruments) was run at B0 = 6.7 T. The microwave source (ELVA) initially operating at 94 GHz was 
coupled to a frequency doubler (VDI/D200) to yield νμW = 188 GHz at the price of a reduction in maximal 
power with Pmax

μW (188 GHz) = 120 mW and Pmax
μW (94 GHz) = 400 mW. At T = 1.2 K, using a frozen glassy 

solution containing 50 mM TEMPO as polarizing agent, a polarization P(13C) = 36% can be obtained 
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directly with a long build-up time constant τDNP(13C) = 2000 s. The proton polarization builds up to P(1H) = 
91% in a much shorter time τDNP(1H) = 150 s (Figure 2.25)(58).  

 

Figure 2.25: Comparison between 1H (blue) and 13C (red) DNP build-up curves of 3 M 1-13C acetate in D2O:Glycerol-
d8 (1:1) at 1.2 K and 3.35 T (30 mM TEMPOL) (57, 61) and 6.7 T (50 mM TEMPOL) (58). 

The DNP build-up rates and maximal polarization for 1H and 13C at different temperatures measured at 
6.7 T are also reported in Table 2.3. 
 

T (K) P(1H) (%) τDNP(1H) (s) P(13C) (%) τDNP(13C) (s) εDNP(1H/13C) 

1.2 91 150 36 1980 2.5 
2.2 60 52 22.5 1010 2.6 
4.2 25 25 5.5 359 4.5 

Table 2.3: 1H and 13C polarizations and corresponding build-up time constants of 3 M 1-13C labelled acetate with 50 
mM TEMPOL in 100% deuterated water:ethanol (2:1) at B0 = 6.7 T for variable temperatures. 

In the next Chapters, I will show how it is possible to take advantage of this high 1H polarization that can 
rapidly be made available. The proton polarization can be transferred to other low-gamma nuclei via 
Cross Polarization (Chapter 3). Highly polarized protons can be used to populate so called Long-Lived 
States (Chapters 5 and 8). Hyperpolarized water is a good target for so-called LOGSY experiments that 
can be useful for drug screening (Chapter 6). 
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Chapter	3:		

	

Cross	Polarization	to	transfer	

hyperpolarized	magnetization	from	1H	to	
13C	

 

A substantial improvement of D-DNP can be achieved by the indirect use of the high and rapidly available 
1
H polarization. Indeed, it is possible to transfer the proton magnetization to heteronuclei by means of 

Cross Polarization (CP) at 1.2 K prior to dissolution. In order to do so, a new device has to be added to 

the DNP polarizer, a doubly resonant NMR coil. In this Chapter, I will show how the CP technique was 

implemented for DNP at 3.35 T (1, 2) and 6.7 T (3-5). This work, inspired by preliminary research by A.J. 

Perez-Linde et al. (6), was carried out in collaboration with Bruker, especially with the help of Roberto 

Melzi. 

3.1 Cross Polarization benefits for D-DNP 

3.1.1 Abundant/high-γ and rare/low-γ nuclear spins in DNP  

Dissolution Dynamic Nuclear Polarization was optimized to polarize efficiently low-gamma nuclear spins, 

mainly 
13

C, but also 
15

N (7), 
129

Xe (8), 
89

Y (9), etc. These nuclei have the advantage of having long 

relaxation time constants at room temperature. This implies that once highly polarized, they will retain 

most of their magnetization during dissolution and transfer. As shown in Chapter 2, Trityl radicals can be 

very efficient as direct polarizing agents for 
13

C. These carbon-centered radicals display ESR lines with 

narrow widths, facilitating the direct build-up of 
13

C polarization by Thermal Mixing while leaving the 
1
H 

spins close to their thermal equilibrium. The highest 
13

C polarization reported so far exceeds P(
13

C) = 35% 

with a build-up time constant τDNP(
13

C)  = 2300 s in a field B0 = 3.35 T at T = 1.2 K (10). Although such high 

polarization levels can provide intense NMR signals after dissolution, the long DNP build-up times 

τDNP(
13

C) at 1.2 K do not allow one to perform several dissolution processes in rapid succession, as 

required for many in-vivo experiments with high throughput.  

 

On the other hand, for those who chose to avoid Trityl for 
13

C DNP (or were forced to do so for economic 

reasons), the widely available and inexpensive TEMPO radical turned out to be a good option. TEMPO 

has a broad inhomogeneous ESR line, exceeding the 
1
H Larmor frequency, resulting in an enhanced 

polarization not only for P(
13

C) but also for P(
1
H). Because of the ESR width, the 

13
C polarization levels 

that have been reported are modest compared to those achieved with Trityl, typically P(
13

C) = 10% in a 

field B0 = 3.35 T at T = 1.2 K (1, 11, 12) (see also Table 2.2 in Chapter 2). TEMPO has the advantage of 

polarizing 
13

C directly in a shorter build-up time than Trityl, with τDNP(
13

C) reported under the same 

conditions as mentioned above varying between 400 and 600 s.  
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Free electrons with broad ESR lines polarize nuclear spins with high gyromagnetic ratios such as 
1
H and 

19
F very efficiently with short build-up times. As shown in Chapter 2, P(

1
H) = 40% and τDNP(

1
H) = 70 s at 1.2 

K and 3.35 T (1). Nevertheless, such high-γ spins were not used extensively in Dissolution-DNP. Their 

main drawback is that they tend to return rapidly to thermal equilibrium, so that, by the time the 

samples have arrived in the solution-state NMR or MRI system, the enhancements are usually modest. 

As a result, it is often not feasible to follow a chemical reaction or a metabolic process on the time scale 

of the lifetime of the hyperpolarization, which is limited by the spin-lattice relaxation time T1.  

 

As it will be developed in the course of this Chapter, the use of Cross Polarization (CP) (13-15) at low 

temperature in the DNP polarizer makes it possible to keep all the advantages of both the high-γ and 

low-γ nuclei while avoiding their drawbacks. This idea was already predicted in 1978 by Abragam and 

Goldman in their review paper (16): “The production of large polarization is more difficult for small 

nuclear moments. (…) Rare isotopes are also difficult to polarize; when the nuclear concentration is low, 

spin diffusion is slow which reduces considerably the rate of DNP and the limit that leakage relaxation 

sets for its maximum value. The situation is evidently even worse when nuclear moments are both rare 

and small. There are situations, however, when this drawback becomes an asset. This is when besides the 

rare isotope S, there exist in the sample an abundant nuclear species I, with a large γI, easily polarized by 

DNP. It is then possible, having first polarized the spin I by conventional DNP to transfer a part of the 

order they have acquired to the spin S: in thermodynamic language, transfer some entropy from the spin 

S to the spin I.” 

3.1.2 Cross Polarization and Dissolution DNP 

Such a transfer of polarization is indeed possible with a well-known NMR method: the Cross Polarization 

technique.  

 

Cross Polarization, along with Magic Angle Spinning (MAS), is the most widely used technique in solid 

state NMR. The original idea of Hartmann and Hahn of nuclear double resonance in the rotating frame 

(13) was adapted by Pines, Gibby and Waugh (14, 15) in view of enhancing the NMR signal of dilute 

nuclear spins in solids. In such experiments, the large magnetization of a high-γ, abundant nucleus (here 
1
H) is transferred to low-γ, rare spins (here called X). CP transfer of polarization can be understood as a 

thermodynamic equilibration between the thermal reservoirs of the two spin species (17). The general 

CP procedure is the following. The 
1
H spins are polarized in high B0 field by allowing the Boltzmann 

equilibrium to be established. A 90⁰ excitation pulse followed by a spin lock pulse with an rf intensity 

B1(
1
H) are then applied. In the rotating frame, precessing on resonance around B0 at the 

1
H rf irradiation 

frequency, B0 vanishes and B1(
1
H) determines the quantization axis. The 

1
H spins are thus cooled down to 

a low spin temperature in this rotating frame. The next step consists in establishing a contact between 

the 
1
H and X spins. To do so, a spin lock field of intensity B1(X) is applied. Again, B1(X) becomes the 

quantization axis for the X spins in the rotating frame precessing around B0 at the X spin rf irradiation 

frequency. The contact between the two nuclear species is established if the so-called Hartmann-Hahn 

condition is fulfilled: 

 

1
1

1 1( ) ( )XH
B H B Xγ γ=  (3.1) 

 

Under such conditions, their respective energy differences in the rotating frames are equalized. If the 

Hartmann-Hahn condition is fulfilled, redistribution of energy between 
1
H and X spins via energy-

conserving transitions through the dipolar couplings will be allowed. The reduction of the high 1H 
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magnetization in the rotating frame (which has a low spin temperature) will be compensated by energy-

conserving reverse transitions of the X spins, leading ultimately to a high X magnetization along the 

direction of B1(X) in the rotating frame. 

 

A proper explanation of Cross Polarization requires the use of average Hamiltonian theory. Excellent 

reviews of such treatments can be found in the articles of Rovnyak (18) and Vega et al. (19).  

3.2 Probe Compatible with Dissolution-DNP 

3.2.1 Hardware 

A new element has to be added to perform CP in the DNP polarizer: a doubly resonant NMR coil. Suitable 

hardware was developed by Dr Roberto Melzi in a joint project between our laboratory and Bruker (Dr 

Tonio Gianotti, Dr Joost Lohman, Dr Frank Engelke). Jonas Milani is currently developing CP coils for DNP 

in our group. The technical description of the design and building of these dedicated NMR coils for CP-

DNP will be given elsewhere. In the present Chapter, only a few general elements will be presented. 

 

The first version was a solenoid coil doubly tuned for 
1
H and 

13
C (ν(

1
H) = 142.57 MHz and ν(

13
C) = 35.85 

MHz at B0 = 3.35 T) (1, 2). Pictures and drawings of this CP-DNP probe are shown in Figure 3.1a. For an 

optimal quality factor, the capacitors have to be placed as close as possible to the coil. A constraint 

imposed by our system is the fact that the coil has to be at liquid helium temperatures in the cryostat of 

the polarizer. It is therefore impractical to adjust capacitors that are close to the coil. Nevertheless, fine 

tuning and matching of the circuit is necessary to insure efficient CP transfer. Moreover, the resonant 

frequency response of the coil is extremely sensitive to the temperature. Changes of the resonant 

frequency in the MHz range occur between liquid nitrogen and liquid helium temperatures. Therefore, a 

fine-tuning and matching box for each channel is added on top of the DNP probe, outside of the 

polarizer. The tuning and matching box is connected to the coil via coaxial cables (see Figure 3.1a). A 

standard solid-state NMR console is then connected to the coil in order to generate and amplify pulses 

and to acquire NMR signals. With our solenoidal coil, the two transmitters can generate rf field 

amplitudes of 65 kHz each with only about 14 and 22 W for the 
1
H and 

13
C channels respectively. Both Q 

factors are equal to 130. The rf circuitry display a rejection between the two channels higher than 30 dB 

for both 
1
H and 

13
C sides (1, 2). The same coil design was also adapted for DNP at 6.7 T (4) (see Section 

3.3.2) 

 

Another requirement of our system is that the sample volume within the coil should be easily and rapidly 

accessible in view of dissolving the sample after DNP-CP build-ups. It is technically possible to load solid 

beads into a horizontal solenoid coil and extract them, with a pneumatic system in the manner of a rotor 

in MAS-NMR, driven (in our case) by gaseous helium. This way of doing is nevertheless impractical and 

technically challenging. The horizontal solenoid coil design was thus replaced by a vertical saddle coil (3). 

It can be seen in Figure 3.1b that with such a design, a sample holder containing the DNP sample (up to 

500 μL in our case) can be easily inserted into the active volume of the coil. The sample can be easily 

dissolved by coupling a dissolution stick on the top of the sample holder (see Figure 3.1b). For efficient 

CP, special attention was given to design a reliable rf coil that can induce homogeneous B1 fields over the 

entire sample volume. However, because of arcing in superfluid helium at T = 1.2 K, the rf fields used for 

CP were limited to 15 kHz on the proton and carbon channels, using 15 and 25 W respectively. 
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Figure 3.1: a). Illustration of the insert with a picture of the coil, and basic circuit of the CP-DNP system using a 

horizontal solenoid design that is not suitable for rapid dissolution. The circuit was drawn by Roberto Melzi (Bruker 

Italy.) b) Drawing and photo of the saddle coil design for rapid dissolution. In the two illustrations on the right, one 

can see how the sample holder can be inserted from the top into the active volume of the coil and how it is 

accessible for dissolution. 

3.2.2 Pulse sequences 

The standard Cross Polarization (CP) pulse sequence also has to be adapted to the Dissolution-DNP 

requirements (Figure 3.2). Unlike normal CP experiment, the goal here is not to observe enhanced 
13

C 

signals in the polarizer, but to dissolve and transfer the sample prior to observation. Therefore, the 
13

C 

magnetization should be aligned along the B0 quantization axis at the end of the sequence, and not in 

the transverse plane. A 90° flip-back pulse (20) therefore has to be added at the end of the sequence for 

this purpose. Moreover, as will be shown at the end of this Section, usually multiple CP contacts are used 

to build up the enhanced 
13

C magnetization. The 
1
H magnetization that remains after each CP step 

should thus also be brought back along the z axis with a 90° flip-back pulse. Moreover, in order to exploit 

the longitudinal 
13

C polarization that has been built up during the previous CP contacts, this longitudinal 

magnetization should be brought to the transverse plane before the CP contact, which explains the initial 

90° pulse on the 
13

C channel in Figure 3.2. Finally, a small-angle pulse can be added at the end of the 

sequence to monitor the build-up of the 
13

C magnetization. 

 

Two parameters then have to be optimized. First, the 
1
H and 

13
C rf field strengths during the contact 

pulses have to match the Hartmann Hahn condition. Usually this is done by varying the rf field strength 

on one channel, keeping the other constant. Both 
1
H and 

13
C polarizations are saturated prior to each 

multiple-contact sequence. The delay between saturation and the first CP contact can be shorter than 

the time needed for the proton magnetization to reach the DNP steady state, so as to minimize the time 

needed to perform each B1 optimization. 
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Figure 3.2: Adaptation of the standard CP sequence for Dissolution-DNP. One excitation pulse is added on the 
13

C 

channel, as well as two flip-back pulses on both 
1
H and 

13
C channels. The CP build-up can be monitored by applying 

a small angle pulse after each CP contact. 

In Figure 3.3a, the sequence described in Figure 3.2 is used, varying the B1 field strength on the 
13

C 

channel while keeping B1(
1
H) = 55 kHz. Monitoring the signal permits one to find the optimum B1(

13
C) 

that matches the Hartmann Hahn conditions. The second parameter that requires optimization is the 

duration of the CP contact time. An optimum should be found between the efficiency of the transfer of 
1
H magnetization to 

13
C and the destruction of 

1
H magnetization by losses of coherence in the B1 field 

that can be described by T1ρ. Under DNP conditions (static solid at 1.2 K in the presence of paramagnetic 

species), T1ρ is extremely short, on the order of a few milliseconds. In Figure 3.3b, the sequence 

described in Figure 3.2, with an optimal rf field strength, is repeated while incrementing the contact time 

from 0.1 to 4 ms. It can be seen that a contact time of 1.8 ms is optimal. Finally, both rf field strength and 

contact time are limited by the possibility of arcing of the circuit, especially at low temperatures when 

liquid helium is pumped down to 0.8 mbar. 

 

Figure 3.3: a) Example of optimization of the rf amplitude applied to the 
13

C channel during a CP contact. A set of 
13

C spectra are recorded for different B1(
13

C) while keeping the rf amplitude B1(
1
H) fixed (here 55 kHz). The 

Hartmann-Hahn condition is fulfilled when the 
13

C intensity is maximized. b) Optimization of the CP contact time. 

The contact time length is incremented from 0.1 to 4 ms, with B1(
1
H) and B1(

13
C) matching the Hartmann-Hahn 

condition.  

One problem of conventional CP under our conditions arises from the fact that the rf phase and 

amplitude have to be switched between the 90⁰ excitation pulses and the CW contact pulses. The same 

switch occurs at the end of the contact pulses, before flipping the magnetization vectors back to the z 

axis. The NMR console used for our experiments needs at least 4 μs to switch the phase and amplitude. 

Under our DNP conditions at 1.2 K this delay is already long enough to lose an appreciable part of the 
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transverse magnetization by decoherence. To show this, the delay between the 90⁰ pulses and the 

contact pulses, as well as the delay between the contact pulses and the 90⁰ flip-back pulses in sequence 

described in Figure 3.2 were incremented from 1 to 17 μs. The 
13

C signals observed after CP are shown in 

Figure 3.6a. If the switching delay could be made shorter, a substantial improvement in the 

magnetization transferred to 
13

C could be achieved. Moreover, during this 4 μs delay, 
1
H magnetization 

will also be lost, which is damageable in view of performing multiple CP contacts, as will be shown 

below. The 90⁰ excitation and flip-back pulses are also critical in the standard CP sequence of Figure 3.2. 

The breadth of the 
1
H spectrum is on the order of 50 kHz under standard DNP conditions at 3.35 T and 

1.2 K (for 
13

C, it is on the order of 6 kHz). It is therefore difficult to have a clean and controllable 

excitation over the entire width of the lines. Finally, the NMR linewidth is also a limiting parameter 

during the CP contact, as B1(
1
H, 

13
C) of our coil is relatively low. 

 

The standard CP sequence shown in Figure 3.2 was modified to answer to these limitations. The pulse 

train 90⁰x-contacty-90⁰-x was changed for Cross Polarization scheme inspired by preliminary work of 

Perez-Linde and Kockenberger (6) that uses an adiabatic half passage or an adiabatic inversion. 

 

Adiabatic frequency-swept pulses can be used to transfer magnetization to the transverse plane or to 

perform an inversion (21). The carrier of the rf irradiation frequency is varied during the course of the 

pulse. In a classical description of the pulse (22, 23), the different magnetic field components and the 

spin magnetization vector can be followed in the so-called frequency- modulated frame (noted here with 

a prime ‘), which rotates at the variable frequency νrf(t) (Figure 3.4a). In this frame, the vector B1’(t) 

remains fixed during the pulse. If the carrier frequency of the pulse νrf(t) is initially applied far off-

resonance from the Larmor frequency ν0 of the spins of interest, the magnetic field amplitude in the 

frequency-modulated frame will be B0’(t) = (ν0 - νrf(t))/γ, with γ in frequency units. Therefore, the 

effective field Beff’(t) in this frame, given by the vector sum of B1’(t) and B0’(t), will change its orientation 

when νrf(t) varies. At the beginning of the pulse, when νrf(t) << ν0, Beff’(t) is approximately collinear with 

z’. As νrf(t) approaches ν0, the effective field rotates toward the transverse plane. If νrf(t) becomes larger 

than ν0, the effective field vector will continues to rotate to -z’ (see Figure 3.4a).  

 

Figure 3.4: a) Illustration of the magnetic field components Beff’(t), B1’(t) and B0’(t) in a frequency-modulated frame 

which rotates at the variable frequency νrf(t). The magnetization vector follows Beff’(t). b) Trajectory of the effective 

field and of the magnetization during an inversion by adiabatic full-passage in a rotating frame which rotates at a 

fixed frequency. Reproduced from Pines et al. (21).   

During adiabatic passage, the magnetization vector will be “locked” by the effective field, and will follow 

its change in orientation. If the pulse is stopped when the magnetization is in the transverse plane, one 
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speaks of an adiabatic half passage, whereas if the magnetization is inverted, one speaks of an adiabatic 

full-passage. The trajectories of Beff(t) in the frequency-modulated frame and in the rotating frame are 

shown in Figure 3.4. 

 

In practice, the amplitude and phase of the pulse are continuously modulated, rather than its frequency, 

but the result is the same. 

 

The most widely used version of frequency swept pulses is the hyperbolic secant (21). A more broadband 

version known as WURST (for uniform rate and smooth truncation) was developed by Freeman (24). We 

used this last one for our DNP Cross Polarization experiments. 

 

Such swept pulses offer a perfect response to the problem posed by the standard CP sequence under 

DNP conditions. First, they invert or excite a wide frequency band. They are also insensitive to field 

inhomogeneities. Such pulses require less power to be efficient. Finally, as the magnetization follows the 

effective field, no phase switch prior to the contact pulse is necessary once the magnetization has 

reached the transverse plane. Such a CP sequence is shown in Figure 3.5a. An adiabatic half-passage is 

performed on both 
1
H and 

13
C channels to bring the proton and carbon magnetization in the transverse 

plane. The contact pulse can start immediately after, without any switching of the rf phase or amplitude. 

In Figure 3.5a, a version is shown where an amplitude ramp is applied on the 
13

C channel so that CP is 

less sensitive to field inhomogeneities (25). At the end of the contact, the magnetization is brought back 

to the z axis with two frequency-swept adiabatic half passage pulses from νrf(t) = ν0(n) to νrf(t) << ν0(n). 

 

It is also possible to remove the contact pulses and to use only adiabatic full-passage (AFP) pulses to 

perform Cross Polarization. To do so, the rf field intensities on both channels have to be set so that the 

two nuclei become in contact in the frequency-modulated frame during the  (AFP) pulse. As each pulse 

will invert the magnetization, a second CP contact has to be performed to store the magnetization back 

along the +z axis between CP contacts (Figure 3.5b). Indeed, if only one CP contact was performed, the 

magnetization would be along the -z axis, and the DNP microwave irradiation would destroy the nuclear 

polarization, bringing the magnetization to a DNP steady-state with opposite sign. This method known as 

DOIN-CP (for double-inversion CP) was developed by A.J. Perez-Linde (6). This double adiabatic inversion 

is extremely convenient and robust to use. It was chosen in most experiments shown in this Thesis. 

 

Figure 3.5: a) Multiple contact CP sequence using adiabatic half-passage sweeps on both channels to excite and flip-

back the 
1
H and 

13
C magnetization, combined with CW contact pulses, the amplitude of which may be ramped. b) 

Multiple contact CP sequence where the magnetization is transferred during adiabatic inversion. The contact is 

established twice during each CP step, in the manner of the DOIN-CP sequence developed by A.J. Perez-Linde (6). 
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The comparison between standard CP presented in Figure 3.2 and double inversion CP described in 

Figure 3.5b is shown in Figure 3.6b for different rf field strengths. The CP efficiency is superior, especially 

at low power, when using adiabatic inversion. 

 

Finally, it is important to note that the transfer of magnetization by adiabatic half- or full-passage pulses 

is different from Cross Polarization via adiabatic demagnetization in the rotating frame (ADRF) followed 

by adiabatic remagnetization in the rotating frame (ARRF) (14, 26). In thermodynamic terms, in the first 

case, the two Zeeman spin baths are put in contact, whereas in the second case the proton Zeeman 

order is transferred to dipolar order, which is then transferred to carbon-13 Zeeman order. This 

difference is clearly explained by Redfield (see Reference (27) p. 1020). In the context of DNP, Cross 

Polarization by ADRF is also possible. It was recently shown by Batel et al. (28) that the method is less 

efficient than adiabatic half-passage. 

 

Figure 3.6: a) 
13

C CP signals recorded with the sequence described in Figure 3.2, while incrementing the delay 

between the initial 90⁰x excitation and the contact pulses. b) 
13

C CP polarization as a function of the rf field 

strength if Cross Polarization is performed either with conventional CW fields (as in Figure 3.2) or with adiabatic 

frequency-swept fields (as in Figure 3.5b). 

A last optimization of the CP sequence for DNP conditions can be carried out. As the carbon 

magnetization relaxes slowly to its DNP steady state, and as the proton DNP build-up is fast, multiple-

contact CP transfers can be accumulated (see Figure 3.7). This bypasses the problem of low CP efficiency, 

due to the fact that B1 is weak compared to the nuclear linewidths. 

 

It is possible to calculate the behaviour of the 1H and 13C magnetization during a multiple-contact CP 

sequence. One needs to know the maximal 1H and 13C polarizations P(1H, 13C)max (without CP), the DNP 

build-up time constants, τDNP(1H, 13C) and the time constant τrelax(
13C) of the relaxation towards the DNP 

steady state (i.e. to P(13C)max). These five parameters will determine the build-up and decay of the 1H and 
13C magnetization. The role of multiple CP contacts can then be considered after n = 1, 2, …, N contacts 

spaced by intervals ΔCP. The 1H polarization is recalculated at after each contact n according to the 

fraction of the 
1
H magnetization preserved by the pulses EfCP(

1
H)):  

 

P(1H ) t ' = n∆CP( ) = EfCP(1H ) P(1H ) t = n∆CP( )  (3.2) 

 

where the prime stands for “after the CP contact”, and n is the counter of the number of CP contacts. 

The same can be done with EfCP(
13

C), the CP efficiency given by the fraction of the 
1
H magnetization 

transferred to 
13

C, when starting with P(
13

C) = 0%. The fact that as the 
13

C polarization increases, the 

transfer becomes less efficient has also to be taken into account. Therefore, one has:   
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( ) ( ) ( ) ( )( )13 13 13 1 13( ) ' ( ) ( ) ( ) ( )CP CP CP CP CPP C t n P C t n Ef C P H t n P C t n= ∆ = = ∆ + = ∆ − = ∆  (3.3) 

 

All these parameters affect the build-up curves calculated for multiple-contact CP from 
1
H to 

13
C shown 

in Figure 3.7. Such simulations allow one to determine the enhancement due to CP, εCP = 

P(
13

C)
CP,max

/P(
13

C)
max

. 

 

Figure 3.7: Build-up curves of the 
1
H and 

13
C polarizations during multiple-contact CP calculated with Equations 3.2 

and 3.3, with P(
1
H)

max
 = 90%, P(

13
C)

max
 = 22.5%, τDNP(

1
H) = 100 s, τDNP(

13
C) = τrelax(

13
C)  = 2000 s, EfCP(

1
H) = 50%, 

EfCP(
13

C) = 20% and ΔCP = 10 min. 

The only variable that can be adjusted experimentally is the inter-contact delay ΔCP. All other variables 

are fixed for a given probe and sample. 

 

In Figure 3.8a, the maximal CP enhancements as function of the delay ΔCP between CP contacts are 

reported for different amounts of 
1
H polarization that are preserved upon contact, keeping the 

13
C CP 

efficiency fixed at a low value of 10%. Realistic polarizations, build-up curves and relaxation values for a 

standard DNP sample at 6.7 T and 1.2 K are considered (see Table 2.3). Note that the maximal possible 

enhancement is 2.5. The build-up time constant to reach such a CP steady state is also reported in the 

insert. Similar calculations are shown in Figure 3.8b, but with a better CP efficiency, EfCP(13C) = 50%. One 

can see that if the inter-contact delay is too long, the maximal enhancement will tend to a common 

value, regardless of EfCP(1H). This value is determined by the CP efficiency EfCP(13C). A better CP transfer 

efficiency will drastically accelerate the CP build-up. Finally, it can be seen that it is also important to 

preserve the 1H magnetization during the CP contact to have a faster build-up to higher polarization 

values. 

 

The 
13

C polarization enhanced by CP from hyperpolarized 
1
H tends to go back to its steady-state DNP 

equilibrium between the CP steps. If this relaxation could be controlled, even inefficient CP contacts 

would bring the 
13

C enhancement to its theoretical maximum. This is shown in Figure 3.8c,d where CP 

build-up curves are calculated under the same conditions as in Figure 3.8a,b, but without 
13

C relaxation. 

Possibly at a cost of slow build-up rates, the 
13

C polarization tends to P(
1
H)

max
, even under the worst CP 

conditions. 
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Figure 3.8: a) Maximal CP enhancements as well as CP build-up time constants (insert) as a function of the inter-CP 

delay ΔCP, calculated with Equations 3.2 and 3.3 for different EfCP(
1
H), keeping EfCP(

13
C) constant to 10%. The DNP 

sample parameters are set to realistic values at 6.7 T and 1.2 K: P(
1
H)

max
 = 91%, P(

13
C)

max
 = 36%, τDNP(

1
H) = 150 s, 

τDNP(
13

C) = 1980s,  τrelax(
13

C)  = 2500 s. b) Same calculations as in (a), but with EfCP(
13

C) = 50%. c, d) Same calculations 

as in (a) and (b), but neglecting 
13

C relaxation (τrelax(
13

C) = 10
5
 s). 

3.3 Results 

3.3.1 Cross-polarization at 3.35 T 

The use of CP has the potential to increase the polarization from P
DNP

(
13

C) to P
CP-DNP

(
13

C) ≈ P
DNP

(
1
H), 

theoretically by a factor up to εCP ≈ 4, to a maximum absolute polarization P
CP-DNP

(
13

C) = 40% at 1.2 K and 

3.35 T. Moreover, the use of CP should theoretically allow one to obtain similar performances at T > 2.2 

K than direct DNP at 1.2 K, thus allowing the cryogenic equipment to be greatly simplified. Figure 3.9 

shows the DNP build-up curves of the 
13

C polarization in 1-
13

C labelled acetate with and without CP (2). 

The latter experiment used 5° pulses repeated every two minutes, while CP was performed as described 

in Fig. 3.5b with rf field amplitudes ν1(
1
H) = ν1(

13
C) = 55 kHz and a contact time of 1 ms. When using CP, a 

maximum 
13

C spin polarization of P
CP-DNP

(
13

C) = 23 % was achieved within a build-up time τCP(
13

C) = 170 s, 

whereas only P
DNP

(
13

C) = 9.5% could be achieved without CP with τDNP(
13

C) = 450 s. The polarization levels 

P
CP-DNP

(
13

C) and P
DNP

(
13

C) obtained at different temperatures are shown in Table 3.1 (1). With the probe 

design used in our experiments, CP can provide an enhancement εCP > 2 compared to conventional direct 
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DNP. The use of CP also decreases the time needed for the polarization to level off to its steady state 

equilibrium. In the experiment presented in Figure 3.9, an acceleration factor κCP = 2.6 was obtained. 

 

Figure 3.9: DNP build-up curves of the 
13

C polarization measured without CP (grey curve) and with CP (red curve) 

monitored with short 5⁰ observation pulses as shown in Figure 3.2. 

 

T (K) P
DNP

(
1
H) (%) P

DNP
(

13
C) (%) P

DNP-CP
(

13
C) (%) εCP 

1.2 40 10 23.0 2.3 

2.2 24 6 14.6 2.4 

3 12 3 7.2 2.4 

4.2 8 2 4.4 2.1 

Table 3.1: 
1
H and 

13
C polarizations as well as the maximal polarizations reached by CP with our solenoid coil design 

for 3M 1-
13

C labelled acetate with 30 mM TEMPOL in 100% deuterated water:ethanol (2:1) at B0 = 3.35 T  for 

different temperatures. 

In view of performing rapid dissolution to produce hyperpolarized samples for solution-state NMR, we 

studied the relaxation behavior of the highly polarized 
13

C spins immediately after CP at 1.2 K and 4.2 K 

(Figure 3.10). If the microwave field remains 'on', the polarization P
CP-DNP

(
13

C) returns to the DNP 

stationary state P
DNP

(
13

C). This return to the stationary state is faster than T1(
13

C), and close to τDNP(
13

C). 

When the microwave field is switched 'off' after CP, P
CP-DNP

(
13

C) returns to thermal equilibrium. All 

relevant time constants are sufficiently long (>100 s even at 4.2 K) to allow one to perform rapid 

dissolution within a few seconds after CP.  

 

Figure 3.10: Relaxation of the 
13

C magnetization after CP either with microwave irradiation switched ‘on’ (black 

curves) or with microwave irradiation switched ‘off’ (grey curves), at 1.2 K (a) or 4.2 K (b). 
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3.3.2 Cross-polarization at 6.7 T 

Experimental reports on low temperature Dissolution-DNP at fields above 3.35 T, i.e., at B0 = 4.6 T using 

Trityl (29) and at B0 = 5 T using TEMPO (30), show substantial improvements in polarization levels 

achieved by direct DNP, i.e., P
DNP

(
13

C) = 35 % at 4.6 T and 15 % at 5 T, albeit at the price of prohibitively 

long build-up times: τDNP(
13

C) > 2000 s with Trityl at 4.6 T and 1200 s with TEMPO at 5 T. On the other 

hand, the build-up times are usually much shorter for protons than for carbon-13 when TEMPO is used 

as polarizing agent (12, 31-33). The combination of high polarizing fields and CP is therefore a good 

option to transfer the high proton polarization to low-γ nuclei. 

 

The design of our 6.7 T DNP polarizer was adapted from the 3.35 T apparatus described previously (11, 

34) by running a superconducting magnet designed for B0 = 7.05 T (Oxford Instruments) at B0 = 6.7 T, 

corresponding to an EPR frequency ν0(e)= 188 GHz. A microwave source (ELVA) initially operating at 94 

GHz (tuning range ±250 MHz, Pµw
max

 = 400 mW) was coupled to a frequency doubler (VDI / D200) to yield 

188 GHz (tuning range ±500 MHz, Pµw
max

 = 120 mW.) Apart from the tuning and matching circuitry for 

ν0(
1
H) = 285.23 MHz and ν0(

13
C) = 71.73 MHz, all other components of the DNP polarizer were kept 

unchanged. Moreover, we empirically determined the optimal TEMPO radical concentration to be on the 

order of 50 mM at 6.7 T instead of 30 mM at 3.35 T. Although these simple upgrades may appear 

straightforward, the improvements in polarization are quite significant.  

 

At 1.2 K and 6.7 T, proton polarization values as high as P
DNP

(
1
H) = 90 %  can be readily obtained by 

microwave irradiation at νµw = 188.3 GHz, corresponding to the negative optimum of the DNP frequency 

spectrum, with a short build-up time τDNP(
1
H) = 150 s. Under the same conditions, the 

13
C polarization 

builds up much slowly by direct DNP with τDNP(
13

C) = 1980 s towards a level P
DNP

(
13

C) = 36 % (see Table 3.2 

and 2.3). With Trityl, it might be possible to achieve higher 
13

C polarization levels at B0 = 6.7 T, but the 

build-up times are likely to be much longer. 

 

T (K) P
DNP

(
1
H) (%) P

DNP
(

13
C) (%) P

DNP-CP
(

13
C) (%) εCP τDNP(

13
C) τCP(

13
C) κCP 

1.2 91 36 71 2.0 1980 488 4.0 

2.2 60 22.5 43.8 2.0 1010 192 5.2 

4.2 25 5.5 15.5 2.8 359 70 5.1 

Table 3.2: 
1
H and 

13
C polarizations as well as the maximal polarizations reached by CP with our solenoidal coil 

design for 3M 1-
13

C labelled acetate with 50 mM TEMPOL in 100% deuterated water:ethanol (2:1) at B0 = 6.7 T  for 

different temperatures. The time constants of the direct and CP 
13

C DNP build-up curves as well as the 

corresponding acceleration factors κCP are also reported. 

Cross Polarization at 6.7 T was first tested using a solenoid coil design that is not ideal for rapid 

dissolution. Using the multiple-contact CP sequence shown in Figure 3.5a, it was possible to achieve an 

unprecedented polarization level of P
DNP-CP

(
13

C) = 71 % within a record build-up time of τCP(
13

C) = 490 s 

(4). Multiple-contact adiabatic half-passage cross-polarization CP was used at intervals ΔCP = 300 s. To 

convert the longitudinal magnetization Iz + Sz to the transverse plane Ix + Sx, each CP contact comprised 

two frequency-swept pulses applied simultaneously to both 
1
H and 

13
C channels, with a duration of 150 

µs and a constant 40 kHz amplitudes on both channels. The carrier frequencies were swept in a linear 

fashion from – 100 kHz to the resonances of 
 1

H or 
13

C, respectively. A rectangular pulse with a constant 

40 kHz amplitude of duration τCP = 1 ms was applied to the 
1
H channel, simultaneously with a ramped 

pulse applied to the 
13

C channel with an amplitude that is increasing linearly between 35 and 45 kHz. 

Finally the two flip-back pulses were applied with frequencies that are swept in the opposite sense as 
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during the excitation step to bring the magnetization back to Iz + Sz. The polarizations obtained by such 

CP contacts are shown in Table 3.2 for different temperatures. 

 

High polarization levels P
DNP-CP

(
13

C) > 70% could be achieved using a solenoidal radio-frequency coil that 

was not suitable for rapid dissolution. This coil was therefore replaced by Helmholtz coils (Figure 3.1b). 

Moreover, the waveguide that was terminated by a horn right above the sample in our initial design, was 

placed on the side of the cavity in our new design to enable dissolution. Special attention was given to 

the design of reliable rf coils for efficient CP with homogeneous B1 fields over the entire sample volume. 

However, because of arcing in superfluid helium at T = 1.2 K, the rf fields used for CP were limited to 15 

kHz each, using 15 and 25 W on the proton and carbon channels, respectively. 

 

The probe was tested on a DNP sample of 1-
13

C acetate 3M dissolved in D2O:Ethanol-d6 (2:1) with 50 mM 

TEMPOL. With such coil design, P
DNP-CP

(
13

C) = 45 %, i.e. εCP = 1.7, could be obtained with a fast build-up 

time τCP(
13

C) = 810 s. The sample was then dissolved with 5 mL of superheated D2O and transferred in 10 

s to a 7.05 T NMR spectrometer for detection. The remaining room temperature signal was estimated to 

correspond to a polarization P(
13

C) ≈ 40% (See Figure 3.11). Exactly the same experiment was applied to 
13

C enriched sodium pyruvate and yielded P(
13

C) = 40.5% after dissolution (3). 

 

Figure 3.11: a) Signals of 
13

C observed at T = 4.2 K and B0 = 6.7 T of 50 µL frozen beads of a 3 M solution of 
13

C-1 

enriched sodium acetate in a deuterated water/ethanol mixture (67:33 v/v) doped with 50 mM TEMPO measured 

without CP-DNP (blue) at thermal equilibrium (scaled by a factor 100) and with CP-DNP (red) (with Pµw = 120 mW at 

νµw = 188.3 GHz). b) 
13

C DNP build-up curves with (red) and without (grey) CP measured every 30 s with 5° pulses. 

Multiple-contact CP was performed every 240 s with the pulse sequence described in Figure 3.5b with B1 = 15 kHz, 

and a contact time of 1 ms. c) The dissolution and transfer process requires tdiss = 10.7 s. d) Relaxation of 
13

C in 

solution at ca. T = 300 K after transfer to a magnetic field B0 = 7.05 T, measured with 5° pulses at 5 s intervals. e) 

Signals of 
13

C-1 sodium acetate immediately after dissolution (red) and at thermal equilibrium (blue), scaled by a 

factor 2048. 
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3.4 Improvements and future developments 

3.4.1 CP from solvents to deuterated analytes 

Although spectacular enhancement factors can be achieved by D-DNP, applications are inexorably 

limited by the lifetime of the hyperpolarized magnetization, which is usually determined by the 

relaxation time T1. Considerable efforts have been deployed to reduce losses of polarization during 

sample transfer, in particular to provide access to slow and subtle chemical transformations such as slow 

metabolic processes. This is of particular interest in the context of metabolic in-vivo imaging where more 

than 60 seconds may be required between dissolution and injection for filtration, pH adjustment, and 

quality control (35). Whatever paths may be chosen for extending the lifetimes of hyperpolarization, in 

many cases the mere presence of proton spins in the molecules may impose a severe erosion of the 

hyperpolarization. Nuclear spin-lattice relaxation driven by intra-molecular dipolar interaction, in 

particular between a hyperpolarized 
13

C spin and neighboring 
1
H spins, even when they are separated by 

two or more bonds, may offer efficient relaxation pathways. A simple solution to this problem consists in 

the partial or complete deuteration of the molecule of interest, such as the methyl groups in 3-
13

C 

pyruvate (36) or 
15

N-trimethyglutamine (37), or even the amine group in 
15

N-glutamine (38). A good 

example of this approach is the use of 
15

N-trimethylphenylammonium-d9 as a platform for designing a 

variety of hyperpolarized chemical probes, with T1(
15

N) exceeding 800 s (39). 

 

Such an approach could at a first glance appear to be incompatible with Cross Polarization. In this 

Section, it will be shown that, surprisingly, Cross Polarization can transfer magnetization from 
1
H to 

13
C 

even when the molecules are perdeuterated, provided that the concentration of protons in the 

surrounding glassy solvent is sufficient (5). As a proof of principle, we demonstrate our method for 
13

C 

enriched 1-
13

C pyruvate-d3, and for the 2-
13

C and 3-
13

C isotopologues of pyruvate-d3 in natural 

abundance. Many other molecules are expected to benefit from perdeuteration like 5-
13

C glutamine (40), 

1,4-
13

C2 fumarate (41), 1-
13

C urea (42), 1-
13

C DHA (43), or even 2-
13

C fructose (44). 

 

A 1.5 M solution of sodium 1-13C pyruvate-d3 containing 50 mM TEMPOL in D2O:H2O:glycerol-d8 (4:1:5) 

with a 1H concentration of ca. 11 M was used. Figure 3.12a shows how the 13C polarization of deuterated 

pyruvate increased stepwise by multiple-contact CP from remote solvent protons. If a CP contact is 

established every 5 minutes, the 13C polarization builds up with a time constant τCP(13C) = 950 s. This 

polarization build-up is comparable to the one observed with non-deuterated 1-13C pyruvate (τCP(13C) = 

990 s) under the same conditions (Figure 12b).  
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Figure 3.12: Hartmann-Hahn Cross Polarization (CP) experiments performed on (a) deuterated and (b) non-

deuterated 1-
13

C pyruvate. The left panels show the build-up of the 
13

C signals, measured every 37.5 s at 1.2 K using 

5⁰ pulses. An adiabatic CP contact is established every 5 min. The middle panels show relaxation during dissolution 

and transfer to a 7 T (300 MHz) NMR spectrometer. The right panels show the polarization decays of 
13

C of carboxyl 

(C1), carbonyl (C2) and methyl (C3) groups after dissolution. The signals were measured at T = 300 K with 5⁰ pulses 

applied at 5 s intervals. c) Spectrum of 1-
13

C pyruvate-d3 measured 10 s after dissolution showing P(
13

C) = 40.4 % 

(red line), compared to a spectrum measured after complete relaxation to thermal equilibrium with 128 pulses with 

90⁰ nutation angles, rescaled by a factor 2048 (blue line). 

The 1-
13

C polarization in deuterated pyruvate measured after dissolution and transfer to a 300 MHz NMR 

spectrometer is slightly higher (P(
13

C) = 40.4 %) than in its non-deuterated counterpart (P(
13

C) = 37.9 %). 

The relaxation times T1(
13

C) of 1-
13

C are almost identical for deuterated and non-deuterated 1-
13

C 

pyruvate. On the other hand, 2-
13

C and 3-
13

C show significant improvements of T1(
13

C) upon deuteration, 

respectively by a factor 1.15 and 9.75. The obvious reason for this extension of T1 is the reduction of 

heteronuclear 
1
H-

13
C dipolar relaxation. In addition to the remarkable extension of T1(

13
C) of the 3-

13
C, 

we observed a significant improvement in nuclear polarization measured 10 s after dissolution. The 

polarization of the 3-
13

C was improved by a factor 3 in the deuterated molecules after dissolution, 
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because the polarization was better preserved during the transfer. Similar improvements are reported in 

Figure 3.13 for deuterated 1,2-
13

C2 acetate-d3 compared to protonated 1,2-
13

C2 acetate. After dissolution, 

a polarization of P(
13

C) = 20% was obtained on the carboxyl group of deuterated acetate and P(
13

C) = 15% 

for its deuterated methyl group. 

 

Figure 3.13: a) Hyperpolarized 
13

C NMR spectra of deuterated doubly enriched 1,2-
13

C2 acetate-d3 recorded every 5 

s after dissolution-DNP, showing the effects of longitudinal relaxation T1(
13

C) at 7 T and 300 K. b) NMR signals of the 

carboxyl C1. c) NMR signals of the methyl C2, revealing asymmetries that are characteristic of very low spin 

temperatures (45). 

3.4.2 CP to other heteronuclei 

The use of Cross Polarization in DNP is of course not limited to the transfer of polarization from 
1
H to 

13
C. 

The technique can also be applied to other low-gamma nuclei. Cross Polarization to 
6
Li under DNP 

conditions was performed in our group by A. J. Perez-Linde (46). Moreover, at the time of writing, Jonas 

Milani has built CP-DNP probes designed for 
29

Si, 
129

Xe and 
15

N. Such nuclei were rarely used until now 

with D-DNP, because of their prohibitively long build-up times and their low polarization values. They 

appear promising since they exhibit long T1’s. For example T1(
15

N) = 800 s was measured in 
15

N, d9 

trimethylphenylammonium (39). 

 

Moreover, as be shown in Chapter 8, so called Long-Lived States (LLS) can be populated directly at very 

low spin temperatures (47). Therefore CP under DNP conditions appears to be the best way to create LLS 

in systems comprising pairs of 
15

N spins (48) or pairs of 
13

C spins (49-51). 
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Chapter	4:		

	

Microwave	Frequency	Modulation	

 

Monochromatic microwave irradiation of the ESR spectrum of polarizing agents is usually performed in 

the Dissolution-DNP polarizer. Hovav et al. (1) have shown that by using frequency-modulated (rather 

than monochromatic) microwave irradiation one can improve DNP at 3.35 T in the temperature range 

10-50 K. The authors suggested that this “should be tested in the future also at the 1–2 K temperature 

range typically used with dissolution DNP”. In this Chapter it will be shown that this prediction was 

indeed confirmed at lower temperatures and higher fields (1.2 K and 6.7 T). The use of frequency-

modulated microwave irradiation under these conditions permits one to decrease the concentration of 

paramagnetic polarization agents. The technique compensates for the losses of polarization and the 

deceleration of the build-up rates induced by a reduction of the concentration of radicals. Low electron 

concentrations allow for more efficient Cross Polarization. Moreover, the life-time of the hyperpolarized 

magnetization is also prolonged after dissolution under such conditions, which can make a crucial 

difference, especially if 1H is to be observed, as will be shown in Chapters 5-8. 

4.1 Frequency modulation compensates for low radical concentrations 
 

As shown in Chapter 3, Cross Polarization is handicapped by large NMR line-widths and short T1ρ. 

Moreover, 
13

C relaxation to the DNP steady-state polarization level between CP steps reduces the overall 

efficiency of Cross Polarization, and thus the maximal 
13

C polarization achievable. The process could be 

improved if the electron concentrations could be decreased. Such a reduction of paramagnetic species 

present would also be of great benefit for the lifetime of the hyperpolarized magnetization after 

dissolution, as will be shown in Chapter 5-8. Nevertheless, for the DNP process to be efficient, an optimal 

electron concentration has to be used. High radical concentrations enhance electron-electron dipolar 

couplings, which enable rapid spectral spin diffusion within the broad inhomogeneous ESR line of 

TEMPOL. As a consequence, a larger fraction of the electron spins can contribute to the DNP process. If 

the radical concentration is too low, only a small fraction of the electron spins will contribute to DNP, 

which will translate into low nuclear spin polarizations and very long build-up times. On the other hand, 

if the electron spin concentration is too high, the ESR line will tend to be homogeneously broadened well 

beyond its inhomogeneous width, which will translate into fast build-up rates, but with poor nuclear spin 

polarizations. In practice, the best radical concentration was found to be around 50 mM at 1.2 K and 6.7 

T. 

 

It has been shown recently by Thurber et al.(2), Cassidy et al. (3), and most recently by Hovav et al. (1) 

that DNP by CE and SE can be greatly improved by using either field-modulated or  frequency-modulated 

microwave irradiation. The same approach is also beneficial at lower temperatures like T = 1.2 K and at a 

higher magnetic fields such as B0 = 6.7 T as will be shown below (4). If frequency modulation is used, the 

fraction of the ESR line where DNP is effective is no longer determined by the radical concentration. The 

number of DNP-active electrons is increased, and consequently the nuclear enhancement. In fact, 
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frequency modulation can play a similar role as spectral spin diffusion. More detailed theoretical 

explanations supported by numerical simulations are given by Hovav et al. (1). 

 

To implement frequency modulation, the frequency of the microwave source was controlled directly in 

the voltage-controlled oscillator unit (VCO) by a constant or modulated voltage (Stanford Research 

Systems DS345). The voltage source combined with the Elva VCO enables fast (up to 10 MHz) and broad 

frequency modulation over a range of ± 500 MHz. The microwave frequency typically varies in a 

sinusoidal fashion according to νµw(t) = <νµw> + ½ Δνµw sin(2πfmodt), where <νµw> is the average frequency, 

Δνµw the amplitude of the frequency modulation, and fmod the frequency of this modulation. A schematic 

description of these parameters is presented in Figure 4.1. 

 

Figure 4.1: Scheme illustrating the frequency modulation method. The microwave frequency typically varies in a 

sinusoidal fashion according to νµw(t) = <νµw> + ½ Δνµw sin(2πfmodt), where <νµw>  is the average frequency, Δνµw the 

amplitude of the frequency modulation, and fmod the frequency of modulation. 

4.2 Experimental results at 6.7 T and 1.2 K 

4.2.1 Frequency-modulated proton build-up curves 

Proton DNP was investigated for samples containing 10, 25 and 50 mM TEMPOL, respectively, in a 

10:40:50 (v/v/v) H2O:D2O:glycerol-d8 mixture, at T = 1.2 K. The gain in polarization brought about by 

frequency modulation is modest for high radical concentrations when the ESR spectra are 

homogeneously broadened, but becomes substantial for low radical concentrations when the ESR line-

widths are inhomogeneous. Frequency modulation permits one to increase the proton polarization at 

low sub-optimal electron concentrations, while simultaneously accelerating the DNP build-up times. 

Table 4.1 gives the final proton polarization P(1H) and the corresponding build-up times τDNP(1H) with and 

without frequency modulation for positive and negative DNP effects, and for three different radical 

concentrations. The effect of frequency modulation is hardly remarkable at a high radical concentration 

of 50 mM, but it is much more pronounced as the radical concentration is decreased to 25 or 10 mM. 

Figure 4.2 shows the effect of microwave frequency modulation on the 
1
H DNP build-up behavior for 

positive or negative DNP in a sample with an electron concentration of 25 mM, performed at the optimal 

monochromatic frequencies νµw = 187.85 and 188.3 GHz. The amplitude of the frequency modulation 

was set to Δνµw  = 100 MHz with a modulation frequency fmod = 10 kHz. 
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[e
-
] (mM) Modulation P

+
(

1
H) (%) τ

+

DNP(
1
H) (s) P

-
(

1
H) (%) τ

 -

DNP(
1
H) (s) 

10 
with 14.5

*
 2600

**
 -21.1

*
 2500

**
 

without 0.9
*
 n.a.

***
 -1.2

*
 n.a.

***
 

25 
with 57.3 159 ± 1.8 -60.7 185 ± 2 

without 9.3
*
 9000

**
 -29.5 625 ± 11 

50 
with 61.3 108 ± 1.6 -63.3 152 ± 2 

without 21.9 338 ± 7 -43.7 218 ± 4 

Table 4.1: Positive and negative proton polarization and build-up times at T = 1.2 K and B0 = 6.7 T for different 

TEMPOL concentrations in a 10:40:50 (v/v/v) H2O:D2O:glycerol-d8 mixture, with and without frequency modulation. 

Where * DNP maximum was not reached; the polarization shown was achieved after 20 minutes of microwave 

irradiation. ** Fits have large uncertainties because only the first 20 minutes of the DNP build-up curve were 

recorded. *** Estimates of the build-up times are not available because of poor fits. 

 

Figure 4.2: Negative (blue symbols) and positive (red symbols)  
1
H DNP build-up curves measured at T = 1.2 K and B0 

= 6.7 T, with and without frequency modulation, in 3 M 1-
13

C acetate with 25 mM TEMPOL in a 10:40:50 (v/v/v) 

H2O:D2O:glycerol-d8 mixture. The optimal frequencies νµw = 187.85 and 188.3 GHz were set for positive or negative 

DNP respectively, with a microwave power Pµw = 87.5 mW. An amplitude Δνµw = 100 MHz was used for frequency 

modulation. 

Figure 4.3 shows a DNP microwave spectrum measured for a sample containing 25 mM TEMPOL. It 

shows the proton polarization P(
1
H) achieved with DNP as a function of the irradiation frequency νµw 

with and without frequency modulation. The line-shapes of the DNP microwave spectra are substantially 

different with or without microwave frequency modulation. The DNP microwave spectrum measured 

with frequency modulation has positive and negative optima that are roughly separated by the proton 

Larmor frequency ν0(
1
H) = 285.23 MHz, which is typical for the Cross Effect. On the other hand, the DNP 

microwave spectrum measured without frequency modulation, in addition to showing reduced DNP 

performance, has a width between positive and negative optima reduced to c.a. 150 MHz.  
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Figure 4.3: Polarization P(
1
H) with and without frequency modulation (Δνµw  = 100 MHz) for 3 M 1-

13
C acetate with 

25 mM TEMPOL in a 10:40:50 (v/v/v) H2O:D2O:glycerol-d8 mixture, as a function of the (average or monochromatic) 

microwave frequency. 

This change of DNP frequency spectra with free electron concentration was investigated in more detail 

on samples of 1-
13

C acetate 3M and 50, 25, or 10 mM TEMPOL in H2O:D2O:Glycerol-d8 (1:4:5) at B0 = 6.7 T 

and T = 4.2 K (Figure 4.4a). As the concentration of the polarizing agent is lowered, the difference 

between the positive and negative DNP optima ΔDNP
max

(
1
H) and ΔDNP

max
 (

13
C) decreases. This effect occurs 

for both for 
1
H and 

13
C, but is more visible for the latter nucleus.  

 

The variation of the free electron concentration influences (among other parameters) the electronic 

spectral diffusion. At higher electronic concentrations, the spectral diffusion between irradiated and 

non-irradiated electrons should increase the number of DNP-active centers. To see how this affects the 

shape of the DNP frequency spectra, it is possible to modify Equation 2.4 of Chapter 2, which involved 

only electrons resonating in a narrow bandwidth near to the applied microwave frequency νμW , 

determined by the frequency increment of the digitized spectrum IESR(νμW). In the version of Equation 

4.1, the CE DNP spectrum is obtained by summation over irradiation frequencies νµW over a variable 

bandwidth ΔνµW : 

 

( ) ( ) ( ) ( )( )0 0( ) ( )
W W

W CE ESR W ESR W ESR W
v

CE a I I n I n
µ µ

µ µ µ µ
ν

ν ν ν ν ν ν
±∆

 = + − +
 ∑  (4.1) 

 

The resulting CE DNP frequency spectra calculated using Equations 4.1 with different spectral diffusion 

bandwidths for 1H and 13C are shown in Figure 4.4b. The effect is less pronounced for 1H than for 13C, but 

is comparable with our experimental results. Both for 
1
H and 

13
C, ΔDNP

max
 becomes larger as ΔνµW 

increases. 

 

One can thus postulate that the modulation of the microwave frequency can be used as a substitute for 

the electron spectral diffusion when e-e dipole-dipole couplings become smaller at lower concentrations 

of polarizing agents (larger e-e distances). 
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Figure 4.4: a) Effect of the electron concentration on the shape of the 
1
H and 

13
C DNP spectra. Normalized 

1
H and 

13
C DNP spectra of a sample of 3M 1-

13
C acetate in H2O:D2O:Gly-d8 (1:4:5) polarized at B0 = 6.7 T and T = 4.2 K,  with  

20, 35, 50, or 65 mM TEMPOL. b) Influence of the electronic spectral diffusion on the shape of the DNP spectra. CE 

contributiosn calculated with Equations 4.1 for different bandwidths ΔνµW for 
1
H and 

13
C. 

4.2.2 Cross Polarization with low electron concentration 

The reduction of the radical concentration, made possible by frequency modulation, makes CP more 

efficient. Figure 4.5 illustrates this concept by showing that, even though P(
1
H) slightly decreases when 

the radical concentration is reduced from 50 to 25 mM, P(
13

C) after CP is significantly increased. Since 

P(
13

C) is obtained from P(
1
H) by 

1
H → 

13
C  CP, one would not expect such an advantage. However, the 

improved CP efficiency compensates for the decrease in
 1

H polarization. Indeed, a decrease in radical 

concentration results in an extension of nuclear spin-lattice relaxation times, which improves the 

preservation of hyperpolarized 
13

C magnetization in-between the CP steps. Additionally, we observed a 

significant 
1
H line narrowing in the 1-

13
C acetate samples at 1.2 K owing to the reduction of paramagnetic 

line broadening to 35 or 25 kHz for samples with 25 or 10 mM TEMPOL respectively. 
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Figure 4.5: DNP build-up curve of the 
13

C polarization, measured with multiple cross-polarization contacts, for 3 M 

1-
13

C acetate doped with 25 mM TEMPOL with frequency modulation (red filled circles) or 50 mM TEMPOL without 

frequency modulation (blue empty circles).  

The extension of nuclear spin-lattice relaxation times after dissolution is possible when the electron 

concentration is reduced. This will also improve the preservation of hyperpolarized magnetization during 

the transfer and the detection of the signal. As it will be shown in the next Chapters, this is of crucial 

importance, especially when working with protons. 
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Chapter	5:		

	

DNP	enhanced	Long-Lived	States	to	study	

protein-ligand	interactions	

In this Chapter, I will discuss applications of D-DNP of protons to drug screening using Long-Lived States 

(LLS). This technique was developed in our group in collaboration with Roberto Buratto (1). In the next 

Sections, I will first develop the basis of the LLS technique to study protein-ligand interactions without 

DNP. More advanced applications can be found elsewhere, for example in Reference (2). Then, in Section 

5.2, I will focus on the adaptation of the technique to couple it with D-DNP (3). Finally, in Section 5.3, I 

will quickly introduce some improvements that could be made in the future to render the DNP-LLS 

method more efficient.  

5.1 LLS to study protein-ligand interactions: original experiments 

without Dissolution-DNP 

5.1.1 How to measure dissociation constants with NMR 

The functions of a protein are usually expressed by interactions with other biomolecules or smaller 

ligands, like hormones, substrates, etc. Therefore, a fundamental goal in pharmaceutical research and 

drug development is to find natural or synthetic molecules that interact specifically and strongly with a 

target biomolecule, promoting or inhibiting its activity. 

 

The binding of a ligand to a protein can be regarded as an equilibrium which results from a balance 

between association and dissociation events (4). For the simplest case of a protein with a single binding 

site, the association of a ligand L to a receptor protein P forming the complex PL is described by the 

equilibrium:  

 

on

off

k

k
P L PL→+ ←  (5.1) 

 

where kon and koff are the kinetic association and dissociation constant, in units of s-1M-1 and s-1 

respectively. The dissociation constant KD characterizes the thermodynamic equilibrium between the 

concentrations of the free protein, the free ligand and the protein-ligand complex [P], [L] and [PL]: 

 

[ ] [ ]
[ ]

off
D

on

kP L
K

PL k

⋅
= =  (5.2) 

 

Studies of binding affinities or the identification of new bioactive substances by screening of libraries of 

compounds is usually performed using biological assays such as the enzyme-linked immunosorbent assay 
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(ELISA) (5). Nevertheless, in the last decades, a large variety of physicochemical methods have also been 

established for this purpose, like isothermal titration calorimetry (6) or surface plasmon resonance (7). 

NMR spectroscopy techniques have emerged as a powerful approach for the identification of lead 

compounds in the drug discovery process or for the investigation of protein-ligand interactions (8, 9). 

NMR methods have the advantage to extend the range of measurable interactions with KD in the mM 

range or above, a range that is not well covered by traditional biochemical binding assays. 

 

The general principle of NMR approach is to observe an NMR parameter (that we will call ξ) that changes 

when the protein and ligand interact (10-13). Theoretically, all spectroscopic NMR parameters may serve 

as a gauge for binding activity, but only the ones that can be measured easily and with high sensitivity 

are significant. The object of the NMR observation can be the ligand or the protein. If it is the protein, 

the parameters that can be monitored are limited to chemical shifts. Moreover, this methodology 

implies 15N or 13C labelling, well resolved two-dimensional spectra and assignment of the entire protein 

or at least of its active site. If the ligand is studied, the choice of parameters is broader. It includes 

longitudinal, transverse and double quantum relaxation, diffusion constants, intermolecular and 

intramolecular magnetization transfer (14) (NOEs, saturation transfer, Water-LOGSY). Moreover, as 

protein-ligand complexes are dynamic systems, their exchange rate is of primary importance. For a 

system in slow exchange (high binding affinity, KD in the μM range or lower), resolved signals can be 

recorded for the free protein, the free ligand and the protein-ligand complex and their concentrations 

can be obtained by integration of their respective signals. Nevertheless, this is difficult in practice 

because one has to deal with μM signals and complex spectra.  

 

For systems in fast exchange on the NMR time scale, the distribution of species is described in terms of 

mole fractions of bound (Xbound) and free (Xfree) ligands, and all observed ligand NMR parameters, ξobs,  are 

given by averages of free and bound parameters,  ξfree and ξbound, weighted by the mole fractions: 

 

ξ obs = X freeξ free + X boundξ bound
 (5.3) 

 

with X
free = [L]/[L]0, X

bound = [PL]/[L]0 and the total ligand concentration [L]0 = [L] + [PL]. The details of 

Equation 5.3 for relaxation rates, adapted from McConnell (15), Luz & Meiboom (16) and Fielding (17), 

can be found in the supplementary material of Reference (1). Two important approximations must be 

made in this proof: the saturation approximation must be valid. i.e., [PL] << [L]0, and the fast exchange 

approximation must be fulfilled, i.e.,  

 

kon  >> koff  >> ξ free −ξ bound
 

 

To illustrate the importance of this approximation, the comparison between the observed values of the 

relaxation rate ξobs = R1
obs = 1/T1

obs calculated as a function of the dissociation constant KD with the fast 

exchange approximation (Equation 5.3) and without it is shown in Figure 5.1a. If the KD of the observed 

ligand is too small, i.e., if the binding is too strong, Equation 5.3 cannot be applied anymore. 

 

Using the definition of KD and assuming saturation, Equation 5.3 can be rewritten to give an expression of 

ξobs that depends only on measurable variables (the details of the derivation are given in supplementary 

material of Reference (1)): 
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obs bound free free

D

P

K L
ξ ξ ξ ξ= − +

+
 (5.4) 

 

where [P]0 is the total protein concentration. Therefore, to measure KD, the value of any relevant NMR 

parameter ξobs can be measured as a function of the total concentration of the ligand of interest [L]0 

while keeping constant the total concentration [P]0 of the protein. ξfree can be measured in an 

independent experiment with [P]0 = 0. The dissociation constant can then be easily determined by a fit 

with Equation 5.4 of ξobs([L]0), with [P]0 and ξfree as constant and ξbound and KD as variable parameters. 

Rearranging Equation 5.4, one can extract (ξfree - ξobs), which represents the deviation of ξobs from its free 

value due to the presence of the protein: 

 

( ) [ ] ( )0

0[ ]
free obs free bound

D

P

K L
ξ ξ ξ ξ− = −

+
 (5.5) 

 

This deviation will be large if (ξfree – ξbound), the difference between the values of the parameter in the 

free and bound states, is large. A few examples of ξobs([L]0/[P]0) calculated with Equation 5.4 for different 

ξbound/ξfree ratios are shown in Figure 5.1b.  

 

Figure 5.1: a) Range of validity of the fast exchange approximation; calculation of the effect of the dissociation 

constant KD on T1
obs

 = 1/R1
obs

 within the fast exchange approximation (Equation 5.4), (blue) and without invoking 

the fast exchange approximation (R1
obs

 = X
free

R1
free

 + X
bound

 1/((R1
bound

)
-1

 + τ
bound

) (red), with T1
free

 = 1 s, T1
bound

 = 0.02 

s; [L]0 = 1 mM, [P]0 = 50 μM; τb = 1/koff the residence time in the bound environment and kon = 10
8
 s

-1
 M

-1
 (see 

Reference (1) for the derivation of this equation). b) Influence of the deviation of ξ
bound

 from ξ
free

 on ξ
obs

 calculated 

with Equation 5.4 for different ξ
bound

/ξ
free

 ratios, with KD = 0.2 mM. 

Therefore, the larger │ξfree – ξbound│, the lower the ligand-protein concentration ratio needed to observe a 

deviation of ξobs from ξfree. NMR parameters that are strongly influenced by binding to a protein should 

thus be chosen as probes for KD measurements. 

5.1.2 Introduction to Long-Lived States 

So-called Long-Lived States (LLS)(18-20), also known as Singlet States (SS) in isolated two-spin systems, 

can be used very effectively to investigate protein-ligand interactions (1). Indeed, the protracted 

lifetimes TLLS of these nuclear spin states are exquisitely sensitive to binding to a protein, giving a 

dramatic contrast between the lifetimes TLLS of the bound and free forms. Long-Lived States, first 

described by Levitt and co-workers (21-24), have the unique property that their populations relax with 
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time constants that can be much longer than longitudinal relaxation time constants (TLLS >> T1). For pairs 

of protons, ratios TLLS/T1 as large as 60 have been observed in R-CH=CH-R’ systems. In the case of 

homonuclear two spin-½ systems, singlet (|S0〉) and triplet (|T+1〉, |T0〉, |T-1〉) states can be constructed by 

combinations of the four Zeeman product states (|αα〉, |αβ〉, |βα〉, |ββ〉): 

 

( )

( )

0

1

0

1

1
2

1
2

S

T

T

T

αβ βα

αα

αβ βα

ββ

+

−

= −

=

= +

=

 (5.6) 

 

Singlet states are anti-symmetric with respect to the permutation of the two spins, whereas the three 

triplet states are symmetric. As the intra-molecular dipole-dipole (DD) interaction between these two 

spins is symmetric with respect to the exchange of the two nuclei, it cannot interconvert singlet and 

triplet populations (20). This interaction is the main relaxation mechanism for spins ½ in liquid state NMR 

(25). Thus if a population difference between singlet and triplet states is created, only secondary 

relaxation mechanisms, like external DD, CSA, or paramagnetic relaxation due to species in solution, will 

be efficient, and the magnetization can be stored for a long time since its relaxation time constant will be 

longer than T1. 

 

Measurement of TLLS: LLS pulse sequence 

 

In a system with two magnetically inequivalent spin (IS), |S0〉 and |T0〉 are not eigenstates of the nuclear 

spin Hamiltonian, so that the singlet state population is continuously converted to triplet states which 

rapidly relax. On the other hand, Long Lived States cannot be excited and detected in a two-spin system 

with magnetically equivalent spins (I2), as conventional NMR experiments will act similarly on the two 

spins, and as it has no net magnetization. An LLS pulse sequence is thus divided in three blocks (Figure 

5.2a).  

 

Figure 5.2: Pulse sequence used to excite, sustain and observe LLS: a) Schematic view. b) Detailed view. The 

conversion is most efficient if τ1 = 1/4JIS and τ2 = 1/2ΔνIS. 

One has (i) to start with a system comprising two non-equivalent spins, and convert via a pulse sequence 

(22, 26) their Boltzmann equilibrium population into a spin density operator corresponding to a so-called 
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precursor state, i.e., a state that acquires a long-lived property as soon as the two spins are made 

equivalent; (ii) preserve the LLS population by temporarily suppressing the effects of the chemical shift 

difference. This is done in the experiment presented in this chapter by applying a resonant 

radiofrequency (rf) field (22, 24, 27, 28) during a sustaining time τLLS, with the carrier (νrf) placed half-way 

between the chemical shifts of the two spins. The LLS are efficiently sustained if the rf field is at least five 

times stronger than the chemical shift difference between the two spins (29); (iii) finally, the LLS isolation 

is suspended; the system is again best described as an IS system. A suitable pulse sequence is applied to 

obtain observable magnetization (26). The lifetime of the LLS can be determined by fitting the signal 

intensities recorded as a function of τLLS to the exponential function exp(-τLLS/TLLS). 

 

The complete LLS pulse sequence used for the protein-ligand experiment is shown in Figure 5.2b. A 

detailed description of the sequence using the product operator formalism can be found in Reference 

(26) as well as in the supplementary material of Reference (1).  

5.1.3 LLS to study protein-ligand interactions 

It turns out that a protein can be a very good relaxation agent for Long-Lived States. Indeed, a ligand 

carrying LLS that enters into a binding pocket will experience dipole-dipole interactions with all spins, 

mainly the protons, of the protein. The correlation time of a bound ligand will also become longer. 

Finally, the local magnetic fields at the sites of the two protons of the ligand interacting with a protein 

may also change. Therefore, the average resonance frequency and the chemical shift difference (ΔνIS) of 

the two spins involved in a LLS can differ between Lfree and Lbound. As the sustaining field has to be applied 

on resonance and with intensity at least 5 times larger than ΔνIS, the bound ligand may experience a less 

efficient sustaining. All these mechanisms added together, this implies that TLLS
bound << TLLS

free. Moreover, 

as TLLS
free is long compared to T1

free, this implies that, compared to other methods, the difference 

between the free and bound values of TLLS is large. Therefore, LLS constitutes a good choice for an NMR 

parameter to be studied in view of the determination of KD. 

 

The measurement of KD with the LLS technique is limited to weak ligands that carry two inequivalent 

protons that are relatively isolated from other spins and that represent a source of external dipole-dipole 

interactions. Nevertheless, as will be shown below, it is easily possible to overcome these two 

limitations.  A ligand can be functionalised with an “LLS tag” and one can use competition methods to 

study strong binders. To measure KD, a weak ligand is titrated into a solution containing a fixed 

concentration of protein. At each concentration, TLLS is measured with the pulse sequence shown in 

Figure 5.2.  With ξ = RLLS = 1/TLLS Equation 5.4 becomes: 

 

 
[ ] ( )0

0[ ]
obs bound free free
LLS LLS LLS LLS

D
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R R R R
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+
 (5.7) 

 

The urokinase-type plasminogen activator (uPa), a protein of the trypsin family, was chosen as a target 

for a test of the LLS method to determine KD. The first step consists in finding a weak ligand of uPa with 

two isolated inequivalent protons, where an LLS could be excited. It was shown by phage display (30) 

using a peptide library and consensus sequence analysis that peptides which bind to uPA must contain at 

least one arginine residue. As glycine residues in peptides contain two diastereotopic Hα protons, it is 

straightforward to excite LLS in virtually any glycine containing peptide (31). We therefore considered 

the tripeptide Gly-Gly-Arg (GGR) as a weak ligand for uPa.  
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In the free ligand L = GGR, the lifetime TLLS of the two Hα protons in the central glycine was determined 

to be TLLS
free = 8.0 ± 0.2 s at 8 °C and 400 MHz. The ligand was then titrated over a range 0.5 < [L]0 < 10 

mM in the presence of [P]0 = 10 μM uPA at 8 °C. The curve in Figure 5.3a was fitted to Equation 5.7, 

yielding KD
weak = 220 ± 10 μM and TLLS

bound = 30 ± 10 ms (as expected TLLS
bound << TLLS

free). By contrast, as 

shown in Figure 5.3a, binding has virtually no effect on the longitudinal (spin-lattice) relaxation times T1 

of the same Hα protons.  

 

Figure 5.3: a) Lifetimes TLLS of Long-Lived States associated with the two H
α
 protons of the central glycine residue of 

the weak ligand L = Glycine-Glycine-Arginine (GGR) and their conventional longitudinal relaxation times T1 in the 

presence of [P]0 = 10 μM of the protein uPA, as a function of [L]0 at 8°C and 400 MHz in D2O. The curve shows a fit 

of the experimental data to Equation 5.7. b) Contrast of life-times TLLS, T1 and T1ρ of ligands binding to proteins. The 

experimental contrast C(TLLS), C(T1) and C(T1ρ) for TLLS (dots), non-selective T1ρ (squares) and non-selective T1 (stars) 

for a solution with a fixed concentration [L] = 1 mM of the tripeptide ligand Gly-Gly-Arg (GGR) and a variable trypsin 

concentration 0.5 μM < [P]0 < 50 μM  in D2O at 8 °C at 11.7 T (500 MHz for protons). 

Enhanced contrast of LLS 

 

Following Equation 5.5 and Figure 5.1b, one can define for each parameter ξ a dimensionless parameter 

to express its contrast for a given [P]0/[L]0 ratio: 

 

free obs

free obs

Cξ

ξ ξ
ξ ξ

−
=

+
 (5.8) 

 

A high contrast implies that a small fraction X
bound can be detected by the method, i.e., that the NMR 

parameter ξ is sensitive to ligand-protein binding. To demonstrate the enhancement of the contrast 

C(TLLS), with respect to the contrast C(T1) and C(T1ρ), binding experiments were carried out for a 1 mM 

solution of the tripeptide ligand Glycine-Glycine-Arginine (GGR) in the presence of its target protein 

trypsin in the range 0.5 < [P] < 50 μM, using different methods (TLLS, non-selective T1 and non-selective 

T1ρ). Figure 5.3b shows that the LLS method can work with a protein-ligand ratio that is about 25 times 

lower than required for the well-known selective T1ρ method, whereas the non-selective T1 contrast 

remains below C(T1) < 10 % even at the highest protein concentration [P] = 50 μM. 
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Spin-pair labelling 

 

A drawback of screening by LLS is that the ligands must carry a pair of non-equivalent spins-½. We 

therefore developed a synthetic labelling strategy comprising two steps: (i) the identification of a ‘spy 

ligand’ that binds weakly to its target protein, and (ii) the functionalization of this ligand by attaching a 

‘spin-pair label’ that can carry LLS. By way of illustration, 3-bromothiophene-2-carboxylic acid (‘BT’), 

which is known to have long lifetimes TLLS (21, 32), was covalently attached to the tripeptide GGR. The 

resulting spin-pair labelled tripeptide will henceforth be called BT-GGR. The details about the synthesis 

of BT-GGR can be found in the supplementary material of Reference (3). 

 

Despite some steric effects and long-range dipolar relaxation mechanisms in the spin-pair labelled 

tripeptide BT-GGR, the two aromatic protons of the bromothiophene group retain a remarkably long 

lifetime TLLS
free(BT) = 11.7 ± 0.7 s. In this particular peptide, the diastereotopic pairs of the α-protons of 

the two glycine residues of BT-G1G2R can also be used to excite LLS, and have lifetimes TLLS
free(G1) = 10.4 ± 

0.5 s and TLLS
free(G2) = 9.3 ± 0.5 s. (see Figure 5.4a). 

 

The spin-pair labelled spy ligand L = BT-GGR was added to a solution of [P]0 = 25 μM trypsin over a range 

0.5 < [L]0 < 40 mM. At each concentration [L]0, the observed relaxation times TLLS
obs = 1/RLLS

obs of three 

different pairs of protons (belonging to the bromothiophene group and to the middle and terminal 

glycines) were measured using the pulse sequence of Figure 5.2. Figure 5.4b shows how the titration 

curves can be fitted to Equation 5.7. As expected, nearly the same dissociation constants were obtained 

for the three proton pairs that can sustain LLS in BT-GGR: KD(BT) = 0.18 ± 0.03 mM, KD(G1) = 0.24 ± 0.01 

mM, KD(G2) = 0.21 ± 0.02 mM. Moreover, the fact that KD(BT-GGR) is close to KD(GGR) shows that the 

spin-pair label does not interfere with the binding. The LLS fitted lifetime of G2 (i.e., the glycine closest to 

the arginine) in the bound form (TLLS
bound(G2) = 16 ± 1 ms) is shorter than for the two other LLS sites 

(TLLS
bound(BT) = 90 ± 20 ms, TLLS

bound(G1) = 110 ± 40 ms). This shorter TLLS
bound is believed to be due to the 

fact that the arginine R, and thus also the glycine G2, enter more deeply into the active site of trypsin. 

 

Figure 5.4: a) Pairs of protons capable of sustaining LLS in BT-GGR: on bromothiophene BT (orange), on the N-

terminal glycine G1 (blue) and on central glycine G2 (green), the latter being close to the arginine residue that binds 

to the protein. b) Observed LLS lifetimes of the three proton pairs on the spin-pair labeled tripeptide BT-GGR as a 

function of the ligand concentration, in the presence of 25 μM trypsin in D2O at 25 °C and 11.7 T (500 MHz for 

protons).  

The covalent attachment of ‘spin-pair labels’ such as bromothiophene (BT) permits one to broaden the 

scope of the LLS screening method to virtually any weak ligand in the fast exchange regime. By way of 

example, bromothiophene carboxylic acid was attached to the N-terminus of a tripeptide, but other 

‘spin-pair labels’ could be designed. Spy ligands with higher sensitivity to binding could be engineered 
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with the following features: (i) spy ligands with enhanced TLLS
free, (ii) LLS functionalizing groups that are 

closer to the binding site, (iii) the use of nearly equivalent spins (33). Our labels are far less bulky than 

chromophores used in fluorescence experiments, and should not induce significant steric impediments 

to binding. 

 

Competition binding experiments 

 

Once a weak ligand has been identified and characterized by titration, it can be used as a “spy ligand” in 

competition experiments (34). When a stronger competitor blocks the active site of the protein, the 

weak spy ligand will no longer have free access to its target (Figure 5.5a). The concentration [P]free of the 

protein that remains free to bind the weak ligand can be derived from the definition of the dissociation 

constant KD
strong of the stronger competitor. Here, the approximation that the binding sites are saturated 

by ligands cannot be made since [Lstrong]0 ≈ [P]0 (See the supplementary material of Reference (1)): 
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  (5.9) 

 

where b = ([P]0 + [Lstrong]0 + KD
strong) and [Lstrong]0 is the total concentration of the competitor. To describe 

the relaxation rate RLLS
obs of the weak spy ligand in competition experiments, [P]0 in Equation 5.7 must be 

replaced by [P]free of Equation 5.9. As the amount of free available protein decreases, the effects of the 

protein on the lifetime TLLS
obs of the weak spy ligand will be less pronounced (See Figure 5.5a).  

 

Figure 5.5: a) Schematic view of competition experiments. b) Influence of a competitor on the LLS lifetime of a 

weak ligand. LLS lifetimes TLLS
obs

 of the pair of aromatic protons of the bromothiophene spin-pair label BT as a 

function of the dissociation constant of a competing stronger ligand, calculated using Equation 5.7 and 5.9. The 

parameters of the weak ligand BT-GGR were obtained from the fit of the data in Figure 5.5b: KD = 0.2 mM, TLLS
bound

 = 

0.1 s, TLLS
free

 = 11 s, [L]0 = 0.5 mM, [P]0 = 25 μM and [L
s
]0 = 50 μM. The three points correspond to TLLS

obs
 in the 

presence of myricetin (KD
strong

= 3 μM, dots), apigenin (KD
strong

 = 39 μM, squares) and in the absence of any 

competitor (stars) calculated for these conditions. 

When stronger ligands are added, the lifetime TLLS
obs of the spy ligand gives information about the 

dissociation constant KD
strong of the competitor. Note that the competitors do not need to contain any 

spin pairs that can sustain an LLS. Moreover, as the changes in TLLS
obs need only be observed for the weak 

ligand, there are no requirements for the stronger ligands to fulfil the fast-exchange condition. As the 

strong competitors themselves do not need to be observed directly, their concentration can also be 



87 

 

lowered, typically to the same level as the concentration of the protein, i.e. to [L]0 ≈ [P]0, which may 

typically be in the range of a few μM.  

 

Once the dissociation constant KD
weak of the weak spy ligand and its LLS lifetime in the bound form 

TLLS
bound are known, it is possible to optimize [Lstrong]0 and [P]0 to rank strong competitors Lstrong according 

to their binding strengths. Figure 5.5b shows the calculated TLLS
obs(BT) of the bromothiophene protons in 

BT-GGR if [P]0 = 25 μM and [Lstrong]0 = 50 μM as function of KD
strong. Under these conditions, TLLS

obs changes 

dramatically between KD
strong = 100 and 0.1 μM. If KD

strong < 0.1 μM, one can detect a large effect on the 

lifetime TLLS
obs of the weak spy ligand, but it is not possible to rank the ligands according to their affinities. 

 

A library of competing ligands can be ranked according to their affinities by observing the LLS signal of 

the weak spy ligand. Under the conditions shown in Figure 5.5b, one can easily rank competing ligands 

with great accuracy provided 1 μM < KD
strong <100 μM. Note that the LLS sequence of Figure 5.2 can be 

used with a single sustaining delay τLLS. This strategy is compatible with dissolution DNP, as it will be 

discussed in section 5.2 As TLLS
obs of the weak spy ligand is longer in the presence of a stronger 

competitor, the LLS signal intensity of the spy ligand after a suitably chosen delay τLLS will be higher. LLS 

spectra with τLLS = 3 s were recorded with 0.5 mM BT-GGR, in the presence of [P]0 = 25 μM trypsin with 

four different competitors, all with [Lstrong]0 = 50 μM: myricetin (KD
strong = 3 μM), morin (KD

strong = 30 μM), 

apigenin (KD
strong = 39 μM) (35) and benzamidine (KD

strong = 39 μM) (36). Figure 5.6a shows three of the 

five LLS spectra, obtained either without competitor, with apigenin, or with myricetin. Figure 5.6b shows 

the signal intensities of the weak spy ligand BT-GGR in the presence of one of the four competing 

ligands. 

 

Figure 5.6: a) Signals of one of the two aromatic protons of bromothiophene of 0.5 mM of the weak spy ligand BT-

GGR in the presence of 25 μM trypsin, using the LLS sequence of Figure 5.2 with a sustaining time τLLS = 3 s in D2O at 

25 °C and 11.7 T (500 MHz for protons.)  (i) In the absence of any competitor (red), (ii) in competition with 50 μM of 

the intermediate ligand apigenin (blue), and (iii) in competition with 50 μM of the of the stronger ligand myricetin 

(green). b) Peak intensities of one of the aromatic protons of BT-GGR under the same conditions as in a, without 

competitor or in the presence of apigenin, benzamidine, morin or myricetin. The better the binding, the smaller the 

dissociation constant, and the more intense the LLS signal of the displaced spin-pair labeled spy ligand BT-GGR. 

Compared to other NMR screening methods, the LLS method thus offers much improved contrast. For 

the same ligand concentration (i.e., for the same experimental time), the protein concentrations can be 

greatly reduced, giving access to poorly soluble protein targets and decreasing the risk of aggregation. 

When used in competition mode, the LLS method allows one to rank high-affinity ligands using simple 1D 

experiments. 



88 

 

5.2 Adaptations of LLS protein-ligand experiment to be DNP-compatible 

 

It is clearly desirable to use low concentrations of both proteins and ligands, not only to save expensive 

materials, but also to avoid protein aggregation and problems with mixtures (‘cocktails’) in the manner 

of combinatorial chemistry. The drive towards low ligand concentrations is generally limited by poor 

sensitivity of NMR. At concentrations [L] < 100 μM, NMR spectra with sufficient signal-to-noise ratios 

require extensive signal averaging. Hyperpolarization of nuclear spins by Dissolution Dynamic Nuclear 

Polarization (D-DNP) can overcome this problem. The technique has not been very popular for 1H and 19F 

nuclei so far, because fast T1 relaxation tends to cause losses of polarization during the transfer from the 

polarizer to the spectrometer. Enhancements ɛDNP up to four orders of magnitudes can be obtained for 

nuclei with low gyromagnetic ratios, while enhancements 100  < ɛDNP < 1000 can be achieved for 1H or 19F 

nuclei (37).  

5.2.1 DNP requirements  

DNP of protons 

 

Proton hyperpolarization is very suitable for drug screening. Indeed, in comparison to the more 

conventional D-DNP of 13C, 1H DNP has many unique advantages that make it suitable for such studies. 

First of all, the fact that no labelling is required is an advantage for the versatility of the method. The 

requirement of a labelling step that may possibly be challenging from a chemical point of view in the 

design of the weak spy ligand could make this labelling extremely fastidious, if not impossible. Moreover, 

as shown in Chapter 2, if a paramagnetic source with a broad ESR line is used, protons can polarize to 

very high values, especially at high field. Even more importantly, protons polarize with fast build-up time 

constants, compared to other nuclei. As shown in Section 2.5, τDNP(1H) = 70 s at 3.35 T and 1.2 K and 

τDNP(1H) = 150 s at 6.7 T and 1.2 K. This give an essential advantage in the context of drug screening. To 

be able to test an extensive library of possible competitors, a fast repetition rate is highly desirable.  

 

Nevertheless, 1H D-DNP has a critical disadvantage, compared to 13C DNP. Proton hyperpolarization 

relaxes back to Boltzmann equilibrium with a short time constant once the DNP sample is dissolved and 

during the transfer from the polarizer to the detection spectrometer. The development of special 

strategies is needed to overcome this drawback. The most obvious strategy consists in reducing the 

transfer time. Bowen and al. designed a transfer line where the time that elapses between the 

dissolution and the first NMR pulse is reduced to 1.2 s (38). The paramagnetic centres needed to polarize 

the nuclei during the DNP process have a dramatic effect on the relaxation times of these nuclei once 

dissolved at room temperature, especially at low field. This paramagnetic relaxation can be attenuated 

by using a magnetic tunnel (39) that protects the transfer line from low field regions by sustaining a field 

of ca. 0.9 T. The radicals can also be quenched by vitamin C (40), or removed from the dissolved solution 

by precipitation and filtration (See Chapter 7). Finally, the design of molecules with long T1(
1H) is also a 

good strategy. Of course, all of these solutions can be combined together.  

 

In this context, an LLS-functionalized weak ligand designed as a probe for drug screening can be a good 

candidate for 1H Dissolution-DNP. Indeed, as the LLS method requires a spin-pair with two isolated 

protons, they will have a relatively long T1. Therefore no additional effort is needed to design a ligand 

that is suitable for D-DNP and to couple drug screening by LLS with hyperpolarization. An alternative 

strategy, consisting in populating the LLS directly in the polarizer, will be developed in the Section 5.3.2 

at the end of this Chapter. 
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One shot experiments 

 

In order to couple an existing NMR method with Dissolution-DNP, an additional effort is required from 

the experimentalist. Indeed, as the hyperpolarized magnetization returns to Boltzmann equilibrium, the 

pulse sequence needs to be adapted to extract the desired information in a single shot. For drug studies 

by LLS, [L]0 titrations and incrementations of the sustaining time cannot be done. A strategy could consist 

in detecting a single LLS spectrum of the hyperpolarized weak ligand after a fixed sustaining τLLS (Figure 

5.7). As will be described below, the presence of a strong ligand that interacts with the protein of 

interest will modify the intensity of the spectrum of the weak ligand. An alternative new sequence that 

allows the precise measurement of TLLS
obs in one shot will also be proposed in Section 5.3.1. Another 

more challenging example of the adaptation of an existing NMR sequence to D-DNP, called Water-LOGSY 

in this context, will be developed in Chapter 6. 

5.2.2 DNP LLS experiment 

Figure 5.7 describes the steps of a DNP LLS experiment that can be used to detect and rank potential 

strong ligands. The sample loaded in the polarizer will contain only the weak spy ligand in a glass-forming 

matrix with a paramagnetic species as polarizing agent (e.g., 50 mM TEMPOL). The concentration of the 

ligand should be chosen with respect to the desired final concentration in the detection spectrometer to 

compensate for the dilution in the dissolution step (typically by a factor 25-200). Since typical final 

concentrations [L]0 are in the 10-100 μM range, the DNP sample preparation is facilitated by relatively 

low analyte concentrations (in the mM range).  

 

Once the proton polarization has reached the desired level, the sample is dissolved and transferred as 

fast as possible to the detection spectrometer. It is then injected, depending on the objective, (i) into a 

solution of D2O, (ii) into a solution of protein at low concentration (μM range), or (iii) into a solution of 

protein in presence of a potential strong ligand, or a cocktail of ligands to be tested, also in the μM 

range. 

 

The LLS are excited on the hyperpolarized weak ligand with the sequence shown in Figure 5.7. They are 

sustained for a fixed delay τLLS. As will be explained below, this delay can be adjusted as a function of the 

range of KD
strong that we want to investigate. Then the LLS are converted back to observable 

magnetization and the remaining signal of the hyperpolarized weak ligand is inspected. The intensity of 

this signal will be the gauge of the binding strength of the strong ligand(s) present in the solution. 

 

Depending on the conditions, the LLS lifetime of the weak ligand (TLLS
obs) will be different, and therefore 

the signal after the fixed sustaining delay τLLS will reflect this change, as can be seen in Figure 5.7. The 

two limits for TLLS
obs are determined by experiments (i) and (iii) (see also Figure 5.5b). If the weak ligand 

is totally free, it has a long LLS lifetime TLLS
obs = TLLS

free, which translates into an intense signal after the 

sustaining time τLLS. On the contrary, if the hyperpolarized weak ligand is injected to a solution containing 

only its protein target, it will have a short TLLS
obs, and thus only a weak magnetization will survive after 

the LLS experiment. These two limits only have to be tested once for a set of measurements concerning 

an arbitrary number of potential strong ligands, regardless whether they are mixed as ‘cocktails’ or as 

separate solutions.  

 

The characterization of potential strong ligands can then be done with experiments of type (ii). Here, the 

hyperpolarized weak spy ligand is injected to a solution containing a mixture of the target protein and 

one or several potential strong ligands. The concentration of Lstrong is typically the same as [P]0 (in the μM 
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range), but it can be adapted as a function of the range of KD
strong that one wishes to target. As described 

in the previous section, if the tested competitor has a strong affinity for the protein, it will block its 

binding site, and therefore the remaining concentration of free protein that is able to contribute to the 

relaxation of the LLS of the weak hyperpolarized ligand ([P]free in Equation 5.9) will decrease. With 

increasing strength of the competitor, TLLS
obs of the spy ligand will increase (see Figure 5.5b). The 

remaining LLS signal of the weak ligand after the sustaining delay τLLS will thus increase as KD
strong 

becomes stronger (see Figure 5.7). Therefore, a simple inspection of the LLS spectrum of the 

hyperpolarized spy ligand permits one to “read out” the strength of the competitor(s) present in the 

sample in low μM concentrations.  

 

Figure 5.7: Schematic representation of a DNP-LLS experiment. The sustaining delay is fixed to τLLS = 3 s. The LLS 

signal intensity varies as a function of τLLS if TLLS
obs

 = 10 s (solution (i), free ligand, black), TLLS
obs

 = 4 s (solution (ii), 

protein + competitor, green), TLLS
obs

 = 2 s (solution (iii), only protein, red), see insert of Figure 5.8. 

10 mM BT-GGR was dissolved with 25 mM TEMPOL in a glass-forming solvent mixture H2O:D2O:DMSO-d6 

(v:v:v = 5:35:60). Five frozen beads (50 μL) of this solution were loaded together with five frozen beads 

(50 μL) of 3 M ascorbate (40) into a home-built DNP polarizer (41, 42) operating at B0 = 6.7 T and T = 1.2 

K. The sample was irradiated with monochromatic microwaves at a frequency fμW = 188.3 GHz and power 

PμW = 100 mW. After about 15 minutes of microwave irradiation, a steady-state proton polarization P(1H) 

is reached. The DNP sample can be rapidly dissolved in 0.7 s with 5 mL of hot D2O (P = 1 MPa, T = 400 K) 

and transferred to a 11.7 T NMR spectrometer in 4.5 s trough a ‘magnetic tunnel’ (39) so that B0 > 0.8 T 

during transfer, which is particularly important to preserve the polarization of 1H and 19F nuclei (38). A 

fraction of 400 μL of the hyperpolarized solution is then injected in ca. 2 s into a 5 mm NMR tube 

containing 250 μL D2O and, depending on the conditions, 3.65 μM trypsin and 3.65 μM of a competitor 

such as myricetin. After injection, the final solution has a concentration of 1.4 μM protein, 1.4 μM 

competitor, and 120 μM hyperpolarized spy ligand BT-GGR.  After a 3 s interval to allow for proper 

mixing, a reference free induction decay is observed in 0.5 s after exciting transverse magnetization with 

a single 5° pulse to control the quality on the hyperpolarized sample and to normalize the signal intensity 
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of the spy ligand with respect to its known concentration. This is immediately followed by an LLS 

sequence as described in Figure 5.7 with a fixed sustaining time τLLS = 3 s.  

 

The DNP enhancements of the aromatic protons of the spin-pair-labelled spy ligand BT-GGR were on the 

order of ɛDNP = 100 – 200, compared to the Boltzmann equilibrium at 25 °C and 11.7 T (500 MHz for 

protons). A significant fraction of the proton hyperpolarization was lost during the 10 s interval between 

dissolution and signal acquisition. A faster sample injection device (38) could reduce the interval to 1.2 s. 

 

Figure 5.8b shows DNP enhanced LLS spectra of (i) 120 μM of the spin-pair-labeled spy ligand BT-GGR in 

the absence of protein (in black), (ii) the same upon addition of 1.4 μM trypsin (in red), and (iii) the same 

after further addition of 1.4 μM myricetin as strong competitor (in green).  

 

Figure 5.8: DNP enhanced LLS spectra of the two aromatic protons of bromothiophene in 120 μM BT-GGR after a 

sustaining time τLLS = 3 s, (i) without protein (black), (ii) in the presence of 1.4 μM trypsin (red), (iii) with 1.4 μM 

trypsin and 1.4 μM myricetin as strong competitor (green). All spectra were acquired in a single scan in D2O, at 25 

°C and 11.7 T (500 MHz for protons). (Insert): Influence of the KD
strong

 of a competitor on the LLS lifetime of a weak 

ligand: LLS lifetimes TLLS
obs

 of the pair of aromatic protons of the bromothiophene spin-pair label as a function of 

the dissociation constant KD
strong

 of a competing stronger ligand, calculated using Equation 5.7 and 5.9. The 

parameters of the weak ligand BT-GGR were obtained from the fit of the data in Figure 5.5b: KD = 0.2 mM, TLLS
bound

 = 

0.1 s, TLLS
free

 = 11 s, [L]0 = 0.5 mM, [P]0 = 25 μM and [L
strong

]0 = 50 μM. The three points correspond to TLLS
obs

 in the 

absence of protein (black dot), with protein in the absence of any competitor (red dot), and with protein in the 

presence of myricetin (KD
strong

= 3 μM, green dot), calculated for these conditions. 

A dramatic decrease of the LLS signal intensity stemming from BT-GGR is observed upon adding trypsin. 

The contrast defined in Equation 5.8 is C(TLLS) = 75 %. Addition of an equimolar amount of the strong 

competitor myricetin leads to a partial displacement of the spy ligand that can be readily detected by the 

revival of its LLS signal. Indeed, as shown in the insert of Figure 5.8, TLLS
obs of the weak ligand, and thus 

the signal after the fixed sustaining delay, depends on KD
strong of the competitor (Equation 5.7 and 5.9).  

 

With only 120 μM of the spin-pair-labelled spy ligand BT-GGR, the DNP-enhanced LLS spectrum of Figure 

5.8 recorded in a single scan after τm = 3 s has a signal-to-noise ratio SNR = 130. Under the same 
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conditions, but without DNP, an accumulation of 225 transients for about 1 h was necessary in order to 

reach the same SNR. A DNP-enhanced LLS spectrum of BT-GGR with a concentration as low as 10 μM 

could be recorded with an SNR = 16. Clearly, DNP allows one to reduce the concentration of ligands, but 

the protein concentration should not be further decreased. In fact, according to Equation 5.7, the 

contrast CLLS would decrease if the limit KD + [L0] ≈ KD were to be reached. Without DNP, using a 50-fold 

increase in the ligand concentration (Figure 5.6a), 256 transients had to be accumulated in 100 min to 

obtain a SNR = 8.  

 

The experimental conditions can be adapted to the primary objective: low concentrations of either 

protein or ligand, fast throughput, high sensitivity for the displacement by a competitor or high SNR. In 

Figure 5.8, the conditions were optimized for high SNR and high contrast upon addition of a competitor, 

albeit at the expense of a slightly higher ligand concentration and longer polarization build-up time. To 

have a faster throughput, one could polarize at T = 4.2 K and B0 = 6.7 T, where a proton polarization P(1H) 

= 25 % can be reached by DNP in about 2 min (42). The price to pay would be a ~ 3 times lower SNR. 

Similarly, at T = 1.2 K and B0 = 3.35 T, like in commercially available DNP polarizers, P(1H) = 40 % can be 

reached in about 6 min (43) (See Figure 2.25 of Chapter 2). 

5.3 To go further 

5.3.1 Single-shot detection sequences 

Instead of merely measuring the intensity of the NMR peak after a fixed sustaining delay as in Figure 5.8 , 

the determination of TLLS
obs should give more reliable and precise information about the strength of the 

binding of a strong competitor. The standard way of measuring LLS relaxation time constants has to be 

adapted to be compatible with Dissolution-DNP. Indeed, it is not possible to do n complete LLS 

experiments as in Figure 5.2 with increased sustaining times. One has to get the information in a single 

shot. The idea is to excite LLS as usual, and to convert only small fractions f of the LLS into observable 

magnetization at regular intervals, while preserving the largest fraction (1-f). 

 

An additional difficulty must be overcome. Once the sustaining field is interrupted (point b in Figure 5.9), 

the magnetization is not directly observable and the LLS has to be converted into single quantum 

coherences by a suitable pulse sequence. This pulse sequence must preserve the unobserved fraction (1-

f) and must re-inject it as an LLS precursor for the next sustaining loop (points g or a in Figure 5.9). 

 

In the next section, the sequence developed for this purpose in collaboration with Maninder Singh will 

be described step by step, using the product operator formalism (44-46). It can be followed in parallel 

with Figures 5.9 and 5.10. 

 

LLS excitation and sustaining 

 

(a-b): The LLS precursor state σ(a) = 2IzSz + ZQx is excited with the “Sarkar sequence” (while DQx is 

suppressed by a pulsed field gradient) which corresponds to S0 – ½(T+1 +T-1) in the singlet-triplet basis STB 

under CW irradiation (see Equation 8.4 for the basis conversion). During the sustaining of the LLS, the 

triplet states will equilibrate, hence (without considering LLS relaxation and normalization) σ(b) = S0 – 

⅓(T+1 + T0 + T-1) in STB under CW irradiation, which corresponds to σ(b) =  2IzSz + 2ZQx in PB when 

irradiation is interrupted. 
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Figure 5.9: Single-shot LLS sequence. The conversion is most efficient if τ1 = 1/4JIS and τ2 = 1/2ΔνIS. An optional 

gradient can be added during τ2 to eliminate double quantum coherence. The delay τ3 = arcsin(f)/(2πΔνIS) can be 

adjusted to convert a fraction f of the LLS into observable magnetization, and to preserve a fraction (1-f) that will 

be re-injected in the form of an LLS precursor in the next (n+1)
th

 loop, provided τ4 = 1/4JIS and τ5 = 1/2ΔνIS. The 

evolution of the system described by the product operator formalism can be seen in Figure 5.10. 

Partial conversion and detection of LLS 

 

(b-c): To convert only a fraction of LLS into detectable magnetization, we first allow a fraction f of 2ZQx to 

evolve in τ3 under the difference of chemical shifts ΔνIS into 2ZQy (without affecting 2IzSz). Hence σ(c) = 

2IzSz + 2ZQx cos(2πΔνISτ3) + 2ZQy sin(2πΔνISτ3), with τ3 = arcsin(f)/(2πΔνIS). The term f is the fraction of LLS 

converted in τ3 into detectable magnetization (and later allowed to decay) at each point of the single-

shot LLS sequence.  The delay τ3 = arcsin(f)/(2πΔνIS) will thus permit to choose the fraction of the LLS that 

will be detected (2ZQy part of σ(c), in green in Figure 5.10) and the fraction of the LLS that will be 

preserved and re-injected at the end of the loop (2IzSz + 2ZQx part, in red in Figure 5.10).  

 

(c-d): Detected part (green in Figure 5.10): a (90°)y pulse will convert 2ZQy = 2IySx – 2IxSy into detectable 

single quantum magnetization σ(d)det = (-2IySz + 2IzSy) where “det” stands for the detectable part of σ(d) 

The preserved part is shown in red in Figure 5.10: the (90°)y pulse leaves 2IzSz +2ZQx = 2IzSz + 2IxSx + 2IySy 

unchanged if the fraction lost by conversion into detectable magnetization is not taken into account. 

σ(d)pres = 2IxSx + 2IzSz + 2IySy = 2IzSz +2ZQx, where “pres” stand for preserved part of σ(d) = σ(d)det + σ(d)pres. 

 

Conversion of σ(d)det into detectable in-phase magnetization compatible with fast acquisition 

 

At this point, σ(d)det would lead to a spectrum with two antiphase doublets if a full FID were acquired. 

Such a signal acquisition has the advantage that is allows one to separate different species according to 

frequency, but it is time consuming (about 0.5 s). As we are only interested in the intensity of the peak of 

a single known weak ligand, a time saving sequence can be implemented. Provided that one uses a filter 

that selects the magnetization of the weak ligand, it is possible to record only a single point during 

detection. The detection can thus be shortened to 10-500 μs, albeit as the expense of SNR.  

Nevertheless the form of σ(d)det is not compatible with fast detection; as only a single point is taken 

during detection, the antiphase magnetization will not contribute to the signal and averages to zero. It is 

therefore necessary to convert σ(d)det into in-phase magnetization, while preserving σ(d)pres. 

 

(d-e): Detection: The antiphase magnetization needs to be converted to in-phase magnetization. A τ-π-τ 

echo is possible. Nevertheless, it is better to let σ(d)det = 2IzSy -2IySz evolve via Long-Lived Coherences 

(LLC) (47, 48) into σ(e)det = Ix -Sx under CW irradiation, because the preserved part σ(d)pres will be stored in 

the form of LLS during this delay. The preserved part is σ(e)pres = σ(d)pres = 2IzSz +2ZQx. 
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(e-g): The detected part σ(e)det = Ix - Sx evolves during τ5 = 1/(2ΔνIS) into Iy + Sy . This in-phase 

magnetization (both terms having the same sign) is detected during taq (taq = 10-500 μs) in a single point. 

The term 2IzSz of preserved part σ(d)pres does not evolve during τ5 + aq, but the 2ZQx term does. This term 

is refocused by inserting a π pulse and a delay τ6 = τ5 + taq to give again σ(g)pres = 2IzSz +2ZQx which can be 

injected into the next sustaining loop and conserved as LLS during the next τLLS. 

 

Figure 5.10: Evolution of the magnetization during the Single-Shot LLS sequence in Figure 5.9 described with the 

product operator formalism. In blue, the system is under resonant rf irradiation, which is best described in the 

singlet-triplet basis (STB). The parallel evolution of the LLS fraction f converted into observable magnetization is 

shown in green, while the evolution of the preserved part is shown in red. 
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Repetition of the loop for the next LLS point 

 

The sequence starts again for the next LLS point with σ(b’) = (1-f) (2IzSz +2ZQx). The loop can be repeated 

n times with a fixed sustaining delay τLLS. The signal recorded as function of t = nτLLS can be fitted to a 

mono-exponential decay with an apparent relaxation time constant TLLS
*. During each loop n, a fraction f 

of the magnetization is destroyed. A procedure must therefore be implemented to obtain TLLS by 

correcting TLLS
* as it will be developed below. 

 

There is still work in progress for this project at the time of writing this Thesis. The sequence has only 

been implemented for “slow” acquisition, where a complete FID is recorded in 0.5 s. The fitting 

procedure has not yet been finalized and no test has been done using the pulse sequence coupled to D-

DNP, let alone for experiments on ligands bound to proteins. Only preliminary results are presented 

below. 

 

The sequence was tested on a 50 mM solution of 2,3-dibromothiophene (BT) in D2O, with TLLS = 23.4 ± 

0.9 s measured with the standard sequence (Figure 5.2). A total of 8 data points, one every 10 seconds, 

were taken with the Single-Shot LLS sequence, while varying the fraction f. When f is decreased, a 

smaller fraction of the LLS magnetization is converted into observable magnetization, and the SNR is 

reduced. Depending on the fraction f of LLS that is converted at each point, the apparent lifetime (TLLS
*) 

changes. The data recorded with the Single-Shot LLS sequence while incrementing the converted fraction 

f is shown in figure 5.11. As expected, a higher fraction f shortens the apparent lifetime TLLS
*. 

 

Figure 5.11: Signal intensities measured in a single shot with the sequence described in Figure 5.9 of 50 mM 2,3-

bromothiophene (BT) in D2O at T = 298 K and B0 = 11.7 T (500 MHz for 
1
H). The interval Δt is set to 10 s and the 

fraction f of LLS converted to observable magnetization at each loop is varied between f = 10% and 100%, encoded 

by different colors. 

If the increment τLLS of the total sustaining interval nτLLS is constant, if relaxation within the triplet 

manifold between points a and b in Figure 5.9 is assumed to be complete, so that σ(b) = S0 – ⅓(T+1 + T0 + 

T-1), and finally if one neglects relaxation during the brief detection intervals, one can describe the LLS 

decay and the intermittent puncture of the magnetization with: 

 

( )( ) exp 1
LLS

nt
I t a f

T

 
= − − 

 
 (5.10)  

 

Where n = (t-Δt)/Δt and Δt = τLLS + τ3 + τ4 + 2(τ5 + taq) in each loop. In reality, relaxation cannot be 

neglected during the acquisition sequence, and it is possible that relaxation within the triplet manifold is 
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not complete so that σ(b) ≠ S0 – ⅓(T+1 + T0 + T-1). Therefore, the fraction of the LLS magnetization 

destroyed during each loop n is underestimated. Due to these approximations, f is not precisely known. 

This renders the extraction of the LLS relaxation time rather imprecise. Another strategy has thus to be 

deigned to correct TLLS
* with the knowledge of the parameters f and Δt. 

 

Experimental calibration 

 

Finally, a more straightforward and practically more useful strategy could simply consist in 

experimentally calibrating a correction factor to convert the apparent rate RLLS
* = 1/TLLS

* into a rate RLLS
corr 

= 1/TLLS
corr while taking into account the parameters f and Δt, by systematically varying TLLS of the weak 

ligand under investigation: 

 
* ( , )corr

LLS LLS LLSR R R f t= + ∆  (5.11) 

 

The calibration can be done for a given ligand/protein combination, prior to any hyperpolarized DNP 

study. TLLS can be varied by incrementing the protein concentration [P]0 or, to reduce expenses, by 

adding a paramagnetic species like TEMPOL to the solution. The “true” LLS lifetime should be measured 

by the normal sequence of Figure 5.2 and a correction table can be obtained, measuring TLLS
* with the 

Single-Shot LLS sequence with variable f and Δt for different [P]0 or [TEMPOL] concentrations. 

5.3.2 All the way to LLS 

The spin-pair label of the weak spy ligand designed to probe protein-ligand interactions could also be 

used to preserve the hyperpolarized magnetization during the transfer between the polarizer and the 

detection spectrometer. As will be developed in more detail in Chapter 8, it is also possible to impose 

symmetry on a system with two magnetically inequivalent spins simply by lowering the main field B0 (21, 

23). If ΔνIS < JIS, a triplet-singlet imbalance (TSI) characterized by a singlet order population PTSI with a 

long lifetime can be isolated. Moreover, as shown by Tayler et al. (49), simply by hyperpolarizing a 

system with two magnetically inequivalent spins, a precursor state for Long-Lived States can be directly 

populated in the polarizer. As will be developed in Chapter 8, the singlet order population PTSI is 

proportional to the square of the longitudinal polarization, PZ achieved by DNP: PTSI = -PZ
2/3. 

 

Figure 5.12: a) Relaxation of longitudinal (blue) and LLS (red) magnetization during transfer. b) DNP-LLS strategies. 

In red, LLS precursor is excited by DNP and preserved at low field during the transfer. After injection into the 

spectrometer, the rf irradiation starts immediately. The normal path used in this Chapter, where LLS are excited by 

a pulse sequence in the spectrometer after dissolution, is shown in blue. 

Therefore, in the context of DNP-LLS drug screening, an alternative strategy could consist in (i) populate 

LLS precursor state of the spin-pair label of the weak spy directly by 1H hyperpolarization. In our 
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conditions, at 6.7 T and 1.2 K, as PZ(
1H) can be as high as 91%, PTSI = -PZ

2/3 = -27% will be close to its 

theoretical maximum PTSI = - 33% . (ii) Once dissolved, the sample is transferred through a low field, or 

possibly through an iron tube to shield the sample from external fields between the two magnets. At this 

point, the order will be preserved during the transfer in the form of an LLS. (iii) The sample is then 

injected into a solution of the target protein and possible competitors that is waiting in the 

spectrometer. There is no need to excite an LLS precursor state, since one can simple start the resonant 

rf irradiation to isolate the TSI. The detection is the same as for the normal LLS sequence. 

 

Depending on T1 and TLLS of the spy ligand during the transfer and on the transfer time (see Figure 5.12a), 

one could choose between two different strategies, i.e., two different points for the excitation of LLS. If 

T1 is short, or if the transfer is slow, the LLS could be excited in the polarizer and preserved at low field 

(so that ΔνIS < JIS) during the transfer (in red in Figure 5.12b). If T1 is sufficiently long, or if the transfer is 

rapid, the normal path (blue in Figure 5.12b) should be preferred, since PTSI is only proportional to –PZ
2/3. 
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Chapter	6:		

	

DNP-enhanced	Water-LOGSY	

 

In this Chapter, I will describe the adaptation to Dissolution-DNP of Water-LOGSY (Water-Ligand 

Observed via Gradient SpectroscopY), a powerful method used for drug screening. This technique uses 

the transfer of proton magnetization from water to ligands to report on binding to a protein. This 

technique, although it is extremely efficient and unambiguous, suffers from low sensitivity. 

Hyperpolarization of protons can therefore be very useful. The coupling between DNP and Water-LOGSY 

was explored by Quentin Chappuis during his Master’s Thesis under my guidance (1). Further details 

about the experiments and resulting observations can be found elsewhere (2). Here, I only want to 

discuss the adaptations of the detection sequence that are required to make it DNP compatible. This 

example is particularly illustrative of difficulties that can be encountered while trying to couple an 

established method to hyperpolarization. 

6.1 Water-LOGSY experiments 
 

Water-LOGSY (Water-Ligand Observed via Gradient SpectroscopY) (3-6) is a remarkable NMR experiment 

used to detect interactions of proteins and ligands in solution. The detection of binding by Water-LOGSY 

relies on the spontaneous transfer of polarization from water to ligands. This transfer can occur via two 

pathways: via the nuclear Overhauser effect (NOE) or via chemical exchange (4). In the case of NOE, the 

transfer can occur either directly from the solvent to the ligand or indirectly via the bound protein. The 

sign of the NOE transfer depends on the rotational correlation time of the molecules involved: rapidly 

tumbling free ligands have negative enhancements, while slowly tumbling ligand-protein complexes 

feature positive enhancements. Therefore, the difference between free and bound ligands can be readily 

and unambiguously identified (4). 

 

In conventional (non-enhanced) Water-LOGSY experiments, the ligands of interest are usually mixed with 

the target protein in H2O:D2O solutions with high proton concentrations (90% or more) to maximize the 

magnetization transfer from the protons of the solvent to the ligand. The experiment starts with the 

saturation of all signals apart from the solvent (preparation). A mixing delay allows the transfer of 

magnetization from the unsuppressed solvent to the analytes (mixing). A detection sequence using 

solvent suppression is then applied (detection). Inspection of the resulting spectrum and comparison to 

the same experiment without saturation permits one to detect binding. Positive magnetization transfer 

occurs in slowly-tumbling protein-ligand complexes, whereas magnetization with an opposite sign is 

transferred from water to rapidly-tumbling ligands when they cannot bind to the target protein (Figure 

6.1). 
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Figure 6.1: Schematic representation of the Water-LOGSY experiment. The large magnetization of bulk water is 

transferred via NOE and/or chemical exchange during the mixing time to the ligand, which has been saturated 

during the preparation step. Magnetization transferred from the solvent to a rapidly-tumbling free ligand confers a 

negative enhancement. Water magnetization which is transferred through a slowly-tumbling protein-ligand 

complex yields a positive enhancement.  

Unfortunately, NMR signals observed in Water-LOGSY are typically 20–30 times weaker than signals in 

traditional one-dimensional NMR experiments, because only magnetization transferred by NOE’s or 

exchange is detected. Therefore, ligand concentrations on the order of 200 µM are required to obtain a 

sufficient signal-to-noise ratio in a measurement time of 10 minutes. This concentration exceeds the 

aqueous solubility of most ligands that can be identified, for example, by High Throughput Screening 

(HTS). Hyperpolarization of water can thus be used to improve the sensitivity of the experiment. 

Nevertheless, as will be shown in the next section, the combination of the two techniques will engender 

some difficulties, and therefore the standard Water-LOGSY protocol needs to be adapted to render the 

DNP enhanced experiment successful. 

6.2 DNP enhanced Water-LOGSY 
 

In a DNP-Water-LOGSY experiment, the protons of water are hyperpolarized by D-DNP and injected into 

a solution containing a target protein and one or several putative ligands. The subsequent transfer of 

polarization from hyperpolarized water to the ligands reveals protein-ligand binding properties (Figure 

6.2). The hyperpolarization of water is reproducible and robust, since it does not depend on the 

polarizability and relaxation times of the ligands. Since proteins and ligands can be mixed before 

injecting hyperpolarized water, protein-ligand equilibria can be probed, even if the kinetics are slow. 

Moreover, the spontaneous transfer of polarization from water to proteins enables the observation of 
1
H 

spectra of proteins with concentrations below 20 µM, and hence a quality control of the protein being 

screened. 
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Figure 6.2: Schematic DNP-enhanced Water-LOGSY experiment. Water is polarized in a 200 μL glassy solution of 

H2O:Glycerol-d8 (1:1) with 25 mM TEMPOL to P(
1
H) > 38% at B0 = 6.7 T and T = 1.2 K. The sample is then dissolved 

with 5 mL of superheated D2O at 450 K and 1 MPa. The sample is transferred in 10 s to the detection spectrometer 

in a magnetic tunnel (7) keeping the magnetic field above 0.9 T. No scavenging agents (8) are used. 450 μL of 

hyperpolarized water are injected in an NMR tube containing the ligand of interest in equilibrium with the target 

protein. The Water-LOGSY detection sequence is then applied. The detection sequence can be repeated, as far as 

the water polarization can be preserved. 

Nevertheless, DNP-Water-LOGSY presents a number of practical problems. First, the protons of 

hyperpolarized water relax rapidly, requiring special considerations for the preparation of the 

hyperpolarized solution to achieve the highest possible polarization and slowest relaxation during 

transfer. Some solutions to this relaxation problem are given in Chapters 5 and 7. 

 

Moreover, in the NMR magnet, large amounts of hyperpolarized water leads to a huge water signal, 

which causes radiation damping and demagnetization effects that need to be taken into account. Figure 

6.3 shows 
1
H spectra obtained by non-selective excitation with small angle pulses (0.01⁰) just after the 

injection of hyperpolarized water into the spectrometer (2 < P(
1
H) < 5%). Right after injection, the width 

of the proton spectrum exceeds the usual width measured in non-enhanced NMR experiments by 

several orders of magnitude. This broadening of the hyperpolarized water peak is caused by radiation 

damping (RD), a feedback phenomenon that leads to a fast return to equilibrium of species that have a 

large magnetization component in the transverse plane (9, 10). The characteristic time constant of the 

return of the magnetization via radiation damping is inversely proportional to the gyromagnetic ratio of 

the nuclei γ, the quality factor of the probe Q, and the magnetization M0 (10): 

 
1

02RD QMτ πγ− =  (6.1) 

 

Therefore, the detection sequence of DNP-enhanced experiments should avoid excitating the 

hyperpolarized water signal. Indeed, considering the high polarization reached, even a tiny fraction of 

the water magnetization that is not aligned with the longitudinal quantization axis could have dramatic 

radiation damping effects and could causes distortions of the spectrum of the ligands. The scheme 

should avoid the excitation of transverse magnetization followed by selective defocusing as used in 

WATERGATE sequences (11, 12). Moreover, at the same time, the water polarization should be 

preserved as much as possible in order to be able to transfer what remains of it by Water-LOGSY in 

subsequent scans. Finally, the detection sequence should not cause any phase distortions to allow a 

reliable interpretation of the LOGSY effect on the ligands. 
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Figure 6.3: Water hyperpolarisation in a DNP-Water-LOGSY experiment. During the experiment, the water 

magnetisation is monitored by small nutation angles (0.01°), with a repetition time of 2 s. In the first scans, the 

signal displays a width of several kHz due to radiation damping (Data recorded by Quentin Chappuis). 

6.3 DNP-Water-LOGSY detection sequences 
 

Compared to the original Water-LOGSY experiment, the preparation step, where the ligand is normally 

saturated, can be replaced by the injection of hyperpolarized water (Figure 6.4). Indeed, as the 

polarization of hyperpolarized water is much larger than the thermal polarization of the ligand, a LOGSY 

effect will occur during the equilibration of their respective longitudinal magnetization components. 

Moreover, providing the water magnetization is not destroyed upon the detection, a series of scans can 

be recorded as long as the water hyperpolarization is not lost through longitudinal relaxation. This series 

of LOGSY spectra can then be added to improve the SNR (Figure 6.4). 

 

The aim of the DNP-enhanced Water-LOGSY sequence is to observe the signals of the ligands enhanced 

by the transfer from the hyperpolarized water as long as possible, rather than the signal of water itself. 

The ideal detection scheme must therefore have the following characteristics. (i) It should not result in a 

significant solvent signal, (ii) it should not destroy the solvent polarization, (iii) it should excite ligand 

resonances across the full range of chemical shifts, even close to the solvent resonance, (iv) it should 

result in a clean excitation of the ligand resonances, without any phase errors and intensity losses 

depending on the offset with respect to the carrier frequency. Three sequences that we developed to 

allow coupling of DNP and Water-LOGSY are given below. 
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Figure 6.4: Schematic paths of conventional (non-enhanced) and DNP-enhanced Water-LOGSY experiments. In the 

latter case, the saturation of the ligands in the preparation step is replaced by the injection of hyperpolarized 

water. Moreover, in the detection step, not only does the water signal need to be suppressed, but its polarization 

needs to be preserved as well. Indeed, in this case, a series of mixing/detection steps can be recorded, as long as 

the water magnetization is sufficiently polarized.   

6.3.1 Sequence ‘A’ selective ligand excitation: 

The most straightforward solution is to excite only the resonances of the ligands with a shaped selective 

pulse, and to use a selective refusing pulse flanked by two magnetic field gradients that will only refocus 

the ligand signals (see Figure 6.5).  

 

Figure 6.5: Water-LOGSY detection sequence ‘A’, using selective excitation and selective refocusing of the ligand 

signal upfield (a, red) and downfield (b, brown) with respect to the resonance frequency of the solvent. Pathway of 

the magnetization of the solvent (blue arrow) and of the ligands (red arrow) during the course of the echo 

sequence. The numbers 1, 2, 3 represents species located in regions with different magnetic field intensities 

generated by the PFG. 

In the Bruker library of shaped pulses, we have chosen Pc9 (13) for excitation and Rsnob (14) for 

inversion. As Pc9 may excite some of the solvent signal even when it is far from resonance, it is necessary 

to make an echo using pulsed field gradients rather than a simple excitation to dephase the fraction of 
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the solvent magnetisation that has been unwittingly excited. On the other hand, in contrast to excitation 

by a Gaussian pulse, refocusing produces signals with identical phase across the entire excited region. 

Furthermore, we found that the overall sequence does not cause significant losses of solvent 

magnetisation.  

 

Since this scheme uses selective pulses, it cannot excite the resonance on both sides of the solvent signal 

at the same time. Two strategies can be used to record both regions of the spectrum in a single scan. 

One way is to use polychromatic pulses where the carrier frequency is swept during the pulse. Another 

way is to apply two excitation pulses in quick succession with different carrier frequencies (pulses a and 

b in Figure 6.5) and, after the defocusing delay, two refocusing pulses. The delays must be set in such a 

way that the refocusing points are the same for both excitation/refocusing pulses pairs. We chose the 

second strategy because the results of polychromatic pulses are difficult to predict by simulations. This 

excitation scheme fulfils almost all the conditions that we have defined: its only drawbacks are that it 

does not allow exciting resonances close to the solvent and that the pulses calibrations is rather time-

consuming. 

6.3.2 Sequence ‘B’ using a selective water flip-back 

The goal of this sequence is to avoid the need of applying two selective pulses upfield and downfield 

with respect to the solvent resonance frequency. Therefore, the sequence starts with a non-selective 

excitation followed by a selective solvent flip-back pulse (Figure 6.6).  

 

 

Figure 6.6: Water-LOGSY detection sequence ‘B’, using non-selective excitation, followed by a selective water flip-

back pulse. The remaining solvent magnetization is suppressed using a Watergate W5 (11) scheme. The pathways 

of the magnetization of the solvent (blue arrows) and of the ligand (red arrows) are shown during the sequence. 

The number 1, 2, 3 represents species located in regions with different magnetic field intensities generated by the 

PFG. 

At this point, the magnetization vectors of all analytes are excited while the solvent magnetization is 

returned to the longitudinal axis. The remaining of the sequence only aims at suppressing the residual 

transverse component of the solvent magnetisation. We used a Watergate W5 composite pulse which 

consists in a series of ten hard pulses with the following nutation angles: (7.8° – 18.5° – 37.2° – 70° – 

134.2° – 134.2° – 70° – 37.2° – 18.5 – 7.8°). This train of hard pulses inverts or refocuses all spins except 

those that fulfil the conditions (11, 12): 
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 (6.2) 

 

Where ν0 is the precession frequency of a spin and νRF is the transmitter frequency. All pulses are 

separated by the same delay τ. If this delay is short enough, all sidebands lie outside of the relevant 

spectral range. The transmitter frequency is placed on-resonance with respect to the solvent (k = 0) and, 

as a consequence, the W5 pulse train refocuses all spins except the solvent magnetisation. 

 

The drawback of this sequence, especially in the context of DNP enhanced polarization of water, is that it 

requires a selective solvent flip-back pulse. First of all, it is not possible to calibrate this pulse under real 

conditions with high DNP enhanced water magnetization. Moreover, the water polarization may change 

slightly from one dissolution ‘shot’ to another. Therefore the solvent flip-back pulse may not be 

completely effective.   

6.3.3 Sequence ‘C’ water flip-back using radiation damping 

This third sequence takes advantage of the rapid radiation damping caused by the intense magnetization 

of the DNP enhanced water. The RD effect being very strong, it is possible to simply remove the water 

flip-back pulse from the sequence in Figure 6.6, and to replace it by a delay allowing the water to return 

to the longitudinal axis by itself via radiation damping (Figure 6.7). In our instrument, an RD time 

constant on the order of 200 μs can be estimated (10) from the linewidth of the hyperpolarized water 

signal of Figure 6.4.  

 

Figure 6.7: Water-LOGSY sequence ‘C’, using non-selective excitation, followed by a delay dRD long enough to let 

radiation damping drive the water magnetization back to the z-axis. The remaining water magnetization is 

suppressed using a Watergate W5 (11) scheme. Small symmetric gradients are applied in-between the W5 pulses 

to defocus the strong hyperpolarized water magnetization and avoid radiation damping during these intervals. The 

pathways of the magnetization of the solvent (blue arrows) and of the ligand (red arrows) are shown during the 

course of the sequence. The number 1, 2, 3 represents species located in regions with different magnetic field 

intensities generated by the PFG. 

A delay dRD of a few milliseconds should be sufficient to allow for the major fraction of the water 

magnetization to return to the longitudinal axis. Nevertheless, RD might cause adverse effects during the 

selective W5 refocussing pulse train. If RD is active between the pulses, W5 might fail to leave the water 

untouched, so that the state of the magnetisation at the end of the refocusing pulse train may become 

unpredictable. Short pairs of symmetric pulsed field gradients can be applied in each inter-pulse delay τ 

0

1
,  with 0,1,2,...RF k kν ν

τ
= + =
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of the W5 sequence (g2 in Figure 6.7). Because of their symmetry they will have no net effect, but as they 

defocus and refocus the magnetization, the radiation damping caused by the hyperpolarized water 

becomes less intense. The refocusing by the W5 pulse train should therefore be cleaner. This flip-back 

method has the advantage of being extremely selective, and, in contrast to shaped selective pulses, does 

not require any delicate calibration steps. 

 

The sequence of Figure 6.7 was tested on a sample of 6 mM adenosine, 6 mM formate, 2 mM 1-
13

C 

acetate and 3 mM 4 aminobenzoic acid in H2O:D2O (9:1). For an unpolarised sample, a delay of 70 ms 

after water excitation is needed to let the magnetization return to the z-axis via radiation damping. If an 

excitation pulse is applied after this delay, the area of the water peak is 89% of the area after a simple 

excitation. To test the ability of the sequence of Figure 6.7 to preserve the water magnetization, a small 

5⁰ pulse is added at the end. Comparison of the area of the water peak with a simple 5⁰ excitation gives 

again a ratio of 89%. The spectrum of Figure 6.8 shows that, provided that the ligands do not resonate at 

frequencies that are too close to the solvent, the sequence of Figure 6.7 preserves the integrity of the 

peaks of interest, while efficiently eliminating the solvent signals.  

 

Figure 6.8: Hyperpolarized 
1
H NMR spectrum of 6 mM adenosine, 6 mM formate, 2 mM 1-

13
C acetate and 3 mM 4 

aminobenzoic acid in H2O:D2O (9:1), acquired with the sequence of Figure 6.7 on a 7 T spectrometer (300 MHz for 
1
H) at 298 K without cryoprobe. The delay dRD is set to 70 ms, the W5 interpulse delay is set to 300 μs. (Data 

provided by Quentin Chappuis). 

6.4 Other improvements needed for DNP-enhanced Water-LOGSY  
 

New sequences were developed to allow one to suppress the solvent peak while preserving the solvent 

magnetization under non-standard conditions where the polarization is enhanced by DNP. Sequence No 

‘A’ was used successfully by Quentin Chappuis in a DNP-enhanced Water-LOGSY experiment (1, 2) to 

observe the binding of different ligands to the protein Dot1L, a human histone methyl transferase (15). 

Even if the detection of the DNP-enhanced Water-LOGSY experiment has been optimized, other steps 

can still be improved. The most important remaining difficulty resides in the preservation of the 

hyperpolarized water magnetization during the dissolution and transfer to the detection spectrometer. 

Indeed, it should be possible to increase the enhancement of the method by at least one order of 

magnitude by fighting relaxation. Some solutions to this problem will be given in Chapter 7.  
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Chapter	7:		

	

New	strategies	to	bypass	paramagnetic	

relaxation	after	polarization	

 

As shown in Chapters 5 and 6, an important part of the magnetization built by DNP can be sacrificed by 

relaxation during the transfer between the polarizer and the detection spectrometer, as well as during 

the course of the enhanced experiment. This is particularly true for protons. An improvement up to one 

order of magnitude in the SNR could be expected if this relaxation was reduced. In this Chapter, I will 

first show that the main contribution to relaxation in a D-DNP experiment comes from the presence of 

free electrons of the polarizing agent dissolved concomitantly with the hyperpolarized sample. I will then 

present a new strategy, developed in collaboration with the groups of Prof. Lyndon Emsley and Prof. 

Christophe Copéret, that allows to retain the free radicals molecules in the polarizer while the DNP-

enhanced analytes flow to the detection spectrometer (1). 

7.1 Paramagnetic relaxation at low field 
 

The paramagnetic species have a kind of bipolar comportment along the course of a Dissolution-DNP 

experiment. On one hand, during the polarization build-up process in the polarizer, they have a 

beneficial role, as free electrons are at the origin of the high polarization transmitted to the nuclei. On 

the other hand, during both dissolution, transfer and detection steps, they can be the source of dramatic 

losses of polarization. This has two consequences for any hyperpolarized experiment: less polarization 

can be available and the time window at disposition for measurement is shortened. As developed in 

Chapters 5 and 6, paramagnetic species are particularly handicapping, if not lethal, for hyperpolarized 

nuclei like 
1
H.  

 

Moreover, as shown by Bryant and co-workers in studies of translational motion in the vicinity of 

paramagnetic nitroxides (2, 3), paramagnetic relaxation is extremely efficient at low field. The following 

data, particularly illustrative of this low field effect, are kindly shared by Dr Pascal Mieville and Jonas 

Milani, who studied in our group the relaxation induced by polarizing agents in the context of 

Dissolution-DNP (4, 5). The relaxation of a system of spins ½ is the sum of the contribution of three main 

mechanisms: the internuclear dipole-dipole interactions (DD), the chemical shift anisotropy (CSA) and 

the paramagnetic interactions (electron-nuclei dipolar interactions). In Figure 7.1a, the contribution of 

these three mechanisms is calculated for the protons of a small molecule in presence of 2.5 mM of 

electrons, at different magnetic fields, according to References (6) for R1
DD

 and R1
CSA

 and (2-4) for R1
param

. 

It can be clearly seen that, at low magnetic field (below 0.1 T), the paramagnetic contribution becomes 

dominant. 
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Figure 7.1: a) Illustration of the contributions of different relaxation mechanisms as a function of the B0 field. The 

contributions of the CSA (green), the internuclear DD interactions (red) and the paramagnetic interactions (blue) 

are calculated according to References (2-4, 6). (Data provided by Jonas Milani) b) Magnitude of the static field 

measured in the plane between an unshielded 6.7 T Oxford Instruments Ox2 ODX polarizer (left) and an unshielded 

WB magnet of a Bruker 300 MHz NMR spectrometer (right). (Data shared with Jonas Milani (5)). 

As an illustration, the 
13

C spin-lattice relaxation rates of a 3 M solutions of 1-
13

C acetate were measured 

at different fields  in non-degased D2O (ii), with the addition of 0.25 mM of TEMPOL (i), and with the 

addition of 50 mM sodium ascorbate (iii) (7) using a custom build shuttle relaxometer (4) (Figure 7.2a). 

Proton R1’s were measured in the same condition on a sample of bromothiophene carboxylate (5) 

(Figure 7.2b). As ascorbate is a reducing agent that quenches TEMPOL, as well as paramagnetic dioxygen, 

the difference between curves (i) and (iii) in Figure 7.2 reports the contribution of R1
param

. The 

paramagnetic relaxation increases drastically below 0.1 T, both for 
1
H and 

13
C, even at TEMPOL 

concentration 10-20 times lower than in D-DNP conditions. 

 

Figure 7.2: a) (Δ) Spin–lattice relaxation rates R1(
13

C) = 1/T1(
13

C) in 3 M 1-
13

C labeled acetate in non-degassed D2O as 

a function of B0 over the range 2 mT < B0  < 18.8 T; (○) the same aGer addiHon of 2.5 mM TEMPOL; and (□) aGer 

adding 30 mM ascorbate to scavenge the radicals. (Data provided by with Pascal Mielville (4)) b) R1(
1
H) of 

bromothiophene carboxylate under the same conditions as in a. (Data shared with Jonas Milani (5)). 

The two examples of Figure 7.2 are representative of the exacerbated relaxation at low magnetic field 

during a Dissolution-DNP experiment. Indeed, apart from unique system based on dual centre magnet 

(8), during the transfer step, the hyperpolarized solution is no longer immersed in the magnetic field of 

the polarizer, and not yet sheltered by the field of the detection magnet, and thus exposed to very low 

magnetic field region (mT range) for a time period varying from seconds (9) to minutes (10). The exact 

magnetic field pattern experienced by the hyperpolarized fluid in our laboratory was mapped 

systematically with a triple-axis Hall probe (11) and is shown in Figure 7.1b (5). Most of the transfer 
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therefor goes through a relatively low field, on the order of B0 = 1 mT. With our magnet configuration, 

the sample can even travel through a zone where the field is inverted (black area in Figure 7.1b) 

 

Paramagnetic relaxation is efficient as well inside the polarizer during the dissolution procedure. Many 

critical phenomena, especially for 
1
H, could occur. During the docking of the dissolution stick to the DNP 

sample holder, this last one is lifted above the liquid helium bath, i.e. to a region of lower field (See 

Figure 7.3b). As shown in Figure 7.3a, the 
1
H relaxation rate of a frozen DNP sample (1-

13
C acetate 3M 

with 50 mM TEMPOL in D2O:Glycerol-d8 1:1) becomes extremely fast while decreasing the field. 

Moreover, the dissolution stick initially at room temperature may slightly heat up the solid sample 

before the arrival of the hot water, which may cause faster relaxation. Furthermore, in the first hundreds 

of milliseconds of dissolution, while the hyperpolarized solution is pushed out of the polarizer, the local 

radical concentration is still high, which is problematic, as the paramagnetic relaxation efficiency is 

proportional to the free electron concentration. 

 

Figure 7.3: a) Proton relaxation rates R1(
1
H) measured in a solid DNP sample of 3 M 1-

13
C acetate with 50 mM 

TEMPOL in D2O:Glycerol-d8 (1:1) at 4.2 K as function of the field above the centre of our 6.7 T DNP polarizer. b) 

Magnitude of the magnetic field measured along the vertical z-axis above the centre of our 6.7 T polarizer (Data 

shared with Jonas Milani (5)). 

To avoid losses induced by the polarizing agent that no long serve any functions, it is therefore a good 

strategy to try to eliminate the radical as soon as possible. For some radicals, such as trityls, separation 

can be achieved by solvent extraction (12), or precipitation by a jump in pH followed by mechanical 

filtration (13). For TEMPO with its derivatives, quenching with sodium ascorbate (vitamin C) can convert 

nitroxide radical into diamagnetic species trough reduction (7). However, for quantitative and rapid 

quenching, ascorbate must be used in excess, and remaining ascorbate may affect the analyte or 

sensitive components present in the NMR or MRI system, such as enzymes (14-16). Furthermore, the 

presence of potentially non-innocent additional products arising from the polarizing agent is obviously 

undesirable for in vivo MRI experiment. In the next Section, a method to produce pure hyperpolarized 

solution free of radical, glassing and reducing agents will be developed. 

7.2 Hybrid Polarizing Solids (HYPSO) 
 

A new generation of hybrid polarizing solids (called HYPSO) was developed in collaboration with the 

group of Prof. Lyndon Emsley and Prof. Christophe Copéret to perform DNP efficiently while avoiding 

paramagnetic relaxation (1). The strategy consists in the incorporation of TEMPO radicals in a 

mesostructured silica matrix. The powder can then be wetted with a solution containing molecules of 
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interest for MRS or MRI (for example metabolites) that will fill the pore channels of the material via 

incipient wetness impregnation (Figure 7.4). DNP can then be performed as usual at low temperatures. 

During dissolution, HYPSO will be physically retained by simple filtration in the cryostat of the DNP 

polarizer and a pure hyperpolarized solution will be collected within a few seconds. The resulting 

solution that contains the pure substrate will be free from any paramagnetic or toxic pollutants and 

ready for in-vivo infusion. 

7.2.1 Sample preparation   

One approach to obtain a solution free of radical would require an efficient solid polarizing matrix, which 

could then be easily separated from the solution. In order to maximize the polarization produced in such 

heterogeneous systems, it is crucial to avoid polarization losses via radical-radical interactions; the 

challenge being to control both the radicals density and distribution onto the solid. In this field, 

immobilization of radicals on silica gels or thermo-responsive polymers (17-19) has been reported for 

room temperature Overhauser DNP of liquid water. Mesostructured hybrid organosilica materials with 

immobilized polarizing agents were initially developed for MAS-DNP (20) and reported good 

enhancements. The same approach was optimized for D-DNP. In order to immobilize the polarizing 

agent, mesoporous materials are prepared via a Sol-Gel process. In the first generation of materials 

(HYPSO-1.0), The TEMPO moieties are covalently bound to the silica surface through propylamide linkers 

(O1.5Si(CH2)3–NHCO–TEMPO) (Figure 7.4). The polarizing agents are homogeneously distributed along the 

pore channels of the silica matrix. The detail of the synthesis can be found in the supplementary material 

of Reference (1) and (20). 

 

Figure 7.4: Schematic representation of the HYPSO strategy. The solution containing the analyte to be 

hyperpolarized is impregnated in a mesoporous silica material which contains polarizing agents (red dots) that are 

covalently attached to its surface. The transmission electron microscopy image (taken with a Philips CM30 TEM 

operating at 300 kV) shows the porous structure of the material. 

The material can then be wetted with a solution containing the molecule to be hyperpolarized. The pores 

will be filled by incipient wetness impregnation (Figure 7.4). HYPSO can be impregnated with up to ~1.8 

mL/g corresponding to a complete filling of the pores (~1.0 mL/g) as well as the additional inter-grain 

volumes (~0.8 mL/g). The high porosity of HYPSO gives it a weightless aspect. Its effective filling factor 

amounts to η = Vsolution/Vtotal = 0.85. 
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7.2.2 DNP on HYPSO  

Once HYPSO is impregnated with a solution of interest, routine DNP can readily be performed in a 

standard manner by microwave irradiation of the polarizing agent ESR transition. The proton polarization 

obtained by DNP at T = 1.2 K and B0 = 6.7 T using HYPSO-1.0 depends on the electron concentrations and 

shows a broad optimum around 88 µmol.g
-1

, which roughly corresponds to an electron concentration of 

49 mM in the pores, close to the optimal value of 50 mM that is normally used in D2O:glycerol-d8 

mixtures. The proton build-ups of a solution of 3 M 1-
13

C acetate in D2O loaded in 100 mg of material are 

shown in Figure 7.5.  At T = 4.2 K, P(
1
H) = 7.5% and τDNP(

1
H) = 30 s and at 1.2 K, P(

1
H) = 49.3% and τDNP(

1
H) 

= 130 s. This is lower that standard polarization reached in the same conditions with normal DNP 

solutions. The build-ups are also not fully mono-exponentials, which mean that some diffusion occurs, 

and that the polarizing agent is not perfectly homogeneously distributed. A better control of the 

distribution of the TEMPO functionalities (for example mimicking the statistical Poisson distribution in 

frozen glassy matrices) within the material may lead to further improved efficiency. 

 

Figure 7.5: Build-up plots of the polarization P(
1
H) of 180 μL of a 3 M acetate solution in D2O impregnated in 100 mg 

of HYPSO-2.0 at B0 = 6.7 T at (a) T = 4.2 K, and (b) T = 1.2 K. The lines show fits to monoexponential functions. 

Another important feature of dissolution-DNP with HYPSO is that no glassing agents such as glycerol or 

DMSO are required, regardless of the target material to be polarized. Apart from some specific cases, 

such as for neat pyruvic acid, where the analyte spontaneously forms a glass upon freezing, the addition 

of glass-forming agents is mandatory in numerous Dissolution-DNP experiments. This can be avoided 

with HYPSO. This feature can be seen in Figure 7.6 where the DNP build-up of P(1H) at 4.2 K of a pure 

H2O:D2O (1:9) solution impregnated in the HYPSO material is compared with the build-up of P(1H) in a 

solution of a glass forming mixture H2O:D2O:DMSO-d6 (1:3:6) under the same conditions. Indeed, as the 

polarizing agents are attached to the HYPSO material, there is no risk for them to be repelled to the edge 

of crystals that might form upon freezing. 
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Figure 7.6: Build-up plots of the polarization P(
1
H) of 40 μL pure H2O:D2O (1:9) (red) or glassy H2O:D2O:DMSO-d6 

(1:3:6) (blue) impregnated in 24 mg of HYPSO-1.0 at B0 = 6.7 T and T = 4.2 K.  

A polarization P(
13

C) = 36 % can be reached via Cross-Polarization in 3 M 1-
13

C pyruvate in H2O:D2O (1:9) 

(see Figure 7.7a) using a HYPSO-2.0 material obtained by an improved synthesis, using a different linker 

to attach TEMPO, via a click reaction between alkyne-TEMPO and azidopropyl moieties of the material. 

Furthermore, such materials allow access to a broad range of solid polarizing matrices, for instance, with 

silica materials containing trityl radicals. Preliminary results with a first generation of materials with 16 

μmol trityl per gram (HYPSO-1.2) yield P(
13

C) = 15% after 2 hours, indicating that it should be possible to 

obtain about 25% when the asymptotic value is reached (see Figure 7.7b).  

 

Figure 7.7: a) Build-up plots of the polarization P(
13

C) during multiple-contact cross-polarization (
1
H→

13
C CP at 7.5 

min intervals) with microwave irradiation,  obtained for 20 mg of HYPSO-2.0 (containing ? 41 µmol/g radical) 

impregnated with 36 µL of a 3 M solution of 1-
13

C pyruvate in D2O. A polarization P(
13

C) > 30% is reached in 32.5 

min. b) Direct 
13

C DNP performed on 20 mg of HYPSO-1.2 (with 16 µmol/g radical) impregnated with a 36 µL of a 3 

M solution of 1-
13

C pyruvate in D2O. A modest polarization P(
13

C) = 15% is only achieved after 2 hours with a time 

constant τDNP(
13

C) = 105 ± 3 min, apparently towards an asymptotic value P(
13

C)
max

 = 23 %. 

7.2.3 Filtration of HYPSO upon dissolution 

Once the polarization of the analyte has reached the desired level, the solution should be separated 

from the HYPSO matrix containing the paramagnetic centres that contribute to relaxation after 

dissolution. The idea is to wash the pores of the material with the dissolution solvent and thus to expel 

the target material or analyte, while retaining the solid HYPSO by filtration. This crucial step has to be 

carried out as close as possible to the centre of the polarizing magnet where the magnetic field is 
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intense. For example, a filtration along the transfer line, beyond the stray field of the magnet, would be 

catastrophic in term of paramagnetic relaxation. Indeed, in this case the hyperpolarized solution could 

stay in the pores of the material, therefore in close contact with highly concentrated unpaired electrons 

in a low field region. A good solution consists in mounting a cellulose filter at the bottom of the 

dissolution stick, i.e., at the top of the DNP sample holder during dissolution. 

 

Dissolution is subsequently performed by injecting 5 mL of superheated water. The polarizing agents 

remain attached to the surface of the mesopores during dissolution, due to their covalent linkage with 

the silica matrix.  The solution is in practice easily expelled from HYPSO by injecting hot water under 

pressure (Tdiss = 450 K, Pdiss = 1 MPa) as it is usually done for regular frozen glassy DNP samples. The 

resulting slurry is then forced by pressurized hot water with a helium pressure of Ppush = 6 MPa through a 

home built cellulose fiber filter mounted just above the DNP sample holder, as near as possible to the 

center of the 6.7 T magnetic field of the polarizer. The hyperpolarized solution is then transferred to the 

detection spectrometer. As an example, the hyperpolarized 1-
13

C pyruvate signal was measured at 7 T 

with an enhancement factor εDNP = 32500 compared to its thermal equilibrium signal after complete 

relaxation (Figure 7.8). Such enhancement attests for a polarization P(
13

C) = 25.3 %. The polarization 

decays with T1(
13

C) = 49.4 ± 0.4 s, which is typical of a pure D2O solution of 1-
13

C-pyruvate without any 

free radicals. 

 

 

Figure 7.8: NMR spectra of 1-
13

C pyruvate hyperpolarized with HYPSO-1.0 measured every 5 s with a nutation angle 

of 5⁰ at 7 T (300 MHz for protons) and 298 K.  

As a proof of general applicability, the same experiment was also performed on fumarate (with P(
13

C) = 

19.9 % for both carbonyl carbons) and on the dipeptide Alanine-Glycine (with P(
13

C) = 15.0 % and P(
13

C) = 

13.6 % for the Alanine carbonyl carbon and the Glycine carboxyl carbon respectively). 

 

D-DNP can thus be performed very efficiently using the HYPSO family of polarizing agents. The sample 

preparation is carried out without glassing agents to provide pure hyperpolarized solutions (no radical 

contamination), which can easily be separated from the polarizing solids using standard filters. The 

efficiency of these solid polarization matrices is the result of the controlled incorporation of a 

homogeneous distribution of radicals along the pore channels of a highly porous mesostructured 
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material. Although already shown here with pyruvate, acetate, fumarate, and a dipeptide (Alanine-

Glycine), the approach should be applicable to a broad range of molecules that can be hyperpolarized by 

D-DNP. 
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Chapter	8:		

	

Hyperpolarized	Equivalent	Long-Lived	

States	(“HELLS”)	

In this Chapter, I will discuss a more common combination of Long-Lived States and Dissolution-DNP 

than the one developed in Chapter 5. In the experiment of Chapter 5, DNP enhanced LLS were used as a 

probe and information about ligand binding was extracted from the observation of their relaxation rates. 

Here, I will treat the use of Long-Lived States to preserve the hyperpolarized magnetization. Up to now, 

several methods were developed to convert DNP enhanced polarization into singlet order. The great 

majority of these rely on various manipulations of spins after the hyperpolarization step, inducing 

difficulties, like extra hardware, pulse sequences or waste of time. An exception arose from the group of 

Malcolm Levitt. In their cleaver experiment (1), they proved that singlet spin order in two coupled 

inequivalent spins can be made directly available if the polarization is high, without extra manipulations. 

In my opinion, providing that high polarization can be reached (at high field for 
1
H and by Cross-

Polarization for heteronuclei), this will be the preferred way to excite LLS in future Dissolution-DNP 

experiments, because the simpler, the better. 

 

In this Chapter, I will introduce an experimental procedure that was developed to show that singlet order 

can also be populated by D-DNP in molecules with magnetically equivalent spins (2).  

8.1 LLS to sustain hyperpolarization 

8.1.1 Different attempts to combine DNP and LLS 

As shown in Section 1.2.2 of Chapter 1, one of the specificities of Dissolution-DNP consists in the physical 

separation between the apparatus for polarization and detection, and therefore the need of rapid 

transfer of the hyperpolarized sample. This transfer, sometimes poetically called voyage, can be 

performed either manually or by means of a pneumatic system. During the voyage, the hyperpolarized 

molecules experience low magnetic fields (sometimes as low as the earth’s field, or even below), which 

have detrimental effects on the enhanced polarization. This is one of the reasons why Dissolution-DNP 

has been most useful for nuclear spins with long T1, such as the isolated low-gamma quaternary 13C spin 

in 1-13C pyruvic acid (3, 4). On the other hand, apart from some exotic experiments (5, 6), 1H spins have 

hardly ever been exploited by D-DNP as their short T1’s rapidly drive the hyperpolarization back towards 

Boltzmann equilibrium. The most straightforward way to fight relaxation consist in speeding up the 

transfer. Bowen et al. (7) have developed a fast injection device where the interval between dissolution 

and detection is reduced to 1.2 s. As described in Chapter 6, an effective alternative consists in the 

elimination of paramagnetic polarizing agents, by reduction (8), extraction (9), precipitation (10) or by 

the use of hybrid polarizing solids (HYPSOs) with radicals incorporated in silica material (11). A magnetic 

tunnel (12) can also be used to protect the transfer line from low magnetic field regions. 
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Another possible strategy to take advantage of the large 
1
H hyperpolarization that can be obtained 

under our experimental conditions consists in storing the magnetization in the form of Long-Lived States 

(LLS) (13, 14).  In recent years, several successful studies combining D-DNP with Long-Lived States (1, 15-

21) have shown that hyperpolarized magnetization can be converted into LLS with extended lifetimes TLLS 

>> T1. As introduced in Chapter 5, in a pair of equivalent spins ½, the singlet state S0 = (|αβ⟩-|βα⟩)/ √2 is 

largely disconnected from the triplet states T+1 = |αα⟩, T0 = (|αβ⟩+|βα⟩)/ √2 and T-1 = |ββ⟩ because 

relaxation mechanisms that are symmetric with respect to spin exchange (such as the dipole-dipole 

interaction between the two spins) cannot induce singlet-triplet transitions (22-24). Therefore, if a 

triplet-singlet population imbalance (TSI) is prepared by any means, it is likely to be long-lived. I use the 

expression TSI in analogy to the A/E imbalance (AEI) recently described for methyl groups by Benno 

Meier et al.(25). 

 

Nevertheless, most experiments where D-DNP is combined with LLS (15-19) rely on rf pulses sequences 

to prepare the LLS after the transfer of the hyperpolarized sample to the detection magnet. As a result, 

extensive relaxation occurs during the transfer. Moreover, these additional manipulations may be 

difficult to implement. They may take valuable time or require extra hardware. However, Tayler and co-

workers (1) have shown that LLS order can be directly populated before the transfer by D-DNP for the 

two inequivalent 
13

C spins in 1,2-
13

C2-pyruvic acid. In their experiment, they demonstrated that a singlet-

triplet population imbalance could be created directly by hyperpolarization, i.e., without any extra 

manipulations of the sample. The amount of TSI, PTSI, that can be created will depend on the nuclear 

polarization reached, as will be shown in the next section. 

8.1.2 Direct enhancement of nuclear singlet order by hyperpolarization 

For non-interacting spins-½, by definition of polarization, PZ = (nα-nβ)/(nα+nβ) so that if nα+nβ = 1, one 

obtains PZ = (nα-nβ). Thus for the normalized population of each energy level we have: PZ = nα-(1- nα), 

hence nα=(1+ PZ)/2; and, likewise, nβ=(1- PZ)/2. For a pair of inequivalent spins-½ in a strong magnetic 

field, the eigenstates are given by product states of the form:|α1α2⟩ = |α1⟩|α2⟩, |α1β2⟩ = |α1⟩|β2⟩,| β 1α2 ⟩ 

= |β 1⟩|α2⟩, |β 1β2⟩ = |β1⟩|β2⟩. The populations of these states are given by the products of the 

populations of the non-interacting nuclei: 
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= = − +

= = − −

 (8.1) 

 

We thus have the following density matrix σ in the product basis (PB), which is the eigenbasis for a 

weakly coupled IS spin system, with diagonal elements or populations that can be arranged in the form 

of a vector: 
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 (8.2) 
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We can define the traceless deviations of the populations Δσ = σ – E: 
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 (8.3) 

 

The deviations of populations from the fully saturated state as function of the nuclear Zeeman 

polarization PZ, calculated using Equation 8.3 for each eigenstate are shown in Figure 8.1a. 

 

If the two spins I and S are made equivalent, the density operator is better expressed in a singlet-triplet 

basis (STB), the eigenbasis of an I2 system (see Equation 5.6). The transformation from the PB to the 

symmetry-adapted STB can be done using the conversion matrix (see supplementary material of 

Reference (26)):  

 

1/2 1/2
1 1

1/2 1/2

1

2 2
, with 

2 2

1

PB STBV V V V
− −

− −
− −

 
 
 Φ = Φ = =
 −
 
 

 (8.4)  

 

Here, since Δnαβ = Δnβα, (and thus also nαβ = nβα), it can be easily seen using Equation 8.2, 8.3 and 8.4 that 

ΔσPB = ΔσSTB (and hence σPB = σSTB) with the following diagonal elements:  

 

( ) ( ) ( )2 2 2 2
1 0 0 1

1
, , , , , , 2 , , , 2

4T T S T Z Z Z Z Z Zn n n n n n n n P P P P P Pαα αβ βα ββ + −∆ ∆ ∆ ∆ = ∆ ∆ ∆ ∆ = + − − − +  (8.5) 

 

PTSI, defined as the mean triplet-singlet population difference, can be calculated from the elements of 

Equation 8.5:  

  

( )
2

0 1 0 1

1

3 3
Z

TSI S T T T

P
P n n n n+ −= ∆ − ∆ + ∆ + ∆ = −  (8.6) 

 

The TSI will thus result from the depletion of nαβ and nβα by hyperpolarization. The negative sign arises 

since a strong polarization will deplete the singlet state. Figure 8.1b shows the normalized triplet-singlet 

population imbalance as a function of the nuclear Zeeman polarization according to Equation 8.6. 
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Figure 8.1: a) Deviations of populations from the fully saturated state for each eigenstate αα (black), αβ (red), βα 

(red) and ββ (blue) as function of the nuclear Zeeman polarization PZ calculated using Equation 8.3 b) Normalized 

triplet-singlet population imbalance as a function of the nuclear Zeeman polarization according to Equation 8.6.  

Therefore, provided a high spin polarization can be reached by D-DNP, say PZ = 50%, a significant amount 

of singlet order, in this example PTSI = - 8.33%, can be created directly without any rf pulses. In the case 

where PZ = 91% can be achieved, one obtains PTSI = - 28%. Such high levels of polarization can indeed be 

prepared directly by DNP for 
1
H at B0 = 6.7 T and T = 1.2 K and indirectly for 

13
C or other nuclei via Cross 

Polarization from 
1
H (27). 

 

In this Chapter, I will demonstrate that a TSI can also be efficiently populated by D-DNP in a pair of 

magnetically equivalent 
1
H spins, and that this TSI is preserved in the liquid state after dissolution for a 

long time TTSI. This type of LLS will be referred to as Hyperpolarized Equivalent Long-Lived States 

(HELLS)(2).  

8.2 Imposing or breaking symmetry in LLS experiments 
 

The experimental challenge of any study of Long-Lived States consists in manipulating the symmetry of 

the spin system involved, since the magnetic equivalence needs to be lifted both during excitation and 

detection but preserved during storage. In this context, two possible scenarios are: 1) in most 

experiments described so far, the symmetry is imposed on an otherwise inequivalent two-spin system 

during the storage period only, or 2), like in the present experiment, the symmetry of an inherently 

equivalent two-spin system is broken during both excitation and detection (See Figure 8.2). 
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Figure 8.2: Schematic representation of experimental LLS scenarios where the symmetry is either imposed during 

the storage phase on an inequivalent IS spin system (upper part) or where the symmetry of an equivalent I2 spin 

system is broken during the excitation and the detection (lower part). 

If one starts with an inequivalent two-spin system, a precursor state, i.e., a state that acquires a long-

lived property as soon as the two spins are made equivalent during the storage interval, can be 

prepared, normally by suitable rf pulse sequences, or directly by hyperpolarizing the sample (1). The 

symmetry can then be imposed on the precursor state, either by rf irradiation (28, 29), by adiabatic 

transport to low fields (18, 30) or by chemical reactions (16). Alternatively, a compromise can be found 

by using systems containing nearly equivalent spins (31) where the singlet and triplet states are only 

weakly mixed, but where their admixture can be augmented by suitable pulse sequences to induce a 

magnetization-to-singlet (M2S) conversion for the excitation, reversed by a singlet-to-magnetization 

(S2M) conversion prior to detection.  

 

Para-hydrogen (32-34) offers a good example of nuclear singlet order in a molecule with two equivalent 

spins. The singlet state of H2 can be produced at low temperatures (typically 40 K) in the presence of a 

paramagnetic catalyst which allows singlet-triplet inter-conversion by lifting the symmetry of H2 near the 

catalytic surface. The singlet spin state of H2 has the lowest energy, primarily determined by the 

quantization of its rotational state, and therefore is predominantly populated at low temperatures. This 

leads to the creation of a large TSI, compared to H2 in Boltzmann equilibrium at room temperature. Para-

H2 is not magnetically active and therefore cannot be observed directly by NMR, but it can be converted 

into observable signals through an asymmetric hydrogenation reaction where the two protons stemming 

from para-H2 become inequivalent. 

8.3 HELLS experiments 
 

The goal of this study was to demonstrate experimentally that it is possible to populate by DNP a triplet-

singlet imbalance (TSI) in a system with two magnetically equivalent spins and that this TSI can be stored 

after dissolution in liquid state. As can be seen in Figure 8.2, even if the storage is straightforward, an 
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experimental complication arises when working with LLS in equivalent spin systems: the symmetry of the 

molecule has to be lifted during the excitation and detection phase. The HELLS experiment was designed 

to verify the postulate that the symmetry is broken under DNP conditions (in a static solid at low 

temperature in the presence of free electrons); but in order to detect a signal, a “de-symmetrization“ 

step has to be added. Fumarate was chosen as test molecule with equivalent spins, and we used the 

enzymatic conversion of fumarate into malate to reveal the TSI sealed in the form of unobservable Long-

Lived States in fumarate. 

8.3.1 Energy levels and flow of populations during HELLS experiments 

Preparation of a triplet-singlet imbalance under DNP conditions 

 

For efficient D-DNP, the samples usually consists of frozen glassy solids containing typically 10-50 mM 

polarizing agents such as TEMPOL in addition to the molecules of interest. In our experiments, the 

molecule of interest shall possess two spins I and S that are magnetically equivalent in solution, but that 

are inequivalent in the frozen state in moderate magnetic fields since they are exposed to slightly 

different environments and therefore experience different chemical shifts because of chemical shift 

anisotropies (CSA) and different inter-nuclear as well as electron-nuclear dipolar couplings. Given that 

freezing to low temperatures lifts the equivalence, the energy levels are better expressed in the product 

basis (PB). At T = 1.2 K and B0 = 6.7 T, the proton Boltzmann polarization without DNP is PZ = 0.57% see 

Equation 1.7). Therefore, as shown in Equation 8.3, the deviations of the diagonal elements of the 

density matrix from the demagnetized state, Δσ = σ – E, will be (Δnαα, Δnαβ, Δnβα, Δnββ) = ¼ (2PZ + PZ
2, -PZ

2, 

-PZ
2
, -2PZ + PZ

2
) = (0.003, 0, 0, -0.003). Assuming for simplicity that DNP could confer a Zeeman 

polarization PZ = 100%, only the lowest energy level |αα⟩ would be populated by hyperpolarization, so 

that (Δnαα, Δnαβ, Δnβα, Δnββ) = (0.75, -0.25, -0.25, -0.25) (see Figure 8.3a: TSI Preparation and Figure 8.1a). 

For a Zeeman polarization PZ = 91%, that can readily be achieved experimentally, one obtains (Δnαα, Δnαβ, 

Δnβα, Δnββ) = (0.66, -0.2, -0.2, -0.25). 

 

Storage of triplet-singlet imbalance at low or high field 

 

As soon as the polarized sample is heated and dissolved, chemical shift anisotropies (CSA) and dipolar 

couplings are averaged out, so that the spins I and S become magnetically equivalent. The density 

operator can therefore better be expressed in the singlet-triplet basis (STB). As the energy levels αβ and 

βα remain equally populated (see Figure 8.1a), one obtains ΔσPB = ΔσSTB with the diagonal elements of 

Equation 8.5. As shown in Equation 8.6, the triplet-singlet population imbalance PTSI = -Pz
2
/3. The TSI can 

be stored indifferently at low or high magnetic field (for example in a magnetic tunnel (12)). During the 

storage period, the populations of the three triplet states will equilibrate, i.e., the deviations of the 

populations of the three triplet levels will average out because of dipole-dipole relaxation to give:  

 

( ) ( ) ( ) ( )
2

1 0 1 1 0 1

1 1
' ' '

3 4 3
Z

T T T T T

P
n n n n n n+ − + −∆ = ∆ = ∆ = ∆ + ∆ + ∆ =  (8.7) 

 

Since the singlet should not be affected by dipole-dipole relaxation, the triplet-singlet imbalance in 

principle remains equal to PTSI = -PZ
2/3 (see Figure 8.3b: TSI Storage).  
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Figure 8.3: Schematic deviations of the populations with respect to the fully saturated state Δσ = σ - E among the 

energy levels of the two protons of fumarate a) (left) in the polarizer at 6.7 T and 1.2 K without DNP at Boltzmann 

equilibrium (PZ(
1
H) = 0.57%) and (right) after DNP polarization to the theoretical limit PZ(

1
H) = 100%, b) during the 

transfer, which may go through low magnetic fields or through a magnetic tunnel to sustain a higher field, c) in the 

detection magnet, typically at 7 T and 300 K, where the spins are made inequivalent by an enzymatic conversion. In 

each scheme, the deviations of the diagonal elements from the demagnetized state Δσ = σ - E are given as a 

function of the polarization PZ. In (c), the off-diagonal elements of the density matrix (zero-quantum coherences) 

are also shown. 

Revelation of the triplet-singlet imbalance 

 

The sample is then transferred to the NMR or MRI magnet for detection. The system of two equivalent 

spins can then be transformed (chemically or enzymatically) into a system of two inequivalent spins, so 

that the ‘sealed’ hyperpolarization can be ‘revealed’ by conversion into observable magnetization. If the 
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reaction is fast and goes to completion, one can convert Δσ from the STB to the PB, using the suitable 

base transformation in Equation 8.4 (26, 35): 
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 
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 (8.8) 

 

The resulting density matrix ΔσPB shown in Equation 8.8 can be expressed as a superposition of 

longitudinal two-spin order and zero-quantum coherences (their matrix representations in the product 

basis can be found in Appendix 9.2 of Reference (36)) (see Figure 8.3c: TSI Revelation): 

 

( )
2

2 2
6
Z

PB z z x

P
I S ZQσ∆ = +  (8.9) 

 

Therefore, after the symmetry-breaking reaction, an NMR pulse sequence that convert 2IzSz + 2ZQx into 

observable magnetization is needed to reveal the TSI created by DNP. Ideally, this sequence should 

reject other terms, like single quantum magnetization that may be present because of incomplete 

polarization in step (a) or relaxation in step (b). If these two conditions are fulfilled, the detection of a 

signal will unambiguously constitute a proof of the creation of a triplet-singlet imbalance (TSI) in 

molecules with magnetically equivalent spins by hyperpolarization, which is only possible if the 

symmetry of the molecule is lifted during the DNP process in the polarizer.  

8.3.2 Slow fumarate to malate enzymatic conversion: problems and solutions 

To test the HELLS experiment, we chose the two equivalent protons of fumarate as a receptacle of 

triplet-singlet imbalance. The symmetry of the molecule can be lifted by the enzymatic conversion of 

fumarate into malate by fumarase in D2O (see insert of Figure 8.4). 

 

Enzymatic reactions are not instantaneous, and do not necessarily lead to a complete conversion into 

the product. Figure 8.4 shows an example of the conversion of fumarate into malate by fumarase under 

conditions that can be combined with D-DNP. The steady-state concentrations are only reached after 25 

minutes.  This has important implications for our experiment. In fact, a highly polarized state Δσ = 2IzSz + 

2ZQx is indeed produced instantaneously in malate whenever fumarate molecules carrying a TSI undergo 

an enzymatic conversion, but the ZQx term immediately starts evolving under the difference of chemical 

shifts, and therefore rapidly dephases and averages to zero as the reaction goes on. Furthermore, the 

hyperpolarized TSI of fumarate, once it is transferred to malate and converted into longitudinal two-spin 

order and zero-quantum coherence as shown in Equation 8.9, will tend to relax to thermal Boltzmann 

equilibrium by efficient relaxation mechanisms. 
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Figure 8.4: a) Proton NMR spectrum of fumarate and malate. b) Enzymatic conversion of fumarate into malate by 

fumarase at 300 K monitored by integration of the conventional 
1
H NMR signals of the two species. The nuclear 

polarizations are in thermal Boltzmann equilibrium, without resorting to DNP. A volume of 4 µL of a 5.8 mg/mL 

solution of fumarase (i.e., 10 units) was injected into 500 μL of a 50 mM fumarate solution at pH 8 in a buffer of 25 

mM TRIS and 200 mM NaCl. 

To counter these two problems, it is however possible to sustain the LLS of malate by so-called ‘high 

field’ methods (24, 26, 28) like in the LLS sequence used in Chapter 5, e.g., by applying an rf irradiation 

half-way between the two chemical shifts (either by applying a continuous-wave (CW) irradiation, or, if 

desired, a WALTZ-16 pulse train) (29), thus preserving as much as possible the full Δσ = 2IzSz + 2ZQx state. 

This strategy allows one to slow down relaxation of 2IzSz and prevent dephasing of ZQx. For the two 

inequivalent protons in malate, we thus determined TLLS = 6 s at B0 = 7 T and T = 298 K. Moreover, the 

use of WALTZ-16 pulse trains has the advantage of wiping out any single-quantum magnetization that 

does not arise from HELLS. A conventional LLS detection sequence, e.g., the second half of the ‘Sarkar 

sequence’(26) (Figure 8.5) can finally be used to transform Δσ = 2IzSz + 2ZQx into observable 

magnetization. 

 

Figure 8.5: Timing of a HELLS experiment. The protons of fumarate are hyperpolarized at 6.7 T and 1.2 K. The 

hyperpolarized sample is then dissolved and stored in a holding chamber at high field during a delay τTSI. Finally 

hyperpolarized fumarate is injected into a solution containing fumarase which will start the enzymatic conversion 

from fumarate into malate. Concurrently, a WALTZ-16 pulse train is applied with an rf amplitude  ν1 = 3 kHz during 

the delay τLLS. The remainder of the detection pulse sequence is identical to the second half of the sequence 

described in Section 5.1.2. The conversion of the LLS into observable magnetization is most efficient when τ1 = 

1/4JIS and τ2 = 1/2ΔνIS (in malate JIS = 10.4 Hz and ΔνIS = 960 Hz at 300 MHz.) The detection scheme can be repeated 

n times. 

After dissolution, the hyperpolarized solution containing fumarate that carries the triplet-singlet 

imbalance (TSI) is transferred to a holding chamber just above the NMR tube to determine its lifetime TTSI 
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during a variable pre-injection delay τTSI. The fumarate solution is then injected into a solution containing 

fumarase to start the conversion of fumarate into malate, accompanied by a conversion of the TSI of 

fumarate into an LLS of malate. A WALTZ-16 pulses train is applied during a delay τLLS with the carrier 

half-way between the chemical shifts of the two protons of malate in order to make these two protons 

effectively equivalent. As will be developed in the next Section, this “accumulation delay” τLLS has to be 

optimized to maximize the signal observed. This optimization has to take into account the slow 

enzymatic conversion of the TSI stored in fumarate into malate and the fast relaxation of malate 

magnetization.  The detection scheme can be repeated n times, bearing in mind that the LLS on malate is 

replenished during each sustaining interval τLLS by enzymatic conversion of fumarate that carries a slowly 

relaxing TSI. 

8.3.3 Optimization of malate accumulation time 

Since the lifetime of the LLS of malate (TLLS
M

 = 6 s at 300 MHz if the rf amplitude of the CW field is ν1 = 3 

kHz) is short compared to the enzymatic transformation timescale, the time τLLS (see Figure 8.5) allocated 

for the LLS to accumulate in malate before it is converted into observable signals needs to be carefully 

optimized. The concentrations [F] and [M] of fumarate and malate can be described by pseudo first-

order kinetics: 

 

[ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( )

FM MF

MF FM

d F t
k F t k M t

dt
d M t

k M t k F t
dt


= − +


 = − +


 (8.10) 

 

where [F](t) and [M](t) are the concentrations of fumarate and malate, kFM and kMF are the apparent 

kinetic constants of the overall enzymatic conversion of fumarate into malate and vice-versa, without 

considering the details of the Michaelis-Menten mechanism.  

 

The temporal evolution of the expectation value PLLS
M

 in malate arising from the conversion of fumarate 

under rf irradiation can be obtained solving the rate equations: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F
TSI F F M

FM TSI TSI MF LLS

M
LLS M M F

MF LLS LLS FM TSI

dP t
k R P t k P t

dt

dP t
k R P t k P t

dt


= − + +



 = − + +

 (8.11) 

 

where PTSI
F
 and PLLS

M
 are the expectation values of the triplet-singlet imbalance in fumarate and the long-

lived state in malate, and RTSI
F
 and RLLS

M
 are their relaxation rates. 

 

The ‘apparent’ rate constants kFM and kMF can be obtained by fitting the signal amplitudes in Figure 8.4b 

to the rate equations 8.10. One can then predict, by solving the rate equations 8.11, the temporal 

evolution of PTSI
F
 in fumarate in the presence of 10 units of enzyme, as well as PLLS

M
 of malate obtained 

by the conversion of the TSI of fumarate into an LLS of malate that relaxes with RLLS
M

 (Figure 8.6). These 

curves were obtained by assuming that TTSI
F
 = 60 s for fumarate (based on preliminary observations 

discussed below), and using the experimentally determined time constant TLLS
M

 = 6 s for malate. 

According to Figure 8.6, the optimal delay to maximize the conversion of the TSI of fumarate into LLS of 
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malate is 10 s. Thus one should wait τLLS = 10 s while sustaining the LLS by a suitable rf field before 

attempting to convert the LLS of malate into observable magnetization. The alternation of rf irradiation 

intervals and signal observation can be repeated n times. During each interval τLLS the LLS of malate will 

be replenished by the enzymatic conversion of the slowly relaxing TSI of fumarate. The decay of the 

magnetically silent TSI of fumarate will be indirectly reflected in the decay of the malate signal as n 

increases. Moreover, it can be seen in Figure 8.6b that only ca. 1% of the HELLS of fumarate is 

transferred to malate during each loop n = 1, 2, … , N.  

 

Figure 8.6: Temporal evolution of the (unobservable) triplet-singlet imbalance (PTSI) of fumarate (a) and of the 

signal of malate (b) obtained by numerical solution of Equation 8.11 with TTSI
F
 = 60 s and TLLS

M
 = 6 s, and the 

apparent forward and backward rate constants kMF = 4.5 10
-4

 s
-1

 and kFM = 3.7 10
-4

 s
-1 

= 0.825 kMF optimized by 

fitting the curves in Figure 8.4 with Equation 8.10. The vertical scale was increased 100 times in (b) to show the 

malate signal, which is barely visible as (-•-) in (a) because of the slow rate of the enzymatic conversion. 

8.3.4 Results 

A sample comprising 10 frozen pellets of 10 μL each of 0.5 M fumarate with 50 mM TEMPOL was 

hyperpolarized by monochromatic microwave irradiation at B0 = 6.7 T and T = 1.2 K for about 20 min. The 

sample was then dissolved, together with 10 frozen pellets of 10 μL each of 3 M sodium ascorbate in D2O 

(8), with 5 mL D2O at 400 K and 1.0 MPa, and transferred in 4.5 s to a holding chamber just above the 

magnetic center of a 7 T NMR (300 MHz) spectrometer, where the static field is Bhold > 6.5 T. After a pre-

injection delay 1 < τTSI  < 60 s that allows one to assess the lifetime TTSI of the triplet-singlet imbalance 

(PTSI) of hyperpolarized fumarate in the holding chamber, the solution was injected into a 5 mm NMR 

tube containing fumarase to start the conversion of fumarate into malate, and concomitantly to transfer 

the TSI of fumarate into an LLS on malate. The latter was sustained by a WALTZ-16 pulse train with an rf 

amplitude ν1 = 3 kHz. The sequence of Figure 8.5 was then used to convert the LLS of malate into 

observable magnetization.  

 

Figure 8.7d shows four spectra of malate acquired at 7 s intervals (N = 4 loops, each comprising a 

sustaining interval τLLS = 6 s and an acquisition time, aq, of 1 s) after the injection of hyperpolarized 

fumarate into the NMR tube containing fumarase. In this case, the pre-injection delay τTSI = 1 s where the 

fumarate was kept in the holding chamber was negligible compared to TTSI
F
. Since the enzymatic 

conversion is relatively slow, the signals of Figure 8.7d arise from the conversion of a small fraction of 

fumarate into malate (ca. 1% every 7 s, according to Figure 8.6b). To be more precise, taking into 

account the dissolution (100 μL frozen DNP sample containing 0.5 M fumarate diluted by 5mL of D2O), 

the triplet-singlet polarization after relaxation (PTSI = -Pz
2
/3 = -27.6% for the best possible polarization 

Pz(
1
H) = 91%), the slow enzymatic conversion and the limited quantum yield (ca. 50%) of the conversion 

of the LLS into single quantum  coherence during the detection sequence, the signal detected without 



132 

 

cryoprobe in Figure 8.7d corresponds to a malate concentration of 7 μM. The signal is thus quite intense, 

even if the SNR appears modest. 

 

The decay of the malate signal with increasing n reflects (i) the decay of the unobservable TSI of 

fumarate with a time constant TTSI
F
 due to its relaxation (believed to be very slow), (ii) the consumption 

of fumarate with a time constant 1/kFM due to its enzymatic conversion into malate, and (iii) the decay of 

the LLS of malate with a time constant TLLS
M

 = 6 s (Figure 8.6a) However, it appears risky to extract an 

estimate of TTSI
F
 from numerical fits of a single decay.  

 

Figure 8.7: a) Conventional NMR spectrum excited by a 90° pulse 25 min after injection of fumarate into a solution 

containing fumarase, when the enzymatic reaction has reached a steady state and the hyperpolarization (both PTSI
F
 

in fumarate and PLLS
M

 in malate) has decayed to thermal equilibrium. Note the signals of fumarate, malate, ethanol 

and buffer. The HDO peak was attenuated by pre-saturation with a selective pulse with an rf amplitude of 75 Hz 

and a duration of 5 s. b) Spectrum of malate (without significant stopover in the holding chamber since τTSI = 1 s << 

TTSI
F
) recorded with the sequence of Figure 8.5, shortly after injection (n = 1) into a solution containing fumarase in 

the 7 T NMR system. c) Spectrum of malate recorded after keeping the hyperpolarized fumarate for τTSI = 60 s in the 

holding chamber at B0 > 6.5 T prior to injection into the fumarase solution. d) The first four spectra of malate 

acquired with n = 1, 2, 3 and 4 at intervals of 7 s using the sequence in Figure 8.5 (τTSI = 1 s, τLLS = 6 s, acquisition 

time 1 s) showing that PLLS
M

 is replenished through the enzymatic reaction. 

The lifetime TTSI
F
 can be estimated more accurately by repeating the entire experiment after keeping the 

fumarate that carries the hyperpolarized TSI in the holding chamber during a longer pre-injection delay 
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τTSI = 60 s. Although it is challenging to reproduce the experiment under identical conditions, we were 

able to observe that the remaining signal of malate after τTSI = 60 s was reduced by a factor of ca. 3.5 (Fig 

8.7b,c), implying that TTSI
F
 ≈ 50 s. This is somewhat shorter than the lifetime TTSI = 270 s reported by 

Zhang et al. (37) for deuterated dimethyl maleate produced by addition of para-H2 onto deuterated 

dimethyl acetylene dicarboxylate. This discrepancy may be due to the presence of dissolved 

paramagnetic triplet oxygen in the superheated water used in our dissolution experiments, or to the 

presence of some residual TEMPOL radicals since its reduction by ascorbate may not be quantitative. 

Because the WALTZ-16 pulse train destroys magnetization arising from any sources other than HELLS, 

single-quantum terms arising either from D-DNP or from a partial return to thermal Boltzmann 

equilibrium are wiped out (compare Figure 8.7b,c with Figure 8.7a). The detected signals can therefore 

unambiguously be traced back to the TSI of fumarate prepared by D-DNP, stored in the holding chamber 

for a time τTSI, and converted into LLS of malate by the enzyme. The remaining peaks of fumarate and 

HDO in the spectrum of Figure 8.7b probably stem from hyperpolarized single-quantum magnetization 

that has not been fully saturated by the WALTZ-16 pulse train and was brought into the active volume of 

the rf coil by convection. 

 

The HELLS experiment proves that a pure triplet-singlet imbalance (TSI) can be readily created by D-DNP 

in a system that contains two spins that are magnetically equivalent in solution. Once dissolved, this 

imbalance displays a lifetime TTSI that is much longer than the longitudinal relaxation time T1. This is 

believed to be the first proof of principle of the creation of Hyperpolarized Long-Lived States for 

equivalent spins (HELLS) by D-DNP. Such a long-lived spin order can readily be used to monitor a slow 

enzymatic process of biochemical relevance, but may find applications in other areas of magnetic 

resonance such as imaging (MRI) where hyperpolarization by D-DNP has become a technique of choice 

to enable metabolic imaging, and where short lifetimes of hyperpolarized molecules are usually a major 

limitation. As fumarate plays a crucial role in the Krebs cycle, it may be of interest for in-vivo studies as it 

has been demonstrated to be a probe for cellular necrosis (38). The HELLS methodology could be applied 

to more challenging molecules containing magnetically equivalent pairs of spins, such as CH2RR’, CH2Cl2, 

and possibly H2O as discussed in the next Section. 

8.4 To go further: para-water 
 

An ongoing project in our group that was started by Dr. Nicola Salvi and is now coordinated by Daniele 

Mammoli, is to render the singlet state in para-H2O accessible to indirect NMR observation. The term 

para-water is used by analogy to para-hydrogen. The para- and ortho- forms of H2O can be separated in 

molecular beams (39), and para-water can be prepared if it is trapped in C60 cages (40). Parallel 

strategies are developed in our group to lift the symmetry of the water molecule and allow one to excite 

and observe a triplet-singlet imbalance, for example by adsorption of water vapor to a chiral surface, by 

hydration of gypsum or by rapid chemical addition of H2O to chloral CCl3CHO. 

 

It appeared that freezing H2O in aprotic solvent under DNP conditions could be a good method to lift the 

symmetry of the two protons either through intermolecular dipole-dipole interactions (41) or through 

the anisotropy of their chemical shifts (42). Indeed, it can be seen in the proton spectra of H2O diluted in 

DMSO-d6 doped with TEMPO and frozen at ca. 1.2 K in a field of 6.7 T (Figure 8.8) that the degeneracy of 

the two spins is lifted. As a result, the anti-symmetric para-state is mixed with the central triplet state, 

and singlet/triplet inter-conversion can occur. As shown in this Chapter, hyperpolarization of proton 

spins by DNP can indeed create a precursor state characterized by a singlet-triplet imbalance. In Figure 

8.8b a proton spectrum excited by a 1⁰ pulse is recorded every 50 s after starting irradiation with a 
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resonant microwave field. The spectrum in Figure 8.8a corresponds to a modest 
1
H polarization, close to 

Boltzmann equilibrium at 1.2 K, while Figure 8.8c corresponds to the highest polarization that could be 

reached by microwave irradiation. The rising polarization is accompanied by a growing asymmetry of the 

spectra due to the increasing population of the lowest-lying state.  

 

Figure 8.8: Proton spectra of 20 % H2O diluted in 80 % DMSO-d6 with 50 mM TEMPOL at 6.7 T and 1.2 K a) at low 

(Boltzmann) polarization, b) recorded every 50 s with 100 mW μW irradiation at 187.7 GHz, c) at maximal DNP 

polarization.   

The expressions of Equations 8.2 and 8.3 can be rewritten in terms of superpositions of the population 

operators IZ, SZ, 2IZSZ and E (36):  

 

( )
2

2
2 2
Z Z

PB Z Z Z Z

P P
I S I S Eσ = + + +  (8.12) 

( )
2

2
2 2
Z Z

PB Z Z Z Z

P P
I S I Sσ∆ = + +  (8.13) 

 

The presence of the two-spin order term explains the growing asymmetry in the spectra of Figure 8.8 as 

the nuclear Zeeman polarization increases. 

 

At high polarization levels, the expressions in Equation 8.12 and 8.13 will correspond to a triplet-singlet 

imbalance once the spins become equivalent after dissolution. Hyperpolarized para-H2O should in 

principle be long-lived. Nevertheless, the excitation of TSI of the two magnetically equivalent spins in 

water is only the first step in the quest for observing para-water. The problem of rapid proton exchange, 

the presence of some paramagnetic polarizing agents during storage, and the need to lift the symmetry 

for detection represent additional challenges. 

 

The HELLS experiment presented in this Chapter was originally designed to obtain experimental evidence 

that a long-lived triplet-singlet imbalance can be created in a system with two equivalent spins, as occur 

in H2O, while circumventing the difficulty of proton exchange that cannot occur in fumarate, when the 

sample is frozen and hyperpolarized under DNP conditions. Thus, to finish this last chapter, I could site 

the good words of Dr. Takuya Segawa:  “Para-(d)ice can be created out of HELLS”. 
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Conclusions 

 

The original objective of Dissolution-DNP has now become a reality. Real-time imaging of tumors in 

human patients acquired while following the metabolism of hyperpolarized 1-
13

C pyruvate was 

successfully achieved in 2013 (1).  This great success in medical imaging should push forward the entire 

research in Dissolution-DNP. Indeed, even if extremely important, D-DNP is not limited to metabolic 

imaging of hyperpolarized 1-
13

C pyruvate. The method can be used in combination with a variety of other 

NMR or MRI methods, using an extensive variety of different molecules and enhanced nuclei. 

 

As shown in this Thesis, looking slightly outside the box can actually improve the content of the box. DNP 

research was initially oriented to optimize 
13

C polarization. In this context, the polarization of protons 

was widely regarded as undesirable, since it would attenuate the 
13

C hyperpolarization through a leakage 

effect, as described in Chapter 2. Therefore, radicals with narrow EPR lines were preferred. As shown in 

Chapter 3, the use of radicals with broad lines, like TEMPO, combined with hyperpolarization of 
1
H, can 

be beneficial for the magnetization of heteronuclei. Indeed, protons have the property that they can be 

polarized by DNP to higher values and with shorter build-up times than other nuclei like 
13

C. The addition 

of a doubly resonant rf coil inside the polarizer permits one to transfer the highly abundant 
1
H 

magnetization to other nuclei via Cross Polarization, a standard and well-known NMR technique. 

Moreover, for conventional direct 
13

C D-DNP, the polarizing field was rarely increased beyond 3.35 T. 

Indeed, even if it is possible to reach larger 
13

C polarizations at higher fields, the long build-up time 

constants of direct 
13

C polarization become prohibitive. On the contrary, when working with protons, 

increasing the field turns out to be an advantage. The polarization can be as high as P(
1
H) = 90% at 6.7 T 

and 1.2 K, while the build-up time constants remain short enough (τDNP(
1
H) = 150 s under the same 

conditions). Therefore, combining proton polarization at high field with Cross-Polarization, it was 

possible to reach a record polarization P(
13

C) = 70% within an extremely short build-up time of 20 min in 

1-
13

C pyruvate (2). 

 

Cross Polarization does not only improve the DNP of carbon-13 labelled pyruvate, but also of other 

molecules, like glucose, urea, fumarate or butyrate, for example. This is true even if the molecule is 

deuterated, as the CP transfer can be performed from the protons of the solvents (3). Moreover, CP from 

hyperpolarized protons can enhance any low gamma nuclei, like 
15

N, 
6
Li, 

29
Si or 

129
Xe, providing that the 

doubly resonant coil is tuned. These nuclei unpopular so far for D-DNP, because of their low polarization 

and excessively long build-up times, should now become accessible. 

 

Highly and rapidly available protons polarization can be observed directly after dissolution as well. High 

throughput combined with natural abundance are indeed two key advantages. The main obstacle that 

has to be overcome is the fast relaxation of the 
1
H magnetization once the sample is dissolved. 

Paramagnetic species, which are necessary for DNP to occur, contribute strongly to relaxation during the 

sample transfer, at low field and at room temperature, and during the observation of the enhanced 

signals. Numerous approaches to avoid paramagnetic relaxation have already been proposed, like, for 

example, precipitation and filtration (4), reduction with ascorbate (5), or the use of a magnetic tunnel 

during the transfer to avoid low field regions (6). In the course of the present Thesis, two alternative 

strategies were proposed. The modulation of the microwave frequency during the polarization step 

allows one reducing  by a factor two the electron concentration needed to perform efficient DNP (7). 

This reduction is also beneficial after dissolution, lowering the concentration of the paramagnetic 
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species. It was also shown that it is possible to obtain a hyperpolarized solution without any 

paramagnetic species by covalently attaching the free radicals to mesoporous silica materials (referred to 

as HYPSO) and by filtering these particles in the polarizer while the enhanced analytes are transferred to 

the spectrometer for detection (8).  

 

The use of so-called Long-Lived States (LLS) (9) to preserve hyperpolarized magnetization is also perfectly 

adapted to D-DNP. Using variable techniques, it is possible to populate such LLS in systems with two 

coupled spins. These LLS will be insensitive to nuclear dipole-dipole relaxation, and therefore relax slowly 

to Boltzmann equilibrium. It was shown by Levitt and co-workers (10) that it is possible to populate LLS in 

inequivalent spin systems, without any other manipulation, simply by going to a high polarization, for 

example using DNP. In this Thesis, it was demonstrated that it is as also possible to populate LLS in 

systems with two equivalent spins under DNP conditions inside the polarizer (11). Regarding the high 

polarization needed, the combination of the transfer of hyperpolarized 
1
H magnetization via Cross-

Polarization and LLS to low-gamma nuclei like 
13

C or 
15

N should surely be explored in the near future.  

Moreover, the use of HYPSO polarization materials should also be a good option in this context to avoid 

paramagnetic relaxation, which strongly affects Long-Lived States. 

 

As said in the preamble, the field of Dissolution-DNP is driven by metabolic imaging of prostate cancer, 

but is by far not limited to this application. Especially with the help of Cross-Polarization, any NMR active 

nucleus in any molecule can be polarized by D-DNP to high values in a short build-up time. The range of 

possible applications is then only limited by the inspiration of the experimentalist. One can think for 

example of monitoring chemical reactions(12), in vitro enzymatic studies (13), or in cellulo metabolic 

experiments (14). In this Thesis, two applications in the context of drug screening were proposed. 

Hyperpolarized Long-Lived States were used to probe protein-ligand interactions(15). The Water-LOGSY 

technique was also studied, especially problems associated with the management of highly polarized 

water (16). 

References 

 

1. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, van Criekinge M, 

Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen 

JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, & Murray JA (2013) Metabolic Imaging 

of Patients with Prostate Cancer Using Hyperpolarized [1-C-13]Pyruvate. Sci. Transl. Med. 5(198). 

2. Jannin S, Bornet A, Melzi R, & Bodenhausen G (2012) High field dynamic nuclear polarization at 

6.7 T: Carbon-13 polarization above 70% within 20 min. Chem. Phys. Lett. 549:99-102. 

3. Vuichoud B, Milani J, Bornet A, Melzi R, Jannin S, & Bodenhausen G (2014) Hyperpolarization of 

Deuterated Metabolites via Remote Cross-Polarization and Dissolution Dynamic Nuclear 

Polarization. J. Phys. Chem. B 118(5):1411-1415. 

4. Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, & Skloss TW (2011) Dynamic 

Nuclear Polarization Polarizer for Sterile Use Intent. NMR Biomed. 24(8):927-932. 

5. Mieville P, Ahuja P, Sarkar R, Jannin S, Vasos PR, Gerber-Lemaire S, Mishkovsky M, Comment A, 

Gruetter R, Ouari O, Tordo P, & Bodenhausen G (2010) Scavenging Free Radicals To Preserve 

Enhancement and Extend Relaxation Times in NMR using Dynamic Nuclear Polarization. Angew. 

Chem. Int. Edit. 49(35):6182-6185. 

6. Milani J, Vuichoud B, Bornet A, Mieville P, Mottier R, Jannin S, & Bodenhausen G (2015) A 

Magnetic Tunnel to Shelter Hyperpolarized Fluids. Rev. Sci. Instrum. 



141 

 

7. Bornet A, Milani J, Vuichoud B, Linde AJP, Bodenhausen G, & Jannin S (2014) Microwave 

frequency modulation to enhance Dissolution Dynamic Nuclear Polarization. Chem. Phys. Lett. 

602:63-67. 

8. Gajan D, Bornet A, Vuichoud B, Milani J, Melzi R, van Kalkeren HA, Veyre L, Thieuleux C, Conley 

MP, Gruning WR, Schwarzwalder M, Lesage A, Coperet C, Bodenhausen G, Emsley L, & Jannin S 

(2014) Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic 

nuclear polarization. Proc. Natl. Acad. Sci. U. S. A. 111(41):14693-14697. 

9. Levitt MH (2012) Singlet Nuclear Magnetic Resonance. Annu. Rev. Phys. Chem. 63:89-105. 

10. Tayler MCD, Marco-Rius I, Kettunen MI, Brindle KM, Levitt MH, & Pileio G (2012) Direct 

Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization. J. Am. Chem. Soc. 

134(18):7668-7671. 

11. Bornet A, Ji X, Mammoli D, Vuichoud B, Milani J, Bodenhausen G, & Jannin S (2014) Long-Lived 

States of Magnetically Equivalent Spins Populated by Dissolution-DNP and Revealed by 

Enzymatic Reactions. Chem. Eur. J. 20(51):17113-17118. 

12. Jensen PR, Meier S, Ardenkjaer-Larsen JH, Duus JO, Karlsson M, & Lerche MH (2009) Detection of 

low-populated reaction intermediates with hyperpolarized NMR. Chem. Commun. (34):5168-

5170. 

13. Miclet E, Abergel D, Bornet A, Milani J, Jannin S, & Bodenhausen G (2014) Toward Quantitative 

Measurements of Enzyme Kinetics by Dissolution Dynamic Nuclear Polarization. J. Phys. Chem. 

Lett. 5(19):3290-3295. 

14. Meier S, Karlsson M, Jensen PR, Lerche MH, & Duus JO (2011) Metabolic pathway visualization in 

living yeast by DNP-NMR. Mol. Biosyst. 7(10):2834-2836. 

15. Buratto R, Bornet A, Milani J, Mammoli D, Vuichoud B, Salvi N, Singh M, Laguerre A, Passemard 

S, Gerber-Lemaire S, Jannin S, & Bodenhausen G (2014) Drug screening boosted by 

hyperpolarized long-lived States in NMR. ChemMedChem 9(11):2509-2515. 

16. Chappuis Q, Milani J, Vuichoud B, Bornet A, Gossert AD, Bodenhausen G, & Jannin S (to be 

published) Hyperpolarized Water to Reveal Protein-Ligand Interactions  

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

 

  



143 

 

Appendix 

Annex to Chapter 2: Mathematica and Matlab notebooks 

SE CE shape of DNP spectrum 

clear all ; close all ; 
  
%% 1 Setup  
  
 % 1.2 ESR  
 watESR=1; %chooses ESR shape 1=3Gaussienne, 2=Raw Data  
 maille=5*10^-3; %en GHz 
  
 % 1.3 Saturation  
 v1=5*10^3*2*pi; %en Hz*2pi = rad/s  
 T1e=0.1; % en s  
  
 % 1.4 SE CE  
 fuWint=[187 189]; 
 v01H=285*10^-3; %en GHz 
 v013C=71.25*10^-3; 
  
 % 1.5 Electron Spin Diffusion  
 lwe=100*10^-3; % linewidth/2 of spin packet in GHz      >--lwe--fu w--lwe--<  
  
 
%% 2 Build ESR spectrum (large)  
fuWL=(186:maille:190)'; 
x=size(fuWL);suWL=x(1,1);clear x; 
  
if  watESR==1 
v=[187.884 188.1188 188.3255]; a=[0.2042 0.8626 0.2 339]; dv=0.2256; 
sigma=dv/(2*(2*log(2))^0.5); 
  
y(:,1)= a(1,1)*1/(sigma*(2*pi)^0.5).*exp(-0.5*((fuW L-v(1,1))/sigma).^2); %3 gaussienne  
y(:,2)= a(1,2)*1/(sigma*(2*pi)^0.5).*exp(-0.5*((fuW L-v(1,2))/sigma).^2); 
y(:,3)= a(1,3)*1/(sigma*(2*pi)^0.5).*exp(-0.5*((fuW L-v(1,3))/sigma).^2); 
LESR(:,1)=y(:,1)+y(:,2)+y(:,3); 
LESR=LESR/sum(LESR);  %normalize the area under the peak to 1  
clear y v a dv  sigma ; 
end  
  
if  watESR==2 
load ESR;  %load ESR data  
  
iuW=(min(ESR(:,1)):maille:max(ESR(:,1)))';                   
x=size(iuW);siuW=x(1,1);clear x; 
iESR = interp1(ESR(:,1),ESR(:,2),iuW, 'spline' ); %interpolate  
iESR=iESR/max(iESR);iESR=iESR-min(iESR); %normalize and baseline  
  
LESR=zeros(suWL,1);  %feed interpol data in larger freq window  
f1=find(fuWL==iuW(1,1)); 
LESR(f1:f1+siuW-1,1)=iESR; 
  
clear f1  ESR iESR iuW siuW  
end  
  
%% 3 Saturation  
  
s=pi*v1^2*T1e; 
  
for  i=1:suWL 
  SLESR(i,1)=LESR(i,1)/(1+s*LESR(i,1)/(maille*10^9* 2*pi)); 
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 %LESR normalized par unit of maille (in s/rad)  
end  
clear s v1 ; 
  
%% 4 SE CE 
  
fuW=[fuWint(1,1):maille:fuWint(1,2)]'; 
x=size(fuW);suW=x(1,1);clear x; 
  
f=find(fuWL==fuWint(1,1)); %line index in fuWL where fuW start  
v1Hs=round(v01H/maille); 
v13Cs=round(v013C/maille); 
  
for  i=1:suW 
    SE1H(i,1)=SLESR(f+v1Hs,1)-SLESR(f-v1Hs,1); 
    CE1H(i,1)=SLESR(f,1)*(LESR(f+v1Hs,1)-LESR(f-v1H s,1)); 
     
    SE13C(i,1)=SLESR(f+v13Cs,1)-SLESR(f-v13Cs,1); 
    CE13C(i,1)=SLESR(f,1)*(LESR(f+v13Cs,1)-LESR(f-v 13Cs,1)); 
    f=f+1; 
end  
  
clear f  v1Hs v13Cs ; 
  
%% Electron Spin Diffusion  
  
nlwe=lwe/maille; 
  
f1=find(fuWL==fuWint(1,1));f2=find(fuWL==fuWint(1,2 )); 
  
LSE1H=zeros(suWL,1);LCE1H=zeros(suWL,1);LSE13C=zero s(suWL,1);LCE13C=zeros(suWL,1); 
LSE1H(f1:f2,1)=SE1H(:,1);LCE1H(f1:f2,1)=CE1H(:,1); 
LSE13C(f1:f2,1)=SE13C(:,1);LCE13C(f1:f2,1)=CE13C(:, 1) ; % Larger SE, CE spectrum  
  
for  i=1:suW 
   DSE1H(i,1)=sum(LSE1H(f1-nlwe:f1+nlwe,1)); 
   DCE1H(i,1)=sum(LCE1H(f1-nlwe:f1+nlwe,1)); 
    
   DSE13C(i,1)=sum(LSE13C(f1-nlwe:f1+nlwe,1)); 
   DCE13C(i,1)=sum(LCE13C(f1-nlwe:f1+nlwe,1)); 
   f1=f1+1; 
end  
  
clear f1  f2  LSE1H LCE1H LSE13C LCE13C nlwe  lwe ; 

CE rate equations 

CE Model 1 (no SD electronic or nuclear): Positive (DQ) Polarization  

 
ClearAll["Global`*"] 
 
Pn=0.006; 
Pe=0.98; 
 
f0=3/31; 
fi=5/31; 
Ne=1; 
Ne0=Ne*f0;NeD=Ne0 25 fi;Nn=NeD*25; 
 
TMw=5; (*10000 cut uW*) 
T1e=1; 
TCE=0.001; 
T1n=1000; 
 
WMw=1/TMw;W1e=1/T1e;WCE=1/TCE;W1n=1/T1n; 
 
sol2=NDSolve[ { e1b'[t]  � -WMw e1b[t]+W1e (1+Pe) e1a[t]- W1e(1-Pe) e1b[t] 
   +WCE e1a[t]e2b[t]nb[t]-WCE e1b[t]e2a[t]na[t], 
 e1a'[t] � -e1b'[t], 
 e2b'[t] � W1e (1+Pe) e2a[t]- W1e (1-Pe) e2b[t] 
   -WCE e1a[t]e2b[t]nb[t] +WCE e1b[t]e2a[t]na[t], 
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 e2a'[t] � -e2b'[t], 
 nb'[t] � W1n (1-Pn) na[t]- W1n (1+Pn) nb[t] 
   -WCE  e1a[t]e2b[t]nb[t]+WCE e1b[t]e2a[t]na[t], 
 na'[t] � -nb'[t], 
 e1b[0] �Ne0 (1+Pe)/2,e1a[0] �Ne0 (1-Pe)/2, 
 e2b[0] �NeD (1+Pe)/2,e2a[0] �NeD (1-Pe)/2, 
 nb[0] �Nn (1-Pn)/2,na[0] �Nn (1+Pn)/2}, 
 {e1b,e1a,e2b,e2a,nb,na},{t, 2000}]; 
 
PlotA=[( 
 Evaluate[{na[t]}/.sol2]-Evaluate[{nb[t]}/.sol2]) 
 /(Evaluate[{na[t]}/.sol2]+Evaluate[{nb[t]}/.sol2]) *100, {t,0,2000},PlotRange →All] ; 
 
del={1,10,50,100,200,250,350,500,750,1000,1250,1500 ,1750,2000}; 
Datn1=(nb[del]/.sol2)[[1]];Datn2=(na[del]/.sol2)[[1 ]];DatPn=(Datn2-Datn1)/(Datn2+Datn1)*100; 
PlotB=ListPlot[{Join[Transpose[{del,DatPn}]]},PlotR ange->{{0,2000},{0,100}},PlotStyle →{Red}]; 
 
Show[PlotA,PlotB]  

CE Model 1 (no SD electronic or nuclear): Negative (ZQ) Polarization  

 
ClearAll["Global`*"] 
 
Pn=0.006; 
Pe=0.98; 
 
f0=3/31; 
fi=5/31; 
Ne=1; 
Ne0=Ne*f0;NeD=Ne0 25 fi;Nn=NeD*25; 
 
TMw=5; (*10000 cut uW*) 
T1e=1; 
TCE=1; 
T1n=1000; 
 
WMw=1/TMw;W1e=1/T1e;WCE=1/TCE;W1n=1/T1n; 
 
sol2=NDSolve[ { e1b'[t]  �-WMw e1b[t] +WMw e1a[t]+W1e (1+Pe) e1a[t]- W1e (1-P e) e1b[t] 
   +WCE e1a[t]e2b[t]na[t]-WCE e1b[t]e2a[t]nb[t], 
 e1a'[t] �-e1b'[t], 
 e2b'[t]  �W1e (1+Pe) e2a[t]- W1e (1-Pe) e2b[t] 
   -WCE e1a[t]e2b[t]na[t] +WCE e1b[t]e2a[t]nb[t], 
 e2a'[t] �-e2b'[t], 
 nb'[t] �W1n (1-Pn) na[t]- W1n (1+Pn) nb[t] 
   +WCE  e1a[t]e2b[t]na[t]-WCE e1b[t]e2a[t]nb[t], 
 na'[t] �-nb'[t], 
 e1b[0] �Ne0 (1+Pe)/2,e1a[0] �Ne0 (1-Pe)/2, 
 e2b[0] �NeD (1+Pe)/2,e2a[0] �NeD (1-Pe)/2, 
 nb[0] �Nn (1-Pn)/2,na[0] �Nn (1+Pn)/2}, 
 {e1b,e1a,e2b,e2a,nb,na},{t, 2000}]; 
 
Plot[( 
 Evaluate[{na[t]}/.sol2]-Evaluate[{nb[t]}/.sol2]) 
 /(Evaluate[{na[t]}/.sol2]+Evaluate[{nb[t]}/.sol2]) *100, {t,0,2000},PlotRange →All] 

 

CE Model 2 (with SD nuclear): Positive (DQ) Polarization  

 
ClearAll["Global`*"] 
 
Pn=0.006; 
Pe=0.98; 
 
f0=3/31; 
fi=5/31; 
Ne=1; 
Ne0=Ne*f0;NeD=Ne0 25 fi;Nnc=NeD*25;Nnb=NeD*125; 
 
TMw=0.1; (*10000 cut uW*) 
T1e=1; 
TCE=0.01; 
T1nc=25; 
T1nb=1000; 
TSDn=10000; 
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WMw=1/TMw;W1e=1/T1e;WCE=1/TCE;W1nc=1/T1nc;W1nb=1/T1 nb;WSDn=1/TSDn; 
 
sol2=NDSolve[ { e1b'[t] � -WMw e1b[t]  +WMw e1a[t]+W1e (1+Pe) e1a[t]- W1e (1-Pe) e1b[t] 
  +WCE e1a[t]e2b[t]ncb[t]-WCE e1b[t]e2a[t]nca[t], 
                 e1a'[t] � -e1b'[t], 
                 e2b'[t]  � W1e (1+Pe) e2a[t]- W1e (1-Pe) e2b[t] 
  -WCE  e1a[t]e2b[t]ncb[t] +WCE e1b[t]e2a[t]nca[t],  
     e2a'[t] � -e2b'[t], 
     ncb'[t] � W1nc (1-Pn) nca[t]- W1nc (1+Pn) ncb[t] 
  -WCE  e1a[t]e2b[t]ncb[t]+WCE e1b[t]e2a[t]nca[t] 
  +WSDn nca[t]nbb[t]-WSDn ncb[t]nba[t], 
     nca'[t] � -ncb'[t], 
     nbb'[t] � W1nb (1-Pn) nba[t]- W1nb (1+Pn) nbb[t] 
  -WSDn nca[t]nbb[t]+WSDn ncb[t]nba[t], 
     nba'[t] � -nbb'[t], 
               e1b[0] �Ne0 (1+Pe)/2,e1a[0] �Ne0 (1-Pe)/2, 
 e2b[0] �NeD (1+Pe)/2,e2a[0] �NeD (1-Pe)/2, 
 ncb[0] �Nnc (1-Pn)/2,nca[0] �Nnc (1+Pn)/2,    
 nbb[0] �Nnb (1-Pn)/2,nba[0] �Nnb (1+Pn)/2},  
             {e1b,e1a,e2b,e2a,ncb,nca,nbb,nba},{t, 2000}]; 
 
PlotAc=Plot[(Evaluate[{nca[t]}/.sol2]-Evaluate[{ncb [t]}/.sol2]) 
 /(Evaluate[{nca[t]}/.sol2]+Evaluate[{ncb[t]}/.sol2 ])*100, 
{t,0,1000},PlotRange->{{0,1000},{0,100}}]; 
 
PlotAb=Plot[(Evaluate[{nba[t]}/.sol2]-Evaluate[{nbb [t]}/.sol2]) 
 /(Evaluate[{nba[t]}/.sol2]+Evaluate[{nbb[t]}/.sol2 ])*100,{t,0,1000}, 
PlotRange->{{0,1000},{0,100}}];  
 
Show[PlotAc,PlotAb] 
 

Model 3 Polarize nucleus 1 through nucleus 2  

 
ClearAll["Global`*"] 
 
Pn2=0.006; 
Pn20=1; 
Pn1=0.006/4; 
Pe=0.98; 
 
f0=3/31; 
fi=5/31; 
Ne=1; 
Ne0=Ne*f0;NeD=Ne0 25 fi;Nn=NeD*25;Nn2=NeD*7; 
 
T1e=1; 
WCE1=1/1; 
WCE2=1/4; 
T1n1=1000; 
T1n2=2000; 
 
W1e=1/T1e;W1n1=1/T1n1;W1n2=1/T1n2; 
 
sol2=NDSolve[ { e1b'[t] � W1e (1+Pe) e1a[t]- W1e (1-Pe) e1b[t] 
   +WCE1 e1a[t]e2b[t]n1b[t]-WCE1 e1b[t]e2a[t]n1a[t]  
   +WCE2 e1a[t]e2b[t]n2b[t]-WCE2 e1b[t]e2a[t]n2a[t] , 
 e1a'[t] � -e1b'[t], 
 e2b'[t] � W1e (1+Pe) e2a[t]- W1e (1-Pe) e2b[t] 
   -WCE1 e1a[t]e2b[t]n1b[t]+WCE1 e1b[t]e2a[t]n1a[t]  
   -WCE2 e1a[t]e2b[t]n2b[t]+WCE2 e1b[t]e2a[t]n2a[t] , 
 e2a'[t] � -e2b'[t], 
 n1b'[t] � W1n1 (1-Pn1) n1a[t]- W1n1 (1+Pn1) n1b[t] 
   -WCE1 e1a[t]e2b[t]n1b[t]+WCE1 e1b[t]e2a[t]n1a[t] , 
 n1a'[t] � -n1b'[t], 
 n2b'[t] � W1n2 (1-Pn2) n2a[t]- W1n2 (1+Pn2) n2b[t] 
   -WCE2 e1a[t]e2b[t]n2b[t]+WCE2 e1b[t]e2a[t]n2a[t] , 
 n2a'[t] � -n2b'[t], 
 e1b[0] �Ne0 (1+Pe)/2,e1a[0] �Ne0 (1-Pe)/2, 
 e2b[0] �NeD (1+Pe)/2,e2a[0] �NeD (1-Pe)/2, 
 n1b[0] �Nn2 (1-Pn1)/2,n1a[0] �Nn2 (1+Pn1)/2,n2b[0] �Nn (1-Pn20)/2, 
 n2a[0] �Nn (1+Pn20)/2}, 
 {e1b,e1a,e2b,e2a,n1b,n1a,n2b,n2a},{t, 2000}]; 
 
del={1,10,50,100,200,250,350,500,750,1000,1250,1500 ,1750,2000}; 
Datn1=(n1b[del]/.sol2)[[1]];Datn2=(n1a[del]/.sol2)[ [1]];DatPn=(Datn2-Datn1)/(Datn2+Datn1)*100; 
 
PlotA=Plot[(Evaluate[{n1a[t]}/.sol2]-Evaluate[{n1b[ t]}/.sol2]) 
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 /(Evaluate[{n1a[t]}/.sol2]+Evaluate[{n1b[t]}/.sol2 ])*100,{t,0,2000},PlotRange →All]; 
PlotB=ListPlot[{Join[Transpose[{del,DatPn}]]},PlotR ange →All,PlotStyle →{Red}]; 
Show[PlotA,PlotB] 
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