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Abstract

We develop a high-performance scheme to reconstruct straight-ray tomographic scans. We preserve the
quality of the state-of-the-art schemes typically found in traditional computed tomography but reduce the
computational cost substantially. Our approach is based on 1) a rigorous discretization of the forward model
using a generalized sampling scheme; 2) a variational formulation of the reconstruction problem; and 3)
iterative reconstruction algorithms that use the alternating-direction method of multipliers. To improve the
quality of the reconstruction, we take advantage of total-variation regularization and its higher-order variants.
In addition, the prior information on the support and the positivity of the refractive index are both considered,
which yields significant improvements.

The two challenging applications to which we apply the methods of our framework are grating-based
x-ray imaging (GI) and single-particle analysis (SPA). In the context of micro-resolution GI, three comple-
mentary characteristics are measured: the conventional absorption contrast, the differential phase contrast,
and the small-angle scattering contrast. While these three measurements provide powerful insights on bi-
ological samples, up to now they were calling for a large-dose deposition which potentially was harming
the specimens (e.g., in small-rodent scanners). As it turns out, we are able to preserve the image quality of
filtered back-projection-type methods despite the fewer acquisition angles and the lower signal-to-noise ratio
implied by a reduction in the total dose of in-vivo grating interferometry. To achieve this, we first apply our
reconstruction framework to differential phase-contrast imaging (DPCI). We then add Jacobian-type regular-
ization to simultaneously reconstruct phase and absorption. The experimental results confirm the power of
our method. This is a crucial step toward the deployment of DPCI in medicine and biology. Our algorithms
have been implemented in the TOMCAT laboratory of the Paul Scherrer Institute.

In the context of near-atomic-resolution SPA, we need to cope with hundreds or thousands of noisy
projections of macromolecules onto different micrographs. Moreover, each projection has an unknown ori-
entation and is blurred by some space-dependent point-spread function of the microscope. Consequently,
the determination of the structure of a macromolecule involves not only a reconstruction task, but also the
deconvolution of each projection image. We formulate this problem as a constrained regularized reconstruc-
tion. We are able to directly include the contrast transfer function in the system matrix without any extra
computational cost. The experimental results suggest that our approach brings a significant improvement
in the quality of the reconstruction. Our framework also provides an important step toward the application
of SPA for the de novo generation of macromolecular models. The corresponding algorithms have been
implemented in Xmipp.

Keywords: Discretization, variational formulation, iterative reconstruction, alternating-direction method
of multipliers, grating-based x-ray imaging, single-particle analysis, phase-contrast imaging.
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Résumé

Dans ce travail, nous développons des méthodes de reconstruction de haute-performances pour la tomogra-
phie sans diffraction. Nous obtenons des résultats comparables à l'état-de-l'art en tomographie par ordina-
teur en termes de qualité, tout en réduisant significativement le coût de calcul. Notre approche comporte
trois aspects : 1) une discrétisation rigoureuse du modèle d'analyse en suivant un schéma d'échantillonnage
généralisé, 2) une formulation variationnelle du problème de reconstruction, et 3) des algorithmes de recons-
truction itératifs fondés sur la méthode intitulée alternating direction method of multipliers. Afin d'augmenter
la qualité de la reconstruction, nous utilisons les techniques de régularisation basées sur la variation totale
ou des variantes à des ordres supérieurs. De plus, la prise en compte des informations a priori sur le support
et la positivité de l'indice de réfraction de l'objet d'étude conduit à des améliorations significatives.

Les méthodes que nous avons développées sont mises en pratique sur deux applications importantes :
l'imagerie par rayon X pour l'interférométrie à réseau (en anglais GI pour Grating interferometry) et l'analyse
de particule unique (en anglais SPA pour single particle analysis). Dans le contexte de la micro-résolution
GI, trois caractéristiques complémentaires sont mesurées : le contraste d'absorption, le contraste de phase
et le contraste de diffusion. Bien que ces trois grandeurs apportent des informations très utiles pour l'étude
biologiques in vivo, jusquà maintenant leur obtention nécessitait une longue exposition qui pouvait être
toxique pour le spécimen étudié (par exemple lors des scanners réalisés sur de petits rongeurs). Il apparaı̂t
cependant que nous sommes capables de reproducer la qualité de l'image reconstruite par des méthodes
de rétroprojection filtrée, malgré le faible nombre de projections durant l'acquisition, ce qui implique une
réduction de la dose totale de radiation. Pour atteindre ce but, nous appliquons d'abord notre méthode de
reconstruction à l’imagerie par contrast de phase differential. Nous effectuons ensuite une régularisation
basée sur le Jacobien afin de reconstruire simultanément la phase et l'absorption. Les résultats expérimentaux
confirment les performances de notre méthode. Il s'agit d'une étape cruciale pour l'utilisation de la l’imagerie
par contraste de phase differentiel en médecine et en biologie. Nos algorithmes ont été implémentés et sont
utilisés au laboratoire TOMCAT de l'Institut Paul Scherrer.

Pour la SPA, réalisée à une résolution quasi atomique, nous devons alors composer avec des centaines ou
des milliers de projections de macromolécules, qui sont corrompues par du bruit. Chaque projection a une
orientation inconnue et elles sont floutées par une fonction d'étalement du point (en anglais PSF pour point
spread function) qui peut être différente pour chaque orientation. Ainsi, la détermination de la structure de la
macromolecule nımplique pas seulement une tâche de reconstruction, mais aussi la deconvolution de chaque
image projetée, ce que nous formulons comme un problème de reconstruction régularisé sous contrainte.
Nous sommes capables d'inclure directement la function du transfer de contraste dans le système matriciel
sans coût de calcul supplémentaire. Les résultats expérimentaux confirment que notre approche augmente
significativement la qualité de la reconstruction. Le cadre proposé est de plus une étape importante pour
l'application de la SPA pour l'interprétation de modèles de macromolécules. Les algorithmes correspondants
ont été implémentés sur Xmipp.
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Chapter 1

Introduction

Computerized tomography (CT) revolutionized diagnostic medicine by enabling physicians to view the in-
ternal structure of organs in 1970s. It aims at reconstructing the object using several images taken. The
acquisition is performed by illuminating a specimen (or an organ) by an electromagnetic wave along differ-
ent orientations. In more detail, a monochromatic wave is represented by complex wave function

u(y, t) = a(y)exp( jφ(y))exp( j2πνt) , (1.1)

where a, φ , and ν are the amplitude, phase, and frequency of the wave, respectively [1]. The parameter
y ∈ R2 is a coordinate on a plane that is perpendicular to the direction of propagation of the wave, and t is
the time parameter. The interaction of the wave with the specimen can be described by the complex refractive
index n(x) = 1−δ (x)+ jβ (x), where x∈R3 specifies a spatial coordinate. Then, the wave function over the
exiting curve of the specimen in the context of diffraction-less electromagnetic plane wave (parallel beam
with extremely small wavelength) is given by

uo(y, t) = u(y, t)exp
(

j
2π

λ

∫

R
n(sθ+PT

θ⊥y)ds
)
, (1.2)

where λ is called the wavelength, θ is the unit vector that specifies the direction of propagation of the wave,
and PT

θ⊥ ∈ R3×2 is the transpose of the matrix Pθ⊥ ∈ R2×3 with Pθ⊥x the orthogonal projection of x onto
the plane perpendicular to θ. Equation (1.2) describes the phase shift and attenuation introduced by the
specimen, as shown in Figure 1.1.

In conventional CT, the decay of the wave intensity (the attenuation) is inferred for several orienta-
tions. This is linked to the X-ray transform of the attenuation coefficient µ(x) = 4πβ (x)/λ [2]. Since
the mathematical model of CT is based on the x-ray transform, the specimen can be reconstructed using
the analytical solution, particularly filtered back-projection-type algorithm (FBP). The drawback of FBP
is the requirement of a large number of orientations with high signal-to-noise projection measurements for
good-quality reconstruction which is equivalent to long exposure time. In order to reduce the radiation dose,
several sophisticated algorithms have been developed for CT, including iterative coordinate descent (ICD)
methods [3], block-based coordinate descent [4], ordered subset algorithms based on separable quadratic
surrogates [5], preconditioned nonlinear conjugate-gradient methods [6], and alternating direction method
of multipliers [7]. Precise modeling of the acquisition process in these methods offers a gain in quality with
respect to FBP for the same data and degrades more gracefully than FBP when the data worsen; equiva-
lently, it results in a notable radiation dose reduction. Moreover, specialized hardwares (CT vendors) have

1
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Figure 1.1: (a) The specimen introduces a phase shift and an attenuation. (b) Illustration of the
intensity received by the detector.

also been manufactured to implement these techniques. GE Healthcare started with ASIR (adaptive statis-
tical iterative reconstruction) in 2008; the Siemens company provided SAFIRE (sinogram affirmed iterative
reconstruction) in 2010; the Toshiba company proposed AIDR (adaptive iterative dose reduction) in 2010.

The phase shift of the transmitted wave is given by the x-ray transform of the local phase shift per length,
φ(x) = 2πδ (x)/λ . Note that, in practice, intensity is the only measurable quantity. Therefore, it is necessary
to find a mechanism that transforms the phase into an intensity. This fact motivates the development of
various phase-contrast imaging modalities (PCI) including analyzer based [8–10], interferometric [11–13],
and free-space propagation methods [14–16]. These methods differ substantially in terms of the physical
signal that is measured and their experimental setup. They often show higher contrast over the conventional
imaging of biological samples and soft tissues [17–23]. The iterative reconstruction scheme in PCI has not
been developed as much as the conventional CT.

In this thesis, we develop a unified and high-performance reconstruction scheme for straight-ray tomog-
raphy. We achieve the same level of sophistication as the state-of-the-art iterative schemes in conventional
CT and take profit of recent developments in the specialized area of straight-ray tomography, but at a much
lower computational cost. After successive application of conventional CT for the visualization of the spec-
imen with the resolution of lower than micro meter, several imaging modalities have been developed from
micro to nano resolution. In these modalities, the state-of-the-art reconstruction until very recently has been
using direct methods. We demonstrate the proposed framework in the context of grating-based x-ray imaging
for micro resolution and single-particle analysis for near-atomic-resolution imaging.
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Figure 1.2: [25] (a) Conventional x-ray image based on attenuation. (b) Differential phase-
contrast image based on x-ray refraction. (c) Dark-field image based on x-ray scattering. All three
images are intrinsically perfectly registered as they are extracted from the same data recorded with
a grating interferometer. Examples of regions of enhanced contrast are marked with arrows, show-
ing (b) the refraction of the trachea and (c) the scattering of the lungs. The white bars correspond
to 1 cm.

1.1 X-ray Grating Interferometry: Potentially in vivo Imaging Modal-
ity

Phase-sensitive x-ray imaging using grating interferometry (GI) is a tomographic technique that was first
proposed by David et al. [24] and Momose et al. [19]. A unique property of GI is to provide simultaneously
three complementary information about the object of interest: 1) The absorption contrast, 2) the differential
phase contrast, and 3) the small scattering angle which is called dark field or visibility-reduction contrast as
demonstrated in Figure 1.2. Additional advantages are its compatibility with regular laboratory sources of
x-rays and its high sensitivity to variations in the density of electrons, which offers further opportunities to
probe the specimen.

The data provided by differential phase-contrast imaging (DPCI) corresponds to the first derivative of
the x-ray transform of the real part of the refractive index of the sample. Thus, in practical applications,
the common reconstruction scheme for DPCI is based on a variant of the filtered back-projection (FBP)
algorithm. While FBP is a fast (non-iterative) method, it typically requires a large number of projections
with high signal-to-noise ratio to achieve a good reconstruction quality [26]. This implies long exposure
times which could damage the specimen. High doses of x-ray radiation can lead to an increased risk of
developing cancer and may cause the genetic deffects [27–32]. In order to be able to use this technique for
in vivo imaging, one requires reducing the radiation dose significantly.

Recently, several authors have proposed iterative techniques that exploit prior knowledge on the spec-
imen to significantly reduce the number of required projections [33–36] at no cost in the quality. Their
approaches are all based on a penalized maximum-likelihood formulation, with a standard `2-norm data-
fidelity term. In this thesis, we aim at further reducing the number of projections by proposing an improved



4 Introduction

iterative reconstruction algorithm for DPCI.

1.2 Single Particle Analysis: A Step Towards de novo Generation of
Atomic Models

The purpose of single-particle analysis is to combine images of similar particles, typically proteins or
viruses, often acquired from transmission electron microscopy. The proper combination then provides high-
resolution 3D reconstruction of the sample. The first use of this technique dates back to the reconstruction
of human wart virus and bushy stunt virus in the 1970s [37,38]. This technique has progressed significantly
since then, currently reaching to 0.5 nanometer resolution [39]. This motivates researchers to improve its
resolution even further to be able to use this technique for de novo generation of an atomic model. The res-
olution improvement can be achieved by developing precise, fast and robust particle determination scheme
besides high-end microscopes and careful data acquisition.

Since the linear image-formation model of the cryo-electron microscopy (Cryo-EM) is based on the
x-ray transform, one needs to reform an inversion equation for reconstructing the particle. Given the size
of the data and the fact that the angular distribution of the views is uneven, this is already a non-trivial
reconstruction problem. In single-particle analysis, the problem is further complicated owing to the lack of
information about the orientations besides the structural variability in the particle. Moreover, the Cryo-EM
images are extremely noisy because of the low electron exposure to limit the radiation damage. Then, the
reconstruction problem suffers from overfitting, which means that the reconstruction express noise instead
of the underlying particle details. In order to deal with this issue, It is convenient to introduce some prior
information and formulate the problem as regularized inverse problem. In the literature, the smoothness
concept is widely used as prior information in SPA [40–42]. This is performed by imposing a Gaussian
distribution on the Fourier components of the particle in the context of maximum a posteriori estimation or
using Tikhonov regularization in penalized likelihood estimation.

1.3 Main Contributions
The main focus of this thesis is on the development of a high-performance reconstruction framework for
straight-ray computerized tomography. We then demonstrate the proposed framework in 1) grating-based
x-ray imaging in order to reduce the radiation dose to increase its potential for being used in in vivo imaging,
and in 2) single-particle analysis to improve the resolution such that one can potentially use it for de novo
generation of atomic model. The five contributions of this thesis can be summarized as follows:

• Discretization Scheme: In order to formulate the reconstruction problem as an inverse problem, one
needs first to discretize the forward operator. We specify the reconstruction space through the choice
of the generating function. In this regard, we investigate an extended family of box splines and Kaiser-
Bessel window functions. We first provide a general characterization of the x-ray transform for the
extended family of box splines. We find that this level of generality simplifies the analysis because
the family happens to be closed under the Radon/x-ray transform. Since all commonly used brands
of B-splines are special instances of box splines [43], it makes sense to investigate these functions in
more detail. Then, we consider the family of Kaiser-Bessel window functions. These are isotropic,
and they involve several parameters that need to be adjusted [44, 45]. We investigate approximation-
theoretic properties of these basis functions and we show how to optimize the parameters for the best
performance.
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• Reconstruction Framework: We have designed new iterative reconstruction algorithms that take
advantage of the proposed discretization and use a combination of non-quadratic regularizes. The
regularization consists either of total variation (TV) for piecewise-constant images or a higher-order
extension that is better matched to biological specimens and quadratic regularizations. Our method
follows an augmented-Lagrangian optimization principle and makes use of the conjugate-gradient
method to solve the linear step in the alternating direction method of multipliers (ADMM). We pro-
pose a problem-specific preconditioner that considerably speeds up the convergence of the linear opti-
mization step. Moreover, we impose support and positivity constraints in the reconstruction algorithm.

• FFT-Cost Implementation of HT H: The computationally costly step in the proposed reconstruction
scheme is the calculation of HT H. We show theoretically that HT H is a digital convolution operator
if the generating function satisfies the radial Nyquist criteria. We then show that, if we use B-spline
functions or Kaiser-Bessel windows as generating function, then the proposed ADMM scheme con-
verges to the fixed point of the problem. It improves the speed of reconstruction scheme significantly.
We show that the use of the proposed digital convolution instead of the direct implementation of HT H
makes the computational cost independent upon the number of orientations and the support of the
generating function.

• Grating-Based X-Ray Imaging (collaboration with the Paul Scherrer Institute (PSI)): Up to now,
in-vivo tomography with grating interferometry faces the challenge of large-dose deposition, which
potentially harms the specimens (e.g., in small rodent scanners). Grating-based x-ray imaging is a
powerful modality to investigate biological samples. It measures three complementary characteris-
tics of the imaged sample: the conventional absorption contrast (AC), the differential phase contrast
(DPC), and a small-angle scattering contrast. To reduce the total scanning time, we apply the pro-
posed reconstruction framework to the context of differential phase-contrast imaging. We present
experimental results to validate the proposed discretization method and the corresponding iterative
technique. Our findings confirm that the proposed reconstruction framework is quite competitive for
solving regularized problems. Moreover, our method allows for a substantial dose reduction while
preserving the image quality of FBP-type methods. This is a crucial step towards the diffusion of
DPCI in medicine and biology. The codes have been implemented in the TOMCAT laboratory of PSI
and are being used by scientists to visualize the internal structure of their samples.

Unlike DPC tomography, where the phase information can be recovered effectively by a reconstruction
algorithm, the retrieval of phase images from DPC projections remains challenging and reduces the
advantages of the phase information in radiographic applications. We utilize the same algorithm pro-
posed in the first part of the thesis and deploy a novel discretization approach using B-spline calculus
to establish the differential operator. The algorithm is evaluated with breast biopsy and mastectomy
samples. Although it is predicted theoretically that the phase image can give higher contrast for breast
tissue, this has not yet been demonstrated in a clinical environment. The present study constitutes the
first practical demonstration that DPC is capable of providing a higher contrast in clinical by relevant
features like spiculation. These results could help to improve the diagnosis of breast cancer.

• Single Particle Analysis (collaboration with Centro Nacional de Biotecnologia, Spain (CSIC)):
Several critical difficulties arise in the context of single-particle analysis (SPA). They can be sum-
marized as follows: 1) hundreds (thousands) of low-signal-to-noise-ratio micrographs with unknown
orientations (too many projection images which are highly noisy), and 2) space-dependent contrast
transfer function (CTF). More precisely, the measurements (micrographs) are the x-ray transform of
specimens (macromolecules), filtered by the point-spread function of the microscope and varying from
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one projection image to the next. Consequently, the determination of the structure of macromolecule
involves deconvolving of each projection image along with the reconstruction of the specimen. We
apply the proposed reconstruction framework to the context of SPA. We formulate the problem as a
constrained regularized reconstruction. We show that we can directly include the CTF in the system
matrix HT H without any extra computational cost. The experimental results suggest that our approach
improves significantly the resolution of the reconstruction. It is an important step towards the applica-
tion of SPA for de novo generation of an atomic model. The corresponding codes have been already
implemented in Xmipp [46, 47].

1.4 Thesis Outline
This thesis involves two main parts. The first part describes the development of a high-performance recon-
struction framework for straight-ray computerized tomography (Chapters 2, 3, 4, 5). The linear mathematical
model of straight-ray imaging is based on the Radon transform, the x-ray transform, and its differential. We
discuss the mathematical properties of these operators in Chapter 2. We describe the discretization scheme of
the imaging operator and discuss the properties that should be satisfied by the generating function to be used
for discretizing the forward model in Chapter 3 as well as a fast and accurate implementation. In particular,
we investigate the use of box splines and Kaiser-Bessel window functions (KBWF). We study the KBWFs
from an approximation-theory point of view and propose new parameters for their use in the discretization
scheme. In Chapter 4, we describe several reconstruction schemes that use the alternating-direction method
of multipliers (ADMM) to solve constrained and regularized reconstruction problems. The costiest step in
the proposed iterative methods is the computation of HT H. We show that, under certain conditions, we can
implement it as a digital filter with the help of the FFT.

The second part is the application of the proposed framework to the context of x-ray grating interferom-
etry (Chapter 6, 7, 8) and single-particle analysis (Chapter 9). In Chapter 6, we briefly review the physical
model of x-ray grating interferometry. The end-result is that differential phase-contrast imaging can be de-
scribed mathematically in terms of derivative variants of the x-ray transform. We then use real data from the
TOMCAT beam line to validate the proposed framework. We improve the performance of the reconstruction
framework in the context of grating based imaging in Chapter 7 by developing new reconstruction schemes.
Beside the tomography problem, we develop phase and absorption retrieval in the context of grating-based
radiography which is important clinically in Chapter 8. The second important application is widely investi-
gated in Chapter 9. We finally conclude this thesis in Chapter 10.



Chapter 2

Mathematical Preliminaries

1 Let an object be characterized by its complex refractive index n(x) = 1−α(x) + jβ (x) where x ∈ R3

specifies the object coordinate. The measurements in straight-ray imaging modalities are related to the x-ray
transform and its differential variants, such as

• Conventional x-ray CT
g(y,θ) = P {β}(y,θ) . (2.1)

• Propagation-based phase-contrast CT [48]

g(y,θ) =4yP {α}(y,θ) . (2.2)

where4y = ∂ 2/∂y2
1 +∂ 2/∂y2

2 is the Laplacian operator with y = (y1,y2).

• Differential phase-contrast CT [13, 49, 50]

g(y,θ) = 〈u,∇yP {α}(y,θ)〉y , (2.3)

where u is a unit vector in a projection coordinate y, ∇y is the gradient operator with respect to y and
〈·, ·〉y is the corresponding inner product,

There P { f}(y,θ) denotes the x-ray transform of a function f along a given orientation θ with y∈R2 is the
projection coordinates. In this regard, we establish some higher-level mathematical properties of the x-ray
transform and its differential variants in this chapter.

2.1 X-ray transform
In order to specify the x-ray transform and its differential variants, we need to set the geometry of the
problem. The spatial coordinates of the input function are denoted by x = [x1 x2 . . . xd ]

T and the hyperplane
projection coordinates are y = [y1 . . . yd−1]

T . The unit vector θ ∈ Sd−1 (Sd−1 is the unit sphere in Rd) points
along the direction of integration. The projection matrix Pθ⊥ ∈ R(d−1)×d is constructed such that its rows

1A part of this chapter has been presented in [36]

7
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Figure 2.1: The object lies in a 2-D plane and is imaged along angle θ .

specify the normal basis of the hyperplane perpendicular to the direction of integration θ. Then, a point x
can be expressed in the rotated coordinate [θ,PT

θ⊥ ] as

x = tθ+PT
θ⊥y, (2.4)

where PT
θ⊥ is the transpose of the matrix Pθ⊥ .

2.1.1 Problem geometry
We now explicitly describe the geometry in the case of 2-D and 3-D input functions.

We start with two-dimensional functions. The unit vector θ = (−sinθ ,cosθ) lies along the line of
integration as depicted in Figure 2.1. The spatial coordinates of the input function are denoted by x =
(x1,x2). They are also expressed in a rotated coordinate system as x = tθ+ yθ⊥, where t ∈ R and θ⊥ =
(cosθ ,sinθ) is the unit vector orthogonal to the integral line (θ⊥ specifies the direction of projection).

In the case of three-dimensional problem, the integral orientation can be determined by knowing two
Euler angles ϕ and θ as depicted in Figures 2.2(a) and 2.2(b) and is given by

θ = (sinθ cosϕ,sinθ sinϕ,cosθ) , (2.5)

In order to specify the projection matrix Pθ⊥ , it is necessary to determine the unit vectors y1 and y2 in
the input function coordinates. The unit vector y2 is the projection of the unit vector x3 = (0,0,1) along
direction θ and is computed as

y2 = x3−< x3,θ > θ . (2.6)
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Figure 2.2: The object lies in a 2-D plane and is imaged along angle θ .

This yields

y2 =
1

|sinθ |



−cosϕ cosθ sinθ

−sinϕ cosθ sinθ

sin2
θ


 . (2.7)

The unit vector y1 is the cross product of y2 and θ

y1 = y2×θ (2.8)

which is in the form of

y1 =
1

|sinθ |




sinϕ sinθ

−cosϕ sinθ

0


 (2.9)

Then the projection matrix is
Pθ⊥ = [y1,y2]

T . (2.10)

2.1.2 Definition and properties
The x-ray transform is the continuous-domain operator that maps a d-dimensional function into its line
integrals; P : L2(Rd)→ L2(Rd−1×Sd−1) where Sd−1 is the unit sphere in Rd . More specifically,

P{ f}(y,θ) =
∫

R
f (tθ +PT

θ⊥y)dt, (2.11)

Note that when f ∈ L2(R2), the x-ray transform is equivalent to the Radon transform. In some cases, we use
the notation Pθ{ f}(y) in place of P{ f}(y,θ).
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Theorem 2.1. Fourier slice theorem in the context of x-ray transform For f ∈ L2(Rd), we have

Fx{ f (x)}(PT
θ⊥ω) = Fy{P{ f (x)}(y,θ)}(ω) , (2.12)

where ω ∈ Rd−1.

The Fourier slice theorem states that the (d−1)-dimensional Fourier transform of the x-ray transform of
a function f is equal to the d-dimensional Fourier transform of the given function on the hyperplane parallel
to the projection coordinate.

One can define the x-ray transform with the use of the Dirac impulse within the framework of distribution
theory

P{ f}(y;θ) = 〈 f (x),δ (P
θ⊥x−y)〉x∈Rd , (2.13)

where δ (P
θ⊥x−y) is a line distribution that specifies a line that passes through the point y in the projection

coordinate and is parallel to the orientation θ. Initially one assumes that f and its x-ray transform are in the
Schwartz space, of smooth and rapidly decaying functions. One can extend the transformation to L2(Rd) by
applying a standard density argument. The main properties of the x-ray transform are as follows:

• Linear:

It is a linear map by definition since it is an integral operator. Then, the x-ray transform adjoint
(back-projection) is well-defined P∗ : L2(Rd−1×Sd−1)→ L2(Rd) and is in the form of

P∗{g(y,θ)}(x) =
∫

Sd−1
g(P

θ⊥x,θ)dθ . (2.14)

• Scale invariance
For any α > 0,

P{ f (αx)}(y,θ) = α
−1P{ f}(αy,θ) . (2.15)

The proof is achieved with the use of the x-ray transform definition,

P{ f (αx)}(y,θ) = 〈 f (αx),δ (P
θ⊥x−y)〉x∈Rd

(1)
=
〈

f (x),α−d
δ (α−1P

θ⊥x−y)
〉

x∈Rd

(2)
=
〈

f (x),α−1
δ (P

θ⊥x−αy)
〉

x∈Rd

(3)
= α

−1 〈 f (x),δ (P
θ⊥x−αy)〉x∈Rd . (2.16)

The change of variable x = αx and consequently dx = |α|ddx yield the equality (1). The scaling
property of the Dirac impulse and the linearity of the inner product with respect to the second term
implies the other two equalities, respectively.

• Projection translation invariance

P{ f (·−x0)}(y,θ) = P{ f}(y−P
θ⊥x0,θ) . (2.17)

Starting form the definition, we have

P{ f (x−x0)}(y,θ) = 〈 f (x−x0),δ (Pθ⊥x−y)〉x
(1)
= 〈 f (x),δ (P

θ⊥x+P
θ⊥x0−y)〉x

= 〈 f (x),δ (P
θ⊥x− (y−P

θ⊥x0))〉x . (2.18)
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The adjoint of a shift operator is exactly the same shift with opposite direction which implies equality
(1).

• Pseudo-distributivity with respect to convolution

P{ f ∗g}(y,θ) = (P f (·,θ)∗Pg(·,θ))(y,θ) . (2.19)

2.2 Differential variants of the x-ray transform
Since in the parallel-beam geometry, the 3-D problem can be decomposed into a set of two dimensional
problems, we focus on two dimensional function f ∈ L2(R2). The nth derivative of the x-ray transform of a
function f (x) is denoted by

P(n) f (y,θ) =
∂ n

∂yn P f (y,θ) . (2.20)

The derivatives of the x-ray transform are linear operators with the following properties:

• Scale invariance
P(n){ f (αx)}(y,θ) = α

n+1P(n) f (αy,θ), α ∈ R+ . (2.21)

• Pseudo-distributivity with respect to convolution

P(n){ f ∗g}(y,θ) = (P(n) f (·,θ)∗Pg(·,θ))(y,θ) = (P f (·,θ)∗P(n)g(·,θ))(y,θ) . (2.22)

• Projected translation invariance

P(n){ f (·−x0)}(y,θ) = P(n) f (y−〈x0,θ〉,θ) . (2.23)

2.3 Direct inversion formula
To derive the necessary relations, we define a new operator, the Hilbert transform along the second coordi-
nate.

Definition 2.1. The Hilbert transform along the x2 axis, H2 : L2(R2)−→ L2(R2), is defined in the Fourier
domain as

Ĥ2{ f}(ω1,ω2) =−j · sgn(ω2) f̂ (ω1,ω2) , (2.24)

where (ω1,ω2) are spatial frequency coordinates.

Proposition 2.1. The sequential application of the x-ray transform, the nth derivative operator and the
adjoint of the x-ray transform on function f ∈ L2(R2) is

P∗{ ∂ n

∂yn P{ f}(y,θ)}(x) = 2π (−1)nH n
2 (−4)

n−1
2 { f}(x) , (2.25)

where (−4)
1
2 is the fractional Laplace operator with transfer function ‖ω‖, (−4)

n
2 is n times application

of this operator, and the adjoint of x-ray transform (2.14) can be restated in two dimensional case in the
form of

P∗{g}(x) =
∫

π

0
g(x1 cosθ + x2 sinθ ,θ)dθ . (2.26)
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Proof. Let g(y,θ) = P f (y,θ). The Fourier Slice Theorem states that:

ĝ(ω,θ) = f̂ (ω cosθ ,ω sinθ) . (2.27)

The Fourier transform of the nth derivative of g(y,θ) with respect to y is (iω)nĝ(ω,θ). Thus,

(jω)nĝ(ω,θ) = jn× sgnn(ω)|ω|n f̂ (ω cosθ ,ω sinθ) . (2.28)

where ω = ‖ω‖ with ω = (ω1,ω2) = ω(cosθ ,sinθ). For θ ∈ (0,π), sgn(ω) = sgn(ω sinθ) = sgn(ω2).
The space-domain equivalent is

∂ n

∂yn P f (y,θ) = P{((−1)n(H2)
n(−4)

n
2 { f})(x)}(y,θ) ,∀θ ∈ (0,π) . (2.29)

Therefore we have

P∗{ ∂ n

∂yn P{ f}(y,θ)}(x) = P∗P{((−1)n(H2)
n(−4)

n
2 { f})(x)}(y,θ) ,∀θ ∈ (0,π) (2.30)

which, owing to the property that P∗P = (−4)1/2, yields the desired results.

Equation(2.25) is a key equation. It implies that if one is interested in solving the inverse problem

P(n) f (y,θ) = g(y,θ) , (2.31)

the direct solution is to first apply the x-ray adjoint on the measured data and then apply the inverse of the
operator 2π (−1)nH n

2 (−4)(n−1)/2. The transfer function of this inverse is 1
2π in sgn(ω2)

n‖ω‖−(n−1).
An equivalent form of (2.25) using the fact that ( ∂

∂y )
∗ =− ∂

∂y is

P(n)∗{(q∗P(n) f (·,θ))(y)}(x) = f (x) , (2.32)

where P(n) is the adjoint of the n-th derivative of the x-ray transform and the transfer function of q(y) is

q̂(ωy) =
1

2π
× 1

|ωy|2n−1 . (2.33)

Equation (2.32) is the basis for the generalized filtered back projection (GFBP). The full procedure is de-
scribed in Algorithm 1.
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Input: gθ (y) = P
(n)
θ

f (y) as data
Output: Reconstructed image f (x)
initialization Nθ = The number of angles;
for i = 1→ Nθ do

Filter the input data with the transfer function

q̂(ωy) =
1

2π

1

|ωy|2n−1 (2.34)

end
Apply the adjoint of the n-th derivative of the x-ray transform on the output of the previous stage;
return f (x).

Algorithm 1: GENERALIZED FILTERED BACK PROJECTION(GFBP) FOR THE INVERSE PROBLEM

P
(n)
θ

f (y) = gθ (y)
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Chapter 3

Discretization Scheme

1

Since the mathematical model of straight-ray imaging modalities are based on the x-ray transform and
its differential variants, the object can be reconstructed using direct methods such as filtered back-projection.
These techniques require large number of projections with high signal-to-noise ratio in order to provide high
quality reconstruction. It is equivalent to a long exposure time and high radiation dose. It is highly desirable
to reduce the radiation dose in different imaging modalities. This can be achieved by either a reduction in
the intensity of the photons or in the number of projection angles. The price to pay for this reduction is
that the reconstruction problem becomes more ill-posed and its solution can no longer be well approximated
using traditional direct methods. Instead the deployment of more sophisticated iterative schemes is needed.
In order to specify such methods, one first discretizes the imaging operator, and then selects a reconstruction
scheme that typically involves the choice of a cost functional to minimize.

In this chapter we concentrate on the first aspect: we use generalized sampling framework to discretize
the forward operator. Therefore, the discretization problem is summarized in the choice of a suitable recon-
struction space. This space is usually determined as a set of functions of the form

f (x) = ∑
k∈Zd

c[k]ϕ
( x

T
−k
)
, (3.1)

where T is the sampling step. The reconstruction space is then specified through the choice of the generating
function ϕ .

In computed tomography, where the mathematical model is based on the x-ray transform and its variants,
it is beneficial to use a generating function that has 1) short support and 2) good approximation properties.
Isotropy is an additional property that simplifies the implementation since the footprint (x-ray transform of
the function) is independent of the orientation, but typically introduces some loss of accuracy.

Two favorable candidates are box splines (in particular B-splines) and Kaiser-Bessel window func-
tions. B-splines are compactly supported functions with the best cost/quality trade-off for the interpo-
lation of discrete data on uniform grid. Their tensor product is used in order to extend them to higher
dimension. Note that high degree B-splines are approximately isotropic. They are a special case of the
box-splines investigated in this chapter. Kaiser-Bessel window functions (KBWFs) are widely used in
electron microscopy [52–54] and conventional and differential phase-contrast x-ray computed tomogra-
phy [34, 44, 55–57]. KBWFs involve three parameters that need to be adjusted [44, 45]. In this chapter,

1A part of this chapter has been presented in [51]
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we investigate approximation-theoretic properties of the basis functions and we show how to optimize the
parameters for the best performance. We also present experimental results that corroborate our theoretical
prediction.

3.1 Discretization Using Shift-Invariant Functional Spaces
We first explain how the discretization of the forward model is intimately connected with the choice of
a given basis function. We then recall some fundamental results from approximation theory that ensure
stability and allow one to predict the expected discretization error. This will point to the importance of
the partition-of-unity property which, unfortunately as we shall prove for compactly support functions, is
incompatible with isotropy properties.

3.1.1 Matrix formulation
Reconstruction is usually formulated as a linear inverse problem. To solve it, it is convenient to introduce
discrete representations of the object and the imaging operator. Here, we consider an object in two dimen-
sions. The model of the object, from the perspective of the generalized sampling theory [58], is obtained
by specifying a suitable reconstruction space. Specifically, we select VT (ϕ) as the principal shift-invariant
space generated by the function ϕ ∈ L2(R2). This space is defined by

VT (ϕ) =

{
∑

k∈Z2

c[k]ϕ
( x

T
−k
)

: c ∈ `2(Z2)

}
, (3.2)

where x ∈ R2. The corresponding orthogonal projection operator PT : L2(R2)→VT (ϕ) is defined as

PT f = argmin
g∈VT (ϕ)

‖ f −g‖L2
. (3.3)

In practice, however, the values of c in (3.2) are determined based on the solution of an inverse problem.
As the derivative variants of x-ray transform are linear, pseudo shift-invariant operators, their application

on a function f ∈VT is

P(n){ f}(y,θ) = ∑
k∈Z2

c[k]P(n){ϕT (·−T k)}(y,θ)

= ∑
k∈Z2

c[k]P(n){ϕT}(y−T 〈k,θ〉 ,θ) , (3.4)

where ϕT (x) = ϕ(x/T ), θ = (cosθ ,sinθ), and

P(n) f (y,θ) =
∂ nP f

∂yn (y,θ) ,

with P : L2(R2)→ L2(R× [0,π]) being the x-ray transform operator.
The formulation of the reconstruction as a linear inverse problem is then restated as the matrix equation

g = Hc , (3.5)

where g is the measurement vector, H is the system matrix, and c is the discrete representation of the object
of interest. Using (3.4), the matrix formulation can be obtained as follows: The measurement vector g
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contains values of the imaging transform P(n){ f}(y,θ) at the sampled points y j = j∆y and θi = i∆θ , where
i, j ∈Z. The object f is represented with its coefficients c within the space VT . The system matrix H is given
by

[H](i, j),k = P(n){ϕT}(y j−T 〈k,θi〉 ,θi) . (3.6)

Note that, in order to compute the imaging operator, there is no need to store the whole system matrix
because it is sufficient to have access to a lookup table that contains the projection of one basis function
along every direction. For an isotropic basis function, storing its footprint along one orientation is enough
since its footprint is independent of the orientation.

3.1.2 Fast implementation

The calculation of the x-ray transform (or its variants) involves the application of the system matrix on the
coefficients of the object. However the system matrix H cannot be stored explicitly due to its size. To
circumvent this problem we exploit the translation-invariance of the x-ray transform. This property implies
that all the matrix entries in (3.6) can be derived from a single derivative of the x-ray transform, namely that
of the generating function ϕ:

H(i, j),k = P(n)
ϕT (y j−T 〈k,θi〉,θi).

To improve the speed, we oversample P(n)ϕ(y,θ) on a fine grid Y ×Θ with for example 100 samples
along each angular direction and store the values in a lookup table L. To compute the matrix entries we
define a mapping

I : R× [0,π]−→ {1,2, · · · ,K}×{1,2, ...,P}
(y,θ) 7−→ ( j, i) , (3.7)

with K is the number of samples along each direction, P is the number of projections and (Y ( j),Θ(i)) is the
sample in Y ×Θ that is nearest to (y,θ). Therefore, we have

[H](i, j),k = LI(y j−〈k,θi〉,θi) . (3.8)

In the case of isotropic basis functions, it is sufficient to store its footprint along one orientation in the
look-up table since its x-ray transform is independent of the orientation. Note that the algorithm can easily
be parallelized, since projections corresponding to different angles are completely independent of each other
(Figure 3.1). We designed a multithreaded implementation for an 8-core workstation which allows for 8
simultaneous projection computations. Similarly, for the adjoint of the forward model, the computation can
be parallelized with respect to each object point.

In summary, our implementation is based on an accurate continuous-to-discrete model. Moreover it is
fast thanks to the use of look-up tables and multi-threading. Note that our method could be also adapted to
fan beam geometry by mapping it back to the parallel beam geometry. This would lead to a non-uniform
sampling pattern but our method can account for this at no additional cost (thanks to our look-up-table-based
implementation).

3.1.3 Desirable properties of the basis functions

We require the basis function ϕ to satisfy the four following properties:
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Computation	  along	  each	  
orientation	  is	  independent	  

of	  the	  other
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d
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f [j] =
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k

ckH(i,j),k

=
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ckLI(yj�hk,✓ii,✓i)

Figure 3.1: A simple demonstration of the implementation of the projection operator using
lookup table in multithread scenario.

1) Riesz basis. Every object f ∈V (ϕ) must be uniquely specified by its coefficients c. This requires the
existence of a positive constant A such that

∀c ∈ `2, A · ‖c‖2
`2
≤
∥∥∥∥∥ ∑

k∈Z2

c[k]ϕ
( x

T
−k
)∥∥∥∥∥

L2

. (3.9)

In addition, the representation should be stable. This requires the existence of a positive constant B such that

∀c ∈ `2,

∥∥∥∥∥ ∑
k∈Z2

c[k]ϕ
( x

T
−k
)∥∥∥∥∥

L2

≤ B · ‖c‖2
`2
. (3.10)

Together, these two conditions are equivalent to ϕ being a Riesz basis of V (ϕ).
2) Partition of unity. It is constructive for such a discretization scheme that the model approximate

any input function as closely as desired by choosing a sufficiently small sampling step. More precisely, the
approximation error should vanish whenever the sampling step T tends to zero. We thus require that

lim
T→0

{
‖ f −PT f‖L2

}
= 0 . (3.11)

Theorem 3.1 ( [59]). Let f be a continuously defined function. The L2-approximation error of the operator
PT : L2→VT (ϕ) can be written as

ε f (T ) = ‖ f −PT{ f}‖L2

=

(∫

R2
Eϕ(Tω)| f̂ (ω)|2

dω
2π

)1/2

+ εcorr , (3.12)



3.1 Discretization Using Shift-Invariant Functional Spaces 19

where εcorr is a correction term and Eϕ is the error kernel defined in the least-squares case as

Eϕ(ω) = 1− |ϕ̂(ω)|2
∑k∈Z2 |ϕ̂(ω+2kπ)|2 , (3.13)

where ϕ̂ is the Fourier transform of ϕ . Specifically, if f ∈W r
2 (Sobolev space of order r) with r > 1/2, then

|εcorr|< γT r‖ f (r)‖L2 , where γ is some constant.

The asymptotic convergence
lim
T→0

ε f (T ) = 0 (3.14)

is achieved if and only if the basis function ϕ satisfies the partition-of-unity condition [58]

∑
k∈Z2

ϕ(x+k) = 1, ∀x ∈ R2 . (3.15)

The equivalent formulation of the partition of unity in the frequency domain is

ϕ̂(2πn) = δ [n], ∀n ∈ Z2 , (3.16)

where δ is the two-dimensional Kronecker delta function.
3) Compact support. The basis function ϕ should be compactly supported in order to reduce the

computational cost and also for localization in the spatial domain.
4) Isotropy. For the implementation of the imaging operator, it is required to store the values of its

application on the basis function along different directions. If the basis function is isotropic, its projections
do not depend on the direction, which leads to simplicity and efficiency of implementation.

3.1.4 Revisiting optimality in the projection domain
We now bound the error of approximation incurred by PT f =P{PT f}. It can be extended to any derivative
of the x-ray transform through the Fourier-slice theorem since ||P(n) f ||L2 = ||PF−1{|ω|n f̂ (ω)}||L2 . To
this end, we use the Sobolev norm ‖·‖2

W 1/2
2

in the projection domain. If g ∈ L2(R2), then

‖g‖2
W 1/2

2
=
∫ 2π

0

∫
∞

0
(1+ω

2)
1
2 |ĝ(ω,θ)|dθdω , (3.17)

where ĝ(ω,θ) is the polar form of the Fourier transform of g.

Theorem 3.2. Let εP f (T ) == ‖P f −PT f‖
W 1/2

2
be the Sobolev approximation error of the operator PT .

Then, there exist positive constants r1,R1 > 0 such that

r1ε f (T )≤ εP f (T )≤ R1ε f (T ) . (3.18)

Lemma 3.1. Let Ω⊂R2 be a compact domain. Then, there exist positive constants r2 and R2 such that, for
any L2(R2) function f that is supported on Ω, it holds that

r2 ‖ f‖L2
≤ ‖P f‖

W 1/2
2
≤ R2 ‖ f‖L2

. (3.19)
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Proof. The Fourier-slice theorem implies that

P̂ f (ω,θ) = f̂ (ω,θ) , ∀ω ∈ [0,+∞) ,θ ∈ [0,2π) . (3.20)

To show the left-hand-side inequality, we write that

‖ f‖2
L2

=
∥∥∥ f̂
∥∥∥

2

L2

=
∫ 2π

0

∫
∞

0
| f̂ (ω,θ)|2|ω|dωdθ

=
∫ 2π

0

∫
∞

0
|P̂ f (ω,θ)|2|ω|dωdθ

≤
∫ 2π

0

∫
∞

0
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ

= ‖P f‖2
W 1/2

2
. (3.21)

For the right-hand side, we decompose the integral into an integral over |ω| ≥ 1 and an integral over |ω| ≤ 1.
In the first one, we have that 2|ω| ≥ (1+ |ω|2)1/2. So,

∫ 2π

0

∫
∞

1
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ ≤ 2
∫ 2π

0

∫
∞

1
|P̂ f (ω,θ)|2|ω|dωdθ

≤ 2‖ f‖2
L2

. (3.22)

The integral over |ω| ≤ 1 is estimated using
∫ 2π

0

∫ 1

0
|P̂ f (ω,θ)|2(1+ω

2)1/2dωdθ ≤
∫ 2π

0

∫ 1

0
| f̂ (ω,θ)|2(1+ω

2)1/2dωdθ

≤ sup
θ∈[0,2π),ω∈[0,1)

| f̂ (ω,θ)|2
∫ 2π

0

∫ 1

0
(1+ω

2)1/2dωdθ

≤ C̃‖ f‖2
L2

. (3.23)

Details concerning the last inequality can be found in [60, Section II.5]. Together, these inequalities yield
the desired result.

Proof of Theorem 3.2. By letting f ← ( f −PT{ f}) in (3.19), we obtain (3.18). �
This theorem implies that the average error over all angles is small in the transform domain when the

error of approximation is small in the object domain. While the theorem is an average result that involves a
continuum of angles, it is still useful practically because it gives us the approximation error in the transform
domain over a family of images that would correspond to all rotated versions of a given reference image.

3.1.5 Incompatible properties
There is an inconvenient result that is expressed in Theorem 3.3:

Theorem 3.3. The following properties are mutually exclusive for an isotropic basis function:

1. compact support;
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2. partition of unity.

Proof. Here, we first provide a sketch of the argument. The partition-of-unity condition implies the configu-
ration (3.16) of zeros of the Fourier transform of the basis function. At the same time, the Hankel transform
of an even compactly supported function is an entire function of finite exponential type. Jensen’s theorem
provides a contradiction between these two properties.

We prove Theorem 3.3 using a proof by contradiction. We suppose that there is a compactly supported
isotropic function φ that satisfies the partition-of-unity condition. Then, using Jensen’s theorem, we obtain
a contradiction.

Theorem 3.4 ( [61]). (J.L. Griffith) Let ν > −1/2 and 1/p+ 1/q = 1. Let f be an even entire function of
exponential type 1. If 1 < p≤ 2 and tν+1/2 f (t) ∈ Lp(0,∞), then f can be represented by

f (z) =
∫ 1

0
(xz)−ν Jν(xz)φ(x)dx (z ∈ C) , (3.24)

with x−ν−1/2φ(x)∈ Lq(0,1). Conversely, if f has this representation and x−ν−1/2φ(x)∈ Lp(0,1), 1 < p≤ 2,
then f is an even entire function of exponential type 1 such that tν+1/2 f (t) ∈ Lq(0,∞).

Without loss of generality, let us assume that φ(x) = 0, for ‖x‖ ≥ 1. We have the following:

• The function φ is isotropic, so its Fourier transform is the Hankel transform of the function φ(x) =
φ(‖x‖) with x = ‖x‖. We write that

F{φ}(ω) = 2π

∫
∞

0
xφ(x)J0(‖ω‖x)dx . (3.25)

• We define

f (z) = 2π

∫
∞

0
xφ(x)J0(zx)dx , (3.26)

so f (‖ω‖) = F{φ}(ω). According to Theorem 3.4 (with ν = 0),

f (z) =
∫

∞

0
ψ(x)J0(zx)dx , (3.27)

where ψ(x) = 2πxφ(x). Since x−
1
2 ψ(x) ∈ L2(0,1), f is an even entire function of exponential type 1.

• Satisfying the partition of unity is equivalent to having the equality in the Fourier domain

φ̂(2πn) = δ [n] , (3.28)

where n ∈ Z2 and δ is the two-dimensional Kronecker-delta function. It means that the set of zeros of
f (z) is {z = 2π ‖n‖ ,∀n ∈ Z2 \{0}}. Therefore,

n(R)≥ cR2 , (3.29)

where n(R) is the number of zeros in the circle with radius R and c is a positive constant.
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• Jensen’s theorem implies the inequality

∫ R

0

n(t)
t

dt ≤max
|z|=R

log| f (z)| . (3.30)

This inequality restricts the number of zeros inside the disc. We have that

n(R/2)log2 =
∫ R

R/2

n(R/2)
t

dt

≤
∫ R

R/2

n(t)
t

dt

≤max
|z|=R

log| f (z)| . (3.31)

• Since f is of exponential type 1, it implies that | f (z)| ≤ Ae|z|. Therefore,

max
|z|=R

log| f (z)| ≤CR , (3.32)

where C is a positive constant.

• Equations (3.29), (3.31), and (3.32) imply that

c(R/2)2log2≤ n(R/2)log2
≤max
|z|=R

log| f (z)|

≤CR . (3.33)

Taking R sufficiently large, we reach a contradiction.

3.2 Basis functions
Here, we investigate two favorable Basis functions, box splines and Kaise-Bessel window functions in order
to discretize the projection operator. We first discuss box-splines, particularly B-spline functions which
satisfy all the desirable properties of basis functions for tomographic application except the isotropy one.
Note that high degree B-splines are approximately isotropic. We show that the space of these functions
are close under the x-ray transform and we derive the analytical formula for their x-ray projection. We
then present Kaiser-Bessel window functions which are compactly supported and isotropic. As implied by
Theorem 3.3, these functions do not satisfy the partition of unity condition. Subsequently, we propose an
optimal parameter selection based on approximation theory to have minimal deviation from the partition of
unity condition.

The main interest of basis functions is to provide an effective and consistent way to discretize the forward
model of a computed-tomography reconstruction problem. The basis for such an approach is to characterize
one image by its coefficients c = (ck)k∈Ω where Ω denotes the domain of the image and to apply (3.4)
to obtain the simulated line-integral measurements (x-ray transform). The image reconstruction is then
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formulated as a regularized least-square optimization problem that is solved iteratively. Specifically, the
reconstructed image is determined as

c? = argmin
c

{
‖g−Hc‖2 +λR(c)

}
, (3.34)

where g is the input measurement vector and H the matrix-representation of the forward model. The quantity
R(c) is a regularization functional (e.g., the energy of the gradient of the image or its total variation) that
penalizes non-desirable solutions; it is a way of introducing prior information on the solution to make the
problem well-posed. The scalar parameter λ ≥ 0 is a tradeoff factor that balances the fitting accuracy versus
the amount of regularization.

The success of such a reconstruction algorithm depends on two factors: 1) the quality and accuracy of
the forward model, and 2) the constraints that are imposed by the regularization. The latter is very much
application-dependent and becomes especially relevant when the reconstruction problem is ill-posed (e.g.,
limited angle tomography). Since the appropriate choice of the regularization is a whole field of investigation
in itself, we focus here on the assessment of the quality of the forward model.

To that end, we consider a well-conditioned scenario where the measurement noise is negligible and
the number of projection angles is sufficient to reconstruct the image by numerical inversion of the for-
ward model. Our series of experiments is set-up such that the number of degrees of freedom of the image
model (square grid of size M×M) matches the number of measurements (M properly-sampled projections
in an equiangular configuration). The reconstruction is performed by solving (3.34) with λ = 0 iteratively
(least-squares solution) using the conjugate Gradient (CG) method. In the next sections, we investigate box
splines and Kaiser-Bessel window functions, separately. We evaluate the performance of each one using the
proposed scheme independently. We then conclude and discuss about their advantages and disadvantages.

3.3 Box splines

Box splines are smooth piecewise polynomial functions defined in Rd that are (non-separable) generalization
of univariate B-splines to the multivariate setting. The definitive reference on the subject is the monograph
by de Boor and Hölig [43], which is rather mathematically-oriented. Here, we briefly summarize the re-
sults of box spline theory that are pertinent to the derivations in this section. In particular, we emphasize
the convolutional interpretation of these functions and their intimate connection with directional derivative
operators.

3.3.1 Basic geometric definition

Geometrically, a box spline is the shadow (i.e., x-ray image) of a hypercube, in RN , when projected to a
lower-dimensional space, Rd (N ≥ d). A box spline is defined for a set of N vectors ξ1,ξ2, . . . ,ξN in Rd .
Each of these vectors is the shadow of an edge of the N-hypercube adjacent to its origin. The matrix of
directions Ξ = [ξ1 ξ2 . . . ξN ] completely specifies the box spline in Rd . Note that the vectors in this (multi-)
set need not be distinct as they can appear with some multiplicity. When N = d, the box spline is simply the
(normalized) indicator function of the parallelepiped formed by d vectors in Rd :

MΞ(x) =

{
1

|detΞ| x = ∑
d
n=1 tnξn for some 0≤ tn ≤ 1

0 otherwise
.
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For N > d, box splines are defined recursively by a “directional” convolution which makes them particularly
suitable for the Radon transform:

MΞ∪ξ(x) =
∫ 1

0
MΞ(x− tξ)dt. (3.35)

When the lower dimensional space is R (i.e., d = 1), the box splines coincide with univariate B-splines
(basic splines). When the distinct column vectors of Ξ are orthogonal to each other, box splines amount to
tensor-product B-splines.

The shifts of MΞ on Zd form the spline space

SMΞ
= span(MΞ(·−k))k∈Zd . (3.36)

If κ is the minimal number of directions whose removal from Ξ makes the remaining directions not span
Rd , then all polynomials up to degree (κ − 1) are contained in SMΞ

[43]; also, the approximation order of
SMΞ

is κ . Furthermore, the continuity of the box spline is at least

MΞ ∈Cκ−2(Rd). (3.37)

3.3.2 Elementary box spline constituents
Another way of constructing box splines, which is probably more transparent to engineers, is by repeated
convolution of elementary line-segment-like distributions. Specifically, we have

MΞ(x) = (Mξ1 ∗ · · · ∗MξN )(x) (3.38)

where the elementary box splines, Mξn , are Dirac-like line distributions supported over x = tξn with t ∈ [0,1]
with a unit integral. These elementary box splines are in direct geometric correspondence (via a rotation and
a proper scaling) with the primary box spline

M~e1(x) = box(x1)δ (x2, · · · ,xd)

where δ (x2, · · · ,xd) is the (d−1)-dimensional Dirac distribution and

box(x) =

{
1 0≤ x≤ 1
0 otherwise

.

Moreover, they integrate to 1 which is a property that is shared by all box splines (and also preserved through
convolution).

Based on (3.38), one directly infers that the box splines are positive, compactly-supported functions.
Their support is a zonotope, which is the Minkowski sum of N vectors in Ξ. The center of the support of
MΞ(x) is given by cΞ = 1

2 ∑
N
n=1 ξn. The Fourier transform of the box spline is therefore given by:

M̂Ξ(ω) =
N

∏
n=1

1− exp(−j〈ξn,ω〉)
j〈ξn,ω〉

= exp(−j〈cΞ,ω〉)
N

∏
n=1

sinc
( 〈ξn,ω〉

2π

)
,

(3.39)
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where ω = (ω1, . . . ,ωd) is the multivariate frequency vector. Alternatively, a centered box spline, denoted
by Mc

Ξ which is shifted to the origin has the simple Fourier transform

M̂c
Ξ(ω) =

N

∏
n=1

sinc
( 〈ξn,ω〉

2π

)
. (3.40)

3.3.3 x-ray projection of box splines

We now turn to our main objective, which is the derivation of an explicit formula for Pθ{MΞ}(y) where
MΞ is a given box spline generator specified by N direction vectors ξn ∈ Ξ. In the following discussion,
ν = (ν1, . . . ,νd−1) denotes the (d − 1)-variate frequency vector corresponding to the projection-domain
spatial coordinate vector y ∈ Rd−1, while the projection geometry is the specified in Section 2.1.

Theorem 3.5 (Sinogram-domain Parameterization). The x-ray transform of a d-variate box spline specified
by the direction set, Ξ, is a (d−1)-variate box spline whose direction set, Z = [ζ1 ζ2 . . . ζN ], is the geometric
projection of the former. Specifically,

Pθ{MΞ}(y) = MP
θ⊥Ξ(y).

where Pθ⊥ is the transformation matrix that geometrically projects the canonical system onto the coordinate
system perpendicular to θ.

Proof. We start with the derivation of the x-ray transform of the elementary (Dirac-type) box spline Mξ
whose distributional Fourier transform is

M̂ξ(ω) =
1− exp(〈ξ,ω〉)

j〈ξ,ω〉 .

We can proceed geometrically by determining the “shadow” of the direction vector ξ since the latter specifies
the support of the elementary box spline as a line segment in Rd . The alternative is to apply the central slice
theorem which states that the Fourier transform of Pθϕ(y) corresponds to the restriction of ϕ̂(ω) to the
hyperplane perpendicular to θ. Specifically, we have that

P̂θMξ(ν) = M̂ξ(ω)
∣∣
ω=PT

θ⊥ν
= M̂P

θ⊥ξ
(ν).

Since
〈
ξ,PT

θ⊥ν

〉
= 〈Pθ⊥ξ,ν〉, we can define the projected directions by ζ = Pθ⊥ξ. This allows us to deduce

that

Pθ{Mξ}(y) = MP
θ⊥ξ

(y) = Mζ (y). (3.41)

This proves the theorem for N = 1. By defining

Z = [Pθ⊥ξ1 · · ·Pθ⊥ξN ] = Pθ⊥Ξ, (3.42)

we are then able to transfer the result to the general case using convolution properties of X-ray transform
and (3.38).
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ξ1

ξ2

ξ3

ξ4

y

ζ1 ζ2
ζ3ζ4

θ

θ

Z = [cos(θ), sin(θ), cos(θ) + sin(θ), cos(θ)− sin(θ)]

(a) (b)
Figure 3.2: The x-ray transform of a box spline is a box spline whose directions are projections
of the directions of the original box spline onto the projected plane. On the right: a trivariate box
spline (a tensor-product B-spline) projected to 2-D.

The theorem is illustrated in Figure 3.2. The box spline on the right is a trivariate tensor-product B-
spline (first order) whose direction vectors are (1,0,0), (0,1,0) and (0,0,1). When projected to the plane
orthogonal to θ, it yields a bivariate, three-direction, box spline that is a hat function with hexagonal support.
Likewise, the x-ray transform of the trilinear B-spline (second order) is again a three-direction box spline,
but with multiplicity of 2. The concept carries over to higher-order tensor-product B-splines which are
transformed into three-direction box splines with repeated directions, the main point being that these can be
evaluated efficiently.

Corollary 3.1 (Image-domain Parameterization). The x-ray transform of an s-variate box spline specified
by the direction set, Ξ, along a direction θ is an (s− 1)-variate box spline. The directions of the latter
(s− 1)-variate box spline are obtained by geometric projection of the directions ξ ∈ Ξ into the (hyper)
plane orthogonal to the projection direction θ :

ζ = ξ−〈ξ,θ〉θ . (3.43)

Corollary 3.2 (The Radon Transform of Box Splines). The Radon transform of an s-variate box spline
specified by the direction set, Ξ, along a direction θ is a univariate box spline (i.e., a B-spline along θ ).
The directions (i.e., knots) of the latter univariate box spline are obtained by geometric projection of the
directions ξ ∈Ξ onto the projection direction θ :

ζ = 〈ξ,θ〉θ . (3.44)
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11 2

Figure 3.3: The natural multiscale relationship for box splines by projection.

Since any box spline is (geometrically) constructed by the shadow (x-ray) transform of a hypercube,
these results establish that the space of box splines are closed under x-ray transform. These results suggest
that box splines are suitable basis functions for problems involving tomographic reconstruction.

Another feature of box splines that is particularly useful in the context of tomography is their multi-scale
property. Since box splines are obtained by projecting a hypercube down to a lower-dimensional space, the
subdivision of the hypercube leads to a natural formula for a box spline that is written as a sum of scaled
versions of itself where the scaled versions are projections of subdivided hypercubes, see Figure 3.3.

M[1 1](x) = M[1 1](2x−1)+2M[1 1](2x)+M[1 1](2x+1).

Since this is based on the subdivision of the N-hypercube, this multiscale relationship exists in any di-
mension, d, and can be used to develop non-separable wavelets that use box splines as the scaling func-
tions [62, 63].

3.3.4 Explicit formulae in 2-D
For d = 2, we now show that the x-ray transforms of box splines are polynomial splines of degree (N−1).
The geometric configuration is the one shown in Figure 3.4 with the projection matrix given by Pθ⊥ =
[cosθ sinθ ]. The application of Theorem 3.5 together with the convolution formula (3.38) yields

PθMΞ(y) =
(
Mζ1
∗Mζ2

∗ · · · ∗MζN

)
(y) (3.45)

with ζn = Pθ⊥ξn = [ξn]1 cosθ +[ξn]2 sinθ , and

Mζn(y) =
1
ζn

box
(

y
ζn

)
,
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which is a rectangular box of width ζn when ζn 6= 0. Note that the convolution factors with ζn = 0 may be
eliminated from (3.45) since M0(y) = δ (y). To evaluate the above convolution product, we write Mζn(y) as

Mζn(y) = ∆ζnu(y) (3.46)

where ∆h f (y) = f (y)− f (y−h)
h is the finite-difference operator with step h, and where u is the unit-step (or

Heaviside) function. By substituting (3.46) in (3.45), we find that

PθMΞ(y) = (∆ζ1
u∗ · · · ∗∆ζN u)(y)

=
∆ζ1
· · ·∆ζN yN−1

+

(N−1)!
(3.47)

where we have used the fact that the (n−1)-fold convolution of a step function is yn
+

n! with yn
+ = max(y,0)n.

Finally, we may expand the finite-difference operators which yield a linear expansion of PθMΞ(y) in terms
of some shifted versions of yN−1

+ . The result therefore implies that PθMΞ(y) is a non-uniform polynomial
spline of degree (N − 1), or less if some ζn vanishes. We can also infer that this box spline function is
bell-shaped and that its support is ∑

N
n=1 ζn.

A case of special interest is when the 2-D basis function (or generator) is the tensor-product B-spline of
degree n within ϕ(x) = β n(x1)β

n(x2) [64]. In the present formalism, this corresponds to a box spline with
direction vectors ξ1 = (1,0) and ξ2 = (0,1), each having a multiplicity (n+ 1) so that N = 2n+ 2. The
specialization of (3.47) for these particular values yields an explicit formula for the Radon transform of a
separable B-spline of degree n:

Pθ{β n(x1)β
n(x2)}(y) =

∆
n+1
cosθ

∆
n+1
sinθ

y2n+1
+

(2n+1)!
(3.48)

which corresponds to the spline bikernel identified by Horbelt et al. in [65]. A MATLAB routine for
computing the centered versions of these functions is provided in Appendix B.

The general result (3.47), which is valid for any 2-D box spline, is new to the best of our knowledge. For
instance, the Zwart-Powell element [66] is represented by the box spline directions:

Ξ =

[
1 0 1 −1
0 1 1 1

]
. (3.49)

According to Theorem 3.5, its projection along the angle θ provides the univariate box spline that is specified
by the directions:

Z =
[

cosθ sinθ cosθ + sinθ cosθ − sinθ
]
.

This integration process is illustrated in Figure 3.4. By applying (3.47), we find that the Radon transform of
the Zwart-Powell box spline has the explicit closed-form representation:

Pθ{MΞ}(y) =
∆cosθ ∆sinθ ∆cosθ+sinθ ∆cosθ−sinθ y3

+

3!
. (3.50)
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ξ1

ξ2

y

ζ1 ζ2

Z = [cos(θ), sin(θ)]

(a) (b)

Figure 3.4: The (non-separable) Zwart-Powell element which is a box spline associated with the
directions in (3.49). The Radon transform of the Zwart-Powell box spline can be derived, exactly,
using our approach.

3.4 Optimized Kaiser-Bessel window function

We showed that isotropy is incompatible with the partition of unity condition for compactly support func-
tions. Here, we investigate to which extent the problem can be deviated by adjusting the parameters of
KBWF. The generalized family of KBWFs is isotropic, which makes it advantageous for the representation
of the imaging operator. Our goal here is to review briefly this family and then to determine the optimal set
of parameters to best attempt to recover an approximation of the partition-of-unity condition.

3.4.1 Generalized Kaiser-Bessel window functions

The generalized KBWF, defined as

ϕ(x) =





(√
1−(‖x‖/a)2

)m
Im
(

α

√
1−(‖x‖/a)2

)

Im(α) 0≤ ‖x‖ ≤ a

0 otherwise ,
(3.51)

is specified by three parameters: 1) the order m of the modified Bessel function Im; 2) the window taper
α; 3) the support radius a of the function. The parameter m allows us to control the smoothness of the
function and the parameter α determines its shape. This function is isotropic, which makes the computation
of the imaging operator significantly faster. However, it is worth noting that this function does not satisfy
the partition of unity (see Theorem 3.2).
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3.4.2 Measure of optimality of a basis function
If a basis function satisfies the partition-of-unity condition, then, as the sampling step vanishes, the error of
approximation tends to zero. For those bases that do not satisfy the partition of unity, we define the residual
error

Aϕ = sup
f∈L2

‖ f‖−1
L2

lim
T→0

ε f (T ) (3.52)

for f ∈ L2(Rd), which shows the deviation from the partition of unity. A basis function ϕ with lower residual
error is more desirable as generating function for the reconstruction space.

Theorem 3.6. The residual error of a function ϕ ∈ L2(Rd) is the quantity

Aϕ =
∑n6=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (3.53)

Proof. Let f ∈ L2(Rd). From (3.12), we have a formula for ε f in terms of Eϕ as defined in (3.13). We
represent Eϕ using its Taylor series

Eϕ(Tω) =
N

∑
|n|=0

∂ nEϕ(0)

n!
(Tω)n +o(‖ω‖N+1) , (3.54)

where n=(n1,n2, ...,nd) with nonnegative integer values, |n|=∑
d
i=1 ni,ω=(ω1,ω2, ...,ωd), n!= n1!n2!...nd!,

ωn = ω
n1
1 ω

n2
2 ...ω

nd
d , and

∂
nEϕ(0) =

∂ n1

ω1

∂ n2

ω2
· · · ∂

nd

ωd
Eϕ(0) . (3.55)

Therefore, we can rewrite the approximation error ε f as

ε f (T ) = ‖ f −PT{ f}‖L2

=

(∫

Rd

(
N

∑
|n|=0

∂ nEϕ(0)

n!
(Tω)n

)
| f̂ (ω)|2 dω

2π

)1/2

+ ε , (3.56)

where ε = o(‖ω‖N+1)+ εcorr. Then, Fubini’s theorem implies that

ε f (T ) =

(
N

∑
|n|=0

∂ nEϕ(0)

n!
T |n|

∫

Rd
ω

n| f̂ (ω)|2 dω
2π

)1/2

+ ε

=

(
N

∑
|n|=0

∂ nEϕ(0)

n!
T |n|

∥∥∥ f (n/2)
∥∥∥

2

L2

)1/2

+ ε , (3.57)

where

f (n) =
∂ n1

∂x1

∂ n2

∂x2
· · · ∂

nd

∂xd
f . (3.58)

We now have that
lim
T→0

ε f (T ) = Eϕ(0)
1/2 ‖ f‖L2

. (3.59)
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Figure 3.5: Optimality measure with respect to different values of α in the 2-D (a) and 3-D (b) domains.

Therefore,

sup
f∈L2

‖ f‖−2
L2

(
lim
T→0

ε f (T )
)2

= sup
f∈L2

Eϕ(0)

=
∑n6=0|ϕ̂(2πn)|2
|ϕ̂(0)|2 . (3.60)

3.4.3 Optimal parameters for the Kaiser-Bessel window function
There are three parameters that describe KBWFs. The radius parameter a determines its support. We set it
to a = 2; this allows us to compare the optimal KBWF with the cubic B-spline. The order of the modified
Bessel function is set to m = 2.

In the context of 3-D imaging, Matej and Lewitt [45] empirically tune the window taper parameter α to
improve the quality of reconstructed constant images. In contrast, we base our analysis on approximation-
theoretic properties and determine α to minimize the residual error Aϕ . Interestingly, this leads to a condition
similar to the complicated criterion of [45]. But we go one step farther and provide a simplified equivalent
condition in (3.53). The measure for different values α is depicted in Fig. 3.5(b). This plot indicates
that values of α in the range [6,11.2] are good choices for reconstruction, with two local optima of α =
7.05,10.45 of comparable magnitude. The latter value is very close to 10.4, which is the value proposed
in [45].

There are modalities where the reconstruction problem is separable into a set of independent 2-D prob-
lems: x-ray parallel-beam tomography, transmission electron microscopy with single-axis tilting, two-
dimensional positron emission tomography systems with septa, and single-photon emission computed to-
mography with parallel or fan-beam collimators. Then, it is worthwhile to consider the problem in dimen-
sion two. We illustrate in Fig. 3.5(a) the residual error with respect to the parameter α in a two-dimensional
space. Again, it appears that values of α in the range [7,11.5] are good choices for 2-D reconstruction, with
α = 7.91,10.83 being the two best choices.
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3.5 Numerical evaluation
In this section, we first compare different members of the family of Box-splines family with each other
and with the MATLAB radon implementation. Then, We separately investigate the performance of Kaiser-
Bessel window functions with different α parameters. The experimental results validate that the Kaiser-
Bessel window function with the proposed parameter has the best performance. We then compare the cubic
B-spline function with the Kaiser-Bessel window function with optimal parameter. Finally, we discuss and
conclude when one should use which family.

3.5.1 Box splines and Kaiser-Bessel window functions

We study the accuracy of the family of separable B-spline models as well as the non-separable Zwart-
Powell box spline and compare our method with the traditional implementation of the x-ray transform. We
concentrate on the piecewise linear and cubic B-spline solutions with n = 1,3 in (3.48), respectively.

Our reference algorithm is the function radon in Matlab, which proceeds in a hierarchical fashion. It first
subdivides each pixel into four sub-pixels of equal intensity and then projects each of the subcomponents
using a triangular profile function (splatting). This implies that the Matlab function is at least 4 times more
demanding than the first-order version (linear B-spline) of our method.

Algorithm Speed

The present family of forward models (B-spline Radon transform) was coded in C and linked to Matlab as
a mex file. The adjoint operator is implemented similar to the forward model by changing the direction of
the flow graph. The Radon transform of the B-splines were precomputed once and stored in a 2-D lookup
table for best efficiency. To measure the speed, we computed the Radon transforms of a series of images
of increasing size M. The expected computational cost is O(M3) with a proportionality factor that depends
on the choice of algorithm and the size of the underlying basis function. The results are documented in
Figure 3.6 and are consistent with the prediction. The Matlab implementation is the slowest, while the cubic
B-spline version of our algorithm is approximatively 8 times more costly than the piecewise-linear version.
The Zwart-Powell box spline is notably faster than cubic B-spline and is very close to the performance of
linear B-splines.

Consistency of the Forward Model

In order to examine the ability of the proposed discretization method to capture sharp image details, we
considered an analytical phantom whose Radon transform is known analytically.

Proposition 3.1. The Radon transform of the function

f (x) =

{
‖x‖2 ‖x‖< a
0 otherwise,

(3.61)

where a ∈ R+, is

Rθ{ f}(y) =
{

2
3

√
a2− y2(a2 +2y2) |y|< a

0 otherwise.
(3.62)
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Figure 3.6: Comparison of different methods with respect to processing time.

This can be readily verified by evaluating the integral

Rθ{ f}(y) = 2×
∫ √a2−y2

0
(x2 + y2)dx.

Using the linearity and the projected shift-invariance property of the x-ray transform, we use this result to
determine the Radon transform of the object

I(x) = ∑
k

αk f (x−xk) ,

where αk ∈ R and xk ∈ R2 are some prescribed parameters. For our experiments, we considered the ana-
lytical phantom shown in Figure 3.7. Starting from a 1024× 1024 representation, we calculated its Radon
transform along 1024 directions with the help of the different algorithms and compared the output with the
analytical one. Examples of projections are shown in Figure 3.8. The higher-order versions of our spline
models produce the sinograms that are the most faithful to the analytical ones. The Matlab results in 3.8(c)
are not quite as favorable as the cubic B-spline 3.8(e) and Zwart-Powell box spline 3.8(d), although they
oscillate less than the linear spline version 3.8(b). This ranking is confirmed by the global signal-to-noise
ratio (SNR) presented in Table 3.1.

Table 3.1: Comparison of different discrete models of X-ray Transform.
Method MATLAB Degree1 Zwart-Powell Degree3

SNR(dB) 43.85 39.88 44.65 52.75

Reconstruction error as a function of grid size

In a well-conditioned scenario with a sufficient number of measurements, we can expect the quality of the
reconstruction to be depend on the grid size (the degrees of freedom of the reconstruction model). Yet, we
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(a) (b)

Figure 3.7: (a) The analytical phantom includes 30 circles with different quadratic intensity
distributions. (b) Lung image used for the evaluation of forward model and reconstruction. These
datasets at the resolution of (1024×1024) serve as the ground truth for our experiments.
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(a)	  Analytical	  Radon	  transform (b)	  Linear	  B-‐spline (c)	  Matlab	  Radon	  operator (d)	  Zwart-‐Powell	  box	  spline (e)	  Cubic	  B-‐spline

Figure 3.8: Radon transform of the phantom along θ = π

4 . Both the Zwart-Powell box spline and
the cubic B-spline outperform Matlab’s Radon operator.
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Figure 3.9: Evolution of the signal-to-noise ratio for the least-squares reconstruction of the ana-
lytical phantom as both the grid size and the number of measurements are reduced.

also know from approximation theory that not all basis functions are equally good at representing arbitrary
signals at a fixed resolution. From a sampling point of view, B-splines are optimal in the sense that they have
the maximal order of approximation for a given support.

To investigate the dependence upon the sampling rate, we conducted a series of experiments using the
framework described in Section 3.2 where the grid size is progressively reduced. The reference object and
signal-to-noise computations are defined with respect to the fine grid (e.g., 1024× 1024). The coarse grid
measurements are obtained by suitable angular and spatial resampling of the fine-grid Radon transform of the
object. An ideal lowpass filter is applied in the spatial domain prior to downsampling to avoid aliasing. The
object is reconstructed on the coarse grid using the different flavors of the forward model. The reconstruction
is calculated iteratively and corresponds to the least squares solution. Finally, the result is interpolated back
to the finer grid (resampling of the spline model) for quality assessment. For the Matlab version, we used a
linear interpolation which was found to give better results than a cubic interpolation (for upsampling).

Analytical phantom for analysis of accuracy

In the case of the phantom in Figure 3.7(a), we used the analytical calculation of the Radon transform as
initial fine-grid measurements. We then performed the various signal reconstructions for M = 1024, 512,
256, and 128 using the corresponding down-sampled versions of the input data. The evolution of the signal-
to-noise ratio as a function of the downsampling factor is shown in Figure 3.9. Figure 3.10 compares the
reconstruction results for a central region of the phantom that is reconstructed from 256 projections (down-
sampling by (4,4)). The specific region of the phantom is depicted in Figure 3.10. Note that the best results
are obtained with the cubic B-spline (3.10(e)) and Zwart-Powell box spline (3.10(d)) models. In particular,
we can distinguish some of the fainter circles (e.g., at the bottom left) that are barely visible in the other
reconstructions. The differences between the Matlab model and the linear B-spline reconstruction are less
significant, although there may be a slight preference towards the former because of its smoother appearance.
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(a)	  Ground	  truth (b)	  Matlab	  model	  SNR=27.06	  dB	  

(c)	  Linear	  B-‐spline	  SNR=25.83	  dB	   (d)	  Zwart-‐Powell	  box	  spline	  
	  SNR=28.04	  dB	  

(e)	  Cubic	  B-‐spline	  SNR=28.22	  dB	  

Figure 3.10: Reconstructed phantom from 256 projections using different discrete forward mod-
els. Both Zwart-Powell box spline and cubic B-spline outperform the Matlab’s reconstruction.
Besides having smaller artifacts in the reconstruction, the faint circle in the bottom left is better
reconstructed in (d) and (e).
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Figure 3.11: Evolution of the signal-to-noise ratio for the least-squares reconstruction of the lung
as both the grid size and the number of measurements are reduced.

Biomedical data

Next, we considered the cross section of the Lung image shown in Figure 3.7(b) as representative example
of a medical image. Its Radon transform was calculated using the different forward models and the results
averaged to specify a fine-scale set of measurements that is not biased towards one of the methods. We
then performed the same experiments as in the previous case. The corresponding evolution of the SNR is
shown in Figure 3.11. Figure 3.12 presents a region of interest that was reconstructed from 256 projections.
The conclusion that can be drawn are essentially the same as in the previous experiment; namely, that the
cubic B-spline (3.12(e)) and Zwart-Powell box spline (3.12(d)) basis functions outperform the others. This
is significant specially when considering the computational performance offered by these two algorithms.

In addition, we did also reconstruct images using the quintic B-spline version of the method which is
computationally more expensive, but did not observe any significant improvement over the cubic spline
reconstruction which appears to offer an excellent tradeoff in terms of cost/quality. We believe that the
present cubic B-spline and Zwart-Powell box spline versions of the Radon transform are to be preferred
over the standard Matlab implementation because they consistently yield better quality results while being
computationally quite competitive.

We also performed experiments with real biomedical data (i.e., Human bicuspid calcific heart valve
derived nodule) acquired from a CT scanner. The computational advantages of our spline model as well
as improvements in the accuracy of reconstruction, afforded by higher order basis functions, were similar
to the Lung data experiments reported in Figure 3.12. Moreover, we have performed an experiment to
reconstruct edges of a test image to evaluate the impact of higher order basis functions on the sharpness of
reconstruction. This experiment illustrates, numerically, that the higher order basis functions do provide a
more accurate reconstruction for preserving the edges.
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(a)	  Ground	  truth (b)	  Matlab	  model	  SNR=21.29	  dB	  

(c)	  Linear	  B-‐spline	  SNR=21.26	  dB	   (d)	  Zwart-‐Powell	  box	  spline	  
	  SNR=22.38	  dB	  

(e)	  Cubic	  B-‐spline	  SNR=22.52	  dB	  

Figure 3.12: Central region of the reconstructed lung (a) from 256 projections using different
discrete forward models. The linear B-spline (b) is comparable to the Matlab’s approach , while
both Zwart-Powell box spline (d) and Cubic B-spline (e) provide the most accurate reconstruc-
tions. The difference in the reconstructions are mostly visible in areas close to edges as well as
the white structures within the gray areas.
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3.5.2 Optimality of the proposed taper parameter for KBWFs
We now present experiments where we numerically evaluate the discretization scheme based on KBWFs,
with the parameters suggested in the Section 3.4.

Influence of the discretization step

It is clear that the optimal reconstruction in the least-square sense is the orthogonal projection of the sample
on the reconstruction space, independently of the chosen algorithm. To investigate the dependence upon the
grid size, we compute the optimal reconstruction with respect to different grid sizes when the generating
function of the reconstruction space is a KWBF with different parameters. The reference object and signal-
to-noise (SNR) computations are defined with respect to the fine grid. The SNR is defined as the relative
mean-square with respect to the reference (oracle). The grid size is progressively increased, which shows
the dependence upon the sampling rate.

We choose two medical samples: a coronal section of a human lung and a coronal section of a rat brain.
Also, a region of interest has been chosen as shown in Figs. 3.13(a) and 3.13(b). We first tested the KBWF
with α = 2, which is well outside of the optimal interval [7,11.5], and the results were very poor (SNR= 4
dB). We then compared the performance for the value α = 5 and α = 7.91. The former is close to, but
outside of the optimal interval, while the latter is the first of our proposed choices. Their performances are
depicted in Figs. 3.13(c) and 3.13(d). It confirms that using KBWFs with the proposed parameter has better
optimal reconstruction compared to α = 5 for different grid sizes. This experiment shows that the “optimal
choice” based on the asymptotical behavior (see (3.52)) is also always better for different grid sizes.

Reconstruction of an analytical phantom

As data, we use the two-dimensional synthetic phantom presented in [36] and shown in Fig. 3.14. (a). The
analytical formula for computing imaging transforms of the phantom is given in [36, Section 4.4].

Conventional tomography

The first experiment is as follows: The size of the phantom for this experiment is (2,048× 2,048) pixels.
The sinogram of the phantom is computed analytically with 1,800 viewing angles that are chosen uniformly
between 0 and π; we consider it as the measurements. We use the framework suggested in Section 3.2.

The object is reconstructed on a grid that is (4×4) times coarser than the discretization grid. Then, the
basis function helps us to resample the object on a finer grid. We use the conjugate-gradient algorithm for
the minimization. As the number of directions is on the order of the size of the object, we do not use any
regularization. The signal-to-noise ratio (SNR) of the reconstructions and the projection versus different
values of the window taper of KBWFs are shown in Fig. 3.14(c) and 3.14(d). The best performance is
obtained by using a KBWF with α = 7.75, which is very close to the first minimum of our criterion function
in Fig. 3.5. However, values of α in the range [7,11.5] do also perform reasonably well, which is consistent
with the theoretical analysis of Section 3.4.3.

Differential phase-contrast tomography

We evaluate the performance of KBWFs with the proposed parameters in x-ray differential phase-contrast
tomography. The mathematical model of this imaging modality is based on the derivative of the Radon
transform.
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Figure 3.13: (a) Coronal section of a human lung and region of interest. (b) Coronal section of a
rat brain and region of interest. The performance of the optimal solution with respect to the grid
size is depicted in (c) and (d).

The differentiated sinogram of the phantom with size (512×512) pixels is again computed analytically
with 1,800 viewing angles that are chosen uniformly between 0 and π; we consider it as the measurements.
As there is a large number of views for the reconstruction, we minimize the least-squares error for the recon-
struction. This is done for different discretizations of the forward model using KBWFs with different taper
parameters. Therefore, the quality of the reconstructed image depends on how well the discretization scheme
represents the imaging operator, as shown in Fig. 3.15(a). We also compute the SNR in the transform domain
(Fig. 3.15(b)). The results validate the importance of using KBWFs with optimized parameters in order to
improve the reconstruction performance. We also repeated those experiments with measurements corrupted
by additive Gaussian noise with different noise levels (10 dB, 20 dB, 30 dB). The results suggest that using
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Figure 3.14: 2-D analytical phantom with isotropic elements (a). Zoomed version of the proposed
measure (b). The accuracy of the reconstruction of the analytical phantom versus the window
taper parameter of KBWFs is shown in (c). Its Radon- transform error in the same coarse grid is
depicted in (d).

KBWF with the proposed parameters results in better performance. The SNR of the reconstructions was
improve by close to 3 dB with respect to α = 5.

3.5.3 B-splines vs Kaiser-Bessel
KBWFs with the optimal parameter converge to cubic B-spline

We first compute the mean square error of the tensor product of two cubic B-splines (see Figure 3.16 (a)) with
the Kaiser-Bessel window functions of the same support with respect to different window taper parameters
α as shown in Figure 3.16 (c). Interestingly, Kaiser-Bessel window functions with the optimal window taper
parameter are the closset one to the cubic B-spline based on the mean square error. It shows that the KBWF
with optimal parameter resembles to cubic B-spline function. Kaiser-Bessel window function with optimal
parameter and its difference with cubic B-spline are depicted in Figures 3.16 (b) and 3.16 (d), respectively.
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Figure 3.15: Performance of the reconstruction (a) and projection (b) using KBWFs for differen-
tial phase-contrast tomography versus the window taper parameter.

Table 3.2: Comparison of the projection and reconstruction accuracy using cubic B-splines and
KBWFs with the parameters proposed in [57].

SNR (dB) KBWF a = 2, m = 2, Cubic B-spline
α = 2 α = 10.4 α = 7.95

Projection 23.59 27.15 29.19 29.26
Reconstruction 37.31 43.42 48.59 48.54

On the other hand, it suggests that the tensor product of two cubic B-spline functions is approximately
isotropic.

performance comparison

For the reconstruction of x-ray differential phase-contrast tomograms, it was shown in [36] that the use of
cubic B-splines results in better performance than using KBWFs with the parameters chosen as in [45]. Here,
we compare the performance of three basis functions for the phantom with size (2,048×2,048) pixels. The
projection operator is computed using KBWFs with the parameter proposed in [44] (α = 10.4) and with the
parameter suggested in Fig. 3.15 (α = 7.95); furthermore, we also perform the comparison with cubic B-
splines. The computed SNR shown in Table 3.2 suggests that the proposed parameter provides a significantly
better performance in computing the projection operator.

We conclude that a KBWF with the proposed parameters improves the performance of the discretization
scheme in comparison with [44, 45]. In addition, its performance is as good as that of cubic B-splines in
terms of quality, while its isotropy allows for a drastic reduction in its computational costs.
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Figure 3.16: (a) Tensor product of two cubic B-splines. (b) Kaiser-Bessel window function with
the proposed α = 8. Mean-square error between the tensor product of two cubic B-splines and
Kaiser-Bessel window functions versus different α values. (d) Difference of functions in (a) and
(b).



44 Discretization Scheme

3.6 Discussion and Conclusion
We investigated two favorable generating function families, box splines (in particular B-splines), and Kaiser-
Bessel windows. For a fixed support, B-spline functions have a better order of approximation than Kaiser-
Bessel window functions (KBWFs). We showed that, by adjusting the taper parameter of KBWF using the
proposed approximation-theoretic framework, these functions perform almost as well as B-splines. In two-
dimensional tomography or three-dimensional tomography with fixed rotation axis, B-splines are preferable
owing to their order of approximation. In addition, the separability of the tensor product of cubic B-spline
functions allows one to decompose the different three-dimensional reconstruction in parallel-beam geometry
with fixed rotation axis into some easier two-dimensional and one-dimensional subproblems. It results in the
development memory-efficient reconstruction framework. In the three-dimensional problem with random
orientations, the implementation of the x-ray transform using B-splines is too complicated and it is therefore
more practical to use KBWFs.



Chapter 4

Reconstruction Algorithms

1 We have already presented a direct method for objet reconstruction in the context of straight-ray imaging
by inverting (2.31), namely the generalized filtered back-projection (GFBP) described in Algorithm 1. To
apply the Radon adjoint in step 2 of this algorithm, we use the method proposed in Section 3.1. However, for
large images with a limited number of measurements, direct methods such as FBP are not accurate enough.
In order to improve the reconstruction quality, one requires to model the imaging process precisely and
to formulate the problem as an inverse problem. This leads to the application of iterative reconstruction
schemes; This is a hot topic for all clinical CT for the past few years, owing to the large computational
capacities of normal work stations besides the ongoing efforts towards lower dose in CT.

We have chosen to categorize iterative techniques into three types: 1) iterative methods that are purely
algebraical without any statistical modeling, 2) statistical methods that model the photon-counting statistics,
and 3) model-based methods that go beyond statistical modeling (we refer the reader to a nice review pa-
per [68] for more information). The first step in most of these methods is to formulate the reconstruction as
an optimization problem and then to develop a proper iterative algorithm to minimize the given cost function
in order to reconstruct the object of interest.

Model-based methods have been widely used in the context of absorption-based computed tomogra-
phy [68], including iterative coordinate descent (ICD) methods [3], block-based coordinate descent [4],
ordered-subset algorithms based on separable quadratic surrogates [5], preconditioned nonlinear conjugate-
gradient methods [6] and alternating-direction method of multipliers (ADMM) [7]. These methods have
been also recently developed for different types of phase-contrast tomography [33–35, 67, 69].

We develop a unified approach to the reconstruction problem in straight-ray imaging modalities. The
reconstruction problem is formulated as a penalized likelihood estimator in Section 4.1. The estimator takes
the form of the minimization of penalized weighted least squares. We develop an iterative reconstruction
scheme to solve the minimization problem based on alternating direction method of multipliers using two
variable-splitting scenarios in Subsection 4.2.1. This yields a fast (practically reasonable) reconstruction
scheme. The first variable splitting is a classical approach similar to the one proposed in [7]. We then present
a novel variable splitting that improves the reconstruction quality as its last step is a denoising operator.
A problem-specific preconditioner is proposed that speeds-up the convergence of the linear optimization
step considerably. In Subsection 4.3, we modify the proposed reconstruction scheme to promote memory
efficiency in parallel-beam three-dimensional reconstruction with fixed rotation axis. We then generalize the
proposed ADMM scheme for a general noise model, fan-beam or cone-beam geometry, and limited field of

1A part of this chapter has been presented in [36] and [67]

45
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view in Subsection 4.2.2.

4.1 Reconstruction as an optimization problem
Considering the statistical behavior of systematic noise besides the deterministic model of the imaging op-
erator, one can formulate the reconstruction as a maximum-likelihood estimator. The deterministic model of
the imaging system was described in Section 3.1 and is given by

g = Hc , (4.1)

where g ∈ RM is the measurement vector, H ∈ RM×N is the system matrix, and c ∈ RN is the discrete
representation of the unknown object. The measurement vector {g[k]}M

k=1 is typically modeled as a random
vector with conditional probability p(g|c). The maximum-likelihood estimator of the unknown object of
interest c is that given by

ĉ = argmax
c∈C

{p(g|c)}

= argmin
c∈C

−
M

∑
k=1

log p(g[k]|c[k]) . (4.2)

The conditional probability p(g|c) is linked to the model of noise in the imaging system. Two main
ingredients are Gaussian electronic noise and the number of photons that hit the detector which are usually
described by a Poisson distribution. Most researchers approximate it as either i.i.d. zero-mean Gaussian
with variance σ2,

−log(p(g|c)) = 1
2σ2 ‖g−Hc‖2 , (4.3)

or as a Poisson distributed where the mean is the average of the received intensity in that pixel that is
proportional to e−{Hc}k . Then, the likelihood estimator is given by

−log(p(g|c)) =C+∑
k
(−{Hc}k +g[k]log{Hc}k) , (4.4)

where g[k] and {Hc}k are the k th entry of g and Hc, respectively.
A second-order Tailor approximation of the latter equation results in the square weighted-norm formu-

lation [70, 71],
−log(p(g|c))≈ ‖g−Hc‖2

D , (4.5)

with diagonal weight matrix D = diag
(

e−g[k]
)

.
As the reconstruction problem with a limited number of views is ill-posed, one typically includes addi-

tional prior information in order to resolve the ambiguity associated with the non-empty null space of the
forward imaging operator. Then the estimator can be written in the form of

ĉ = argmin
c∈C

{−log(p(g|c))+Ψ(c)}

= argmin
c∈C

{
1
2
‖g−Hc‖2

D +Ψ(c)
}
, (4.6)
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where Ψ is the so-called regularization or potential function. The solution of (4.6) is called penalized likeli-
hood estimator. There are different types of regularization. One of the popular regularization in the context
of image reconstruction is the `1 penalty. The idea of `1 was introduced by Huber’s [72] work on robust
statistics and a work of Claerbout [73] in geophysics. Some classical papers on the subject are total varia-
tion [74], compressed sensing [75–77] , soft thresholding [78], basis pursuit [79] , lasso [80], and structural
learning of sparse graphical models [81].

By selecting the regularization term as the potential function which is (−log(p(c))) where p(c) is the
statistical model of the object, the penalized likelihood can be equivalent to maximum a posteriori estimator.
Briefly, the maximum a posteriori estimator is given by

ĉ = argmax
c
{log(p(c|g))} , (4.7)

where p(c|g) is the conditional probability. Using Bayes’s rule, (4.8) can be rewritten as

ĉ = argmin
c
{−log(p(g|c))− log(p(c))} . (4.8)

The first part is the likelihood term. Note that the a priori information, −log(p(c)), can have different
forms. In the simplest case, it is equivalent to an `2-norm with a Gaussian assumption. Moreover, it has the
form of total-variation regularization when a p-variation distribution is assumed [82, 83]. Consequently, the
reconstruction problem is formulated as a penalized weighted-norm least square. In the next section we aim
at developing iterative techniques in order to solve the optimization problem (4.6). Due to the explosion in
the size and complexity of modern imaging systems, it is really important to be able to do the reconstruction
and solve the corresponding optimization problem with a very large dimension in a reasonable computational
time. In the next section, we use the alternating-direction method of multipliers and demonstrate that it is
well suited to reconstruct real-world images.

4.2 Reconstruction algorithm

We formulate the reconstruction as a constrained optimization problem with a generalized weighted `2-norm
data term. Specifically, we aim at finding the vector c0 such that

c0 = argmin
c∈C





1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(c)
︸ ︷︷ ︸

J(c)





, (4.9)

where C is a convex set that enforces support and positivity constraints. The regularization parameters λ1
and λ2 ∈R control the strength of the regularization. We separate the regularization to the quadratic term Ψ1
and non-quadratic term Ψ2. Typically Ψ2(c) = ∑i Ψ(i)(L(i)c). Here, we consider only one term that we note
it by Ψ2(Lc). The functions Ψ1 and Ψ2 are called potential functions and L is the regularization operator.

There has been a considerable development of optimization algorithms to solve such problems including
gradient projection [84,85], proximal gradient [86–88], augmented-Lagrangian methods [89], interior-point
methods [90], Bergman iterative algorithms [91], and alternating-direction method of multipliers [92].
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4.2.1 Alternating direction method of multipliers
High-dimensional regularized problems with a non-smooth potential function are typically solved using
the family of iterative shrinkage/thresholding algorithms (ISTA). The convergence speed of these methods
depend on the conditioning of HT DH. In our case, the x-ray transform and its differential variants are
particularly ill-conditioned operators leading to very slow convergence when D is the identity matrix. To
overcome this difficulty, we use a variable-splitting scheme to map our general optimization problem into
simpler ones [93–97]. We present two different variable-splitting scenarios:

A) Alternating-direction method of multipliers using a preconditioned conjugate gradient (ADMM-
PCG): Specifically, we introduce the auxiliary variable u = Lc and reformulate the reconstruction prob-
lem (4.9) as a linear equality-constrained problem

c = argmin
c,u

{
1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(u)
}

subject to u = Lc . (4.10)

We can map this into an unconstrained problem by considering the augmented-Lagrangian functional

Lµ(c,u,α) =
1
2
‖Hc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(u)

+αT (Lc−u)+
µ

2
‖Lc−u‖2 , (4.11)

where α is the vector of Lagrange multipliers. The advantage of using an augmented Lagrangian instead of
the Lagrangian (including the quadratic term) is to bring robustness to the dual-ascent method for updating
the Lagrangian multipliers and, in particular, to relax the assumption of strict convexity on the main cost
function. The method of multipliers for minimizing (4.11) has the form of





(
ck+1,uk+1)← argmin

c,u
Lµ(c,u,αk)

αk+1←αk +µ(Lck+1−uk+1).

The first step is a joint minimization which is costly to solve. In this regard, we adopt the cyclic update
scheme known as alternating-direction method of multipliers, which consists of the iterations





ck+1← argmin
c

Lµ(c,uk,αk)

uk+1← argmin
u

Lµ(ck+1,u,αk)

αk+1←αk +µ(Lck+1−uk+1).

Hence, Lµ(c,uk,αk) is a quadratic function with respect to c. Its gradient is

∇Lµ(c,uk,αk) =
(
HT DH+µLT L+λ1∇Ψ1

)
︸ ︷︷ ︸

A

c−
(

HT g+µLT
(

uk− α
k

µ

))

︸ ︷︷ ︸
b

.

We minimize Lµ(c,uk,αk) iteratively using the conjugate-gradient (CG) algorithm to solve for Ac = b. For
speeding up the convergence of the CG algorithm, we introduce two different strategies.
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1. Since A has a large condition number, it is helpful to introduce a preconditioning matrix M−1. This
matrix is chosen such that M−1

(
HT DH+µLT L+λ1I

)
has a condition number close to 1. To design

this problem-specific preconditioner, we use the following proposition.

Proposition 4.1. The successive application of the derivatives of the Radon transform and their ad-
joint is a highpass filter with frequency response ‖ω‖2n−1 such that

R(n)∗R(n){ f}(x) = 2π (−4)
2n−1

2 { f}(x) . (4.12)

Proof. This follows from ( ∂

∂y )
∗ =− ∂

∂y and Proposition 2.1.

This shows that R(n)∗R(n) has a Fourier transform that is proportional to ‖ω‖2n−1 while LT L is a
discretized Laplace operator whose continuous-domain frequency response is ‖ω‖2. Thus, the pre-
conditioner M−1 that we use in the discrete domain in the case of identity weight D is the discrete
filter that approximates the frequency response 1

‖ω‖2n−1+µ‖ω‖2+λ1
.

2. In the case of a non statistical formulation of the cost function, we propose to use a weighting matrix
that is the discrete counterpart of the convolution operator q in (2.32), with a slight modification of the
frequency-domain singularity at zero. We modify it with the frequency response 1

|ω|2n−1+β
, where β

is an appropriate positive parameter; it is a positive-definite operator.

The solution of the minimization of Lµ(ck+1,u,αk) with respect to u is the proximal map linked to the
regularization Ψ2,

proxΨ2,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z−v‖2

2 +λΨ2(v)
}
, (4.13)

where z = Lck+1 + αk

µ
and λ = λ2/µ2.

The complete reconstruction method is summarized in Algorithm 2 below. Note that normally the initial
estimate of a CG procedure would be zero. Here we use a warm initialization in the sense that the starting
point of each inner PCG iteration is the outcome of the previous PCG iteration.

Input: phase measurements g(y j,θi), ∀i, j.
Output: reconstructed image f (x).
initialization λ1, λ2, µ , c(0), u(0), and B-spline degree m;
while stopping criterion is not satisfied do

ck+1← argmin
c

Lµ(c,uk,αk), using the preconditioned CG method with an initial estimate c(0);

uk+1← proxΨ2,λ ,PC

(
Lck+1 + αk

µ

)
;

αk+1←αk +µ(Lck+1−uk+1);
c(0)← ck+1;
k← k+1;

end
return f (x) = ∑k ckβ m(x−k).

Algorithm 2: ADMM-PCG WITH WARM INITIALIZATION RECONSTRUCTION METHOD
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B) Constrained regularized weighted-norm reconstruction (CRWN): We solve the nonlinear regular-
ized problem by defining another variable splitting u = c and using an augmented-Lagrangian (AL) scheme.
This in turn is equivalent to finding critical point of the augmented Lagrangian (AL)

Lµ(c,u,α) =
1
2
‖Hu−g‖2

D +λ1Ψ1(u)+λ2Ψ2(c)

+αT (u− c)+
µ

2
‖u− c‖2

2 , (4.14)

where α is the vector of Lagrange multipliers that imposes the constraint u = c. The classical AL scheme
alternates between a joint minimization step and an update step, so that





(ck+1,uk+1)← argmin
c∈C ,u

Lµ(c,u,αk)

αk+1←αk +µ(uk+1− ck+1). (4.15)

Moreover, we use ADMM [93] to separate the joint minimization into the succession of simpler partial
problems





uk+1← argmin
u

Lµ(ck,u,αk) (Step 1)

ck+1← argmin
c∈C

Lµ(c,uk+1,αk) (Step 2)

αk+1←αk +µ(uk+1− ck+1). (Step 3) (4.16)

Since the zero frequency is in the nullspace of the forward operator, we use the Tikhonov regularization term
Ψ1(u) = 1/2‖u‖2.

In Step 1, ck and αk are fixed, therefore Lµ(ck,u,αk) is a quadratic function of u with gradient

∇Lµ(ck,u,αk) =
(
HT DH+(µ +λ1)I

)
u

−
(

HT Dg−
(
αk−µck

))
. (4.17)

We use the CG method to solve this step. One can choose the weight D such that the condition number of
the matrix HT WH+(µ +λ1)I becomes quite small, Then the corresponding iterative algorithm converges
rapidly.

Step 2 of ADMM, which minimizes Lµ(c,uk,αk) with respect to c, is the constrained denoising problem

argmin
c∈C

{Lµ(c,uk+1,αk) =αkT
(uk+1− c)+

µ

2

∥∥∥uk+1− c
∥∥∥

2

2
+λ2ψ2(c)}

= argmin
c∈C

{
1
2

∥∥∥∥uk+1 +
αk

µ
− c
∥∥∥∥

2

2
+

λ2

µ
Ψ2(c)

}
. (4.18)

The common expression for the regularizer is

Ψ2(c) = ‖Rc‖ , (4.19)

where ‖·‖ is a non-quadratic norm and R : RN → R(NK) is the regularization operator (e.g., gradient with
K = 2 or Hessian with K = 2×2). For the identity regularization operator R = I, (4.18) typically admits a
direct threshold-based solution.
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For the general case of the regularization operator, we aim at solving the denoising problem. This is
equivalent to the proximal map

prox‖·‖,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z− c‖2

2 +λ ‖Rc‖
}
, (4.20)

where PC is the convex projection that corresponds to the constraint. In order to find the solution of (4.20),
we use the Fenchel duality to rewrite the regularization term as

‖Rc‖= max
p∈B

〈
RT p,u

〉
, (4.21)

where RT : R(NK)→ RN is the adjoint of the operator R, p ∈ R(NK), and B = {p ∈ R(NK)|‖p‖∗ ≤ 1} with
‖·‖∗ the dual norm.

It can be shown that the solution of (4.20) is PC (z−λRT p∗), where

p∗ = argmin
p

f (p)+1B , (4.22)

with ∇ f (p)=−λRPC (z−λRT p). We apply the fast iterative-shrinkage-thresholding algorithm (FISTA) [87]
to solve (4.22). The step size is constrained by the Lipschitz constant L of ∇ f (p) that depends on the reg-
ularization operator R. The other important component is the orthogonal projection onto the set B that is
specified by the chosen norm. Let us denote it by PB . Algorithm 3 describes the denoising algorithm.

Input: z, λ , τ ≤ L−1, PB , PC

Output: c (optimal solution of (4.32))
initialization p0, t1 = 1;
while stopping criterion is not satisfied do

pk←PB(yk + τλRPC (z−λRT pk));

tk+1←
1+
√

1+4t2
k

2 ;

yk+1← pk +
(

tk−1
tk+1

)
(pk−pk−1);

k← k+1;
end
return c = PC (z−λRT p).

Algorithm 3: DENOISING ALGORITHM

The benefits of the proposed splitting are: 1) the transformation of a complex reconstruction problem into
a sequence of simpler optimizations where the constraint is applied as a simple projection in each iteration of
the denoising step. Note that there is no simple way to impose the convex constraint to the linear step of the
ADMM-PCG method; 2) any regularization term can be handled by knowing its corresponding denoising
function; 3) the output of the algorithm is the solution of the denoising step, which results in an improved
quality of reconstruction. The reconstruction method is summarized in Algorithm 4. Here, the starting point
of each inner CG iteration is the outcome of the previous CG iteration called as warm initialization.

4.2.2 Generalization of the proposed reconstruction scheme
In some applications such as fan-beam and cone-beam imaging modalities, we do not have access to the
whole projection along each direction because of the limited field of view of the imaging system. For this
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Input: g, H, λ1, λ2, PC

Output: ( f (x) reconstructed image)
set λ1, λ2, µ , and B-spline degree m;
initialization c0, u0 and α0;
while stopping criterion is not satisfied do

uk+1← argmin
u

Lµ(ck,u,αk), using CG method with initial estimate uk (“warm initialization”);

ck+1← prox‖·‖, λ2
µ
,PC

(uk+1 +αk/µ);

αk+1←αk +µ(uk+1− ck+1);
k← k+1;

end
return f (x) = ∑k ckβ m(x−k)

Algorithm 4: CONSTRAINED REGULARIZED RECONSTRUCTION WITH WEIGHTED NORM
(CRWN).

reason, we express the forward operator as MH where M is a suitable mask. Thus, the general form of the
estimator is

ĉ = argmin
c∈C





1
2
‖MHc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(Lc)
︸ ︷︷ ︸

J (c)





, (4.23)

To solve (4.23), we extend ADMM-PCG by defining the new auxiliary variables u = Hc and v = Lc and
reformulate the minimization (4.23) as the linear equality-constrained problem

c = argmin
c,u,v

{
1
2
‖Mu−g‖2

D +λ1Ψ1(c)+λ2Ψ2(v)
}

subject to u = Hc ,v = Lc . (4.24)

When the matrix D is a circulant matrix and the mask matrix M does not exist, there is no need to define the
auxiliary variable u.

We then map (4.24) to an unconstrained problem by considering the augmented- Lagrangian functional

Lµ1,µ2(c,u,v,α1,α2) =
1
2
‖Mu−g‖2

D +λ1Ψ1(c)+λ2Ψ2(v)

+αT
1 (u−Hc)+

µ1

2
‖u−Hc‖2

2

+αT
2 (v−Lc)+

µ2

2
‖v−Lc‖2

2 (4.25)

where α1 and α2 are the vectors of Lagrange multipliers that impose the constraints u = Hc and v = Lc.
The advantage of using an augmented Lagrangian instead of the Lagrangian (including the quadratic term)
is to bring robustness to the dual-ascent method for updating the Lagrangian multipliers and, in particular,
to relax the assumption o strict convexity on the main cost function.

The classical method of multipliers alternates between a joint minimization step and update steps, so that
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(ck+1,uk+1,vk+1)← argmin
c∈C ,u,v

Lµ1,µ2(c,u,v,α
k
1,α

k
2)

α1
k+1←α1

k +µ1(uk+1−Hck+1)

α2
k+1←α2

k +µ2(vk+1−Lck+1). (4.26)

The first step is a joint minimization which is costly to solve. In this regard, we adopt a cyclic update
scheme also known as ADMM, which consists of the iterations





ck+1← argmin
c∈C

Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) (Step 1)

uk+1← argmin
u

Lµ1,µ2(c
k+1,u,v,αk

1,α
k
2) (Step 2)

vk+1← argmin
v

Lµ1,µ2(c
k+1,uk+1,v,αk

1,α
k
2) (Step 3)

α1
k+1←α1

k +µ1(uk+1−Hck+1) (Step 4)
α2

k+1←α2
k +µ2(vk+1−Lck+1) (Step 5). (4.27)

The solutions of the steps are as follows:

1. The criterion Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) is a quadratic cost function with respect to c whose gradient is

∇Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) =

(
µ1HT H+µ2LT L+λ1∇Ψ1

)
︸ ︷︷ ︸

A

c

−
(

µ1HT
(

u− α1

µ1

)
+µ2LT

(
vk− α

k

µ2

))

︸ ︷︷ ︸
b

. (4.28)

We minimize Lµ1,µ2(c,u
k,vk,αk

1,α
k
2) iteratively using the conjugate-gradient algorithm to solve for

Ac = b. For speeding up the convergence of CG algorithm, we introduce two different strategies:

2. The second step is the minimization with respect to u while the other variables are fixed. This is in
the form of

uk+1 = argmin
u

{
1
2
‖Mu−g‖2

D +αT
1 (u−Hc)+

µ1

2
‖u−Hc‖2

2

}
. (4.29)

Its gradient with respect to u is given by

∇Lµ1,µ2(c
k+1,u,v,αk

1,α
k
2) =

(
MT DM+µ1I

)
u

−
(

MT Dg+µ1

(
Hck+1 +

α1
k

µ1

))
.

In order to retrieve the critical point, one requires to find the zeros of the gradient function. Since M
is a mask matrix and D is diagonal, the solution is a point-wise operator that takes the form

uk+1[n] =
1

µ1 +{D}n,n {M}n,n

{
MT Dg+µ1

(
Hck+1 +

α1
k

µ1

)}

n,n
. (4.30)
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3. Step 3, the minimization with respect to v, is

vk+1 = argmin
v

{
αT

2 (v−Lck+1)+
µ2

2

∥∥∥v−Lck+1
∥∥∥

2

2
+λ2Ψ2(c)

}
. (4.31)

This is the denoising step. The solution is the proximal map linked to the regularization Ψ2,

proxΨ2,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z−v‖2

2 +λΨ2(v)
}
, (4.32)

where z =
(
Lck+1−α2/µ2

)
and λ = λ2/µ2.

4. The variables α1 and α2 are updated in Steps 4 and 5.

Among all steps, the most computationally costly is the second. It involves the computation of HT H and
HT g (see (4.28)). The value of HT g is only computed once and is used in all iterations, while HT H of v is
computed in each iteration. Accordingly, in order to speed up the proposed algorithm, we require to derive
a fast implementation of HT H.

4.3 Memory efficient and fast 3D reconstruction in parallel-beam to-
mography

Typically to discover the 3D object in parallel-beam imaging modalities with single axis tilting (the object
is rotated along a fixed axis), its 2D slices are reconstructed separately. In practice, there are two crucial
drawbacks to this technique. The aliasing effects along the z direction and grating interferometer drifting
during the imaging process can introduce artifacts in the reconstructed image, for instance the horizontal
stripes on the vertical coronal section of the sample shown in Figure 4.1.

One can also formulate the 3-D reconstruction as an inverse problem equipped with three-dimensional
total-variation regularization. The main drawback is the size of the 3-D specimen which is often extremely
large. Therefore, the 3-D forward operator requires a drastically large memory space which is completely
inefficient. To avoid this state of affairs, we reformulate the problem as a combination of simpler optimiza-
tion problems in lower dimensions. Concerning the discretization framework, the forward imaging operator
with x3 as rotation axis is

g[i, j,k] = [H3Dc]i, j,k3

= ∑
k

c[k]R(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi)β (k− k3)

= ∑
k1,k2

(
∑
k3

c[k1,k2,k3]β (k− k3)

)
R(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi) . (4.33)

Thus, the forward imaging operator is written in the form of

g[i, j,k] = [H3Dc]i, j,k
= [H2D {u[·, ·,k]}]i, j , (4.34)
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(b)(a)
Figure 4.1: (a) In parallel-beam geometry, 3-D reconstruction is decomposed into several 2-D
slice reconstruction. (b) Horizontal artifacts appear on the vertical coronal section of the sample.

where
[H2D {u[·, ·,k3]}]i, j = ∑

k1,k2

u[k1,k2,k3]R
(n) {β (x1)β (x2)}(y j− k1 cosθi− k2 sinθi) , (4.35)

and
u[k1,k2,k3] = (c[k1,k2, ·]∗β [·]) [k1,k2,k3] , (4.36)

where ∗ denotes the discrete convolution operator, β [·] is the B-spline function sampled at the integer values.
The convolution operator can be written in the matrix form

u[k] = [B{c[k1,k2, ·]}]k ,∀k1,k2 , (4.37)

where B is the interpolating matrix.
Therefore, the reconstruction problem is expressed as

argmin
c





1
2
‖H3Dc−g‖2

D +λ1Ψ1(c)+λ2Ψ2(c)
︸ ︷︷ ︸

J(c)





. (4.38)

We separate the regularization on each 2D horizontal plane from the regularization along the rotation
axis. We introduce total variation along with Tikhonov regularization as prior information. Then, the mini-
mization (4.38) can be rewritten in the form of minimizing

J(c) =
1
2 ∑

k
‖H2D {{Bc} [·, ·,k]}−g[·, ·,k]‖2

D +
λ1

2
‖c‖2+λ2 ∑

k
‖L2D {c[·, ·,k]}‖1+

λ3 ∑
k1,k2

‖Lx3 {c[k1,k2, ·]}‖1 , (4.39)
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where L2D and Lx3 are the gradient operators on the horizontal plane and along the vertical coordinate,
respectively. These operators are computed consistently with the splined-based discretization framework.

In order to decompose the three-dimensional reconstruction (4.39) into a set of optimization problems in
lower dimensions, first, we use variable-splitting techniques by introducing

u1 = c
u2[k1,k2, ·] = B{u1[k1,k2, ·]} ,∀k1,k2 (4.40)
u3[k1,k2, ·] = Lx3 {u1[k1,k2, ·]} ,∀k1,k2 . (4.41)

These auxiliary variables yield the constrained optimization problem

argmin
c,u1,u2,u3

{
1
2 ∑

k

{
‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +λ2‖L2D {c[·, ·,k]}‖1
}
+

λ1

2
‖u1‖2 +λ3 ∑

k1,k2

‖u3[k1,k2, ·]‖1

}

subject to u1 = c ,u2[·, ·,k] = {Bu1} [·, ·,k] and u3[k1,k2, ·] = Lx3 {u1[k1,k2, ·]} ,∀k1,k2 ,∀k . (4.42)

The augmented-Lagrangian function of the constrained optimization problem is

Lµ1,µ2,µ3(c,u1,u2,u3,d1,d2,d3) =
1
2 ∑

k

{
‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +λ2‖L2D {c[·, ·,k]}‖1
}
+

λ3 ∑
k1,k2

‖u3[k1,k2, ·]‖1 +
µ1

2
‖u1− c+d1‖+

λ1

2
‖u1‖2+

µ2

2 ∑
k1,k2

‖u2[k1,k2, ·]−B{u1[k1,k2, ·]}+d2[k1,k2, ·]‖2+

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2 , (4.43)

where µ1, µ2, and µ3 are penalty parameters of the augmented Lagrangian and where d1, d2 and d3 are the
augmented-Lagrangian variables.

Since (4.42) is strictly convex, the joint minimization of (4.43) converges to the unique solution of the
constrained optimization problem (4.42). To solve it, we separate the problem into basic optimizations by
taking advantage of the ADMM





uk+1
2 ← argmin

u2

Lµ1,µ2,µ3(c
k,uk

1,u2,uk
3,d

k
1,d

k
2,d

k
3)

uk+1
1 ← argmin

u1

Lµ1,µ2,µ3(c
k,u1,uk+1

2 ,uk
3,d

k
1,d

k
2,d

k
3)

uk+1
3 ← argmin

u3

Lµ1,µ2,µ3(c
k,uk+1

1 ,uk+1
2 ,u3,dk

1,d
k
2,d

k
3)

ck+1← argmin
c

Lµ1,µ2,µ3(c,u
k+1
1 ,uk+1

2 ,uk+1
3 ,dk

1,d
k
2,d

k
3)

dk+1
1 ← dk

1 +uk+1
1 − ck+1

dk+1
2 [k1,k2, ·]← dk

2[k1,k2, ·]+uk
2[k1,k2, ·]−B

{
uk

1[k1,k2, ·]
}
,∀k1,k2

dk+1
3 [k1,k2, ·]← d3[k1,k2, ·]+u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]} ,∀k1,k2 .

For simplicity in notation, we denote the concatenation of two-dimensional matrices B{u1[·, ·,k]} ,∀k by the
three-dimensional matrix Bu1. As first step, the minimization with respect to u2,

argmin
u2

∑
k

{
1
2
‖H2D {u2[·, ·,k]}−g[·, ·,k]‖2

D +
µ2

2
‖u2[·, ·,k]−Bu1[·, ·,k]+d2[·, ·,k]‖2

}
, (4.44)
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can be parallelized into a set of two-dimensional quadratic problems. We use CG to minimize each quadratic
function

J1,k(u2,k) =
1
2
‖H2D

{
u2,k
}
−g[·, ·,k]‖2

D +
µ2

2
‖u2,k−{Bu1}k +d2,k‖2 , (4.45)

where u2,k = u2[·, ·,k] and {Bu1}k = Bu1[·, ·,k]. Its gradient with respect to u2,k is

∇J1,k(u2,k) =(HT
2DDkH2D +µ2I)u2,k︸ ︷︷ ︸

A

−

(HT
2DDk {g[·, ·,k]}+µ2({Bu1}k +d2[·, ·,k]))︸ ︷︷ ︸

b

.

We can choose the matrix Dk such that the condition number of A becomes close to one, and then it can be
expected that the corresponding iterative scheme converges reasonably fast.

As second step, the minimization with respect to u1 is a set of 1D optimization problems for each pair
(k1,k2)

argmin
u1[k1,k2,·]

{λ1

2
‖u1[k1,k2, ·]‖2 +

µ1

2
‖u1[k1,k2, ·]− c[k1,k2, ·]+d1[k1,k2, ·]‖+

µ2

2 ∑
k1,k2

‖u2[k1,k2, ·]−B{u1[k1,k2, ·]}+d2[k1,k2, ·]‖2+

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2} , (4.46)

whose direct solution is

u1[k1,k2, .] = ((µ1 +λ1)I+µ2BT B+µ3LT
x3

Lx3)
−1

(
µ1 (c[k1,k2, ·]−d1[k1,k2, ·])+µ2BT (u2[k1,k2, ·]+d2[k1,k2, ·])+µ3LT

x3
(u3[k1,k2, ·]+d3[k1,k2, ·])

)
.

(4.47)

This can be implemented using recursive filters since the kernel is symmetric. Moreover, the inversion can
also be performed in the FFT domain with a point-wise division.

As third step, the minimization with respect to u3,

argmin
u3[k1,k2,·]

{
λ3‖u3[k1,k2, ·]‖1 +

µ3

2 ∑
k1,k2

‖u3[k1,k2, ·]−Lx3 {u1[k1,k2, ·]}+d3[k1,k2, ·]‖2

}
, (4.48)

is the point-wise soft-thresholding operator

u3[k1,k2, ·] = proxλ2/µ3

(
Lx3 {u1[k1,k2, ·]}−d3[k1,k2, ·]

)
. (4.49)

In Step 4, the minimization with respect to c is a set of two-diminutional total-variation denoising prob-
lems. To solve the nonlinear TV problem, we develop a modified version of the gradient-based fast iterative-
shrinkage-thresholding algorithm [98], which requires the repeated evaluation of the proximal map of the
non-smooth part J2(c) = ∑

k
‖{Lc}k‖1. The last steps are the updates of the Lagrangian variables.
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Chapter 5

FFT-cost implementation of HT H

In chapter 4, we presented unified reconstruction frameworks for straight-ray tomography using the alter-
nating direction method of multipliers. Their main advantage is that one can obtain a reasonable solution in
a few number of iterations. There is a strong incentive to reduce the computational cost of each iteration to
speed up the reconstruction procedure even further. The dominating computational cost is the matrix-vector
multiplications HT g where g is the measurement vector and the multiplication of the matrix HT H with an
updated vector. The vector HT g is precomputed once and then is used in each iteration. Then, in this chapter,
we propose fast and efficient implementation of the matrix multiplication of HT H with a vector. This way
of speeding-up the reconstruction procedure is well-known in magnetic resonance imaging and has been
widely used [99,100], while in the context of computed tomography, it has not much been developed [101].
In this regard, we first derive the necessary conditions to make it equivalent to a digital convolution operator.
We then present the corresponding kernel, so that one can apply this operator at minimal cost (in the order
of FFT).

5.1 Notations
Our formulation uses infinite matrices and vectors. Obviously, in practice these are truncated to finite length.
Matrices and vectors are denoted by bold letters. The entries of a matrix A is denoted by [A]p,k where p and
k specify the position of the entry of interest. The k-th entry of a vector c is denoted by c[k] or [c]k.

Thus, the matrix formulation of (3.5) is

g[p] = ∑
k
[H]p,kc[k] , (5.1)

where p = (i, j) for simplicity in notation.

5.2 Computation of HT H

5.2.1 Review
As discussed in Chapter 3, the classical discretization approach considers basically pixel values of the object
as its discrete representation, and the projection is approximated by a discrete line integral over each pixel. In
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the case of differential variants of the x-ray transform, the derivative operators are implemented with finite-
differences. The other way to reduce the complexity of the implementation and improve its speed is to rely on
Fourier-based techniques which are applicable in a parallel geometry [102, 103]. The Fourier slice theorem
relates the Fourier transform of the projection to the Fourier transform of the object in polar coordinates. In
the direct Fourier implementation, the polar frequency data are interpolated on a Cartesian grid. Afterwards,
the inverse of FFT is applied. To achieve acceptable reconstruction quality, the interpolation step relies on
sampling. When the number of projection views is not large enough, the interpolation steps perform poorly,
which distributes a significant error in the reconstruction.

An alternative technique is the pseudo polar Fourier transform [104–106]. Its drawback is that it requires
the number of orientations to be in the order of the image size. Moreover, all these approaches are valid
in the parallel-beam geometry only. In the context of divergent beams, measurements are interpolated to
fill the whole sinogram which is typically performed using rebinning techniques. Since the Fourier trans-
form is a non-local operator, the interpolation error is distributed in the space domain representation of the
reconstructed object.

5.2.2 Generalized sampling based implementation
Based on the discretization scheme described in Chapter 3, the computation of HT Hc can be decomposed
as the computation over each projection angle

HT Hc = ∑
i

HT
θi

Hθic (5.2)

where Hθ denotes the system matrix corresponding to the orientation θ . We start with two dimensional im-
ages and then extend the approach to higher dimensions. Let gθ be the projection vector along the direction
θ. Then, the backprojection of gθ is in the form of

[HT
θ gθ ]k = ∑

j
gθ [ j]P {ϕh}( j−h〈k,θ〉) . (5.3)

Lemma 5.1. The entries of the vector c̃θ = HT
θ

Hθ c are given by

c̃θ [l] = ∑
k

c[k]Rθ [k, l] , (5.4)

where Rθ = HT
θ

Hθ is the bi-infinite normal matrix whose entries are

Rθ [k, l] = ∑
j

P {ϕh}( j−h〈k,θ〉 ,θ)P {ϕh}( j−h〈l,θ〉 ,θ) . (5.5)

The computational cost of the calculation of c̃,

c̃ =
K

∑
i=1

c̃θi =
K

∑
i=1

∑
k

c[k]Rθi [k, l] , (5.6)

is on the order of
(
N2×a×h×K

)
, where the number of entries of c is (N×N), a is the support of ϕ , and

K is the number of orientations. Thus, the number of multipliers is directly proportional to the number of
orientations, the scale ratio h, the support of the basis function, and the number of entries of c.
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5.3 FFT-cost implementation of HT H in parallel beam geometry
In this section, we derive the necessary conditions to make HT H translation invariant so that we can speed
up its computational cost with the help of FFT.

Definition 5.1 (Radial Nyquist criterion). The function ϕ satisfies the radial Nyquist criterion with respect
to the grid Zd if ϕ̂(ω) = 0 for all ‖ω‖ ≥ π .

Proposition 5.1. For any pair of function ( f ,g) satisfying the Nyquist condition, it holds that

∑
n∈Z2

f (n)g(n) =
∫

R2
f (x)g(x)dx , (5.7)

where n = (n1,n2) and x = (x1,x2).

Proof. Since the functions f and g satisfy the Nyquist condition, we can apply Shannon’s theorem and
expand them using the sinc functions.

f (x) = ∑
k

f (k)sinc(x−k) ,

g(x) = ∑
k

g(k)sinc(x−k) , (5.8)

where sinc(x) = sinc(x1)sinc(x2). The orthonormality of the sinc function and its shifts yields the desired
result.

Theorem 5.1. if ϕ satisfies the radial Nyquist criterion for all h≥ h0, then for all h≥ h0

1. HT
θ

Hθ is a discrete convolution matrix with [HT
θ

Hθ ]k,l = rθ [k− l] where

rθ [k] = (Pθ ϕh(·)∗Pθ ϕh(−·))(h〈k,θ〉)
= Pθ {ϕh(·)∗ϕh(−·)}(h〈k,θ〉) (5.9)

2. As HT H = ∑i HT
θi

Hθi , HT H is a discrete convolution whose impulse response is

r[k] = ∑
i

rθi [k] (5.10)

Proof. Starting from (5.5),

Rθ [k, l] = ∑
j

Pθ {ϕh}( j−h〈k,θ〉)Pθ {ϕh}( j−h〈l,θ〉)

(1)
=
∫

Pθ {ϕh}(y−h〈k,θ〉)Pθ {ϕh}(y−h〈l,θ〉)dy

(2)
=
∫

Pθ {ϕh}(y−h〈l−k,θ〉)Pθ {ϕh}(y)dy

= rθ [l−k] . (5.11)

As ϕh satisfies the radial Nyquist criterion, the Fourier slice theorem implies that Pθ{ϕh} satisfies the
Nyquist condition. Then, Proposition 5.1 yields the equality (1), and while (2) is the result of the change of
variable y = y−h〈k,θ〉 and dy = dy.
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This theorem shows that HT
θ

Hθ is a circulant matrix that can be implemented using FFT operator. It is
conveniently summarized by its impulse response

rθ [k] =
∫

Pθ {ϕh}(y−h〈k,θ〉)Pθ {ϕh}(y)dy

= (Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(h〈k,θ〉) , (5.12)

which is obtained by resampling the autocorrelation of the continuous-domain function Pθ {ϕh} which is
the x-ray transform of ϕh. In practice, the number of entries of c is limited, typically (N×N), but the
support of the introduced kernel is the whole space. In order to use the FFT-cost implementation of HT H,
first the kernel is computed using (5.29) in a window with size ((2N−1)× (2N−1)) as summarized in
Algorithm 5. In the cases that is not possible to analytically compute the autocorrelation function, one can
numerically calculate (interpolate) its value in the sampling points. The matrix-vector multiplication HT Hc
can be computed by convolving the kernel and c. This can be done using a FFT operator. For more details,
we refer the reader to Algorithm 6. Accordingly, the computational cost is on the order of (2N)2 log(2N).
The cost does not depend on the number of orientations, scale ratio, and the support of the basis function ϕ .
Note that in iterative reconstruction scheme, the kernel r is computed once and then is being used in each
iteration.

Input: ϕ , Θ = {θ1,θ2, . . . ,θK} (set of all orientations)
Output: r (the kernel)
initialization r = 0 and i = 1;
while i≤ the number of orientations do

rθi [k] =
(
Pθi {ϕh}(·)∗Pθi {ϕh}(−·)

)
(h〈k,θi〉) where

k = {−(N−1), . . . ,(N−1)}×{−(N−1), . . . ,(N−1)};
r← r+ rθi ;
i← i+1;

end
return r̂ = F{r}, discrete Fourier transform of the kernel r.

Algorithm 5: COMPUTATION OF THE KERNEL CORRESPONDING TO HT H

Input: c, r̂ (discrete Fourier transform of the kernel r)
Output: c̃ = HT Hc
zero-pad c and extend it to size (2N−1×2N−1) ;
c̃ = iFFT (FFT (c)∗ r̂);
return cropped version of c̃ with the same size as the input c.

Algorithm 6: FFT-COST IMPLEMENTATION OF HT Hc

5.3.1 Error of approximation
The operator HT H can be computed at a computational cost comparable to one FFT along with inverse
of FFT operations when the support of the generating function ϕ in the Fourier domain is bounded to the
closed circle around the origin with radius π . This introduces a significant improvement in computational
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performance. For example, if the image size is (1024×1024), and 512 different orientations exist with h= 2
and a = 4, then

ratio of speed improvement =
10242×512×4×2

(2×1024)2× log 2048
≈ 310 . (5.13)

The generating functions that are typically used are compactly supported in the spatial domain and conse-
quently are not bandlimited; in other words, they only satisfy the condition in Theorem 5.1 approximately).

Definition 5.2. We define a π-energy concentration measure for the basis function ϕ as

Eπ(ϕ) =

∫
‖ω‖≥π

|ϕ̂h(ω)|2dω
∫
R2 |ϕ̂h(ω)|2dω

. (5.14)

A basis function ϕ satisfies the necessary conditions in Theorem 5.1 if and only if Eπ(ϕ) = 0. The
measure Eπ(ϕ) shows how suitable a given basis function ϕ is for being used in Theorem 5.1 (lower values
are more preferable). In other words, this measure computes the relative part of the energy of a given basis
function that is outside the Nyquist region.

In Chapter 3, box splines (particularly B-splines) and Kaiser-Bessel windows were presented as two
favorable families of basis functions. The Fourier transform of polynomial B-splines with degree n is in the
form of

β̂ (n)(ω1,ω2) =

(
sin(ω1/2)

ω1/2

)n+1( sin(ω2/2)
ω2/2

)n+1

, (5.15)

and the Fourier transform of Kaiser-Bessel window functions with parameters a, α , and m is given by

ϕ̂KB(ω1,ω2) =





(2π)n/2anαmIn/2+m

(√
α2−(a‖ω‖)2

)

Im(α)
(√

α2−(a‖ω‖)2
)n/2+m a‖ω‖ ≤ α

(2π)n/2anαmJn/2+m

(√
(a‖ω‖)2−α2

)

Im(α)
(√

(a‖ω‖)2−α2
)n/2+m a‖ω‖ ≥ α .

(5.16)

The values of the measure (5.14) for B-splines and Kaiser-Bessel windows with different supports are
depicted in Figure 5.1. Note that the parameters of Kaiser-Bessel functions are computed by minimizing the
residual error (3.53). The parameters are reported in Table 5.1. It suggests that it is more desirable to use
Kaiser-Bessel windows with large supports than B-splines.

a and m: support and smoothness parameters 2 3 4 5 6 7 8
α: window taper 7.95 17.25 19.63 16.36 14.89 19.67 17.69

Table 5.1: Optimal taper parameter of Kaiser-Bessel window functions with different supports.

For simplicity in the notation, we denote HT
θ

Hθ by Rθ and the convolution kernel by rθ , respectively.
Then the error between the entries of these two kernels is

e[l,k] = Rθ [l,k]− rθ [l−k] . (5.17)
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Figure 5.1: The values of the error measure (5.14) for different basis function supports.

Proposition 5.2. The approximation constant between the kernel rθ and the exact calculation of HT
θ

Hθ is
given by

Ckernel = ‖e‖∞ = max
k,l
|Rθ [k, l]− rθ [l−k]| ≤C

∫

‖ω‖≥π

|ϕ̂(ωh)|dω , (5.18)

which is zero when the used basis function satisfies the radial Nyquist criteria.

Proof. Equation (5.33) can be written in the form of

Ckernel = max
k,l
|Rθ [k, l]− rθ [l−k]|

= max
k,l
|∑

j
P {ϕh}( j−h〈k,θ〉)P {ϕh}( j−h〈l,θ〉)− (Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(h〈l−k,θ〉)|

= max
k,l
|∑

n∈Z
sk(n)sl(n)−

∫

R
sk(x)sl(x)dx| , (5.19)
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where sk(x) = P {ϕh}(x−h〈k,θ〉). So we have

|∑
n∈Z

sk(n)sl(n)−
∫

R
sk(x)sl(x)dx|= |

∫
π

−π
∑
k

ŝk(ω +2πk)∑
p

ŝl(−ω +2π p)dω−
∫

R
ŝk(ω)ŝl(−ω)dω|

= |
∫

R
ŝk(ω)∑

p
ŝl(−ω +2π p)dω−

∫

R
ŝk(ω)ŝl(−ω)dω|

= |
∫

R
ŝk(ω)

(
∑
p

ŝl(−ω +2π p)− ŝl(−ω)

)
dω|

≤C|
∫

∞

π

ŝ0(ω)dω|

≤C
∫

∞

π

|ŝ0(ω)|dω

≤C
∫

‖ω‖≥π

|ϕ̂(ωh)|dω . (5.20)

It yields the desired result.

The derived FFT-cost implementation of HT H is going to be used in the proposed reconstruction frame-
works. Interestingly, ADMM converges to the fixed point of the problem even if each subproblems are solved
approximately under some conditions specified in [107]. It implies that, the proposed iterative reconstruction
framework using the derived kernel can converge to the same solution as using the exact formulation.

5.4 General cases

5.4.1 Differential variants of x-ray projection
The derivatives of the x-ray transform are also used to describe the mathematical model of some imaging
modalities. For instance, the mathematical model of differential phase contrast tomography is based on the
first derivative of the x-ray projection.

Let us denote the derivatives of the projection by

P(n) { f}(y,θ) = ∂ n

∂yn P(n) { f}(y,θ) . (5.21)

We recall (3.4) for derivations of the projection as

P(n) { f}( j∆y,θi) = ∑
k

c[k]P(n) {ϕh}( j∆y−h〈k,θi〉) . (5.22)

Therefore
[
H(n)

]
(i, j),k

= P(n) {ϕh}( j∆y−〈k,θi〉 ,θ).

Corollary 5.1. Extension to differential variants of x-ray projection
For every function f (x) = ∑k∈Z2 c[k]ϕ(x/h−k) ∈ L(R2), if ϕ satisfies the radial Nyquist criterion for

all h≥ h0, then for all h≥ h0, c̃ = H(n)T
H(n)c can be computed using

c̃[k] = (c[·]∗ r[·])[k] , (5.23)
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Figure 5.2: Frequency response of the digital filter used in the FBP method for conventional CT.

with r[k] = ∑i rθi [k] and

rθi [k] =
(
P

(n)
θi
{ϕh}(·)∗P(n)

θi
{ϕh}(−·)

)
(h〈k,θ i〉) . (5.24)

Proof. Since the derivative operator does not modify the bandwidth of the input function, the function
P

(n)
θ
{ϕh} satisfies the Nyquist condition. So the proof is the same as that of Theorem 5.1.

5.4.2 Weighted norm and speed of convergence

The weighted norm formulation of the data fidelity term results in the computation of HT WHc for deducing
the gradient in each iteration. In order to speed up the convergence rate, typically W is a circulant matrix. It
is the filter which is used in filtered back projection (FBP) method, for example, the frequency response of
the filter used in conventional computed tomography (CT) is ‖ω‖ in the projection domain. Then, the digital
filter which is used in the practical application of CT has the same frequency response as the continuous
filter in one period as shown in Figure 5.2.

Proposition 5.3 (Filtered Back-Projection).

P(n)∗{(q∗P(n) f (·,θ))(y)}(x) = f (x) , (5.25)

where P(n)∗ is the adjoint of the n-th derivative of the x-ray projection and the transfer function of q(y) is

q̂(ωy) =
1

2π
× 1

|ωy|2n−1 .

Then with the assumption c̃ = HT
θ

WHθ c, we have

c̃θ [l] = ∑
k

c[k]rθ [k, l] , (5.26)

where
rθ [k, l] = ∑

j
Pθ {ϕh}( j−h〈k,θ〉)

(
qd,θ [·]∗P {ϕh}(·−h〈l,θ〉)

)
[ j] . (5.27)
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Theorem 5.2. Extension to HT WH
If ϕ satisfies the radial Nyquist criterion for all h ≥ h0 and Wθ is a discrete convolution matrix that

corresponds to the continuous kernel q, then HT
θ

Wθ Hθ is a convolution matrix as well and

[HT
θ Wθ Hθ ]k,l = rθ [k− l] , (5.28)

where

rθ [k] =
(
P

(n)
θ
{ϕh}(·)∗q(·)∗P(n)

θ
{ϕh}(−·)

)
(h〈k,θ〉) . (5.29)

Proof. The generating function ϕ is band-limited, supp{ϕ̂} ⊂Ω2
h. It implies that its x-ray transform is also

band-limited so that it satisfies the Nyquist condition. Therefore
(
qd,θ [·]∗Pθ ϕ[·]

)
[ j] = (qθ (·)∗Pθ ϕ(·))( j) , (5.30)

where f [·] defines the sequence of the sampled point values of the continuous function f . The rest of the
proof is the same since (qθ (·)∗Pθ ϕ(·))(y) is band-limited.

5.4.3 Extension to higher dimension
Theorem 5.3. Extension to higher order dimension For every function f (x) = ∑k∈Zd ckϕ(x/h− k) ∈
L(Rd), if ϕ satisfies the radial Nyquist criterion for all h ≥ h0, then for all h ≥ h0, c̃ = HT

θHθc can be
computed using

c̃[k] = (c[·]∗ r[·])[k] , (5.31)

with
r[k] = (Pθ {ϕh}(·)∗Pθ {ϕh}(−·))(hPθ⊥k) . (5.32)

The matrix Pθ⊥ ∈ Rd×d−1 is the projection matrix described in (2.4).

5.5 Experimental validation

5.5.1 One-by-one comparison
X-ray transform

In order to validate the digital convolution implementation of HT H, we test it on two different objects as
shown in Figure 5.3. The first one is a Shepp-Logan phantom and the next one is a coronal section of a
human lung. We first compute HT Hc where H is the system matrix corresponding to conventional CT.
Equation (5.5) is used for exact computation. Different scale parameters h = 1,2,4,8 for 180 orientations
which have been uniformly distributed between 0 and π are investigated. We then use the proposed digital
filter implementation with the kernel suggested in (5.29). The signal-to-noise ratio between two different
implementations and their computation times are given in Table 5.2 and 5.3, respectively. The results of two
different implementations are depicted in Figures 5.4 (a) and 5.4 (b). Note that the speed of the implementa-
tion using the proposed digital kernel is independent of the support of the given basis function, the number
of orientations, and the scale ratio h. Its computational cost is proportional to N2 logN where the object
size is (N×N). On the other hand, the computational cost of the typical implementation is proportional to(
number of orientations×h×N2× support of the basis function

)
.
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h = 1 h = 2 h = 4 h = 8
t1 (second): kernel implementation (5.29) .3 .08 .02 .005

t2 (second): 93.03 39.8 23.8 11.8
exact implementation using (5.5)

t2/t1 310 497.5 1190 2360

Table 5.2: Time ratio between the kernel implementation in (5.29) and (5.5).

(a) (b)
Figure 5.3: (a) Shepp-Logan phantom with size (1024×1024). (b) A coronal section of a lung
with size (751×751).

h = 1 h = 2 h = 4 h = 8
phantom (cubic B-spline) (dB) 94.2 102 105 105

phantom (dB) 95 102.3 105 105
(KBWF a = 2, m = 2, α = 8)

lung (cubic B-spline) (dB) 95.8 100 100 100
lung (dB) 96 100 100 100

(KBWF a = 2, m = 2, α = 8)

Table 5.3: Signal-to-noise ratio between the kernel implementation in (5.29) and (5.5) in conventional CT.

The first derivative of the x-ray transform

We then conduct the same experiment in the case of the first derivative of the Radon transform (mathematical
model of differential phase-contrast imaging). The approximation constant in the context of differential
variants of the x-ray transform is given in the following proposition:

Proposition 5.4. The approximation constant between the kernel r(n)
θ

and the exact calculation of H(n)T
θ H(n)

θ
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0.3(s) 94.5(s)SNR	  =	  94	  dB
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Figure 5.4: Comparison of the HT H using the kernel implementation and direct application

is given by

Ckernel = ‖e‖∞ = max
k,l
|Rθ [k, l]− rθ [l−k]| ≤C

∫

‖ω‖≥π

‖ω‖2n|ϕ̂(ωh)|dω , (5.33)

which is zero when the basis function satisfies the radial Nyquist criteria.

This proposition implies that, in the context of differential phase contrast tomography, the approximation
constant is linked to the relative energy outside the radial Nyquist criteria of the Laplacian of the basis
function. The signal-to-noise ratio values are given in Table 5.4.

h = 1 h = 2 h = 4 h = 8
phantom (cubic B-spline) (dB) 18.7 19.4 28.4 48.9

phantom (dB) 22.6 33.7 43.5 57.7
(B-spline degree 5) (dB)

lung (cubic B-spline) (dB) 20 25 27 47
lung (dB) 20.8 32.4 38.3 58

(B-spline degree 5)

Table 5.4: Signal-to-noise ratio between the kernel implementation in (5.29) and (5.5) in the case
of the first derivative of the x-ray transform.
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5.5.2 Performance evaluation of the kernel in different reconstruction frameworks
The main reason of the proposed kernel is to improve the speed of the reconstruction by proposing a con-
volution framework instead of the exact calculation of HT

θ
H. In this part, we evaluate the performance of

different reconstruction schemes in two different implementations. In order to evaluate their performance,
we plot the cost function with respect to the iteration number using the exact formulation and the kernel
implementation. We first use conjugate gradient. The cost function values with respect to the iteration num-
ber is shown in Figure 5.5(a). Then, the performance of ADMM-PCG and CRWN techniques described in
Chapter 3 are depicted in Figure 5.5(b) and Figure 5.5(c), respectively. It substatiates claim that, although the
kernel implementation is not exact when we use cubic B-spline, it still yields a cost function that promotes
convergence to the same value.
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Figure 5.5: Cost function versus iteration number when either the exact formulation of HT H is
used or the proposed kernel formulation for (a) conjugate gradient (b) ADMM-PCG (c) CRWN
reconstruction frameworks.



Chapter 6

X-ray Grating Interferometry:
potentially in vivo imaging modality

1 In this chapter, we first briefly explain the physical setup of grating-based x-ray imaging (GI) and derive
its physical model based on the wave equations. Our basic approach (ADMM-PCG) is developed in the
context of GI to reconstruct the real part of the refractive index of the imaged sample. We finally evaluate
the performance of our basic methodology with state-of-the-art techniques by conducting experiments on
real data.

6.1 Motivation

Weitkamp et al. [13] and Momose et al. [19] developed a new X-ray imaging method based on grating
interferometry (GI). It has attracted increasing interest in a variety of fields owing to its unique combina-
tion of imaging characteristics. First, GI provides a high sensitivity to electron-density variations, down to
0.18e/nm3 [26]. This makes the technique particularly suitable for soft-tissue specimens. It has been ap-
plied successfully to biological samples such as insects [13, 26], rat-brain tissue, and even human as breast
tissue [108]. Second, GI produces three complementary types of information; namely, attenuation, phase-
shift, and dark-field measurements. In differential phase-contrast imaging (DPCI), one focuses exclusively
on the phase information, which in principle allows one to reconstruct the real part of the refractive index
distribution of the object. Third, GI does not require a highly monochromatic source, which means that con-
ventional laboratory X-ray tubes can be used. The combination of the aforementioned characteristics makes
GI suitable for a broad range of applications, such as material sciences (e.g., material testing), biomedical
research (e.g., monitoring drug effects), or even clinical diagnostics (e.g., mammography).

6.2 Physical Model

An X-ray plane wave can be characterized by its intensity and phase. However the intensity is the only
directly measurable part. Therefore, to extract the phase it is necessary to map this information into intensity

1A part of this chapter has been presented in [36]

71
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X-‐ray
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D

Figure 6.1: Grating-based X-ray imaging setup. The phase grating introduces a phase shift of
π in the transmitted wave. The absorption grating is necessary for measuring the received wave
given the limited resolution of the detector.

patterns. In DPCI, this is achieved by using grating interferometers. The principle has been described in
detail in [13, 109, 110], and we briefly review it here.

The physical setup of GI is depicted in Figure 6.1. It consists of an object on a rotation stage, a phase
grating (G1), and an analyzer absorption grating (G2) which are behind the sample. Typically the phase
grating produces a phase shift of π on the incident wave. After passing through the object, the X-ray
reaches the phase grating which introduces a periodic phase modulation. It essentially splits the beam into
its first two diffraction orders. A periodic interference pattern perpendicular to the optical axis is formed.
To measure this pattern with high resolution, one then uses a phase stepping technique (PST) [13]. To that
end, an absorption grating is placed in front of the detector with the same periodicity and orientation as the
interference pattern. In this technique, the absorption grating is moved perpendicular to the optical axis and
the intensity signal in each pixel in the detector plane is recorded as a function of the grating position xg.
The recorded intensity is called the phase stepping curve (PSC).

When an object is placed on the optical path, the illumination wave is attenuated and refracted. The
refraction causes a local shift of the interference pattern. This displacement is given by

4xg(y,θ) = dγ(y,θ),

where d is the distance between the two gratings. The refraction angle γ is proportional to the derivative of
the phase of the output wave with respect to y, like in

γ(y,θ) =
λ

2π

∂φ(y,θ)
∂y

, (6.1)
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where γ(y,θ) is the refraction angle in radians and λ is the wavelength. The phase shift induced by the
object on the transmitted beam is given by

φ(y,θ) = P{α}(y,θ) . (6.2)

For a given photon energy E, α takes the form

α =
r0}2c2

2πE2 ρe , (6.3)

with r0 the classical electron radius, } the reduced Planck’s constant, and c the speed of light. These relations
yield

g1(y,θ) =
1
d
4 xg(y,θ) =

∂P{α}
∂y

(y,θ) . (6.4)

For our purpose, (6.4) characterizes the forward model of DPCI: α is the quantity of interest and g1 is the
physically measurable signal.

In addition to the introduced displacement on the PSC, the object causes the average and the amplitude
of the PSC vary. The average of the PSC is linked to the average of the intensity on that pixel. This
measurement corresponds to the conventional CT whose mathematical model is the x-ray transform of the
imaginary part of the refractive index of the object,

g2(y,θ) = P{β}(y,θ) . (6.5)

The β can be expressed as
β =

(
mZn +b

)
ρe (6.6)

where ρe is the electron density, Z the effective atomic number, and m, n, b parameters that depend only on
the details of the experimental implementation and not on sample properties [111].

The variation of the amplitude is known as the visibility. Its formulation is given by

g3(y,θ) =
amax(y,θ)−amin(y,θ)
amax(y,θ)+amin(y,θ)

, (6.7)

where amax(y,θ) and amin(y,θ) are the maximum and the minimum value of the PSC for the the index (y,θ).
This is modeled by

g3(y,θ) = P{s}(y,θ) , (6.8)

where s is a generalized scattering parameter that quantifies the local scatter strength [93].

6.3 Differential phase-contrast imaging
X-ray phase-contrast imaging (PCI) is a promising alternative to absorption-based computed tomography
(CT) for visualizing many structures in biological samples, in particular soft-tissues. PCI is based on the
phase shift induced by the propagation of a coherent wave through the investigated object. Various PCI
methods have been developed including analyzer based [8–10], interferometric [11–13], and free space
propagation methods [14–16]. These methods differ substantially in terms of the physical signal that is
measured and the required experimental setup.

DPCI essentially yields the derivative of the Radon transform of the real part of the refractive-index map
of the object. This map can therefore be retrieved using a suitable variant of the filtered back-projection
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(FBP) algorithm known from conventional tomography. However the FBP method requires a large number
of viewing angles, and thus the acquisition time is very long. The long radiation time can also damage
biological samples. This provides a strong motivation for developing algorithms that can handle fewer
views, so as to reduce the exposure time.

6.3.1 Mathematical Consideration
Available descriptions of X-ray DPCI only provide a qualitative explanation of this interferometric sys-
tem [13,112,113]. However we are not aware of a self-contained theoretical description of X-ray DPCI. We
have thus developed a concise mathematical model that is solely based on wave optics. Such a character-
ization is necessary for quantitative imaging and for recasting the computerized reconstruction as a linear
inverse problem. At the same time it clarifies which approximations are used to model the system and un-
der which conditions imaging can be performed. Our main contribution is a concise physical derivation of
the relationship between the displacement of the interference fringes and the derivative of the phase of the
incoming wave. In addition we give several conditions that need to be fulfilled to make imaging possible.
We rely exclusively on standard wave optics so as to make the presentation accessible. For simplicity we
consider only one lateral dimension, but our description can easily be extended to 2 dimensions since the
geometry of the interferometer is separable.

A simplified X-ray DPCI setup is represented in Figure 6.2 and the corresponding notations are summa-
rized in Table 6.1.
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Figure 6.2: Setup of grating-based x-ray imaging in 2D.

Regarding the propagation of waves within the interferometer we make the following two assumptions:

Assumption 6.1 (Fresnel diffraction). (y− x)2� D2.
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Notation Description Typical value/Definition
x Input-plane coordinate
y Imaging-plane coordinate
z Axial coordinate
λ Wavelength 1.38(Å)
d1 Phase-grating period 4(µm)
D Distance between input plane and imaging plane 2.32(cm)
φ(x) Phase of the input-plane wave field
ψ(x) Phase-grating profile ψ(x) = rect(2x/d)−2rect(x/d)
F Fourier transform operator F{ f}(ω) =

∫
∞

−∞
f (x)e−iωxdx

Table 6.1: Description of notations.

In addition we assume that the phase of the incoming wave varies slowly.

Assumption 6.2 (Taylor approximation). For l ∈ Z and x ∈ [(l−1/2)d,(l +1/2)d],

φ(x)' φ(ld)+(x− ld)φ ′(ld) . (6.9)

In other words, we are approximating the phase with a piecewise-linear function. We can then show that,
at the imaging plane, the diffracted wave is a sum of shifted versions of the Fourier transform of the grating
profile (up to some phase factors).

Proposition 6.1. The wave field at the imaging plane is proportional to

∑
l∈Z

exp(iφ(ld))exp
(
iφ(y− ld)

)
ψ
(
y− ld−λDφ

′(ld)/2π
)
, (6.10)

where

φ(y) = exp
(

iπ
y2

λD

)

ψ(y) = F

{
ψ(x)exp

(
iπ

x2

λD

)}(
2π

λD
y
)
. (6.11)

Most importantly, the position of these patterns depends linearly on the derivative of the phase.

Proof. From Assumption 6.1 we can apply the Fresnel diffraction formula (see [114])

∫ +∞

−∞

exp(iφ(x))

(
∑
l∈Z

ψ(x− ld)

)
exp
(

iπ
(y− x)2

λD

)
dx . (6.12)

From there we use Assumption 6.2 (Taylor approximation) to get

∑
l∈Z

exp(iφ(ld))
∫ +∞

−∞

exp
(
i(x− ld)φ ′(ld)

)
ψ(x− ld)exp

(
iπ

(y− x)2

λD

)
dx . (6.13)

Next we rewrite the integral using the change of variable x′ = x− ld and obtainn

∑
l∈Z

exp(iφ(ld))
∫ +∞

−∞

exp
(
ixφ
′(ld)

)
ψ(x)exp

(
iπ

(y− ld− x)2

λD

)
dx . (6.14)
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Developing the quadratic term then yields

∑
l∈Z

exp(iπ(ld))
∫ +∞

−∞

exp
(
ixφ
′(ld)

)
ψ(x)exp

(
iπ

(y− ld)2 + x2−2(y− ld)x
λD

)
dx . (6.15)

Finally separating the exponential into individual factors leads to

∑
l∈Z

exp(iφ(ld))exp
(

iπ
(y− ld)2

λD

)∫ +∞

−∞

ψ(x)exp
(

iπ
x2

λD

)
exp
(

i2π
y− ld−λDφ ′(ld)/2π

λD

)
dx . (6.16)

It remains to observe that the integral is actually a Fourier transform.

6.3.2 Imaging requirements
In this section we discuss under which conditions one can extract the derivative of the phase from the
diffraction pattern.

Separable fringe patterns

The first requirement is that the individual diffraction patterns in the sum of Property 1 do not overlap too
much, so that we can separate them. To obtain a quantitative condition, we use the simplifying assumption
that the grating profile is

ψ(x) = rect(x/d) (6.17)

and we will also neglect the additional phase factors. Then

F{ψ}
(

2πy
λD

)
= dsinc

(
dy
λD

)
(6.18)

and the Rayleigh criterion for separating two such functions is given in the Condition 6.3.1.

Condition 6.3.1 (Separability).
λD/d < ∆y . (6.19)

Using the values in Table 1, λD/d ' 0.8×10−6.

Measurable displacement

For the diffraction patterns to be separable, the displacement due to the derivative of the phase should only
be a fraction of the Rayleigh distance. At the same time, it should be large enough to be measurable using a
phase-stepping technique (that is, moving the intensity grating along the y axis). This motivates the arbitrary
condition λDφ ′(ld)/2π ' λD/10d.

Condition 6.3.2 (Measurability). φ ′(ld)' 2π/10d .

This means that the practical phase gradients that can be measured with this technique are on the order
of one cycle (2 radians) per 40µm when the values of Table 6.1 are taken into account.
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Figure 6.3: (a) Talbot carpet for phase grating. The intensity curves correspond to two different
distances from the grating as specified in (a) by vertical lines. The intensity of (1) and (2) is
depicted in (b) and , respectively.
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Optimal contrast

Another issue is how to best choose the distance D between the phase grating and the imaging plane. We ad-
dress this problem in the case where there is no sample before the phase grating ( (x) = constant). Introducing
an object in the beam path amounts to perturbing this reference case.

Proposition 6.2. If the wave arriving at the phase grating is plane, the field at the imaging plane is propor-
tional to ∫

∞

−∞

ψ(x)∑
l∈Z

exp
(
−iπ

l2d2

λD

)
exp(i2π(y− x)/d)dx . (6.20)

In particular, if D = d2/2Nλ where N ∈ N, the field reduces to ∑l∈Z ψ(x− ld).

The fact that the grating profile is repeated at distances that are integer multiples of 2d2/λ is known
as the Talbot effect. Note that when using a phase grating such configurations are not desired because the
contrast vanishes (constant intensity).

Proof. In the case of a plane wave, the Fresnel diffraction formula (1) reduces to

∫ +∞

−∞

ψ(x)∑
l∈Z

exp
(

iπ
(y− x− ld)2

λD

)
dx . (6.21)

The integral (6.21) is a convolution. To compute the second function involved in this convolution (the sum)
we use the Poisson summation formula

∑
l∈Z

f (t− ld) =
1
d ∑

l∈Z
F{ f}(2πλ/d)exp(i2πlt/d) (6.22)

with t = y− x. Here f (t) = exp(iπt2/λD) and thus F{ f}(ω) =
√

iλDexp(−iλDω2/4π), which yields
the general result. If D = d2/2Nλ we have F{ f}(2πl/d) ' 1. Noting that this also happens when f (t)
is the Dirac distribution δ (t) and applying the Poisson summation formula in the other direction yields the
particular case (convolution with a stream of Diracs).

6.4 Reconstruction framework using Alternating direction method of
multipliers with preconditioned conjugate gradient

We develop the proposed reconstruction framework in the context of GI. In this regard, we formulation the
reconstruction as an optimization problem 4.9.

6.4.1 Discretization of the Forward model

The mathematical model of differential phase contrast tomography is based on the first derivative of the
x-ray transform of the real part of the refractive index of the object. The model of the dark field and the
attenuation part are linked to the x-ray transform. In order to discretize the forward imaging operator, we
use the discretization scheme introduced in Section 3.1.
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6.4.2 problem specific regularization

The regularization term is chosen based on the following considerations: First, we observe that the null
space of the derivatives of the Radon transform contain the zero frequency (constant). To compensate for
this we incorporate the energy of the coefficients into the regularization term. Second, to enhance the edges
in the reconstructed image, we impose a sparsity constraint in the gradient domain. This leads to

Ψ1(c) = ‖c‖2 ,

Ψ2(c) = ∑
k

‖{Lc}k‖1 , (6.23)

where λ1 and λ2 are regularization parameters and {Lc}k ∈R2 denotes the gradient of the image at position
k. More precisely, the gradient is computed based on our continuous-domain image model

∂ f
∂x1

[k1,k2] = (h1[·, ·]∗ c[·, ·])[k1,k2]

∂ f
∂x2

[k1,k2] = (h2[·, ·]∗ c[·, ·])[k1,k2] , (6.24)

where h1 = (∂/∂x1)ϕ and h2 = (∂/∂x2)ϕ .
If the basis function is the tensor product of B-splines, the following property holds:

Proposition 6.3. Let f (x) = ∑k∈Z2 ckβ n(x−k). The gradient of f on the Cartesian grid is

∂ f
∂x1

[k1,k2] = ((h1[·,k2]∗ c[·,k2])[k1, ·]∗b2[k1, ·])[k1,k2]

∂ f
∂x2

[k1,k2] = ((h2[k1, ·]∗ c[k1, ·])[·,k2]∗b1[·,k2])[k1,k2] , (6.25)

where k1,k2 ∈ Z, hi[k1,k2] = β n−1(ki +
1
2 )−β n−1(ki− 1

2 ), and bi[k1,k2] = β n(ki) for i = 1,2.

This property allows one to compute the gradient operator for the case of cubic B-splines at the cost of
simple finite difference. It is consistent with the continuous-domain image model.

A standard result for FISTA-type algorithms is that the solution of the minimization of Lµ(ck+1,u,αk)
with respect to u is given by the shrinkage function [87, 115]

uk+1 = max
{∣∣∣∣Lck+1 +

αk

µ

∣∣∣∣−
λ2

µ
,0
}

sgn(Lck+1 +
αk

µ
). (6.26)

6.4.3 Parameter selection

From a statistical point of view, the Baysian estimator for the additive Gaussian white noise inverse problem
g = Hc+n can be written as

ĉ = argmin
c

{
1
2
‖Hc−g‖2−σ

2
n log p(c)

}
, (6.27)
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where σ2
n is the noise variance and p(c) is the prior density of the signal. Assuming that the gradient sample

values uk = {Lc}k are i.i.d. Laplace distributed, we have

− log p(c) ∝
1

σu
∑
k

‖uk‖1 ,

where σ2
u is the variance of the gradient values. On the other hand, by definition SNR= 10log(‖Hc‖2

2 /Nσ2
n )

where N is the number of pixels in the image. Therefore σ2
n = 10−.1SNR ‖Hc‖2

2 /N. In practice ‖Hc‖2
2 can

be approximated by ‖g‖2
2 and σ2

u is proportional to ∑k ‖uk‖2
2 which is empirically estimated using ‖g‖2

2.
This leads to the following rule of thumb for setting the TV regularization parameter: λ2 ∝ 10−.1SNR ‖g‖2.
Therefore, the TV parameter is proportional to the norm of the measurement. The proportionality constant
is related to its signal-to-noise ratio.

The Tikhonov parameter is chosen as small as possible and is set to λ1 = 10−5. Here we use λ2 =
||g||2×10−3. Based on our experience, the parameter µ can be chosen ten times larger than λ2. The number
of inner iterations for solving the linear step plays no role in the convergence of the proposed technique, but
affects speed; we suggest to choose it as small as possible, typically 2 or 3. We use cubic B-splines with
m = 3 as the basis functions.

6.4.4 Convergence and inexact minimization

In ADMM-PCG, we use conjugate gradient in order to solve the first step of ADMM because there is no
direct solution. One main advantage of ADMM is that it can converge even when the minimization steps have
been solved approximately using an iterative method, if the minimizations satisfy an appropriate condition,
such as being summable [92, 107].

6.4.5 Stopping criteria

Is has been shown in [92] that there is a bound on the objective function of the current point which in-
volves primal and dual residuals. The primal and dual residuals are denoted by r and s, respectively. Their
definitions are

rk = Lck−uk

sk = LT
(

uk−uk−1
)
. (6.28)

This suggests that a reasonable termination criteria is when the norm of primal and dual residuals is
small.

6.4.6 Convergence speed in practical problems

In general, ADMM can be slow for high accuracy convergence. However, it converges to a sufficiently
accurate solution for many applications within a few iterations. This makes it practically valuable for the
cases when modest accuracy is sufficient. Fortunately, this is usually the case of the large-scale reconstruc-
tion problem. Note that typically there is not enough prior information of the object of interest, then the
proposed cost function is based on some approximations [83].
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6.5 Experimental Validation

6.5.1 Performance metrics
We use the structural similarity measure (SSIM) [116, 117] and signal-to-noise ratio (SNR) for measuring
the quality of the reconstructed image. SSIM is a similarity measure proposed by Z. Wang et al. which
compares the luminance, contrast, and structure of images. SSIM is computed for a window of size (R×R)
around each image pixel. The SSIM measure for two images x and x̂ for the specified window is

SSIM(x, x̂) =
(2µxµx̂ +C1)(2σxx̂ +C2)

(µ2
x +µ2

x̂ +C1)(σ2
x +σ2

x̂ +C2)
, (6.29)

where C1 and C2 are small constant values to avoid instability. µx and µx̂ denote the empirical mean of the
images x and x̂ in the specified window, respectively. The empirical variance of the corresponding images
are σx and σx̂. The covariance of two images is denoted by σxx̂ for the corresponding window. In our
experiments, we choose C1 = C2 = (.001 ∗ L)2 where L is the dynamic range of the image pixel values.
SSIM for the total image is obtained as the average of SSIM over all pixels. It takes values between 0 and 1
with 1 corresponding to the highest similarity.

Our other quality measure is the SNR. If x is the oracle and x̂ is the reconstructed image we have

SNR(x, x̂) = max
a,b∈R

20log
||x||2

||x−ax̂+b||2
. (6.30)

Higher values of the SNR correspond to a better match between the oracle and the reconstructed image.

6.5.2 Experimental result
To validate our reconstruction method, we conducted experiments with real data acquired using the TOM-
CAT beam line of the Swiss Light Source at the Paul Scherrer Institut in Villigen, Switzerland. The syn-
chrotron light is delivered by a 2.9 T super-bending magnet. The energy of the X-ray beam is 25keV [118].
We used nine phase steps over two periods to measure the displacement of the diffraction pattern described
in Section 2. For each step a complete tomogram was acquired around 180 degrees; we used 721 uniformly
distributed projection angles. Image acquisition was performed with a CCD camera whose pixel size was
7.4µm.

For our experiments we used a rat brain sample. The sample is embedded in liquid paraffin at room
temperature. This is necessary to match the refractive index of the sample with its environment, so that the
small-refraction-angle approximation holds. Finally the projections were post-processed, including flat-field
and dark-field corrections, for the extraction of the phase gradient.

Figure 6.4 contains a comparison of the performance of the proposed algorithm against FISTA. For
comparison, the convergence in [35] requires at least 65 iterations to converge. This allows for a rough yet
informative comparison of computational costs, in terms of number of evaluations of the forward model or
its adjoint (which are the most expensive operations in the schemes discussed here). In [35], it is required to
compute the forward operator twice per iteration. Therefore, the cost estimate is 65× 2 = 130 evaluations
of the forward operator. Meanwhile, our reconstruction scheme converges after 5 outer iterations with 2
conjugate-gradient inner iterations. Each conjugate gradient step requires one application of the forward op-
erator and one application of its adjoint. Since the number of viewing angles is typically less than the size of
the object, the cost of the adjoint operator is less than the computation of the forward operator. If we neglect
this fact, we need (2×2×5) = 20 evaluations of the forward operator. Based on these considerations, we
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expect our algorithm to be substantially faster. It demonstrates the benefits of using a warm initialization as
well as a problem-specific preconditioner for the linear optimization step.

Figure 6.4: Speed of convergence of different iterative techniques for solving our regularized
problem. Significant gains over the standard FISTA algorithm can be obtained using our ADMM-
based scheme. Observe that the number of inner iterations in the ADMM-PCG method does not
significantly influences its convergence.

We further investigated the performance of the direct filtered back-projection and of the proposed iterative
reconstruction techniques on a coronal section of the rat brain. The reconstructed images with 721 angles
using GFBP and those produced by our method are shown in Figure 6.5. In terms of quality, for real data,
our results are more less equivalent to using the Kaiser Bessel Window functions proposed in [35].

The GFBP reconstruction contains artifacts at the boundary of the image and at specific anatomical features.
For example, the bottom-right sub images in the reconstructions of Figure 6.5 show the mammal-thalamic
tract in this coronal section. One can clearly see oscillatory artifacts in the GFBP reconstruction. This
could confuse the biologist or automated diagnostic systems for determining the nucleus and immoneurins
in that region. The middle-right and top-right images show a part of the thalamus and the region between
the thalamus and the hippocampus, respectively. To reduce the artifacts in the GFBP technique, we also
implemented a smoothed version of the GFBP algorithm. Specifically, we modified the filter in the third step
of Algorithm 3 as

q̂(ωy) =
1

2π

1
|ωy|
×hk(ωy) , (6.31)

where h(ωy) is a lowpass filter and k is an exponent that acts as a smoothing parameter. We chose h(ω)
to be the standard Hamming window. The reconstructions are shown in the bottom row of Figure 6.5.
They suggest that with GFBP there is a tradeoff between artifacts and image contrast. Note that for these
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SSIM = .96
SNR   = 35 dB

SSIM = .78
SNR   = 28 dB

SSIM = .91
SNR   = 36.9 dB

SSIM = .15
SNR   = 9.2 dB

SSIM = .96
SNR   = 28 dB

SSIM = .91
SNR   = 27.3 dB

SSIM = .94
SNR   = 36.4 dB

SSIM = .33
SNR   = 12.89 dB

SSIM = .51
SNR   = 21.4 dB

SSIM = .60
SNR   = 22.2 dB

SSIM = .43
SNR   = 26.1 dB

SSIM = .15
SNR   = 7.1 dB

SSIM = .16
SNR   = 10.69 dB

SSIM = .22
SNR   = 10.20 dB

SSIM = .78
SNR   = 25.92 dB

SSIM = .41
SNR   = 27.13 dB

SSIM = .49
SNR   = 29.1 dB

SSIM = .96
SNR   = 24.55 dB

SSIM = .95
SNR   = 35.8 dB

SSIM = .89
SNR   = 37.0 dB
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(f)

Figure 6.5: Comparison of the reconstruction results for 721 viewing angles (first column) and
181 viewing angles (second column). (a,d) GFBP, (b,e) GFBP with smoothing kernel, (c,f) the
iterative ADMM. The sub-images correspond to the region between the thalamus and the hip-
pocampus (top), a part of the talamus (middle), and the Fornix (bottom). Notice the oscillatory
artifacts produced by GFBP. Applying a smoothing kernel reduces the artifacts but also blurs the
reconstruction.

experiments the parameter k was optimized so as to achieve the best SNR. The figure of merits (SNR and
SSIM) are indicated below each image in Figure 6.5. Visually the reconstructed image with 721 angles using
our proposed technique is more faithful in comparison with the GFBP approach. Therefore, we consider it
as our gold standard for investigating the dependence of our algorithm on the number of views as shown
in Figure 6.6. The SNR and SSIM values are computed for the main region of the sample which includes
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the brain. they suggest that we can reduce the number of views with our method at least fourfold while
essentially maintaining the quality of the standard reconstruction method (FBP with a complete set of views).

Figure 6.6: The SNR and SSIM metrics for images reconstructed from a subset of projections.



Chapter 7

Improved Reconstruction Scheme for
X-ray Grating Interferometry

1 In Chapter 6, we applied our basic reconstruction framework (ADMM-PCG) in the context of GI. Our
experimental results show the feasibility of our framework. They suggest that the proposed technique out-
performs the-state-of-the-art methods. The drawback of ADMM-PCG is that there is not a clear way to
impose the convex constraints such as the positivity of the refractive index on the solution. Moreover, some
line artifacts were visible on the reconstruction. In this chapter, we consider a GI problem with the same
physical model as discussed in Chapter 6. We first use the constrained regularized weighted norm (CRWN)
to improve the reconstruction. In the context of differential phase contrast imaging, we then investigate
the situations in which the measurements are wrapped. We develop a reconstruction framework in order to
simultaneously unwrap and reconstruct the object of interest.

One advantage of GI is that it provides simultaneously an absorption-contrast and a phase-contrast in-
formation. In this regard, we develop a reconstruction framework to simultaneously retrieve the real and the
imaginary part of the refractive index (complex refractive index reconstruction).

7.1 Constrained regularized weighted norm
The CRWN algorithm is described in Section 4.2.2. The main step is the choice of the regularization and its
proximal map.

7.1.1 Problem specific regularization
As for the regularization, we consider two distinct options.

1) Our first option is the use of a total-variation (TV) regularization term to enhance the edges in the
reconstructed image. Therefore, we set

Ψ2(c) = ‖Lc‖1,1 (7.1)

with ‖Lc‖1,1 = ∑i ‖{Lc}i‖1, where the sum is computed on all B-spline coefficients and {Lc}i ∈ R2 is
the gradient vector of the image at position i. The discrete gradient operator L : RN → RN×2 is computed

1A part of this chapter has been presented in [67]

85
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according to Proposition 2 in [36]. Here, the regularization operator is the discrete gradient operator and the
mixed `1− `1 norm is chosen as the potential function. As the dual norm of the `1 norm is `∞, the dual ball
is defined as

B∞,∞ = {p = [pT
1 ,p

T
2 , ...,p

T
N ]

T ∈ RN×2 :
‖pi‖∞

≤ 1, ∀i = 1,2, ...,N} . (7.2)

Therefore, the orthogonal projection of y ∈ RN×2 = [yT
1 ,y

T
2 , ...,y

T
N ]

T onto this ball is ỹ = PB∞,∞(y) with

[ỹi] j = sgn([yi] j)min(|[yi] j|,1),
∀i = 1,2, ...,N, j = 1,2 , (7.3)

where [·] j is the jth entry of the corresponding vector and ỹ = [ỹT
1 , ỹ

T
2 , ..., ỹ

T
N ]

T . This regularization is well-
matched to piecewise-constant images.

2) Owing to the fact that biological and medical specimens consist mostly of filament-like and compli-
cated structures, we investigate higher-order extensions of total variation. We apply the Hessian Schatten-
norm regularization (HS) as our second option. It can eliminate the staircase effect of TV regularization and
results in piecewise-smooth variations of intensity in the reconstructed image. We set

Ψ2(c) = ‖Hc‖1,S1
, (7.4)

where H : RN → RN×2×2 is the discrete Hessian operator and ‖Hc‖1,S1
is the mix of `1 and nuclear norm.

The norm can be computed with ‖Hc‖1,S1
= ∑i(σ1,i +σ2,i), where σ1,i and σ2,i are the singular values of

the Hessian matrix at position i. Therefore, the corresponding unit-norm dual ball is defined as

B∞,S∞
= {p = [pT

1 ,p
T
2 , ...,p

T
N ]

T ∈ RN×2×2 :
‖pi‖S∞

≤ 1, ∀i = 1,2, ...,N} , (7.5)

where ‖·‖S∞
is the `∞-norm of the singular values of the corresponding matrix (for more details, we refer

the reader to [119]).

7.1.2 Parameter setting
The proposed algorithm has several parameters.

• Parameters λ1 and λ2: We use the approach proposed in [36]; λ1 = 10−5 and λ2 = 10−4 ‖g‖. The
experimental results suggest that this choice of parameters yields the optimal performance.

• Parameter µ: This parameter affects the convergence speed of ADMM. Since the algorithm is not too
sensitive to it, we use a fixed value (µ = 1).

• Parameter λ : This is a parameter of the proximal map operator in (4.32). Since the second step of
ADMM is solving (4.18), we have λ = λ2/µ .

• Lipschitz constant L: The Lipschitz constant of ∇ f (p) = −λRPC (z−λRT p) is approximated by
the Lipschitz constant of the same operator without the convex projection PC since the projection on
the convex set is firmly non-expansive. Thus,

L≈ λ
2×λmax(RRT ) , (7.6)
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where λmax(A) is the maximum eigenvalue of the matrix A. For our regularization scheme λmax(RRT )≤
γ where γ = 8 for the TV regularization for two-dimensional problems, and its value is 64 for the HS
regularization as computed in [119].

• Parameter τ: We set it to τ = 1/10×L−1.

7.1.3 Experimental result
We compared the proposed algorithm to FBP and to ADMM-PCG, which appears to be the current state of
the art for the reconstruction of X-ray-DPCI tomograms [36].

(a) (b)

Figure 7.1: Two reference samples (a) and (b).

All experiments involved real data acquired at the TOMCAT beam line of the Swiss Light Source at
the Paul Scherrer Institut in Villigen, Switzerland. The common approach for these experiments is to use a
reconstruction from a large number of projections as a reference for evaluating results obtained with signifi-
cantly fewer projections. In addition, the convex constraints that we apply are the positivity of the refractive
index combined with the support-related constraint that the solution should be zero outside the tube that
contains the specimen.

In order to identify the benefits of the proposed algorithm (CRWN), we first tested the algorithms under
extreme conditions: We used only 72 projections as input, while the reference was reconstructed from 1,200
projections. For this first experiment we used a phantom that was composed of a tube and three cylinders
containing liquids with different refractive indices as shown in Figure 7.1(a).

The performance of different algorithms are compared in Table 7.1. Clearly, the new method outper-
forms ADMM-PCG [36]. Applying the convex constraint improves the signal-to-noise ratio (SNR) and the
structural similarity index measure (SSIM) [116] even further. The result of the algorithm proposed in [120]
is the same as CRWN-TV without CC, but it is slower since it uses FISTA. As expected, owing to the
piecewise-constant structure of the sample, TV outperforms HS regularization.
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The proposed algorithm (CRWN)
Constrained Unconstrained
TV HS TV [120] HS ADMM-PCG [36] FBP

Phantom
SNR(dB) 27.49 23.91 25.89 21.82 17.62 2.177

SSIM 0.509 0.369 0.339 0.196 0.145 0.07
Scaffold

SNR(dB) 25.34 25.58 22.91 22.25 20.09 6.45
SSIM 0.673 0.699 0.574 0.566 0.512 0.186

Scaffold ROI
SNR(dB) 26.51 27.05 23.78 23.75 23.58 23.09

SSIM 0.968 0.974 0.944 0.958 0.852 0.516

Table 7.1: Performance of different reconstruction techniques that have been applied on Phantom
and Scaffold samples.

We conducted another experiment with a coronal section of a scaffold that is used for surgery. The
reference image was built from 2,000 projections as depicted in Figure 7.1(b). The algorithms were then
benchmarked on a subset of 250 projections. Although these conditions are less severe, FBP still produces
high-frequency patterns that are visible in Figure 7.2(a). ADMM-PCG almost completely suppresses these
artifacts, at the expense of light smoothing as shown in Fig. 7.2(b). Overall, CRWN yields sharper images,
as shown in Figure 7.2(c) and 7.2(d), which is also reflected by the quality metrics. In addition, Hessian type
regularization eliminates the staircase effect of TV which is more visible in the selected region of interest.

It is seen in Figure 7.3(a) that CRWN is significantly faster at minimizing the cost functional than the
standard FISTA algorithm. In addition, it appears that the convergence speed is not very sensitive to the
number of inner iterations as we use a warm initialization. We illustrate in Figure 7.3(b) the robustness of
CRWN with respect to the number of projections in terms of SNR. Owing to the poor performance of FBP in
reconstructing boundaries, we compute the SNR for the region specified by a dashed circle in Figure 7.1(b).

7.2 Joint phase unwrapping and radiation dose reduction in DPCI
Phase measurements are ambiguous. In the case of X-ray differential phase-contrast tomography, the mea-
sured phase is the wrapped version of the physical phase shift, as shown in Figure 7.6 (a) and Figure 7.6 (b).
Note that the wrapped measurements introduce strong line artifacts in the reconstructed object.

The wrapping operator can be defined as (the principal domain for the phase is chosen as ]−π,π] here)

W (ϕ) = ϕ +2kπ, with k ∈ Z such thatW (ϕ) ∈ ]−π,π] . (7.7)

Observe that (7.7) implies that
W (a) = a ⇔ |a|6 π . (7.8)

The ambiguity comes from the fact that W is a non-injective operator. Finding the original phase ϕ from
the wrapped phase φ = W (ϕ) is known as the phase unwrapping problem. Phase unwrapping is an ill-
posed problem because infinitely many original phase solutions φ exist for any given phase measurement
ϕ . The discrete space of solutions Sc = {φ +2kπ | k ∈ Z} contains ϕ . There is no general way of finding
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SNR 20.09 dBSNR 23.61 dB
SSIM .889

SNR 25.58 dBSNR 27.05 dB
SSIM .9739

SNR 25.34 dBSNR 26.51 dB
SSIM .9686

SSIM .512

SSIM .699 SSIM .673

SNR 6.45 dBSNR 23.09 dB
SSIM .882 SSIM .186

(a) (b)

(c) (d)

Figure 7.2: Scaffold reconstruction with 250 projections using (a) FBP, (b) ADMM-PCG, (c)
CRWN with HS regularization and (d) CRWN with TV regularization.

the best solution to phase unwrapping and problems should be studied in a case by case manner. Additional
knowledge has to be provided in order to determine a particular solution. One possibility is to use side mea-
surements such as attenuation contrast [121] to correct pixels that are suspected to be incorrectly wrapped.
Another procedure is to use prior knowledge about the data. Typically, phase shift values could theoretically
take any value, but it can reasonably be assumed that they span a finite range for objects with finite dimen-
sions. Moreover, refractive indices are bounded by the highest and lowest values of the materials present in
the sample and the type of objects being imaged.

Itoh pioneered phase unwrapping theory by proposing a solution that minimizes the phase differences [122].
His solution is obtained by computing the finite differences of the observed phase, wrapping them, and then
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Figure 7.3: The reconstruction performances concerning speed and quality is shown in (a) and
(b), respectively.

summing them again to recover the unwrapped phase values (see Figure 7.4). The original phase is recov-
ered under the condition that |∆ϕi| < π ∀i, which is known as Itoh’s condition. This is a central condition
for several phase unwrapping algorithms, as it combines a condition on sampling rate and phase evolution.
Note that applying the algorithm on the reversed signal leads to the same solution up to a constant, because
of the integration step. The principle of the algorithm can be seen as using the previous point as an estimator
for the current point and to take the solution in S that is the closest to the estimator (while the wrapped
phase can be seen as using 0 as an estimator). Based on this observation, other algorithms for direct phase
unwrapping can be built, by simply choosing a different estimator.

High sensitivity to electron density variations in DPCI provides on one hand the possibility to measure
small phase shifts. On the other hand, it implies that a phase wrapping on small deflection angle can lead to
strong artifacts in the differential phase-contrast images and their reconstructions. In order to eliminate the
artifacts, one can first unwrap the phase measurements. Note that DPCI measurements are the spatial gra-
dient of the phase which makes the unwrapping problem more challenging. Recently, Epple formulated the
unwrapping procedure as a maximum likelihood estimator by taking advantage of the polychromatic spec-
trum provided by conventional X-ray sources. Thus, one can first apply the proposed iterative scheme [123]
to unwrap the phase measurements and then reconstruct the object of interest. This technique is computa-
tionally costly.

Here, we aim at developing a reconstruction framework such that it 1) removes the line artifacts on the
reconstructed object and 2) reduces the radiation dose by decreasing the required number of orientations for
the reconstruction. The goal is to avoid the introduction of extra computational cost in the reconstruction
algorithm. We develop two distinct algorithms. We validate each one using real data measurements. The
sample is an aortic heart valve with two leaflets. Normally, the aortic heart valve has three leaflets. However
around 1% to 2% of the human population have a genetic defect that results in the formation of only two
leaflets [124]. This can have severe effects on the quality of life so that surgery is often recommended. The
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Figure 7.4: Itoh’s Phase Unwrapping; Illustration of Itoh’s algorithm for phase unwrapping.

main problem is the performance reduction of the heart due to the inflammation around and calcification of
the valves, which we want to monitor. Therefore, it is required to be able to segment different tissues and
calcifications in the 3-D reconstructed heart. GI, by providing three different complementary information,
shows significant potential in this case. Modregger [125] showed that effective atomic number by deviding
the imaginary part of the refractive index by its real part show better contrast to segment different parts.
Unfortunately, on the given measurements, the phase information (the real part of the refractive index) suffers
from wrapping problem as shown in Figure 7.6 (a). In the sequel, we validate the proposed methods using
this real data measurements. The sinogram corresponds to the absorption (imaginary part of the refractive
index) and the phase are depicted in Figure 7.5.

(a) (b)
Figure 7.5: The GI setup provides the absorption and the phase measurements simultaneously.
Sinogram of (a) the absorption and (b) the phase measurements.
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1) Unlike filtered back projection type methods, iterative reconstruction algorithms do not need the whole
sinogram. Therefore, we first detect the wrapped points on the sinogram using the Itoh’s rule, and then we
remove them from the measurements. This can be performed by introducing a mask M in front of the system
matrix H or, equivalently, formulating the reconstruction problem as the minimization

c0 = argmin
c∈C

{
J(c) =

1
2
‖Hc−g‖2

M +λ1Ψ1(c)+λ2Ψ2(c)
}

(7.9)

with a weighted norm data fidelity term where M is the mask matrix whose entries are one except at the
unwrapped points discovered by Itoh’s rule where they take zero values. Total variation is chosen as reg-
ularization. We use the generalization of the ADMM reconstruction algorithm to solve the optimization
problem.

To validate the method, we use an aortic heart valve real data measurement. Since there is a correlation
between the real and the imaginary part of the refractive index of this sample, we compare visually the
reconstructions with the imaginary part as depicted in Figure 7.7 (a).

First we use Itoh’s unwrapping operator on the real data phase measurements and then we apply a
standard iterative scheme with total variation regularization. The reconstructed object is shown in Figure 7.7
(b). The strong artifacts are pointed out by yellow arrows. It suggests that the typical regularization scheme
with Itoh’s unwrapping operator is not sufficient to remove the wrapping artifacts.

(a) (b)

(c) (d)

wrapped points using Itoh rule Gaussian kernel around the wrapped points 

Figure 7.6: (a) The wrapped DPCI sinogram. (b) A zoomed region of the wrapped sinogram in
which the wrapped points are more visible. (c) Detected wrapped points using Itoh’s rule. (d)
Gaussian weighted norm around the wrapped points in the sinogram.

Second, we detect the wrapped points by Itoh’s rule, and then we construct the mask as shown in Fig-
ure 7.6(c). We minimize the cost (7.9) using the generalized ADMM introduced in Section 4.2.2. The
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reconstruction result is shown in Figure 7.7 (c ). It suggests that the proposed approach mostly eliminates
the line artifacts on the reconstructed object. In addition, the number of views is reduced fourfold.

(a) (b)

(c) (d)
Figure 7.7: (a) The imaginary part of the refractive index of one coronal section of an aortic
heart valve with two leaflets. The real part of the refractive index is reconstructed using (a)
CRWN without unwrapping; (b) a weighted norm formulation whose weight is the mask given
by Itoh’s rule and taking advantage of a generalized ADMM; (d) a weighted norm whose weight
is the Gaussian weight around the wrapped points and the use of a generalized ADMM.

2) Although the wrapped points of the sinogram suggested by Itoh’s rule are removed, some line artifacts
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are still visible in the reconstructed object. It implies that there are still wrapped points which have not been
detected. Instead of removing points from the measurements, one can assign a weight to each point of
the sinogram. The weight specifies how suspected this point is for being wrapped. The points determined
by Itoh’s rule are wrapped with high probability. Moreover, the points around them are nominated with
probability inversely linked to their distance to these points. Therefore, we dedicate a Gaussian curve around
the suggested points by Itoh’s rule as weights. The weighted operator is depicted in Figure 7.6(d). The
reconstructed object is shown in Figure 7.7(d). In order to compare different reconstruction schemes more
precisely, the region of interest specified by a yellow rectangle in Figure 7.7 (a) is shown in Figure 7.8. The
specified edge is well shaped using the reconstruction framework with the suggested Gaussian weight.

(a) (b)

(c) (d)
Figure 7.8: The ROI of Figures 7.7. (b) The edges are totally eliminated owing to the wrapping
of the measurement. (c) Removing the wrapped points from the sinogram improves the quality of
the reconstruction and the edges have a higher contrast. (d) Adding a Gaussian weight improves
the contrast significantly.
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7.3 Complex refractive index reconstruction
The GI setup provides simultaneous information about the phase shift and the attenuation introduced on the
transmitted wave. In this regard, we develop a reconstruction scheme to simultaneously reconstruct phase
and absorption distribution. The forward model, as stated in Section 6.2, is in the form of

{
g1(y,θ) = ∂P{α}

∂y (y,θ)+n1(y,θ)
g2(y,θ) = P{β}(y,θ)+n2(y,θ),

(7.10)

where n1 and n2 represent the absorption and phase noise that is present in the measurements g1 and g2.
Then, the forward discretization of (8.18) is

g = Hc+n, (7.11)

where g is the vector of measurements, and

H =

[
H(1) 0

0 H(0)

]
. (7.12)

There, H(n) is the system matrix that corresponds to the nth derivative of the x-ray transform given in (3.6).
Moreover, c = (c1,c2) collects in a single column vector each B-spline coefficient of the real and the imagi-
nary part of the refractive index. We say that c is the discrete representation of the object.

7.3.1 Model Fitting
We formulate the joint-retrieval problem of c in the framework of a penalized least-square estimation. Our
goal is to find the minimizer of

J (c) =
1
2
‖Hc−g‖2 +Ψ(c), (7.13)

where Ψ is a regularizing term made of two components.
Letting the first component be Ψ1, we promote the enhancement of the edges by encouraging sparsity in

the gradient of the real and the imaginary part of the refractive index images. We define

Ψ1(c) = ‖Lc‖1 , (7.14)

with Lc = [Lc1 Lc2].
As second component Ψ2, we choose the nuclear total variation, which is a vectorial extension of

TV [126]. Its purpose is to strengthen the correlation of AC and DPC over edges. It is given by the point-wise
sum of Schatten 1-norms of the Jacobian matrix J and is expressed as

Ψ2(c) = ‖Jc‖1,S 1

= ∑
k∈Z2

∥∥∥∥
[

[Dx1 c1]k [Dx2 c1]k
[Dx1 c2]k [Dx2 c2]k

]∥∥∥∥
S 1

.

(7.15)

To be consistent with (8.18), the directional derivative operator must be such that
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[Dx1 ]p =
∂ϕ

∂x1
(p) , [Dx2 ]p =

∂ϕ

∂x2
(p) , (7.16)

where p = (p1, p2). There, [·]p specifies the pth entry of a vector. The Schatten 1-norm ‖·‖S 1 is the `1
norm of the singular values of its matrix argument. Note that the Schatten 1-norm is a convex operator.
The discrete Jacobian operator J maps RN to RN×2×2, where N is the total number of coefficients within
one image. All directional derivatives are computed in accordance with the discretization scheme suggested
by (8.22).

7.3.2 Optimization
We aim at determining ĉ such that

ĉ = argmin
c

{
1
2
‖Hc−g‖2

+λ1 ‖Lc‖1 +λ2 ‖Jc‖1,S 1

}
. (7.17)

We reformulate this unconstrained optimization problem as a problem constrained over the auxiliary vari-
ables u ∈ RN and v ∈ RN×2×2 such that

ĉ = argmin
c,u=Lc, v=Jc

{
1
2
‖Hc−g‖2

+λ1 ‖u‖1 +λ2 ‖v‖1,S 1

}
. (7.18)

The scaled form of its augmented-Lagrangian formulation is

Lµ1,µ2(c,u,v,d1,d2) =
1
2
‖Hc−g‖2

+λ1 ‖u‖1 +
µ1

2
‖Lc−u+d1‖2

+λ2 ‖v‖1,S 1 +
µ2

2
‖Jc−v+d2‖2 . (7.19)

We use the alternating-direction method of multipliers (ADMM) to minimize (7.19). This results in




ck+1 ← argmin
c

{
Lµ1,µ2(c,u

k,vk,dk
1,d

k
2)
}

uk+1 ← argmin
u

{
Lµ1,µ2(c

k+1,u,vk,dk
1,d

k
2)
}

vk+1 ← argmin
v

{
Lµ1,µ2(c

k+1,uk+1,v,dk
1,d

k
2)
}

dk+1
1 ← dk

1 +Lck+1−uk+1

dk+1
2 ← dk

2 +Jck+1−vk+1.

(7.20)

The first minimization step is a quadratic problem. Its gradient is given by

∇Lµ1,µ2(c,u
k,vk,dk

1,d
k
2) =

(H∗H+µ1 L∗L+µ2 J∗ J) c−H∗ g

−µ1 L∗
(

uk−dk
1

)
−µ2 J∗

(
vk−dk

2

)
, (7.21)
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where the superscript symbol ∗ indicates the adjoint operator. We take advantage of a conjugate-gradient
approach to solve this first step. The second step of (7.20) is a minimization in terms of the auxiliary variable
u. It takes the form

uk+1 = argmin
u
{λ1 ‖u‖1

+
µ1

2

∥∥∥Lck+1−u+dk
1

∥∥∥
2
}
. (7.22)

Therefore, the solution involves a point-wise soft-thresholding operation (i.e., the proximal map of the `1
norm), which leads to

uk+1 = prox`1,λ1/µ1

(
Lck+1 +dk

1

)
. (7.23)

The third step of (7.20) is

vk+1 = argmin
v

{
λ2 ‖v‖1,S1

+
µ2

2

∥∥∥Jck+1−v+dk
2

∥∥∥
2
}
, (7.24)

which involves the N optimization problems indexed by m

{v}m = argmin
v

{
λ2 ‖v‖S1

+
µ2

2

∥∥∥
{

Jck+1−v+dk
2

}
m

∥∥∥
2
}
, (7.25)

where {·}m ∈ R2×2 is the mth (2×2) matrix. Solving (7.25) requires the proximal map of the Schatten
1-norm

proxS1,λ
(z) = argmin

u

{
1
2
‖u− z‖2 +λ ‖u‖S1

}
. (7.26)

It has been shown in [126] that the solution of (7.26) can be obtained by considering the singular-value
decomposition (SVD)

z = PΛQ (7.27)

and by rewriting Eq. 7.26 as
proxS1,λ

(z) = Pprox`1,λ
(Λ)Q. (7.28)

Since z ∈ R2×2, the determination of SVD is easy. Consequently, the third minimization step of (7.20) is
summarized as

{v}k+1
m = Pprox`1,λ

(Λm)Q, (7.29)

where Λm is the singular-value matrix of
{

Jck+1 +dk
2
}

m. The remaining two steps of (7.20) are updates
of the augmented Lagrangian parameters. More precisely, λ1 is chosen proportional to the variance of the
phase measurement and λ2 is adjusted according to the side information of how much correlation there is
between phase and absorption. The parameters µ1 and µ2 are fixed to 1.



98 Improved Reconstruction Scheme for X-ray Grating Interferometry

(a) (b)

(c) (d)
Figure 7.9: Reconstructed (a) imaginary part and (b) real part of the refractive index with one
fourth number of orientations. The nice background and enhanced reconstructed edges are more
visible in the depicted ROI (c) and (d).

7.3.3 Experimental result
We use the heart data described in Section 7.2. The reconstructions are depicted in Figure 7.9. The back-
ground of the reconstructed phase is more homogenous than with the scheme in Section 7.2. In addition, the
retrieved edges are sharper. It shows the advantage of simultaneously reconstructing phase and absorption.



Chapter 8

Grating-Based Radiography: Enhanced
Contrast Radiographs in Mamography

1 The radiography is not a tomography problem, but it is relevant clinically, and can benefit from the general
inverse problem modeling we described in Chapter 4. In this chapter, we develop the proposed discretization
and reconstruction scheme in the context of Grating-based radiography.

8.1 Phase Retrieval in Differential Phase contrast Imaging

Differential phase contrast imaging using X-ray grating interferometer is a promising tool to revolutionize
conventional radiography. With an incremental modification to the conventional X-ray imaging apparatuses,
this technology is able to yield three different physical contrasts of the underlying sample simultaneously:
the conventional absorption contrast, the differential phase contrast (DPC), and the small-angle scattering
contrast. This results in much richer information than the traditional absorption-based imaging approaches
[24, 110, 112, 128]. Successful experiments have been demonstrated for mammography [108] and hand
imaging [129, 130] using an X-ray tube-based configuration.

The phase contrast, which is obtained by detecting the phase shifts of the X-ray waves when passing
through the sample, has many advantages in imaging soft tissue (low-absorption materials) compared to
the absorption contrast [12, 16, 110]. The optical properties of a tissue can be characterized by its complex
refractive index n = 1−α + iβ . The quantity α is the decrement of the real part of the refractive index
responsible for the phase shift, whereas the imaginary part β describes the attenuation properties of the
materials. At diagnostically relevant photon energies (i.e., between 10 and 150 keV), the phase shift plays
a more prominent role than the attenuation for soft tissue because α is typically three orders of magnitude
larger than β . The phase shift induces refraction of the X-ray wave traveling through the tissue while the
grating interferometry is designed to detect the resulting overall refraction angle efficiently. In clinical
applications such as mammography and computed tomography, when comparing various tissue samples,
such relative differences in angular deviations are larger than the corresponding relative changes in intensity
(related to the X-ray absorption). As a result, the phase contrast is expected to yield improved contrast when
compared with conventional methods [131]. Moreover, for many tissue types, the phase differences drop

1A part of this chapter has been presented in [127]
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less than their corresponding absorption differences as the X-ray energies go higher [131, 132]. Therefore,
phase imaging can be applied at higher energy while still keeping the same contrast as the absorption-based
approach, but with a lower dose deposition.

A potential shortcoming is that the grating interferometer does not measure the phase shift of X-rays
directly, but only its first derivative. That is why this technique is called “differential” phase contrast imaging.
Although the DPC image provides significant information on the edges of the sample structure, it doesn’t
allow a quantitative analysis of the phase profile, for instance, giving the contrast between different tissues
or comparing with absorption contrast directly. Theoretically, the phase retrieval problem can be solved by
a trivial one-dimensional direct integration in the spatial domain, which is equivalent to dividing by spatial
frequency in the Fourier domain. However in practice, the direct integration fails to generate phase images of
satisfactory quality because the noises are also cumulated during the integration. The resulting phase image
suffers from stripe artifacts. The problem becomes especially severe when the image size is very large and a
lower dose is used, which means a lower signal-to-noise ratio (SNR), as is common in the medical imaging.

For phase retrieval in grating-based DPC imaging, two noteworthy methods are the bidirectional method
[49] and the non-linear regularization method proposed by our group [133]. The bidirectional approach has
shown to be well-suited for reducing stripe artifacts; however, it requires longer scanning time and possibly
higher dose deposition. Besides, the two-scan approach requires one to rotate the gratings or the sample
and to register two images precisely, which is hard to be implemented in clinical situation. The non-linear
regularization method is more practical because the earned benefits are actually from the mathematic tools;
therefore no additional efforts (e.g., more image acquisitions or system modifications) are needed, and it
shows promising results [133]. Sperl et al. showed that the regularization can also be done in the Fourier
domain [134].

Our major interests is to apply the differential phase contrast imaging to clinical applications, especially
to mammography. In mammography, the image is usually quite large, with a typical size of (6000×4000).
Such an application requires fast phase retrieval algorithms which can deliver accurate and quantitative phase
information for diagnostic purpose. Our contributions are:

• The proposal of a more accurate discretization scheme for the directional derivative operator based on
the B-spline calculus.

• The proposal of a better regularization strategy that penalizes discontinuities in all directions and also
addresses the issue of the undetermination of the zero frequency part of the solution.

• The application of constrained regularization weighed norm (CRWN) algorithm in order to have more
robust and faster phase retrieval scheme in comparison to [133]. We use the positivity and boundary
condition to improve the performance of our retrieval algorithm more which is one main advantage of
using CRWN.

• The experimental evaluation of the method using real data. We evaluated the algorithm with the phase
contrast mammography data and directly compared the retrieved phase image with the absorption
image. We demonstrated that the proposed method is able to produce high-quality phase image which
can provide higher contrast of different tissues than conventional absorption-based image.

8.1.1 Methods
Phase retrieval in differential phase contrast imaging

The phase retrieval problem in DPC imaging has been described thoroughly in [133]. Briefly, the grating
interferometer measures the phase shift ϕ(x,y) of two phase-stepping curves (PSC), from an object scan and
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a reference scan without object, for each detector pixel at the spatial position (x,y). On one hand, the phase
shift ϕ(x,y) is linked to the refraction angle α(x,y) by

ϕ(x,y) = 2π
d
p2

α(x,y), (8.1)

where p2 is the pitch of the analyzer grating, and d is the distance between the two gratings. On the other
hand, the refraction angle α(x,y) (namely, the DPC signal) can be expressed by [16]

α(x,y) =
λ

2π

∂φ(x,y)
∂x

, (8.2)

where λ is the wavelength of the x-ray photons and φ(x,y) is the target quantity (phase profile) that we want
to obtain.

By combing (8.1) and (8.2), the phase retrieval problem is expressed as

ϕ(x,y) = g
∂φ(x,y)

∂x
, (8.3)

where g = λd
p2

is a constant that depends on the system design parameters. A direct integration then yields
the phase image

φ(x,y) = g
∫ x

0
ϕ(x′,y)dx′. (8.4)

However, due to the presence of noise, a more realistic form of the phase retrieval is

ϕ̃(x,y) = ϕ(x,y)+n(x,y) = g
∂φ(x,y)

∂x
+n(x,y), (8.5)

where ϕ̃(x,y) denotes the actual measured signal and n(x,y) represents the noise. In most cases, the direct
integration fails because of the noise accumulation and lack of knowledge of the boundary conditions.

Regularization-based phase retrieval method

Retrieving the phase from (8.5) can be considered as an inverse problem and can be often solved by regular-
ized optimization [133]. That is, to minimize the cost-function

J(φ) = ‖Dxφ −ϕ‖2
l2 +Ψ(φ), (8.6)

where Dx is the derivative operator along the x-direction. The first term of the right side is the fidelity term
and Ψ(φ) is the regularization term. In [133], we chose the regularization term to be

Ψ(φ) = λ
∥∥Dyφ

∥∥
l1

(8.7)

in order to suppress the strips along the y-direction which is perpendicular to the x-direction. The l1 norm is
preferred because it generates more quantitative results compared to l2 norm. Benefiting from the regular-
ization term, it was shown that the regularization-based method suppresses the strip artifacts significantly.
The resulting phase images provide an improved contrast-to-noise ratio (CNR) and reveal more details of
the sample.
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To discretize the derivative operator Dx (also Dy), the finite difference model is used which is given by

Dxφ(i, j) =
{

φ(i+1, j)−φ(i, j) i f 1≤ i < Ni,
0 i f i = Ni

(8.8)

where i and j are discrete coordinates (pixel coordinates) and Ni is the image size in x-direction.
The discretization model in (8.8) is very simple. In practice, our major concerns are to get quantitative

information and diagnosis-level high quality image. This requirement calls for an accurate discretization
model, and a corresponding algorithm for solving (8.6) and handling large data effectively. Here, we re-
place (8.8) with a more reliable model that uses polynomial B-splines and propose an efficient algorithm to
solve (8.6) using the constrained regularized weighted-norm algorithm which will be described in the next
two sections.

Discretization of the derivative operator using B-spline calculus

To formulate (8.5) as an inverse problem, a necessary step is to discretize the forward model. In this regard,
we use a generalized sampling scheme and represent the object φ on the principal shift-invariant space whose
generating function is the tensor product of two centered B-spline functions β (x),

φ(x) = ∑
k∈Z

ckβ
n(x−k) , (8.9)

where k = (k1,k2), x = (x1,x2), and β (x) is the tensor product of two centered B-spline functions

β
n(x) = β

n(x1,x2) = β
n(x1)β

n(x2) . (8.10)

Definition 8.1. The centered B-spline is β n(x) = ∆
n+1
1 xn

+
n! , where ∆

n+1
1 is the n times application of finite

difference ∆h f = f (x+h/2)− f (x−h/2)
h and x+ = max{x,0}.

The polynomial B-splines are well-known to offer the best cost/quality trade-off among interpolators.
Since the mathematical model of our problem is based on the derivative along the direction x1, we have

ϕ(x) = g
∂

∂x1
φ(x)

= g ∑
k∈Z

ck
∂

∂x1
β

n(x1− k1)β
n(x2− k2) . (8.11)

. This equation leads to the matrix formulation of (8.3),

ϕϕϕ = Hc, (8.12)

where c is a vector of B-spline coefficients in lexical order, ϕϕϕ is the measurement vector, and H is the system
matrix with

[H]l,k = g
∂

∂x1
β

n(l−k). (8.13)
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Phase retrieving method

Now, we formulate the phase retrieving task as an inverse problem. We reformulate the method proposed
in [67] for our problem. We aim at finding c where

c = argmin
c∈C

{1
2
‖Hc−g‖2

W +λ1 ∑
i
‖{Lc}i‖1 +λ2 ‖c‖2}

︸ ︷︷ ︸
J (c)

, (8.14)

where the sum is computed on all the B-spline coefficients and {Lc}i ∈R2 is the gradient vector of the image
at position i. We constrain the solution through the convex set C . It can be the restriction on the positivity
of the refractive index and the information of the boundary of the object. Here we choose the weight W as
identity operator along with the usual `2-norm.

Since the phase retrieval problem is ill-posed, we use the total variation (TV) regularization term to
enhance the edges in the phase image. Since the null space of the imaging operator contains zero frequency,
we also use the Tikhonov regularization term. In order to be consistent with the discretization scheme, the
discrete gradient operator is computed using the following equations,

∂ f
∂x1

[k1,k2] = ((h1[.,k2]∗ c[.,k2])[k1, .]∗b2[k1, .])[k1,k2]

∂ f
∂x2

[k1,k2] = ((h2[k1, ·]∗ c[k1, ·])[·,k2]∗b1[·,k2])[k1,k2] (8.15)

where k1,k2 ∈ Z, hi[k1,k2] = β n−1(ki +
1
2 )−β n−1(ki− 1

2 ) and bi[k1,k2] = β n(ki) for i = 1,2.
In order to solve (8.14), we use a constrained regularized weighted norm (CRWN) algorithm with total

variation regularization. We also choose parameters of the algorithm based on the suggested parameter
selection scenario in Chapter 6.

Retrieval of the object boundary

In DPC image, the background of the image is meant to be zero. It does not contribute to quantitative in-
formation but only to noise when retrieving the phase. Therefore delineating the boundary of the object and
masking the background out can significantly reduce the noises in the phase retrieving procedure. One ad-
vantage of grating-based imaging is the access to the information of the intensity and phase simultaneously.
In order to retrieve the boundary of the object, we use both information.

We apply Canny edge detection on both measurements (absorption and phase). As we are interested in
the boundary of the object, we choose the first and the last detected edge positions along each horizontal and
vertical line inside the object. Afterwards, we apply median filter along each of the four boundary curves
separately in order to remove some sudden jumps owing to not detecting some edges. We finally obtain
two masks: one on the absorption measurements and the other on the phase information. We choose their
intersection to mask the object. The constraint that is applied to the algorithm is that the reconstructed image
should be zero outside this mask.

8.1.2 Experiments
Quantitative evaluation with tomographic dataset

It has been demonstrated in [133] that the regularization-based method works well with simulated data. In
this section we directly evaluated the proposed method using experimental data. As a first step, we evaluated
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the quantitativeness of the proposed method. To establish a ground-truth for comparison, we generated a
phase projection from phase tomographic dataset of a plastic phantom by forward-projection. The phase
tomographic dataset was acquired at the TOMCAT beamline of the Swiss Light Source (SLS) using a Talbot
interferometer. The differential phase signal was obtained by taking the one-dimension derivative of the
phase projection. The retrieved phase from this differential phase projection was then compared with the
ground-truth and the results were shown in Fig.8.1. By generating the differential phase signal in this way,
we included the experimental noise in the image. Due to presence of the noise, quantitative recovery of
the phase is very challenging, however as shown in Fig.8.1(d), the profile comparison indicates that the
agreement between the retrived phase and the ground-truth is fair.
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Figure 8.1: Quantitative comparison on phase tomographic data. (a) The phase projection ob-
tained by forward-projection on a phase tomographic dataset. The projection image was used as
the ground-truth in this experiment. (b) The differential phase contrast image obtained by taking
the one-dimension derivative from the ground-truth. (c) The retrieved phase using the proposed
method. (d) The profile (red line in (a)) comparison between the retrieved phase and the ground-
truth.

Evaluation with mammographic data

In this section, we evaluated the potentials of the proposed method in medical imaging with mammographic
data. The goal here is to show that the proposed method can yield phase images with useful diagnostic infor-
mation, which are not accessible with conventional direct integration approach. All the data were obtained
from the differential phase contrast mammography study conducted at Paul Scherrer Institut, Switzerland
and Kantonsspital Baden, Switzerland [108, 135] and the details of the experimental system can be found
in [108].

Biopsy sample experiment

The biopsy sample experiment was to evaluate how the proposed method works with high SNR signals. It is
considered as a benchmark experiment which can evaluate the method without being too much intruded by
the noise. The sample was a biopsy breast tissue with a carcinoma mass. It was first fixed in 4% formalin
solution and then put into liquid paraffin for imaging in order to suppress the phase-wrapping effect at the
tissue-air interface. A 32-step phase stepping scan was performed to generate a relative high quality image.
In the whole breast sample experiment of next section, only 8 steps were used. The relationship between
the number of steps and the noise variance in DPC image is linear [136]. Therefore the experiment here
generated DPC images which were four times less noisy than in the ex-vivo whole breast experiment.
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The results are shown in Fig.8.2. Visually the DPC image in Fig.8.2(b) showes the edges clearly; how-
ever, no quantitative comparison can be done from it. The direct integrated phase image in Fig.8.2(c) con-
tained obvious stripe artifacts. Although some structures of the sample can be distinguished due to the high
SNR in this case, the artifacts still degraded the image significantly, making it impossible to interpret. On the
contrary, the proposed method gave a strip-artifact-free phase image. The image had a similar appearance as
the absorption image (Fig.8.2(a)) but with enhanced contrast and details. Profile comparisons of the horizon-
tal and vertical red lines in Fig.8.2(a) was shown in the Fig.8.2(e) and (f), respectively. The contrast-to-noise
ratio (CNR) is used as figure of merit:

C =
Is− Ib

σb
, (8.16)

where Is and Ib were the mean values of selected ROIs in Fig.8.2(e) and (f) which represent the signal and
background, respectively, and σb is the standard deviation of the background ROI. Note that the scales of
the absorption and phase images are different since they are completely different physical quantities.

It is clear that the phase image gives a higher contrast compared to absorption image. Quantitatively,
for the horizontal line (Fig.8.2(e), the phase CNR is 28 while the absorption CNR is 13; and for the vertical
line (Fig.8.2(f), the phase CNR is 25 while the absorption CNR is 37. The results show that the phase
image indeed can provide superior contrast than the absorption image. Clinically it would help increase the
diagnostic accuracy.

Ex-vivo whole breast experiment

It is worth mentioning that the whole breast DPC image was formed by stitching several smaller acquisitions
together due to the limited field of view (FOV) of the current system. Stitching artifacts were hard to avoid
especially because of the sample deformation happened from time to time. Moreover, the background of each
acquisition was not uniform because of the systemic drifts during the scans. Therefore the whole breast DPC
data was “inconsistent” in the sense that not only noise corrupted the images but also the inhomogeneity of
each block. Considering those factors as well as the large image size, the direct integrated phase image was
uninterpretable for radiologists. The structure features were concealed in severe strip artifacts as the common
case showed in Fig.8.3(c); therefore no useful clinical information was available from the integrated phase
image.

A phase retrieval example of a whole breast that would be obtained inspire of those difficulties is shown
in Fig.8.3. The sample selected here contained a large tumor mass and many spiculations. Spiculations were
strong indications of the existence of malignant mass. For this particular sample, we want to explore what
we can gain from the phase image compared to the absorption image, therefore they are compared directly.
We applied the new algorithm to the whole image as well as a selected ROI where the carcinoma located.

The stitching artifacts are clearly seen in Fig.8.3(b) and are especially obvious at the background region.
Those artifacts also cause inhomogeneous background in the retrieved phase. To suppress this effect, a
background mask was generated using the absorption image as described in Section.8.1.1 and applied to the
retrieved phase to create a clear background as showed in Fig.8.3(d). To the best of our knowledge, this is
the first time ever that an image of the line integral of the phase signal from a whole breast sample obtained
with a conventional X-ray tube has been presented.

The results of the selected ROI are shown in Fig.8.4. In principle, when operating on an ROI, the
boundary conditions and thus the starting wave front profile φ(x = 0,y) for the integration are unknown.
The loss of the boundary information will worsen the strip artifacts and even cause shadow artifacts. An
equivalent effect is the “phase wrapping” happening at the border between the skin and air. The refraction
angle there is so large that the induced fringe shift is larger than one detector pixel and therefore it cannot



8.1 Phase Retrieval in Differential Phase contrast Imaging 107

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pixels

 

 

Absorption

Phase

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pixels

 

 

Absorption

Phase

(a) (b) 

(c) (d) 

(e) (f) 

1cm 

Signal 

background background 

Signal 

Figure 8.2: The phase retrieval results of the biopsy sample (High SNR case). (a) The absorption
image; (b) the differential phase contrast image; (c) the phase image obtained by direct integra-
tion; (d) the iterative-retrieved phase image; (e) (f) are the profile comparisons of the vertical and
horizontal lines in (a), respectively.

be measured by the grating interferometer. This effect also causes the loss of information at the boundaries.
Usually the phase wrapping effect can be avoid by immersing the breast in a liquid solution. However,
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(a) (b) 

(c) (d) 

2cm 

Figure 8.3: The phase retrieval results of the mastectomy breast sample (Low SNR case). (a)
The absorption image; (b) the differential phase contrast image; (c) the phase image obtained by
direct integration; (d) the phase image obtained by the proposed method. The images are showed
in the best display window selected manually to reveal as many structures as possible.

this option is not feasible in practice and, at the end, it will also reduce the contrast in the absorption
image. Nevertheless the resulting phase image (Fig.8.4(b)) is quite good and the spiculations are better
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seen. Three lines (indicated in Fig.8.4) across the spiculations were selected and their profiles were given
in Fig.8.4(c) (d). The profiles clearly showes that the phase image provides much higher contrast of the
spiculations compared to the absorption image.

It is worth mentioning that the contrast of the calcifications is higher in the absorption image than in the
phase image (see Fig.8.4(a) and (b)). This is because the complex refractive index of the calcium is similar
to the soft tissue. Detecting microcalcifications is important for early breast cancer screening. To this extent,
the phase image will not be able to replace the absorption image completely but be a very useful complement.
The third contrast, scattering contrast, on the other hand could play an important role in microcalcification
detection. The parameters only need to be be adjusted once for a given protocol and the algorithm can then
be run on the whole data set.

Comparison with former method

We also compared the new algorithm with the state-of-the-art algorithm proposed in [133] and the com-
parison are shown in Fig.8.4(b) (c). The corresponding regularization parameter was λ = 10−3 and this
parameter was decided by trial and error to find the best result. Visually the new algorithm gave a superior
results. The details were more visible due to fewer artifacts.

8.2 Joint absorption and phase retrieval in Grating-based X-ray ra-
diography

A refinement upon the previous scheme is to take advantage of the high correlation between DPC (where
the contrast between features is pronounced) and AC (which provides structural details) to simultaneously
retrieve PC and denoise AC. We therefore propose to jointly retrieve the phase from the differential-phase
image and to attenuate noise in the absorption image. This is the first attempt of the nature, to the best of our
knowledge.

By employing a grating interferometer, one gains direct access to the spatial derivative

g(x) =
∂φ(x)

∂x2
(8.17)

of the phase φ , where x∈R2 specifies spatial coordinates. The simplest approach to retrieve φ from g is line
integration. Unfortunately, the phase image thus recovered exhibits artifacts due to noise amplification at
low frequencies. These problems are exacerbated in the low-dose regime typically necessitated by biological
tissues, which worsens the signal-to-noise ratio.

At least two advanced phase-retrieval approaches have been proposed in the literature. The first one,
called the bidirectional method, is able to reduce stripe artifacts at the cost of longer scanning times and
high radiation doses; it needs the precise registration of two images, along with the mechanical rotation of
gratings, two requirements that are hard to achieve [137]. Meanwhile, the second method, called nonlin-
ear regularization, is easier to deploy because no modification of the practical setup is required. Although
it shows promising results when a total-variation (TV) regularization is applied either in the spatial do-
main [129] or in the frequency domain [134], it sometimes fails to achieve a satisfying attenuation of the
stripe artifacts and occasionally results in an insufficient contrast between regions.

We propose here an inverse-problem approach inspired by nonlinear regularization; more precisely, we
complement TV by another regularizer that leverages the correlation between DPC and AC. Thus, our main
contributions are
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Figure 8.4: The results of a selected ROI from the whole breast phase retrieval. (a) The absorption
image; (b) the phase image obtained by the proposed method, (c) the phase image obtained by
our former method proposed in [133]. (d)-(e), the line profile comparisons of the lines indicated
in (a).

• joint denoising and retrieval of the absorption and phase contrasts, respectively;

• simultaneous use of total-variation regularizer and Schatten-norm Jacobian regularizer to attenuate
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reconstruction artifacts.

We develop an alternating-direction method of multipliers to achieve our goals, guided by B-spline calculus
to finesse the necessary discretization schemes. Finally, we illustrate the application of our method to breast
tissue from real mammography data.

8.2.1 Joint absorption and phase retrieval

Forward Model

Letting ρ denote the ideal AC image, our problem is to retrieve an approximation of ρ and φ from the
forward model {

g1(x) = ρ(x)+n1(x)
g2(x) = ∂φ(x)

∂x2
+n2(x),

(8.18)

where n1 and n2 represent the AC and DPC noise that is present in the measurements g1 and g2.
For convenience, we discretize the forward model as

ρ(x) = ∑
k∈Z2

c1[k]β n(x−k)

φ(x) = ∑
k∈Z2

c2[k]β n(x−k),

where x ∈R2 and where β n is the tensor product of two centered B-splines of integer degree n. (Polynomial
B-splines are known to offer the best cost/quality tradeoff among many interpolators.) Then, the forward
discretization of Eq. 8.18 is

g = Hc+n, (8.19)

where g is the vector of measurements, and

H =

[
B 0
0 Dx2

]
. (8.20)

There, B encodes the interpolation process, and Dx2 is the directional (by convention, vertical) derivative
operator. Moreover, c = (c1,c2) collects in a single column vector each B-spline coefficient of Eq. 8.19
and Eq. 8.19. We say that c is the discrete representation of the object. To be consistent with Eq. 8.18, the
directional derivative operator must be such that

∂φ

∂x2
(x) = ∑

k∈Z2

c2[k]
∂β n

∂x2
(x−k), (8.21)

which amounts to

[Dx2 ]p =
∂β n

∂x2
(p) = β

n(p1)
dβ n

dx2
(p2), , (8.22)

where p = (p1, p2). There, [·]p specifies the pth entry of a vector.
Then we formulate the retrieval procedure as an optimization problem similar to what we explained in

Section 7.3.2. We use the Jacobian regularization along with total variation term.
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Experimental Results

The purpose of this section is to provide a case where the proposed method yields absorption and phase
images that contain useful diagnostic information. In particular, we want to explore the extent to which AC
and DPC are complementary and/or correlated.

Data

We illustrate the potential of the proposed method on real mammography data that were obtained from a
differential-phase-contrast mammography study conducted at Paul Scherrer Institut and at Kantonsspital
Baden, both in Switzerland [108]. The sample contained many spiculations that clearly hint at the presence
of a malignant mass.

Individual acquisitions had a limited field of view; this was counterbalanced by an imaging stitching
process. Unfortunately, not only did stitching artifacts arise because of deformations in the breast tissue, but
also systemic drifts during the scan resulted in a nonuniform background.

Results

We applied the proposed method to data that contains a carcinoma, as revealed in Figure 8.5. Because of
the limited field of view, the integration process for a line can be determined only up to the (unknown)
integration constant that specifies the boundary conditions of the wavefront φ(x1 = 0,x2). However, one of
the roles of our regularization is to promote a consistent choice of this constant across lines, thus avoiding
the worsening of stripe and shadow artifacts. We see in Figure 8.5.b that the PC image we retrieved out of
DPC is quite good; the spiculations are easier to recognize there than in the AC image shown in Figure 8.5.a.

At the same time, however, the micro-calcifications are better contrasted in AC than in PC. (The early
detection of micro-calcifications is an important tool for oncologists.) This difference in the quality of
contrast is to be expected since the complex refractive index of calcium is similar to that of soft tissue,
thus leading to an absence of contrast in the phase image. It then follows that AC and PC offer truly
complementary modalities. To illustrate one possible way to take full advantage of this complementarity,
we have fused AC and PC in Figure 8.5.c, where AC corresponds to the green channel and PC to the red
channel of a color representation.

Comparison to the State-of-the-Art

We now focus on the region of interest (ROI) delineated in Figure 8.5. This allows for a detailed comparison
of the outcome of our method with that of [129]. We present the corresponding visual results in Figure 8.6.
In the PC image, we observe that the state-of-the-art method (top right) fails to remove the stripe artifacts,
while our proposed method (bottom right) is clearly more successful. In addition, a substantial amount of
noise has disappeared from our version of the AC image (bottom left), at no cost in the visibility of structural
details.

8.3 Conclusion
Grating-based x-ray imaging provides simultaneously absorption and differential-phase images. Thus, the
(integrated) phase image—which is the quantity of interest—must be retrieved computationally. This re-
trieval is challenging, which has limited the use of the phase in practical radiographic applications. In this
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Figure 8.5: Top-left: denoised absorption image whose location corresponds to ROI in Fig-
ure 8.4. Top-right: retrieved phase. Bottom-left: multichannel visualization. Bottom-right: cap-
tion.

work, we propose a new iterative method to retrieve the phase image and to jointly denoise the absorption
image. The present study is a proof of concept that demonstrates that it is indeed possible to improve the
clarity of phase features that have a clinical relevance (e.g., spiculations). At the same time, the contrast of
complementary features in the absorption image (e.g., micro-calcifications) is improved, too. This suggests
that a wider deployment of joint retrieval absorption and phase could have a beneficial clinical impact in the
early diagnosis of breast cancers.
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(a) (b)

(c) (d)

Figure 8.6: Top-left: raw absorption image whose location corresponds to the ROI in Figure 8.5.
Top-right: phase retrieved by [129]. Bottom-left: absorption image after our joint denoising and
retrieval process. Bottom-right: phase image that we retrieved from the differential phase.



Chapter 9

Single Particle Analysis: A Step
Towards Interpretation of Atomic
Models

X-ray crystallography and NMR spectroscopy allow scientists to determine 3-D structure of the biomolecules
at high resolution (1−5 Å). These techniques are limited to small molecules. In contrast, single particle anal-
ysis (SPA) from cryo electron microscopy (cryo-EM) can provide the structure of molecules with sizes in
wide range 10−150 Å, e.g., ribosomes, proteins, and viruses. The main challenge in SPA is to improve the
resolution of 3-D reconstruction to 4 Å or better to allow for the interpretation of its atomic structure. Single
particle analysis deals with thousands of x-ray projections of identical samples (EM images) which have
been taken in several micrographs. In addition, each EM images have been also modulated by the contrast
transfer function of the microscope (CTF). In order to improve the resolution, it is necessary to develop more
sophisticated reconstruction scheme which can also include the effect of the CTF. In this regard, we demon-
strate the proposed discretization and reconstruction framework in the context of SPA. We show that using
the proposed FFT-cost implementation of HT H improves the speed of reconstruction, significantly. The
main advantage is that the computational cost of the application of the proposed kernel is independent of the
number of orientations. Moreover, we include the CTF into the derivation of the kernel with no additional
computational cost which results in significant resolution improvements.

9.1 Physical Model
In transmission electron microscopy, high energy electrons (e.g. 100 kev) are emitted toward the specimen
which can be highly scattered. For example, the mean free path of 120 kev electron in vitreous ice is around
2800 Å. This is the reason why one can only image thin specimens using transmission electron microscopy.
The de Broglieu wavelength associated to an accelerated electron with 100 key energy is λ = 0.037 Å.
Although imaging with short wavelength particles (electron or electromagnetic waves) can provide high
resolution images, the lens aberration limits the resolution. Today’s highest resolution transmission electron
microscopy are on the order of 1−2 Å.

Electrons scatter in air. Consequently, the transmission electron microscope should operate in a vacuum
media. However, naturally hydrated state of the biological specimens is incompatible with being in vacuum
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media. The cryo electron microscopes solve this incompatibility. In cryo-EM the sample is embedded in
vitreous ice. This makes it possible to obtain images of fully hydrated macromolecules.

9.1.1 The Weak-Phase Object Approximation in cryo-EM
In our analysis, we assume that the object of interest is a phase object, so that it does not attenuate the
transmitted wave. From the wave-optical point of view, the object introduces a phase shift Φ(y) in the
interacted electron beam. The phase shift is linked to the x-ray transform of the real part of the refractive
index of the object,

Φ(y) =
2π

λ

∫
α(y,z)dz , (9.1)

where λ the wavelength, α the imaginary part of the refractive index, z is the optical axis, and y specifies
a coordinate on a plane perpendicular to the optical axis. If the incoming field is a plane wave, u0(y,z) =
exp(jk z), then the wave function exiting the specimen is

u(y,z) = u0 exp(jΦ(y)) . (9.2)

Using the Taylor series of the exponential function, one can rewrite it as

u(y,z) = u0

[
1+ jΦ(y)− 1

2
Φ

2(y)+ · · ·
]
. (9.3)

Under the weak-phase object approximation, Φ(y)� 1, the wave function (9.2) is approximated by its first
two taylor terms,

u(y,z) = u0 [1+ jΦ(y)] . (9.4)

The Equation (9.4) interprets the received wave function as the sum of an unmodified wave function and a
scattered wave. The scattered wave is 90 ◦ out of phase with respect to the unmodified wave.

In the imaging mode of the transmission electron microscopy, the image plane is placed far from the
object and the observation is obtained close to the optical axis. These conditions are well-matched to the
Fraunhofer approximation of the diffraction theory. Consequently, the measured wave function is the Fourier
transform of the wave equation (9.4). The imaged plane is placed in the back-focal plane of the objective
lens. Since the applied lens is not ideal, it introduces a deflection on the transmitted wave. This aberration
can be modeled as a frequency-dependent phase shift on the Fourier transform of the wave function u.
Moreover, the aperture performs as a low-pass filter whose cut-off frequency depends on its size and the
wavelength of the transmitted wave. Its frequency response A(ω) is

A(ω) =

{
1 for‖ω‖ ≤ 2π

λ
θ1 ,

0 elsewhere .
(9.5)

where θ1 is the angle that corresponds to the radius of the objective aperture. Then, the wave function on the
imaging plane in the Fourier domain can be written as

ûz(ω) = F{u(·,z)}(ω)A(ω)exp{jγ(ω)} , (9.6)

where ω the frequency coordinate, and γ(ω) = 2πχ(ω). The wave aberration function χ in a polar coordi-
nate system is

χ(ω,φ) =−1
2

λ

[
∆z+

za

2
sin(2(φ −φ0))

]
ω

2 +
1
4

λ
3Csω

4

ω = ‖ω‖ , φ = tan−1(ω1,ω2) . (9.7)
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Note that the detector measures the intensity of the received wave,

I(y) = |uz(y)|2 . (9.8)

Investigating the relation of the measured intensity with the phase function Φ and the properties of the optical
systems is the subject of contrast transfer theory [138–142]. Here, we briefly derive the mathematical relation
between the object of interest and the received intensity. The Fourier transform of the wave function (9.4) is

û(ω) = exp(jk z)(δ (ω)+ jΦ̂(ω)) . (9.9)

By replacing Eq. 9.9 in Eq. 9.6, the wave function on the imaging plane in the Fourier domain is

ûz(ω) = exp(jk z)(δ (ω)+ jΦ̂(ω))A(ω)exp{ jγ(ω)}
= exp(jk z)

(
δ (ω)− Φ̂(ω)A(ω)sin(γ(ω))+ jΦ̂(ω)A(ω)cos(γ(ω))

)
. (9.10)

Accordingly,

uz(y) = exp(jk z)
(
1−
(
Φ(·)∗F−1 {A(·)sin(γ(·))}(·)

)
(y)+ j

(
Φ(·)∗F−1 {A(·)cos(γ(·))}(·)

)
(y)
)
.

(9.11)
By making the weak phase object assumption, we neglect the higher order terms of the phase shift Φ so

that
Î(ω) = δ (ω)−2Φ̂(ω)A(ω)sinγ(ω) . (9.12)

The function sinγ(ω) is called the phase contrast transfer function (CTF). According to (9.7), the rate of
oscillation of the function γ increases with respect to the frequency. In summary, the measurement is linked
to the convolution of the x-ray transform of the real part of the refractive index of the object with the point
spread function of the microscope (aberration of the lens and the aperture limitation),

g(y) =
I(y)−1

2
= (P{α}(·,θ)∗hi(·))(y) , (9.13)

where hi is the point spread function of the microscope whose Fourier transform is the microscope is CTF
(ĥi). Since the CTF can vary from one particle to the other, we indexed h by the particle number i. The
CTF is typically a plateau followed by a rapid oscillation. Its main effect on the measured information is a
combination of limiting the resolution by low-pass filtering and high-pass distortion by its rapid oscillations.
Owing to the fact that the CTF has several zeros whose frequencies depend on the defocus position, typically
several micrographs are imaged in different defocus positions such that the measurements cover the whole
frequency. Consequently, the CTF can be different from one micrograph to the other. In practical situation
where the electron beam is partially coherent, the CTF dampens in the high spatial frequencies. It can be
modeled as a factor in the CTF function:

ĥ(ω) = E(ω)A(ω)sin(γ(ω)) , (9.14)

where the dampen function E is modeled as an exponential function; we refer the reader to these refer-
ences [143, 144] for more information.

9.2 General Overview
Single particle analysis deals with 2-D images taken from 3-D frozen-hydrated identical particles with ran-
dom orientations. Note that in SPA, the radiation dose is limited in order to reduce the damage on the
particles. Consequently, the measurements have extremely low signal-to-noise ratio. It makes the 3-D struc-
ture determination of the specimen a complicated and challenging process.
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9.2.1 Iterative Refinement
In order to reconstruct the 3-D structure of the macromolecules, it is demanded to estimate the position and
orientation of each image. The positions and orientations are estimated by random-conical tilt techniques or
common-lines based approaches. The images are classified and partitioned based on their similarity in the
viewing angle and then averaged over whole class to enhance the signal-to-noise-ratio (SNR). The enhanced
SNR images are used to reconstruct the initial volume as shown in Figure 9.1.
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Figure 9.1: First, several micrographs are collected in single particle analysis. The particles are
detected, aligned and classified. Each class average is computed to provide images with sufficient
signal-to-noise-ratio. The initial volume is reconstructed.

Then the resolution of the initial volume is improved through a series of refinement iteration. The projections
of the reconstructed volume along a given set of orientations are computed. These projections are used to
reestimate the positions and orientations of the collected images. Then, the refined volume is reconstructed.
The iteration continues up to convergence. The convergence is when the mean square error between the
projection of the reconstructed volume along the estimated orientations and the measurements is minimized.
According to the above explanation, a fast and accurate reconstruction scheme is crucial component for
initial volume and refinement reconstruction, as depicted in Figure 9.2.

9.2.2 Literature review
Several iterative and non-iterative reconstruction techniques have been developed in the context of SPA.
Among the iterative techniques, algebraic reconstruction technique (ART) [145, 146] and simultaneous iter-
ative reconstuction technique (SIRT) [147] are the pioneers. These techniques find the optimal volume in the
sense of the least square error. The advantage of iterative techniques is that they allow us to incorporate of
prior information and positivity constraints. Their disadvantage is the high computational cost which makes
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Figure 9.2: To improve the resolution of the initial reconstructed volume, several refinement
iterations are performed. In each iteration, the orientations and positions of the particles are re-
estimated and the volume of interest is reconstructed.

them extremely slow in comparison with the direct reconstruction techniques. Recently, more sophisticated
iterative scheme have been developed in the context of SPA [148, 149].

From the computational time point of view, direct reconstruction techniques are more favorable. Among
them, weighted back projection approach (WBP) [150–152], Gridding direct fourier reconstruction (GDFR)
[153], and nearest neighbor direct inversion reconstruction algorithm (4NN) [154, 155] are used in the con-
text of SPA. These techniques are limited to the cases where there is no major gap among the viewing
directions of the images.

Note that the measurements are not only the projections of the particles. They are also modulated by
the contrast transfer function of the microscope whose functionality is highly dependent on the defocus
distance. This degrades the performance of the reconstruction scheme. It is necessary to incorporate the
contrast transfer function into the reconstruction procedure to enhance the resolution of the reconstruction.

In this regard, one can 1) first reconstruct the object using each defocus group (the measurements with
the same defocus distance) and then correct the CTF effect by smartly combining the reconstructions, Or 2)
first correct the CTF effect and then reconstruct the object of interest. In order to correct the CTF effect, the
Wiener filter is applied to find the least square solution. These techniques perform the reconstruction and
the CTF correction separately [156, 157].
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In contrast, Penczek et al. incorporated the CTF model into the forward imaging operator and then
applied an ART in order to retrieve the object of interest [158]. Their simulation results suggest that the
incorporation of the CTF into the forward imaging model outperforms the techniques which separate both
steps. The computational time in this technique is extremely high which is its main drawback. Afterwards,
the direct approach 4NN is modified such as to handle CTF correction and object reconstruction simulta-
neously [154, 155]. Recently, Wang et al. incorporate the contrast transfer function in the forward imaging
operator. They formulate the reconstruction as an optimization problem without introducing any regulariza-
tion. To speed-up the implementation process, they take advantage of the non-uniform FFT.

9.2.3 Contrast Transfer Function Correction
In order to improve the resolution of the determined 3-D structure of the specimen, it is necessary to correct
the effect of CTF on the measurement. Since there are several zeros in the CTF, one cannot correct its effect
by simple division. As discussed before, in the two-step reconstruction scenarios, the traditional way to
correct the CTF effect can be a simple phase flipping or the application of a more complicated Wiener filter.

Phase Flipping

The CTF modifies the phase and the amplitude of the Fourier transform of the projection of the parti-
cle (9.14). Since the CTF oscillates between negative and positive values, a simple scheme can be correcting
the phase with the following formulation

ĝ(ω) =

{
−ĝ(ω) For ĥ(ω)≤ 0
ĝ(ω) For ĥ(ω)≥ 0 .

(9.15)

Then ĝ(ω) has the correct phase information; however, the amplitude of the projection is still distorted.

Wiener Filtering

The idea behind the Wiener filter solution is to find the linear estimator that minimizes the mean square
error. Let us denote the measurement corresponding to the i-th particle by gi. It has been modulated by the
CTF, hi. We assume that the measurements are corrupted by additive Gaussian noise and that the noise is
independent of the signal. Then, the linear least square estimator in the frequency domain is in the form of

ĝi(ω) =
ĥ∗i (ω)

|ĥ(ω)|2 +PN(ω)/Pg(ω)
ĝi(ω) , (9.16)

where PN and Pg are the power spectra of noise and the projection, respectively. Note that the transcription
of the proposed estimator in the object domain for merging the reconstructed objects from different defocus
groups involves using the contrast transfer function in the object domain in combination with the power
spectra of the noise in the object domain and the power spectra of the object.

9.3 Reconstruction framework
Here, we aim at formulating the reconstruction as an inverse problem in order to incorporate the CTF cor-
rection inside the reconstruction framework. We develop a fast and accurate reconstruction algorithm. Inter-
estingly, one of our important finding is that the incorporation of the CTF in the forward imaging operator
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using the proposed framework is performed without additional computational cost for each iteration. In
addition, the proposed framework allows to impose the prior information and positivity constraints on the
reconstruction.

9.3.1 Discretization scheme
We assume that the orientations, positions and the corresponding contrast transfer functions are known for
measured particles. We aim at reconstructing the volume using the given measurements

gi(y) = (P{ f}(·,θi)∗hi(·))(y) , (9.17)

where i is the particle number. The measurements are the x-ray transform of the object of interest f along
different orientations which have been also modulated by the contrast transfer function. In order to formulate
the reconstruction as an inverse problem, we first need to discretize the imaging operator. We use the
discretization scheme presented in Section 3.1. The reconstruction space
V = { f (x) = ∑k∈Z3 c[k]ϕ(x−k)} is specified by the choice of the generating function ϕ . The coefficient
vector c is considered as the discrete representation of the object.

To discretize the forward imaging operator, we recall the matrix formulation (3.6). The x-ray transform
of function f using the pseudo shift-invariant property of the x-ray transform (2.17) is written as

P{ f}(y,θ) = ∑
k∈Z3

c[k]P{ϕ}(y−P
θ⊥i

k,θ) . (9.18)

In practice, the measurement gi is acquired in the sampled points y j = j∆ where ∆ specifies the sampling
step. For simplicity in the notation, we assume ∆ = 1. Based on the presented discretization scheme, the
entries of the system matrix corresponds to the x-ray transform along the orientation θi is

[Hi]j,k = P{ϕ}(j−P
θ⊥i

k,θi) . (9.19)

As described in the physical model, the measurements are the filtered version of the x-ray transform of
the particles by the contrast transfer function of the microscope. Accordingly, the discrete model of the CTF
operator can be in the form of a circulant matrix Ki in the discrete space. Then, the matrix form of the
imaging operator is

KiHic = gi , ∀i = 1, · · · ,N . (9.20)

In the classical approach, the reconstruction is done in two steps. First, each orientation is deconvolved to
retrieve the x-ray transform of the object and then, the practical algorithms for inverting the x-ray transform is
applied. The drawback of this approach is that there is no direct deconvolution step owing to the non-empty
null space of the CTF operator and the noisy measurements. On the other side, using more sophisticated
approaches (iterative algorithms) for doing deconvolution is very costly because there are thousands of
orientations in single particle analysis. Our approach is to treat the two task simultaneously, as explained
next.

9.3.2 Image Reconstruction
Linear inverse problem formulation

The discrete form of the imaging operator of the single particle analysis can be written in the form of

Htotc = g , (9.21)
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where

g =




g1
g2
...

gN


 , Htot =




K1H1
K2H2

...
KNHN


 . (9.22)

We aim at finding c such that

c = argmin
c∈C

{
1
2
‖Htotc−g‖2 +λΨ(c)

}
, (9.23)

where Ψ is the regularization and C is a convex constraint, e.g., positivity of the the object of interest.
In order to minimize (9.28), we use the reconstruction algorithms ADMM-PCG and CRWN introduced
Chapter 4. As we discussed in the Chapter 5, the main computational cost of each iteration is the matrix-
matrix multiplication HT

totHtotc that can be expanded as

HT
totHtotc =

N

∑
i=1

HT
i KT

i KiHic . (9.24)

Since Ki is a circulant matrix, the matrix KT
i Ki is also circulant. According to Theorem 5.3, if ϕ satisfies the

radial Nyquist criteria, then the matrix-matrix multiplication HT
i KT

i KiHic can be calculated using a discrete
convolution (c∗kernel) where ∗ is a convolution operator. This is our crucial observation for our approach.
The kernel is computed with the use of (5.29) and is given by

yθi [k] = (Pϕ(·,θi)∗ k(·)∗Pϕ(−·,θi)∗ k(−·))(P
θ⊥i

k) . (9.25)

The fact that the matrix HT
totHtot is poorly conditioned, which makes the inverse problem challenging.

Conjugate-gradient based linear inverse problem formulation

The measurements are modulated by the contrast transfer function of the microscope. A simple CTF correc-
tion is flipping the phase of the measurement in the frequency space in which the CTF has negative values.
The flipped phase CTF and the measurement vector are denoted by K+

i and g+i . Then, the matrix formulation
of the of the forward model is

K+
i Hic = g+i , ∀i = 1, · · · ,N . (9.26)

Since K+
i is a semi-positive definite operator, one can reformulate (9.26)

HT
i K+

i Hic = HT
i g+i , ∀i = 1, · · · ,N . (9.27)

We then propose the volume of interest is reconstructed by minimizing the modified cost function,

J (c) =





1
2

cT Ac− cT
N

∑
i=1

HT
i g+i

︸ ︷︷ ︸
D(c)

+λΨ(c)





, (9.28)
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where

A =
N

∑
i=1

HT
i K+

i Hi . (9.29)

Now, the matrix A is positive definite, then the data fidelity term is a convex function. By using a convex
regularization, one can use any convex optimization to reconstruct the volume. The Gradient of the data
fidelity term D(c) is

∇D(c) = Ac−
N

∑
i=1

HT
i g+i . (9.30)

Note that the condition number of the system matrix A is better than the condition number of HT
totHtot.

This yields better convergence speed. If ϕ satisfies the radial Nyquist criteria, then one can implement Ac
using FFT s. The corresponding kernel is

y[k] = ∑
i

yθi [k] = ∑
i
(Pϕ(·,θi)∗ k+(·)∗Pϕ(−·,θi))(Pθ⊥i

k) . (9.31)

We use ADMM-PCG to minimize the cost function (9.28) described in Algorithm 2.

9.4 Experimental result
To validate the proposed reconstruction scheme, we conduct two experiments in the context of single particle
analysis. The first one is on a simulated dataset and the second one is on a real dataset.

9.4.1 Implementation details

In all experiments, we use total variation as regularization. The ADMM-PCG algorithm is applied to re-
construct the volume by minimizing the cost function (9.28). The positivity constraint is imposed on the
solution. A kaiser Bessel window function with radius support 4 and parameters α = 19 and m = 2 is used
as generating basis function. We run the experiment for twenty outer iterations and three inner iterations.

We compare the reconstruction using our reconstruction framework with the standard Xmipp solution.
The software Xmipp is one of the well-known software in the context of electron microscopy. It uses an
optimized version of Fourier gridding techniques. We remark that our proposed framework has been also
completely implemented in the Xmipp software.

9.4.2 Performance metric

To evaluate the performance of the proposed framework, we first compare the reconstructions visually by
looking at the slices side by side. For the simulated dataset, we measure the resolution of the reconstructions
using Fourier shell correlation. The Fourier shell correlation is defined by

FSC(f1, f2) =
∑k f̂1[k] · f̂∗2[k]√

∑k |̂f1[k]|2 ·∑k |̂f∗2[k]|2
, (9.32)

where f̂ is the discrete Fourier transform of the volume f. For more information, we refer the reader to [159].
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9.4.3 Simulation-based analysis

The simulated dataset is produced as follows: The 3D density map of the 50S ribosome subunit bound with
ObgE with pixel size 1.5 Å is generated using the structure 4csu.pdb (Figure 9.3 (a-c)). The size of the
density map is 256×256×256. A set of 2-D images are obtained by computing the x-ray transform of the
density map along 300 random orientations using Xmipp software. Each image is modulated by a realistic
contrast transfer function and then corrupted by additive Gaussian noise. Example of collected images are
depicted in Figure 9.3 (d).

The volume is reconstructed using Xmipp with Fourier gridding and also with our proposed framework.
The reconstructions are shown in Figure 9.4. The Fourier shell correlation is evaluated for the reconstructed
volumes. The results show that the 0.5 FSC resolution of the reconstruction using ADMM-PCG (3.57 Å) is
around 1.5 times better than the Fourier-based reconstruction (5.55 Å) when we assume the measurements
are only the x-ray transform of the particle. Our method improves the performance even further when we
consider CTF (around two times improvement of the resolution).

9.4.4 Real data experiment

We then run an experiment on a real SPA dataset. The dataset corresponds to the Bovine papilloma virus type
1. The human papilloma virus is a Baltimore Class I virus. The genome is double stranded circular DNA
surrounded by an icosahedral capsid; it has 60 fold symmetry. The orientations, positions, and microscope
contrast transfer functions are estimated by running the standard workflow of the Xmipp software. We
considered three micrographs with three different defocuses. There are 245 EM-images. The projections are
down-sampled by factor 2 and the volume is with 2.474 Å resolution. The size of the volume is 256×256×
256. Since the virus has 60 fold symmetry, the projection measurements are replicated 60 times considering
its symmetry coordinates.

The volume is reconstructed using our method and the Xmipp traditional technique. The results are de-
picted in Figure 9.5. It suggests that the direct reconstruction frameworks performs poorly in high resolution
reconstructions.

9.4.5 Implementation remarks

Symmetry volumes

In the case of volumes which is M-fold symmetry, one can replicate the measurements along its symmetry
coordinates. This way of implementations increases the computational cost of the kernel and the application
of the adjoint of the x-ray transform on the measurement vector by factor M. Let us denote the volume by v
and represent its symmetry properties through a set of rotation operators Ri , ∀i = 1, · · · ,M; equivalently,

v = Riv , ∀i = 1, · · · ,M . (9.33)
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In order to improve the performance of the calculation of the kernel and the application of the adjoint of the
x-ray transform on the measurement vector, Instead, one can compute them as follows:

b̃ =
M

∑
j=1

R jb

rtot =
M

∑
j=1

R jr , (9.34)

where b = ∑
N
i=1 HT

i g+i and r is the kernel corresponds to the given set of orientations.

Application of the adjoint of the x-ray transform on the measurement vector

In the proposed framework, the main computational cost is the pre-computation of the kernel and the appli-
cation of the adjoint of the x-ray transform on the measurement vector, ∑

N
i=1 HT

i g+i . In order to apply the
adjoint operator on the measurement vector, we use the algorithm given in Section 3.1.2. This is computa-
tionally heavy. To reduce its computational time, we reinvestigate the application of the adjoint of the x-ray
transform for specific orientation, θ on a given measurement vector g. The operation can be written in the
form of

f̃[k] = ∑
j∈Z2

g[ j1, j2]P{ϕ}( j1−〈r1,k〉 , j2−〈r2,k〉 ,θ)

=

(
∑

j∈Z2

g[ j1, j2]P{ϕ}( j1− i1, j2− i2,θ)

)

i1=〈r1,k〉,i2=〈r2,k〉

. (9.35)

In order to speed up its computational cost, one can first convolve the measurement vector g with the
kernel P{ϕ}, computes its values on a fine grid, and stores it in a look-up table. Then, its values on points
(〈r1,k〉 ,〈r2,k〉) are computed using a simple interpolation procedure.

9.5 Conclusion
We formulated the reconstruction from several noisy micrographs in single particle analysis as a constrained
regularized optimization. We were able to directly include the contrast transfer function in the system
matrix without any extra computational cost. The experimental results suggested that our approach brings a
significant improvement in the quality of the reconstruction. Our framework also provided an important step
toward the application of SPA for the atomic interpretation of macromolecular models. The corresponding
algorithms have been implemented in Xmipp.
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Figure 9.3: (a) 4CSU, 50S ribosome subunit count with ObgE with 1.5 Å, (b) 4CSU density map,
(c) some slices of the volume, (d) the x-ray transform of the density map modulated by a realistic
CTF is computed. It then corrupted by additive Gaussian noise.
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(a) (c)

(b) (d)
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Figure 9.4: The reconstructed volume using ADMM-PCG and its slices are depicted in (a) and
(b), respectively. The correspondent images using Xmipp technique are shown in (c) and (d).
The Fourier shell correlation (e), (f) shows the significant improvement of using ADMM-PCG in
comparison with the Xmipp technique in two different scenarios: 1) there is no CTF, 2) there is a
CTF.
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Figure 9.5: The Bovine papilloma virus type 1 (a). The reconstructed volume using ADMM-
PCG and its slices are depicted in (b) and (c), respectively. The correspondent images using
Xmipp technique are shown in (d) and (e).



Chapter 10

Conclusion

In this thesis, we developed high performance and competitive reconstruction frameworks in the context of
straight-ray imaging modalities. Here, we first summarize the main research directions. We then present our
results in the context of grating-based imaging (GI) and single particle analysis (SPA). Then, potential areas
of interest for future research related to our work are listed in the last section.

10.1 Summary of Results

10.1.1 Reconstruction Framework
Our approach is based on 1) a rigorous discretization of the forward model using a generalized sampling
scheme; 2) a variational formulation of the reconstruction problem; and 3) iterative reconstruction algorithms
that use the alternating-direction method of multipliers.

• Discretization Scheme: In order to formulate the reconstruction as an inverse problem, one re-
quires to discretize the imaging operator. In this regard, we specified the reconstruction space as
V = { f (x) = ∑k c[k]ϕ(x−k)}. We considered the coefficient vector c as discrete representation of
the object of interest. The discretization problem was summarized in the choice of basis function ϕ .
We investigated box splines and kaiser-Bessel window functions as two main families.

The choice of the box spline generator should be determined by computational and approximation
theoretic considerations. Basis functions with larger support and smoothness usually offer better
approximation quality, but they also require more computations. This suggests the possibility of a
tradeoff between approximation order and the density of the reconstruction grid. In particular, it
demonstrated that it is computationally advantageous asymptotically to switch to a higher-order basis
function than to increase the sampling rate. Tensor-product B-splines constitute a preferred set of
basis functions because they are made up from univariate B-splines building blocks which are widely
studied and efficient to evaluate. We should note, however, that the present box spline framework in-
cludes other non-separable basis functions with increased isotropy (e.g., Zwart-Powell box spline) and
same approximation order, but lower polynomial degree and smaller support than their tensor-product
counterparts.

Kaiser-Bessel window functions (KBWF) are isotropic. The projections of isotropic functions are
independent of the viewing angle. Therefore, they are attractive candidates as generating functions of
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principal shift-invariant spaces for discretizing the imaging operators. The generalized Kaiser-Bessel
window function is widely used in the context of straight-ray imaging. There are several parameters for
KBWFs that should be adjusted. In this thesis, we proposed a measure to determine the performance
of a basis function for the discretization scheme. Furthermore, we suggested a method to optimize the
parameters of the KBWF based on this measure. By numerical experiments, we confirmed that using
the proposed method improves the performance of the discretization scheme.

For a fixed support, B-spline functions have a better order of approximation than Kaiser-Bessel win-
dow functions (KBWFs). We showed that, by adjusting the taper parameter of KBWF using the
proposed approximation-theoretic framework, these functions perform almost as well as B-splines.
In two-dimensional tomography or three-dimensional tomography with fixed rotation axis, B-splines
are preferable owing to their order of approximation. In addition, the separability of the tensor prod-
uct of cubic B-spline functions allows one to decompose the different three-dimensional reconstruc-
tion in parallel-beam geometry with fixed rotation axis into some easier two-dimensional and one-
dimensional subproblems. It results in the development memory-efficient reconstruction framework.
In the three-dimensional problem with random orientations, the implementation of the x-ray transform
using B-splines is too complicated and it is therefore more practical to use KBWFs.

Note that, the approach is applicable with minor adjustment to non-parallel geometries as long as the
projections are line integrals or obtained by taking “point” measurements (i.e., ideal samples) of the
Radon transform, or, with a very slight extension, that all the rays hitting one detector (pixel) are
parallel. Since the Radon transform of the B-spline/box spline is available to us in closed-form, the
handling of a non-parallel geometry then essentially amounts to a proper bookkeeping of the angles:
For every ray angle in the non-parallel geometry, the proper ray direction in the parallel geometry can
be looked up. The hypothesis of pure line integrals is implicit to all the discretization methods that we
are aware of.

• Variational formulation and iterative reconstruction: We formulated the reconstruction of straight-
ray tomograms as a constrained optimization problem. To improve the quality of the reconstruction,
we took advantage of total-variation regularization and its higher-order variants. In addition, the
prior information on the support and the positivity of the refractive index were both considered. We
showed that side information such as the support-related constraints and positivity of the refractive
index can significantly improve the quality of reconstruction. We introduced iterative algorithms that
use the alternating direction method of multipliers to solve our constrained regularized reconstruction
problem. In addition we derived an important practical twist which is the introduction of a problem-
specific preconditioner. We showed that it significantly speeds up the quadratic optimization step
of the algorithm. One can obtain a reasonable reconstruction in few number of iterations using the
proposed reconstruction scheme. This is an important issue in practical applications. In order to
speed-up the reconstruction even further, we reduced the computational cost of each step by exploring
the structure of HT H. We showed that under some conditions the operator HT H is indeed a digital
convolution in which one can take advantage of FFT for implementation.

The two challenging applications to which we applied the methods of our framework are grating-based x-ray
imaging (GI) and single-particle analysis (SPA).

10.1.2 Grating-based X-ray Imaging
Up to now, in-vivo tomography with grating interferometry faces the challenge of large dose deposition,
which potentially harms the specimens e.g., in small rodent scanners. To reduce the total scanning time,
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we first demonstrated the reconstruction framework in GI. We presented experimental results to validate
the proposed discretization method and corresponding iterative technique. Our finding confirms that the
proposed method is quite competitive for solving TV-regularized problems. Moreover, our method allows
for a substantial dose reduction while preserving the image quality of FBP-type method. This is a crucial step
towards the diffusion of DPCI in medicine and biology. We then improved the reconstruction framework
even further by considering the correlation between the phase and absorption measurements. We added
Jacobian-type regularization to simultaneously reconstruct phase and absorption. The experimental results
confirmed the power of our method.

Unlike DPC tomography where the phase information can be recovered effectively by reconstruction
algorithm, retrieving phase image from DPC projection remains challenging and limits the exploration of the
advantages of the phase information in radiographic applications. We used the proposed iterative algorithm
for differential phase contrast imaging. The algorithm utilized a novel discretization model of differential
operator using B-spline calculus. The algorithm was evaluated with breast biopsy and mastectomy samples.
The present study demonstrated that DPC signal is indeed capable of providing higher contrast in clinical
relevant features, like the spiculation etc. These results could help to improve breast cancer diagnosis.

In addition, we proposed a new iterative method to retrieve the phase image and to jointly denoise the
absorption image. The present study is a proof of concept that demonstrates that it is indeed possible to
improve the clarity of phase features that have a clinical relevance (e.g., spiculations). At the same time,
the contrast of complementary features in the absorption image (e.g., micro-calcifications) is improved, too.
This suggests that a wider deployment of joint retrieval absorption and phase could have a beneficial clinical
impact in the early diagnosis of breast cancers. Our algorithms have been implemented in the TOMCAT
laboratory of the Paul Scherrer Institute.

10.1.3 Single Particle Analysis
In the context of near-atomic-resolution SPA, we need to cope with hundreds or thousands of noisy projec-
tions of macromolecules onto different micrographs. Moreover, each projection has an unknown orientation
and is blurred by some space-dependent point-spread function of the microscope. Consequently, the determi-
nation of the structure of a macromolecule involves not only a reconstruction task, but also the deconvolution
of each projection image. We formulated this problem as a constrained regularized reconstruction. We were
able to directly include the contrast transfer function in the system matrix without any extra computational
cost. The experimental results suggested that our approach brings a significant improvement in the quality
of the reconstruction. Our framework also provided an important step toward the application of SPA for the
atomic interpretation of macromolecular models. The corresponding algorithms have been implemented in
Xmipp.

10.2 Outlook
The research presented in this thesis opens several interesting directions for future investigation. Some of
them are listed below.

• Optimal scenario for radiation dose reduction: The radiation dose reduction can be achieved by
either a reduction in the intensity of the photons or in the number of projection angles. In the context
of grating-based imaging, we investigated the scenario in which the number of projection angles is
reduced. The question is what the optimal strategy to reduce the radiation dose is? What is the optimal
intensity of the photons and the number of projection angles while using the proposed reconstruction
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frameworks in the context different straight-ray imaging modalities? It is worthwhile to investigate
this problem mathematically and also to validate it by conducting some real experiments.

• Optimal regularization parameters: One of the main challenges in the regularized formulation of
the reconstruction is the adjustment of regularization parameters. In the context of differential phase
contrast tomography, we presented a candidate for the parameters. It is worthwhile to extend the
proposed framework to straight-ray imaging modalities. In addition one can propose a new candidate
for the optimal regularization parameter in the context of straight-ray imaging.

• Generating function ϕ with radial Nyquist criteria: We showed that if the basis function ϕ satis-
fies the radial Nyquist criteria, then HT H is a digital convolution. We then investigated B-splines and
Kaiser-Bessel window functions as the ones which approximately satisfy the necessary condition. It
is an interesting question to consider the shift invariant space introduced by a generation function ϕ

which satisfies the necessary condition. The goal of this research direction is to investigate theoreti-
cally the space generated by a function ϕ that is a band-limitted function.

• Extension to diffraction tomography: We proposed a discretization scheme using generalized sam-
pling. We showed that in the context of parallel beam imaging, HT H is a digital filter under radial
Nyquist condition. The next step is to extend this philosophy in the context of diffraction tomogra-
phy. The derivation of efficient solutions to these problems are important in the context of optical
tomography, based on the results obtained in this thesis.

• Speeding up the matrix-vector multiplication of HT g (back-projection operator): In order to
speed-up the proposed reconstruction framework, we derived the necessary conditions to reduce the
computational cost of the matrix-vector multiplication HT H in each iteration. Since the back projec-
tion of the measurement vector is precomputed and then is used in each iteration, we didn’t investigate
this operator in this thesis. It is likely that future research will investigate to reduce the computational
cost of HT g.

• Orientation estimation and initial volume reconstruction in single particle analysis: Single parti-
cle analysis deals with thousands of projection images of identical particles with random orientations.
In order to reconstruct the 3-D structure of the macromolecules, it is demanded to estimate the posi-
tion and orientation of each image. The positions and orientations are estimated by random-conical
tilt techniques or common-lines based approaches. The images are classified and partitioned based
on their similarity in the viewing angle and then averaged over whole class to enhance the signal-
to-noise-ratio (SNR). The enhanced SNR images are used to reconstruct the initial volume. It is
advantageous to involve the proposed reconstruction framework in orientation estimation and initial
volume reconstruction.
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