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In the present work, a Verification and Validation procedure is presented and applied showing,
through a practical example, how it can contribute to advancing our physics understanding of
plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in
particular, the computational fluid dynamics community, a rigorous methodology for the
verification of a plasma simulation code is presented, based on the method of manufactured
solutions. This methodology assesses that the model equations are correctly solved, within the
order of accuracy of the numerical scheme. The technique to carry out a solution verification is
described to provide a rigorous estimate of the uncertainty affecting the numerical results. A
methodology for plasma turbulence code validation is also discussed, focusing on quantitative
assessment of the agreement between experiments and simulations. The Verification and
Validation methodology is then applied to the study of plasma turbulence in the basic plasma
physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both
two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al.,
Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress
in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a
turbulent regime transition, due to the competition between the resistive and ideal interchange
instabilities. [http://dx.doi.org/10.1063/1.4919276]

I. INTRODUCTION

Errors affecting the simulations used to describe the
complex plasma dynamics in a tokamak can have far reach-
ing consequences. To limit these errors, which can be due
both to mistakes present in the code and to the implementa-
tion of a non-sufficiently accurate physics model, there is a
increasing motivation in plasma physics to use Verification
and Validation (V&V) procedures.1–3 V&V is composed by
three separate tasks: (i) the code verification process, which
is targeted to assess that the physics model is correctly
implemented in the numerical code, (ii) the solution verifica-
tion procedure, used to estimate the numerical error affecting
the simulation results, and (iii) the validation procedure,
used to assess the consistency of the code results, and there-
fore of the physics model, with experimental data. The pro-
cedure is visualized in Fig. 1. Goal of a V&V procedure is
therefore to assess the reliability of our numerical codes and
the maturity of the understanding of the physics underlying
the dynamics of a plasma.

To perform a code verification, one can2 (a) perform
simple tests, (b) compare codes with each other (this is
known as code-to-code benchmark), (c) quantify the discreti-
zation error with respect to a known solution, (d) check the
convergence of the numerical result to a known solution, and
(e) prove that the numerical solution converges to the analyt-
ical one at the rate expected for the numerical scheme
(order-of-accuracy tests). As they do not require an

analytical solution, the first two techniques [(a) and (b)] are
the simplest to use and, in fact, code-to-code benchmarks are
routinely used in plasma physics (see, e.g., Refs. 4–10).
While valuable, this exercise is not rigorous as it requires
that at least one code is fully verified and, generally, it is
very difficult to understand if the difference in the code
results is due to discretization errors or to a non-correct
implementation of the model. Only the three other
approaches [(c)–(e)] are rigorous and, in particular, the

FIG. 1. Schematic representation of the V&V procedure. Through the analy-
sis of experimental data, an analytical model is deduced to describe the evo-
lution of the physical system under consideration. The model equations are
then discretized and coded. The simulations results are finally used to inter-
pret the experimental results. Through the code verification procedure, it is
assessed that the model equations are correctly implemented in the simula-
tion code. Solution verification allows to estimate the numerical error affect-
ing the simulation results. Finally, the agreement between experiments and
simulations is quantitatively assessed through a validation procedure.
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order-of-accuracy test is the only one that can assess quanti-
tatively the correct implementation of the model equations
and of the numerical scheme. Order-of-accuracy tests are
used in other scientific domains, such as computational fluid
dynamics, by using the method of manufactured solution
(MMS),11–13 which allows order-of-accuracy tests even
when an analytical solution is not available for the physics
model considered.

Even when a model is correctly implemented in a code,
we note that simulations are affected by numerical errors,
which should be evaluated through a solution verification
procedure.2,3,14,15 The sources of numerical error are: (a)
round off errors due to the finite number of digits carried
over by a computer, (b) statistical sampling errors, (c) errors
associated to iterative numerical methods stopped before
they reach full convergence, and (d) discretization errors due
to the finite grid spacing used by a numerical scheme. While
all these errors have to be evaluated, if iterative methods are
applied using a sufficiently large number of iterations, and
simulations are run long enough to decrease the statistical
errors, discretization errors typically dominate over the other
sources. Focusing on these errors, for grid-based algorithms,
the Richardson extrapolation as higher-order estimator of the
solution can be used, as well as the Roache’s grid conver-
gence index (GCI) as a relative numerical uncertainty
estimate.16

Guidelines to carry out the validation between experi-
ments and simulations have been ported from other domains,
such as computational fluid dynamics, to plasma physics,
and are described in Refs. 17 and 18. Simulations and experi-
ments have to be compared considering a number of physical
quantities, common to the experimental measurements and
simulation results, analyzed using the same techniques.
These physical quantities, denoted as validation observables,
should be identified and organized into a hierarchy. The lat-
ter is based on the number of model assumptions and combi-
nations of measurements necessary to obtain the observable;
i.e., how stringent each observable is for comparison pur-
poses. By combining the result of the comparison of all the
observables, while taking into account position in the hierar-
chy and precision, the agreement between simulations and
experiments needs to be quantified by using an appropriate
composite metric, v, whose purpose is to quantify the overall
agreement between experiments and simulations. The metric
v should be complemented by an index, Q, which assesses
the quality of the comparison. Practically, Q provides an in-
dication of the number of observables that have been used
for the validation and the strength of the constraints they
impose. We remark that the validation should take into
account the experimental and simulation uncertainties, there-
fore these have to be accurately evaluated. Sources of experi-
mental uncertainties are the approximations of the models
used to interpret the experimental results, the difficulties in
the evaluation of the properties of the measuring devices,
and the non-perfect reproducibility of the experiments. For
the simulations, uncertainties are due to the numerical error
(evaluated through the solution verification procedure) and
the uncertainty associated to the non-well known input

parameters. The latter can be estimated through a sensitivity
analysis.

We point out that the validation procedures should
remain simple. The goal is not mathematical rigor, but a
useful tool that can be easily applied in order to compare dif-
ferent models with experimental results. Through this com-
parison, it is possible to assess the physics elements that play
a role in the dynamics of the system and that should be taken
into account for its description. On the other hand, it is very
delicate to judge a single model in absolute terms in view of
testing its predictive capabilities and this is not a subject of
the present paper.

Goal of the present paper is twofold. First, we summa-
rize the methodology to carry out the procedures of code
verification, simulation verification, and validation. Second,
we describe the V&V effort that we have carried out in the
recent years to study the plasma dynamics in the basic
plasma physics experiment TORPEX19,20 by using the GBS
code.21 This application exemplifies the application of this
methodology. Owing to its detailed diagnostics, possibility
of parameter scans, and relative simple configuration,
TORPEX is an ideal testbed to perform experiment/simula-
tion comparisons and to investigate the corresponding meth-
odological framework. For its simulation, three models have
been considered, all based on the drift-reduced Braginskii
equations: (a) a three-dimensional two-fluid model, able to
describe the global evolution of TORPEX plasma,22,23 (b)
the same three-dimensional model completed by an appro-
priate first-principle set of boundary conditions that has been
recently derived,24 and (c) a reduced two-dimensional
two-fluid model,25,26 able to describe only the evolution of
kjj ¼ 0 modes. The three models are implemented in the
GBS code. We therefore discuss the verification of the GBS
code and of its results. We then compare the simulation
results with the experimental results, showing that the valida-
tion metric is able to point out that the agreement of the
two-dimensional model and the experiment is no longer sat-
isfactory when kjj 6¼ 0 modes are present in the experiment.
We note that the present work summarizes the results con-
tained in Refs. 27–29 and extend them to the validations of
the simulations with the new set of boundary conditions that
have been implemented in GBS.

The paper is structured as follows. After the
Introduction, we describe the V&V methodology in Sec. II.
The application of the methodology to the analysis of the ba-
sic plasma physics experiment TORPEX is described in Sec.
III. The Conclusions follow. In the Appendixes, we present
the details of the TORPEX experimental setup (Appendix A)
and of the simulation approach (Appendix B).

II. THE VALIDATION AND VERIFICATION
METHODOLOGY

A. Code verification methodology

The order-of-accuracy test can ensure the correct
implementation of the physical model and of the numerical
scheme.2 This test analyzes the convergence of the numerical
solution to a known analytical solution, verifying that the
discretization errors reduce at the rate expected for the
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numerical scheme, as the spatial mesh and the time step are
refined.

Given a theoretical model M with an analytical solution
s, such that MðsÞ ¼ 0, and the numerically discretized model
of M, Mh, with a numerical solution sh that satisfies
MhðshÞ ¼ 0 (h is a parameter representing the degree of
refinement of the mesh), the error affecting the numerical
results is expressed as !h ¼ ksh $ sk, where k % k denotes a
designed norm. The theoretical order of accuracy, p, associ-
ated with the numerically discretized operator Mh, represents
the rate at which the numerical solution converges to the an-
alytical solution as the mesh is refined. The numerical error,
in fact, satisfies the relation !h ¼ Cphp þ Oðhpþ1Þ, where Cp

is independent of h, and p is the order of accuracy of the
numerical scheme, typically evaluated through its Taylor
expansion.2,3,13 Having the two numerical solutions of Mh

and Mrh, i.e., sh and srh, where rh indicates coarsening the h
mesh by a factor r, one can evaluate the observed order of
accuracy, p, using

p ¼ ln !rh=!hð Þ
ln rð Þ

: (1)

If p converges to p for h ! 0, i.e., when the discretiza-
tion error is dominated by the lowest order term in the
expansion (the so-called asymptotic regime), we can state
that the code is verified and the equations are correctly
solved, with the order of accuracy expected for the numerical
scheme.

The main issue related to the systematic evaluation of p
is the need of the analytical solution s, necessary to compute
the numerical error !h; in fact, the analytical solution is
unknown in most cases. The MMS, developed to overcome
this problem,11–13 instead of solving analytically a theoreti-
cal model, suggests to impose a solution to the model, the
so-called manufactured solution, and to modify the model
equations to accommodate the imposed solution; we then
numerically solve the obtained modified model to compute
the discretized error. More precisely, for a given model M,
we choose an analytical function u and we compute a source
term, S ¼ MðuÞ, which is subsequently subtracted from M to
obtain a new analytical model G ¼ M $ S, whose analytical
solution is u [in fact, GðuÞ ¼ MðuÞ $ S ¼ 0]. The discretiza-
tion of the new model is straightforward, i.e., Gh ¼ Mh $ S.
Since the source term S is computed analytically, we do
not add any new discretization errors to the numerical
model considered and, consequently, the behavior of the
numerical error is preserved. This can be expressed as:
!h ¼ kuh $ uk ¼ Dphp þ Oðhpþ1Þ. From a practical point of
view, using the MMS for an order-of-accuracy test implies
adding source terms to the discretized equations, performing
a simulation scan to obtain the observed order of accuracy,
and comparing the observed order of accuracy to the theoret-
ical one to verify the code.

Although the idea behind the MMS is trivial, its imple-
mentation requires to consider some subtleties. In fact, the
manufactured solution should satisfy the following require-
ments: (a) be smooth enough and not singular, (b) be general
enough to excite all the terms present in the equations, (c)

satisfy the code constraints (e.g., positivity for the density or
the temperature), and (d) ensure that the magnitude of the
different terms composing the equations are of the same
order of magnitude. Due to these constraints, the manufac-
tured solutions are usually built as a combination of trigono-
metric and/or hyperbolic functions; the code verification is
in fact a purely mathematical issue and, consequently, as the
physics of the problem does not concern the manufactured
solutions, no physical constraint is applied on the choice of
the analytical functions. We finally note that the MMS can-
not be applied to codes used to model singularities, shocks,
or discontinuities; the verification of these codes is still an
open issue.2

B. Solution verification methodology

Due to finite computational power and the finite preci-
sion achievable, the simulation results are always affected by
numerical errors, even if the model equations are imple-
mented correctly. Estimating the amplitude of the numerical
errors is crucial to ensure the reliability of the numerical
results and their magnitude is needed to perform a rigorous
validation of the physical model with experimental results.
The estimate of the numerical error affecting the simulations
constitutes the solution verification procedure.2,3,14,15

The numerical errors affecting a simulation have four
sources: round-off errors, iterative errors, statistical sampling
errors, and discretization errors.2,3 We focus on the discreti-
zation errors, introduced by the numerical scheme used to
discretize the physical model over a finite mesh, in time and
in space.

In the early 20th century, Richardson developed a
method,30,31 later extended,32,33 to accelerate the rate of con-
vergence of a numerical sequence. This method is based
upon the use of two numerical solutions obtained using two
different meshes, sh and srh, to compute an estimate of the
analytical solution that presents a convergence rate one order
higher than the original numerical solution. Concretely, the
Richardson extrapolation is defined as

s ¼ sh þ
sh $ srh
rp $ 1

; (2)

where p is the formal order of accuracy defined in Sec. IIA.
Noting that ksh $ sk ¼ Cphp þ Oðhpþ1Þ, it follows that the
extrapolated solution s satisfies k%s $ sk ¼ Dphpþ1 þOðhpþ2Þ;
therefore, for h ! 0; "s ! s faster than the numerical solu-
tions obtained from the simulations. Consequently, we can
use s as an estimate of the exact solution s, and approximate
the numerical error with the expression

!h ’ ksh $ %sk ¼ srh $ sh
rp $ 1

!!!
!!!: (3)

The relative discretization error, RDE, is therefore approxi-
mated as

RDE ¼ sh $ s

s
’ sh $ %s

s
¼ srh $ sh

shrp $ srh
: (4)

For s to be a reasonable estimate of s, however, several
assumptions should be satisfied. First, the Richardson

055704-3 Ricci et al. Phys. Plasmas 22, 055704 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.178.125.98 On: Tue, 05 May 2015 09:06:11



extrapolation method requires the use of uniform mesh spac-
ing, meaning that the degree of the refinement of the meshes
can be represented solely by the parameter h discussed
before. Therefore, sh and srh should be computed over two
meshes that are one the uniform systematic refinement of the
other, and consequently the application of Richardson
extrapolation to computations involving local mesh refine-
ment or mesh adaptation is not allowed. Second, the simula-
tions used to evaluate s should be in the asymptotic regime,
meaning that the discretization error is dominated by its
lower order term, Cphp. This requirement could result in
computationally very expensive simulations, due to the
potential need of very fine meshes. Third, to apply the
method presented above for the estimate of the numerical
error, the solutions should be smooth enough, with no singu-
larities and/or discontinuities. As a matter of fact, to allow
the expansion of the numerical error in term of powers of the
parameter h, the derivatives of the analytical solution should
exist and be continuous. Moreover, we should note that we
do not have any guarantee that the Richardson extrapolated
solution meets the same governing equations satisfied by ei-
ther the numerical solution or the analytical solution; conse-
quently, we use this extrapolation for the computation of the
numerical error only.

Usually, it is problematic to satisfy the requirement of
being in the asymptotic regime, due to the high computa-
tional cost of the simulations. Moreover, it has to be demon-
strated that the numerical solutions are in the asymptotic
regime, by showing that the observed order of accuracy
matches the formal one. This requires at least three simula-
tions, resulting from two subsequent refinements of the
coarser mesh of a factor r, from which the observed order of
accuracy can be evaluated as

p ¼
ln sr2h $ srhð Þ= srh $ shð Þ
" #

ln rð Þ
: (5)

If only two simulations are available, or if the observed
order of accuracy does not match the formal one, we should
substitute the numerical error estimates in Eqs. (3) and (4)
with a numerical uncertainty quantification. As a matter of
fact, in general, the error estimates in Eqs. (3) and (4) may
depend strongly on the refinement factor r and on the preci-
sion of the numerical scheme; it is therefore difficult to rely
on such error estimate. To overcome these issues, Ref. 16
introduces the GCI defined as

GCI ¼ Fs

rp $ 1

srh $ sh
sh

$$$$

$$$$; (6)

that represents an estimate of the relative discretization error
affecting the simulation results. The GCI value is obtained
by approximating in Eq. (4) shrp $ srh ’ ðrp $ 1Þsh. The fac-
tor of safety Fs and p ensure that GCI is larger than the nu-
merical discretization error in 95% of the cases. Oberkampf
and Roy2 propose the following: if jp$ pj < 0:1p, we can
assume that the simulation is in the asymptotic regime and
we use Fs ¼ 1:25, as well as p ¼ p. If jp$ pj > 0:1p, a
more conservative factor of safety, Fs¼ 3, has to be used and

p ¼ min½maxð0:5; pÞ; p(. If p is not evaluated (for example,
if only two solutions are available), Fs¼ 3 and p ¼ p are
used. We remark that, although these definitions are reasona-
ble, there still is an ongoing discussion in the verification
community about their generality.

To conclude our presentation of the error estimate meth-
odology, we have to discuss a few details. First of all, we
draw the attention to the fact that the present procedure can
be applied not only to point-by-point solution values, but
also to solution functionals. This is an important point to
estimate the numerical error affecting the observables used
in the validation of the physical model.3 Second, as sh and
srh are in general computed on different meshes, the results
on the coarser mesh have to be interpolated on the finest
grid, using an interpolation scheme whose order is equal or
higher than the order of the numerical scheme used by the
code. A complete discussion of this topic is found in Ref. 32.
Third, using GCI as an evaluation of the numerical error
requires a non-oscillatory convergence of the numerical so-
lution. If oscillatory convergence is observed, the numerical
error has to be evaluated from the difference between the
obtained numerical solutions. Finally, we illustrate a useful
propriety of GCI, which is the possibility of computing the
overall GCI analyzing each coordinate of the problem inde-
pendently. As it can result numerically very expensive to
perform a uniform refinement of the grid along all the coor-
dinates at the same time, it is possible to refine separately
each coordinate of the mesh by a factor ri, where the index i
refers to the coordinate under investigation. This allows us to
compute a GCIi and a pi for the i coordinate, and obtain the
overall GCI as GCI ¼

P
iGCIi.

C. Validation methodology

Simulations and experiments have to be compared
considering a number of physical quantities, common to the
experimental measurements and simulation results, and ana-
lyzed using the same techniques. These physical quantities
are denoted as validation observables. In order for an observ-
able to be considered, it should satisfy the following criteria.
First, the observable should be physically relevant: i.e., focus
should be put on observables containing the most important
theoretical predictions. Second, each observable should be
independent of the other observables. Third, the resolution of
the observables should be sufficient to well describe their
variation.

Once the observables are defined and evaluated, the
agreement between experiments and simulations relative to
each observable has to be quantified. We denote with ej and
sj the values of the j-th observable used in the comparison, as
coming from the experimental measurement or the simula-
tion results, respectively. Most of the observables depend on
space and time and are typically given on a discrete number
of points, denoted as Nj. We denote with ej;i and sj;i the val-
ues of the j-th observable at points i ¼ 1; 2; :::;Nj (the present
notation can therefore be used for zero-, one-, two-, etc.,
dimensional observables). For the j-th observable, we nor-
malize the distance dj between experiments and simulations
with respect to the uncertainty related to these quantities
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dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj

XNj

i¼1

ej;i $ sj;ið Þ2

De2j;i þ Ds2j;i

vuut ; (7)

where Dej;i and Dsj;i are the uncertainties related to the eval-
uation of ej;i and sj;i. Since simulations and experiments can
be considered to agree if their difference is smaller than their
uncertainties, we define the level of agreement between
experiments and simulations with respect to observable j as

Rj ¼
tanh dj $ 1=dj $ d0

& '
=k

" #
þ 1

2
; (8)

with Rj ! 0:5 corresponding to agreement (within the experi-
mental and simulation uncertainties), while Rj " 0:5 denot-
ing disagreement (outside the experimental and simulation
uncertainties). Here, we choose d0 ¼ 1 and k ¼ 0:5; our tests
show that the conclusions of a validation exercise are not
affected by the specific choices of the parameters d0 and k, if
these parameters are within the reasonable range that point
out agreement between experiments and simulations when
they fall within their uncertainties. Some authors prefer to
normalize the distance between experimental and simulation
results to the actual value of the observables, rather than to
their uncertainty.2 We believe that the normalization to the
uncertainty is the most appropriate choice in the present
case, as we are interested in understanding if the basic
physics mechanisms at play in the system are well captured
by the model under consideration. The normalization to the
actual value of the observable is instead preferable in the
case that the predictive capabilities of the code are tested.

Particular attention should be paid in evaluating the exper-
imental and the simulation uncertainties. In the case of the
experiments, we can identify three main uncertainty sources.
First, the model of a measuring device provides predictions
through which one can infer the physical quantities of interest
(e.g., from the I-V curve of a Langmuir probe one can infer n
and Te). Experimental measurements typically do not follow
perfectly the model predictions: thus, a fit has to be made in
order to evaluate the relevant physical parameters, introducing
an uncertainty that we denote with Dxf itj;i . Second, a source of
uncertainty is due to properties of the measuring device that
are often difficult to evaluate accurately (e.g., geometry and
surface condition of a Langmuir probe). Thus, measurements
should be performed with different tools (e.g., Langmuir
probes which differ in dimension, surface condition, and elec-
tronics). The quantity Dxprbj;i denotes the uncertainty related to
the probe properties. Finally, the plasmas are not perfectly re-
producible due to control parameters difficult to set or know
precisely (e.g., the vacuum pressure). Experiments should be
repeated in order to check the reproducibility of the plasma,
while measurements are taken with different measurement
devices. The quantity Dxrepj;i is the uncertainty due to the

plasma reproducibility, averaged over the different measuring
devices. The total experimental uncertainty is given by

Dx2j;i ¼ ðDxf itj;i Þ
2 þ ðDxprbj;i Þ

2 þ ðDxrepj;i Þ
2.

Simulations are also affected by uncertainties resulting
from two sources: (i) errors due to the numerics (e.g., due to
the limited accuracy of the numerical integration scheme

used or due to the finite grid resolution) and (ii) errors due to
unknown or imprecise input parameters. While errors due to
the numerics, Dynumj;i , can be estimated through the methodol-
ogy described in Sec. II B, the evaluation of the error related
to not perfectly known input parameters, Dyinpj;i , requires a
uncertainty propagation study, i.e., an investigation of how
the model results are affected by the input parameter varia-
tions. The number of input parameters of a turbulence simu-
lation code is usually quite large and a complete study of the
model response is prohibitive. However, the theory can indi-
cate to which input parameters the results are particularly
sensitive. The analysis has then to focus on those. We remark
that in the literature, a number of useful techniques have
been proposed to predict the response of the model to varia-
tion of simulation parameters using the smallest possible
number of simulations (see, e.g., Ref. 34). As in the case of
the experimental error bars, the two sources of error should
be added, such that Dy2j;i ¼ ðDynumj;i Þ2 þ ðDyinpj;i Þ

2.
We note that the error bars should not take into account

the uncertainties related to model assumptions and/or to
combinations of measurements, which are often needed to
deduce the comparison observables from the simulation
results and the raw experimental data.27 Evaluating rigor-
ously those uncertainties is usually very challenging. The
idea is to take them into account approximately through the
observables primacy hierarchy. More specifically, the higher
the hierarchy level of an observable is, the lower the impor-
tance of the observable in the comparison metric.

The overall level of agreement between simulations and
experiments can be measured by considering a composite
metric, which should take into account the level of agree-
ment of each observable, Rj, and weight it according to how
constraining each observable is for comparison purposes.
This means that the hierarchy level of each observable and
the level of confidence characterizing the measurement or
the simulation of each observable have to be considered. The
higher the level in the primacy hierarchy and the bigger the
error affecting the observable measurement, the smaller
the weight of the observable should be. We thus define the
metric v as

v ¼

X

j

RjHjSj

X

j

HjSj
; (9)

where Hj and Sj are functions defining the weight of each
observable according to its hierarchy level and the precision
of the measurement, respectively. Thanks to the definition of
Rj, v is normalized in such a way that perfect agreement is
observed for v¼ 0, while simulation and experiment dis-
agree completely for v¼ 1.

The definition of Hj and Sj is somewhat arbitrary. Hj

should be a decreasing function of the hierarchy level. The
definition we adopt is Hj ¼ 1=hj, where hj is the combined
experimental/simulation primacy hierarchy level, which
takes into account the number of assumptions or combina-
tions of measurements used in evaluating the observables
both from the experiments and from the simulations. In
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practice, if no assumptions or combinations of measurements
are used for obtaining an observable, hj¼ 1, any assumption
or combination of measurement leads hj to increase of a
unity (see Ref. 27 for more details on the hj definition). The
quantity Sj should be a decreasing function of the experimen-
tal and simulation uncertainty. We introduce the following
definition:

Sj ¼ exp $

X

i

Dej;i þ
X

i

Dsj;i
X

i

jej;ijþ
X

i

jsj;ij

0

BB@

1

CCA; (10)

such that Sj¼ 1 in the case of zero uncertainty.
The validation metric should be complemented by an

index, Q, that assesses the “quality” of the comparison. The
idea is that a validation is more reliable with a larger number
of independent observables, particularly if they occupy a low
level in the primacy hierarchy and the measurement and sim-
ulation uncertainties are low. The quality of the comparison
Q can thus be defined as

Q ¼
X

j

HjSj: (11)

III. EXAMPLE OFAPPLICATION OF THE VALIDATION
AND VERIFICATION METHODOLOGY

We present an example of V&V procedure, where we
apply the methodology described in Sec. II. We discuss the
simulations of plasma turbulence in the basic plasma physics
experiment TORPEX19,20 that have been carried out with the
GBS code. The GBS code has been developed in the last few
years to simulate plasma turbulence in the open field region
of magnetic confinement devices, evolving the drift-reduced
Braginskii two-fluid equations,35 without any separation
between equilibrium and perturbation quantities.21 In the
development of the GBS code, increasingly complex mag-
netic configurations have been considered: first, the code
was developed to describe basic plasma physics devices, in
particular, linear devices such as LAPD36 and simple magne-
tized toroidal devices such as TORPEX,23 whose simulations
are the focus of the present paper. GBS was then extended to
the tokamak geometry, and it is now able to model the toka-
mak scrape-off layer (SOL) region in limited plasmas (see,
e.g., Refs. 37–40). GBS has been subject of a rigorous code
verification procedure described in Ref. 29 that we briefly
summarize in Sec. III A.

TORPEX features a simple magnetized plasma, in a to-
roidal configuration of major radius R and height Lv where a
vertical magnetic field, Bz, superimposed on a toroidal mag-
netic field, B/, creates helicoidal field lines winding around
the device.19,20 Pressure gradients and magnetic curvature
drive a number of instabilities that develop into turbulence
and lead to transport of heat and particle across the magnetic
field lines,41 while the plasma flows along them to be lost at
the vessel walls. The TORPEX experimental setup and the
Langmuir probe diagnostics used (HEXTIP, SLP, and
TWIN) are described in Appendix A. We remark that the

TORPEX experimental setting is particularly suited for
experiment/simulation comparison, thanks to its detailed
diagnostics, the possibility of performing easily parameter
scans, and relatively simple geometry, which allows global
simulations particularly suited for a detailed comparison.

For the comparison of simulations and experiments, we
consider a set of TORPEX configurations with different val-
ues of vertical magnetic field, characterized by different
properties of plasma turbulence. We analyze four scenarios,
characterized by different windings of the magnetic field
lines, i.e., N ¼ 2; 4; 8, and 16, being N ¼ LvB/=ð2pRBzÞ the
number of field line turns in the device. By using GBS, we
carry out simulations of TORPEX plasma turbulence by
considering three different models: (a) a global three-
dimensional two-fluid model that describes the evolution of
the plasma dynamics in the full TORPEX volume, (b) a
global three-dimensional two-fluid model that describes the
evolution of the plasma dynamics in the full TORPEX vol-
ume provided with first-principle boundary conditions
recently derived,24 and (c) a two-dimensional model that is
able to represent only kk ¼ 0 modes. The details of the simu-
lation models as well as the simulation input parameters are
described in Appendix B. As described in Sec. III B, we ver-
ify the solution of the GBS code, estimating the numerical
error that affects the validation observables, and we carry out
a rigorous validation exercise, as described in Sec. III C.

A. Code verification

GBS has been subject to the code verification procedure
described in Ref. 29. Here, we recall the main elements of
the procedure. To verify the implementation of the drift-
reduced Braginskii equations into GBS and to satisfy the
requirements given in Sec. II A, we choose to manufacture
the model solution as the combination of trigonometric func-
tions, with the amplitude of the coefficients such that, for the
used meshes, the simulations are in the asymptotic regime
and the errors affecting the different terms are of the same
magnitude.

The computation of the source terms S is trivial: it con-
sists in plugging the analytical manufactured solutions into
the drift-reduced Braginskii equations. This process is partic-
ularly tedious, but it involves only straightforward algebraic
manipulations with no conceptual difficulties and can be
carried out by using the symbolic manipulation software
Mathematica,42 which allows the direct translation into the
Fortran language in which GBS is written. This enables the
implementation of the obtained expressions in GBS, without
any significant difficulty and reducing the possibilities of
mistakes.

In Ref. 29, we report the results of the code verification.
The numerical error, evaluated as the norm of the difference
between the numerical and the manufactured solutions,
decreases with the grid spacing linearly on a logarithmic
scale, when refining the mesh, with the slope expected from
the order of accuracy of the numerical method. The scan we
perform shows a reduction of the numerical error by at least
three orders of magnitude, giving confidence that there are
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not subdominant errors decreasing at a rate different than the
expected one.

B. Solution verification

The estimate of the numerical error affecting a simula-
tion is needed not only to ensure the reliability of the numeri-
cal results, but also to perform the validation of the physical
model. It is therefore a fundamental step in the V&V proce-
dure. In this subsection, we apply the approach presented in
Sec. II B to the GBS code to exemplify the procedure and
to assess the numerical error affecting the TORPEX
simulations.

A previous solution verification procedure applied to the
GBS code29 shows that the numerical error affecting the sim-
ulations is mostly due to the space discretization, while the
time discretization leads to a negligible numerical error. We
therefore perform three simulations of TORPEX turbulence
for N¼ 2 by increasing the spatial grid resolution in all direc-
tions, focusing our attention on the numerical error that
affects the ten validation observables considered in Sec.
III C. In particular, we consider the equilibrium radial

profiles at the vertical midplane of density, n, electron tem-
perature, Te, electric potential, /, ion saturation current, Isat,
normalized Isat fluctuations, dIsat=Isat, Isat skewness, and kur-
tosis. We also use as validation observables the value of the
vertical wavenumber, kz, the Probability Distribution
Function (PDF), and the Power Spectrum Density (PSD) of
Isat at the vertical midplane, at the radial point where Isat is
equal to the 3/4 of its peak value (this is the location where
we expect to identify more clearly the turbulence properties).
We plot the results of the three simulations in Fig. 2.
Convergence in some cases shows a oscillatory character: as
the necessary condition to use the GCI estimate are missing,
we estimate the numerical uncertainty as the spatial average
of the maximum of the relative difference between the dif-
ferent simulations. The errorbar associated with this uncer-
tainty is plotted in Fig. 2.

C. Validation

To compare experiments and simulations, we use meas-
urements obtained by Langmuir probes. A number of
observables have been identified based on Langmuir probe

FIG. 2. Evaluation of the numerical uncertainty due to the numerical discretization. The ten observables considered for the validation procedure are plotted for
TORPEX simulations with N¼ 2, considering an increasing refinement of the mesh: Nr ) Nz ) Nu ¼ 128) 128) 32 (blue), Nr ) Nz ) Nu ¼ 192) 192)
48 (green), and Nr ) Nz ) Nu ¼ 288) 288) 72 (red). The resulting estimated uncertainty is represented by the errorbars. The Isat PDF is rescaled to the same
values of average, variance, and area. The PSD is rescaled to the same area.
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measurements27,43 and we list them in Table I; herein, we
use the ten observables at the second level of the comparison
hierarchy (H¼ 0.5 in all cases) that are mentioned in Sec.
III B. For each observable, the experimental uncertainty Dx
is evaluated by repeating the experiments a number of times,
and comparing the measurements of different probes. The
simulation uncertainty, Dy, is evaluated by performing a
number of simulations where we vary the input parameters.
A complete sensitivity scan would require the analysis of all
input parameters; however, due to the high computational

cost of the present simulations large parameter scans are pro-
hibitive at the moment, and we have focused our attention on
the parameters that are expected to most significantly affect
the simulations and that are not well known. For the three-
dimensional simulations, these are the plasma resistivity "
and the boundary conditions (in the case of simulations with
ad hoc boundary conditions). An example of uncertainty
evaluation is shown in Fig. 3, where we show three simula-
tions carried out with different values of " and the errorbar
we deduce. For the two-dimensional simulations, instead, we

TABLE I. Primacy hierarchy for some observables obtained from Langmuir probe measurements. The experimental hierarchy counts the number of assump-

tions or combinations of measurements used to obtain the observables from experimental data (the first level in the hierarchy denotes no assumptions or combi-
nations of measurements; then, each assumption or combination of measurements increases the hierarchy level of a unity). The same definition is used for the
simulation hierarchy. The comparison hierarchy sums the experimental and simulation assumptions.

Experimental hierarchy Simulation hierarchy Comparison hierarchy

Moments, PDF, and PSD of Isat and Vfl 1 2 2

Te; "n; "/ 2 1 2

Results from spectral analysis (e.g., kz) 2 1 2

Statistical analysis of turbulent structures 2 3 4

Te 3 1 3

Particle flux 3 2 4

FIG. 3. Evaluation of the numerical uncertainty due to poorly known input parameters (in this case plasma resistivity). The ten observables considered for the
validation procedure are plotted for TORPEX simulations with N¼ 2, considering " ¼ 0:01 (green), " ¼ 0:1 (blue), and "¼ 1 (red). The resulting estimated
uncertainty is represented by the errorbars. The Isat PDF is rescaled to the same values of average, variance, and area. The PSD is rescaled to the same area.
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study the sensitivity to the parameter describing the parallel
losses, r, that is introduced in Appendix B.

The values of v are plotted in Fig. 4, which describes the
dependence of the simulation/experiment agreement as a
function of the number of field line turns, N, for both the
two-dimensional and three-dimensional simulations, with
and without the first-principle set of boundary conditions).
For the three-dimensional simulations, it is v ’ 0:5, showing
that the three-dimensional simulations are able to represent
equally well low and high N scenarios. A clear trend is
instead observed in the case of the two-dimensional simula-
tions, where the agreement decreases with N, passing from
v ’ 0:6 for N¼ 2 to v ’ 0:9 (i.e., almost complete disagree-
ment) for N¼ 16. With respect to the observables considered
herein, no clear improvement is observed in the simulations
carried out with the first-principle set of boundary
conditions.

If we look at the origin of the discrepancy between sim-
ulations and experiment in more details, we observe that the
three-dimensional simulations generally describe reasonably
well the equilibrium profiles of n, and Isat. The agreement is
worse in the case of the Te and / profiles. A significant dis-
crepancy between simulations and experiments is revealed
by the comparison of the turbulence amplitude levels, as the
simulated turbulence amplitude is about a factor of two
smaller than the experimental one. The analysis of the PSD
reveals that the difference between the experimental and
simulated turbulence level is present across all the
frequencies.

For two-dimensional simulations, agreement strongly
decreases with increasing N for the majority of the observ-
ables. In fact, for N¼ 2 and N¼ 4, the agreement between
two-dimensional simulation and experiment is comparable
to the one observed in the case of three-dimensional simu-
lations. The agreement strongly decreases at higher N,
and at N¼ 16 all the observables reveal a complete
disagreement.

The quality of the comparison is also plotted in Fig. 4.
Since the uncertainties for all the observables are relatively
small and all the observables are at the second level of the
validation hierarchy, Q is about constant as a function of N,
and in particular, Q ’ 4, that is close to the maximum value,
Q¼ 5 that can be obtained by using 10 observables at the
second level of hierarchy. The Q values reported in the pres-
ent validation project can be compared with the Q that would
be obtained in a validation carried out by comparing

exclusively the agreement of the experimental and simula-
tion particle fluxes, that is Q * 0:25.

IV. CONCLUSIONS

In the present paper, we discuss the methodology for
carrying out a V&V procedure to make progress in the
understanding of plasma turbulence. Rigorous techniques
have been introduced to assess the correct implementation of
the model equations in a simulation code (code verification),
and estimate the numerical error affecting the simulation
results (solution verification). The assessment of the agree-
ment between experiments and simulations (validation)
makes use of a number of validation observables to obtain a
global metric v normalized in order to be equal to 0 in the
case of perfect agreement and 1 in the case of complete dis-
agreement. A validation is not concluded until the quality of
the comparison, Q, is also provided. The parameter Q is an
index that can be used to compare validations among them;
it reveals how well a comparison has been made, indicating
the number of observables used for the comparison and how
constraining they are.

The proposed methodology has been tested on the
simulation of the basic plasma physics experiment
TORPEX, focusing on measurements from Langmuir
probes. We have considered simulations carried out with
the GBS code, focusing on a two-dimensional and two
three-dimensional models. The value of v and Q are dis-
played in Fig. 4.

What progress has our V&V exercise allowed? First, by
carrying out the verification procedure, we have largely
increased our confidence on the GBS simulation results. In
fact, we have rigorously shown that the drift-reduced model
is correctly implemented in GBS and, by establishing a
methodology to evaluate the magnitude of the numerical
error affecting the simulation results, we have quantified the
numerical uncertainty of the TORPEX simulations. Second,
by comparing different models, we have made progress in
the understanding of plasma turbulence in TORPEX. As
discussed in Ref. 23, there are two turbulent regimes in
TORPEX, each primarily driven by a distinct plasma insta-
bility: the ideal and the resistive interchange modes. The
most obvious difference between the two regimes is the
wave number along the magnetic field: kk ¼ 0 in the ideal
interchange case, while kk 6¼ 0 in the resistive case. The
main parameter that controls the transition from one

FIG. 4. Global metric, v, and quality
of the comparison, Q, for the TORPEX
simulations as a function of N. The
three-dimensional simulations with ad
hoc boundary conditions (blue), the
three-dimensional simulations with
first-principle boundary conditions
(black), and two-dimensional simula-
tions (red) are considered.
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instability to the other is the pitch of the field line, expressed
in terms of the number of field line turns, N. At low values of
N, TORPEX dynamics is dominated by the ideal interchange
regime. Theoretical investigations23 show that the transition
to the resistive regime occurs at a value of N that depends on
the plasma resistivity and on the vertical size of the device.
At the TORPEX resistivity and size, the transition is
expected to take place at N ’ 10 as it is confirmed experi-
mentally44 and by the three-dimensional simulations, which
show a transition between the two regimes while passing
from the N¼ 4 to the N¼ 8 simulations. The validation exer-
cise points out that it is essential to model correctly the tran-
sition from the ideal to the resistive interchange mode
regime that has kk 6¼ 0 (not allowed in the two-dimensional
simulations), in order to describe the plasma dynamics at
high N.

The validation has also pointed out that no significant
improvement in the description of the experimental results
is made by the implementation of the first-principle set of
boundary conditions. However, its implementation elimi-
nates the need of a sensitivity analysis to the boundary con-
ditions, and the possibility of a fortuitous agreement
between simulations and experiments. On the other hand, it
has been pointed out that the effect of the boundary condi-
tions is particularly important in the parallel velocity pro-
file.45 We therefore expect that it would be possible to
discriminate better the physics of the boundary conditions
by considering observables that provide insights on the par-
allel flow and are based on measurements taken in proximity
of the wall. As a matter of fact, the missing elements in the
description of the Te scale length and responsible for the
underestimation of the fluctuation amplitude should be
searched elsewhere (e.g., source nonlinearities, Boussinesq
approximation, and presence of fast electrons). The impor-
tance of these elements can still be assessed through the use
of the validation methodology. The example we provide
shows that it is relatively easy to use this methodology to
discriminate among models and assess whether or not they
follow the right trend, pinpointing that the correct physics is
described by them. On the other hand, it is much more deli-
cate to judge a single model in absolute terms and to assess
its predictive capabilities.
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APPENDIX A: THE EXPERIMENTAL SETUP

The considered experiments are performed in TORPEX,
a toroidal device with major radius R¼ 1m and minor radius
a¼ 0.2m. The vertical and toroidal components of the mag-
netic field create helicoidal field lines that terminate on the
torus vessel. A hydrogen plasma is produced and sustained
by microwaves in the electron cyclotron (EC) range of fre-
quencies (a microwave power of 300W is used in the experi-
ments described here). Using the technique discussed in Ref.
46, it is observed that the plasma production is localized at
the EC and upper hybrid (UH) layers, which are vertically
elongated approximatively around r¼$13 cm and
r¼$2 cm, respectively.

A toroidal magnetic field B/ ¼ 76 mT on axis is used,
with four values of vertical magnetic field, Bz ¼
2:4; 1:2; 0:6; and 0:3 mT. This results in N¼ 2, 4, 8, and 16
turns of a magnetic field line in the device. Typical plasma
parameters are in the range n ’ 1016 m$3, Te ’ 5 eV,
Ti + Te.

Diagnostics of the plasma dynamics used here include:
(a) the SLP array, a linear array of 8 Langmuir probes, with
1.8 cm distance between tips, used to obtain most of the ex-
perimental results showed here; (b) the HEXTIP array, a
two-dimensional hexagonal Langmuir probe array covering
the whole poloidal cross section, with spatial resolution of
3.5 cm,47 used to obtain the kz measurements; (c) TWIN, two
identical Langmuir probes, separated toroidally by 180
degrees, used to obtain the measurement of the toroidal
mode number. A discussion on the interpretation of
Langmuir probe data together with experimental considera-
tion relative to the TORPEX device can be found in Ref. 48.

APPENDIX B: THE SIMULATION MODELS

Owing to the low TORPEX plasma temperature, the
drift-reduced Braginskii equations (see, e.g., Ref. 35) can be
used to model the TORPEX plasma dynamics. In the limit of
Ti + Te and b + 1, and assuming that Bz + B/ so that
B ’ B0R=ðRþ rÞ, since the magnetic curvature is constant
along a field line and equal to R þ r, these equations can be
written as
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¼ c
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where pe¼ nTe, ½a;b(¼@ra@zb$@za@rb; jk¼ enðVjji$VjjeÞ,
Xci¼ eB=ðmicÞ, and Sn and ST are the density and tempera-
ture sources. The r coordinate denotes the radial direction, xk
is parallel to B, and z is the direction perpendicular to r and
xk (for Bz+Bu the vertical and z directions are approxi-
mately the same).

The computational domain has an annular shape with a
cross section r ¼ $Lv=2 to r ¼ Lv=2 and z¼ 0 to z¼Lv. At
r ¼ $Lv=2 and r ¼ Lv=2, Dirichlet boundary conditions are
used for / and r2

?/ and Neumann boundary conditions for
n, Te, Vke, and Vki.

At the upper and lower walls, at z¼ 0 and z¼ Lv,
we consider two sets of boundary conditions. First, we
implement an ad hoc set of boundary condition, where we
impose Vki ¼ 6cs and Vke ¼ 6cs exp ðK$ e/=TeÞ with
K ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2pmeÞ

p
, cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, and we explore both

Dirichlet and Robin boundary conditions for n and Te, while
for / we use both Dirichlet boundary conditions e/ ¼ KTe
(implying Vjje ¼ Vki) and a boundary condition of the form
@z/ / ðe/$ KTeÞ. Second, we use the first principle set of
boundary conditions that has been derived in Ref. 24, that is
Vki ¼ 6cs; Vke ¼ 6cs exp ðK$ e/=TeÞ, @zTe ¼ kT@z/; @zn
¼ 7ðn=csÞ@zVki; x ¼ $cos2a½ð@zVkiÞ26cs@2

z VkiÞ(, and @z/
¼ 7cs@zVki.

We have used source profiles that mimic the EC and UH
resonance layer in TORPEX, i.e., Sn;T ¼ S0;n;TfSUH exp
½$ðr $ rUHÞ2=k2UH( þ SEC exp ½$ðr $ rECÞ2=k2EC(g, with SUH
¼ 1.5, SEC¼ 1, kUH ¼ 1 cm, kEC ¼ 0:5 cm, rUH ¼ $2 cm,
rEC ¼ $6 cm, and values of the source strength
(S0n ¼ 1:5) 1020 m$3 s$1, S0T ¼ 3:5) 104 eV/s) estimated
experimentally through a global balance of the TORPEX
plasma. We remark that dependence of the UH resonance
position on n is neglected in the present model. Other values
used are: R¼ 1m, Lv¼ 40 cm, mi=me ¼ 200, and K¼ 3, the
resistivity has been varied, ranging from " ¼ 0:01cs=R to
" ¼ 1cs=R, in order to check the influence of this parameter.

GBS solves Eqs. (B1)–(B5) on a field-aligned grid using
a second-order finite difference scheme with Runge-Kutta
time stepping and small diffusion terms. The Poisson bracket
is evaluated by using the Arakawa scheme.

If only kjj ’ 0 modes are considered, simple two-
dimensional fluid equations that describe the plasma turbu-
lence can be considered. The Braginskii equations are
integrated in the parallel direction in order to evolve the line-
integrated density, nðr; zÞ ¼

Ð
nðr; z; xjjÞdxjj=Lc, potential,

/ðr; zÞ ¼
Ð
/ðr; z; xjjÞdxjj=Lc, and temperature, Teðr; zÞ ¼Ð

Teðr; z; xjjÞdxjj=Lc; Lc ¼ 2pNR being the magnetic field line
length. We use Bohm’s boundary conditions to take into
account the ion and electron parallel flow at the sheath edge:
by assuming that the density at the edge is equal to nðr; zÞ=2,
it is possible to approximate the ion and electron flows
as Cjj;i ¼ ncs=2 and Cjj;e ¼ ncs expð$e/=Te þ KÞ=2. The
evolution equations for n, /, and Te thus become
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where r ¼ R=Lc ¼ 1=ð2pNÞ. We note that a similar system
of equations has been used in Ref. 49. The system of Eqs.
(B6)–(B8) has been solved numerically, using the earliest
version of GBS that has been developed from the ESEL
code.50 The algorithm used is described in Ref. 51.

For the two dimensional simulations, we consider a do-
main with extension Lr in the radial direction and Lv/N along
z. The boundary conditions are periodic along the vertical
direction (due to the flute property of the interchange mode)
and we use Dirichlet boundary conditions in the radial direc-
tion. In order to study the sensitivity of the results to the par-
allel boundary conditions, a scan of the r parameter has been
performed.

Both for the three-dimensional and the two-dimensional
case, the simulation is started from random noise. Then, the
sources introduce plasma and heat, increasing the plasma
pressure and triggering the interchange instability. The inter-
change instability leads to density and particle transport in
the radial direction from the source region to the low field
side of the machine. At the same time, plasma is removed
from the system by parallel losses. The results discussed in
the present paper focus on the quasi-steady-state period,
established after the initial simulation transient, as a result of
a balance between parallel losses, perpendicular transport,
and sources.

A detailed analysis of the plasma dynamics described by
the three-dimensional model (B1)–(B5) has been presented
in Refs. 22 and 23, while the simulation results obtained
from the two-dimensional model (B6)–(B8) has been dis-
cussed in Ref. 25.
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