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Abstract

Research on the uncertainty of nuclear data is motivated by practical necessity. Nuclear data

uncertainties can propagate through nuclear system simulations into operation and safety

related parameters. The tolerance for uncertainties in nuclear reactor design and operation

can affect the economic efficiency of nuclear power, and essentially its sustainability.

The goal of the present PhD research is to establish a methodology of nuclear data uncertainty

quantification (NDUQ) for MCNPX, the continuous-energy Monte-Carlo (M-C) code. The high

fidelity (continuous-energy treatment and flexible geometry modelling) of MCNPX makes it

the choice of routine criticality safety calculations at PSI/LRS, but also raises challenges for

NDUQ by conventional sensitivity/uncertainty (S/U) methods. For example, only recently

in 2011, the capability of calculating continuous energy keff sensitivity to nuclear data was

demonstrated in certain M-C codes by using the method of iterated fission probability.

The methodology developed during this PhD research is fundamentally different from the

conventional S/U approach: nuclear data are treated as random variables and sampled in

accordance to presumed probability distributions. When sampled nuclear data are used in

repeated model calculations, the output variance is attributed to the collective uncertainties

of nuclear data. The NUSS (Nuclear data Uncertainty Stochastic Sampling) tool is based

on this sampling approach and implemented to work with MCNPX’s ACE format of nuclear

data, which also gives NUSS compatibility with MCNP and SERPENT M-C codes. In contrast,

multigroup uncertainties are used for the sampling of ACE-formatted pointwise-energy nu-

clear data in a groupwise manner due to the more limited quantity and quality of nuclear

data uncertainties. Conveniently, the usage of multigroup nuclear data uncertainties allows

consistent comparison between NUSS and other methods (both S/U and sampling-based)

that employ the same nuclear data uncertainty format.

The first stage of NUSS development focuses on applying simple random sampling (SRS)

algorithm for uncertainty quantification. The effect of combining multigroup and ACE format

on the propagated nuclear data uncertainties is assessed. It is found that the number of

energy groups has minor impact on the precision of keff uncertainty as long as the group

structure reflects the neutron flux spectrum. Successful verification of the NUSS tool for

propagating nuclear data uncertainties through MCNPX and quantifying MCNPX output

parameter uncertainties is obtained.
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The second stage of NUSS development is motivated by the need for an efficient sensitivity

analysis methodology based on global sampling and coupled with MCNPX. For complex

systems, the computing time for obtaining a breakdown of total uncertainty contributions by

individual inputs becomes prohibitive when many MCNPX runs are required. The capability

of determining simultaneously the total uncertainty and individual nuclear data uncertainty

contributions is thus researched and implemented into the NUSS-RF tool. It is based on the

Random Balance Design algorithm and is validated by three mathematical test cases for both

linear and nonlinear models and correlated inputs. NUSS-RF is then applied to demonstrate

the efficient decomposition of total uncertainty by individual nuclear data. However an

attempt to decompose total uncertainty into individual contributions using the conventional

S/U method shows different decomposition results when the inputs are correlated.

The investigation and findings of this PhD work are valuable because of the introduction of

global sensitivity analysis into the existing repertoire of nuclear data uncertainty quantification

methods. The NUSS tool is expected to be useful for expanding the types of MCNPX-related

applications, such as an upgrade to the current PSI criticality safety assessment methodology

for Swiss application, for which nuclear data uncertainty contributions can be quantified.

Keywords: nuclear data, nuclear data covariance, ACE format, continuous-energy MCNPX,

criticality safety, keff sensitivity, stochastic sampling, Fourier Amplitude Sensitivity Testing,

Random Balance Design, global sensitivity analysis.
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Résumé

La recherche concernant les incertitudes des données nucléaires est une nécessité pratique. La

propagation des incertitudes sur les données nucléaires au travers des simulations impactent

les paramètres de sûreté. La tolérance pour les incertitudes lors de la conception et l’opération

des réacteurs nucléaires affecte la rentabilité et donc la durabilité de l’énergie nucléaire.

Le but de cette thèse est l’établissement d’une méthodologie pour la propagation des in-

certitudes dues aux données nucléaires et la quantification de leurs impacts pour le code

Monte-Carlo MCNPX. Le traitement à énergie continue et la modélisation flexible de la géo-

métrie en fait un code de choix pour les calculs de sûreté-criticité au PSI/LRS, mais également

un défi pour la quantification des incertitudes dues aux données nucléaires par des méthodes

conventionnelles d’analyse de sensibilité et de quantification d’incertitudes (S/U). Ce n’est que

récemment, en 2011, que la capacité de calculer la sensibilité du keff aux données nucléaires

n’a été implémentée qu’à certains codes Monte-Carlo.

La méthodologie développée dans ce travail est fondamentalement différente des approches

conventionnelles de S/U : les données nucléaires sont traitées comme des variables aléatoires

et échantillonnées selon une distribution multivariée normal. Afin d’assurer la compatibi-

lité avec MCNPX, le code NUSS (Nuclear data Uncertainty Stochastic Sampling) fonctionne

avec des fichiers de données nucléaires au format ACE. Cependant, des incertitudes multi-

groupe sont utilisées pour l’échantillonnage de données nucléaires ponctuelles en énergie

au format ACE, car la quantité et la qualité des incertitudes des données nucléaires sont

relativement limités. Ainsi, l’utilisation d’incertitudes de données nucléaires multi-groupe

permet une comparaison cohérente entre NUSS et les autres méthodes employant le même

format d’incertitude des données nucléaires.

La première étape du développement de NUSS se concentre sur l’application d’un algorithme

de “simple random sampling” (SRS). L’effet de combiner un format multi-groupe avec le format

ACE sur la propagation des incertitudes sur les données nucléaires est estimé. Il est montré que

le nombre de groupe énergétique a un impact mineur sur la précision de l’incertitude du keff

tant que la mise en groupe reflète le spectre neutronique. La vérification de la propagation des

incertitudes à travers MCNPX par NUSS et la quantification des incertitudes sur le paramètre

de sortie de MCNPX sont obtenus.
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La seconde partie du développement est motivée par le besoin d’une méthodologie efficace

d’analyse de sensibilité basé sur un échantillonnage global et couplé avec MCNPX. Dans le cas

de systèmes complexes, la décomposition de l’incertitude totale du paramètre de sortie par

NUSS-SRS n’est plus rentable (temps de calcul). La capacité de déterminer simultanément l’in-

certitude totale et les contributions individuelles provenant des données nucléaires, basée sur

un algorithme de type “Random Balance Design”, a ainsi été implémentée dans l’outil NUSS-

RF. Cette capacité a été validée par trois tests analytiques utilisant des modèles linéaires et

non-linéaires et des variables d’entrée corrélées. NUSS-RF est ensuite utilisé pour démontrer

l’efficacité de la décomposition de l’incertitude totale selon les données nucléaires pertur-

bées. Par opposition, une tentative de décomposition de l’incertitude totale en contributions

individuelles utilisant une méthode conventionnelle de S/U résulte en une décomposition

différente lorsque les variables d’entrée sont corrélées.

Les recherches et les implémentations de ce travail de thèse sont de grande valeur de par

l’introduction de l’analyse globale de sensibilité dans le répertoire des méthodes de quantifi-

cation de l’incertitude des données nucléaires. L’outil NUSS est attendu à être extrêmement

utile pour élargir les applications de MCNPX pour lesquelles l’incertitude due aux données

nucléaires d’une réponse peut être quantifiée.

Mots clés : données nucléaires, covariance des données nucléaires, format ACE, Monte-Carlo à

énergie continue, MCNP(X), sûreté-criticité, sensibilité du keff , échantillonnage stochastique,

Fourier Amplitude Sensitivity Testing, Random Balance Design, sensibilité globale.
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1 Quantifying nuclear data uncertainty

1.1 Background and context

The demand for more accurate and precise prediction of the behaviour of a fission system

is always increasing. Only by satisfying such a demand, can we have greater confidence in

our current understanding of the governing equations which are used to describe the system

behaviour. This in turn will allow us to study more advanced systems or conditions (such as in

transient or accident) where the integrity of the system must be maintained. An increase of

accuracy and precision also means the allowance for reduced conservatism for the benefit of

greater economic efficiency without compromising safety. However, what limits the accuracy

and precision are uncertainties that can come from diverse sources and at various stages of

the system calculation.

Uncertainties in nuclear data and their propagation through a fission system are the sub-

jects of this work. Historically, nuclear data measurements started with using neutrons to

probe nuclear structures given its neutrality and the ability to penetrate into the charged

nucleus. During experiments, uncertainties of both systematic (or epistemic) and random (or

aleatoric) nature can affect the nuclear data measurement results. For example, the resolution

of measurement equipment gives rise to the energy dependency of nuclear data measurement;

correlations between nuclear data also exist when their values are derived from the same

background normalization of experimentally measured values. As the quality of nuclear data

and their associated uncertainties are continuously improved by new mathematical and ex-

perimental methods, nuclear data uncertainty analysis in addition to the standard neutronics

calculations is not only possible, but also becoming an expected step in the standard practice.

The quantitative knowledge of the amount of uncertainty due to nuclear data gives rise to

new approaches in different applications. For example, in Criticality Safety Assessment (CSA),

uncertainties in the discrepancy between calculated and experimental keff values (called the

keff bias [1]) will be explained partially by the uncertainty contribution from nuclear data.

Consequently, the administrative safety margin (e.g. 5000 pcm) which is imposed to cover

unknown sources of uncertainty as a conservative measure might be relaxed if the uncertainty
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Chapter 1. Quantifying nuclear data uncertainty

contribution of nuclear data is quantifiable. In another application, the Burn-up Credit

methodology is to account for (i.e. give credit to) the reactivity decrease in depleted nuclear

fuel due to the reduction of fissile nuclides content, the accumulation of fission products and

absorbing minor actinides. By propagating nuclear data uncertainty throughout criticality,

depletion and decay calculations, the final prediction of isotopic compositions of the nuclear

fuel can be evaluated with uncertainties contributed by nuclear data. Hence, by quantifying

uncertainties, the conventional practice of CSA can have a more rigorous and best-estimate

approach, steering away from the excessive conservatism in the past.

The efforts for nuclear data uncertainty quantification are reflected in recent OECD/NEA/NSC

working party activities. Since 2005, the Expert Group on Uncertainty Analysis in Modelling

(UAM-LWR) has concentrated on defining sources of uncertainties and on benchmarking

different uncertainty quantification methodologies for Light Water Reactor (LWR) applications.

Nuclear data uncertainties were first tackled in the Phase I (Neutronics) of UAM-LWR activities

by participants from the U.S.A, France and Switzerland etc. The exercises in Phase I involved

examining the propagation of nuclear data uncertainties into the derivation of few-group

cross sections and steady-state neutronics calculations with confidence bounds. Phase II

focused on the core-level uncertainty propagation and Phase III is for the system-level where

the several sources of uncertainties including nuclear data are propagated through neutronics

and thermal-hydraulics core performances. Similarly, the Expert Group on Uncertainty Anal-

ysis for Criticality Safety Assessment (UACSA) was established in 2007 to address sensitivity

and uncertainty for criticality calculations. Phase I of UACSA collects different validation

methods of criticality safety from various countries, taking into consideration the uncertainty

in criticality codes due to nuclear data uncertainties [2].

Locally at the Paul Scherrer Institut, major activities related to the propagation and quan-

tification of uncertainties in the applications of Criticality Safety Assessment and Burn-up

Credit are on-going and perhaps even emphasized due to the political decision to phase out

nuclear power in Switzerland after the Fukushima accident in March 2011. For example, fuel

rod design/technological parameter uncertainties were propagated [3] using the GRS SUSA

code for burnup calculations in the deterministic code CASMO. Since then, the capability

of nuclear data uncertainty quantification for CASMO has been developed into a powerful

platform called SHARKX [4] and it has been applied in the UAM-LWR activities for more

general LWR-type applications. On the other hand, the Monte Carlo-based MCNP(X) code is

the validated, routine tool for CSA applications at PSI, given its accurate geometric modelling

capability and continuous energy treatment. So far, PSI has participated in the UACSA Phase

I and II activities which demonstrated PSI’s CSA validation methodology and examined keff

confidence bounds in consideration of manufacturing parameter uncertainties respectively.

Naturally, the uncertainty quantification for nuclear data in continuous-energy MCNP(X) is of

great interest, for the on-going development of PSI’s CSA methodology.

Both criticality safety assessment and burnup credit validation methodologies are highly

relevant applications in which nuclear data uncertainty plays an important role. The nature

2



1.2. Nuclear data

of these applications dictates the type of nuclear data and neutronics code that are most

suitable. In the next few sections, the origin and organization of nuclear data and their

uncertainties are explained, followed by the survey of current available methods for nuclear

data uncertainty quantification. They shall provide the background information for this PhD

thesis on the development of a computational tool to propagate uncertainties of evaluated,

general-purpose continuous-energy nuclear data through MCNPX and the analysis of the

uncertainties of MCNPX outputs.

1.2 Nuclear data

The probability of an incoming neutron to collide and interact with a target nucleus is known

as the “cross section”. For example, fission reaction and inelastic scattering of neutrons can

be denoted by the incoming (n for neutron) and outgoing particles, i.e. (n,f) and (n,n’)
respectively. In a laboratory environment, time-of-flight experiments can be performed where

a beam of neutrons is fired at a target sample of nuclide of interest. From the path length (L)

and time (t ) that the neutron takes to travel, its energy can be calculated as

E = mv2

2
= mL2

2t 2 (1.1)

The ratio of outgoing and incoming neutron beam intensities (Io , Ii ) after neutrons pass

through the sample of thickness D without interacting is:

Ii

Io
= e−DNσt (1.2)

where N (in particles/cm3) is the material density andσt is the total microscopic cross section,

i.e. the probability of all possible reactions between the neutrons and the material. The unit of

microscopic cross section is commonly cm2 or barn (where 1 barn=10−24cm2). Macroscopic

cross section (in cm−1) is defined as Nσ, and is the probability of reaction per unit path

length traversed per unit incident neutron. Total cross section is a sum of partial cross

sections which can occur depending on the incident neutron energies and characterized by

the products of specific reactions (e.g. gamma rays, secondary particles). Similarly, through

time-of-flight measurements, the angle and energy distributions of the outgoing particles can

be obtained. Collectively, cross sections and other quantities such as fission neutron yield (ν̄),

fission neutron spectrum (χ), angular and energy distributions of outgoing particles upon

interactions and so forth are known as “nuclear data”. Experimental results and bibliographic

information of nuclear data can be found in EXFOR [5] and CINDA[6] databases respectively.

For practical nuclear applications, experimentally measured nuclear data are, however, not

suitable to be used directly. Fig. 1.1 illustrates how sparse the experimental measurements

can be with the example of 1H(n, elastic) cross section. To fill in the missing data, theoretical

nuclear models are relied upon heavily. The so-called “evaluated nuclear data” are shown as the

solid line in Fig. 1.1, as a result of combining experimental measurements, theoretical nuclear

3



Chapter 1. Quantifying nuclear data uncertainty

models, and statistical analysis (when multiple experimental measurements are available for

the same quantity of interest). Evaluated nuclear data reflect the best representation of the true

cross sections [7]. They are organized into the “ENDF-6” format [8] which is highly-ordered

and computer readable. Inside the ENDF-6 formatted nuclear data files, nuclear data are

available from incident neutron energy of 10−5 eV to 20 MeV (or sometimes even 200 MeV)

with precisely defined interpolation laws between energy points. National laboratories and

international organization around the world generate and maintain their own nuclear data

libraries, shown in Table 1.1. It is worthwhile to mention that, the OECD/NEA Data Bank

compiles a “High Priority Request List” [9] for the purpose of planning and guiding nuclear

data experiment activities and nuclear model theory evaluation, in order to meet the nuclear

data users’ most urgent needs given the limited resources in facility and time.

Figure 1.1: The evaluated data (solid line) of 1H(n, elastic) taken from the ENDF/B-VII.1 library
are plotted over the experimental measurements.

Organizer Library Released in
Europe OECD/NEA JEFF-3.2 2014

Netherland NRG TENDL-2014 2014
USA BNL ENDF/B-VII.1 2011

Japan JENDL-4.0 2011
China CENDL-3.1 2011
Russia BROND-2.2 1992

Table 1.1: Major general purpose libraries, all use ENDF-6 format for the evaluated nuclear
data files.

Given their comprehensive content, the general-purpose ENDF-6 files can be too “heavy” to

manipulate. Processing codes such as NJOY [10] can extract the necessary data and introduce

problem-dependent adjustments such as Doppler broadening, calculation of group-averaged

constants etc. NJOY can also generate a specific format called ACE (A Compact ENDF) for

the continuous-energy Monte Carlo-based code MCNPX. In this case, the reconstruction of

4



1.2. Nuclear data

the pointwise cross sections in ACE format from the ENDF-6 format is performed by NJOY’s

RECONR module (more details in Chapter 2.2). Then, Doppler-broadening by the BROADR

module adds temperature dependence to the cross sections and the PURR module prepares

probability tables [11] for the unresolved resonances of the cross sections.

Figure 1.2: Evaluated nuclear data satisfies the condition that they are continuous in energy.

Figure 1.2 shows several evaluated cross section data of nuclide 238U from the ENDF/B-

VII.1 library and it gives a sense of the amount of data points required in order to faithfully

reconstruct the complex resonances in a continuous-energy manner in the ACE-formatted

pointwise nuclear data files. For computer codes which do not work with such detailed

pointwise nuclear data, further data processing can be done and NJOY is also used to produce

the other library formats for multigroup nuclear data. The idea is to average the pointwise

data within specified energy groups (g ) by an appropriate weighting function (w):

〈σ〉g =
∫ Eg

Eg+1
σ(E)w(E)dE∫ Eg

Eg+1
w(E)dE

(1.3)

By convention, the highest energy corresponds to the energy group number one. The choice

of the weighting function w(E) naturally comes from the definition of reaction rate [12]:

R =
∫ g

g+1
Nσ(E)φ(E)dE = N ·

∫ g
g+1σ(E)φ(E)dE∫ g

g+1φ(E)dE
·
∫ g

g+1
φ(E)dE = N〈σ〉g 〈φ〉g (1.4)

where 〈φ〉g is called the integrated flux and 〈σ〉g the integrated cross section over energies

between group g +1 and g .

Paradoxically, the precise flux is the unknown, sought-after solution of the Boltzmann trans-

port equation which requires information of the nuclear data. It is said to be an art to make
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Chapter 1. Quantifying nuclear data uncertainty

Figure 1.3: Different flux shapes as weighting function in NJOY.

a good guess for the within-group flux shape in NJOY [10]. Several options are provided by

NJOY’s GROUPR module as shown in Fig. 1.3. The flux shapes are usually divided into three

regions: a fission spectrum, the 1/E-shape slowing down and the Maxwellian thermalization

of neutrons. However, in the case of a strong absorber, at the energies of the resonances, the

smooth flux shape has “dips” which are suppressions in the flux due to the increased proba-

bility of neutrons being absorbed in the medium. Fewer neutrons are available and reaction

rates decrease. This phenomenon of reduced effectiveness of the resonance is known as the

“self-shielding” of the resonance itself. In preparation of problem-dependent multigroup

nuclear data, such effects must be taken into account by methods such as the Bondarenko

shielding factor (more details in Chapter 2.2).

The choice of pointwise or multigroup nuclear data goes hand-in-hand with the choice of

the computer codes for the applications of interest. The continuous-energy MCNP(X) code

uses the ACE-formatted nuclear data and together they are highly suitable for criticality safety

problems. However, it is important to remember that, even the ACE-formatted nuclear data

are post-processed from evaluated data by processing codes such as NJOY. As the accuracy of

neutronics codes improves, the uncertainty in the outputs of neutronics calculations can be

traced back to the preparation of these nuclear data. At the different stages of data processing

up until the particular nuclear data format used directly by the chosen neutronics code, there

are assumptions and approximations which become the sources of uncertainty in nuclear

data as explained next.
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1.3. Nuclear data uncertainty

1.3 Nuclear data uncertainty

As seen in previous discussions, nuclear data undergo a series of processing steps to arrive at

the suitable format for nuclear applications. A similar route is undertaken by the uncertainties

in experimentally measured nuclear data which propagate through several stages of processing

and become particular types of nuclear data uncertainties, often known as the “multigroup

covariance matrices” that are used in this PhD work and related studies. In the previously

mentioned time-of-flight experiment for nuclear data measurement, the count rate, i.e. the

number of counts (of outgoing particles) per (energy, angle) channel·time are the raw data

and they obey the Poisson statistics [7]. Performing consistent normalization (a ±∆a) and

background removal (b ±∆b) on the experimental raw data (ri , r j ) introduces correlations

among experimentally measured cross sections (di ,d j ). The experimental covariance is [7]:

Vi j = 〈δdi ,δd j 〉 (1.5)

where

δdi = δ
(

ri −b

a

)
= δri −δb

a
− (ri −b)

δa

a2 = δri −δb

a
−di

δa

a
(1.6)

Hence the experimental covariance can be calculated as

Vi j =
〈δri ,δr j 〉+〈δ2b〉+di d j 〈δ2a〉

a2 = ∆
2r(i= j ) +∆2b +di d j∆

2a

a2 (1.7)

The experimental covariances (V ) are taken into account while the experimental cross sections

are fitted with theoretical models, for example, described by R-matrix theory in the nuclear

data processing code SAMMY [13]. Using generalized least-squares equations, the evaluated

parameters P and their associated covariances M are best-fitted in the following [7]:

P = P0 +MGV −1(d −T ) and M = (GT V −1G +M−1
o )−1 (1.8)

where P0 and M0 are the initial guesses of P and M . T contains theoretical values for experi-

mental data based on nuclear models and G is the sensitivity matrix (partial derivatives) of

parameter T with respect to P . Results of the evaluated data P and associated covariance M

are stored inside the ENDF-6 formatted files.

Codes such as NJOY have the formulation of the partial derivative ∂α/∂P where α is the

cross section. Hence the uncertainty δα is related to the evaluated data parameters P in the

following way:

δα= δα(Pm , · · · ,Pn) =
n∑
m

∂α

∂Pm
δPm (1.9)
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Chapter 1. Quantifying nuclear data uncertainty

and the covariance of α is:

U (αi ,α j ) = 〈δαi ,δα j 〉 =
∑
m

∑
n

∂α

∂Pm
〈δPm ,δPn〉 ∂α

∂Pn
=∑

m

∑
n

∂α

∂Pm
M

∂α

∂Pn
(1.10)

To obtain multigroup covariance matrix, the flux weighting function is applied as before

Ū =
∫
φ(E)dE

∫
φ(E ′)dE ′ ∑

mn

∂α(E)

∂Pm
Mmn

∂α(E ′)
∂Pn

(1.11)

For certain nuclear data there are further mathematical constraints on the covariance matrix.

For example, the prompt fission spectrum (χ) covariance matrix is normalized due to the “sum

to zero” property [14]. It is cautioned that both too large (more than 50% of absolute cross

section) or too small uncertainties should be considered unreliable and needed to be reviewed

or rejected [14]. Mathematically, nuclear data covariance matrices have to be symmetric and

positive semidefinite. The correlation matrix is defined in Eqn (1.12). Its diagonal elements

are equal to 1 and off-diagonal elements between -1 and 1. The relative covariance matrix is

defined in Eqn.(1.13). From its diagonal elements, the relative standard deviation of nuclear

data can be obtained.

CORR(αi ,α j ) = COV(αi ,α j )p
VAR(αi )

√
VAR(α j )

(1.12)

RelCov(αi ,α j ) = COV(αiα j )

αiα j
(1.13)

Figure 1.4: Relative uncertainties of 56Fe(elastic) from JENDL 4.0, JEFF-3.2 and ENDF/B-VII.1
nuclear data libraries.

An increasing number of nuclear data covariances is nowadays provided in the modern li-

braries listed in Table 1.1, yet there are discrepancies among them. As shown in Fig.1.4, the
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1.4. Propagating nuclear data uncertainty by deterministic method

relative standard deviations of 56Fe(n, elastic) cross sections clearly have discrepancies, not

related to numerical precision. Such difference is the main reason against the mixed use of

covariances and nuclear data from different library evaluations for uncertainty propagation

methods. Finally uncertainties should always be compiled along with the nuclear data, reflect-

ing the methods used to determine them, whether by experiments, statistical evaluation or

theoretical models [15].

1.4 Propagating nuclear data uncertainty by deterministic method

Determinstic method applied for nuclear data uncertainty propagation and quantification is

based on the “propagation of moments” applied to the truncated first-order Taylor series. The

variance (σ2
R ) of the system response R, i.e. the second central moment of the linearized R is

computed as:

σ2
R =~SαVα~S

T
α (1.14)

where ~Sα = [Sα1 ,Sα1 , · · · ] = [ ∂R
∂α1

, ∂R
∂α2

, · · · ] is called the sensitivity coefficient of R with respect

to inputs ~α, and V is the covariance matrix of the inputs. Derivation of Eqn.(1.14) is given

in Appendix A1. This determinstic approach (as opposed to the stochastic approach in the

following Chapter 1.5) by Eqn.(1.14) is called colloquially the “Sandwich Rule” or “Sensitivi-

ty/Uncertainty” (S/U) method, both names are used interchangeably in this work.

It is important to distinguish that the covariance matrix (Vα) is only a property of the inputs,

while the sensitivity coefficient ~Sα is dictated by the system properties (e.g. α could represent

materials, densities, dimensions). Sensitivity coefficients represent the local change of the

system due to the change of inputs. As the mathematical operation of Eqn.(1.14) shows, only

inputs with large uncertainties when combined with large sensitivity will have a significant

contribution to the variance of system output. Hence the examination of both the sensitivity

coefficient and the uncertainty of the inputs is needed for the identification of important

inputs.

Among deterministic neutronics codes, since the 1970s, one and two dimensional discrete

ordinate SN codes were already able to compute senstivity coefficient of different system

responses (e.g. dose rate, reaction rate) due to variations of inputs (e.g. cross section, material

density), based on first-order adjoint weighted perturbation (AWP) theory [16]. More recent

code systems such as SUSD3D [16] and ERANOS [17] include the sensitivity capabilities for

SN transport or diffusion based calculations.

The development of sensitivity capabilities in Monte Carlo codes, in comparison has more

difficulties due to its inherent statistical implementation. A simple illustration is given through

the attempt to compute sensitivity coefficients by “direct perturbation” (DP): each input is

varied by a small amount, one-at-a-time. The response R is measured at both its nominal and
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Chapter 1. Quantifying nuclear data uncertainty

perturbed states. The sensitivity coefficient is thus:

SDP = R ′(α′)−Ro(αo)

α′−αo
= ∆R

∆α
(1.15)

Such an operation simply involves one reference calculation (Ro(αo)) and the second calcula-

tion with a very slightly perturbed input (R ′(α′)) so as to justify the linearity approximation

around αo . For Monte Carlo-based codes, the result of (R ′−Ro) could be on the same order of

magnitude as the statistical error inherent to Monte Carlo codes, producing erroneous SDP .

Correlated sampling [18] can be applied (as a variance reduction method in MCNP) which

forces correlation between two similar calculations through the use of the same random num-

ber sequence. Hence each history track is identical except for those affected by the perturbed

parameters. From the rule of error propagation, it can be seen that, a large, positive correlation

(ρ) between the two calculations can reduce the variance of ∆R:

σ(∆R)2 =σ(R ′)2 +σ(R)2 −2ρσ(R ′)σ(R) (1.16)

Works by [19] and [20] demonstrated such capabilities. Nevertheless, applying direct per-

turbation to compute response perturbation due to each input variation still requires K +1

calculations (for K number of input parameters, plus the nominal calculation) to sequentially

obtain every sensitivity coefficient. Unless there are more system responses for which un-

certainty quantifications are sought, than the number of input parameters, this brute-force

approach is not recommended.

To compute sensitivity coefficients without repeatedly solving for the system solutions and

to avoid the influence of statistical uncertainty, in MCNPX/MCNP the method of Differential

Operator Sampling (DOS) is avaiable which tallies the differential changes in the results of the

response estimator due to the imposed perturbation in parameters such as cross section. The

scores of what the neutrons would have done based on the perturbed cross sections are kept

by DOS while performing the nominal simulation of neutron trajectories (see Appendix A2 for

more details). In MCNPX/MCNP, DOS is implemented inside the “PERT CARD” module, with

the assumption that the fission source distribution is unchanged which is known to degrade

the accuracy of the perturbed flux, even though keff perturbation result is reliable [21]. PERT

CARD also does not consider perturbations in ν̄ or χ.

The adjoint weighted perturbation (AWP) method is another option, which is more often

implemented in determinstic codes. Based on the linear adjoint-based perturbation theory,

sensitivity coefficient of keff to cross sections is determined by using both the forward (φ) and

adjoint (φ†) fluxes [22]:

Sk,α = dk/k

dα/α
= α

k

k2dρ

dα
=−α

k

〈φ†, ( dL
dα − 1

k
d M
dα )φ〉

〈φ†, M
k2φ〉

(1.17)

The derivation of Sk,α and the interpretation of adjoint flux can be found in Appendix A3.
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1.5. Propagating nuclear data uncertainty by stochastic methods

Memory issues associated with Monte Carlo adjoint calculations have been solved (improved

also by modern computing power) that AWP can now be found in multigroup TSUNAMI code

and continuous-energy McCARD [23], MCNP6 [24]. The motivation to study the sensitivity

and uncertainty of system responses other than keff has also led to the implementation of

the “generalized perturbation theory” (GPT) which is in contrast to the “classic” AWP theory.

Among Monte Carlo-based codes, SCALE6.1 TSUNAMI has developed such capability[25].

Table 1.2 summarizes major codes which employ DOS or AWP methods. DOS/FSP denotes

the differential operator sampling method with fission source perturbation correction.

Monte Carlo codes
Code Energy Method

MCNPX Continuous DOS

MCNP6 Continuous
DOS

Classic AWP
McCARD Continuous Classic AWP, DOS/FSP
MVP[26] Continuous DOS/FSP

SCALE6.0 Multigroup Classic AWP
MMKKENO[27] Multigroup DOS/FSP

Determinstic codes
Code Method Sensitivity method

SCALE6.0
1D SN Classic/Generalized AWP

2D Generalized AWP
ERANOS SN ,diffusion etc. Classic/Generalized AWP
SUSD3D SN Classic AWP

CASMO-4 (VTT inhouse)[28] Method of Characteristic Classic/Generalized AWP
DRAGON[29] Method of Characteristic Classic/Generalized AWP

SAGEP[30] Diffusion Generalized AWP

Table 1.2: Computer codes and corresponding deterministic-based methods to compute
sensitivity coefficients.

1.5 Propagating nuclear data uncertainty by stochastic methods

The utilization of stochastic sampling within the field of nuclear engineering began with its

applications in thermalhydraulics and reliability analysis. The motivation is to develop best-

estimate modelling practices where realistic inputs and models are used and the evaluation of

results must include their uncertainties. Instead of using conservative values for the model

inputs, probability density functions (PDF) are assigned using the best available information.

A sampling scheme is chosen to prepare the set of input data in accordance with the PDF

assignment. The most straight-forward method is the simple random sampling (SRS) where

each sample is created independently. However, the risk associated with SRS is that for a small

number of samples, the sampling of inputs might explore the input domain in clusters by

chance. This can be mitigated by stratified sampling schemes such as the Latin Hypercube
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Chapter 1. Quantifying nuclear data uncertainty

sampling (LHS) [31] where the user divides the PDF into strata of equal marginal probability

and samples are made in each stratum. Though stratified sampling offers faster convergence

than SRS, its implementation requires more administrative effort. Hence before being applied

to actual model calculations, random samples from simple random sampling can be checked,

discarded and regenerated easily if clustering is observed. Finally, the model of interest is

calculated repeatedly with these sampled inputs and an equal number of output values is

generated. Consequently, the output can now be represented and interpreted in terms of

its probability distribution and statistical properties such as a sample mean and standard

deviation.

The aforementioned stochastic sampling algorithms can also be applied to nuclear data un-

certainty quantification. The sampling of the nuclear data and modifications can be made

independently of the neutronics codes. But to reiterate Chapter 1.2, nuclear data and co-

variances are formatted differently depending on the needs of the computational codes and

applications. Nuclear data in their most basic format can be found in compilations such as

the EXFOR/CSISRS databases [5], the Atlas of Neutron Resonances [32]. These basic data

are fitted with nuclear reaction models to generate evaluated nuclear data in the ENDF-6

format by nuclear reaction system codes, such as TALYS [33]. When TALYS is run many times,

each with perturbed inputs of nuclear modelling parameters, perturbed ENDF6-formatted

files are generated. Based on this sampling scheme with TALYS, the Total Monte Carlo (TMC)

methodology offers the flexibility of reformatting ENDF-6 to continuous/pointwise-energy

or multigroup format. As a stochastic sampling based method, it has the advantage of quan-

tifying nuclear data uncertainty contribution for diverse applications such as PWR pincell

burnup with SERPENT code [34], criticality safety with MCNP [35], ADS burnup calculation

[36] with inventory code ACAB [37] etc. A by-product of the TMC sampling method is the

automatic generation of ENDF-6 covariances [38], many of which can still be missing in other

major nuclear data libraries. It is argued that, when the traditional method of preparing

covariances by experiments is expensive and unable to provide comprehensive covariance

information, TMC offers a solution based on uncertainty propagation from the point of view

of theoretical nuclear physics. When nuclear model parameters are perturbed in accordance

with their presumed uncertainties, the outputs of nuclear models, such as energy-dependent

cross sections, resonance parameters, are obtained with statistical information as well. The

mean and covariances for some nuclear data whose uncertainties were difficult to quantify

experimentally become available. However, it will be shown in Chapter 3.3, the covariance

differences between the TMC-generated TENDL nuclear data library and the other major

libraries can be significant, due to the very different approaches.

Uncertainties from covariance data inside ENDF-6 formatted files can also be propagated

into ENDF-6 formatted nuclear data by NUDUNA (NUclear Data UNcertainty Analysis), the

“unified treatment for nuclear data uncertainties and systematic uncertainties” by AREVA

NP GmbH. Nuclear data of neutron multiplicities, (resolved and unresolved) resonances,

cross sections and angular distribution can be perturbed [39]. Since NUDUNA works directly

with ENDF-6 formatted nuclear data files, they can be further reformatted by NJOY or PUFF
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1.5. Propagating nuclear data uncertainty by stochastic methods

[40] into formats suitable for continuous-energy or multigroup-based computational codes.

However, ENDF-6 format is for general-purpose and performing random sampling with cross

section covariance matrices is numerically challenging for large data sets [39]. Moreover,

uncertainty treatment for ENDF-6 formatted energy distribution data such as the fission

spectrum has not been implemented[39].

Implemented by GRS (Gesellschaft für Anlagen- und Reaktorsicherheit, Germany), the XSUSA

code uses stochastic sampling to propagate the multigroup nuclear data uncertainties through

SCALE-based codes such as the 1D deterministic XSDRN code, 2D Sn transport solver NEWT,

TRITON depletion sequence and the 3D Monte Carlo KENO-Va [41][42]. The relative covari-

ances of nuclear data are used by XSUSA to generate a set of multiplicative perturbation factors

(Pg ), which can then be applied to the original multigroup cross sections on a group (g ) to

group basis:

σg ·Pg =σ′
g (1.18)

where σ′
g is the perturbed multigroup cross section. Eqn(1.18) is an approximation because

it perturbes the already self-shielded cross section σg by Pg values obtained from infinitely-

diluted covariance data. Though substantial impact due to this inconsistency had not been

observed in terms of the total nuclear data uncertainty contribution over the full energy range,

it was corrected in the SAMPLER code of SCALE [43].

SAMPLER involves modifying the preparation steps of self-shielding factors in SCALE. CENTR-

M/PMC and BONAMI are two modules responsible for shielding cross sections in resolved

and unresolved/fast resonance regions repectively. The former uses 1D discrete ordinate

code for problem-dependent flux calculation to generate flux weighted, shielded multigroup

cross sections (between 0 and 20keV). The latter is based on the Bondarenko method where

the original infinitely-diluted multigroup cross section (σg (∞)) is modified by pre-tabulated

shielding factors ( fg (σo)). They are functions of the background cross section (σo):

σg (σo) = fg (σo)σg (∞) (1.19)

In normal SCALE calculations, interpolated and pre-tabulated shielding factors can generate

problem-dependent, self-shielded multigroup cross sections efficiently. In order to perturb

self-shielded multigroup cross sections properly, the shielding factor is updated according to

the affected cross section as well [43]:

f ′
g (σo) =

σ′
g (σo)

σ′
g (∞)

=
〈 σ′

c (u)
σ′

c,t (u)+σo
〉/〈 1

σ′
c,t (u)+σo

〉
σ′

g (∞)
(1.20)

where σ′
g (σo) is the shielded MG cross section at a background σo , σ′

g (∞) is the perturbed

infinitely-diluted MG cross section,σ′
c,t (u) is the total of the perturbed pointwise cross sections

in the material of interest.
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Chapter 1. Quantifying nuclear data uncertainty

Uncertainty results from SAMPLER for an LWR criticality benchmark experiment show close

agreement with the TSUNAMI-3D “Sandwich Rule” method, for example 0.44% vs. 0.46%

with 300 random samples[43]. Similarly, uncertainties in pin power and isotopic content

as a function of burnup due to nuclear data are also examined in [43]. It is clear that the

capability of the stochastic sampling-based method to compute uncertainties of arbitrary

output parameter is a big advantage over the deterministic-based methods.

As seen in the case of SAMPLER, the modification of the nuclear data must be consistent,

which sometimes relies on the accessibility of computer source code. Another such example is

the CASMO-5MX code, which is an in-house modified version of CASMO-5M at PSI to perform

uncertainty quantification for nuclear data by stochastic sampling. The direct perturbation

method is available for computing the first-order sensitivity coefficients to be used in the

Sandwich Rule. The stochastic-sampling option performs simple random sampling, using

multigroup nuclear data covariances whose structures can be changed by auxiliary code called

ANGELO-LAMBDA[16]. Due to the proprietary format of nuclear data, the self-shielding

effect has not been taken into account in CASMO-5MX. The perturbation factors obtained by

sampling the infinitely-diluted nuclear data covariances are applied to CASMO-5M resonance-

range nuclear data without updating the original shielding factors. It is reasoned that self-

shielding is a negative feedback effect; as a result, the CASMO-5MX uncertainty methodology

would overestimate the nuclear data uncertainty contributions [44]. It is also not feasible

to separate the elastic scattering, inelastic scattering, (2,2n) and (n,3n) reactions from a

“combined scattering matrix” format for these data. As explained in [4], calculations have to

be performed in NJOY to derive “scattering fractions” for the nuclides of interest (impact of

temperature and background cross section variations are found to be insignificant[44]).

Data format Code name
EXFOR/CSISRS TALYS/TMC

ENDF-6 NUDUNA
Multigroup CASMO-5MX, XSUSA, SAMPLER

Table 1.3: Existing codes based on stochastic sampling approach work with specific nuclear
data and covariance formats.

Table 1.3 summarizes the methods mentioned above and the types of nuclear data formats for

which their implementations are tailored, which are relatively simple as long as the formats

and the generation process of respective nuclear data are understood. For another example,

the ENDL format by the Lawrence Livermore National Lab (LLNL) is sampled with the in-

house tool KIWI code [45], part of the “extensive framework for quantitative measurement of

uncertainty (QMU) studies” at LLNL.

As an attractive alternative to the deterministic sensitivity/uncertainty-based methods in

the previous section, stochastic-sampling methods are expected to gain more wide usage

due to increasing modern computing power. Already, an integration between deterministic

“Sandwich Rule” and sampling methods has been proposed by Cabellos as a hybrid method
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for burnup applications [46]. It formulates that the evolution of keff uncertainty is attributable

to two components at each burnup step t :

var(k)t =
[
SkVαST

k

]
t +

[
SN VN ST

N

]
t (1.21)

where Sk is the sensitivity coefficient of k due to cross sections α and SN is the sensitivity

coefficient of k due to isotopic number density (N ). For each burnup step, SCALE/TRITON

is used to compute the isotopic number densities and they are used as nominal inputs in

TSUNAMI code to calculate Sk and SN . VN is the covariance of number density due to cross

section, fission yield and/or decay data, which are sampled by an inventory code (ACAB

[37]) at each burnup step. ACAB performs many depletion calculations to determine the

number densities for each sample at the end-of-burnup-step . Hence, statistical information

is acquired to produce the burnup-step-dependent VN , which is not possible to be generated

otherwise by the TSUNAMI method.

1.6 Contribution of PhD on NDUQ by SS for MCNPX

As presented in this Chapter, each of the major neutronics codes has at least one approach to

quantify nuclear data uncertainty (see Tables 1.2 and 1.3) and they are continuously improving.

On one hand, the adjoint weighted perturbation has been expanded from the classic to

generalized theory of perturbation. Perturbation of the fission source is taken into account for

differential operator sampling method as well. On the other hand, stochastic sampling-based

methods, even though a late-comer compared to deterministic “Sandwich Rule” methods,

are gaining wider usage because of increasing modern computing power. The choice of

uncertainty quantification method depends largely on the problem under investigation and

consequently on the type of neutronics code and nuclear data format.

To reiterate from Chapter 1.1, at PSI there is strong demand for nuclear data uncertainty

quantification in criticality safety assessment and burnup credit validation basis for the

storage and transport of Swiss spent LWR nuclear fuel. Hence the uncertainty quantification

method suitable for our problems has to be compatible with MCNPX and able to provide

uncertainty for variables in addition to keff. Among the existing codes discussed in this chapter,

only NUDUNA and TMC provide the closest solution to our problem. What is proposed in this

PhD work has to have additional contributions to the existing solutions, which are investigated

in the following three aspects.

1.6.1 Mixing of continuous-energy and multigroup

In the existing methods, nuclear data are either in multigroups or in ENDF6 format. The

manipulation of the former format is certainly much easier. However as shown by SAMPLER’s

improvement over XSUSA, self-shielding effect must be treated properly upon the perturbation

of multigroup data. An additional step is also required (though not mentioned previously) for

15



Chapter 1. Quantifying nuclear data uncertainty

aligning the different group structures which might exist between the nuclear data and the

covariance data.

Given the different types of nuclear data and consequently their usage by corresponding codes

(i.e. multigroup or continuous energy), it is important to assess the effect of code difference on

the propagated nuclear data uncertainty. In [39], NUDUNA was applied to generate perturbed

ENDF6-formatted nuclear data which were subsequently converted to the continuous-energy

ACE format used by MCNP and to the 238-group format for SCALE6.0/KENO V.a. The nuclear

uncertainty contributions in keff for the fast-spectrum Godiva benchmark [47] has been found

to be essentially unaffected by multigroup discretization (e.g. 955 pcm in MCNP vs. 953 pcm

in KENO). This study indicates that multigroup nuclear data, when perturbed by the same

underlying uncertainties (on the same ENDF6-level) as the continuous-energy were, do not

introduce additional uncertainty to keff uncertainty due to the coarser energy resolution.

The use of ENDF6 format by NUDUNA (as well as TMC) is versatile but incompatible with

the multigroup covariance libraries used by TSUNAMI, SAMPLER etc. The verification and

validation of NUDUNDA and TMC against other methods which do not use ENDF6 format are

difficult in terms of separating uncertainty contributions from methodological effects, or from

nuclear data directly because of the different source/format of nuclear data uncertainties.

To be able to propagate nuclear data uncertainties through MCNP/MCNPX, there in fact exists

another “native” nuclear data format of MCNP(X) called ACE. The mixing of continuous/pointwise-

energy nuclear data and multigroup uncertainties was already implemented in the SAMPLER

code as discussed previously. Such mixing can also be directly applied to ACE-formatted

nuclear data to propagate nuclear data uncertainties in the multigroup format, with the

advantage that the self-shielding effect is taken into account during neutronics calculations.

1.6.2 Stochastic sampling with MCNPX

The implementation of stochastic sampling is relatively easier than that of the determinis-

tic methods requiring sensitivity coefficients because neutronics codes do not have to be

retrofitted. However, an affordably large enough number of perturbed samples is expected

in order to satistfy the statistical convergence in sampling methods. This criterion becomes

a challenge for Monte Carlo-based codes in certain applications, such as full-core nuclear

reactor problems, because of their longer computational time. Even though the intended

applications in this PhD work are relatively simpler (e.g. spent fuel assembly, transport casks

etc.) a practical sample size is a genuine concern for a stochastic sampling method for MCNPX.

To that aim, GRS and NRG [48],[34] have both proposed methods to lift the burden of computa-

tional time for complex models. Their algorithms involve 1) relaxing the statistical convergence

criterion for each Monte Carlo calculation by decreasing the number of neutron histories and

2) changing the random seed in each sample of neutronics calculation to separate statistical

error due to Monte Carlo codes and the keff uncertainty contributed by nuclear data. They
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have shown that a reduction in computational time can be achieved without compromising

uncertainty results.

1.6.3 Sensitivity from stochastic sampling

Stochastic sampling (SS) methods are expeditious for quantifying total uncertainties. How-

ever, when individual uncertainty contribution is desired, SS methods with especially Monte

Carlo-based codes become inefficient since each parameter has to be perturbed separately,

amounting to many samples to be calculated. In this aspect, the AWP-based methods are

advantageous because of the ability to compute sensitivity coefficients of all inputs using

only a forward and an adjoint calculations. The total uncertainty is calculated as the sum of

individual uncertainties.

Basic sensitivity analyses have been performed [3] through the determination of linear corre-

lation coefficients, such as Pearson or Spearman coefficients. They quantify the strength of

association between individual inputs and the output as a way to rank important inputs. This

approach is applied in Chapter 3.5 and is shown to be not equivalent to the determination of

sensitivity coefficient.

It is hence very desirable to establish a consistent method for the determination of important

inputs, based on a set of quantities which can be computed using both sensitivity coefficient-

based approach and the stochastic sampling-based implementation. In Chapter 4, the global

sensitivity analysis is presented as a mean to rank important inputs in terms of their variance

contributions.

Chapter’s key message

Nuclear data uncertainty quantification (NDUQ) is an active research field given its practical

importance. Analagous to the two types of neutron transport methods - deterministic or

stochastic, existing computer tools for NDUQ also fall into either the deterministic propagation

of moments (also known as S/U and “Sandwich Rule”) or stochastic sampling/Monte Carlo

methods. They can be further differentiated by the types of nuclear data with which the tools

are compatible. Several of these NDUQ methods will be used to provide verification and

validation of the central contribution of this PhD work, that is a global sampling-based tool for

continuous-energy MCNPX to propagate and quantify nuclear data uncertainty contributions.
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2 Building NUSS-SRS for ACE-
formatted nuclear data

The ACE format is one of the native nuclear data formats readable by the continuous-energy

transport code MCNPX. In this chapter, the ACE format is first described along with MCNPX.

In order to develop a tool to perturb ACE-formatted nuclear data using multigroup nuclear

data uncertainties, the procedures to prepare multigroup (MG) nuclear data covariances by

NJOY are examined. The two different formats (ACE and MG) are consolidated under certain

assumptions for the development of the “NUSS-SRS” (Nuclear data Uncertainty Stochastic

Sampling - Simple Random Sampling) tool in this PhD work. With MATLAB and shell scripts

for mathematical operations and data parsing respectively, the steps to generate perturbed

ACE files for MCNPX calculations are presented.

2.1 MCNP(X) and ACE-formatted nuclear data

Figure 2.1: Historic development of MCNP and MCNPX (see https://mcnpx.lanl.gov/
opendocs/misc/LAUR08_3475.ppt).

The Monte Carlo N-Particle (MCNP) is a general purpose particle transport code for applica-

tions of neutron, photon, electron or coupled neutron/photon/electron. It has evolved over six

decades as shown in Fig.2.1 and in 1995, the MCNP-eXtended (MCNPX) became available as a

result of the ’MCNP 4B and LAHET’ code-merger project. MCNPX includes all the capabilities
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Chapter 2. Building NUSS-SRS for ACE-formatted nuclear data

of MCNP 4C, as well as the capabilities to model many different particles over a broad range of

energies. In 2011, the MCNP6 was released as the merger between MCNP5 and MCNPX into a

single package after five years of effort by the developers of MCNP and MCNPX. It is said that

the last separated versions MCNP5 v 1.6.0 and MCNPX v 2.7.0 are maintained for upcoming

years, but no more future releases except to continue the version MCNP6.

For this PhD work, MCNPX v2.7.0 is used to perform calculations for the historical reason

that at PSI, MCNPX has been used for both nuclear engineering and high energy physics

applications. Nevertheless, the input structure is the same for MCNP or MCNPX. Both can use

the ACE-formatted nuclear data for particle transport calculations.

Figure 2.2: Example of a particle traversing through 3 regions with different macroscopic cross
sections ΣT , leaving 6 tracks until its “death” by absorption.

As a Monte Carlo-based code, MCPNX simulates particle transport and interaction in the

medium. Illustrated by Fig. 2.2, a particle is generated from a source with energy E and a

direction ~Ω. There is a probability ξ of undergoing a collision at the end of the first track which

is described by Eqn.(2.1). In Monte Carlo simulation, a random probability is assigned and the

distance travelled (L) is calculated.

ξ=
∫ L

0
ΣT 1e−ΣT 1·x d x ∴ L = − ln(1−ξ)

ΣT 1
(2.1)

At the site of collision, the nuclide with which the simulated particle (e.g. neutron) has an

interaction is identified. The probability of an absorption of neutron by the target nucleus

is σa
σT

where σa is the sum of all (neutron,x) cross sections given the outgoing particle x is

anything but a neutron. The probability of a scattering event is σs
σT

, and the outgoing neutron

can be generated by an elastic (el ) or inelastic (i n) collision with probabilities:

Pel =
σel

σi n +σel
= σel

σT −σa
and Pi n = σi n

σi n +σel
= σi n

σT −σa
(2.2)

The thermal motion of the target nucleus is taken into account by either the “free gas thermal”

model or S(α,β) treatment, both of which make adjustments to the scattering cross section

of the target nucleus for low-energy reactions. The use of S(α,β) is important for molecular
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binding effects such as in water. The energy, direction and energy-direction correlation of

the outgoing neutrons (or other types of particles such as photons, protons) are given by the

so-called “ENDF laws”. For example, “Law 7” means the “Simple Maxwell Fission Spectrum”:

f (Ein → Eout) =C ×
√

Eoute
−Eout/T (Ein) (2.3)

where T (Ein) is the nuclear temperature tabulated as a function of incoming neutron energy.

In MCNP(X), the outgoing fission neutron energy is sampled by a rejection scheme where

random numbers ξ1 to ξ4 are drawn from [0,1] and ξ1,ξ2 are rejected when ξ2
1 +ξ2

2 > 1:

Eout =−T (Ein)

(
ξ2

1 lnξ3

ξ2
1 +ξ2

2

+ lnξ4

)
(2.4)

The number of fission neutron as a function of incident neutron energy is an average value

ν̄(Ein) and hence for individual fission reaction, the actual number of fission neutron Np is

determined by the following condition:

Np =
{

I if ξ> ν̄(Ein)− I

I +1 if ξ≤ ν̄(Ein)− I

where I is the largest integer less than ν̄(Ein) and ξ is the random number.

The aforementioned steps essentially drive the simulation of the transport of neutrons. A

fixed source problem is where a neutron source is given to MCNPX and random walks of

neutrons are tallied (i.e. recorded) for information of interest such as fluence, flux, reaction

rate, energy deposition etc. On the other hand, a criticality problem is where a population of

source neutrons is seeded in the medium of interest and their random walks are tracked until

a converged fission source distribution is obtained. At the beginning, all of the seed neutrons

will be destroyed by absorption or escape, but some of those that are absorbed can cause

fission. Fission neutrons are generated and become the source neutrons for the next cycle until

all are destroyed. Many cycles later, the sites of the source neutrons will aggregate at locations

where the probability of fission is high and the fission source distribution becomes stable.

MCPNX uses three keff estimators to tally information over the cycles of neutron population:

Collision Estimator

kc = 1

N

∑
s

Ws

[∑
i θi · ν̄i ·σ fi∑

i θi ·σti

]
(2.5)

where N =number of source neutrons for the current cycle

s =summed over all collisions in a cycle where fission is possible

i =summed over all nuclides involved in the i th collision
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Ws =weight of particle entering collision s

(also the number of neutrons entering collisions)

θi =atomic fraction for isotope i

ν̄i =average prompt or total fission neutrons

σti =total microscopic cross section of isotope i in the material

σ fi =microscopic fission cross section of isotope i in the material

Absorption Estimator

ka = 1

N

∑
s

(
Ws

ν̄iσ fi

(σai +σ fi )

)
(2.6)

where N =number of source neutrons for the current cycle

s =summed over all capture events in the i th isotope

Ws =weight of particle entering each capture event s

ν̄i =average prompt or total fission neutrons

σ fi =microscopic fission cross section of isotope i in the material

σai +σ fi =microscopic capture cross section of isotope i in the material

Track Length Estimator

k t l = 1

N

∑
l

(
Wl

(
Lρ

∑
i
θi ν̄iσ fi

))
(2.7)

where N =number of source neutrons for the current cycle

l =summed over all neutron trajectories

Wl =weight of particle on trajectory l

ρ =the atomic density in the cell

L =the trajectory track length from the last event

i =summed over all collision in a cycle where fission is possible

θi =atomic fraction for isotope i

ν̄i =average prompt or total fission neutrons

σ fi =microscopic fission cross section of isotope i in the material
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2.1. MCNP(X) and ACE-formatted nuclear data

Looking at Fig. 2.2, a “collision estimator”, Eqn.(2.5) would register a score for each fission

at collision; an “absorption estimator” (Eqn.2.6) would only register when the neutron is

absorbed and fission reaction occurs. However, neither estimator would register a score in

region 2 because no interactions occur there along track 3. A “track length estimator” (Eqn.2.7)

is more suitable for keeping record of the length of each track. Since each estimator works best

only in certain configurations, a combined estimator for keff is used as the best final estimate

of keff in MCNPX.

The Central Limit Theorem (CLT) is relied upon to estimate the confidence interval of the

final estimated mean value of keff . Let E [k] denote the true population mean of keff . For

each cycle of neutron transport, the mean value of the sample keff is keff
n . According to

CLT, k̄eff, the mean value of keff
n which have been sampled independently from the identical

distribution (i.e. the distribution of the said population) of finite mean and variance value,

would approach a normal distribution for a large sample size N as N approaches infinity. The

standard deviation of keff
n (denoted as Sk̄ ) would also approach σ which is the standard

deviation of a normal distribution as N approaches infinity. Hence the confidence interval

set up by Sk̄ and k̄eff would approximate the PDF of a normal distribution as and the true

population mean of keff lies within specific confidence intervals:

k̄eff −Sk̄ <E [k] < k̄eff +Sk̄ ∼ 68% of time

k̄eff −2Sk̄ <E [k] < k̄eff +2Sk̄ ∼ 95% of time

k̄eff −3Sk̄ <E [k] < k̄eff +3Sk̄ ∼ 99% of time

In preparing MCNPX calculations, the minimum inputs must describe the geometry, materials,

neutron source and of course include nuclear data. The ACE format is one of the eight classes

of nuclear data tables readable by MCNPX. The ACE-formatted nuclear data can be type 1

(sequential, ASCII, 80 characters per record) or type 2 (direct-access, binary) interchangeable

by an auxiliary processing program MAKXSF. In the MCNPX input file, a DATAPATH can be

specified to direct MCNPX to the folder of the intended nuclear data files. MCNPX looks inside

DATAPATH for a file named xsdir (see Appendix B1 for example) for the isotope identifiers

(ZAID) in MCNPX input’s material specification.

Looking inside an ACE-formatted nuclear data, for example hydrogen 1H in Fig.2.3, one must

appreciate the well-structured comprehensiveness of the ACE format. This example file

contains a total of 4506 lines of data which can be divided into different parts:

• Header: Material identification (e.g. 1001.00c) is associated with the particular library

(e.g. ENDF7_1) and general information such as atomic weight ratio (e.g. 0.999167) and

incident neutron energy (e.g. 2.5301E-08MeV).

• NXS Array and JXS Array: Counters, flags and pointers are given so as to describe the

expected length of data points, the number of reactions, and locations of these reactions

etc. The explanations for the NXS, JXS values are given in Appendix B2 for Fig. 2.3.
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Figure 2.3: Example of ACE-formatted nuclear data file for isotope MAT=125, i.e. 1H.

• XSS Block: Nuclear data are organized into 21 blocks. It begins with a unionized energy

grid (e.g. the first entry is 1.00000000000E-11, i.e. 1×10−11 MeV), followed by the total
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2.2. NJOY and the generation of groupwise covariances

cross section, total absorption cross section, elastic cross sections, all three of which

use the same, unionized uniform energy grid. For other reactions, reaction-specific

energy grids are specified in terms of pointers to the starting energy location in the

uniform energy grid. For example, (n,2n) of 235U data are only available at high energy

(E > 2keV) therefore, its energy grid is pointed to the corresponding partial segment of

the unionized grid.

2.2 NJOY and the generation of groupwise covariances

The NJOY nuclear data processing system converts ENDF-6 format into other formats for

practical nuclear applications. It is also used to generate multigroup nuclear data covariances.

As mentioned in Chapter 1.2, multigroup data are essentially weighted pointwise data by the

neutron flux. Hence a look at how NJOY produces pointwise (i.e. ACE-formatted) nuclear data

is first presented.

In the ENDF-6 formatted file, different interpolations laws (not necessarily linear) and reso-

nance parameters are given to describe the continuous-energy evaluated nuclear data. The

RECONR module of NJOY is responsible for creating a unified energy grid, where a linear rela-

tion is possible between each energy point with a user-defined error tolerance. The search

of the energy grid points is illustrated in Fig. 2.4 where midpoints are added to create the

first linearized energy grid for elastic cross section; this grid is then used for the next cross

section (e.g. (n,2n)) where more midpoints are added to create a denser energy grid. After

going through all partial cross sections, the total cross section in the same pointwise unionized

energy grid is obtained as the sum of the partial cross sections.

Figure 2.4: Schematic of increasing the number of energy grid points to construct linearly
interpolated pointwise data for a unionized energy grid.

The pointwise cross sections from RECONR module are for zero-temperature and then they are

Doppler broadened by the BROADR module. The temperature effect is especially important for

cross section at the resonance energy range since high-energy fission neutrons have to slow

down to thermal energies and the probability of absorption is affected by the many resonances.

The BROADR module not only performs cross section adjustment based on the temperature

25



Chapter 2. Building NUSS-SRS for ACE-formatted nuclear data

provided, but it also has to modify the previously unionized energy grid to a new grid which

can describe the broadened cross sections. At the energy range of unresolved resonances,

resonances are too close to be specified individually; so the ENDF-6 format gives average

values on their widths, probability distributions, spacing instead. NJOY’s UNRESR module

generates the “effective” self-shielded cross sections as a smooth function of energy (without

explicit resonance peaks). For MCNPX specifically, the PURR module prepares probability

tables in the ACE file. Finally the ACER module generates an output file in the ACE format for

the processed nuclear data, as well as updating the corresponding information in the xsdir
file and consistency checks for the ACE format.

Multigroup nuclear data can be prepared by the GROUPR module which uses built-in weighting

functions (i.e. typical flux shapes shown in Fig.1.3) to obtain the infinitely-diluted multigroup

cross sections. Bondarenko method and “flux calculator” are two options [49] in GROUPR to

generate self-shielded multigroup data. Narrow Resonance approximation is assumed for

the former method, which simulates suppression to the weight flux shape due to resonances.

The latter is used for broad and intermediate-width resonances; it solves the slowing-down

integral equation point by point using total and elastic cross sections from RECONR.

Similar to GROUPR, the ERRORR module relies on the same method of weighting function to

compute multigroup covariances for infinitely-diluted cross sections. Let cov(x(E), y(E ′)) be

the covariance of energy-dependent cross sections x(E) and y(E ′) in ENDF-6 format. Since

flux-weighted cross section Xg and Yg ′ for x(E) and y(E ′) are:

Xg =
∫

g x(E)w(E)dE∫
g w(E)dE

≈
∑

E w(E)x(E)

w̄g
=∑

E
a(E)x(E) (2.8)

Yg ′ =
∫

g ′ y(E ′)w(E ′)dE ′∫
g ′ w(E ′)dE ′ ≈

∑
E ′ w(E ′)y(E ′)

w̄g ′
=∑

E ′
b(E ′)y(E ′) (2.9)

The covariance of multigroup cross sections becomes

cov(Xg ,Yg ′) = E

[(∑
E

a(E)x(E)−∑
E

a(E)xo(E)

)(∑
E ′

b(E ′)y(E ′)−∑
E ′

b(E ′)yo(E ′)

)]
= ∑

E ,E ′
a(E)b(E ′)E

[
(x(E)−xo(E))

(
y(E ′)− yo(E ′)

)]
= ∑

E ,E ′
a(E)b(E ′)cov(x(E), y(E ′)) (2.10)

Table 2.1 shows the content of various types of File “MF” in the ENDF-6 formatted data file.

For the resonance parameters stored in “MF2” and “MF32”, a new module ERRORJ [50] has

been integrated into ERRORR for NJOY 2012. It is invoked to compute resonance covariances

when certain advanced options are specified in the provided ENDF-6 data file. Otherwise,

the contributions of the resonance uncertainties are automatically added in addition to the
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processing of “MF33” multigroup cross section covariances. The angular distribution of

secondary particle is given as tabulated distribution or as Legendre polynomial coefficients in

“MF4”, while in “MF34” only the covariances for Legendre coefficients are given.1 The energy

distribution of secondary particles is stored in “MF5”. The corresponding covariance matrix in

“MF35” has to comply the “zero-sum” constraint, a mathematical property of the covariance

matrix of the normalized energy distribution for which the matrix elements have sums (in any

row or column) equal to 0.

File Content File Content
MF 1 ν̄prompt,ν̄delayed MF 31 covariance for ν̄
MF 2 resonance parameters MF 32 covariance for resonance pa-

rameters
MF 3 reaction cross sections MF 33 covariance for cross sections
MF 4 angular distributions for

emitted particles expressed
as normalized probability
distributions

MF 34 covariance for angular distri-
butions of emitted particles

MF 5 energy distribution for emit-
ted particles expressed as
normalized probability dis-
tributions

MF 35 covariance for energy spec-
tra of emitted particles

Table 2.1: Examples of “MF file” in the ENDF-6 format and their intended nuclear data.

During this PhD work, NJOY is primarily used to generate multigroup covariances (see Ap-

pendix B3 for an NJOY input example). In the beginning and before the release of ENDF/B-VII.1

evaluated nuclear data library, the SCALE6-44group covariance library [51] was applied ex-

tensively due to the lack of alternatives. The energy group structure consists of 22 fast and 22

thermal energy groups. Fig.2.5 shows that SCALE6-44g is designed to accommodate certain

isotopes’ resonances. The flux weighting function used is based on a 17×17 Westinghouse

PWR assembly (M4.2.2 from [52]). When another user-defined group structure is desired, the

ANGELO2.3 auxiliary code could be used by applying a flat flux weighting function onto the

SCALE6-44g covariance data. Speed is traded with lower accuracy in such a simple interpo-

lation scheme especially when the new group structure is very different from the original.

Using NJOY to generate covariance matrix in user-defined group structure becomes practical

when the ENDF/B-VII.1 evaluated nuclear data library was released. It includes covariance

data for 190 materials (versus 26 materials in ENDF/B-VII.0, 37 materials in JEFF-3.1 and 401

materials in SCALE6-44g). In Chapter 3.2, ENDF/B-VII.1 evaluated nuclear data covariances

are processed flexibly into various group structures such as the SCALE6-44g, or 30-, 80-group,

using appropriate weighting functions.

1ACE format uses 32 equiprobable cosine bins for scattering.
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Chapter 2. Building NUSS-SRS for ACE-formatted nuclear data

Figure 2.5: Energy bounds of the SCALE6-44g covariance group structure are selected to
accommodate features of various nuclide cross sections. Flat weighting function is used when
the plots are produced in the JANIS plotting program.

2.3 NUSS-SRS implementation

NUSS-SRS consists of MATLAB programs and unix shell scripts. The former provides mathe-

matical calculations and the latter is for file manipulation. Shown in Fig. 2.6 NUSS-SRS has

five stages of operation. The processing of multigroup covariance matrices by NJOY is stage

1. Stages 2 to 5 of NUSS-SRS are presented with the focus on the organization and workflow

of computer programs written to complete the sampling and modification of ACE files. But

first and foremost, the core assumptions in relation to the nuclear data properties for the

development of the NUSS-SRS tool are laid down here.

2.3.1 Assumption and limitation

Within-group correlation

It is assumed that, pointwise nuclear data within each energy group is fully correlated.

Eqn.(2.11) illustrates this assumption that a scalar factor (p) can be applied to the point-
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2.3. NUSS-SRS implementation

Figure 2.6: Workflow of NUSS is divided into five stages.

wise nuclear data:

~α′
g = p~αg = p · (αg1 ,αg2 ,αg3 , · · · ,αgm

)= (
pαg1 , pαg2 , pαg3 , · · · , pαgm

)
(2.11)

The advantage of ACE-formatted pointwise nuclear data comes from working with the union-

ized energy grid by which cross sections between energy points can be linearly interpolated.

Depicted in Fig.2.7, the cross sections through random sampling will on average lie within the

respective ± 1σ (68%) of the time. The cross sections between Ea and Eb will be interpolated

by MCNPX during execution and will also lie within the marked range of values which are

determined by the adjacent perturbed cross section values because of the linearly-interpolated

relation required by the ACE format.
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Figure 2.7: Pointwise ACE nuclear data across the boundary of the multigroup energy structure
have a smooth transition and their uncertainties are still bounded.

Probability distribution function of nuclear data

Nuclear data are assumed to have multivariate normal distribution. The normality assumption

can be traced back to the time-of-flight experiments in Chapter 1.2 for basic nuclear data

measurements. The raw data counts have Poisson distribution; but at high count rates, Poisson

distribution is approximately normal [7]. The normality assumption of the inputs which are

fitted by least-squares, leads to the property that, the linear least-squares estimator is also the

maximum likelihood estimator. Hence the evaluated nuclear data from least-squares fitting

can be considered the “best” estimates for nuclear data [7].

A consequence of the normal distribution assumption is the possibility of negative-valued

nuclear data samples in case of a large uncertainty for a small-valued cross section. The fix for

such physical violation is to impose a zero-cutoff for negative cross sections. This practice

inevitably biases the mean value of the sampled cross sections (see Chapter 3.3). In this

work, the multivariate-normal assumption is applied while acknowledging the implications

mentioned above. For future works, log-normal distribution could be applied instead of

normal distribution which has been done by Žerovnik[53] for the resonance parameter.

2.3.2 MATLAB programs for modifying nuclear data

The organization of the NUSS system is shown in Fig.2.8. The “Scripts” folder contains the

MATLAB-scripted programs to perform the tasks of Stage 2 and 3 of Fig.2.6. The “Nuclear

data” and “Group structure” are static folders. The former provides the original ACE-formatted

nuclear data files and multigroup covariances, which have been prepared by NJOY preparation

in Stage 1 of Fig.2.6. The energy group structures with their energy boundary values are

stored in “Group Structure” folder as text files; they correspond to the group structure of the

covariance libraries and are used to partition the pointwise ACE formatted nuclear data. The

dynamic folders are “Workdir” and “Make_Pert_Factors” which are created by the shell script

“setfolder.sh”. The “Template” folder contains holders of information which are to be copied
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2.3. NUSS-SRS implementation

into the “Workdir” and “Make_Pert_Factors” and modified according to individual problems.

They establish the initial parameters for the MATLAB-scripted “NUSS_p.m” program for the

new set of perturbed ACE libraries to be generated.

Figure 2.8: The “setfolder.sh” script sets up the problem-specific “Workdir” and
“Make_Pert_Factors” folders. The “Nuclear data” and “Group structure” and “Scripts” folders
are static and used by “NUSS_p.m” program.

The program flow of “NUSS_p.m” is shown in Fig.2.9. Its first part (i.e. “If sharkx_flag is equal to

1” ) is responsible for sampling the multigroup covariances 2 and generating the perturbation

factors P to be used in the second part (i.e. “if pert_flag is equal to 1”).

The mathematical procedure to obtain the perturbation factors from multigroup covariance

data is based on the assumption of multivariate normal distributions for nuclear data. Keeping

all quantities relative, the built-in MATLAB function to obtain the relative random samples is

simply:

P = mvnrnd (ones(N,K), M, N)

in which the function ones(N,K) generates an N×K matrix filled with ones for N number of

random samples and K number of inputs. Inside mvnrnd, the relative covariance matrix M of

size K×K is decomposed into two matrices:

M = L ·U where U = LT and both are of size K×K (2.12)

Depending on the property of the covariance matrix, being positive definite or positive

semidefinite or neither, the decomposition is achieved by either Cholesky or eigen-decomposition

algorithms, or an ad hoc fix of the covariance matrix is required. Details are presented in

Appendix A4.

2SHARKX.m is part of the PSI’s CASMO-5MX Nuclear Data Uncertainty Quantification (NDUQ) toolset [54] and
has been adopted to perform the sampling of multigroup nuclear data covariances.
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Figure 2.9: Program flow of “NUSS_p.m”.

Matrix V of size [N×K] is generated, whose columns are independent sample sets of random

numbers drawn from the standard normal distribution. Mathematically the mvnrnd output P

is obtained as:

P = V ·U+1 (2.13)

where matrix 1 is generated by function ones(N,K) and the relative random samples in matrix

P are by definition the perturbation factors:

p = α′

αo
(2.14)

The perturbed nuclear data α′ =αo ×p are multivariate-normally distributed according to the

given variance covariance matrix. The proof for the above algorithm is given in Appendix A5.
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Next, the perturbation of the ACE-formatted nuclear data is initiated by Partition.m which

literally partitions the XSS Block of the ACE file (see previously in Fig.2.3) into individual blocks.

Fig.2.10 is an example log file (for 235U) generated by Partition.m. The four-column XSS Block

is first reshaped into a one-column vector called “data” and then divided into respective

sections. Block indices are labelled in the first column (block_ind). The unionized energy

grid is given in the first section of the XSS data and shall be referred to as the “energy” vector.

The second and third columns (data[i] and data[f]) refer to the initial and final locations

of the individual nuclear data (explained in the explanation column). For each nuclear

data (labelled by “MT” numbers), the starting location of its energy grid is also recorded (see

energy [...] column).

Figure 2.10: MATLAB program “Partition.m” reads the ACE file and generates a log file to
provide clear explanation of the partition.

After partitioning the ACE file, the LibPert_main.m program is run to perform perturbations

on the pointwise data (see Fig.2.11). Because we have partitioned the nuclear data vector, it

is easy to locate each cross section and its pointwise energy grid structure. The pointwise

energy grid and cross sections are one-to-one; therefore the pointwise data can be divided

into the same number of groups as the multigroup energy structure. For each segment, a

scalar perturbation factor p is applied:

~α′
g = p~αg = p · (αg1 ,αg2 ,αg3 , · · · ,αgm

)= (
pαg1 , pαg2 , pαg3 , · · · , pαgm

)
(2.15)

where ~αg represents the segment of the pointwise data points αgi bounded by energy group g

between Eg1 and Egm . The single perturbation factor p is applied uniformly to the pointwise

data points.

After the perturbation of specific pointwise data, the consistency within the ACE file must
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Chapter 2. Building NUSS-SRS for ACE-formatted nuclear data

Figure 2.11: MATLAB program “LibPert_main.m” performs perturbation on the ACE-formatted
cross sections. Depending on the type of reaction, different perturbation programs are applied
to match the implicit sum rule in ACE files.

Figure 2.12: ENDF-6 format sum rule for cross sections. MT 3,4,18,27,101 are redundant if one
or more of the constituting MTs are present.

be retained because the “sum-rule” defined by the ENDF-6 format is also inherited by the
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ACE format. Fig.2.12 shows the relationship among the cross sections labelled by their MT

numbers. For example, when MT=102 is perturbed, cross sections of MT=101, 27, 3 and 1 are

all required to be updated if they exist in the ACE file.

For regular cross section perturbation, the total cross section The difference between the

pointwise perturbed cross section and original cross section is calculated and added to other

relevant cross sections (denoted as αsum) as guided by the sum rule:

∆~α′
g =~α′

g −~αg = (∆αg1 , · · · ,∆αgm )

~α′
sum,g =~αsum,g +∆~α′

g = (αsum,g1 +∆αg1 , · · · ,αsum,gm +∆αgm )

The sum rule of Fig.2.12 does not apply to the average total fission neutron yield (ν̄, MT=452)

or fission spectrum (χ, MT=1018). The ν̄ data in a tabular form 3 are modified by multiplying

with the perturbation factors. Current version of NUSS-SRS perturbs only ν̄, without updating

the prompt and delayed fission neutron yield sections in the ACE file. This does not affect

criticality calculation in MCNPX because only the average total fission neutron yield (ν̄) data

are used.

For fission spectrum χ in ACE format, the so-called “continuous tabular distribution” (Law 4)

is used which includes 1) outgoing particle energy grid, 2) the probability density (PDF) and 3)

cumulative density functions (CDF). Because the exact numerical precision used to compute

the original CDF from PDF is unclear for a given ACE file, the following steps are taken which

do not involve numerical integration. Instead the new CDF is computed by adding the amount

of perturbation on top of the original CDF:

• Original data in ACE file:

PDFg = ~fg = [
fg1 , · · · , fgm

]
CDFg =~cg = [

cg1 , · · · ,cgm

]

• After perturbation:

PDF′
g = ~fg

′ =
[

f ′
g1

, · · · , f ′
gm

]
∆~f = ~f ′

g −~fg = [
∆ fg1 ,∆ fg2 , · · · ,∆ fgm

]

• Obtain incremental increase in each energy group (∆E):

∆CDFg = [
∆ fg1∆Eg1 ,∆ fg2∆Eg2 , · · · ,∆ fgm∆Egm

]= [
∆cg1 , · · ·∆cgm

]
3Polynomial function form is also probable but has not been encountered.
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• Compute the cumulative increase of CDF in each energy group:

∆CCDFg =
[
∆cg1 , (∆cg1 +∆cg2 ), (∆cg1 +∆cg2 +∆cg3 ), · · · ,

m∑
i=1
∆cgi

]
= [

ccg1 ,ccg2 , · · · ,ccgm

]

• Finally the new CDF and PDF are calculated and normalized:

CDF′
g = (

CDFg +∆CCDFg
)

/normalization

= [
cg1 + ccg1 ,cg2 + ccg2 , · · · ,cgm + ccgm

]
/(cgm + ccgm )

PDF′
g =

[
f ′

g1
, · · · , f ′

gm

]
/(cgm + ccgm )

As shown in this section, the modifications of the ACE-formatted data are relatively straight-

forward. However due to the more limited availability of covariance data than ACE data, the

following procedures are implemented:

• In the case of total inelastic reaction MT=4, its covariance is given instead of individual

covariances for the discrete level excitation cross sections from MT=50 to MT=91. Hence,

when modifying MT=4 cross section, the perturb.m program checks if MT=50∼91 exist

in ACE file. It is implemented such that the perturbation factors obtained from MT=4

covariance data are applied to all available MT=50∼91 cross sections. It is feasible

because the incident energy grid points used for MT=4 covers all sets of MT=50 to 91.

• χ tabulated data in ACE-format are given in terms of incoming neutron energies. How-

ever there is very limited covariance data for χ which are supposed to cover an energy

range from 0.1eV to 500keV. Hence the current implementation of NUSS-SRS is such

that, only one χ covariance data is processed by NJOY (usually there is indeed only

one given χ data). It is used to modify all the ACE-formatted χ data regardless of the

incoming neutron energies.

2.3.3 Link to MCNPX on MERLIN

MCNPX is installed on PSI’s high performance computing cluster (MERLIN) where the nominal

ACE-formatted nuclear data libraries are also located. The perturbed ACE nuclear data files

are not stored on merlin but remain on PSI’ss AFS (the “Andrew File System” distributed file

system) due to the large amount of nuclear data in terms of memory usage and the lack of

backup capability on MERLIN. Access and retrieval of perturbed ACE files from AFS folders

such as “Nuclear Data” and “Workdir” are accomplished by shell scripts on MERLIN as part of

the NUSS-SRS tool. A problem-dependent ACE nuclear data library is set up on MERLIN which

feeds each sample set of the perturbed ACE files to MCNPX calculations. Fig.2.13 summarizes
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the substitution of the ACE files in the dynamic library on merlin by the prepared samples of

perturbed ACE files on AFS.

Figure 2.13: On merlin, a dynamic library consists of ACE files which are to be substituted
by the perturbed ACE files from AFS “Workdir” folder. After each substitution, an MCNPX
calculation is launched on merlin and has to finish successfully before the next substitution.

2.3.4 Output analysis methods

The final stage of NUSS involves the extraction of MCNPX output of interest (such as keff ,

reaction rate) from MCNPX output files by shell scripts, followed by the statistical analysis

in MATLAB. Each MCNPX calculation is performed with one (for single isotope-reaction) or

a set of uniquely perturbed ACE files (for multiple isotope-reactions). After N samples, a

distribution of keff values is obtained and the mean and variance of the sample are:

k̄ = 1

N

N∑
n=1

kn and Vk = 1

N −1

N∑
n=1

(
kn − k̄

)2
(2.16)

The spread of kn values, in terms of Vk is caused by both the statistical uncertainty of MCNPX-

calculated kn , as well as the nuclear data uncertainties:

Vk =VND +VMC (2.17)

37
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The contribution of Monte Carlo statistical uncertainty VMC is estimated to be [34]:

VMC ≈ 1

N

N∑
n=1

sn (2.18)

where sn is the MCNPX-calculated kn ’s (statistical) variance for sample n. The nuclear data

uncertainty contribution is therefore:

VND =Vk −VMC = 1

N −1

N∑
n=1

(
kn − k̄

)2 − 1

N

N∑
n=1

sn (2.19)

Now suppose all sn values are similar, the ratio between
p

VMC and
√

Vk says:√√√√ 1

N

N∑
n=1

sn/
√

Vk ≈p
sn/

√
Vk (2.20)

For example, to restrict the contribution from statistical uncertainty so that most of the Vk

captures nuclear data uncertainty and only 1% of the
√

Vk comes from the overall statistical

error VMC, the individual sample kn statistical error should be restricted to 1 pcm for a
√

Vk of

100 pcm, which is computationally challenging.

In theory, as N increases, VND converges to nuclear data uncertainty contribution in keff .

Restricted by the feasibility of running many MCNPX calculations, a confidence interval is

useful for knowing the reliability of the estimated nuclear data uncertainty contributions. It

is assumed that the underlying keff population is normally distributed with a true variance

(σ2) contributed by nuclear data uncertainty and statistical uncertainty. This is based on the

observation that, linearity holds for keff as a function of nuclear data when perturbations are

small 4. As nuclear data samples are prepared from simple random sampling (specifically,

independent and identifically distributed) of multivariate normal distributions, it can be

shown that the random variable W has χ2 distribution:

W =
∑N

n=1

(
kn − k̄

)2

σ2 = (N −1)Vk

σ2 ∼χ2
N−1 (2.21)

where χ2
N−1 is the χ2 distribution with N −1 degree of freedom, and kn = {k1, · · · ,kN } of the

smaller set of samples and k̄ the sample mean. For a desired probability level of (1-α) for

W , critical values χ2
α/2,N−1 and χ2

1−α/2,N−1 of the χ2 distribution can be looked up for a given

degree of freedom N −1 from the tabulated probability table of χ2:

Prob
(
χ2
α/2,N−1 ≤W ≤χ2

1−α/2,N−1

)
= (1−α) ·100% (2.22)

4If keff is not sensitive to a cross section, the keff sample variance is still dominated by statistical uncertainty. If
nuclear data uncertainty is so large that negative nuclear data samples are generated, they are replaced by zero
values as shown in Fig.3.12 in Chapter 3.3. This can alter the keff sample mean and variance estimation. Linearity
might not be observed in this case. In case of non-normal population distributions, formulas for the variance of
sample variance are shown in [55].
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After rearranging W and σ2, the confidence interval shown below would contain the true σ2

of keff for (1-α)·100% of the time, if the sampling procedures would be repeated to obtain a set

of Vk values (i.e. by sampling of nuclear data and calculation of keff ):

[
σ2

lower,σ2
upper

]
=

[
(N −1)Vk

χ2
1−α/2,N−1

,
(N −1)Vk

χ2
α/2,N−1

]
(2.23)

As a result, the (1-α)·100% confidence interval for σ is
[
σlower,σupper

]
.

Chapter’s key message

The implementation of NUSS-SRS is essentially simple thanks to the transparant ACE format,

but not easy because of the large amount of data (often on the order of megabyte per nuclide)

to be parsed and modified. The NUSS-SRS tool eliminates the manual process of ACE file

modification which can be extremely error-prone given the amount of ASCII texts and the

number of perturbed ACE files to be manipulated. The performance of NUSS-SRS is going

to be verified in the next chapter when it is compared to existing methods for nuclear data

uncertainty quantification.
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3 Evaluating NUSS-SRS against existing
methods and its applications

The Nuclear data Uncertainty Stochastic Sampling (NUSS) tool with the simple random

sampling (SRS) method is verified in three ways. First, the implementation of NUSS-SRS

is tested in a direct perturbation manner by using pre-defined perturbation factors. The

results are compared with those generated by MCNPX’s PERT CARD module in terms of the

sensitivity coefficients of keff to nuclear data. Next, simple random sampling is applied and

keff uncertainty due to nuclear data uncertainties is compared with that calculated by the

“Sandwich Rule”. Sensitivity coefficients are provided by TSUNAMI and whenever available,

PERT CARD. The third comparison is done between NUSS-SRS and the Total Monte Carlo

(TMC) methodology to assess the propagation of nuclear data uncertainties at the levels of

ACE-format or basic nuclear data.

Upon verifying NUSS-SRS, the effect of multigroup structures of the covariances on the

propagated nuclear data uncertainties is examined. It is to assess whether the commonly

used SCALE6 44-group structure is adequate or excessive. Similarly, the existing practice of

computing Pearson and Spearman correlation coefficient as sensitivity indicator is questioned.

Instead, the squared value of the corresponding correlation coefficient is used to estimate the

associated input variances in the total output variance.

Finally, two applications of NUSS-SRS are presented and discussed. They are the UAM pincell

and criticality safety assessment benchmarks in consideration of nuclear data uncertainties.

3.1 NUSS Direct perturbation versus MCNPX PERT CARD

Direct perturbation means varying inputs one-at-a-time and the difference between the

perturbed output and the reference can easily be associated to the output’s sensitivity to this

single input’s variation. In Chapter 1.4, Eqn.(1.15) gives the absolute sensitivity coefficient.

Here the relative sensitivity coefficient from direct perturbation (DP) is also given:

SDP =
(
R(α′)−R(αo)

)
/R(αo)

(α′−αo)/αo
(3.1)
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where the relative input variation can be written in terms of the perturbation factor p of

Eqn(2.11):

α′−αo

αo
= pαo −αo

αo
= p −1 =∆p (3.2)

The relative input variation ∆p represents how far away the perturbed value is from the

reference. Here we let it be calculated as the multiple (γ) of the relative standard deviation of

the input (multigroup nuclear data):

∆pg = γ ·σr el ,g for g = 1, · · · ,G groups (3.3)

To verify the sensitivity coefficients calculated by NUSS direct perturbation, PERT CARD

module of MCNPX is applied. Its differential operator sampling (DOS) method [18] computes

the small change in particle track lengths due to a perturbed input parameter θ. In criticality

problems, fission source distribution for each cycle is given by the location of fissions at the

end of previous cycle. When the source fission source distribution is converged, keff can be

calculated as the neutron production from fission per source particle (N) [56]:

k = 1

N

∫
V

dV
∫

E
dEχ(E)

∫
E ′

dE ′ν(E ′)(Nσ f (E ′))Φ(r,E ′) (3.4)

where the value ofΦ(r,E ) can be obtained from the track-length tally in MCNPX. When pertur-

bations in inputs such as cross sections are introduced to the system, there is no guarantee

that the source distribution remains the same. However, in PERT CARD, the unperturbed

source distribution is still used to for the calculation of perturbed keff , in effect approximating

the perturbed flux as the actual flux resulted from a perturbed source distribution. By Taylor

expansion up to the second order without cross terms:

∆k ≈ ∂k

∂θ
∆θ+ 1

2!

∂2k

∂θ2 (∆θ)2 (3.5)

the derivatives ∂k
∂θ and ∂2k

∂θ2 are calculated concurrent to the normal transport calculation during

the active cycles where the change in track lengthsΦ are tallied (further details in Appendix A2).

∆k from Eqn.(3.5) is used directly even though it in fact includes second order perturbation

contribution:

SPC = ∆k/k

∆θ/θ
(3.6)

To perform PERT CARD perturbation, a fictitious material is first created, with compositions

containing the modified isotopic density as a means to perturb cross section. Suppose param-

eter Σ is the macroscopic cross section and Σ= Nσ. The perturbed value Σ′ is ((1+∆p)N )σ

which is equivalent to N ((1+∆p)σ). An example of PERT CARD entry is shown below:
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pert1:n cell=1 mat=101 rho=4.16e-2 RXN=18 ERG=8.19E+00,2.00E+01 METHOD=1

which sets up a perturbation calculation pert1 for neutron particles (n) in geometry cell=1,

where the original material is replaced by a fictitious (i.e. perturbed) material (mat=101)

defined in the material card section of the input file, with an adjusted density rho. By PERT

CARD, a particular cross section Σ(r,E) (RXN=18) at specific incident neutron energy range

(ERG between 8.19MeV and 20MeV) can be perturbed. METHOD=1 is the default for asking PERT

CARD to calculate both ∂k
∂Σ∆Σ and ∂2k

∂Σ2∆Σ
2.

For verifying SDP of NUSS and SPC of MCNPX PERT CARD, the 239Pu Jezebel benchmark is

used. It is a well-characterized benchmark with an experimental keff of 1.000 ± 0.002. Its

simple physical structure as a bare spherical assembly allows the easy modelling and short

computation time in MCNPX. The reference calculation produces keff =0.99980±0.00006 with

ENDF/B-VII.1 nuclear data library and by 1×105 neutrons for 900 active cycles. Listed in

Fig. 3.1, the nominal atom densities are given in the Benchmark specification document and

are used in the MCNPX input file. The atom density values in PERT CARD are obtained by

multiplying corresponding “factor” values, which are equal to 1+∆p with arbitrary ∆p.

Figure 3.1: Material compositions for the Jezebel benchmark.

As a fast critical system, the sustained fission reaction is driven by fission reaction in the fast

energy range. Fig.3.2 shows the pointwise ACE-formatted cross sections of 239Pu(n,f) and

its relative standard deviations in SCALE6-44g structure. First, NUSS perturbs the pointwise

data in each of the 44 groups sequentially by an amount of γ times the corresponding relative

standard deviation σrel,g. Three γ values are applied to obtain the sensitivity coefficients from

NUSS direct perturbation. MCNPX PERT CARD is also applied to compute the sensitivity

coefficients by introducing the same amount of changes (1+∆p) in the atomic density of
239Pu in the model.

Plotted in Fig.3.3, groups 1 to 12 correspond to an energy range from 25keV to 20MeV (see

Appendix B4 for individual group boundaries). Sensitivity coefficients are found to be negli-

gible below 25keV due to the negligible reaction rates, confirming the “insensitivity” of keff
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Figure 3.2: ACE pointwise cross section data of 239Pu(n,f) from ENDF/B-VII.1 library and the
relative standard deviation from SCALE6-44g library.

to changes in the (n,fission) cross section below this energy. More importantly, it can be ob-

served that the precision and accuracy of sensitivity coefficients by NUSS direct perturbation

procedure improve as γ increases (in both negative and positive direction) because perturbed

keff is more distinguishable from the MCNPX statistical uncertainty (about 6pcm1).

Figure 3.3: Direct perturbation in NUSS is performed to verify accuracy by comparing sensitiv-
ity coefficients calculated by MCNPX PERT CARD.

keff uncertainty due to nuclear data has been computed by the “Sandwich Rule” for the three γ

cases and presented in Table 3.1. The average relative difference of NUSS-DP and PERT CARD

results is 4.3%. In the next section where NUSS-SRS (i.e. stochastic sampling approach) is

applied, it is equivalent to using a mix of γ values to obtain variance of sampled keff due to

nuclear data perturbations.

3.2 NUSS-SRS versus TSUNAMI

In this section, TSUNAMI of SCALE6 is applied to compare with NUSS-SRS. The former com-

putes keff sensitivity coefficients by first-order perturbation theory (see Appendix A3) for the

1At a statistical uncertainty of 6pcm for keff , PERT CARD gives zero statistical uncertainty for ∆k results.
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γ -5 1 5 Average
NUSS-DP 0.348 0.391 0.357 0.365

PERT CARD 0.353 0.349 0.346 0.350
(DP−PC)

PC 1.4% 12% 3.2% 4.3%

Table 3.1: keff uncertainty due to nuclear data 239Pu(n,f) uncertainties by direct perturbation
and deterministic “Sandwich Rule” method.

deterministic “Sandwich Rule” calculation of keff uncertainty due to nuclear data uncertainties.

TSUNAMI-1D and TSUNAMI-3D are available in SCALE6 and they employ SN=32 discrete ordi-

nate and KENO multigroup Monte Carlo code respectively for the calculation of forward and

adjoint fluxes. The nuclear data structure is 238-group so that the sensitivity coefficients from

TSUNAMI are originally in 238-group. They are collapsed (i.e. summed over energy groups)

into 44-group and folded with the default 44-group “SCALE6-44g” nuclear data covariances

(see Appendix B4 for more details of the 238- and 44-group structures).

Uncertainties associated to the following nuclear data are considered: elastic (n,n), inelas-

tic (n,n’), (n,2n), (n,f), (n,γ) cross sections and (ν̄), (χ) nuclear data. With NUSS-SRS, 300

perturbed ACE-formatted nuclear data files (original data from ENDF/B-VII.1 library and

covariances also from SCALE6-44g library) are generated, one reaction at a time. From the

subsequent 300 MCNPX calculations, the standard deviation of 300 keff values due to the per-

turbed reaction is calculated. The “total” uncertainty is obtained by perturbing all reactions

simultaneously. In that case, inter-reaction correlations are taken into account by including

inter-reaction covariances in the matrix decomposition (see Eqn.(2.12)) during sampling.

However, correlations between partial and total cross section are not taken into account,

meaning the total cross section uncertainties themselves are not considered.

NUSS-SRS, TSUNAMI-1D, TSUNAMI-3D, as well as MCNPX’s PERT CARD are applied to the

Jezebel benchmark which was already seen in previous Section 3.1. A second fast-spectrum

criticality benchmark, called “Godiva” is considered too. It is a 93-wt% enriched bare uranium

metal sphere denoted as “hmf-001” from the ICSBEP Handbook. The isotopes of interest are
239Pu in Jezebel and 235U in Godiva.

Fig.3.4 plots the standard deviation of keff samples over the sample size as a “moving standard

deviation (σk )”. The larger uncertainty contributors (e.g. 239Pu(ν̄), 235U(n,γ)) have more

fluctuations in their moving σk , which might be difficult to judge for their convergence at a

sample size of 300. In the case of 235U(n,γ), large fluctuations are observed andσk convergence

is verified with a larger sample size as shown in Fig.3.5. The 95% confidence intervals of σk of

two sample sizes are included (see Eqn.(2.23)). By comparison, it could be concluded that at

300 samples, the σk value is underestimated.

Fig.3.6 and Fig.3.7 compare the NUSS-SRS results of σk in Fig.3.4 and alternative methods

of TSUNAMI and PERT CARD based on the deterministic “Sandwich Rule”. Both systems
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Figure 3.4: keff standard deviation values in terms of sample sizes up to 300.

Figure 3.5: keff standard deviation values in terms of sample sizes for 300 and 1001 for 235U(n,γ)
in Godiva. The 95% confidence interval is included for the standard deviation of 300 samples.
The interval includes the standard deviation of 1001 samples which is approximately 50pcm
greater.

are insensitive to threshold (from 6MeV) reaction (n,2n) which is thus omitted in the figures.

PERT CARD lacks the capability for ν̄ and χ perturbation. Guided by the confidence bound,

the NUSS results agree in general with TSUNAMI and PERT CARD. Given individual MCNPX

statistical uncertainty around 30 pcm, statistical uncertainties (VMC) in proportion to nuclear

data uncertainty contribution (VND) become 10% or more when
√

Vk is less than 300 pcm.
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Figure 3.6: SCALE6-44g 239Pu nuclear data uncertainties are propagated through MCNPX for
the Jezebel benchmark and quantified in terms of standard deviations of 300-sampled keff

by NUSS including statistical uncertainty and 95% confidence intervals. Alternatively keff

uncertainty is calculated from “Sandwich Rule” with sensitivities from TSUNAMI and PERT
CARD.

Figure 3.7: SCALE6-44g 235U nuclear data uncertainties are propagated through MCNPX for
the Godiva benchmark and quantified in terms of standard deviations of 300-sampled keff

by NUSS including statistical uncertainty and 95% confidence intervals. Alternatively keff

uncertainty is calculated from “Sandwich Rule” with sensitivities from TSUNAMI and PERT
CARD.

3.3 NUSS-SRS versus TMC

As introduced in Chapter 1.5, the Total Monte Carlo (TMC) methodology from NRG is also

a stochastic sampling approach but it samples from basic nuclear data and nuclear data

model parameters. Fig.3.8 shows the process of TMC which runs the TALYS nuclear reaction
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code repeatedly with perturbed nuclear model parameters and generates samples of ENDF-6

formatted nuclear data files. These perturbed ENDF-6 formatted files can then be processed

by NJOY into, for example ACE-formatted nuclear data files for MCNPX calculations.

Figure 3.8: Nuclear model parameters are perturbed to generate random ENDF-6 formatted
nuclear data files. Perturbed ENDF-6 formatted nuclear data are processed into ACE files for
MCNP(X) calculations and a spread of keff outputs is obtained.

Unlike NUSS and determinstic “Sandwich Rule” methods, TMC does not need multigroup

covariance matrices. But they can be produced as the by-product of the TMC process. The

TENDL covariance library [57] is prepared from the covariance and correlations of random

ENDF-6 formatted nuclear data:

Vi j = 1

N

N∑
n=1

(
αn

i −αo
i

)(
αn

j −αo
j

)
and Ci j =

Vi jp
Vi i

√
V j j

(3.7)

where αo is the nominal nuclear data and αn the perturbed data as a result of the nth random

sample by TALYS code. Correlation matrix (Ci j ) is obtained as usual.

By NJOY, the TENDL covariances in ENDF-6 format can then be processed into application-

ready multigroup covariances. Available at the time of the study in [58], TENDL-2011 covari-

ance evaluations were used by NUSS as uncertainty sources for 239Pu in Jezebel and 235U

for Godiva benchmarks to assess their keff uncertainty contributions. To make consistent

comparison, MCNPX calculations use both TENDL-2011 ACE-formatted nuclear data and

the TENDL-2011 covariances in 44-group structures. Meanwhile, PERT CARD is applied to

provide additional verification check on the NUSS result.

Results of Jezebel and Godiva by TMC (fast TMC to be specific [34]) are provided from NRG

[59] and plotted in Fig.3.9 and 3.10 alongside the NUSS and PERT CARD results. Noticeable
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Figure 3.9: keff uncertainties due to 239Pu nuclear data uncertainty from TENDL-2011 library
in Jezebel benchmark by NUSS (300 samples) are compared with Total Monte Carlo (TMC)
and MCNPX PERT CARD methods.

Figure 3.10: keff uncertainty due to 235U nuclear data uncertainty from TENDL-2011 library in
Godiva benchmark by NUSS (200 samples) are compared with Total Monte Carlo (TMC) and
MCNPX PERT CARD methods.

differences are found in 239Pu(n,f), 239Pu(ν̄) of Jezebel and 235U(ν̄) of Godiva. The discrepancy

in keff uncertainty results is suspected to be due to the quality of the corresponding TENDL

2011 covariance data as explained in the following.

In Fig.3.11, the correlation matrix and relative standard deviation of the 239Pu(n,f) cross

section evaluation from TENDL are shown. Unrealiable uncertainty values (400% relative

standard deviation) are present around 104eV, corresponding to energy group numbers 13 and

14. Sampling from this covariance data in NUSS led to non-Gaussian distribution of perturba-

tion factors as shown in Fig.3.12 where in groups 13 and 14, perturbation factors have been

restricted to be non-negative and deviated from the mean value of 1. This biasing of sampled

nuclear data could affect the keff sample mean and variance by NUSS. Similarly, the large
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uncertainties in groups 13 and 14 contribute significantly to the keff uncertainty calculated

by the determinstic Sandwich Rule. PERT CARD of MCNPX was used to obtain sensitivity

coefficients (~S) and they are combined with the TENDL covariance matrix in Sandwich Rule:

σ2 =~SV~ST =
G∑
i

G∑
j

Si Vi j S j

Normally, the above summation is over all energy groups (i.e. G=44 in case of 44-group),

resulting inσ=1293 pcm for 239Pu(n,f) by PERT CARD, shown in Fig.3.9. Now, if the summation

is only up to group 12 2 so as to remove the excessive uncertainty contributions from groups 13

and 14, σ is reduced to 1029 pcm and is within the 95% confidence bound of NUSS-calculated

result in Fig.3.9.

Figure 3.11: TENDL-2011 correlation and relative standard deviation (s.t.d.) for 239Pu(n,f).

In the cases of 239Pu(ν̄) and 235U(ν̄), NUSS results are much larger than TMC results. There is

no PERT CARD results because it does not compute ∆k due to ν̄ perturbations. Alternatively,

sensitivity coefficients from TSUNAMI-3D can be applied with the TENDL covariances to

estimate keff uncertainty from 239Pu(ν̄) and 235U(ν̄). They are equal to 1306 pcm and 544 pcm

respectively and comparable to keff uncertainties by NUSS, even though TSUNAMI sensitivity

coefficients were obtained using KENO-3D and ENDF/B-VII.0 nuclear data. This implies that

the implementation of NUSS for ν̄ is not incorrect. Then the discrepancy between NUSS and

TMC for ν̄ uncertainty contribution is likely due to the quality of the TENDL-2011 covariance

data. The correlation matrices, as well as the relative standard deviations of 239Pu(ν̄) and

2For fast spectrum Jezebel, summation up to group 16 gives the same keff uncertainty of 1293 pcm because
above group 16, keff sensitivities are zero.
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Figure 3.12: For 239Pu(n,f), some perturbation factors are skewed due to the large uncertainties
in certain energy groups (see Fig.3.11). Perturbation factors must be greater than zero by
physical requirement.

235U(ν̄) are compared to the ones in SCALE6-44g covariance library in Fig.3.13 and Fig.3.14.

Clearly, TENDL-2011 evaluations are much different from SCALE6-44g, showing high level

of correlations below 104 eV and a sharp drop of uncertainty above 1 MeV. This observation

partially explains that keff uncertainty due to 235U(ν̄) from TENDL-2011 is larger than that

from SCALE6-44g (550 pcm vs. 148 pcm). Since NUSS results clearly depend on the magnitude

of the nuclear data covariances, the most plausible explanation is that the TENDL-2011

covariances for 239Pu(ν̄) and 235U(ν̄) are much larger than those inside the TMC-generated

random ENDF-6 formatted nuclear data files, which we did not have access at the time of the

above calculations.

Figure 3.13: TENDL-2011 and SCALE6-44g (sourced from ENDF/B-VII.0) correlation matrices
and relative standard deviation (std.) for 239Pu(ν̄).

At the time of this writing, the 2014 version of TENDL covariances is available [60]. With the

help of D. Rochman (one of the authors of TENDL), ENDF-6 formatted data of 239Pu(ν̄) and
235U(ν̄) (i.e. file MF31) in TENDL-2014 are obtained separately. Fig.3.15 and Fig.3.16 show the

relative standard deviations in 44-group and MF31 energy grids. The 44-group nuclear data
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Figure 3.14: TENDL-2011 and SCALE6-44g (sourced from JENDL-3.3) correlation matrices and
relative standard deviation (std.) for 235U(ν̄).

uncertainties are much smaller in the 2014 version, and comparable to the ν̄ uncertainties

in file MF31 which are produced by TMC. Using the TENDL-2014 44-group covariance data,

NUSS generates 400 perturbed ACE files (original from TENDL-2014 too) for keff uncertainty

quantification. Shown in Table 3.2, results of NUSS and TMC are much closer for TENDL-2014

comparison than for TENDL-2011 as seen before. There are still small differences in keff

uncertainty between NUSS and TMC, which can be explained by the smaller uncertainty

values given by 44-group than by original MF31 data in fast energy range as seen in Fig. 3.15

and Fig.3.16. It is outside the scope of this PhD work to investigate the cause of the difference

in 44-group and MF31 uncertainty data3 . But it is expected that, when multigroup covariances

are prepared such that they agree well with MF31 uncertainties, the keff uncertainty due to

nuclear data uncertainties as quantified by NUSS (using multigroup covariances) can be

equivalent to that by TMC method.

Figure 3.15: 239Pu(ν̄) uncertainty given by TENDL-2011 and TENDL-2014 evaluations. From
TENDL-2014, MF31 data correspond to ν̄ and are processed by NJOY into 44-group structure.

3Some issue with the processing of 44-group covariance from File MF31 is still present for 239Pu(ν̄), as shown
by the zero relative standard deviation values given by TENDL-2014,44-group in Fig.3.15. But for the current fast
spectrum Jezebel benchmark, nuclear data uncertainties below 102eV is inconsequential.
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Figure 3.16: 235U(ν̄) uncertainty given by TENDL-2011 and TENDL-2014 evaluations. From
TENDL-2014, MF31 data correspond to ν̄ and are processed by NJOY into 44-group structure.

239Pu(ν̄) 235U(ν̄)
TENDL TMC NUSS TMC NUSS

2011 239 1106 164 550
2014 237 182 158 142

Table 3.2: The most updated 2014 version of TENDL covariances give more comparable keff

uncertainty results (in pcm) between NUSS and TMC.

3.4 Energy-group-structure effect in NUSS-SRS

The performance of NUSS was verified against both PERT CARD and TSUNAMI methods.

However, as shown by the comparison study between NUSS and TMC, it should be empha-

sized that uncertainty results ultimately depend on the accuracy of the employed nuclear

data uncertainties. Furthermore, the accuracy of nuclear data uncertainty refers to both the

magnitude and the employed energy group structure of the variance/covariance data.

The SCALE6-44g covariance library uses a 44-group structure consisting of 22 thermal and 22

fast groups (see Fig.2.5) in order to accommodate various cross section features in the wide

range of energies. However as the Jezebel and Godiva benchmarks are fast systems, a finer

group structure in the fast energy range and fewer details in the thermal range is sufficient.

The 30- and 80-group structures are part of NJOY’s list of built-in group structures for fast

fission systems [10]. The three group structures are compared in terms of the tallied flux

spectra for Jezebel and Godiva in Fig.3.17.

So far, the SCALE6-44g and TENDL covariances are applied. To generate 30- and 80-group

covariances, the ENDF/B-VII.1 covariance library, released in 2011 is used in the following.

The focus here is on nuclear data which have noticeable differences between SCALE6-44g and
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Figure 3.17: Neutron flux spectra for Jezebel and Godiva benchmarks in different multigroup
structures, tallied by MCNPX.

ENDF/B-VII.1 covariance libraries. A strong example which illustrates the importance of the

accuracy of nuclear data uncertainty in NUSS is by the quantification of 239Pu(ν̄) uncertainty

in Jezebel. As shown in Figure 3.18, the discrepancy between the two libraries leads to very

different keff standard deviation (1152 pcm vs. 86 pcm). In comparison, the effect of different

energy group structures is minor as shown in Figure 3.19. The corresponding correlation

matrices are provided in Figure 3.20.

Figure 3.18: Larger uncertainty of 239Pu(ν̄) from SCALE6-44g results in much higher keff

uncertainty in Jezebel. 95% confidence intervals are given in brackets.

Figure 3.21 shows the uncertainties of 235U(n,f) in both libraries and in three group structures

(30 vs. 44 vs. 80 groups). Corresponding correlation matrices are shown in Figure 3.22. Even

though large variations are observed below 30 keV, keff uncertainty in Godiva benchmark from
235U(n,f) does not vary substantially. This is again due to the low neutron flux level below 30

keV (see Fig.3.17b) which implies a low reaction rate of 235U(n,f) below the fast energy range

in Godiva and perturbations in 235U(n,f) there have a limited effect on the overall flux and

hence on keff.

The above results show that using the 30-, 44- and 80-group structures leads to similar keff
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Figure 3.19: Uncertainty of 239Pu(ν̄) from ENDF/B-VII.1 libraries in three different energy
group structures. The impact on keff uncertainty contribution (bounded by 95% confidence
interval) due to different group structure is minor. See Appendix A6 for explanations on the
large uncertainty difference below 106eV.

Figure 3.20: Correlation matrices of 239Pu(ν̄) from ENDF/B-VII.1 library in three different
energy group structures.

uncertainty precision. It is emphasized again that the number of groups is less meaningful

than their locations, whether they reflect the system (related to the flux spectrum) under

investigation. As the number of groups decreases, it is expected that the keff uncertainty

precision is going to deteriorate. Without applying NUSS-SRS but only with the Sandwich

Rule, keff uncertainty variation due to different energy group structures is illustrated below.

The default 238-group sensitivity coefficient calculated by TSUNAMI is collapsed into another

groupwise structure by summing the sensitivity (S(E )) values within energy group g spanning
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Figure 3.21: Relative standard deviation of 235U(n,f) nuclear data from SCALE6-44g and
ENDF/B-VII.1 libraries. The impact on keff uncertainty contribution due to different group
structure is minor.

Figure 3.22: Correlation matrices of 235U(n,f) from ENDF/B-VII.1 library in three different
energy group structures and from SCALE6-44g covariance library.

energies Eg+1 and Eg :

S′(g ) =
Eg∑

E=Eg+1

S(E) (3.8)

Multigroup covariances are prepared using ENDF/B-VII.1 covariance library and NJOY, af-

ter which the keff uncertainties are calculated by the Sandwich Rule and shown in Fig.3.23.

Keeping in mind that, the 44-group structure has 22 groups in the fast energy range, its keff

uncertainty result is only slightly higher than the result of 10-group and 5-group structures.

The difference between 238-group and 44-group uncertainties is also small. In the opposite

direction, reducing number of groups to 2-group or 1-group structures has doubled more

than twice the keff uncertainty value and clearly resulted in a stronger adverse effect on the

precision of keff uncertainty.
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Figure 3.23: Sensitivity coefficients in 238-group from TSUNAMI are collapsed into various
group structures and the corresponding relative keff uncertainties are calculated.

3.5 Sensitivity analysis with NUSS-SRS

With NUSS-Simple Random Sampling (SRS), the total uncertainty contributed by multiple

inputs can be calculated. However, due to the black-box approach of NUSS-SRS, the relation-

ship between individual input and the output has to be quantified indirectly. Recall Eqn.(3.1)

for the sensitivity coefficient and now for every random sample:

Sk,α = ∆k/k

∆α/α

for each sample−−−−−−−−−−−−−−→ Sk,α,samp = (ksamp −kref)/kref

(αsamp −αref)/αref
= ksamp/kref −1

p −1
(3.9)

By expressing Sk,α,samp with the perturbation factor p, the behaviour of Sk,α,samp can be

observed for each sample variation. In Fig.3.24 the first 20 groups of the 44-group 239Pu(ν̄)

cross section in the Jezebel benchmark are examined. The scatter plot in each window is

between the values of (p −1) and (ksamp/kref −1). Visual inspection suggests linear relation

between nuclear data input and keff for energy groups 4 to 12, especially for group 8 between

1.4 MeV and 1.85 MeV. In contrast, the association between input and output variations

for group 13 and above is weak as shown by the higher degree of dispersion of scattered

data points. Group 13 corresponds to incident neutron energy of 25 keV and from previous

discussions (see flux spectra in Fig.3.17) that below this energy the keff value is not affected by

cross section perturbations.

To make use of the keff random samples obtained by simultaneous sampling of nuclear data,

scatter plots provide qualitative information of the relation between nuclear data and keff.

Quantitative information is provided through the calculation of correlation coefficients:
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Figure 3.24: Scatter plots for 239Pu(ν̄) show the strength of association between relative change
in keff and relative change in cross section. The closer the sample results are to the red dotted
line, the higher the linear association. The first 20 groups cover energies from 20MeV down to
6eV.

rp =
∑N

i (Xi − X̄ )(Yi − Ȳ )√∑N
i (Xi − X̄ )2

√∑N
i (Yi − Ȳ )2

(3.10)

rs =
∑N

i (R(Xi )− R̄X )(R(Yi )− R̄Y )√∑N
i (R(Xi )− R̄X )2

√∑N
i (R(Yi )− R̄Y )2

(3.11)

where rp is called the Pearson correlation coefficient and rs the Spearman rank correla-

tion coefficient. R(· · ·) denotes the use of the ranking instead of the actual value and R̄X =(∑N
i R(Xi )

)
/N . As their names suggest, they measure how much the inputs and output are

correlated, in other words, how much inputs and output vary together in comparison to the

degree they vary independently. Plotted in Fig.3.25, the large coefficient values from energy

groups 4 to 8 imply high correlations, which have been observed in the scatter plots of Fig.3.24.

The correlation coefficient is different from sensitivity coefficient however, in that the former

is a global analysis of all inputs simultaneously and statistically, and the latter is based on the

local observation, made one-at-a-time. The good agreement between the results of Pearson

and Spearman correlation coefficients implies linear relation between keff and nuclear data.

In this case, sensitivity coefficient of linear system is a constant ratio of ∆k/∆α. In fact, when

the Pearson correlation coefficient is squared, Eqn.(3.12) can estimate the shared variance

58



3.5. Sensitivity analysis with NUSS-SRS

Figure 3.25: Pearson and Spearman correlation coefficient results for 239Pu(ν̄) in Jezebel
benchmark.

between keff and nuclear data:

r 2
p =

 ∑N
i (Xi − X̄ )(Yi − Ȳ )√∑N

i (Xi − X̄ )2
√∑N

i (Yi − Ȳ )2


2

=
(

COV(X ,Y )p
VAR(X)

p
VAR(Y)

)2

≈ a2 ·VAR(X )

VAR(Y )
(3.12)

The numerator of Eqn.(3.12) is analogous to the quantity calculated by the Sandwich Rule:

S2
α ·VAR(α), except a is a statistical parameter derived from the set of samples. The detailed

derivation is given in Appendix A7.

By substituting (ksamp/kref−1) as Yi and (p −1) as Xi , the keff variance fraction due to 239Pu(ν̄)

in Jezebel is estimated and shown in Fig.3.26. It can be seen that energy group 8 is responsible

for more than 80% of the total keff variance contribution, even though the corresponding

sensitivity coefficient as shown in Fig.3.3 is only at the 4th place. In addition, the approach

of correlation coefficient has no problem of handling inputs correlations. The similar values

of r 2
p (and r 2

s ) for groups 3 to 7, groups 9 to 11 and groups 13 to 20 indicate exactly that these

inputs are similar to each other in terms of their variance contributions to keff variance.

In nuclear data uncertainty quantification, sensitivity coefficient has long been used to iden-

tify important inputs, in terms of the perturbation in keff due to perturbation in the inputs.

To extract the equivalent sensitivity information however is not straight-forward as shown

here for the sampling-based NUSS-SRS tool, due to the fact that inputs have been sampled

simultaneously in accordance with their correlations. An attempt to identify important input

is taken by calculating the variance contribution instead of the sensitivity coefficient which is

a local parameter. The linear relationship between nuclear data and keff allows the estimation

of variance fraction by the squared value of Spearman or Pearson correlation coefficients,

which can be calculated using the existing results from simple random sampling. Even though

the use of squared value of correlation coefficient is shown to be efficient, without additional
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Figure 3.26: The squared of Pearson rp and Spearman rs correlation coefficients give estimate
of how much the total variance is contributed by each input if the output is linearly dependent
on the inputs.

computational effort after simple random sampling calculations, it should be emphasized

that sensitivity coefficient and variance fraction should not be compared directly. Other-

wise, inconsistent conclusions are drawn for the identification of influential inputs. Further

theoretical development of a sampling-based sensitivity analysis will be shown in Chapter 4.

3.6 UAM Pincell application by NUSS-SRS

Standard reactor core calculations are performed based on few-group homogenized cross

sections which typically have been prepared a priori with a lattice transport code. At the

nuclear fuel pin cell level, calculations for the homogenization and condensation of cross

sections represent a basic component of the multiscale process leading to reactor core-level

computations. Quantifying uncertainties from indispensable nuclear data inputs at the pin

cell level provides a quantitative measure of the nuclear data uncertainty contributions in

later stages of neutronics calculations.

With the accurate continuous-energy MCNPX and pointwise/continuous energy nuclear data,

NUSS has been applied to quantify nuclear data uncertainty for four pin cell benchmarks

which belong to the “OECD/NEA Uncertainty Analysis in Modelling (UAM) Light Water Reactor

Benchmark” [61]. Some of the important benchmark parameters are listed in Table 3.3 with

the computed kinf by MCNPX.

For these four cases, nuclear data uncertainties of the major fuel components 235U and
238U are from the SCALE6-44g covariance library and ENDF/B-VII.1[62]. The latter has been

prepared in the same 44-group energy structure as SCALE6-44g. NUSS-SRS is applied to

calculate the top kinf uncertainty contributors and their combined contributions and the

results are shown in Figures 3.27 and 3.28. The cases in which 235U and 238U nuclear data are

perturbed simultaneously are labeled as “235U 238U”. An additional set of calculations was
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Cases Fuel
Temp.

Mod.
Temp.

kinf(σMC in
pcm)

Fuel En-
richment

Pitch

1.PB-2 HZP 552.8K 552.8K 1.33916(33)
2.93% 18.75mm

2.PB-2 HFP 900K 557K,
40% void

1.22231(36)

3.TMI-1 HZP 551K 551K 1.42358(36)
4.85% 14.427mm

4.TMI-1 HFP 900K 562K 1.40586(36)

Table 3.3: Pin cell specifications and MCNPX-computed kinf with statistical uncertainty in
brackets, using ENDF/B-VII.1 nuclear data evaluation. PB-2 and TMI-1 are Peach Bottom-2
BWR and Three Mile Island-1 PWR. HZP and HFP are the hot zero power and hot full power
conditions.

performed by perturbing also the structural materials consisting of hydrogen, oxygen and

zirconium (labeled as “U & S.M.”). Their nuclear data uncertainties are found to contribute

insignificantly to the kinf uncertainty.

Figure 3.27: NUSS calculation of kinf sample standard deviation (with 130 samples) for PB-2 a)
hot zero power and b) hot full power pincell benchmarks.

It has also been found that the largest discrepancy between SCALE6-44g and ENDF/B-VII.1

belongs to the 235U(ν̄) contribution. It clearly influences the combined uncertainty contri-

butions, which are very different depending on the covariance library used. The different

evaluations of 235U(ν̄) in various covariance libraries are shown in Figure 3.29. In SCALE6-44g,
235U(ν̄) uncertainty is taken from JENDL-3.3 library. Along with JENDL 4.0, the JENDL-based
235U(ν̄) uncertainty is underestimated in comparison to ENDF/B-VII.1 (same as JEFF3.1.1

and JEFF3.1.2.) The ENDF/B-VII.1 evaluation gives the highest uncertainty evaluation at

0.7%, approximately double of those given by JENDL-3.3 and JENDL-4.0. Consequently, the

uncertainty contributions from 235U(ν̄) uncertainty are dominating in the case of ENDF/B-

VII.1 covariances and are also about twice as the ones calculated by the use of JENDL-3.3 (in

SCALE6) covariances.
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Figure 3.28: NUSS calculation of kinf sample standard deviation (with 130 samples) for TMI-1
a) hot zero power and b) hot full power pincell benchmarks.

Figure 3.29: Relative standard deviation of 235U(ν̄) nuclear data from SCALE6-44g (taken
from JENDL-3.3) and ENDF/B-VII.1 libraries. The ENDF/B-VII.1 uncertainty is twice as much
as the SCALE6-44g, resulting in higher kinf uncertainty due to 235U(ν̄) for the UAM pin cell
benchmarks.

With stochastic sampling, the propagation of nuclear data uncertainties to system response

parameter other than the multiplication factor (keff , kinf) can be easily investigated. One-

group reaction rate(R) and flux (φ) have been tallied in MCNPX and used to determine the

one-group fission and absorption cross sections (Σ), as well as the associated one-group

uncertainties due to nuclear data uncertainties:

Σg = Rg

φg
, Σ̄g = 1

N

N∑
i=i
Σg ,i and VAR(Σg ) = 1

N −1

N∑
i=1

(
Σg ,i − Σ̄g

)2
. (3.13)

235U and 238U cross sections are perturbed simultaneously and their uncertainties are propa-

gated through MCNPX. Table 3.4 shows the one-group cross sections and relative standard

deviations (with a sample size of 130). Their values are compared to the corresponding results

obtained from CASMO-5MX stochastic sampling calculations published in [44].

62



3.7. UACSA application by NUSS-SRS

NUSS CASMO-5MX/SS
PB-2 HZP Value relstd (%) Value relstd (%)

235U Σ f 49.70 0.924 49.69 1.020
235U Σa 60.50 0.810 60.47 1.010
238U Σ f 0.0934 3.740 0.0939 3.760
238U Σa 0.923 1.190 0.915 1.090

PB-2 HFP Value relstd (%) Value relstd (%)
235U Σ f 33.10 1.12 32.8 1.23
235U Σa 41.09 0.96 40.72 1.23
238U Σ f 0.086 4.80 0.088 4.55
238U Σa 0.86 1.37 0.85 1.10

TMI-1 HZP Value relstd (%) Value relstd (%)
235U Σ f 35.20 0.93 35.28 1.05
235U Σa 43.49 0.82 43.57 1.05
238U Σ f 0.101 3.49 0.101 3.59
238U Σa 0.919 1.19 0.911 1.10

TMI-2 HFP Value relstd (%) Value relstd (%)
235U Σ f 34.40 0.98 34.31 1.07
235U Σa 42.56 0.85 42.44 1.06
238U Σ f 0.100 3.95 0.101 3.62
238U Σa 0.941 1.27 0.934 1.11

Table 3.4: One-group cross sections with relative standard deviations (relstd) are calculated
from multigroup reaction rates and fluxes which are perturbed due to nuclear data uncertainty
in NUSS. Note that absorption cross section (Σa) here includes fission cross section (Σ f ).

3.7 UACSA application by NUSS-SRS

In modern criticality safety assessment (CSA) studies, the use of a specific computer mod-

elling code and nuclear data library is validated against suitable experimental evidence. Un-

certainties from sources such as nuclear data however can permeate throughout criticality

calculations, and contribute to the discrepancy between calculated and experimental values.

The OECD/NEA/WPNCS Expert Group on Uncertainty Analyses for Criticality Safety Assess-

ment (UACSA) has been organized for the exact purpose to compare different CSA validation

methods (see Fig.3.30). Specifically, UACSA-Phase I focuses on the propagation of nuclear

data uncertainty [63]. Technological parameter uncertainties are considered in UACSA-Phase

II and implicit sensitivity coefficient effects in UACSA-Phase III.

PSI’s participation in UACSA-Phase 1 is an application of the existing PSI CSA methodology,

based on a “validation suite” of 149 benchmarks which were selected from the ICSBEP hand-

book with certain criteria [64]. They are representative of Swiss Light Water Reactor (LWR)

spent fuel configurations in terms of fuel enrichment, moderation ratio, fuel rod pitch size

and spectrum-related observables such as the average neutron energy causing fission, average

neutron lethargy causing fission, etc. The coverage of the selected parameters is associated
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Figure 3.30: Summary of participants, criticality codes, nuclear data, criticality validation
methods, and software tools in UACSA-Phase I.

to the so-called Area of Applicability (AoA). According to the ANSI/ANS-9.1-1998 Standard

for Nuclear Criticality Safety in Operation with Fissionable Materials Outside Reactors, AoA is

defined as [65]:

The limiting ranges of material compositions, geometric arrangements, neutron

energy spectra, and other relevant parameters (such as heterogeneity, leakage,

interaction, absorption, etc.,) within which the bias of a calculational method is

established.

For each of the 149 benchmarks, MCNPX is used to compute the keff (denoted as kcal
n for
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n = 1, · · · ,149). The keff value difference to the respective experimental keff (denoted as kbench
n )

is the computational bias βn . Over the 149 cases, a weighted average of computational bias

〈βc〉 is determined as:

〈βc〉 =
∑N

n=1 wnβn∑N
n=1 wn

where βn = kcal
n −kbench

n and wn = 1

σ2
n

(3.14)

The individual uncertainty of parameter βn is determined by

σn =
√(

σbench
)2

n + (
σcal

)2
n (3.15)

where σbench is the benchmark uncertainty reported in the ICSBEP Handbook and σcal is the

MCNPX statistical uncertainty which can be reduced by the user-defined neutron history

size (about 20 pcm in all calculations presented here). As σcal <<σbench, experiments with a

smaller σbench are considered more important, hence are given more “weight” to the calcula-

tion of 〈βc〉. Calculated by MCNPX with nuclear data libraries JEFF-3.1 and ENDF/B-VII.0, the

distribution and values of βn are shown in Fig.3.31.

Figure 3.31: The values of kcal −kbench are shown in histograms and by benchmark cases.

The spread of the individual βn is quantified by Eqn.(3.16). Together with 〈βc〉, their values

are shown in Table 3.5. The computational bias is positive in the case of ENDF/B-VII.0 and

much less than that of JEFF-3.1, suggesting the improvement of nuclear data quality leading to

smaller individual computational biases. On the other hand, the change of library affects only

slightly the value of s, which indicates the dispersion of βn is contributed more by benchmark

experimental and modelling uncertainties than nuclear data uncertainty.

s =
[

1
N−3

∑N
n=1 wn · (βn −〈βc〉

)2

1
N

∑N
n=1 wn

]1/2

(3.16)
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Library 〈βc〉 s
JEFF-3.1 -97 pcm 348 pcm

ENDF/B-VII.0 +9 pcm 325 pcm

Table 3.5: Change of nuclear data libraries affect computational bias βc but the spread of
individual bias (s) is less affected.

Next, the UACSA-Phase 1 exercise requested participants to apply their methodologies to

predict the value of keff for an application case. The predicted keff is estimated by adjusting

the calculated keff with the computational bias:

kpred
app = kcal

app −βc (3.17)

One of the suggested application cases is the LCT-040-010 benchmark from the ICSBEP

Handbook. Fig.3.32 shows that four 18×18 rod assemblies of uranium dioxide are contained

in borated square canister; they are water-moderated and reflected by A33-type steel. The

UO2 fuel rods have an enrichment of 4.738% by weight and the cladding of aluminum alloy

AGS. The configuration approximates the physical condition of shipping casks and high-

density fuel-assembly storage [47]. The experiment was conducted at CEA in the late 1970s,

via a subcriticality approach extrapolated to criticality. Hence it serves as an application,

even though its experimental keff and uncertainty are known already. With JEFF-3.1 and

ENDF/B-VII.0 nuclear data, the MCNPX-calculated keff values and statistical uncertainties of

the LCT-040-010 benchmark are presented in Table 3.6. The difference between the calculated

and the actual (experimental) keff is defined as the observed bias; it is on the same order of

magnitude as the experimental keff uncertainty (∆kbench).

Figure 3.32: The bird view and vertical cross section view of the “LCT-040-010” experiment
apparatus.

Focusing on the case of ENDF/B-VII.0 library, the predicted keff (see Eqn.(3.17)) and calculated

keff are compared in Fig.3.33. PSI results are plotted as “Participant 1” and the difference
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3.7. UACSA application by NUSS-SRS

kbench ∆kbench library kmcnpx βobs

1.00000 460 pcm
JEFF-3.1 0.99500 ± 20pcm -500 pcm

ENDF/B-VII.0 0.99428 ± 17pcm -572 pcm

Table 3.6: ∆kbench is the benchmark experimental keff uncertainty. The observed bias is
βobs = kmcnpx −kbench.

Figure 3.33: PSI results are plotted under “Participant 1”. The predicted k is calculated from
Eqn.(3.17). The ∆kpred value is given by s from Eqn(3.16).

between kpred and kcal is the value of 〈βc〉, equal to 9 pcm as shown in Table 3.5. Results of

other participants of UACSA-1 using LCT-040-010 benchmark are also plotted. All kcal values

are outside the experimental uncertainty of the critical kexp value, except for Participant 4

(from JAEA). Note that in the orignal PSI contribution to UACSA-1 and in [66], application case

experimental uncertainty and MCNPX statistical uncertainty are included in the ∆kpred as√
s2 +σ2

spec +σ2
MC . Here ∆kpred only contains s and benchmark uncertainty (σspec) is given

separately.

As a further assessment for the application case bias uncertainty quantification, NUSS-SRS has

been applied to compute the uncertainty of the observed bias due to nuclear data uncertainties

(denoted as ∆ND). The uncertainties of 235U and 238U are taken from the SCALE-6 covariance

library4 and propagated by NUSS (with ENDF/B-VII.0 ACE files) for the calculated keff . The

total uncertainty contribution from both 235U and 238U is found to be 562 pcm (95% confidence

interval at [491pcm, 657pcm]). This is greater than the experimental uncertainty of 460pcm

(∆kbench in Table 3.6), which suggests the uncertainty values of 235U and 235U could be over-

estimated. Top uncertainty contributors are obtained by running NUSS-SRS independently

for each isotope-reaction. The results are plotted in Fig.3.34 and compared with the TSUNAMI

4The covariances of 235U and 235U in SCALE6-44g library are taken from ENDF/B-VII.0 covariances
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results which were reported in [67]. They have used TSUNAMI-3D with ENDF/B-VI nuclear

data and SCALE5-44g covariance library.

Figure 3.34: Top uncertainty contributors for LCT-040-010 benchmark are calculated by
NUSS. From 93 samples and at 95% confidence interval, they are in good agreement with the
TSUNAMI results reported at OECD/NEA WPNCS EG UACSA 2nd meeting, 2008.

Figure 3.35: Predicted bias 〈βc〉 and uncertainty s by Eqn.(3.14) and Eqn.(3.16) are plotted
under “Participant 1”. Nuclear data uncertainty (235U and 238U from SCALE6-44g library)
contribution component of the observed bias uncertainty is shown.

Finally, both the predicted and observed biases with respective uncertainties are plotted

in Fig.3.35, where participant 1 corresponds to PSI results. Recall the predicted bias and

uncertainty are results of the chosen computational method (i.e. the use of MCNPX and

ENDF/B-VII.0 nuclear data library for PSI), but they have not considered nuclear data uncer-

tainties in Eqn.(3.14) and (3.16). Currently, the lower limit of the predicted bias uncertainty (i.e.

predicted bias - s) does not cover the observed bias of -572pcm for the application case, which

is also observed in other participants’ results (except for participant 4). It is again reminded
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3.7. UACSA application by NUSS-SRS

that for this application case, the experimental uncertainty is in fact known (460pcm) which

could explain the relatively large observed bias. However, for future CSE applications which

are without experimental value and uncertainties, the quantification of nuclear data uncer-

tainty becomes imperative and will be accomplished by NUSS-SRS in future works: the values

of computational bias and s of the current PSI CSE methodology are updated by including

nuclear data uncertainties into Eqn.(3.15) for each of the validation suite benchmarks:

σn =
√(

σbench
)2

n + (
σcal

)2
n + (

σND
)2

n (3.18)

Chapter’s key message

The focus of this chapter was to demonstrate the proof-of-concept of the NUSS-SRS tool for

the propagation of nuclear data uncertainties through MCNPX. It has been shown that for

problems of various complexity (from simple spherical assembly, pin cell model to fuel-rod

assembly), NUSS-SRS was successful at obtaining the same keff uncertainty due to nuclear data

uncertainties as the other existing methods such as TSUNAMI, PERT CARD. The verification of

the implementation of NUSS-SRS lays the foundation for the development of global sensitivity

analysis in the sampling manner in the next chapter.
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4 Introducing variance-based global
sensitivity analysis

In Chapter 3, the stochastic-sampling based NUSS tool has been compared and verified with

both the “Sandwich Rule” and existing stochastic-sampling methods. This chapter begins

with the motivation for developing in NUSS the capability to conduct sensitivity analysis,

followed by the theory and methods of the FAST and RBD methods. The derivation of variance

decomposition by the local-based “Sandwich Rule” method is also given so that it shall provide

verification and comparison for NUSS in Chapter 5.

4.1 Motivation for global sensitivity analysis

Sensitivity analysis is needed when in addition to the total propagated uncertainty, the knowl-

edge of the proportions of top input uncertainty contributors is desired. For the nuclear data

measurement community, identifying important inputs assists in the prioritization of more

accurate and precise experiments, such that on the reduction in their uncertainty level can

lead to significant reduction of uncertainty in nuclear system calculations. NUSS is a “global”

approach, where the nuclear data input variations depend on assumed probability density

functions. This global approach works for a wide range of applications regardless of the linear-

ity of the system. However, it becomes inefficient when in addition to the total uncertainty

contribution, individual nuclear data uncertainty contribution is desired. For every case of

comparison between NUSS and another method in Chapter 3, each isotope-reaction uncer-

tainty quantification is done independently, by running hundreds of MCNPX calculations.

Given the abundance of nuclear data inputs in terms of energy groups, reaction channels and

many isotopes, the number of inputs renders the task of obtaining the uncertainty contribu-

tion of individual nuclear data by the simple random sampling-based NUSS to be inefficient.

Using NUSS-SRS to determine the list of top uncertainty contributors without a priori knowl-

edge of the ranking of their contribution, becomes especially computation-prohibitive for

complex systems.

The problems of large input set and complex system simulation are certainly not unique

to nuclear data uncertainty quantifications. These problems have been tackled by global
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Chapter 4. Introducing variance-based global sensitivity analysis

sensitivity analysis for diverse applications such as chemical reaction rate[68], nuclear waste

depository [69] and hydrology studies [70]. Existing methods previously developed for other

applications are adopted in the second stage of NUSS tool development to expand NUSS’s

capability to derive individual nuclear data uncertainty contributions. The flexibility as a

global-based method and the advantage of working with ACE-formatted nuclear data in

continuous-energy code MCNPX can also be maintained.

Presented in Chapter 3.5, a method based on the squared value of Pearson/Spearman correla-

tion coefficient was shown to be able to apportion individual input variance contributions,

using the existing randomly sampled results. The limitation however is the requirement of

linear relation between input and output. A more general theory of variance analysis is in

demand, both to validate the aforementioned simplistic approach and to anticipate problems

of non-linear nature.

4.2 Variance decomposition by global sensitivity analysis

The sensitivity of the system to inputs is measured by the variance contribution due to in-

dividual inputs. The rational is, an important input to which the output is very sensitive,

is responsible for a large portion of the output variance. It is not to be confused with the

sensitivity coefficient of the Sandwich Rule, which describes only the linear relation between

the system response and input, and is not affected by the input uncertainties.

For a single variable function f (x) with p(x) as the probability density function (PDF) of x, the

expectation and variance of f (x) are respectively:

E [ f (x)] =
∫

f (x)p(x)d x

V [ f (x)] =
∫

f 2(x)p(x)d x −
(∫

f (x)p(x)d x

)2

When a model has multiple inputs, f (~x) = f (x1, · · · , xn), the joint PDF of inputs can be ex-

pressed as

p(~x) =
{

p(x1, · · · , xn) for correlated inputs

p̂(x1)p̂(x2) · · · p̂(xn) for uncorrelated inputs
(4.1)

where p̂(xi ) is called the marginal probability density distribution.

Hence, the expectation and variance of a multidimensional function f (~x) are

E f = E [ f (~x)] =
∫

f (~x)p(~x)d~x (4.2)

V f =V [ f (~x)] =
(∫

f 2(~x)p(~x)d~x

)
− (

E [ f (~x)]
)2 (4.3)
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4.2. Variance decomposition by global sensitivity analysis

The derivation of the input variance contribution is demonstrated through a two-input func-

tion f (s, t ) in Fig.4.1, where the sampled values of f (s, t ) are plotted against the variation of

input s along the x-axis. The dependence on input t manifests as the dispersed sampled values

along the y-axis. The red curve corresponds to the conditional expectation of f when s is

fixed (i.e. “conditioned”) at various values (s′) acccording to p̂(s). The conditional probability

density at each fixed s′ is:

p̃t = p(s, t |s′) =


p(s,t )
p̂(s) if s and t are correlated

p̂(s)p̂(t )
p̂(s) = p̂(t ) if s and t are uncorrelated

(4.4)

Figure 4.1: Illustration of the formulation of the variance of f due to input s uncertainty.

The variance of the conditional expectation E [ f (s, t |s′)], i.e. the variance of the values along

the red curve in Fig.4.1 is calculated as:

V [E [ f (s, t |s′)]]

=
∫ (

E [ f (s, t |s′)]
)2 p̂(s′)d s′−

(∫
E [ f (s, t |s′)]p̂(s′)d s′

)2

(4.5)

=
∫ (∫

f (s, t |s′)p̃t d t

)2

p̂(s′)d s′−
(∫ (∫

f (s, t |s′)p̃t d t

)
p̂(s′)d s′

)2

=
∫ (∫

f (s, t |s′)p̃t d t

)2

p̂(s′)d s′−
(∫

f (s, t |s′)p(s′, t )d s′d t

)2

using Eqn.(4.1)

=
∫ (∫

f (s, t |s′)p̃t d t

)2

p̂(s′)d s′− (
E [ f ]

)2 (4.6)

Eqn.(4.6) is the analytical formula for the variance of conditioned input variable s which could
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Chapter 4. Introducing variance-based global sensitivity analysis

be computed numerically by evaluating the double-integrals in the brute-force manner: the

total number of f evaluation is equal to Ns ×Nt +Nst where Ns is the sampling points from

p̂(s), Nt from p̃t , and Nst from the joint PDF p(s, t) for E [ f ]. Even if using only 100 samples

for each of Ns , Nt and Nst , the number of total sample runs to determine the variance contri-

bution of each input can become prohibitive. Clearly, brute-force method is better reserved

for problems with small input dimensions, which often are the opposite for nuclear data

uncertainty quantification problems. The alternative approach is explained in the following

sections.

4.3 Theory of FAST for uncorrelated inputs

The Fourier Amplitude Sensitivity Test (FAST) method was proposed by Cukier et.al. [68], aim-

ing to apportion the total output variance by individual input parameters. The fundamantal

idea is to simultaneously vary all input variables~x by a single control parameter s. Instead of

sampling randomly to compute the double integrals of Eqn.(4.6) as in the case of "blackbox"

simple random sampling, a transformation of the K inputs xi of the model f (~x) is shown in

Eqn.(4.7) where the individual xi is dependent on frequency ωi and a control parameter s:

xi = 1

2
+ 1

π
arcsin(sin(ωi s)) where −π≤ s ≤π, and i = 1,2, · · · ,K (4.7)

According to the Weyl Theorem [71], it is true that,∫
ΩK

( f (~x))md~x = lim
T→∞

1

2T

∫ T

−T

(
f (~x(s))

)m d s where m = 1,2,3, · · · (4.8)

given (x1(s), x2(s), · · ·xK (s)) is a well-designed exploring curve which can get arbitrarily close

to any point~x in the K -dimensional input spaceΩK (so-called "space-filling") as the path of

integration from s =−∞ to ∞. Since numerical integration between −∞ to +∞ is impossible,

integer frequencies ωi are used such that the integration can be done on a closed loop of

period T = 2π, instead of the asymptotically space-filling curve. With an examplary 3-input

case, ~x = {x1, x2, x3}, Fig.4.2 shows the transformed values of x1, x2 and x3, controlled by a

single s through Eqn.(4.7) with different ω values associated with each x. The trajectory of

(x1(s), x2(s), x3(s)) is plotted in Fig.4.3 which is periodic between (0,0,0) and (1,1,1) because of

the use of integer ω values.

Next, the value of m in Eq.(4.8) is set to 1 and 2 :∫
ΩK

f (~x)d~x ≈ 1

2π

∫ π

−π
f (s)d s (4.9)∫

ΩK
f 2(~x)d~x ≈ 1

2π

∫ π

−π
f 2(s)d s (4.10)
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4.3. Theory of FAST for uncorrelated inputs

Figure 4.2: Periodic X values are generated simultaneously with ω and the control variable s.

Figure 4.3: As s varies, the same path shown here is traced periodically by input points in the
input space (x1, x2, x3) as a result of the individual periodic inputs in Fig.4.2.

which allows the evaluation of variance of f (~x) by the variance of f (s):

V [ f ] =
∫

f 2(~x)d~x −
(∫

f (~x)d~x

)2

≈ 1

2π

∫ π

−π
f 2(s)d s −

(
1

2π

∫ π

−π
f (s)d s

)2

(4.11)
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The purpose of parametrizing xi in Eqn.(4.7) is the effective retrieval of the frequency-dependence

associated to individual input xi when the model output f (s) is analyzed in terms of Fourier

series:

f (s) =
∞∑

ω=−∞
(Aω cos(ωs)+Bω sin(ωs)) = Ao +2

∞∑
ω=1

(Aω cos(ωs)+Bω sin(ωs)) (4.12)

Ao is the value of f (s) at s = 0 and f (s) is symmetric for real-valued f (~x) values. Substitut-

ing Eqn(4.12) into Eqn(4.11) gives the simple formulation of V [ f ] in terms of the Fourier

coefficients Aω and Bω:

V [ f ] =
∫

f 2(~x)d~x −
(∫

f (~x)d~x

)2

≈ 1

2π

∫ π

−π
| f (s)|2d s −

(
1

2π

∫ π

−π
f (s)d s

)2

=2
∞∑
ω=1

(A2
ω+B 2

ω) (see derivation in Appendix A8)

=2
∞∑
ω=1

Λω

where Λω = A2
ω+B 2

ω is called the power spectrum of f (s). The interpretation of the power

spectrum is that f (s) is a signal and each frequency contains a portion of the signal’s power.

Hence the larger the amplitude (i.e. portion) in certain frequency, the more important (i.e. the

output is sensitive to) the corresponding input is.

Since each ωi is associated to the original xi , the variance contribution from input xi (ωi , s)

can be determined by adding its harmonics (as selected by integer h) of the corresponding

frequency ωi as depicted in Fig.4.4:

Vi = 2
∞∑

h=1

(
A2

h×ωi
+B 2

h×ωi

)
(4.13)

Figure 4.4: Schematic of the power spectrum. The variance contribution of each input is equal
to the summation of the harmonics of the corresponding ωi components.
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Limitation of FAST in terms of input size

In Eqn.(4.13), when h ×ωi of Vi and h′×ω j of V j are multiples of each other, an “interference

in harmonics” occurs due to the use of integer frequency values. Continuing with the example

in Fig.4.2, the individual variance contributions are:

For x1 :ω1 = 1, V1 = 2(Λ1 +Λ2 +Λ3 +·· ·+Λ9 +·· ·+Λ13 +·· · )
x2 :ω2 = 9, V2 = 2(Λ9 +Λ18 +Λ27 +·· · )

x3 :ω2 = 13, V3 = 2(Λ13 +Λ26 +Λ39 +·· · )
Vtotal = 2

∑
i
Λi

In V1, there are conribution fromΛ9 andΛ13 which are the first harmonics of V2 and V3 power

spectra. Input x1 is said to be in interference with x2 at the 9th harmonic because V1 and V2

are no longer calculated from independent sets ofΛ values. Similarly, x1 and x3 interfere at

the 13th harmonic, x2 and x3 at the 9×13th harmonic.

The effect of interference can be seen in Fig.4.5 where the variance fractions of inputs (i.e.
Vi

Vtotal
) in an example model Y = X1 +X2 +X3 are calculated. The analytical solution of Vi /Vtotal

is equal to 1
3 for all three inputs. Calculated by FAST, the values of variance fraction, Vi /Vtotal

as a function of harmonics order are converged after harmonics order of 5 as shown in Fig.4.5.

However, for input x1, its V1/Vtotal value are observed to be augmented at the 9th and 13th

harmonics because of the contributions from X2 and X3 variances: 9×ω1 and 13×ω1 coincide

with 1×ω2 and 1×ω3. Hence, a maximum harmonics order of 8 should be set for this example

to limit interferences. In general, the modified version of Eqn.(4.13) below is used to consider

only up to the harmonics order M which is free of interference for a given set of N samples:

Vi = 2
h=M∑
h=1

Λh×ωi (4.14)

For models with a small number of inputs, harmonics interference can be minimized by choos-

ing frequencies which are far away from each other such that the summation of Eqn.(4.14) can

keep a high harmonics order M , before reaching the first interference. The trade-off is however

the minimum number of samples requird to avoid “aliasing” effect as shown in Fig.4.6. For the

reconstruction of the “true” (also unknown) signal with limited sample size, the minimum

sampling rate, known as the Nyquist rate, has to be twice the maximum frequency component

(i.e. M ×max(ωi )). According to [68][72] the minimum sample size is calculated as:

Nmin = 2×M ×max(ωi )+1 (4.15)

Previously, the ωi values are desired to be sparsely spaced from each other. Consequently

Nmin increases quickly as a function of the number of inputs, as shown in Fig.4.7. The choice

of frequency values to avoid harmonics interference and the dependence of Nmin on the
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Chapter 4. Introducing variance-based global sensitivity analysis

Figure 4.5: Interference of V2 and V3 in V1 due to the overlappingΛ9 andΛ13.

Figure 4.6: Aliasing occurs when the number of sample points is insufficient to reconstruct
the true signal. Instead, a lower-frequency signal is made.

max(ωi ) essentially limit the otherwise elegant FAST method from tackling problems of high

dimensionality. Unfortunate for FAST, there are often more than 30 nuclear data inputs to be

included to the uncertainty analysis.

4.4 RBD for correlated inputs

Random Balance Design (RBD) is based on the original (or sometimes called “classic”) FAST

method described above. First proposed by Tarantola [73] for uncorrelated inputs, the RBD

method has since been updated by Xu [74] to include correlations between inputs. Compared

to the classic FAST, the first two steps of the RBD algorithm in the following are able to eliminate

the dimensionality limitation:
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4.4. RBD for correlated inputs

Figure 4.7: The minimum number of samples as a function of the number of input parameters
according to Eqn.(4.15).

1. Instead of a unique frequency for each input, a common-frequency ωc is used to gener-

ate~xc =~x(ωc , s) where effectively,~x1 =~x2 =~x3 · · ·~xK and elements inside~xc follow the

standard normal distribution.

2. Create a matrix X̃ in which the row vectors~xi have elements from independent permu-

tations of the original vector~xc elements.

X̃ =


~x1

~x2
...

~xK

 (4.16)

Fig.4.8 depicts the randomly permuted vector elements (right column) from the original

~xc (left column). Note that the permutation does not alter the respective probability

density function of each vector ~xi . The order of permutation of each ~xi is recorded

and will be used in Step (6). A second matrix X̃s has to be created by “stretching” the

permuted and standard-normal distributed elements in~xi according to the actual given

values of mean and standard deviation of the corresponding nuclear data.

3. Correlations among the otherwise independent ~xi are imposed throught the Iman-

Conover’s method [75]: the desired correlation is approximated by a rank correlation

such that the desired correlation is attained not exactly, but asymptotically for large

sample sizes:

• Similar to the NUSS-SRS method, a Cholesky decomposition of the nuclear data
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Figure 4.8: Permutation of the x(s) values which are generated by the common frequency.

covariance matrix (V ) is performed and the lower triangular matrix (A) is applied

onto matrix X̃ :

T = A · X̃ +Mo (4.17)

with Mo = [~µ~µ~µ · · ·~µ] is of size [K ×N ] and~µ is the column vector containing the

mean values of the K inputs. Hence the row vectors of matrix T are correlated

according to V and elements in each row vector still preserve the normal distribu-

tion.

• The ranking of elements in each row of T is obtained and the elements in the

corresponding row of X̃s are re-ordered using the ranking information, such that

the rank correlation of X̃s is the same as T .

4. Same as in NUSS-SRS, perturbation factors are obtained as the ratio between the newly

sampled inputs (X̃s) and their nominal values (Mo). They are applied to modify the

ACE-formatted nuclear data.

5. MCNPX is run using these perturbed nuclear data to obtain output values ~Y = {y1, y2, · · · , yN }.

6. For each of the i th input, re-order {y1, y2, · · · , yN } according to the recorded orders in

Step (2), i.e. in the initial order of samples for the i th input before permutation.
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The aforementioned steps are illustrated in Fig.4.9 at the end of this chapter using a generic

two-input example model in [74]. At step 6a) and 6b), in order to recover the Fourier spectrum

information carried by the x(ωc , s) values prior to the random permutation, the output values

are re-arranged. Each re-ordering leads to a distinct power spectrumΛi . The total variance is

as the sum of amplitudes:

Vtotal = 2× ∑
ω=1

Λi
ω (4.18)

The total sum ofΛi
ω is always the same for any i . The partial variance due to i th input is esti-

mated by summing the amplitudes of the power spectrum at the multiples of the characteristic

frequency up to a user-defined harmonics order M :

Vi = 2×
M∑

h=1
Λi

h×ωc
(4.19)

4.5 Variance decomposition by Sandwich Rule

In Chapter 3.5, it has been shown that the computation of individual input variance contri-

bution can result in a different ranking of “important inputs” from that based on sensitivity

coefficients. Since sensitivity coefficient is the local rate of change of the output parameter

due to input variation, it is a property of the system. Its derivation is either based on the

assumption of a linear system or is limited to the consideration of input uncertainties around

the nominal local input (α) values and system response (R):

V (R) = SV ST = ∑
i=1

(
∂R

∂αi

)2

·VAR(αi )+ ∑
i=1

∑
j 6=i

(
∂R

∂αi

)(
∂R

∂α j

)
·COV(αi ,α j ) (4.20)

Without loss of generality, for a system of 3-input, the total system variance V (R) is:

V3−inp = S1σ
2
1S1 +2S1σ12S2 +S2σ

2
2S2 +2S2σ23S3 +S3σ

2
3S3 +2S1σ13S3 (4.21)

Next, the formulation for individual input variance contribution is derived intuitively. Suppose

the value of input α1 is known which changes the number of components in the total variance

calculation changes 9 terms to 4 terms as the dimension of the problem decreases from 3-input

to 2-input: S1σ
2
1S1 S1σ12S2 S1σ13S3

S2σ21S1 S2σ
2
2S2 S2σ23S3

S3σ31S1 S3σ32S2 S3σ
2
3S3

 2−input−−−−−→
(

S2σ
2
2S2 S2σ23S3

S3σ32S2 S3σ
2
3S3

)
(4.22)
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The sum of the bolded terms represents the reduction of total output variance if the value of

α1 becomes known. Intuitively, it shall correspond to the variance contribution of α1:

V1 =V3−input −V2−input = S1σ
2
1S1 +2S1σ12S2 +2S1σ13S3 (4.23)

Similarly,

V2 = S2σ
2
2S2 +2S1σ12S2 +2S2σ23S3 (4.24)

V3 = S3σ
2
3S3 +2S1σ13S3 +2S2σ23S3 (4.25)

The formula for individual variance contribution is therefore generalized as:

Vi = Siσ
2
i Si +2 · ∑

j 6=i
Siσi j S j (4.26)

The larger the amount of reduction, the more important input α1 is, as measured by its

variance contribution to the total variance. If inputs are uncorrelated, the individual input

variance is simply:

Vi = Siσ
2
i Si (4.27)

The comparison between local and global sensitivity analysis is essentially between Eqn.(4.26)

or Eqn.(4.27) with Eqn.(4.6).

Chapter’s key message

This chapter presented the FAST and RBD methods to answer the call for a sensitivity analysis

methodology in Chapter 4.1. While the simple random sampling or deterministic “Sandwich

Rule” methods can be found in many existing works as shown in Chapters 1.4 and 1.5, the

variance-decomposition theory of FAST and RBD is first-of-its-kind for the application of

nuclear data uncertainty quantification. In order to make consistent comparison between

the Sandwich Rule and the sampling-based approaches, Chapter 4.5 presented a heuristic

method to break up the deterministic Sandwich Rule formular into components associated to

individual inputs. The implementation and demonstration of the variance decomposition

capability in the upgraded NUSS-RF are given in the next chapter.
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Figure 4.9: Steps of the RBD method are illustrated through a 2-input model.
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5 Implementing NUSS-RF and its appli-
cations

This chapter first presents the implementation of FAST and Random Balance Design (RBD)

into the NUSS tool, as the complementary capability of sensitivity analysis for nuclear data.

Three mathematical test cases are analyzed for the verification and comparison between RBD

and the “Sandwich Rule”-based variance decomposition results. Applied to the Jezebel, Godiva

and UAM Pincell benchmarks, NUSS-RF examines nuclear data uncertainty contributions

depending on the various levels of correlations. Discrepancies between the global-based

NUSS-RF and local-based “Sandwich Rule” method are analyzed and discussed.

5.1 Introducing NUSS-RF

The expansion of NUSS-SRS to NUSS-RF is shown in Fig.5.1. The highlighted modules consti-

tute the sensitivity analysis capability of NUSS-RF. In Stage 2 of NUSS’s calculation scheme

where perturbation factors are prepared for the modification of ACE-formatted nuclear data,

random balance design (RBD) is available as the alternative sampling module to the simple

random sampling (SRS). Inside the MATLAB-scripted RBD module “random balance design
sampling”, the algorithm follows the steps given previously in Chapter 4.4 and outlined in

Fig.5.2. The following outputs are generated:

• Perturbation factors: as defined by Eqn.(2.14), they are groupwise factors to be applied

uniformly to the pointwise ACE-formatted nuclear data, in the same manner as in

NUSS-SRS by Eqn.(2.15).

• Re-ordering information: as illustrated by steps 6a) and 6b) in Fig.4.9, the MCNPX

sample output are re-ordered to recover the initial periodicity.

From Stage 3 to 5 of Fig.5.1, the same procedures are conducted to perturb ACE files for

repeated MCNPX calculations. The sensitvity analysis of MCNPX outputs is accomplished by

first re-ordering the MCNPX sample outputs and applying Fourier transform to them, followed

by the calculation of the components of the output power spectrum. To compute the result of
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Eqn.(4.19), the program “RBD_getSI.m” shown in Fig.5.3 is used.

Figure 5.1: Module “random balance design sampling” is selected instead of the “SHARKX
random sampling” to generate perturbation factors for the modification of ACE files. The
“ordering for output” information will be used to perform “sensitivity analysis
outputs” for the variance decomposition calculations.

5.2 Verification by analytical functions

MATLAB programs RBD_makeInp.m and RBD_getSI.m to accomplish RBD can be tested out-

side of the NUSS framework. Perturbation factors from RBD sampling can be generated

and applied to test functions to simulate the sampled values of the input parameters. In the

following, the verification of the MATLAB programs is presented through the comparison of

numerical results to analytical solutions of three test functions.
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5.2. Verification by analytical functions

Figure 5.2: MATLAB program “RBD_makeInp.m” generates groupwise perturbation factors by
random balance sampling on the covariance matrix. It also keeps track of the re-ordering of
inputs by the Iman-Conover method.

Figure 5.3: MATLAB program “RBD_getSI.m” computes the total and individual input vari-
ances, as well as the variance fraction denoted by “SI”. Appendix A9 has more details on the
use of Fourier transform in MATLAB.
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Test 1

A simple additive and linear model y is used:

y = x1 +x2 +x3 (5.1)

with the following correlation (C ) and covariance (M) matrix. The variances of individual

inputs are the values in the diagonal of matrix M .

C =

1 0 0

0 1 ρ

0 ρ 1

 and M =

σ
2
1 0 0

0 σ2
2 ρσ2σ3

0 ρσ2σ3 σ2
3

=

12 0 0

0 12 2ρ

0 2ρ 22


This model was studied in [76] which used a copula-based sampling approach to obtain the

variance fractions (also known as sensitivity indices in global sensitivity analysis [77]). Here

the same case is examined with the random balance design algorithm. Analytical solutions

of the total variance and variance decomposition are shown below (derivations in Appendix

A10):

V̂tot =σ2
1 +σ2

2 +σ2
3 +2ρσ2σ3 = 6+4ρ (5.2)

V̂1 =σ2
1 = 1 (5.3)

V̂2 =
(
σ2 +ρσ3

)2 = (1+2ρ)2 (5.4)

V̂3 =
(
σ3 +ρσ2

)2 = (2+ρ)2 (5.5)

On the other hand, according to the deterministic Sandwich Rule approach, the output

variance is calculated as:

σ2
y = SMST =

[
d y
d x1

d y
d x2

d y
d x3

]1 0 0

0 1 2ρ

0 2ρ 4




d y
d x1
d y
d x2
d y
d x3

 (5.6)

With d y
d x1

= d y
d x2

= d y
d x3

= 1 and Eqn.(4.26), the individual input variance contributions are:

V1 = 1 V2 = 1+2(2ρ) V3 = 4+2(2ρ) (5.7)

The total variance is:

Vtot = 1+1+2(2ρ)+4 = 6+4ρ (5.8)

Comparing analytical solutions V̂ ’s with the V ’s from Sandwich Rule, differences are observed

for the two correlated inputs x2 and x3:

V̂2 =V2 + (2ρ)2 and V̂3 =V3 + (1 ·ρ)2 (5.9)
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As a linear model, the Sandwich Rule method does not need to assume the truncation of

higher order terms of the model. Hence V̂tot and Vtot are the same. The extra term (2ρ)2 in V̂2

shall be interpreted as the contribution of x3 variance weighted by the correlation coefficient

ρ between x2 and x3. Similar explanation can be given for (1ρ)2 in V̂3. Only when ρ = 0, the

two formulations have the same result.

For various values of ρ between x2 and x3, and with sample sizes from 301 to 901, Fig. 5.4

shows the averaged variance fraction values for the three inputs. Except for the smallest

sample size of 301, the effectiveness of determining the correct ranking as well as the values of

individual input variance contributions is relatively stable for sample size above 901.

Figure 5.4: Variance fractions of x1,x2,x3 are calculated by RBD using a sample size of 301,
901, 1501 or 2101, each is repeated three times to obtain an average variance fraction value.
Harmonics order is set to be 20. Analytical solutions are labelled accordingly.

To confirm the accuracy of RBD, a large sample size of 9999 is used. As listed Table 5.1, the

averaged variance fraction values and their standard deviations are resulted from ten RBD

calculations, each of which used 9999 samples. The analytical and numerical results are

in good agreement. In coincidence, when ρ =−0.5, the value of V̂2 becomes zero from the

Eqn.(5.4) when 2ρ =−1.

For completeness of method comparison, the variance fractions are also estimated through

the squared value of the Pearson correlation coefficient (r 2
p ) which as shown in Chapter 3.5

works in the case of linear systems. Fig.5.5 shows that RBD and r 2
p , both are sampling-based

approaches have good agreement with the analytical values. On the other hand, it is known
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Correlation V1/Vtot V2/Vtot V3/Vtot

ρ=0
Analytical 0.167 0.167 0.669

RBD 0.168(6) 0.169(8) 0.665(3)

ρ=1
Analytical 0.1 0.9 0.9

RBD 0.103(3) 0.8958(4) 0.8958(4)

ρ=0.5
Analytical 0.126 0.502 0.784

RBD 0.123(6) 0.500(4) 0.779(2)

ρ=-1
Analytical 0.5 0.5 0.5

RBD 0.499(3) 0.499(4) 0.499(4)

ρ=-0.5
Analytical 0.251 0.000 0.564

RBD 0.254(8) 0.0038(9) 0.562(2)

Table 5.1: Analytical and numerical results of variance fraction for y = x1+x2+x3 are compared,
for different correlations between x2 and x3. The notation of 0.123(6) means 0.123 ± 0.006. In
RBD, ωc =1 and M=20 are used in Eqn.(4.19).

from Eqn.(5.9) that the Sandwich Rule-based approach gives different variance fraction results

when the correlations among inputs are non-zero.

Figure 5.5: RBD and the squared value of the Pearson correlation coefficient (r 2
p ) reproduce the

analytical variance fractions for the linear model y = x1 +x2 +x3 with various correlation (ρ23)
values. Negative variance fraction from local-based Sandwich Rule is due to large negative ρ23

values.
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Test 2

The second test model [76] has four inputs with interactions among themselves:

y = x1 · x3 +x2 · x4 (5.10)

where each input as a random variable has a normal distribution with the following mean and

standard deviation values (denoted as ∼ N (µ,σ)):

X1 ∼ N (0,4) X2 ∼ N (0,2) X3 ∼ N (250,20) X4 ∼ N (400,30) (5.11)

The covariance matrix of the inputs is given below, considering x1, x2 are correlated by 0.3, x3

and x4 by -0.3:

M =


σ2

1 σ12 0 0

σ21 σ2
2 0 0

0 0 σ2
3 σ34

0 0 σ43 σ2
4

=


42 4×2×0.3 0 0

2×4×0.3 22 0 0

0 0 202 20×30× (−0.3)

0 0 30×20× (−0.3) 302



From the point of view of the Sandwich Rule, the first-order sensitivity coefficients are:

S =
[
∂y
∂x1

∂y
∂x2

∂y
∂x3

∂y
∂x4

]
=

[
x3 x4 x1 x2

]
(5.12)

which is not a constant vector anymore. By using the mean value of each input, the sensitivity

coefficient vector at the “mean” point is:

S =
[
µ3 µ4 µ1 µ2

]
=

[
250 400 0 0

]
(5.13)

Consequently, the total variance of y is:

Vtot = SMST =µ2
3σ

2
1 +µ2

4σ
2
2 +µ2

1σ
2
3 +µ2

2σ
2
4 +2µ3σ12µ4 +2µ1σ34µ2 (5.14)

=µ2
3σ

2
1 +µ2

4σ
2
2 +2µ3σ12µ4 (5.15)

which is different from the analytical solution of total variance of y (given in [76]) due to the

truncation of the second-order terms in the Taylor expansion of y (see Appendix A11):

V̂tot =µ2
3σ

2
1 +µ2

4σ
2
2 +2µ3σ12µ4 +σ2

1σ
2
3 +σ2

2σ
2
4 +2σ12σ34 (5.16)

=Vtot +σ2
1σ

2
3 +σ2

2σ
2
4 +2σ12σ34 (5.17)
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The individual input variance contributions are [76],:

V̂1 =σ2
1

(
µ3 +µ4ρ12

σ2

σ1

)2

and V̂2 =σ2
2

(
µ4 +µ3ρ12

σ1

σ2

)2

(5.18)

V̂3 =σ2
3

(
µ1 +µ2ρ34

σ4

σ3

)2

= 0 and V̂4 =σ2
4

(
µ2 +µ1ρ34

σ3

σ4

)2

= 0 (5.19)

The zero values of V̂3 and V̂4 indicate that these two inputs have no variance contributions.

This can be visually confirmed by samples of the four inputs vs. the value of y are shown in

scatter plots in Fig.5.6. The bottom-left scatter plot shows that as the value of x3 varies, there

is equal probability for y to be above or below zero (due to µ1 = µ2 = 0). By Eqn.(4.6), the

variance of the conditional expectation of y for fixed x3, i.e. V3 is found to be zero. Similarly,

V4=0.

Figure 5.6: Scatter plots for the results from simple random sampling on inputs x1 to x4 for
model y = x1x3 +x2x4.

Shown in Table 5.2, RBD algorithm is able to obtain numerical results which are in good

agreement with the analytical solutions. Numerical calculations are performed by running

RBD ten times, each having N=9999 samples to obtain the mean and standard deviation values.

For V3/Vtot and V4/Vtot which should have zero values, the precision of RBD’s results is affected

by the statistical uncertainty of a finite sample size, as statistical uncertainty is considered the
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signal noise, occupying any frequencies in the power spectrum representation [78].

Correlation V1/Vtot V2/Vtot V3/Vtot V4/Vtot

ρ=0
Analytical 0.379 0.242 0 0

RBD 0.370(10) 0.240(6) 0.0025(9) 0.0024(5)

ρ12 = ρ34 = 0.3
Analytical 0.507 0.399 0 0

RBD 0.505(6) 0.403(8) 0.0043(9) 0.0037(9)

Table 5.2: Analytical and numerical results of input variance fractions for test function y =
x1x3 +x2x4. The use of notation, e.g. 0.370(10) implies 0.370 ± 0.010. In RBD, ωc =1 and M=20
are used in Eqn.(4.19).

Test 3

A popular test case commonly known as the G-function of Sobol’s is a non-linear and non-

monotonic model:

f =Πn
i=1gi (xi ) where gi (xi ) = |4xi −2|+ai

1+ai
(5.20)

where 0 ≤ xi ≤ 1 uniformly and ai ≥ 0. The analytical solutions of variances for uncorrelated

xi inputs are [74]:

Vi = 1

3(1+ai )2 and V =Πn
i=1(Vi +1)−1 (5.21)

In Fig.5.7, the non-linear and non-monotonic distribution of f values is shown for various

values of a. As a result, the variance fraction estimation by the squared value of Pearson/S-

pearman correlation coefficient (r 2) is unreliable in this case. Fig.5.8 shows the respective

results from RBD and r 2 as compared to the analytical solutions. With a sample size of 9999,

RBD is able to reproduce the analytical solutions.

Results in Tables 5.1, 5.2 and Fig.5.8 have served to validate the implemented RBD algorithm

for both linear and nonlinear, uncorrelated and correlated cases. In these test cases, the

number of samples is chosen to be large enough for the desired convergence (as indicated

by the standard deviations). In practise, it is impractical to use as a large sample size as here.

Quantification of statistical error due to finite sample size has not been considered in this

PhD thesis and remains as future work. In the following sections, NUSS-RF with the RBD

capability is applied for nuclear data uncertainty quantification applications, with the focus of

identifying the top uncertainty contributors.
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Figure 5.7: Scatter plots of the g-function model output y with respect to each input which is
associated with a distinct a constant.

Figure 5.8: The approach by the squared of Pearson/Spearman correlation coefficients (r 2
p ,r 2

s )
fails because of the non-linearity of the g-function, but RBD is able to reproduce the analytical
solutions. Sample size here is 99999.

5.3 Application for small correlation: Jezebel and Godiva

For the application of NUSS-RF for nuclear data uncertainty and sensitivity analysis, the

two bare metal spherical criticality assembly benchmarks, namely the 239Pu-fuelled Jezebel

and 235U-fuelled Godiva are used. Their fast neutron spectra can be recalled in Fig.3.17 in

Chapter 3.4. The isotope-reactions chosen for the demonstration of NUSS-RF capability

are 239Pu(n,f),239Pu(ν̄) in Jezebel and 235U(n,f), 235U(n,γ) in Godiva. Their uncertainties
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are taken from the SCALE6-44g covariance library and shown in Fig.5.9 to Fig.5.12, along

with the sensitivity coefficient (Sk ) profiles obtained by TSUNAMI. By default, Sk values in

TSUNAMI are in a 238-group structure. They are then collapsed into the 44-group structure

and combined with the SCALE6-44g covariance data for keff uncertainty calculation. In the

Sandwich Rule-based approach (i.e. local sensitivity analysis), individual input variance

contributions are determined by Eqn.(4.26) and Eqn.(4.27) for correlated and uncorrelated

cases respectively. In the global sensitivity analysis approach, NUSS-RF calculations are

performed using ENDF/B-VII.1 nuclear data in MCNPX for the calculation of keff values and

the same SCALE6-44g covariances for the nuclear data uncertainty propagation. A sample

size of 1001 is used.

Figure 5.9: Correlation matrix and relative standard deviations for 239Pu(n,f), given by the
SCALE6-44g covariance library in a 44 energy-group structure. Sensitivity coefficients are
obtained by TSUNAMI.

Here, not only the energy-integrated uncertainty contribution (i.e. total keff uncertainty) is

of interest, the energy-dependent individual uncertainty contribution is examined. As the

energy group structure consists of 44 groups, the total number of inputs is equal to 44. Two

scenarios are investigated in the following: the groupwise cross sections are assumed to be

uncorrelated first, followed by the consideration of correlations.

Scenario 1: Correlations are set to zero

Table 5.3 lists the keff uncertainty due to 239Pu in Jezebel and 235U in Godiva uncertainties,

assuming the energy-dependent correlations are zero. The good agreement in keff uncer-

tainty between NUSS-RF and the Sandwich Rule approach means the higher order effect (i.e.

O (∆2, · · ·) = k −ko −Sk∆α) which is omitted by the Sandwich Rule is negligible. It is on the

same order of magnitude as the statistical uncertainty.
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Figure 5.10: Correlation matrix and relative standard deviations for 239Pu(ν̄), given by the
SCALE6-44g covariance library in a 44 energy-group structure. Sensitivity coefficients are
obtained by TSUNAMI.

Figure 5.11: Correlation matrix and relative standard deviations for 235U(n,f), given by the
SCALE6-44g covariance library in a 44 energy-group structure. Sensitivity coefficients are
obtained by TSUNAMI.

Next, the total keff uncertainty is decomposed in terms of energy-dependent variance con-

tributions. In Fig.5.13 to Fig.5.16, the variance fraction results show distinctly the separated

groups of high and low-variance inputs. keff uncertainty mainly comes from uncertainties
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Figure 5.12: Correlation matrix and relative standard deviations for 235U(n,γ), given by the
SCALE6-44g covariance library in a 44 energy-group structure. Sensitivity coefficients are
obtained by TSUNAMI.

Case NUSS-RF SV ST

239Pu(n,f) 225 pcm 219 pcm
239Pu(ν̄) 601 pcm 591 pcm
235U(n,f) 124 pcm 119 pcm
235U(n,γ) 478 pcm 492 pcm

Table 5.3: Good agreement in keff uncertainty values calculated by sampling-based NUSS-RF
and first-order Sandwich Rule (SV ST ) methods, assuming uncorrelated nuclear data.

of cross sections in the fast energy range since both Jezebel and Godiva are fast-spectrum

systems. Below 104eV, sensitivity coefficients are zero, hence the corresponding variance

fractions obtained from Sandwich Rule are zero. In comparison, the fluctuations in vari-

ance fractions by NUSS-RF are due to statistical uncertainty of the sampling-based approach.

Also the propagation of MCNPX statistical uncertainty into variance decomposition is not

separated from nuclear data uncertainty contribution currently.

Estimation of Sensitivity Coefficients

Given the good agreement between NUSS-RF and Sandwich Rule methods, sensitivity coeffi-

cients can be derived from the variance fraction calculated by NUSS-RF. Since correlations are

assumed to be zero, Eqn.(4.27) can be rearranged:

Vi = Si var(αi )Si → |Si | =
√

Vi

var(αi )
(5.22)
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Figure 5.13: Variance fractions for uncorrelated inputs of 44-group 239Pu(n,f) and the total
uncertainties (σ) are similar by NUSS-RF and “Sandwich Rule” methods.

Figure 5.14: Variance fractions for uncorrelated inputs of 44-group 239Pu(ν̄) and the total
uncertainties (σ) are similar by NUSS-RF and “Sandwich Rule” methods.

where var(αi ) is the variance of individual input (i.e. variance of cross section α at energy

group i ).

In Fig.5.17 and Fig.5.18, sensitivity coefficient profiles has been estimated from NUSS-RF

sampling method and are compared to TSUNAMI-calculated Sk . The spikes in the NUSS-

RF-calculated sensitivity coefficients are due to the normalization by “unit per lethargy” (i.e.

divided by a small lethargy value). Eqn.(5.22) is also applicable for computing sensitivity

coefficients for any system output parameters if the corresponding input covariances and

input-output linearity exist. It should be kept in mind that linearity is the premise of first-order

sensitivity coefficient in the Sandwich Rule. Strictly speaking, |Si | is an averaged value of

∂k/∂αi . Also, the sign of the sensitivity coefficient from Eqn(5.22) cannot be determined as

illustrated by the 235U(n,γ) sensitivity estimation in Fig.5.18.
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Figure 5.15: Variance fractions for uncorrelated inputs of 44-group 235U(n,f) and the total
uncertainties (σ) are similar by NUSS-RF and “Sandwich Rule” methods.

Figure 5.16: Variance fractions for uncorrelated inputs of 44-group 235U(n,γ) and the total
uncertainties (σ) are similar by NUSS-RF and “Sandwich Rule” methods.

Scenario 2: Correlations are included

NUSS-RF sampling is performed with the original 239Pu(n,f), 239Pu(ν̄), 235U(n,f) and 235U(n,γ)

covariances. The total keff uncertainties are larger now as shown in Table 5.4 as compared to

Table 5.3. The variance fraction are also obtained with NUSS-RF and the Sandwich Rule (by

Eqn.(4.26)). They are still in good agreement due to the linearity of the systems. However, the

maximum variance fraction values (in %) listed in Table 5.4 reveal the two methods decompose

the total keff variance differently.

In Fig.5.19 to Fig.5.22, the variance fractions are normalized by the maximum variance fraction

values by the two methods respectively. The differences between NUSS-RF and Sandwich Rule

has to be due to the presence of correlations. In particular, the correlations in the fast energy

region of cross sections 235U(n,f) and 235U(n,γ) lead to a more pronounced “change of shape”
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Figure 5.17: Sensitivity coefficients are derived from NUSS-RF (Eqn.(5.22)) and compared to
TSUNAMI results.

Figure 5.18: Sensitivity coefficients are derived from NUSS-RF (Eqn.(5.22)) and compared to
TSUNAMI results.

Case NUSS-RF max VF SV ST max VF
239Pu(n,f) 352 pcm 0.423 352 pcm 0.254

239Pu(ν̄) 1243 pcm 0.839 1228 pcm 0.310
235U(n,f) 272 pcm 0.750 268 pcm 0.393
235U(n,γ) 851 pcm 0.941 862 pcm 0.719

Table 5.4: Good agreement in keff uncertainty values calculated by sampling-based NUSS-RF
and first-order Sandwich Rule (SV ST ) methods when cross sections are correlated. However,
the variance fraction distributions are different as seen by the maximum variance fraction
(VF) values.

of the variance fraction profile in Fig.5.21 and Fig.5.22. In comparison, the correlations for
239Pu(n,f) in the fast energy region are less than 0.3, hence the shape of the variance fraction
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plot has changed only slightly comparing Fig.5.19 and Fig.5.13, albeit the overall increase of

individual variance fractions as a result of the addition of covariance contributions.

Figure 5.19: Normalized variance fractions (Vi /σ2/max) for correlated inputs of 44-group
239Pu(n,f). Difference between NUSS-RF and Sandwich Rule methods increases with the level
of input correlations, but the total uncertainties (σ) by both methods are in good agreement.

Figure 5.20: Normalized variance fractions (Vi /σ2/max) for correlated inputs of 44-group
239Pu(ν̄). Difference between NUSS-RF and Sandwich Rule methods increases with the level
of input correlations, but the total uncertainties (σ) by both methods are in good agreement.

5.4 Application for large correlation: PB2-HZP

Moving from fast to thermal spectrum benchmarks, NUSS-RF is applied to the PB-2 hot zero

power pin-cell model from the UAM benchmarks. The specification of the pincell can be

found again in Table 3.3 in Chapter 3.6. When the SCALE6-44g covariance data are used, the

top uncertainty contributor has been found to be 238U(n,γ) by NUSS-SRS (see Fig.3.27 a).

Fig.5.23 shows the correlation matrix of 238U(n,γ) from SCALE6-44g covariance library, and

the sensitivity coefficient profiles from TSUNAMI.
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Figure 5.21: Normalized variance fractions (Vi /σ2/max) for correlated inputs of 44-group
235U(n,f). Difference between NUSS-RF and Sandwich Rule methods increases with the level
of input correlations, but the total uncertainties (σ) by both methods are in good agreement.

Figure 5.22: Normalized variance fractions (Vi /σ2/max) for correlated inputs of 44-group
235U(n,γ). Difference between NUSS-RF and Sandwich Rule methods increases with the level
of input correlations, but the total uncertainties (σ) by both methods are in good agreement.

In Fig.5.24, the variance fractions of uncorrelated inputs as calculated by NUSS-RF (1001

samples1) and Sandwich Rule methods are plotted. In the latter method, the 44-group sen-

sitivity coefficients have been calculated by MCNPX’s PERT CARD module instead of the

TSUNAMI-calculated sensitivity coefficients in order. A standard deviation σ of 168 pcm is

obtained from NUSS-RF sampling and it is in excellent agreement with the keff uncertainty of

167 pcm by the Sandwich Rule. It can also be seen that most of the variance contributions are

located at the resonance energy range between 10 eV and 104 eV, corresponding to the large

sensitivities in 238-group in Fig.5.23. In addition, around 0.1 eV there is noticeable uncertainty

contribution due to neutron flux thermalization.

1RBD algorithm requires an odd number of samples.
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Figure 5.23: SCALE6-44g correlation matrix for cross section 238U(n,γ) and sensitivity profiles
calculated by TSUNAMI.

Figure 5.24: Variance fractions for uncorrelated inputs of 44-group 238U(n,γ) show good
agreement between NUSS-RF and “Sandwich Rule”. keff samples by NUSS-RF exhibit Gaussian
(normal) shape and the total uncertainties (σ) by both methods are in good agreement.

In the case of correlated inputs, Fig.5.25 shows discrepancies in both the magnitude of variance

fractions and the energy groups which are responsible for the most uncertainties. Between

10−5 eV and 0.35 eV in the thermal energy range, inputs have similar variance fraction values

which is seen as the smooth blue curve. This is caused by the strong and long-ranged cor-

relations of 238U(n,γ) in the corresponding energy groups as shown in Fig.5.23. Intuitively,

random samples of highly correlated inputs (see the correlation matrix of 238U(n,γ) ) also have

high correlations, as visualized in the scatter plots in Fig.5.26. From sampling of the inputs
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Figure 5.25: Normalized variance fractions (Vi /σ2/max) for correlated inputs of 44-group
238U(n,γ). Difference between NUSS-RF and Sandwich Rule methods increases with the level
of input correlations. keff samples by NUSS-RF exhibit Gaussian (normal) shape and the total
uncertainties (σ) by both methods are in good agreement.

covariance matrix, the perturbation factors of the neighbouring energy groups can be seen to

vary linearly with the reference group which is set to correspond to the input with the maxi-

mum variance fraction. As a result, even though keff is in fact not sensitive to cross sections

below 10−2eV, scatter plots in Fig.5.27 show linear variations between keff and perturbation

factor in these groups.

Figure 5.26: High correlations in the thermal groups of 238U(n,γ) lead to their similar perturba-
tion factors prepared by random sampling.
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Figure 5.27: keff samples vary with perturbation factors in a similar manner in thermal groups
due to the similar variation of perturbation factors shown in Fig.5.26.

Chapter’s key message

The motivation for the development of NUSS-RF is to efficiently associate important nuclear

data with their high variance contribution in keff uncertainty. The capability to decompose

total keff variance into individual input variance contribution is based on Random Balance

Design, a global sensitivity method, as opposed to the conventional first-order “Sandwich

Rule” approach. It has been shown that, only in the case of uncorrelated inputs and linear

systems, Sandwich Rule results of input variance contributions are in agreement with the

those computed by the global-based NUSS-RF. In nuclear data uncertainty quantification

problems, the correlations among nuclear data (in energy groups, in reaction pairs etc.)

should not be neglected in order to quantify the total keff uncertainty correctly. The same

total keff uncertainty is decomposed differently into individual variance contributions by the

two methods. NUSS-RF has been verified through analytical equations. Therefore, the fact

that nuclear data are correlated compels the use of NUSS-RF instead of the Sandwich Rule for

the decomposition of total keff uncertainty due to nuclear data uncertainties into individual

contributions.
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6 Conclusion and future work

In this PhD work, a computational tool called NUSS (Nuclear data Uncertainty Stochastic

Sampling) has been developed to perform nuclear data uncertainty propagation and quantifi-

cation. As its name suggests, the concept of stochastic sampling (SS) has been implemented

in NUSS, as opposed to the conventional deterministic first-order moment propagation ap-

proach. Between the time of the PhD proposal in 2010 and the commencement of the PhD

project in 2011, several SS-based codes for nuclear data uncertainty quantification (NDUQ)

were conceived. While their works had certainly validated the idea of SS for NDUQ, they

had only investigated the same simple random sampling (SRS) scheme and could not be

easily applied to the need at PSI which is to include nuclear data uncertainty quantification

through Monte Carlo code MCNP/MCNPX for criticality safety assessment and burnup credit

validation applications. The goal of this PhD work therefore is to develop the computational

tool NUSS specifically for MCNPX and to extend the NDUQ capabilities beyond those of the

existing SS-based tools.

This final chapter of the thesis consists of a summary of previous chapters and reiterates the

scientific contributions of this PhD work. Unresolved issues are brought forward which shall

be considered as future works.

6.1 Chapterwise summary

Chapter 1 began with an overview of the on-going activities in the field of nuclear data un-

certainty quantification in which PSI had participated, namely the OECD/NEA/NSC/WPRS

Expert Group on Uncertainty Analysis in Modelling (UAM-LWR) and OECD/NEA/NSC/WPNCS

Expert Group on Uncertainty Analysis Criticality Safety Assessment (UACSA). The benchmarks

set up by these working parties have been used during the development of NUSS tool for

verification and validation purposes. Before the different methods to perform NDUQ were

surveyed, the formats of nuclear data and nuclear data uncertainties were presented. The key

point was to understand that nuclear data uncertainties originate from experimental mea-

surements and theoretical models. They can acquire correlations after propagating through a
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chain of formatting processes to become the multigroup nuclear data covariance matrices

to be used by NUSS. Reliable multigroup nuclear data covariances are required also in the

conventional NDUQ method based on the first-order moment propagation (commonly known

as “Sandwich Rule”) method. It combines nuclear data covariances with the sensitivity coeffi-

cients to determine the second moment of the linearized system response keff . Alternatively,

sampling-based methods were introduced with the emphasis on the types of nuclear data

formats they were compatible with. The variety of nuclear data formats considered by these

methods spans from experimental measurements and theoretical model parameters (i.e. TMC

method) to multigroup (i.e. XSUSA). With the understanding of nuclear data formats and

existing NDUQ methods, the motivation of implementing a sampling-based tool for MCNPX

was presented, along with specific areas to be researched in this PhD work.

Chapter 2 presented the implementation of the NUSS-SRS (i.e. with Simple Random Sampling

capability) tool, starting with an explanation of the continuous-energy Monte Carlo code

MCNPX and the pointwise-energy ACE format for nuclear data. Understanding the data

structure of ACE format was crucial for introducing random perturbations to the nuclear data

of interest. Equally important was the sum rules that specify which cross sections need to be

updated consistently upon the modification of certain partial cross sections. ACE formatted

data were generated by NJOY, the nuclear data processing code which has also been applied

mainly for the generation of multigroup nuclear data covariances in this PhD work. The first of

the five steps of NUSS-SRS workflow involved the preparation of multigroup covariances. The

assumption that nuclear data are multivariate normal must be laid out for the implementation

of random sampling method in NUSS and this assumption is shared by existing SS-based

codes which also use multigroup covariances. The sampling of multigroup covariance data

and the modification of the ACE-formatted data were accomplished by MATLAB and shell

scripts. The advantage of perturbing ACE files is the seamless interface between these ACE

files and MCNPX as long as the aforementioned sum rules are respected. Thanks to the well-

documented ACE format, NUSS implementation was relatively straight-forward. Nuclear

data (n, n), (n,n’), (n,2n), (n,fission),(n,γ), ν̄ and χ in ACE format can be perturbed and their

uncertainties propagated through MCNPX calculations. Finally NUSS analyzes the outputs of

MCNPX calculations in terms of the sample mean, sample variance and confidence interval

for the variance.

In Chapter 3, NUSS-SRS was evaluated against both the “Sandwich Rule” and other SS-based

approaches. First-order sensitivity coefficient (Sk ) has been generated by NUSS through

one-at-a-time perturbation on well-defined inputs instead of the usual random sampling

mode. Groupwise Sk of NUSS and MCNPX’s PERT CARD module were compared for the

same amount of perturbations in the cross section data. Due to Monte Carlo statistical errors,

NUSS direct perturbation of small magnitudes gives less precision on keff uncertainty as

expected. On the other hand, PERT CARD is implemented to handle small perturbations but

assumes unperturbed fission source distribution. NUSS-SRS was then compared to TSUNAMI

which is based on the first-order adjoint perturbation theory and the “Sandwich Rule” for

the determination of keff uncertainty due to nuclear data uncertainties (σ2
k = SkV ST

k ). The
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results of NUSS-SRS and TSUNAMI were in good agreement when the same covariance data

libraries were used. NUSS and TSUNAMI require multigroup covariance data, in contrast

to the SS-based TMC method. The comparison between TMC and NUSS-SRS showed the

propagation of nuclear data uncertainties at the levels of nuclear data model (in TMC) and of

ACE files (NUSS-SRS) were comparable with some exceptions due to possibly the questionable

quality of certain TENDL-2011 covariance data. Improvement of NUSS and TMC comparison

is obtained with TENDL-2014 covariances. Indeed the outcome of NUSS calculations depend

greatly on the quality of nuclear data covariances. For the considered benchmark cases

(Jezebel and Godiva), the group structure variation was also found to have relatively minor

impact on NUSS results. Finally, NUSS-SRS was applied to the UAM pincell and UACSA

benchmarks.

Chapter 4 was dedicated to the variance-based global sensitivity analysis. It was motivated by

the ineffectiveness of simple random sampling for sensitivity analysis, in terms of the decom-

position of total variance into individual input contributions. The FAST (Fourier Amplitude

Sensitivity Testing) is an elegant method to decompose variances. But its use was limited to a

small number of uncorrelated inputs. The RBD (Random Balance Design) method which is

built upon FAST has overcome the challenges of large number of inputs and the correlations

among them. As a promising method for NDUQ, RBD was chosen to be implemented in the

second part of NUSS, called NUSS-RF to calculate the variance contributions of correlated in-

puts. Unlike simple random sampling which has been implemented in other sampling-based

codes, RBD for NDUQ is first-of-its-kind. Variance decomposition according to the “Sandwich

Rule” formulation was also presented.

In Chapter 5, RBD was shown to be integrated into the NUSS tool, as an alternative option

from the simple random sampling (SRS) technique. The addition of RBD module did not

require retrofitting the NUSS tool in that perturbation factors from RBD could be generated

using only the covariance matrices and be applied to perform the modification of ACE files

in the same manner as the SRS option. Three mathematical benchmarks were used for both

the verification of RBD implementation and the comparison of RBD and local sensitivity

“Sandwich Rule” method. As the analytical solutions are known, they reveal that the global and

local-based approaches arrived at the same variance decomposition formulae when the inputs

were uncorrelated. In case of correlated inputs, the local “Sandwich Rule” approach gave lower

estimates of decomposed variance than the global approach. From the three mathematical

benchmarks, the implementation of RBD as part of NUSS was verified. It was then applied

to Jezebel, Godiva fast benchmarks and the UAM pincell benchmarks. Same observations

were made that NUSS-RF results were in good agreement with the conventional “Sandwich

Rule” method when the nuclear data inputs were uncorrelated. Before the application of RBD

for NDUQ, the local approach had been the only effective means to determine the sensitivity

coefficient of output to input variation. Now NUSS-RF is capable of not only pinpointing

which inputs are influential in terms of their individual variance contributions, but also

estimating energy-dependent sensitivity coefficient through mathematical manipulation

(Eqn.(5.22)). As the level of correlation increased, discrepancies between global NUSS-RF and
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local “Sandwich Rule” widened. It is observed that, even though the system may be sensitive

to only certain nuclear data, the high correlations between these particular nuclear data and

other insensitive nuclear data can cause similar (i.e. correlated) variance contribubtions.

As a result, nuclear data with low keff sensitivity would be considered unimportant in the

“Sandwich Rule” approach, but might be considered important in NUSS-RF if they are highly

correlated to nuclear data with high keff sensitivity. The global-based NUSS-RF predicts a

larger keff uncertainty contribution by all these correlated nuclear data collectively than the

“Sandwich Rule” approach.

In the current Chapter 6, the work performed in this PhD project has been summarized. In

the following, the scientific contributions are highlighted which pave for several research

directions to be pursued further in the future.

6.2 Contribution summary and future work

In the beginning of the thesis in Chapter 1.6, the research focus and scientific contribution of

this PhD project were listed to be:

1. Mixing of continuous-energy and multigroup nuclear data formats

2. Stochastic sampling of nuclear data with MCNPX

3. Sensitivity from stochastic sampling

Through the presented PhD work, these areas have been addressed and the main achievements

of research activities are highlighted below. Given the limited duration of the project, areas of

research which deserve further examination upon completion of the current PhD project are

discussed as future works.

Mixing of continuous-energy and multigroup formats

NUSS has been implemented such that the perturbation of the pointwise ACE-formatted

nuclear data is in a groupwise manner, matching the multigroup structure of the nuclear

data covariances. Such implementation can also be found in the SAMPLER code of SCALE6

to obtain the correctly perturbed self-shielded multigroup cross sections. In this PhD work,

SCALE6-44g, ENDF/B-VII.1 and TENDL-2011 covariances in multigroup structures have

been applied. The ability to propagate these multigroup uncertainties through pointwise

ACE nuclear data files and continuous-energy MCNPX was verified with alternative NDUQ

methods (i.e. TSUNAMI, PERT CARD). The keff uncertainty due to nuclear data as calculated

by NUSS was as refined as the number of energy groups carried by the covariances. In the

preliminary assessment of covariance matrix group structure effect on keff uncertainty, using

fast-spectrum Jezebel and Godiva benchmarks, it was shown that from 30 to 44 to 80 groups,

the keff uncertainty varies insignificantly as compared to the change of covariance matrices. If
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pointwise covariances (from ENDF-6 format) are directly fed into NUSS, the algorithm would

not discriminate in theory, even though numerically the decomposition of an enormous

matrix (dimension of hundreds of thousands squared) is extremely difficult. Furthermore,

as the current evaluation of nuclear data covariance is suspected to be overestimated, the

refinement of energy groups is likely ineffective for acquiring more accurate quantification

of nuclear data uncertainty contribution. In the other direction, by reducing the number of

groups to one or two groups, the deterioration of nuclear data uncertainty contribution result

was apparent as shown in Chapter 3.4. Since in SS-based method, the “cost” of computation

time depends on the sample size, not on the number of energy groups (which is opposite in

“Sandwich Rule”-based method), the reliability (i.e. appropriate flux weighting functions and

locations of group boundaries) of the multigroup covariances was the most important.

Future work

The current implementation of NUSS is limited to energy-dependent cross section and nu-

clear data (n,n), (n,n’), (n,2n), (n,fission), (n,γ), ν̄ and χ. For other nuclear data such as S(α,β),

angular distribution and resonances, the scheme to perturb them in ACE format using multi-

group or ENDF-6 formatted covariances remains as future work. It is expected that the main

task would involve ensuring the mixing of different nuclear data formats for these data is

consistent.

For S(α,β) information stored in separate files from the usual ACE-formatted nuclear data

files, they must be specifically included in the MCNPX input file in order to treat thermal

neutron scattering by molecules and crystalline solids (as moderator materials) correctly. In

ENDF-6 format, File MF7 MT4, the incoherent inelastic scattering law is given in tables of

S dependent on α (momentum transfer parameter) for various values of β (energy transfer

parameter). Then through NJOY’s THERMR and ACER modules, the S(α,β) data are formatted

into tables which are organized in blocks, containing energy dependent inelastic and elastic

scattering cross sections, coupled energy-angle distributions for inelastic scattering and

angular distributions for elastic scattering. Though a very important nuclear data, S(α,β) has

limited uncertainty information which prompted studies to generate best-estimated data of

S(α,β)[79] or its covariance matrix[80], both by sampling-based techniques.

For secondary particle angular distribution, their covariances are located in the ENDF-6 format

File MF34, with the actual angular distribution data in File 4. Using NJOY, the uncertainty

and correlation data can be prepared, for example shown in Fig.6.1 where the average cosine

angle µ and relative uncertainty ∆µ/µ are plotted against incident neutron energy E . Fig.6.1

has simplified the many details of angular distribution as shown in Fig.6.2. To describe such

details, the ACE format uses 32 equiprobable cosine bins to represent the angular probability

distribution at given incident energies.

Resonance parameter uncertainties can be found in ENDF-6 format File MF32. Resonance

widths are strictly positive quantities, yet a random sampling based on the normal distribution

assumption could result in negative values when sampled from large uncertainties. Hence,
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Figure 6.1: Example of angular distribution covariance data formatted by NJOY (P.296).

Figure 6.2: Example of angular probability distribution.

the use of lognormal distribution has been proposed [81]. Certainly such issue is not limited

to resonance parameters, but also cross sectional and probability data. The basic assumption
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of normal distribution deserves further examination. On the other hand, motivated by a

different challenge, which is to reduce the size of ENDF-6 formatted files (due to large amount

of information in File MF32), the conversion of File MF32 data into File MF33 is done by

the SCALE PUFF-IV code for processing ENDF uncertainty data into multigroup covariance

matrices [82] for selected isotopes in ENDF/B-VII.1 library such as 239Pu, 235U and 238U. Hence,

when multigroup covariances are prepared using ENDF/B-VII.1 files, resonance uncertainties

are implicited included in the cross section uncertainties (for MT=1,2,18,102). However, an

independent quantification of resonance parameter uncertainties is still of great interest and

should be examined in future works.

Stochastic sampling with MCNPX

NUSS-SRS has been implemented specifically for MCNPX and the sampling approach is reli-

able as shown by the comparison studies between NUSS and deterministic “Sandwich Rule”

methods. As a “blackbox” approach, NUSS-SRS is un-intrusive to MCNPX routine calculations,

which allowed the correct fission source distribution to be established in each sample case.

Furthermore, the choice of MCNPX output for which uncertainty can be quantified is flexible

thanks to the “blackbox” approach. More precisely, the parameter of interest is in fact not the

sample mean itself, but the sample variance. Depending on the run-time of MCNPX calcula-

tions, various sample sizes have been used from about 100 to over 1000. Certainly, the larger

the sample size, the more converged the sample mean is, and similarly the sample variance.

However, in this PhD work, it has been argued that, the current nuclear covariance data are

likely to be overestimated. Using a smaller number of samples though cannot guarantee the

sample variance values are converged, the lower precision of the propagated uncertainty from

over-estimated covariance data is compensated by the use of confidence intervals. It has been

assumed that, the underlying population of keff is normal by the multivariate normal distribu-

tion assumption of nuclear data. Consequently, the distribution of sample keff variance is the

χ2 distribution from which the confidence interval can be calculated.

Future work

With sampling, the choice of output parameter for which uncertainty can be quantified is more

flexible than that from the deterministic classic perturbation methods. In this PhD, NUSS has

been applied to compute the 1-group cross section with uncertainties for the UAM-Phase

1 exercise. What naturally follows is to complete the UAM-Phase 1b exercise which is the

propagation of nuclear data uncertainty through burnup calculation. The output parameters

of interest include keff , reaction rates, collapsed cross sections and nuclide concentrations.

Existing results [4][46][83] for UAM-Phase 1b exercise can provide verification for NUSS. To

perform these benchmarked burnup calculations, two options can be considered: MCN-

PX/CINDER or SERPENT, both of which are Monte Carlo-based codes and use ACE-formatted

nuclear data. While Monte Carlo codes provide accurate calculation of flux in both energy

space and detailed physical locations, nuclear data uncertainties are naturally propagated

through depletion calculations at each burnup step into the perturbed fluxes, reaction rates
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and isotope densities. At PSI, MCNPX/CINDER has been compared to CASMO-4E code for nu-

clide density calculations, verified with experiments at the PSI’s PROTEUS reactor [84]. Studies

of combining SERPENT and sampling-based nuclear data perturbation for assembly-type

problems have been done by TMC [34][85] and can provide verifications for NUSS application

with SERPENT.

Nuclear data uncertainty quantification is part of the comprehensive uncertainty quantifica-

tion. Other sources of uncertainty in MCNPX calculation include manufacturing and techno-

logical parameter uncertainties. Hence, at PSI, a systematic tool called MTUQ for quantifying

non-nuclear data parameter uncertainties has been developed for MCNPX based on stochas-

tic sampling method [86]. MTUQ is capable of introducing perturbation to geometry and

material properties (i.e. so-called manufacturing and technological parameters) according to

the given parameter uncertainties and probability distributions, taking into account certain

physical constraints. Studies of spent fuel transport casks can be conducted in MCNPX with

the quantification of output uncertainty due to manufacturing and technological parameters

by MTUQ, as well as nuclear data uncertainty contribution by NUSS.

Sensitivity from stochastic sampling

In this PhD, sensitivity analysis refers specifically to the determination of individual input

variance contributions in proportion to the total variance of a system output. Conventionally,

in order to determine the ranking of inputs in terms of their uncertainty contributions, indi-

vidual input can be sampled one-by-one in which case correlations between inputs cannot be

taken into account. Also, the total number of MCNPX calculations is equal to the number of

inputs multiplied by the number of random samples, making such operation time consuming.

The squared value of Pearson correlation coefficient can be calculated to estimate the variance

contributions apportioned to individual inputs, but is limited to linear systems. Now with

NUSS-RF, a more efficient and flexible way of estimating the ranking of inputs is available.

Unlike existing “blackbox”-type simple random sampling methods where the relation between

inputs and outputs is inferred through statistical regression analysis, the first-of-its-kind

NUSS-RF, based on Random Balance Design prepares the sampling of inputs by design (i.e.

not “blackbox”). As shown in Chapter 5.3 with the 44-input problems (i.e. 44 energy group-

wise cross sections of the same isotope-reaction), NUSS-RF is capable of decomposing the

keff variance into 44 cross section variance contributions. The consideration of correlations

among inputs has a significant impact on the variance decomposition results from NUSS-RF

compared to those from the deterministic “Sandwich Rule” approach. It has been found that

inputs with higher correlations have more similar variance contribution, consequently can be

considered similarly important.

The deterministic “Sandwich Rule” approach had always been used as the reference of verifi-

cation for sampling-based uncertainty quantification. However, in terms of decomposition

of total variance into individual input variance contributions,“Sandwich Rule” results are

different from those of RBD as shown by three mathematical benchmarks, as well as in nuclear
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data uncertainty applications. When it is desired to rank nuclear data by their uncertainty con-

tributions in the system response such as keff , different ranking is expected from “Sandwich

Rule” versus NUSS-RF.

Global sensitivity analysis is to be distinguished from the first-order sensitivity coefficient

which can be determined by direct perturbation, differential operator sampling (DOS) or

adjoint weighted perturbation (AWP) methods. With Random Balance Design in NUSS-RF, it

has been shown possible to disentangle the sensitivity coefficients from the variance decom-

position results through Eqn.(5.22) as if they are uncorrelated. Since NUSS-RF can efficiently

compute the individual variances, sensitivity coefficients (although only in absolute values) of

system responses different from keff can be estimated, which are not possible with the current

deterministic methods such as the classic AWP or DOS for NDUQ problems.

Future work

The current implementation of NUSS-RF does not provide a confidence interval to the result

of variance decompositions as in the NUSS-SRS approach for σ2
k . The precision of NUSS-RF

results depends not only on the size of samples, but also on the use of harmonics order in the

summation of the power spectrum amplitudes. The current version of NUSS-RF uses the same

harmonics order for all inputs. However, ideally, inputs with lower importance, manifested by

a smaller variance should be computed with a smaller harmonics order so as to avoid adding

up the noise components.

The efficiency of NUSS-RF for automatic decomposing individual input variances has been

shown in cases of single energy-dependent reaction in this PhD work. However, in NDUQ, the

more relevant uncertainty information is sometimes the energy-integrated isotope-reaction

uncertainty contribution. For example the UAM-Phase 1 exercise in Chapter 3.6 focuses only

on the top five uncertainty contributors which make up more than 90% of the total output

uncertainty. To quantify uncertainty in a similar manner, the few-group covariance data can

be used in NUSS-RF to reduce to fewer number of inputs. However, as seen in Chapter 3.4, a

coarse energy group structure leads to the overestimation of uncertainty contributions. Visual

inspection of the groupwise cross section uncertainties can be used to rank the inputs in terms

of uncertainty contributions. However, the amount of uncertainty due to a single reaction

cannot be easily isolated from other reactions which are correlated to it.

6.3 Concluding remarks

This PhD work aimed to quantify nuclear data uncertainties for the continuous-energy MC-

NPX code through the approach of stochastic sampling. It has been accomplished with the

implementation of the NUSS systematic tool, which enabled research activities such as the

comparison of various nuclear data covariance libraries, the quantification of keff uncertainty

in benchmarks chosen by OECD/NEA working party expert groups (UAM and UACSA), as

well as the development of global sensitivity analysis focusing on the efficient calculation
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of individual input variance contributions. Even though the current PhD work has yet to be

applied more broadly to actual applications such as criticality safety and burnup credit, it has

first and foremost demonstrated the proof of concept. NUSS has the feasibility and flexibility

of working with continous-energy Monte Carlo codes which are required for high fidelity

nuclear system simulations. The quantification of simulation uncertainty due to nuclear data

uncertainties is also expected to motivate the improvement of nuclear data and covariances.
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Appendix

A Derivations

A1 Sandwich Rule

First order approximation is the key in the derivation of the Sandwich Rule. In the Taylor

expansion of the response R:

R(α1, ...,αk ) =R(~αo)+
k∑
i

(
∂R

∂αi

)
~αo

∆αi + 1

2
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Let p(α1, ...αk ) denote the joint probability density function of (α1, · · · ,αk ). The definition of

the second central moment is:

µ2(R) = E
[
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=
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Recognizing the variance and covariance terms:∫
δα2

i p(~α)d~α=
∫ (

αi −αi ,o
)2 p(~α)d~α= var(αi ) (3)∫
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)
p(~α)d~α= cov(αi ,α j ) (4)
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Putting Eqn. (3) and (4) into Eqn. (2), the variance of the response is obtained as the product

of sensitivity coefficient vectors and the covariance matrix of inputs:

µ2(R) = var(R) =
k∑
i

S2
i ·var(αi )+2

k∑
i 6= j

Si cov(αi ,α j )S j =~SVα~S
T (5)

The above formulation is known as the “propagation of moments” method and can be found

in Section III.F of [87]. There, more complex equations for propagation of high-order moments

are also given.

A2 Differential Operator Sampling

Full derivations of the Differential Operator Sampling (DOS) method in MCNPX can be found

in [88][89]. It is based on Taylor series expansion of the response change (∆c) at first and

second orders:

∆c = ∑
n=1

1

n!

d nc

dνn (∆ν)n ≈ dc

dν
∆ν+ 1

2

d 2c

dν2∆ν
2 = u1∆ν+u2∆ν

2 (6)

where ∆ν is the fractional change of input (e.g. density, concentration, macroscopic cross

section [88]). Specifically, the response c is the track-length estimate tally in MCNPX:

c j ′ =
∑
j ′

t j ′q j ′ (7)

where t j ′ is the tally response estimator of path segment j ′ and q j ′ the probability of path

segment j ′. Substituting Eqn.(7) into the first-order coefficient of Eqn.(6):

u1 = dc

dν
= d
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)
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=∑
j ′

t j ′q j ′
(
P1, j ′ +R1, j ′

)
(10)

The two terms are expanded in the following:

P1, j ′ = 1

q j ′

d q j ′

dν
substituting q j ′ =

∏
k=0

rk (11)

=∑
k

drk

dν j ′

1

rk
(12)

=∑
k
βk, j ′ (13)
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where rk is the probability of track k within the segment j ′.

R1, j ′ = 1

t j ′

d t j ′

dν j ′
where t j ′ =λk

∑
c∈C

xC (E) and dν= d xb(h)

xb(h)
(14)

= ∑
b∈B

∑
h∈H

xb(h)∑
c∈C xc (h)

∂

∂xb(h)

(∑
c∈C

xc (h)

)
(15)

=
∑

c∈B
∑

E∈H xc (E)∑
c∈C xc (E)

(16)

where tally response t j ′ is a linear function of some combination of reaction cross sections,

B and E are a set of cross sections and the energy interval for cross sections to perturbed.

R1, j ′ is the fraction of reaction rate tally involved in the perturbation. If all cross sections in

the tally are perturbed by the same amount over all energies, R1, j = 1 (e.g. in cases of density

perturbation). The history-based estimator for first-order perturbation is:

〈u1〉 = 1

N

∑
i

(∑
j ′

(∑
k=0

β j ′,k +R1, j ′

)
t j ′

)
(17)

Without derivation details, the second order perturbation 〈u2〉 is:

〈u2〉 = 1

2N

∑
i

(∑
j ′

(∑
k=0

(
α j ′,k −β2

j ′,k

)
+

(∑
k=0

β j ′,k +R1, j ′

)2

−R2
1, j

)
t j ′

)
(18)

Finally, the total perturbation is the sum of the two orders of perturbation:

〈c〉 = 〈u1〉∆ν+〈u2〉∆ν2 (19)

A3 First-order Adjoint Perturbation Method

The steady state Boltzmann equation is written in the operator form as an eigenvalue problem:

Lφ= 1

k
Mφ (20)

where L and M denote the unperturbed “loss” (i.e. streaming, collision and scattering) and

“gain” (fission) operators. φ and k are the unperturbed flux and keff values respectively. Now,

introducing perturbations to the operators, which result in perturbations in k and φ as well:

(L+∆L)(φ+∆φ) = 1

k +∆k
(M +∆M)(φ+∆φ) (21)

The assumption that ∆k/k ¿ 1 for very small amount of perturbation to ensure linearity

around nominal value and the use of binomial approximation lead to:

1

k +∆k
= 1

k(1+∆k/k)
≈ 1

k
(1−∆k/k) = 1

k
− ∆k

k2 (22)
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In terms of reactivity ρ which is ρ = k−1
k :

1

k +∆k
≈ 1

k
−∆ρ given ∆ρ ≈ ∆k

k2 (23)

Eqn(21) is rearranged after the substitution of ∆ρ and the omission of second and third high

order terms:

O (∆2,∆3) = (∆L− 1

k
∆M)φ+ (L− 1

k
M)∆φ+∆ρMφ (24)

= 1

k
∆M∆φ−∆ρ(∆Mφ+M∆φ+∆M∆φ) ≈ 0 (25)

On one hand, in the so-called “forward” manner, the perturbation in reactivity can be obtained

by using the perturbed flux ∆φ:

∆ρ ≈−
(∆L− 1

ko
∆M)φo + (Lo − 1

ko
Mo)∆φ

Moφo
(26)

However, repeatedly solving for ∆φ as a result of each perturbed parameter is impractical for

systems with many parameters. The alternative method to circumvent this is to use an adjoint

flux φ†, which has the properties:

L†φ† = 1

k†
M †φ†, 〈φ†,Lφ〉 = 〈L†φ†,φ〉, 〈φ†,

1

k
Mφ〉 = 1

k†
〈M †φ†,φ〉 (27)

Applying φ† as a weighting function to each term in Eqn.(26) and integrating (as 〈· · · 〉) over the

phase space (r ,Ω, E):

∆ρ ≈−〈φ†, (∆L− 1
k∆M)φ〉+〈φ†, (L− 1

k M)∆φ〉
〈φ†, Mφ〉 =−〈φ†, (∆L− 1

k∆M)φ〉
〈φ†, Mφ〉 (28)

The second term in the numerator which contains the ∆φ has been eliminated because of the

adjoint relations:

〈φ†, (L− 1

k
M)∆φ〉 = 〈(L† − 1

k†
M †)φ†,∆φ〉 = 〈0,∆φ〉 = 0 (29)

In Eqn.(28), the calculation of perturbed reactivity (consequently the value of keff ) requires the

determination of the forward and adjoint fluxes which will be calculated only once, instead of

the repeated calculation of ∆φ in Eqn.(26).

The sensitivity coefficient of k with respect to nuclear data Σx is therefore[22]:

Sx = dk/k

dΣx /Σx
= Σx

k

k2dρ

dΣx
=−Σx

k

〈φ†
o , ( dL

dΣx
− 1

k
d M
dΣx

)φ〉
〈φ†, M

k2φ〉
(30)

where
dk

dΣx
= dρ

dΣx
k2 (31)
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The adjoint flux φ† (synonyms are adjoint function, importance function) is generally inter-

preted as the response of a prescribed detector contributed by the neutrons at their current

location, and by their progenies (i.e. “offspring”). Imagine in the analog Monte Carlo sim-

ulation, source neutrons undergo chains of reactions and eventually (after many neutron

generations) the progenies of the source neutrons will attain an equilibrium distribution,

corresponding to the so-called fundamental eigen-mode of the forward neutron transport

equation (ie. forward neutron flux). At this asymptotic generation, the prescribed detector

would only measure the “ surviving” progenies of source neutrons which are considered to

have high importance. Hence the name “importance function” is used to describe the detector

response. Pseudo-particles can be simulated by modifying several physics parameters in

the foward simulation and transporting them “backward”. This method, implemented in

TSUNAMI of SCALE6 KENO-3D requires more particle histories because the pseudo-particles

have to scatter up to fast energies to the initiating fission event through the absorbing medium

[90]. Alternatively, the “iterated fission probability” method works by keeping rigorous score-

recording of progenies [91]. The intense memory requirement issue was addressed and in

MCNP6 such capability is available to compute keff sensitivity coefficients to nuclear data,

including scattering energy-angle transfer distributions [24].

A4 Decomposition of Covariance Matrix

To decompose the covariance matrix (M) into the upper and lower triangular matrices using

Cholesky decomposition, the MATLAB built-in function chol can be applied given that the M

is positive definite:

xM xT > 0 for any non-zero vector x (32)

For example, matrix M1 is positive definite:

M1 =
[

9 6

6 5

]
because xM1xT = (3x1 +2x2)2 +x2

2 > 0 (33)

On the other hand, matrix M2 is positive semidefinite:

M2 =
[

9 6

6 4

]
because xM1xT = (3x1 +2x2)2 ≥ 0 (34)

Matrix M3 is not positive semidefinite:

M3 =
[

9 6

9 3

]
because xM3xT = (3x1 +2x2)2 −x2

2 (35)

When the matrix is positive semidefinite, it has non-negative eigenvalues, for example, equal

to 0 and 13 for the second matrix M2. For this case, MATLAB’s cholcov function is used
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instead. It is based on eigendecomposition algorithm.

The Cholesky factorization algorithm begins with taking the element in first row and first

column to be m11 and designating the rest of the matrix by three block matrices:

M =
[

m11 M T
21

M21 M22

]
=

[
l11 0

L21 L22

][
l11 L21

0 LT
22

]
=

[
l 2

11 l11LT
21

l11L21 L21LT
21 +L22LT

22

]
(36)

Solving for l11 and L21 are simply:

l11 =p
m11 and L21 = 1

l11
M21 (37)

To solve for L22,

M22 −L21LT
21 = L22LT

22 (38)

which is to apply the Cholesky factorization algorithm of Eqn.(36) to M22 −L21LT
21. The above

algorithm works on each row of M until it becomes triangular.

Cholesky decomposition of a positive definite matrix is straight-forward. In case of positive

semidefinite matrix, the same algorithm results in an upper and lower matrices that are not

exactly triangular any more:

M =

81 54 27

54 45 21

27 21 10

 with l11 =
p

81 = 9 L21 = 1

9

[
54

27

]
=

[
6

3

]
(39)

L22LT
22 =

[
45 21

21 10

]
−

[
6

3

][
6 3

]
=

[
9 3

3 1

]
=

[
3 0

1 0

][
3 1

0 0

]
(40)

The decomposed result is:81 54 27

54 45 21

27 21 10

=

9 0 0

6 3 0

3 1 0


9 6 3

0 3 1

0 0 0

= UT
c Uc (41)

Nevertheless, the matrix Uc can be used to generate multivariate normally distributed samples

of size N in the following manner:

Z= randn(N,K) where K is number of inputs (42)

Rc = Z ·Uc where dimension of R is [N ×K ] (43)

The decomposition of a positive semidefinite matrix is not unique, meaning there exists other
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possible decomposition factors. If the matrix is not positive definite, cholwill fail upon finding

non-positive eigenvalues.

Alternative the Eigendecomposition approach decomposes the covariance matrix into its

eigenvalues and eigenvectors:

M = PDP−1 =
(
PD

1
2

)(
D

1
2 P−1

)
(44)

where matrix P contains the eigenvectors of M in each column, hence orthogonal and

P−1 = P T . The diagonal of the diagonal matrix D contains the eigenvalues. By applying

“eigendecomposition” to the same M of Eqn.(39), it can be seen that a different decomposition

is obtained (by MATLAB’s eig function):

P =

 0.1048 0.6189 0.7784

0.3145 −0.7632 0.5645

−0.9435 −0.1856 0.2746

 and D =

0 0 0

0 6.3153 0

0 0 129.6847

 (45)

(
D

1
2 P−1

)
=

 0 0 0

1.5554 −1.9179 −0.4665

8.8646 6.4282 3.1277

 (46)

When MATLAB function cholcov is applied, the output is D
1
2 P−1 with all zero-value row

vector(s) omitted:

cholcov(M) = Ue =
[

1.5554 −1.9179 −0.4665

8.8646 6.4282 3.1277

]
(47)

If matrix M is positive definite, the decomposition is unique and hence cholcov and chol
have the same output (Uc =Ue ). The following matrix operation is used instead of Eqn.(42) to

generate random samples:

Z= randn(N,k) where k is the reduced rank of M (48)

Re = Z ·Ue where dimension of R is [N ×K ] = [N ×k]× [k ×K ] (49)

Using the same random numbers generated by Eqn.(42) with 5000 samples, the covariance of

the random samples generated by Eqn.(43) and Eqn.(49) can be compared with the original

covariance matrix M :

cov(Rc ) =

82.586 54.941 27.49

54.941 45.597 21.303

27.49 21.303 10.156

 vs. cov(Re ) =

81.516 54.181 27.118

54.181 45.154 21.072

27.118 21.072 10.037

 (50)

123



Appendix . Appendix

In certain cases, the NJOY-processed relative covariance matrix for nuclear data does not

satisfy the positive (semi)definite condition by including negative eigenvalues. The following

ad hoc fix for negative definite matrix has been implemented in SHARKX and is adopted in

NUSS. Recall the relation between correlation (Λ) and covariance (C) matrices:

Λ(xi , x j ) = C (x j , x j )

σxiσx j

(51)

An eigendecomposition of theΛ(xi , x j ) matrix gives the eigenvector P and the diagonal matrix

D whose elements are the eigenvalues ofΛ(xi , x j ):

Λ(xi , x j ) = PDP−1 (52)

Any negative eigenvalues in D are replaced by a very small positive number. In MATLAB, the

“floating-point relative accuracy” parameter (eps) which is equal to 2−52 is used in NUSS for

this purpose. A new Λ̃(xi , x j ) is created with the original eigenvectors P and the modified D̃ :

Λ̃(xi , x j ) = PD̃P−1 (53)

The decision to adjust correlation matrix in SHARKX as opposed to fixing the covariance

matrix directly is because correlation values are between -1 to 1 whereas those in covariance

matrix can vary in much greater extent in terms of order of magnitude. The absolute nuclear

data variances are also unchanged. The new covariance matrix is positive semidefinite:

C̃ (xi , x j ) = Λ̃(xi , x j ) ·σxiσx j (54)

which can be used to generate multivariate normal random numbers.

A5 Covariance of Samples from Simple Random Sampling

The recipe of obtaining samples which have the desired multivariate normal distributions

involves three steps:

1. Decomposition of the [K × K] covariance matrix M such that M = AAT, where K is the

number of inputs. It can be accomplished by Cholesky or eigendecomposition algo-

rithms as explained in Appendix A4.

2. Let matrix Z be with the dimension [K × N]:

Z =


~Z1

~Z2
...
~ZK

=


z1,1 z1,2 · · · z1,N

z2,1 z2,2 · · · z2,N
...

...
. . .

...

zK ,1 zK ,2 · · · zK ,N

 (55)

where all row vectors ~Z are independent and identically distributed (i.i.d.) random
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variables, meaning they have the same probability distribution and are mutually in-

dependent. Specifically, the probability distribution is standard normal (mean=0 and

standard deviation=1) and N is the size of the samples.

3. The matrix containing the new samples are calculated as:

X′ = A ·Z+Xo where Xo =



µ1 µ1 · · · µ1

µ2 µ2 · · · µ2

µ3 µ3 · · · µ3
...

...
. . .

...

µK µK · · · µK

 (56)

has the identical column vectors of nominal mean values.

Eqn(56) can be viewed as a linear transformation of Z by some constant matrices Xo and A.

The expectation and covariance of X′ are respectively:

E [X′] = E [A ·Z+Xo] = A ·E [Z]+Xo (57)

cov(X′) = E
[(

X′−E [X′]
)(

X′−E [X′]
)T

]
= E

[
(A ·Z+Xo −A ·E [Z]−Xo) (A ·Z+Xo −A ·E [Z]−Xo)T ]

= A ·E
[
(Z−E [Z]) (Z−E [Z])T ] ·AT

= A ·cov(Z) ·AT (58)

As sample size increases, cov(Z) which is the covariance of Z is approximately the [K × K]

identity matrix I because Z consists of vectors which are normally distributed and independent,

resulting in zero covariances and the variances along the diagonal of cov(Z) to approach the

theoretical value of 1 for the imposed standard normal distribution. Therefore,

cov(X′) = A ·cov(Z) ·AT ≈ A · I ·AT = AAT = M

Similarly, E [X′] approximates Xo because E [Z] → 0 as N→∞.

A6 Nuclear Data Variances in Different Energy Groups

In Fig.3.19, the relative standard deviation (∆α/α)of 239Pu(ν̄) cross section (from ENDF/B-

VII.1 evaluation) is plotted in terms of 30, 44 and 80-group structures. Counter-intuitively, the

values of ∆α/α seem to fluctuate around different average values below 106eV, and this has

raised question about whether the NJOY-processed multigroup ∆α/α values are correct. As

these data are generated by applying the same flux shape weighting function, the difference

lies in the energy group boundaries (i.e. width of the energy “bins”). For example, the 80-

group structure consists of many narrow “bins” and 44-group has wider “bins”, especially
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below 106eV. Hence, the uncertainty given by a wide bin affects more pointwise cross section

points than a narrow bin does. This is seen also in terms of multigroup sensitivity coefficients.

Fig.A1 shows the sensitivity coefficients (Sk ) in 30, 44 and 80 groups, which are obtained from

Eqn.(3.8) with the SCALE6’s default 238-group Sk . Note that the 30- and 80-group structures

are not exactly the same as those in Fig.3.19 because they are given by NJOY and misalign

with the boundary values in SCALE6. But they illustrate the same idea of grouping energies.

More commonly, the representation of Sk is in “per unit lethargy” as shown in Fig.A2. The

normalization is done in order to take into account the varying width of energy bins in different

group structures. The larger the energy bin, the more pointwise data are perturbed, hence the

larger the ∆k and Sk values. But the unit lethargy is also bigger for large energy bins, so the

normalized sensitivity coefficients are on average the same.

Figure A1: keff sensitivity coefficients (Sk ) to 239Pu(ν̄) in Jezebel. TSUNAMI-3D generates the
238-group Sk which are added by energy groups to obtain Sk in 30, 44 and 80-group structures.

Figure A2: keff sensitivity coefficient per unit lethargy (S̃k ) to 239Pu(ν̄) in Jezebel.

Since the overall cross section uncertainty should be the same regardless of the width of the

bins, the Sandwich Rule would combine a larger Sk with a smaller cross section uncertainty

from a wide energy bin, and a smaller Sk with a larger cross section uncertainty from a narrow

energy bin. As shown in Fig.3.19 already, the NUSS-calculated keff uncertainties (sum of
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variance and covariance terms in Sandwich Rule) are practically the same when 30, 44 or

80-group uncertainties are used.

A7 Derivation of Squared of Pearson Correlation Coefficient

The Pearson coefficient between two variables X and Y is defined as:

rp =
∑N

i (Xi − X̄ )(Yi − Ȳ )√∑N
i (Xi − X̄ )2

√∑N
i (Yi − Ȳ )2

= COV(X ,Y )p
VAR(X )

p
VAR(Y )

(59)

The squared value of rp is therefore:

r 2
p =

 ∑N
i (Xi − X̄ )(Yi − Ȳ )√∑N

i (Xi − X̄ )2
√∑N

i (Yi − Ȳ )2


2

=
(

COV(X ,Y )p
VAR(X)

p
VAR(Y)

)2

= COV(X ,Y )

VAR(X )

COV(X ,Y )

VAR(Y )
(60)

If there is strong evidence that variables X and Y are linearly correlated, Y ′ = aX +b is used

as an approximation of Y in the calculation of r 2
p :

r 2
p =COV(X ,Y )

VAR(X )

COV(X ,Y )

VAR(Y )
≈ COV(X , aX +b)

VAR(X )

COV(X , aX +b)

VAR(Y )
(61)

=a ·COV(X , X )

VAR(X )

a ·COV(X , X )

VAR(Y )

=a2 · VAR(X )

VAR(X )

VAR(X )

VAR(Y )

=a2 ·VAR(X )

VAR(Y )
(62)

A8 Fourier Transform and Parseval’s Theorem

The orthogonality relations and integrals of trigonometry functions are given below without

proof:

1

L

∫ L

−L
sin

(nπs

L

)
sin

(mπs

L

)
d s =

{
1 n = m 6= 0

0 n 6= m
(63)

1

L

∫ L

−L
cos

(nπs

L

)
cos

(mπs

L

)
d s =


1 n = m 6= 0

0 n 6= m

2 n = m = 0

(64)

1

L

∫ L

−L
sin(

nπs

L
)cos(

mπs

L
)d s = 0 (65)
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∫
sin(ax)d x = cos(ax)+C and

∫
cos(ax)d x =−sin(ax)+C (66)

The Fourier series expansion of a continuous function f (s) using orthogonal basis sin and cos

is:

f (s) =
∞∑

ω=−∞
(Aω cos(ωs)+Bω sin(ωs)) = Ao +2

∞∑
ω=1

(Aω cos(ωs)+Bω sin(ωs)) (67)

For Eqn.(4.9):

1

2π

∫ π

−π
f (s)d s = 1

2π

∫ π

−π
Aod s + 1

2π

∫ π

−π
2

∞∑
ω=1

(Aω cos(ωs)+Bω sin(ωs))d s

= Ao

2π

∫ π

−π
d s + 2

2π

∞∑
ω=1

∫ π

−π
Aω cos(ωs)d s + 2

2π

∞∑
ω=1

∫ π

−π
Bω sin(ωs)d s

= Ao + 1

π

∞∑
ω=1

Aω(−sin(ωπ)− (−sin(−ωπ)))+ 1

π

∞∑
ω=1

Bω(cos(ωπ)−cos(−ωπ))

= Ao + 1

π

∞∑
ω=1

Aω(0−0)+ 1

π

∞∑
ω=1

Bω ·0

= Ao (68)

For Eqn.(4.10):

1

2π

∫ π

−π
f (s)2d s

= 1

2π

∫ π

−π

(
Ao +2

∞∑
ω=1

(Aω cos(ωs)+Bω sin(ωs))

)
×

(
Ao +2

∞∑
ω′=1

(Aω′ cos(ω′s)+Bω′ sin(ω′s))

)
d s

= 1

2π

∫ π

−π
A2

od s + 4

2π

∞∑
ω=1

∞∑
ω′=1

∫ π

−π
(Aω cos(ωs)+Bω sin(ωs))

(
Aω′ cos(ω′s)+Bω′ sin(ω′s)

)
d s

+ 2Ao

2π

∞∑
ω′=1

∫ π

−π
(Aω′ cos(ω′s)+Bω′ sin(ω′s))d s + 2Ao

2π

∞∑
ω=1

∫ π

−π
(Aω cos(ωs)+Bω sin(ωs))d s

=A2
o +

4

2π

∞∑
ω=1

∞∑
ω′=1

{
∫ π

−π
Aω cos(ωs)Aω′ cos(ω′s)d s

+
∫ π

−π
Aω cos(ωs)Bω′ sin(ω′s)d s +

∫ π

−π
Bω sin(ωs)Aω′ cos(ω′s)d s

+
∫ π

−π
Bω sin(ωs)Bω′ sin(ω′s)d s}+0+0

=A2
o +

2

π

∞∑
ω=1

∞∑
ω′=1

(
AωAω′πδ(ωω′)+0+0+BωBω′πδ(ωω′)

)
=A2

o +2
∞∑
ω=1

(A2
ω+B 2

ω) known as the Parseval’s theorem (69)
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Combining Eqn.(68) and Eqn.(69):

V f (s) =
1

2π

∫ π

−π
f (s)2d s −

(
1

2π

∫ π

−π
f (s)d s

)2

= 2
∞∑
ω=1

(A2
ω+B 2

ω) Q.E.D. (70)

A9 Power Spectrum and Variance Calculation in MATLAB

As derived in Appendix A8, Eqn.(70), the summation of the power spectrum components (Λω)

gives the variance of f (s):

V f (s) = 2
∞∑
ω=1

Λω where Λω = A2
ω+B 2

ω (71)

To calculate it in practice, the steps shown in Fig.5.3 are specific to MATLAB since it is the

mathematical tool for NUSS-RF. For example, vector indexing in MATLAB starts with 1, whereas

in C programming, it starts with 0. Such differences are important to take into account when

coding mathematical equations in various programs.

NUSS-RF uses MATALB function fft.m to perform discrete Fourier transform on f (s) = {ys |s =
1 · · ·N }, a vector of length N which is the number of data points. The fft.m output is a vector

Y = {Yk |k = 1 · · ·N } with each element equal to:

Yk =
N∑

n=1

(
yn ×e

−2π j
N (n−1)(k−1)

)
with j 2 =−1 from Y=fft(y) (72)

Note that the indexing for n and k both start from 1 not 0. More importantly, the first element

(ie. for k = 1) is:

Y1 =
N∑

n=1
yn ·1 = N ȳ where ȳ denotes the mean value of y (73)

The output of fft.m is normalized by N :

Y=fft(y)/N such that Y1 = 1

N

N∑
n=1

yn = ȳ (74)

The rest of the Y outputs are complex numbers consisting of the amplitude and phase of the

signal in the frequency space: Yk = Ak +Bk · j with j 2 =−1.

The power spectrum of Y is by definition the absolute magnitude of Yk squared, and in MATLAB

it is performed in the following, with the consideration of the normalization of Eqn.(74):

Pi=(abs(fft(y)/N)).∧2 with elements Pik = A2
k +B 2

k =Λk (75)

Fig.A3 shows a generic example of the result of Eqn.(75), in which the first data point cor-
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responds to (ȳ)2, and the rest of the data points are mirrored as a result of MATLAB’s fft
algorithm for the positive and negative frequency components. The number of unique fre-

quency points is determined by the Nyquist criterion that the maximum resolved frequency is

no larger than half of the sampling frequency.

Figure A3: Output of Eqn.(75) is plotted for an example function (y=sin(2πωt) +
cos(πωt )+randon noise). The maximum frequency (ωmax) which can be resolved from fft.m
is half of the sampling frequency.

By summing the power spectrum components, Eqn.(71) is effectively computed:

Vs=sum(Pi(2:N)) for V f (s) = 2
ωmax∑
ω=1

Λω (76)

In Chapter 4.3 Eqn.(4.11) showed that the variance of f (~x) could be estimated by V f (s):

f 2(~x)d~x −
(∫

f (~x)d~x

)2

≈ 1

2π

∫ π

−π
f (s)2d s −

(
1

2π

∫ π

−π
f (s)d s

)2

=V f (s) (77)

which is modified below for discrete data points (ie. f (~x)=keff samples denoted by kn):

∫
f 2(~x)d~x −

(∫
f (~x)d~x

)2
di scr ete−−−−−−→

N∑
n=1

(k2
n/N )−

(
N∑

n=1
(kn/N )

)2

(78)

=
(

1

N

N∑
n=1

k2
n

)
− k̄2

= 1

N

(
N∑

n=1
k2

n −2N k̄k̄ +N k̄2

)

= 1

N

N∑
n=1

(
kn − k̄

)2
(79)
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The sample variance is by definition:

1

N −1

N∑
n=1

(
kn − k̄

)2 = 1

N −1
N ×V f (s) =

N

N −1
2
ωN∑
ω=1

Λω (80)

or in MATLAB:

Vt=sum(Pi(2:end))*N/(N-1) (81)

Note that the value of Vt does not vary with the different ordering of keff samples. However, the

re-ordering is necessary for the retrieval of individual input contribution to the total variance.

The components are determined by the assigned frequency (w) and the maximum order of

harmonics (h) during the transformation of~x into x(s,ω):

components=(1:h)*w i.e. components= {ω,2ω,3ω, · · · } (82)

The power spectrum of the re-ordered keff samples for the ithinput is denoted by Pi and its

variance contribution (SIi ) is calculated as:

Vi=sum(Pi(components+1))*N/(N-1) and SIi = Vi/Vt (83)

where components+1 is to account for the zero frequency as the first data point.

A10 Additive Model with Multivariate Normal Distribution

The general formulas for conditional mean, conditional covariance matrix and conditional

distribution of multivariate normal inputs are given here. Suppose the entire input set is

partitioned into subsets s and t . Their mean values and covariance matrix are also partitioned

as:

~µ=
(
µs

µt

)
and M =

(
Ms Mst

Mt s Mt

)
(84)

The multivariate normal density distribution function is the following with~µ and M , and n is

the number of inputs in~x:

Φ(~x) = 1

(2π)n/2
p|M | exp

{−1

2
(~x −~µ)T M−1(~x −~µ)

}
(85)

The marginal density distribution of s is:

Φ̂s = 1p
2πσs

exp

{
−−(xs −µs)2

2σ2
s

}
(86)
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The conditional density distribution of t given s is:

Φ̃t (s, t |s) = 1

(2π)(nt )/2
√
|M̃t |

exp

{
−1

2
(t − µ̃t )M̃−1

t (t − µ̃t )

}
(87)

where nt is the dimension of subset t , µ̃t and M̃t are the conditional mean and conditional

covariance matrix respectively (proof in [92]):

µ̃t =µt +Mt s M−1
s [s −µs] (88)

M̃t = Mt −Mt s M−1
s Mst (89)

For our current 3-input model f (x1, x2, x3) = x1 +x2 +x3, the inputs are normally distributed

with zero mean values, so that the model mean is zero ( fo = 0). The input covariance matrix is:

M =

σ
2
1 0 0

0 σ2
2 ρσ2σ3

0 ρσ2σ3 σ2
3

=

12 0 0

0 12 2ρ

0 2ρ 22

 (90)

Following Eqn.(84), the covariance and mean values are partitioned in the following:

M =

 σ
2
1

[
0 0

][
0

0

] [
σ2

2 σ2σ3ρ

σ3σ2ρ σ2
3

] and µ=

 µ1[
µ2

µ3

] (91)

Substituting µs =µ1 and µt = [µ2 µ3]T into Eqn.(88) and Eqn.(89):

µ̃23 =
[
µ2

µ3

]
+

[
0

0

] 1
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

1
σ2

3(1−ρ2)

(
x1 −µ1

)= [
µ2

µ3

]
(92)

M̃23 =
[

σ2
2 σ2σ3ρ

σ3σ2ρ σ2
3

]
−

[
0

0

] 1
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

1
σ2

3(1−ρ2)

[
0 0

]
=

[
σ2

2 σ2σ3ρ

σ3σ2ρ σ2
3

]
(93)
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Using Eqn(87), the conditional distribution of y given x1 is obtained:

Φ̃23(x1, x2, x3|x1)

= 1

(2π)1/2
√
|M̃23|

exp

{
−1

2
(~x23 − µ̃23)M̃−1

23 (~x23 − µ̃23)

}
(94)

= 1

2π
√

(1−ρ2)σ2σ3

exp

−1

2

[
x2 −µ2

x3 −µ3

]T
 1
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

−ρ
σ2

2σ
2
3(1−ρ2)

1
σ2

3(1−ρ2)

[
x2 −µ2

x3 −µ3

]
= 1

2π
√

(1−ρ2)σ2σ3

exp

{
− 1

2(1−ρ2)

{
(x2 −µ2)2

σ2
2

+ (x3 −µ3)2

σ2
3

− 2ρ(x2 −µ2)(x3 −µ3)

σ2σ3

}}
(95)

which is also the formula for the joint probability density of a bivariate normal distribution

and gives the following:∫
Φ̃23d x2d x3 = 1 and

∫
(x2 +x3)Φ̃23d x2d x3 =µ2 +µ3 (96)

The variance contribution of x1 is calculated as:

Vx1 =
∫ (∫

f (x1, x2, x3)Φ̃23d x2d x3

)2

Φ̂1d x1 − f 2
o (97)

=
∫ (∫

x1Φ̃23d x2d x3 +
∫

(x2 +x3)Φ̃23d x2d x3

)2

Φ̂1d x1 −0

=
∫ (

x1 + (µ2 +µ3)
)2
Φ̂1d x1 with µ2 +µ3 = 0

=
∫

x2
1

1p
2πσ1

exp

{
− (x1 −µ1)2

2σ2
1

}
d x1

=σ2
1

Of course, this results is expected since x1 is not correlated with x2 and x3. Its variance

contribution in the model y is exactly its variance.

Next, we will show that the variance contribution of x3 is its own variance in addition to the

variance contributed by its correlated “partner” x2:

Vx3 = (σ3 +σ2ρ)2 (98)
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Let s = x3 and t = (x1, x2) so that Eqn.(88) and (89) become:

µ̃12 =
[
µ1

µ2

]
+

[
0

σ2σ3ρ

]
1

σ2
3

(
x3 −µ3

)= [
µ1

µ2 + σ2
σ3
ρ(x3 −µ3)

]
(99)

M̃12 =
[
σ2

1 0

0 σ2
2

]
−

[
0

σ2σ3ρ

]
1

σ2
3

[
0 σ2σ3ρ

]
=

[
σ2

1 0

0 σ2
2(1−ρ2)

]
(100)

The conditional distribution of (x1, x2) given x3 is

Φ̃12(x1, x2, x3|x3)

= 1

2πσ1σ2
√

1−ρ2
exp

{
− 1

2(1−ρ2)

(
x2 −µ2

σ2
− ρ(x3 −µ3)

σ3

)2

− (x1 −µ1)2

2σ2
1

}

= 1

2πσ1σ2
√

1−ρ2
exp

{
− 1

2(1−ρ2)

((
x2

σ2
− ρx3

σ3

)
−

(
µ2

σ2
− ρµ3

σ3

))2

− (x1 −µ1)2

2σ2
1

}

=
(

1

2πσ1
exp

{
− (x1 −µ1)2

2σ2
1

})(
1p

2πσzσ2
exp

{
− (z −µz )2

2σ2
z

})
=φ(x1)φ(z)/σ2 (101)

where substitutions have been used by:

z = x2

σ2
− ρx3

σ3
and µz = µ2

σ2
− ρµ3

σ3
and σz =

√
1−ρ2 (102)

Furthermore,

d z

d x2
= 1

σ2
and x2 +x3 =σ2z + σ2ρ

σ3
x3 +x3 (103)

The variance contribution from x3 is determined:

Vx3 =
∫ [∫

(x1 +x2 +x3)Φ̃12d x1d x2

]2

Φ̂3d x3 − f 2
o (104)

=
∫ [∫

x1φ(x1)d x1

∫
φ(z)/σ2d x2 +

∫
φ(x1)d x1

∫
(x2 +x3)φ(z)/σ2d x2

]2

Φ̂3d x3

=
∫ [

µ1 ·
∫
φ(z)d z +1 ·

∫ (
σ2z +

(
σ2ρ

σ3
+1

)
x3

)
φ(z)d z

]2

Φ̂3d x3

=
∫ [

0+σ2µz +
(
σ2ρ

σ3
+1

)
x3

]2

Φ̂3d x3

=
(
σ2ρ

σ3
+1

)2 ∫
x2

3Φ̂3d x3

=
(
σ2ρ

σ3
+1

)2

σ2
3

=(σ2ρ+σ3)2 (105)
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The same procedures from Eqn.(99) to Eqn.(104) applied by setting s = x2 and t = (x1, x3)

result in the variance contribution from x2:

Vx2 = (σ3ρ+σ2)2 (106)

In summary, the individual variance contributions for the additive model y = x1 +x2 +x3 are:

Vx1 =σ2
1 = 1 (107)

Vx2 = (σ2 +ρσ3)2 = (1+ρσ)2 (108)

Vx3 = (σ3 +ρσ2)2 = (σ+ρ)2 (109)

A11 Higher-Order Sensitivity Coefficient and Variance

The model y = x1x3 +x2x4 can be written in two parts:

H = x1x3 and G = x2x4 (110)

For the first term H :

∂H

∂x1
= x3

∂H

∂x3
= x1 (111)

∂

∂x3

∂H

∂x1
= ∂

∂x1

∂H

∂x3
= 1

∂

∂x1

∂H

∂x1
= ∂

∂x3

∂H

∂x3
= 0 (112)

They are applied in the Taylor expansion of H up to 2nd order:

H −Ho = ∂H

∂x1
δx1 + ∂H

∂x3
δx3 + 1

2

∂2H

∂x1∂x1
δx1δx1 + 1

2

∂2H

∂x3∂x3
δx3δx3

+ 1

2

∂2H

∂x1∂x3
δx1δx3 + 1

2

∂2H

∂x3∂x1
δx3δx1 (113)

=x3δx1 +x1δx3 +δx3δx1 =µ3δx1 +µ1δx3 +δx3δx1 (114)

=µ3δx1 +δx3δx1 (115)

as evaluated at the nominal input (µ1, µ2, µ3, µ4)=(0, 0, µ3, µ4). Analogously:

G −Go = x4δx2 +x2δx4 +δx2δx4 =µ4δx2 +δx2δx4 (116)
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The second moment of y = H +G is then calculated as:

µ2[(H +G)− (Ho +Go)] (117)

=
∫ (

µ3δx1 +µ4δx2 +δx3δx1 +δx2δx4
)2 p(x1, x2)p(x3, x4)d~x (118)

=
∫
µ2

3δx2
1 p(x1, x2)p(x3, x4)d~x

+2
∫ (

µ3µ4δx1δx2 +µ3δx1δx3δx1 +µ3δx1δx4δx2
)

p(x1, x2)p(x3, x4)d~x

+
∫
µ2

4δx2
2 p(x1, x2)p(x3, x4)d~x

+2
(
µ4δx2δx3δx1 +µ4δx2δx4δx2

)
p(x1, x2)p(x3, x4)d~x

+
∫

(δx3δx1)2 p(x1, x2)p(x3, x4)d~x

+2
∫

(δx3δx1δx4δx2) p(x1, x2)p(x3, x4)d~x +
∫

(δx4δx2)2 p(x1, x2)p(x3, x4)d~x (119)

=µ2
3σ

2
1 +2µ3µ4σ12 +µ2

4σ
2
2 +σ2

1σ
2
3 +2σ12σ34 +σ2

2σ
2
4 (120)

B Supplementary Tables and Figures

B1 xsdir File

Fig.B.1 shows an excerpt of the generic xsdir file which contains information on ZAID, atomic

weight ratio, the name of the individual ACE continuous-energy nuclear data files, some

information of the ACE file such as its length and the incident neutron energy implied in the

corresponding ACE file. More specifically, the general form of the ZAID is ZZZAAA.nnX where

ZZZ is the atomic number, AAA the atomic weight, nn the nuclear data evaluation identifier and

X for the class of data (D for discrete and default is C for continuous). As the unit convention of

temperature (T) in MCNPX is MeV, the conversion between energy and temperature is through

E( in MeV) = 8.617×10−11T (in degrees K)

E( in MeV) = 8.617×10−11(T +273.15) (in degrees C)

For example, 2.530E − 08 MeV is equivalent to 293.6 K, the default room temperature in

MCNPX.

B2 Explanation of NXS and JXS Arrays

NXS and JXS arrays are the first portion of the ACE-formatted data file. For the example

shown in Fig. 2.3, specific numbers such as the expected length of data points, the number

of reactions, and locations of these reactions and so forth are identified in Table B1 with

explanations.
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Figure B.1: xsdir file contains directory information for MCNPX to access the ACE-formatted
files for materials requested in the MCNPX input file. For example, when 92235.00c is used,
ACE file named 9228 is accessed by MCNPX.

B3 NJOY Input File Example

Fig.B.2 shows an example NJOY input file to prepare the 30-group covariance data for isotope
238U.

B4 Energy Boundaries for SCALE 238-group and 44-group

Fig.B.3 shows the upper and lower boundaries of the 238- and 44-group structures defined

in SCALE6 manual Chapter M04[52]. The upper boundary for thermal energy range is at

3.0000E+00eV. The lower boundary for both 238-group and 44-group is at 1.0000E-05eV..
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element definition in example
NXS(1) length of data block 17969 values
NXS(2) ZA=1000×Z+A 1001 for 1H
NXS(3) number of energies 590 energy points
NXS(4) number of reactions excluding elastic 3
NXS(5) number of reaction with 2nd excluding

elastic
0

NXS(6) number of photon production reac-
tions

1

NXS(7)-NXS(14) allocated for future expansion -
NXS(15) number of PIKMT reactions (photon-

production bias)
0

NXS(16) photon production flag 0 = normal
JXS(1) location of energy table 1
JXS(2) location of ν data 0, no ν data
JXS(3) location of list of MT 2951
JXS(4) location of Q-value array 2954
JXS(5) location of reaction type array 2957
JXS(6) location of XS table locators 2960
JXS(7) location of cross sections (XS) 2963

JXS(8)-JXS(32) locations of locators and respective data

Table B1: Explanation of NXS and JXS arrays in the ACE-formatted file for 1H in Fig.2.3. Values
in JXS table are with respect to XSS table which is right after the JXS table.
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Figure B.2: Example of NJOY input file.
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Figure B.3: Energy boundaries for the SCALE 238-group and 44-group structures.
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