Abstract

The Paul Scherrer Institute used to be very active in fuel fabrication R and D using the internal gelation process, which is a promising production method for spherical nuclear fuel. Such fuel kernels can be directly packed in a cylindrical cladding (a sphere-pac pin), or they can be coated in the TRISO concept. The internal gelation offers several advantages, as it is aqueous up to the forming of the sphere. Consequently, the process is almost dustless, with lower risk of incorporation. The production does not require mechanical and maintenance intensive equipment, as for example presses and grinding machines necessary for pellet type fuel. Especially for low decontaminated fuel coming from aqueous reprocessing, this offers a great advantage, because the production line can easily be handled remotely in a hot cell. In the past, many different fuel matrices were produced and tested at PSI (carbide, nitride and oxide fuels). The paper summarizes the past activities, and some important findings. Furthermore, future perspectives of this concept are shown. These are especially seen in context of Generation IV nuclear systems such as the sodium cooled fast reactor (SFR), the very high temperature reactor (VHTR), and the gas cooled fast reactor (GFR). The paper describes the former production line, which was a classical internal gelation process. Some advantages and disadvantages of this system will be illustrated which lead to a new project at PSI. A silicon oil-free system will be developed over the next years. The oil as a heat carrier is replaced by a cavity, where microwaves act on falling drops and lead to the desired gelation before the spheres drop into a washing solution. The idea of a microwave gelation has already been tested at several laboratories in the past. The paper gives an overview of these activities. Finally the concept of the new production at PSI is introduced. (author)

Details

Actions